WO2012136378A1 - Multisection rotary variable differential transformer, method for determining an angular position of a member that can rotate, and corresponding control device - Google Patents

Multisection rotary variable differential transformer, method for determining an angular position of a member that can rotate, and corresponding control device Download PDF

Info

Publication number
WO2012136378A1
WO2012136378A1 PCT/EP2012/001538 EP2012001538W WO2012136378A1 WO 2012136378 A1 WO2012136378 A1 WO 2012136378A1 EP 2012001538 W EP2012001538 W EP 2012001538W WO 2012136378 A1 WO2012136378 A1 WO 2012136378A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
variable differential
rotary variable
differential transformer
polar mass
Prior art date
Application number
PCT/EP2012/001538
Other languages
French (fr)
Inventor
Fernand Rodrigues
Gaëtan PRINCAY
Joël GIDEL
Julien ARGENTON
Thierry BESSEDE
Original Assignee
Sagem Defense Securite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite filed Critical Sagem Defense Securite
Publication of WO2012136378A1 publication Critical patent/WO2012136378A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/06Variable inductances or transformers of the signal type continuously variable, e.g. variometers by movement of core or part of core relative to the windings as a whole
    • H01F21/065Measures for obtaining a desired relation between the position of the core and the inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers

Definitions

  • Multi-sector rotary variable differential transformer method for determining an angular position of a moving member in rotation, and corresponding control device.
  • the present invention relates to a multisector rotary variable differential transformer, a method for determining an angular position of a rotating movable member associated with this rotary variable differential transformer, and a corresponding control device.
  • rotary variable differential transformers each comprising a magnetic core carrying a primary winding surrounding the magnetic core, and direct and inverse secondary windings also carried by the magnetic core and arranged relative to the magnetic core. primary winding to be traversed by a variable flux according to a position of a polar mass movable relative to the magnetic core.
  • Each rotary variable differential transformer provides two signals that are demodulated to give angular position information. To obtain four separate information it is therefore necessary to use four variable variable differential transformers.
  • the current systems In order to ensure the simultaneous rotation of these four rotary variable differential transformers the current systems generally comprise a mounted gear on an axis rigidly connected to the rotary member whose angular position is to be determined, and four rotary variable differential transformers each equipped with a pinion meshing with the pinion associated with the movable member.
  • Such a system is extremely bulky and very expensive.
  • the object of the invention is to provide a device capable of ensuring accurate measurement of an angular position of a movable member while being of a small footprint and a reduced cost.
  • a rotary variable differential transformer comprising a magnetic core carrying a primary winding surrounding an axis of symmetry of the magnetic core, and direct and inverse secondary windings also carried by the magnetic core and arranged with respect to the primary winding to be traversed by a variable flow depending on a a position of a polar mass rotatable relative to the magnetic core about the axis of symmetry of the magnetic core, wherein the polar mass comprises separate polar mass segments mounted facing angular sectors of the magnetic core carrying secondary windings connected to provide output signals representative of a position of each polar mass with respect to the corresponding angular sector of the magnetic core.
  • each angular sector is equivalent to a rotating variable differential transformer so that four positional information can be obtained with a cylindrical device of small size.
  • the windings each comprise a plurality of identical coils interconnected.
  • the magnetic core comprises radial poles on which the primary winding and the secondary windings are mounted, and the polar mass comprises segments in the form of cylinder portions extending opposite the poles.
  • the magnetic core has an even number of poles at least equal to four, and the polar mass segment extends over an angular range equal to half of the corresponding angular sector.
  • the polar mass segment straddles at least one direct winding and a reverse winding of the secondary winding so that the resulting signal is of good quality.
  • the magnetic core is an O-ring covered with a first winding forming the primary winding itself covered with windings forming the secondary windings.
  • the polar mass segments have a U-section straddling the toric core.
  • the quality of the signal collected at the terminals of the secondary windings is improved.
  • the invention also relates to a method for determining an angular position of a rotating mobile member associated with a variable differential transformer.
  • this method comprising the steps of adding electrical signals supplied by the secondary windings of each angular sector when the primary winding is supplied with alternating current and deriving an angular position of the polar mass segments with respect to the magnetic core, and consequently an angular position of the movable member in rotation.
