WO2012136196A1 - Method and device for the phase stabilization of laser pulses - Google Patents

Method and device for the phase stabilization of laser pulses Download PDF

Info

Publication number
WO2012136196A1
WO2012136196A1 PCT/DE2012/000386 DE2012000386W WO2012136196A1 WO 2012136196 A1 WO2012136196 A1 WO 2012136196A1 DE 2012000386 W DE2012000386 W DE 2012000386W WO 2012136196 A1 WO2012136196 A1 WO 2012136196A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
laser
laser pulses
stage
correction
Prior art date
Application number
PCT/DE2012/000386
Other languages
German (de)
French (fr)
Inventor
Gerhard Georg PAULUS
Arthur Maxwell SAYLER
Tim Rathje
Klaus Rühle
Daniel ADOLPH
Original Assignee
Friedrich-Schiller-Universität Jena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich-Schiller-Universität Jena filed Critical Friedrich-Schiller-Universität Jena
Publication of WO2012136196A1 publication Critical patent/WO2012136196A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1307Stabilisation of the phase

Definitions

  • the invention relates to a method and a device for phase stabilization of laser pulses.
  • phase of the carrier wave with respect to the maximum of the pulse envelopes This phase is known as the absolute phase or carrier-envelope (CE) phase.
  • CE carrier-envelope
  • cosine-like pulses when the pulse maximum coincides with a field maximum and of sinusoidal pulses when the pulse maximum falls to a zero crossing of the field.
  • the phase measurement and their evaluation in particular also correlated to other measurement data, a high relevance.
  • phase effects have also been measured with a number of other arrangements. In general, it was necessary to mitigate the effects induced by hundreds or thousands of laser pulses in order to determine the phase of these pulses. The prerequisite was therefore the availability of phase-stabilized pulses (T.M. Fortier, P.A. Roos,
  • Possibilities of a fast phase evaluation, in particular in real time, in order to be able to influence the generation of the laser pulses or even the measured laser pulse, for example, are not disclosed.
  • the invention is based on the task of measuring the phase of a laser pulse and then correcting the phase to a predetermined value precisely at this laser pulse (self-CEP correction).
  • This subsequent phase correction should make it possible to stabilize the phase to a predetermined value even in laser systems with low repetition rates of a few hertz and less.
  • This object is achieved by a method for phase stabilization of laser pulses, in each of which the laser pulses are measured at a measuring point of the laser radiation in their phase and determined in their relation to a predetermined phase and in which each measured in its phase and delayed in the meantime Laser pulse in deviation of the phase angle is corrected to the predetermined phase at a correction in its phase.
  • the invention relates to a device for phase stabilization of laser pulses, in which a measuring stage is arranged at a measuring location located in the beam path of the laser pulses, which is connected to a Phasenausnce for comparing the phase position of the laser pulses with respect to a predetermined phase position, which on the output side to a likewise in the beam path of the laser pulses arranged phase correction stage is connected, in which the laser pulses are corrected in the event of a deviation from the predetermined phase position after passing through a delay path between the measuring stage at the measuring location and the phase correction stage at a correction in each case in their phase.
  • the CE phase is determined in the case of a laser pulse at a measuring location. Thereafter, the CE phase of the same pulse, which in the meantime by a time necessary for the evaluation of the CE phase is required, was delayed at a correction location, which lies behind the time of the laser beam in the time of the measurement location, corrected to the predetermined value.
  • the device proposed in DE 10 2010 019 814.5 can be used to quickly determine the CE phase of the laser pulse. After passing through the device, the pulse (if necessary) is delayed in time before it then z to correct the phase. B. an electro-optical or acousto-opti see modulator passes. This makes it possible to individually correct the phase of each pulse, including the first pulse generated and measured, precisely at this pulse (self-CEP correction).
  • Fig. 2 Apparatus for phase correction of laser pulses with
  • Fig. 1 the intensity profile of a known laser pulse 1 is shown in a schematic representation.
  • Fig. 2 shows as an exemplary embodiment a block diagram for the phase correction of laser pulses for a possible self-CEP correction.
  • the laser pulse 1 of a laser pulse train 2 initially strikes a measuring stage 3, with which the laser pulse 1 in the laser pulse train 2 at a measuring location 4 (symbolized by arrow representation) is detected.
  • the measuring stage 2 is connected to a phase evaluation stage 5 in order to determine the current CE phase of the measured laser pulse 1 in the pulse train 2 in real time.
  • the measuring stage 3 and the phase evaluation stage 5 can be realized, for example, by a device proposed in DE 10 2010 019 814.5.
  • the CE phase of the measured laser pulse 1 in the phase evaluation stage 5 it passes through a delay path 6 in the laser pulse train 2.
  • the measurement and calculation of the CE phase will take less than 10 -5 seconds, and the laser pulses measured will become this required time the laser pulse train 2 in the delay line 6 delayed.
  • a possible delay distance 6 of less than 300 m can be realized, for example, by a mirror construction in which the laser pulse train 2 is multiply reflected on large mirrors (not explicitly shown for reasons of clarity).
  • the laser pulse train 2 impinges on a correction location 7 (symbolized by an arrow) on a phase correction stage 8.
  • the now time-delayed laser pulse 1 undergoes a birefringent crystal in which an electric field can be generated by means of electrodes (also not shown explicitly for reasons of clarity) ). Due to the electro-optical Pockels effect, a voltage-dependent birefringence can be generated in the crystal, which determines the CE phase of the detected in the measuring stage 3 laser pulse 1 based on the determined with the Phasenauslusement 5 current CE phase in the event of a detected phase deviation to a predetermined Can correct value.
  • a phase-controlled laser pulse train 9 is output by the phase correction stage 8, in which all laser pulses, including the first generated and measured laser pulse are corrected in their phase position, so that the entire laser pulse train contains 9 laser pulses with exactly predetermined CE phase.