  • the invention also relates to a control device comprising a control lever mounted for pivoting about an axis of rotation, and directly connected to a moving part of a rotary variable differential transformer according to the invention, the axis of symmetry of which is magnetic core coincides with the axis of rotation of the control lever.
  • control device comprises two rotary variable differential transformers according to the invention arranged on either side of the control lever. This achieves a good compromise by increasing the quality of the signal while limiting the size of the device obtained.
  • FIG. 1 is a sectional view along an axial plane passing through the line I-I of FIG. 2 of a rotary variable differential transformer according to a first embodiment of the invention
  • FIG. 2 is a sectional view along the line II-II of FIG. 1,
  • FIG. 3 is a sectional view similar to that of FIG. 2 of a differential transformer quarter. rotary variable according to the second embodiment of the invention,
  • FIG. 4 is a sectional view along the line IV-IV of FIG. 3;
  • FIG. 5 is a representation of the electrical diagram of two associated sectors
  • FIG. 6 is an elevational view of an alternative embodiment of the control device.
  • the rotary variable differential transformer comprises a magnetic core 1 mounted in such a way that fixed in rotation on a support bar 2.
  • the magnetic core 1 comprises sixteen equidistant radial poles 3, of rectangular section on which are mounted primary windings 4 distributed in four angular sectors S1, S2, S3, and S4.
  • the primary windings 4 are all identical and are all wound in the same direction.
  • the primary windings are identified by the special references P1, P12, P13 and P14 for the primary windings of the sector SI; P21, P22, P23, and P24 for the primary windings of the sector S2 ....
  • the windings P1 to P14 and P31 to P34 are connected in series to constitute a first primary winding while the windings P21 to P24 and P41 to P44 are connected in series to form a second primary winding.
  • the two primary windings are connected to an AC power source.
  • Secondary coils 5 are engaged on the radial poles 3 radially outside the primary windings 4.
  • the secondary windings are distributed in direct secondary windings, that is to say having the same winding direction as the primary windings, and in reverse secondary windings, that is to say winding which is the opposite of the winding primary windings. Direct and inverse windings are electromagnetically termed.
  • the secondary windings are physically identical and are mounted in the same direction on the radial poles, the winding direction from the electromagnetic point of view being determined by the electrical connections between the windings.
  • These links are preferably provided by a printed circuit which remains accessible after assembly of the windings, which makes it possible to configure the rotary variable differential transformer according to the application.
  • the secondary windings are identified by the references SD for the direct windings and SI for the inverse windings and they are numbered from the median plane of a sector towards the end thereof by the special references SD11, SD12, SI11, and SI12 for the SI sector; SD21, SD22, SI21 and SI22 for sector S2 ....
  • the two direct windings are connected in series to form a direct secondary winding and the inverse windings are also connected in series to form a reverse secondary winding, as illustrated in FIG. 5 for the angular sectors SI.
  • the rotary variable differential transformer comprises a carcass 6 mounted free to rotate by means of ball bearings 8 mounted on two rings 7 carried by the support bar 2.
  • the carcass 6 carries four segments of polar mass 9 which for a zero position of the rotary variable differential transformer extend in the middle of each angular sector over half of the sector. Each segment of polar mass 9 is then straddling a radial pole carrying a direct winding and a radial pole carrying a reverse winding.
  • a lever 10 extending radially with respect to the support bar 2 is made in one piece with an annular ring 11 fixed on the side of the carcass 6.
  • the signals delivered on an angular sector by the direct windings and the signals delivered on the same angular sector by the inverse windings are supplied to an adder 12 which performs, in a manner known per se, the ratio of the difference of the signals on the sum of the signals.
  • Figures 3 and 4 illustrate a second embodiment in which the magnetic core 14 is of rectangular section.
  • a primary winding 15 is wound on the toroidal core and the primary winding is covered on one half of the sector considered by a direct secondary winding 16 and on the other half by an inverse secondary winding 17.
  • the rotary variable differential transformer comprises a U-shaped polar mass segment 27 attached to a carcass 18 mounted as before to rotate about the axis of symmetry of the magnetic core 14.
  • FIG. 6 illustrates an alternative embodiment in which the control device comprises a lever 10 fastened to the carcasses of two rotary variable differential transformers 19 made according to one of the embodiments described above, mounted on a common support bar 20.
  • the control device comprises a lever 10 fastened to the carcasses of two rotary variable differential transformers 19 made according to one of the embodiments described above, mounted on a common support bar 20.
  • each of the different transformers Variable rotating models can have only two angular sectors.
  • the rotary variable differential transformer according to the invention can also be realized by inverting the fixed and mobile parts, this inversion being made possible by the limited movement of moving parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electromagnets (AREA)

Abstract

The rotary variable differential transformer comprises a magnetic core (1) bearing a primary winding (4) encircling an axis of symmetry of the magnetic core, and direct and reverse secondary windings (5) also borne by the magnetic core and placed, relative to the primary winding, so as to link with a flux that varies depending on a position of a pole piece that can rotate, relative to the magnetic core, about the axis of symmetry of the magnetic core. According to the invention, the pole piece comprises separate pole-piece segments (9) fitted facing angular sections (S1-S4) of the magnetic core and bearing separate secondary windings (SD, SI) joined so as to deliver output signals representative of a position of each pole-piece segment relative to the corresponding angular section of the magnetic core.

Description

Transformateur différentiel variable rotatif multisecteur, procédé de détermination d'une position angulaire d'un organe mobile en rotation, et dispositif de commande correspondant.  Multi-sector rotary variable differential transformer, method for determining an angular position of a moving member in rotation, and corresponding control device.
La présente invention concerne un transformateur différentiel variable rotatif multisecteur, un procédé de détermination d'une position angulaire d'un organe mobile en rotation associé à ce transformateur différentiel variable rotatif, et un dispositif de commande correspondant. The present invention relates to a multisector rotary variable differential transformer, a method for determining an angular position of a rotating movable member associated with this rotary variable differential transformer, and a corresponding control device.
ARRIÈRE-PLAN DE L'INVENTION  BACKGROUND OF THE INVENTION
On sait que dans certains domaines, notamment dans le domaine aéronautique, il est nécessaire de pouvoir déterminer avec une grande précision la position angulaire d'un organe mobile en rotation, par exemple la position angulaire d'un levier de commande afin de déclencher l'action correspondante .  It is known that in certain fields, in particular in the aeronautical field, it is necessary to be able to determine with great accuracy the angular position of a mobile rotating member, for example the angular position of a control lever to trigger the corresponding action.
Dans certaines applications il est par exemple nécessaire que la position de l'organe mobile soit donnée par quatre capteurs différents. Pour satisfaire à cette exigence il a été réalisé des systèmes comprenant des transformateurs différentiels variables rotatifs comprenant chacun un noyau magnétique portant un enroulement primaire entourant le noyau magnétique, et des enroulements secondaires directs et inverses également portés par le noyau magnétique et disposés par rapport à l'enroulement primaire pour être traversés par un flux variable en fonction d'une position d'une masse polaire mobile par rapport au noyau magnétique. Chaque transformateur différentiel variable rotatif fournit deux signaux qui sont démodulés pour donner une information de position angulaire. Pour obtenir quatre informations séparées il est donc nécessaire d'utiliser quatre transformateurs différentiels variables rotatifs.  In some applications it is for example necessary that the position of the movable member is given by four different sensors. To satisfy this requirement, systems have been developed comprising rotary variable differential transformers each comprising a magnetic core carrying a primary winding surrounding the magnetic core, and direct and inverse secondary windings also carried by the magnetic core and arranged relative to the magnetic core. primary winding to be traversed by a variable flux according to a position of a polar mass movable relative to the magnetic core. Each rotary variable differential transformer provides two signals that are demodulated to give angular position information. To obtain four separate information it is therefore necessary to use four variable variable differential transformers.
Afin d'assurer la rotation simultanée de ces quatre transformateurs différentiels variables rotatifs les systèmes actuels comportent généralement un pignon monté sur un axe rigidement relié à l'organe rotatif dont on souhaite déterminer la position angulaire, et quatre transformateurs différentiels variables rotatifs chacun équipé d'un pignon engrenant avec le pignon associé à l'organe mobile. Un tel système est extrêmement encombrant et très onéreux. In order to ensure the simultaneous rotation of these four rotary variable differential transformers the current systems generally comprise a mounted gear on an axis rigidly connected to the rotary member whose angular position is to be determined, and four rotary variable differential transformers each equipped with a pinion meshing with the pinion associated with the movable member. Such a system is extremely bulky and very expensive.
OBJET DE L'INVENTION  OBJECT OF THE INVENTION
Le but de l'invention est de proposer un dispositif capable d'assurer une mesure précise d'une position angulaire d'un organe mobile tout en étant d'un encombrement faible et d'un coût réduit.  The object of the invention is to provide a device capable of ensuring accurate measurement of an angular position of a movable member while being of a small footprint and a reduced cost.
BRÈVE DESCRIPTION DE L'INVENTION  BRIEF DESCRIPTION OF THE INVENTION
Partant de l'observation, qui fait elle-même partie de l'invention, que dans de nombreuses applications le déplacement angulaire de l'organe mobile s'effectue sur une plage limitée, on propose selon l'invention un transformateur différentiel variable rotatif comprenant un noyau magnétique portant un enroulement primaire entourant un axe de symétrie du noyau magnétique, et des enroulements secondaires directs et inverses également portés par le noyau magnétique et disposés par rapport à l'enroulement primaire pour être traversés par un flux variable en fonction d'une position d'une masse polaire mobile en rotation par rapport au noyau magnétique autour de l'axe de symétrie du noyau magnétique, dans lequel la masse polaire comporte des segments de masse polaire séparés montés en regard de secteurs angulaires du noyau magnétique portant des enroulements secondaires séparés reliés de façon à fournir des signaux de sortie représentatifs d'une position de chaque segment de masse polaire par rapport au secteur angulaire correspondant du noyau magnétique.  Starting from the observation, which is itself part of the invention, that in many applications the angular displacement of the movable member is effected over a limited range, it is proposed according to the invention a rotary variable differential transformer comprising a magnetic core carrying a primary winding surrounding an axis of symmetry of the magnetic core, and direct and inverse secondary windings also carried by the magnetic core and arranged with respect to the primary winding to be traversed by a variable flow depending on a a position of a polar mass rotatable relative to the magnetic core about the axis of symmetry of the magnetic core, wherein the polar mass comprises separate polar mass segments mounted facing angular sectors of the magnetic core carrying secondary windings connected to provide output signals representative of a position of each polar mass with respect to the corresponding angular sector of the magnetic core.