Abstract

The aim of the invention is to measure the phase of a laser pulse and to subsequently correct the phase to a specified value for precisely said laser pulse (self CEP correction). According to the invention, said aim is achieved by measuring (3) the laser pulse of a laser pulse train (2) at a measurement point (4) of the laser radiation and determining (5) the CE phase of the laser pulse train. Depending on said CE phase, the phase of the measured and, if applicable, time-delayed laser pulse (6) is corrected (8) at a correction location (7) if the phase position of said laser pulse deviates from the specified phase alignment. The invention is used for example in laser technology for producing and monitoring single-cycle pulses.

Description

Verfahren und Vorrichtung zur Phasenstabilisierung von Laserpulsen  Method and device for phase stabilization of laser pulses
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Phasenstabilisierung von Laserpulsen. The invention relates to a method and a device for phase stabilization of laser pulses.
Seit 1 97 ist die Erzeugung von Laserpulsen möglich, die innerhalb ihrer Halbwertsbreite nur mehr aus wenigen optischen Zyklen bestehen (M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, F: Krausz: A novel high energy pulse compression System: Generation of multigigawatt sub-5-fs pulses, Applied Physics B-Lasers And Optics, 1997, Vol. 65, 189-196). Diese Pulse sind als Einzelzyklen- oder few-cycle-Pulse (vgl. Fig. 1) bekannt. Charakteristisch für Einzelzyklenpulse ist deren Asymmetrie, die umso stärker zutage tritt, je kürzer der Puls ist, d. h. aus je weniger optischen Zyklen der Puls besteht. Since 1 97 the generation of laser pulses is possible, which consist within their half-width only of a few optical cycles (M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner , C. Spielmann, F: Krausz: A novel high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses, Applied Physics B-Lasers And Optics, 1997, Vol. 65, 189-196). These pulses are known as single-cycle or few-cycle pulses (see Fig. 1). Characteristic of single-cycle pulses is their asymmetry, which becomes more pronounced the shorter the pulse, that is, the shorter the pulse. H. the less optical cycles the pulse consists of.
Die Asymmetrie und damit der detaillierte Verlauf des elektrischen Feldes dieser Pulse werden durch die Phase der Trägerwelle, bezogen auf das Maximum der Pulseinhüllenden bestimmt. Diese Phase ist als absolute Phase oder carrier-envelope (CE) Phase bekannt. Insbesondere spricht man von cosinus-artigen Pulsen, wenn das Pulsmaximum mit einem Feldmaximum zusammenfällt und von sinus-artigen Pulsen, wenn das Pulsmaximum auf einen Nulldurchgang des Feldes fällt. The asymmetry and thus the detailed course of the electric field of these pulses are determined by the phase of the carrier wave with respect to the maximum of the pulse envelopes. This phase is known as the absolute phase or carrier-envelope (CE) phase. In particular, one speaks of cosine-like pulses when the pulse maximum coincides with a field maximum and of sinusoidal pulses when the pulse maximum falls to a zero crossing of the field.
Nachdem die Wechselwirkung von Materie mit Laserpulsen im Allgemeinen vom Feld bestimmt wird, hat die absolute Phase eine erhebliche Bedeutung für unterschiedlichste wissenschaftliche und technische Anwendungen von Einzelzyklenpulsen. Since the interaction of matter with laser pulses is generally determined by the field, the absolute phase has considerable significance for a wide variety of scientific and technical applications of single-cycle pulses.
Nachdem der Stabilisierung der absoluten Phase technische Grenzen gesetzt sind, hat die Phasenmessung und deren Auswertung, insbesondere auch korreliert zu anderen Messdaten, eine hohe Relevanz. After the stabilization of the absolute phase technical limits are set, the phase measurement and their evaluation, in particular also correlated to other measurement data, a high relevance.
2001 wurden Effekte der absoluten Phase erstmals bei der Photoionisation von Edelgasen nachgewiesen (G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri: Absolute-phase phenomena in photoionization with few-cycle laser pulses, NATURE, 2001, Vol 414, 182-184). Dabei wurde die durch die asymmetrischen Pulse verursachte asymmetrische Photoelektronenverteilung mit zwei sich gegenüberstehenden Flugzeitspektrometern (Stereo-Flugzeitspektrometer) gemessen. In 2001, effects of the absolute phase were first detected in the photoionization of noble gases (GG Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri: Absolute-phase phenomena in photoionization with few-cycle laser pulses, NATURE, 2001, Vol 414, 182-184). The asymmetric photoelectron distribution caused by the asymmetrical pulses was measured using two contrasting time-of-flight spectrometers (stereo time-of-flight spectrometers).
Seitdem wurden Phaseneffekte auch mit einer Reihe anderer Anordnungen gemessen. In der Regel war es dabei erforderlich, die durch hunderte oder tausende Laserpulse induzierten Effekte zu mittein, um die Phase dieser Pulse zu bestimmen. Voraussetzung war deshalb die Verfügbarkeit phasenstabilisierter Pulse (T. M. Fortier, P. A. Roos,Since then, phase effects have also been measured with a number of other arrangements. In general, it was necessary to mitigate the effects induced by hundreds or thousands of laser pulses in order to determine the phase of these pulses. The prerequisite was therefore the availability of phase-stabilized pulses (T.M. Fortier, P.A. Roos,
D. J. Jones, S. T. Cundiff, R. D. R. Bhat, J. E. Sipe: Carrier-Envelope Phase-Controlled Quantum Interference of Injected Photocurrents in Semiconductors, Phys. Rev. Letters, 2004, Vol 92, No. 14; A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, Th. Udem, Ch. Lemell, . Torizuka, J. Burgdörfer, T. W. Hänsch, F. Krausz: Observation of Light-Phase-Sensitive Photoemission from a Metal. Phys. Rev. Letters, 2004, Vol 92, No 7; M, Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, H. G. Roskos: Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz- emission spectroscopy, Nature Physics Lei., 2006, Vol 2, 327-331 ; C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, J. W. G. Tisch: Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval, Nature Physics, 2007, Vol. 3, 52-57; G. G. Paulus, F. Lindner, H. Walther, A. Baltuska,D.J. Jones, S.T. Cundiff, R.D. R. Bhat, J.E. Sipe: Carrier Envelope Phase-Controlled Quantum Interference of Injected Photocurrents in Semiconductors, Phys. Rev. Letters, 2004, Vol 92, no. 14; A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, Th. Udem, Ch. Lemell,. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz: Observation of Light-Phase-Sensitive Photoemission from a Metal. Phys. Rev. Letters, 2004, Vol. 92, No 7; M, Kreß, T. Löffler, MD Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, HG Roskos: Determination of the Carrier-envelope phase of few-cycle laser pulses with terahertz emission spectroscopy, Nature Physics Lei., 2006, Vol 2, 327-331; C.A. Haworth, L.E. Chipperfield, J.S. Robinson, P.L. Knight, J.P. Marangos, J.W.G. Table: Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval, Nature Physics, 2007, Vol. 3, 52-57; G.G. Paulus, F. Lindner, H. Walther, A.Baltuska,
E. Goulielmakis, M. Lezius, F. Krausz: Measurment of the phase of few- cycle laser pulses, Phys. Rev. Let., 2003, Vol 91 , Issue 25). E. Goulielmakis, M. Lezius, F. Krausz: Measurment of the phase of few-cycle laser pulses, Phys. Rev. Let., 2003, Vol. 91, Issue 25).
Es ist auch bekannt (US 2010/006141 1 AI und US 2010/0040097 AI ), Laserpulse auf eine Phase relativ zu einer gemittelten Phase aus vorherigen Pulsen zu stabilisieren. Die Beeinflussung der Phase ist somit nicht für den aktuellen Laserpuls, sondern nur für spätere Folgepulse möglich. It is also known (US 2010/006141 1 AI and US 2010/0040097 AI) to stabilize laser pulses on one phase relative to an averaged phase from previous pulses. The influencing of the phase is thus not possible for the current laser pulse, but only for later follow-up pulses.
2009 gelang es erstmals, die absolute Phase von Einzelzyklenpulsen im single-shot-mode mit hoher Genauigkeit im vorgenannten Stereo- Flugzeitspektrometer zu messen (T. Wittmann, B. Horvath, W. Helml, M. G. Schatzel, X. Gu, A. L. Cavalieri, G. G. Paulus, R. Kienberger: Single-shot carrier-envelope phase measurement of few-cycle laser pulses, Nature Physics, 2009, Vol. 5; 357-362). Die Flugzeitspektren von mehreren tausend aufeinander folgenden Pulsen wurden dabei mit einem Digitaloszilloskop aufgezeichnet. Die Auswertung wurde dann später („offline") vorgenommen. Damit war es nicht möglich, die Flugzeitspektren „online", während das Experiment in Betrieb war, auszuwerten, und es war auch keinerlei Einflussnahme auf die Impulse und deren Generierung möglich. In 2009, the absolute phase of single cycle pulses in single shot mode with high accuracy in the aforementioned stereo was achieved for the first time. Time-of-flight spectrometers (T. Wittmann, B. Horvath, W. Helml, MG Schatzel, X. Gu, AL Cavalieri, GG Paulus, R. Kienberger: Single-shot carrier-envelope phase measurement of few-cycle laser pulses, Nature Physics , 2009, Vol. 5; 357-362). The time-of-flight spectra of several thousand consecutive pulses were recorded with a digital oscilloscope. The evaluation was then made later ("offline") so that it was not possible to evaluate the time of flight spectra "online" while the experiment was in operation, and it was also no influence on the impulses and their generation possible.
Im Jahr 2010 wurde eine Möglichkeit vorgestellt, welche die relative Phase eines Laserpulses bestimmen kann und durch welche mit dieser Information die Phase des Laserpulszugs hinter dem gemessen Laserpulses korrigiert wird. Diese Korrektur erfolgt hinter dem Lasersystem und beeinflusst, den Betrieb des Lasers nicht. Diese Methode wurde „feed- foward" genannt. Mit ihr ist es aber nicht möglich, die Phase des gemessen Pulses zu korrigieren, sondern nur die Phase der nachfolgenden Pulse (S. Koke, C. Grebing, H. Frei, A. Andreson, A. Assion, G. Steinmeyer: Direct frequency comb synthesis wth arbitrary offset and shot-noise-limited phasenoise, Nature Photoncis, 2010, Vol. 4; 462- 465; WO2010/063051A1). Es ist keine„Selbst- CEP" Korrektur möglich. In 2010, a possibility was presented which can determine the relative phase of a laser pulse and with which this information corrects the phase of the laser pulse train behind the measured laser pulse. This correction is done behind the laser system and does not affect the operation of the laser. This method was called "feed-foward", but with it it is not possible to correct the phase of the measured pulse, but only the phase of the subsequent pulses (S. Koke, C. Grebing, H. Frei, A. Andreson, A. Assion, G. Steinmeyer: direct frequency comb synthesis wth arbitrary offset and shot-noise-limited phasenoise, Nature Photoncis, 2010, Vol.4; 462-465; WO2010 / 063051A1). It is not a "self-CEP" correction possible.
In DE 10 2004 054 408 B4 wird die Messung der absoluten Phase von Laserpulsen beschrieben. Insbesondere sollen dabei an sich bekannte Nachteile, wie sehr hoher Mess- und Apparateaufwand, vermindert werden. DE 10 2004 054 408 B4 describes the measurement of the absolute phase of laser pulses. In particular, known disadvantages, such as very high measurement and apparatus costs, should be reduced.
Möglichkeiten einer schnellen Phasenauswertung, insbesondere in Echtzeit, um damit beispielsweise auf die Erzeugung der Laserpulse oder sogar auf den gemessenen Laserpuls noch Einfluss nehmen zu können, werden nicht offenbart.  Possibilities of a fast phase evaluation, in particular in real time, in order to be able to influence the generation of the laser pulses or even the measured laser pulse, for example, are not disclosed.