Ainsi, chaque secteur angulaire est équivalent à un transformateur différentiel variable rotatif de sorte que l'on peut obtenir quatre informations de position avec un dispositif cylindrique de faible encombrement.  Thus, each angular sector is equivalent to a rotating variable differential transformer so that four positional information can be obtained with a cylindrical device of small size.
Selon une version avantageuse de l'invention, les enroulements comportent chacun plusieurs bobinages identiques reliés entre eux. According to an advantageous version of the invention, the windings each comprise a plurality of identical coils interconnected.
Ainsi il est possible de réaliser différents trans¬ formateurs différentiels variables rotatifs à partir d'une même structure de base en faisant simplement varier les liaisons des bobinages. Thus it is possible to achieve different trans ¬ differential rotary variable trainers from the same basic structure by simply varying the connections of the coils.
Selon un premier mode de réalisation de l'invention, le noyau magnétique comporte des pôles radiaux sur lesquels sont montés l'enroulement primaire et les enroulements secondaires, et la masse polaire comporte des segments en forme de portions de cylindre s 'étendant en regard des pôles. De préférence, pour chaque secteur angulaire, le noyau magnétique comporte un nombre pair de pôles au moins égal à quatre, et le segment de masse polaire s'étend sur une plage angulaire égale à la moitié du secteur angulaire correspondant. Ainsi, pour une position neutre de l'organe mobile au milieu du secteur le segment de masse polaire est à cheval sur au moins un bobinage direct et un bobinage inverse de l'enroulement secondaire de sorte que le signal résultant est de bonne qualité.  According to a first embodiment of the invention, the magnetic core comprises radial poles on which the primary winding and the secondary windings are mounted, and the polar mass comprises segments in the form of cylinder portions extending opposite the poles. Preferably, for each angular sector, the magnetic core has an even number of poles at least equal to four, and the polar mass segment extends over an angular range equal to half of the corresponding angular sector. Thus, for a neutral position of the movable member in the middle of the sector, the polar mass segment straddles at least one direct winding and a reverse winding of the secondary winding so that the resulting signal is of good quality.
Selon un autre mode de réalisation de l'invention, le noyau magnétique est un anneau torique recouvert d'un premier bobinage formant l'enroulement primaire lui-même recouvert de bobinages formant les enroulements secondaires .  According to another embodiment of the invention, the magnetic core is an O-ring covered with a first winding forming the primary winding itself covered with windings forming the secondary windings.
Ainsi on obtient un signal exempt des perturbations dues aux encoches du premier mode de réalisation.  Thus, there is obtained a signal free of disturbances due to the notches of the first embodiment.
Selon un aspect avantageux de ce mode de réalisation, les segments de masse polaire ont une section en U à cheval sur le noyau torique. Ainsi, on améliore la qualité du signal recueilli aux bornes des enroulements secondaires .  According to an advantageous aspect of this embodiment, the polar mass segments have a U-section straddling the toric core. Thus, the quality of the signal collected at the terminals of the secondary windings is improved.
L'invention concerne également un procédé de détermination d'une position angulaire d'un organe mobile en rotation associé à un transformateur différentiel variable rotatif selon l'invention, ce procédé comportant les étapes d'additionner des signaux électriques fournis par les enroulements secondaires de chaque secteur angulaire lorsque l'enroulement primaire est alimenté en courant alternatif et en déduire une position angulaire des segments de masse polaire par rapport au noyau magnétique, et par voie de conséquence une position angulaire de l'organe mobile en rotation . The invention also relates to a method for determining an angular position of a rotating mobile member associated with a variable differential transformer. rotary device according to the invention, this method comprising the steps of adding electrical signals supplied by the secondary windings of each angular sector when the primary winding is supplied with alternating current and deriving an angular position of the polar mass segments with respect to the magnetic core, and consequently an angular position of the movable member in rotation.
L'invention concerne encore un dispositif de commande comprenant un levier de commande monté pour pivoter autour d'un axe de rotation, et directement relié à une partie mobile d'un transformateur différentiel variable rotatif selon l'invention dont l'axe de symétrie du noyau magnétique coïncide avec l'axe de rotation du levier de commande .  The invention also relates to a control device comprising a control lever mounted for pivoting about an axis of rotation, and directly connected to a moving part of a rotary variable differential transformer according to the invention, the axis of symmetry of which is magnetic core coincides with the axis of rotation of the control lever.
De préférence, le dispositif de commande comporte deux transformateurs différentiels variables rotatifs selon l'invention disposés de part et d'autre du levier de commande. On réalise ainsi un bon compromis en augmentant la qualité du signal tout en limitant l'encombrement du dispositif obtenu.  Preferably, the control device comprises two rotary variable differential transformers according to the invention arranged on either side of the control lever. This achieves a good compromise by increasing the quality of the signal while limiting the size of the device obtained.
BRÈVE DESCRIPTION DES DESSINS  BRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques avantages de l'invention apparaîtront à la lecture de la description qui suit de deux modes de réalisation particuliers non limitatifs de l'invention en référence aux figures ci-jointes parmi lesquelles :  Other advantages of the invention will appear on reading the following description of two particular non-limiting embodiments of the invention with reference to the attached figures, among which:
- la figure 1 est une vue en coupe selon un plan axial passant par la ligne I-I de la figure 2 d'un transformateur différentiel variable rotatif selon un premier mode de réalisation de l'invention,  FIG. 1 is a sectional view along an axial plane passing through the line I-I of FIG. 2 of a rotary variable differential transformer according to a first embodiment of the invention,
- la figure 2 est une vue en coupe selon la ligne II-II de la figure 1,  FIG. 2 is a sectional view along the line II-II of FIG. 1,
- la figure 3 est une vue en coupe analogue à celle de la figure 2 d'un quart de transformateur différentiel variable rotatif selon le deuxième mode de réalisation de 1 ' invention, FIG. 3 is a sectional view similar to that of FIG. 2 of a differential transformer quarter. rotary variable according to the second embodiment of the invention,
- la figure 4 est une vue en coupe selon la ligne IV-IV de la figure 3,  FIG. 4 is a sectional view along the line IV-IV of FIG. 3;
la figure 5 est une représentation du schéma électrique de deux secteurs associés,  FIG. 5 is a representation of the electrical diagram of two associated sectors,
- la figure 6 est une vue en élévation d'une variante de réalisation du dispositif de commande.  - Figure 6 is an elevational view of an alternative embodiment of the control device.
DESCRIPTION DÉTAILLÉE DE L'INVENTION  DETAILED DESCRIPTION OF THE INVENTION
En référence aux figures 1 et 2, cette dernière ayant été établie à une échelle double de la figure 1 pour une meilleure clarté de la figure 2, dans le premier mode de réalisation, le transformateur différentiel variable rotatif comprend un noyau magnétique 1 monté de façon fixe en rotation sur un barreau support 2. Le noyau magnétique 1 comporte seize pôles radiaux 3 équidistants , de section rectangulaire sur lesquels sont montés des bobinages primaires 4 répartis selon quatre secteurs angulaires SI, S2, S3, et S4. Les bobinages primaires 4 sont tous identiques et sont tous enroulés dans le même sens. Les bobinages primaires sont identifiées par les références particulières Pli, P12, P13 et P14 pour les bobinages primaires du secteur SI; P21, P22, P23, et P24 pour les bobinages primaires du secteur S2.... Les bobinages Pli à P14 et P31 à P34 sont reliés en série pour constituer un premier enroulement primaire tandis que les bobinages P21 à P24 et P41 à P44 sont reliés en série pour constituer un second enroulement primaire. Les deux enroulements primaires sont reliés à une source de courant alternatif. Des bobinages secondaires 5 sont engagés sur les pôles radiaux 3 radialement à l'extérieur des bobinages primaires 4. Les bobinages secondaires sont répartis en bobinages secondaires directs, c'est-à- dire ayant le même sens d'enroulement que les bobinages primaires, et en bobinages secondaires inverses, c'est-à- dire dont l'enroulement est à l'inverse de l'enroulement des bobinages primaires. Les enroulements directs et inverses s'entendent au point de vue électromagnétique du terme. En pratique les bobinages secondaires sont physiquement identiques et sont montés dans le même sens sur les pôles radiaux, le sens d'enroulement du point de vue électromagnétique étant déterminé par les liaisons électriques entre les bobinages. Ces liaisons sont de préférence assurées par un circuit imprimé qui reste accessible après montage des bobinages, ce qui permet de configurer le transformateur différentiel variable rotatif en fonction de l'application. Partant d'un plan médian de chaque secteur angulaire, les bobinages secondaires sont identifiés par les références SD pour les bobinages directs et SI pour les bobinages inverses et ils sont numérotés depuis le plan médian d'un secteur vers l'extrémité de celui-ci par les références particulières SD11,SD12, SI11, et SI12 pour le secteur SI ; SD21, SD22, SI21 et SI22 pour le secteur S2.... With reference to FIGS. 1 and 2, the latter having been established on a double scale of FIG. 1 for the sake of clarity of FIG. 2, in the first embodiment, the rotary variable differential transformer comprises a magnetic core 1 mounted in such a way that fixed in rotation on a support bar 2. The magnetic core 1 comprises sixteen equidistant radial poles 3, of rectangular section on which are mounted primary windings 4 distributed in four angular sectors S1, S2, S3, and S4. The primary windings 4 are all identical and are all wound in the same direction. The primary windings are identified by the special references P1, P12, P13 and P14 for the primary windings of the sector SI; P21, P22, P23, and P24 for the primary windings of the sector S2 .... The windings P1 to P14 and P31 to P34 are connected in series to constitute a first primary winding while the windings P21 to P24 and P41 to P44 are connected in series to form a second primary winding. The two primary windings are connected to an AC power source. Secondary coils 5 are engaged on the radial poles 3 radially outside the primary windings 4. The secondary windings are distributed in direct secondary windings, that is to say having the same winding direction as the primary windings, and in reverse secondary windings, that is to say winding which is the opposite of the winding primary windings. Direct and inverse windings are electromagnetically termed. In practice the secondary windings are physically identical and are mounted in the same direction on the radial poles, the winding direction from the electromagnetic point of view being determined by the electrical connections between the windings. These links are preferably provided by a printed circuit which remains accessible after assembly of the windings, which makes it possible to configure the rotary variable differential transformer according to the application. Starting from a median plane of each angular sector, the secondary windings are identified by the references SD for the direct windings and SI for the inverse windings and they are numbered from the median plane of a sector towards the end thereof by the special references SD11, SD12, SI11, and SI12 for the SI sector; SD21, SD22, SI21 and SI22 for sector S2 ....
Dans chacun des secteurs les deux bobinages directs sont reliés en série pour former un enroulement secondaire direct et les bobinages inverses sont également reliés en série pour former un enroulement secondaire inverse, comme illustré par la figure 5 pour les secteurs angulaires SI.  In each of the sectors, the two direct windings are connected in series to form a direct secondary winding and the inverse windings are also connected in series to form a reverse secondary winding, as illustrated in FIG. 5 for the angular sectors SI.
Par ailleurs, le transformateur différentiel variable rotatif comporte une carcasse 6 montée libre en rotation par l'intermédiaire de roulements à billes 8 montés sur deux bagues 7 portées par le barreau support 2.  Furthermore, the rotary variable differential transformer comprises a carcass 6 mounted free to rotate by means of ball bearings 8 mounted on two rings 7 carried by the support bar 2.
La carcasse 6 porte quatre segments de masse polaire 9 qui pour une position de zéro du transformateur différentiel variable rotatif s'étendent au milieu de chaque secteur angulaire sur la moitié du secteur. Chaque segment de masse polaire 9 se trouve alors à cheval sur un pôle radial portant un bobinage direct et un pôle radial portant un bobinage inverse. Un levier 10 s ' étendant radialement par rapport au barreau support 2 est réalisé en une seule pièce avec une bague annulaire 11 fixée sur le côté de la carcasse 6. The carcass 6 carries four segments of polar mass 9 which for a zero position of the rotary variable differential transformer extend in the middle of each angular sector over half of the sector. Each segment of polar mass 9 is then straddling a radial pole carrying a direct winding and a radial pole carrying a reverse winding. A lever 10 extending radially with respect to the support bar 2 is made in one piece with an annular ring 11 fixed on the side of the carcass 6.
En références à la figure 5, les signaux délivrés sur un secteur angulaire par les bobinages directs et les signaux délivrés sur le même secteur angulaire par les bobinages inverses sont fournis à un sommateur 12 qui effectue de façon connue en soi le rapport de la différence des signaux sur la somme des signaux.  With reference to FIG. 5, the signals delivered on an angular sector by the direct windings and the signals delivered on the same angular sector by the inverse windings are supplied to an adder 12 which performs, in a manner known per se, the ratio of the difference of the signals on the sum of the signals.
Lorsque le levier de commande 10 est dans la position zéro, comme représenté sur la figure 2, le signal résultant à la sortie du sommateur 12 est nul. Lorsque le levier de commande 10 est déplacé dans un sens ou dans l'autre comme figuré par la flèche en trait épais sur la figure 2, les signaux directs et inverses sont déséquilibrés et le signal final recueilli à la sortie du sommateur 12 est donc représentatif du décalage angulaire de la carcasse 6 par rapport au noyau magnétique 1.  When the control lever 10 is in the zero position, as shown in Figure 2, the resulting signal at the output of the adder 12 is zero. When the control lever 10 is moved in one direction or the other as shown by the thick line arrow in FIG. 2, the direct and inverse signals are unbalanced and the final signal collected at the output of the adder 12 is therefore representative. angular displacement of the carcass 6 with respect to the magnetic core 1.
Les figures 3 et 4 illustrent un second mode de réalisation dans lequel le noyau magnétique 14 est torique de section rectangulaire. Un bobinage primaire 15 est enroulé sur le noyau torique et le bobinage primaire est recouvert sur une moitié du secteur considéré par un bobinage secondaire direct 16 et sur l'autre moitié par un bobinage secondaire inverse 17. Pour chaque secteur angulaire le transformateur différentiel variables rotatif comporte un segment de masse polaire 27 en forme de U fixé à une carcasse 18 montée comme précédemment pour tourner autour de l'axe de symétrie du noyau magnétique 14.  Figures 3 and 4 illustrate a second embodiment in which the magnetic core 14 is of rectangular section. A primary winding 15 is wound on the toroidal core and the primary winding is covered on one half of the sector considered by a direct secondary winding 16 and on the other half by an inverse secondary winding 17. For each angular sector, the rotary variable differential transformer comprises a U-shaped polar mass segment 27 attached to a carcass 18 mounted as before to rotate about the axis of symmetry of the magnetic core 14.
La figure 6 illustre une variante de réalisation dans laquelle le dispositif de commande comporte un levier 10 fixé aux carcasses de deux transformateurs différentiels variables rotatifs 19 réalisés selon l'un des modes de réalisation décrit ci-dessus, montés sur un barreau support commun 20. Dans ce cas où chacun des transformateurs diffé- rentiels variables rotatifs peut comporter deux secteurs angulaires seulement. FIG. 6 illustrates an alternative embodiment in which the control device comprises a lever 10 fastened to the carcasses of two rotary variable differential transformers 19 made according to one of the embodiments described above, mounted on a common support bar 20. In this case where each of the different transformers Variable rotating models can have only two angular sectors.
Bien entendu l'invention n'est pas limitée aux mo¬ des de réalisation décrits et on peut y apporter des va¬ riantes de réalisation sans sortir du cadre invention tel que défini par les revendications. En particulier bien que l'invention ait été décrite en relation avec des transformateurs différentiels variables rotatifs comportant quatre secteurs angulaires séparés, on peut réaliser l'invention avec un nombre différent de secteurs séparés en relation avec la plage angulaire sur laquelle on souhaite pouvoir mesurer des déplacements. Naturally the invention is not limited to the mo ¬ embodiments described and can be will make ¬ laughing without going beyond the scope invention as defined by the claims. In particular, although the invention has been described in relation to rotary variable differential transformers having four separate angular sectors, it is possible to realize the invention with a different number of separate sectors in relation to the angular range on which it is desired to be able to measure trips.
Bien que l'invention ait été décrite en relation avec un stator portant les enroulements et un rotor portant les segments de masse polaire, le transformateur différentiel variable rotatif selon l'invention peut également être réalisé en inversant les pièces fixes et mobiles, cette inversion étant rendue possible par le caractère limité du déplacement des pièces mobiles.  Although the invention has been described in relation to a stator carrying the windings and a rotor carrying the polar mass segments, the rotary variable differential transformer according to the invention can also be realized by inverting the fixed and mobile parts, this inversion being made possible by the limited movement of moving parts.
Bien que l'invention ait été décrite en relation avec un transformateur différentiel variable rotatif comprenant deux enroulements primaires séparés afin d'assurer une redondance totale, on peut réaliser l'invention avec un enroulement primaire commun à tous les secteurs angulaires.  Although the invention has been described in connection with a rotary variable differential transformer comprising two separate primary windings in order to ensure total redundancy, the invention can be realized with a primary winding common to all angular sectors.