Bis jetzt war es nur möglich die Phasendrift einer Reihe von Laserpulsen zu kompensieren, da die Drift von Puls zu nächstem Puls korreliert war. Bei Lasersystemen mit einer langsamen Repetitionsrate von einigen Hertz und darunter ist dies in der Regel nicht durchführbar, da die Phasendrift zwischen den Pulsen stark schwankt. Für diese Art von Laser, aber auch für die Hochrepetitionslaser, ist es deshalb von Vorteil, wenn man den jeweils gemessen Puls nachträglich korrigieren kann. Until now, it was only possible to compensate for the phase drift of a series of laser pulses, since the drift was correlated from pulse to next pulse. For laser systems with a slow repetition rate of some Hertz and below, this is usually not feasible, since the phase drift between the pulses varies widely. For this type of laser, but also for the high repetition laser, it is therefore advantageous if one can subsequently correct the measured pulse.
Der Erfindung liegt die Aufgabe zu Grunde, die Phase eines Laserpulses zu messen und dann genau bei diesem Laserpuls die Phase auf einen vorgegeben Wert zu korrigieren (Eigen-CEP Korrektur). The invention is based on the task of measuring the phase of a laser pulse and then correcting the phase to a predetermined value precisely at this laser pulse (self-CEP correction).
Durch diese nachträgliche Phasenkorrektur soll es möglich werden, auch bei Lasersystemen mit niedrigen Repetitionsraten von einigen Hertz und weniger die Phase auf einen vorgegebenen Wert zu stabilisieren. This subsequent phase correction should make it possible to stabilize the phase to a predetermined value even in laser systems with low repetition rates of a few hertz and less.
Gelöst wird diese Aufgabe durch ein Verfahren zur Phasenstabilisierung von Laserpulsen, bei dem jeweils die Laserpulse an einer Mess-Stelle der Laserstrahlung in ihrer Phase gemessen und in ihrer Relation zu einer vorgegebenen Phase bestimmt werden und bei dem der jeweils in seiner Phase gemessene und zwischenzeitlich verzögerte Laserpuls bei Abweichung dessen Phasenlage zur vorgegebenen Phasenlage an einem Korrekturort in seiner Phase korrigiert wird. This object is achieved by a method for phase stabilization of laser pulses, in each of which the laser pulses are measured at a measuring point of the laser radiation in their phase and determined in their relation to a predetermined phase and in which each measured in its phase and delayed in the meantime Laser pulse in deviation of the phase angle is corrected to the predetermined phase at a correction in its phase.
Es wird eine Vorrichtung zur Phasenstabilisierung von Laserpulsen vorgeschlagen, bei der an einem im Strahlengang der Laserpulse befindlichen Messort eine Mess-Stufe angeordnet ist, die mit einer Phasenauswertestufe zum Vergleich der Phasenlage der Laserimpulse gegenüber einer vorgegebenen Phasenlage in Verbindung steht, welche ausgangsseitig an eine ebenfalls im Strahlengang der Laserpulse angeordnete Phasenkorrekturstufe angeschlossen ist, in welcher die Laserimpulse im Fall einer Abweichung zur vorgegebenen Phasenlage nach Durchlaufen einer Verzögerungsstrecke zwischen der Mess-Stufe am Messort und der Phasenkorrekturstufe an einem Korrekturort jeweils in ihrer Phase korrigiert werden. The invention relates to a device for phase stabilization of laser pulses, in which a measuring stage is arranged at a measuring location located in the beam path of the laser pulses, which is connected to a Phasenauswertestufe for comparing the phase position of the laser pulses with respect to a predetermined phase position, which on the output side to a likewise in the beam path of the laser pulses arranged phase correction stage is connected, in which the laser pulses are corrected in the event of a deviation from the predetermined phase position after passing through a delay path between the measuring stage at the measuring location and the phase correction stage at a correction in each case in their phase.
Erfindungsgemäß wird bei einem Laserpuls an einem Messort die CE Phase bestimmt. Danach wird die CE Phase desselben Pulses, der zwischenzeitlich um eine Zeit, die zur Auswertung der CE Phase benötigt wird, verzögert wurde, an einem Korrekturort, der im Laserstrahlverlauf zeitlich hinter dem Messort liegt, auf den vorgegeben Wert korrigiert. According to the invention, the CE phase is determined in the case of a laser pulse at a measuring location. Thereafter, the CE phase of the same pulse, which in the meantime by a time necessary for the evaluation of the CE phase is required, was delayed at a correction location, which lies behind the time of the laser beam in the time of the measurement location, corrected to the predetermined value.
In den Unteransprüchen sind Ausf hrungsformen zur Erfindung aufgeführt. Beispielsweise kann die in DE 10 2010 019 814.5 vorgeschlagene Vorrichtung verwendet werden, um die CE Phase des Laserpulses schnell zu bestimmen. Nach Durchlaufen der Vorrichtung wird der Puls (soweit erforderlich) zeitlich verzögert, bevor er dann zur Korrektur der Phase z. B. einen elektro-optischen oder akkusto-opti sehen Modulator durchläuft. Damit ist es möglich, die Phase eines jeden Pulses, einschließlich des ersten erzeugten und gemessenen Impulses, genau bei diesem Impuls individuell zu korrigieren (Eigen-CEP Korrektur). In the subclaims embodiments of the invention are listed. For example, the device proposed in DE 10 2010 019 814.5 can be used to quickly determine the CE phase of the laser pulse. After passing through the device, the pulse (if necessary) is delayed in time before it then z to correct the phase. B. an electro-optical or acousto-opti see modulator passes. This makes it possible to individually correct the phase of each pulse, including the first pulse generated and measured, precisely at this pulse (self-CEP correction).