Claims

REVENDICATIONS
1. Transformateur différentiel variable rotatif comprenant un noyau magnétique (1;14) portant un enroule¬ ment primaire (4; 15) entourant un axe de symétrie du noyau magnétique, et des enroulements secondaires directs et inverses (5; 16, 17) également portés par le noyau magnétique et disposés par rapport à l'enroulement primaire pour être traversés par un flux variable en fonction d'une position d'une masse polaire mobile en rotation par rapport au noyau magnétique, autour de l'axe de symétrie du noyau magnétique caractérisé en ce que la masse polaire comporte des segments de masse polaire séparés (9; 27) montés en regard de secteurs angulaires (S1-S4) du noyau magnétique portant des enroulements secondaires séparés (SD, SI; 16, 17) reliés de façon à fournir des signaux de sortie représentatifs d'une position de chaque segment de masse polaire par rapport au secteur angulaire correspondant du noyau magnétique. 1. rotary variable differential transformer comprising a magnetic core (1; 14) carrying a primary wound ¬ (4; 15) surrounding an axis of symmetry of the magnetic core, and the direct and inverse secondary windings (5; 16, 17) also carried by the magnetic core and arranged relative to the primary winding to be traversed by a variable flow depending on a position of a polar mass rotatable relative to the magnetic core, around the axis of symmetry of the core magnetic device characterized in that the polar mass comprises separated polar mass segments (9; 27) mounted opposite angular sectors (S1-S4) of the magnetic core carrying separate secondary windings (SD, S1, 16, 17) connected by providing output signals representative of a position of each polar mass segment relative to the corresponding angular sector of the magnetic core.
2. Transformateur différentiel variable rotatif selon la revendication 1 caractérisé en ce que les enroulements comportent chacun plusieurs bobinages (P,SD,SI) identiques reliés entre eux.  2. rotary variable differential transformer according to claim 1 characterized in that the windings each comprise several windings (P, SD, SI) identical interconnected.
3. Transformateur différentiel variable rotatif selon la revendication 2 caractérisé en ce que le noyau magnétique (3) comporte des pôles radiaux (3) sur lesquels sont montés l'enroulement primaire (P) et les enroulements secondaires (SD,SI), et en ce que la masse polaire comporte des segments en forme de portions de cylindre (9) s ' étendant en regard des pôles.  Rotary variable differential transformer according to claim 2, characterized in that the magnetic core (3) comprises radial poles (3) on which the primary winding (P) and the secondary windings (SD, SI) are mounted, and the polar mass comprises segments in the form of cylinder portions (9) extending opposite the poles.
4. Transformateur différentiel variable rotatif selon la revendication 3 caractérisé en ce que, pour chaque secteur angulaire, le noyau magnétique comporte un nombre pair de pôles (3) au moins égal à quatre, et le segment de masse polaire (9) s'étend sur une plage angulaire égale à la moitié du secteur angulaire correspondant. Rotary variable differential transformer according to Claim 3, characterized in that, for each angular sector, the magnetic core comprises an even number of poles (3) at least equal to four, and the polar mass segment (9) extends on an angular range equal to half of the corresponding angular sector.
5. Transformateur différentiel variable rotatif se¬ lon la revendication 1 caractérisé en ce que le noyau ma¬ gnétique est un anneau torique (14) recouvert d'un premier bobinage formant l'enroulement primaire (15) lui-même recouvert de bobinages (16,17) formant les enroulements secondaires . 5. rotary variable differential transformer is ¬ lon to claim 1 characterized in that the core my ¬ gnétique is an O-ring (14) covered with a first coil forming the primary winding (15) itself covered with coils (16 17) forming the secondary windings.
6. Transformateur différentiel variable rotatif selon la revendication 5 caractérisé en ce que les segments de masse polaire (27) ont une section en U à cheval sur le noyau torique.  6. Rotary variable differential transformer according to claim 5 characterized in that the polar mass segments (27) have a U-section straddling the toric core.
7. Procédé de détermination d'une position angulaire d'un organe mobile en rotation associé à un transformateur différentiel variable rotatif selon la revendication 1 caractérisé en ce qu'il comporte les étapes d'additionner des signaux électriques fournis par les enroulements secondaires de chaque secteur angulaire lorsque l'enroulement primaire est alimenté en courant alternatif et en déduire une position angulaire des segments de masse polaire par rapport au noyau magnétique, et par voie de conséquence une position angulaire de l'organe mobile en rotation.  7. A method for determining an angular position of a rotational movable member associated with a rotary variable differential transformer according to claim 1 characterized in that it comprises the steps of adding electrical signals provided by the secondary windings of each angular sector when the primary winding is supplied with alternating current and derive an angular position of the polar mass segments relative to the magnetic core, and consequently an angular position of the movable member in rotation.
8. Dispositif de commande comprenant un levier de commande (10) monté pour pivoter autour d'un axe de rota¬ tion caractérisé en ce qu'il est directement relié à une partie mobile (6; 18) d'un transformateur différentiel variable rotatif selon la revendication 1 dont l'axe de symé¬ trie du noyau magnétique coïncide avec l'axe de rotation du levier de commande. 8. Control device comprising a control lever (10) mounted for pivoting about a rotation axis ¬ tion characterized in that it is directly connected to a movable portion (6; 18) of a rotary variable differential transformer according to claim 1, the axis of symé ¬ trie of the magnetic core coincides with the axis of rotation of the control lever.
9. Dispositif de commande selon la revendication 8 caractérisé en ce qu'il comporte deux transformateurs (19) différentiels variables rotatifs selon la revendication 1 disposés de part et d'autre du levier de commande (10).  9. Control device according to claim 8 characterized in that it comprises two rotary variable differential transformers (19) according to claim 1 disposed on either side of the control lever (10).
PCT/EP2012/001538 2011-04-08 2012-04-06 Multisection rotary variable differential transformer, method for determining an angular position of a member that can rotate, and corresponding control device WO2012136378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153098A FR2973926B1 (en) 2011-04-08 2011-04-08 MULTI-SECTOR ROTARY VARIABLE DIFFERENTIAL TRANSFORMER, METHOD FOR DETERMINING AN ANGULAR POSITION OF A ROTATING MOVABLE MEMB, AND CORRESPONDING CONTROL DEVICE
FR1153098 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012136378A1 true WO2012136378A1 (en) 2012-10-11