Die Erfindung soll nachstehend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden. The invention will be explained in more detail below with reference to an embodiment shown in the drawing.
Es zeigen: Show it:
Fig. 1 : Schematisch dargestellter Laserpuls (Einzel zy kienpuls im single-shot-mode)  1: Schematically represented laser pulse (single zy kienpuls in single-shot mode)
Fig. 2: Vorrichtung zur Phasenkorrektur von Laserimpulsen mit  Fig. 2: Apparatus for phase correction of laser pulses with
Mess-, Auswerte- und Korrekturstufe  Measuring, evaluation and correction stage
In Fig. 1 ist in schematischer Darstellung der Intensitätsverlauf eines bekannten Laserpulses 1 gezeigt. In Fig. 1, the intensity profile of a known laser pulse 1 is shown in a schematic representation.
Fig. 2 zeigt als Ausführungsbeispiel ein Blockschaltbild zur Phasenkorrektur von Laserimpulsen für eine mögliche Eigen-CEP Korrektur. Der Laserpuls 1 eines Laserpulszuges 2 trifft zunächst auf eine Mess-Stufe 3, mit welcher der Laserimpuls 1 im Laserpulszug 2 an einem Messort 4 (durch Pfeildarstellung symbolisiert) erfasst wird. Ausgangsseitig steht die Mess-Stufe 2 mit einer Phasenauswertestufe 5 in Verbindung, um die aktuelle CE Phase des gemessenen Laserimpulses 1 im Impulszug 2 in Echtzeit zu bestimmen. Die Mess- Stufe 3 und die Phasenauswertestufe 5 können beispielsweise durch eine in DE 10 2010 019 814.5 vorgeschlagene Vorrichtung realisiert werden. Während der Berechnung der CE Phase des gemessenen Laserpulses 1 in der Phasenauswertestufe 5 durchläuft dieser im Laserpulszug 2 eine Verzögerungsstrecke 6. Die Messung und Berechnung der CE Phase wird dabei weniger als 10"5 Sekunden in Anspruch nehmen. Um diese benötigte Zeit werden die gemessenen Laserpulse des Laserpulszuges 2 in der Verzögerungsstrecke 6 verzögert. Fig. 2 shows as an exemplary embodiment a block diagram for the phase correction of laser pulses for a possible self-CEP correction. The laser pulse 1 of a laser pulse train 2 initially strikes a measuring stage 3, with which the laser pulse 1 in the laser pulse train 2 at a measuring location 4 (symbolized by arrow representation) is detected. On the output side, the measuring stage 2 is connected to a phase evaluation stage 5 in order to determine the current CE phase of the measured laser pulse 1 in the pulse train 2 in real time. The measuring stage 3 and the phase evaluation stage 5 can be realized, for example, by a device proposed in DE 10 2010 019 814.5. During the calculation of the CE phase of the measured laser pulse 1 in the phase evaluation stage 5, it passes through a delay path 6 in the laser pulse train 2. The measurement and calculation of the CE phase will take less than 10 -5 seconds, and the laser pulses measured will become this required time the laser pulse train 2 in the delay line 6 delayed.
Eine mögliche Verzögerungstrecke 6 von unter 300 m kann beispielsweise durch einen Spiegelaufbau realisiert werden, bei dem der Laserpulszug 2 auf großen Spiegeln mehrfach reflektiert wird (aus Übersichtsgründen nicht explizit dargestellt).  A possible delay distance 6 of less than 300 m can be realized, for example, by a mirror construction in which the laser pulse train 2 is multiply reflected on large mirrors (not explicitly shown for reasons of clarity).
Danach trifft der Laserpulszug 2 an einem Korrekturort 7 (durch Pfeildarstellung symbolisiert) auf eine Phasenkorrekturstufe 8. In dieser durchläuft der nunmehr zeitlich verzögerte Laserpuls 1 beispielsweise einen doppelbrechenden Kristall, in dem mittels Elektroden ein elektrisches Feld erzeugt werden kann (aus Übersichtsgründen ebenfalls nicht explizit dargestellt). Durch den elektro-optischen Pockels-Effekt kann in dem Kristall eine spannungsabhängige Doppelbrechung erzeugt werden, welche die CE Phase des in der Mess-Stufe 3 erfassten Laserpulses 1 anhand der mit der Phasenauswertestufe 5 bestimmten aktuellen CE Phase im Fall einer festgestellten Phasenabweichung auf einen vorgegeben Wert korrigieren kann. Es wird von der Phasenkorrekturstufe 8 ein phasenkontrollierter Laserpulszug 9 ausgegeben, in welchem alle Laserpulse, einschließlich des ersten erzeugten und gemessenen Laserpulses in ihrer Phasenlage korrigiert werden, so dass der gesamte Laserpulszug 9 Laserpulse mit exakt vorgegebener CE Phase beinhaltet. Thereafter, the laser pulse train 2 impinges on a correction location 7 (symbolized by an arrow) on a phase correction stage 8. In this, the now time-delayed laser pulse 1, for example, undergoes a birefringent crystal in which an electric field can be generated by means of electrodes (also not shown explicitly for reasons of clarity) ). Due to the electro-optical Pockels effect, a voltage-dependent birefringence can be generated in the crystal, which determines the CE phase of the detected in the measuring stage 3 laser pulse 1 based on the determined with the Phasenauswertestufe 5 current CE phase in the event of a detected phase deviation to a predetermined Can correct value. A phase-controlled laser pulse train 9 is output by the phase correction stage 8, in which all laser pulses, including the first generated and measured laser pulse are corrected in their phase position, so that the entire laser pulse train contains 9 laser pulses with exactly predetermined CE phase.
Aufstellung der verwendeten Bezugszeichen List of used reference numbers
1 Laserimpuls 1 laser pulse
2 Laserpulszug  2 laser pulse train
3 Mess-Stufe 3 measuring stage
4 Messort  4 measuring location
5 Phasenauswertestufe  5 phase evaluation stage
6 Verzögerungsstrecke  6 delay line
7 Korrekturort  7 Correction location
8 Phasenkorrekturstu fe 8 phase correction step
9 phasenkontrollierter Laserstrahl  9 phase-controlled laser beam

Claims

Patentansprüche claims
1. Verfahren zur Phasenstabilisierung von Laserpulsen, bei dem jeweils die Laserpulse an einer Mess-Stelle der Laserstrahlung in ihrer Phase gemessen und in ihrer Relation zu einer vorgegebenen Phasenlage bestimmt werden und bei dem der jeweils in seiner Phase gemessene und zwischenzeitlich verzögerte Laserpuls bei Abweichung dessen Phasenlage zur vorgegebenen Phasenlage an einem Korrekturort in seiner Phase korrigiert wird. 1. A method for phase stabilization of laser pulses, wherein in each case the laser pulses are measured at a measuring point of the laser radiation in phase and determined in their relation to a predetermined phase position and at which each measured in its phase and intermittently delayed laser pulse at variance Phase position is corrected to the predetermined phase at a correction in its phase.
2. Vorrichtung zur Phasenstabilisierung von Laserpulsen, bei der an einem im Strahlengang (2) der Laserpulse befindlichen Messort (4) eine Mess-Stufe (3) angeordnet ist, die mit einer Phasenauswertestufe (5) zum Vergleich der Phasenlage der Laserimpulse zu einer vorgegebenen Phasenausrichtung in Verbindung steht, welche ausgangsseitig an eine ebenfalls im Strahlengang (2) der Laserpulse angeordnete2. A device for phase stabilization of laser pulses, in which at a located in the beam path (2) of the laser pulses location (4) a measuring stage (3) is arranged with a Phasenauswertestufe (5) for comparing the phase position of the laser pulses to a predetermined Phase alignment is in communication, which on the output side to a likewise in the beam path (2) of the laser pulses arranged
Phasenkorrekturstufe (8) angeschlossen ist, in welcher die Laserimpulse im Fall einer Abweichung zur vorgegebenen Phasenausrichtung nach Durchlaufen einer Verzögerungsstrecke (6) zwischen der Mess-Stufe (3) am Messort (4) und der Phasenkorrekturstufe (8) an einem Korrekturort (7) jeweils in ihrer Phase korrigiert werden. Phase correction stage (8) is connected, in which the laser pulses in case of deviation from the predetermined phase alignment after passing through a delay line (6) between the measuring stage (3) at the measuring location (4) and the phase correction stage (8) at a correction location (7) each be corrected in their phase.
3. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, dass die Mess-Stufe (3) durch Mittel zur spektralen Messung einer Schwebung mindestens zweier Wellenlängen aus dem Pulsspektrum und die Phasenauswertestufe (5) durch Mittel zur schnellen Phasenauswertung dieser Schwebungsfrequenz realisiert sind. 3. A device according to claim 2, characterized in that the measuring stage (3) by means for the spectral measurement of a beat of at least two wavelengths from the pulse spectrum and the Phasenauswertestufe (5) by means for fast phase evaluation of this beat frequency are realized.
4. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, dass die Mess-Stufe (3) und die Phasenauswertestufe (5) durch eine gemeinsame Mess- und Auswertestufe gemäß DE 10 2010 019 814.5 realisiert ist. 4. The device according to claim 2, characterized in that the measuring stage (3) and the Phasenauswertestufe (5) by a common measurement and evaluation stage according to DE 10 2010 019 814.5 is realized.
5. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, dass die Phasenkorrekturstufe (8) durch ein Gas, das eine doppelbrechende Wirkung durch Ausrichtung der Gasmoleküle besitzt, realisiert ist. 5. The device according to claim 2, characterized in that the phase correction stage (8) is realized by a gas which has a birefringent effect by alignment of the gas molecules.
PCT/DE2012/000386 2011-04-06 2012-03-30 Method and device for the phase stabilization of laser pulses WO2012136196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011016442.1 2011-04-06
DE102011016442A DE102011016442A1 (en) 2011-04-06 2011-04-06 Method and device for phase stabilization of laser pulses