Family

ID=45953067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001538 WO2012136378A1 (en) 2011-04-08 2012-04-06 Multisection rotary variable differential transformer, method for determining an angular position of a member that can rotate, and corresponding control device

Country Status (2)

Country Link
FR (1) FR2973926B1 (en)
WO (1) WO2012136378A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110365A1 (en) * 2014-01-27 2015-07-30 Sagem Defense Securite Rotation-blocking device with simplified structure, and actuator comprising such a device
CN113098142A (en) * 2019-12-23 2021-07-09 深圳市速腾聚创科技有限公司 Mechanical rotation type laser radar power supply circuit, laser radar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368142A (en) * 1965-11-15 1968-02-06 Northrop Corp Self-testing variable transformer
US4345230A (en) * 1981-02-02 1982-08-17 Pickering & Company, Inc. Multiple rotary variable differential transformer on common shaft with leakage flux compensation
US5621179A (en) * 1992-12-12 1997-04-15 Penny & Giles Blackwood Limited Rotary transducer
FR2831662A1 (en) * 2001-10-30 2003-05-02 Precilec Inductive differential position sensor or rotary variable differential transformer for measuring the relative displacement of rotating components has a design with increased linear response and angular measurement ranges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368142A (en) * 1965-11-15 1968-02-06 Northrop Corp Self-testing variable transformer
US4345230A (en) * 1981-02-02 1982-08-17 Pickering & Company, Inc. Multiple rotary variable differential transformer on common shaft with leakage flux compensation
US5621179A (en) * 1992-12-12 1997-04-15 Penny & Giles Blackwood Limited Rotary transducer
FR2831662A1 (en) * 2001-10-30 2003-05-02 Precilec Inductive differential position sensor or rotary variable differential transformer for measuring the relative displacement of rotating components has a design with increased linear response and angular measurement ranges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015110365A1 (en) * 2014-01-27 2015-07-30 Sagem Defense Securite Rotation-blocking device with simplified structure, and actuator comprising such a device
FR3016860A1 (en) * 2014-01-27 2015-07-31 Sagem Defense Securite ROTATION BLOCKING DEVICE WITH SIMPLIFIED STRUCTURE AND ACTUATOR INCLUDING SUCH A DEVICE
US10059433B2 (en) 2014-01-27 2018-08-28 Safran Electronics & Defense Rotation-blocking device with simplified structure, and actuator comprising such a device
CN113098142A (en) * 2019-12-23 2021-07-09 深圳市速腾聚创科技有限公司 Mechanical rotation type laser radar power supply circuit, laser radar

Also Published As

Publication number Publication date
FR2973926B1 (en) 2022-01-07
FR2973926A1 (en) 2012-10-12

Similar Documents

Publication Publication Date Title
EP0949747B1 (en) Polyphase motor, in particular for driving the hand of a display
WO1983002042A1 (en) Electric stepping motor
EP0162780A1 (en) Apparatus for detecting the angular position of the rotor in a rotating machine
EP2847068B1 (en) Rotating three-phase transformer with linked and free flux
CH653189A5 (en) ELECTRIC STEPPER MOTOR.
EP0151158B1 (en) Multiphase motor with magnetized rotor having n pairs of poles with axial magnetization
FR2537301A1 (en) ELECTRO-MECHANICAL CONVERTER WITH SEVERAL DEGREES OF FREEDOM
EP0544575B1 (en) Variable reluctance absolute angular position sensor
FR3023611A1 (en) ASSEMBLY COMPRISING A MOTOR VEHICLE ENGINE COMPRISING TARGETS AND AN ANGULAR POSITION SENSOR
WO2012136378A1 (en) Multisection rotary variable differential transformer, method for determining an angular position of a member that can rotate, and corresponding control device
EP2847773B1 (en) Three-phase/two-phase rotary transformer
FR2801969A1 (en) NON-CONTACT ANGLE SHIFT ANALOG SENSOR
EP0780587A1 (en) Magnetic bearing with actuators and alterned sensors
WO2017212150A1 (en) Inductive position sensor for measuring the angular position of a shaft or the like
EP3651345A1 (en) Method for reducing the detent torque produced by brushless type electric motors used simultaneously
EP0479674A1 (en) Improvement for devices to measure the braking torques produced by electromagnetic braking devices and control devices for these torques
FR2492605A1 (en) ELECTRIC MOTOR TRANSFORMING PULSES OF MAGNETIC ATTRACTION OF THE ROTOR BY THE STATOR IN A ROTATING ROTOR MOTION
FR2831345A1 (en) Electrical machine with automatic mechanical flux reduction has stator and two part permanent magnet rotor one part being connected to an output shaft and the other able to rotate relative to first
CA2872723A1 (en) Three-phase transformer with three magnetic cores including radial and annular windings
FR2998347A1 (en) HYSTERESIS MAGNETIC BRAKE WITH REDUCED CRANTAGE
WO2000058976A1 (en) Method for determining the position of a moveable element in at least one main pole air gap in an electromagnetic actuator
FR2986388A1 (en) Method for assembling segmented stator of radial flux motor, involves winding sheet ribbon spirally to form toothed star, winding toothed star and overlapping toothed star in retaining ring, where ring is formed by stack of cut sheets
EP1619779A1 (en) Electrical Three-Phase Motor
EP1473547A1 (en) Inductive angular position sensor
FR3093798A1 (en) System for determining at least one rotation parameter of a rotating member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12713884

Country of ref document: EP

Kind code of ref document: A1