Publications (1)

Publication Number Publication Date
WO2012136196A1 true WO2012136196A1 (en) 2012-10-11

Family

ID=46201041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/000386 WO2012136196A1 (en) 2011-04-06 2012-03-30 Method and device for the phase stabilization of laser pulses

Country Status (2)

Country Link
DE (1) DE102011016442A1 (en)
WO (1) WO2012136196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234643A (en) * 2013-04-15 2013-08-07 中国科学院上海光学精密机械研究所 Method for measuring carrier-envelop phase positions of few-circle femtosecond laser pulses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059799B (en) * 2018-05-08 2024-03-22 安捷睿(厦门)机器人有限公司 Laser three-dimensional scanner, scanning method thereof and scanning control device
DE102021207332A1 (en) * 2021-07-12 2023-01-12 Trumpf Laser Gmbh Pulse modification device with a passive conversion device for compensating for environmental influences

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758698A (en) * 1993-06-30 1995-03-03 Nec Corp Optical modulator and mach-zehnder type optical intensity modulator driving methods using the optical modulator
DE102004054408B4 (en) 2004-11-10 2007-05-31 Johann Wolfgang Goethe-Universität Frankfurt am Main Determination of the Carrier Envelope Phase (CEP) of an ultrashort laser pulse
US20100040097A1 (en) 2006-12-01 2010-02-18 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for carrier envelope phase stabilisation
US20100061411A1 (en) 2006-06-23 2010-03-11 Kansas State University Research Foundation Method and apparatus for controlling carrier envelope phase
WO2010063051A1 (en) 2008-12-02 2010-06-10 Femtolasers Produktions Gmbh Method and device for generating a self-referenced optical frequency comb
DE102010019814A1 (en) 2010-05-05 2011-11-10 Friedrich-Schiller-Universität Jena Device for phase evaluation of few-cycle-pulses of laser radiation in stereo-flight time spectrometer in laser technology, has detectors arranged downstream of integrators connected with evaluation unit for calculating phase of pulses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758698A (en) * 1993-06-30 1995-03-03 Nec Corp Optical modulator and mach-zehnder type optical intensity modulator driving methods using the optical modulator
DE102004054408B4 (en) 2004-11-10 2007-05-31 Johann Wolfgang Goethe-Universität Frankfurt am Main Determination of the Carrier Envelope Phase (CEP) of an ultrashort laser pulse
US20100061411A1 (en) 2006-06-23 2010-03-11 Kansas State University Research Foundation Method and apparatus for controlling carrier envelope phase
US20100040097A1 (en) 2006-12-01 2010-02-18 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and device for carrier envelope phase stabilisation
WO2010063051A1 (en) 2008-12-02 2010-06-10 Femtolasers Produktions Gmbh Method and device for generating a self-referenced optical frequency comb
DE102010019814A1 (en) 2010-05-05 2011-11-10 Friedrich-Schiller-Universität Jena Device for phase evaluation of few-cycle-pulses of laser radiation in stereo-flight time spectrometer in laser technology, has detectors arranged downstream of integrators connected with evaluation unit for calculating phase of pulses

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A. APOLONSKI; P. DOMBI; G. G. PAULUS; M. KAKEHATA; R. HOLZWARTH; TH. UDEM; CH. LEMELL; K. TORIZUKA; J. BURGDÖRFER; T. W. HÄNSCH: "Observation of Light-Phase-Sensitive Photoemission from a Metal.", PHYS. REV. LETTERS, vol. 92, no. 7, 2004
C. A. HAWORTH; L. E. CHIPPERFIELD; J. S. ROBINSON; P. L. KNIGHT; J. P. MARANGOS; J. W. G. TISCH: "Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval", NATURE PHYSICS, vol. 3, 2007, pages 52 - 57
G. G. PAULUS; F. GRASBON; H. WALTHER; P. VILLORESI; M. NISOLI; S. STAGIRA; E. PRIORI; S. DE SILVESTRI: "Absolute-phase phenomena in photoionization with few-cycle laser pulses", NATURE, vol. 414, 2001, pages 182 - 184
G. G. PAULUS; F. LINDNER; H. WALTHER; A. BALTUSKA; E. GOULIELMAKIS; M. LEZIUS; F. KRAUSZ: "Measurment of the phase of few-cycle laser pulses", PHYS. REV. LET., vol. 91, no. 25, 2003
HOWE VAN J ET AL: "COMPENSATION OF SELF-PHASE MODULATION IN FIBER-BASED CHIRPED-PULSE AMPLIFICATION SYSTEMS", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 31, no. 11, 1 June 2006 (2006-06-01), pages 1756 - 1758, XP001242600, ISSN: 0146-9592, DOI: 10.1364/OL.31.001756 *
M. KRESS; T. LÖFFLER; M. D. THOMSON; R. DÖMER; H. GIMPEL; K. ZROST; T. ERGLER; R. MOSHAMMER; U. MORGNER; J. ULLRICH: "Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy", NATURE PHYSICS LET., vol. 2, 2006, pages 327 - 331
M. NISOLI; S. STAGIRA; S. DE SILVESTRI; O. SVELTO; S. SARTANIA; Z. CHENG; M. LENZNER; C. SPIELMANN; F: KRAUSZ: "A novel high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses", APPLIED PHYSICS B-LASERS AND OPTICS, vol. 65, 1997, pages 189 - 196, XP000696495, DOI: doi:10.1007/s003400050263
S. KOKE; C. GREBING; H. FREI; A. ANDRESON; A. ASSION; G. STEINMEYER: "Direct frequency comb synthesis wth arbitrary offset and shot-noise-limited phasenoise", NATURE PHOTONCIS, vol. 4, 2010, pages 462 - 465
SAYLER A M ET AL: "Precise, real-time, every-single-shot, carrier-envelope phase measurement of ultrashort laser pulses", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 36, no. 1, 1 January 2011 (2011-01-01), pages 1 - 3, XP001559788, ISSN: 0146-9592, DOI: 10.1364/OL.36.000001 *
T. M. FORTIER; P. A. ROOS; D. J. JONES; S. T. CUNDIFF; R. D. R. BHAT; J. E. SIPE: "Carrier-Envelope Phase-Controlled Quantum Interference of Injected Photocurrents in Semiconductors", PHYS. REV. LETTERS, vol. 92, no. 14, 2004
T. WITTMANN; B. HORVATH; W. HELML; M. G. SCHATZEL; X. GU; A. L. CAVALIERI; G. G. PAULUS; R. KIENBERGER: "Single-shot carrier-envelope phase measurement of few-cycle laser pulses", NATURE PHYSICS, vol. 5, 2009, pages 357 - 362, XP055036535, DOI: doi:10.1038/nphys1250

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234643A (en) * 2013-04-15 2013-08-07 中国科学院上海光学精密机械研究所 Method for measuring carrier-envelop phase positions of few-circle femtosecond laser pulses
CN103234643B (en) * 2013-04-15 2015-05-13 中国科学院上海光学精密机械研究所 Method for measuring carrier-envelop phase positions of few-circle femtosecond laser pulses

Also Published As

Publication number Publication date
DE102011016442A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
DE102016124087B3 (en) Generation of laser pulses in a burst mode
DE102015108602A1 (en) Optical scanning
DE102008047226B4 (en) Apparatus and method for amplifying light pulses
WO2012136196A1 (en) Method and device for the phase stabilization of laser pulses
EP2384526B1 (en) Device for amplifying light impulses
DE102006050155A1 (en) Optical arrangement e.g. gas laser, for forming laser beam, has unit from wave plate, where beam, which can be formed, is divided into two partial beams of different polarizations by unit from wave plate
DE102010019814A1 (en) Device for phase evaluation of few-cycle-pulses of laser radiation in stereo-flight time spectrometer in laser technology, has detectors arranged downstream of integrators connected with evaluation unit for calculating phase of pulses
WO2013171155A1 (en) Time lens structure having variable magnification
EP2694934A1 (en) Method and device for the fast phase evaluation, in particular of multi-cycle pulses of laser radiation
DE102015002559A1 (en) Stabilizing optical frequency combs
Nitsche Umkehrsätze für Spline-Approximationen
DE102015117828B4 (en) Dielectric multilayer mirror, laser device and method for generating laser radiation
DE102006033854B4 (en) Method for unambiguous reconstruction of phase and intensity of electric fields
DE102007007677B4 (en) Method for stabilizing the frequency of a laser with the aid of acousto-optical modulation and a device for frequency stabilization of a laser by means of acousto-optical modulation
DE102011012749B4 (en) A method of generating a frequency comb from a plurality of ridge lines and apparatus therefor
WO2017186590A1 (en) Ultra-short-pulse pump source for generating multiple pump pulses
DE102019129337B9 (en) Laser device for generating an optical frequency comb
DE102004054408B4 (en) Determination of the Carrier Envelope Phase (CEP) of an ultrashort laser pulse
DE102014118880A1 (en) Optical device for modulating the spectral phase of laser pulses
DE102012023605A1 (en) Method and apparatus for the synthesis of electromagnetic radiation
DE102016108282A1 (en) Laser system with superposition of temporally or spatially separate laser pulses
WO2022171675A1 (en) System for detecting pulse duration fluctuations of laser pulses and method for generating laser pulses
WO2007144205A2 (en) Independent adjustment of the amplitude, phase and polarization of a laser pulse
DE19634489C2 (en) Device for the synchronization of ultrashort optical laser pulses
DE102021118071A1 (en) Light shaping device and method for light shaping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12724858

Country of ref document: EP

Kind code of ref document: A1