WO2012134181A2 - Apparatus and method for transmitting interference control information between heterogeneous cells - Google Patents

Apparatus and method for transmitting interference control information between heterogeneous cells Download PDF

Info

Publication number
WO2012134181A2
WO2012134181A2 PCT/KR2012/002296 KR2012002296W WO2012134181A2 WO 2012134181 A2 WO2012134181 A2 WO 2012134181A2 KR 2012002296 W KR2012002296 W KR 2012002296W WO 2012134181 A2 WO2012134181 A2 WO 2012134181A2
Authority
WO
WIPO (PCT)
Prior art keywords
base station
pattern
femto base
subframe
abs
Prior art date
Application number
PCT/KR2012/002296
Other languages
French (fr)
Korean (ko)
Other versions
WO2012134181A3 (en
Inventor
권기범
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2012134181A2 publication Critical patent/WO2012134181A2/en
Publication of WO2012134181A3 publication Critical patent/WO2012134181A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting inter-cell interference coordination information.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • heterogeneous network As wireless communication technology develops, a heterogeneous network (hereinafter referred to as a heterogeneous network) environment is emerging.
  • the heterogeneous network environment includes a macro cell, a femto cell, a pico cell, and the like.
  • the femto cell and pico cell are systems that cover an area smaller than the radius of the existing mobile communication service as compared to the macro cell.
  • a user terminal present in any one of a macrocell, a femtocell, and a picocell may cause inter-cell interference in which signal interference is caused by a signal generated from another cell.
  • a terminal communicating with a macrocell enters an interference region of a femtocell, there is a problem in that a synchronization signal cannot be properly obtained from the macrocell.
  • the present invention provides an apparatus and method for transmitting interference coordination information between heterogeneous cells.
  • Another object of the present invention is to provide an apparatus and a method for adjusting power of interference between synchronization signals between different cells.
  • Another technical problem of the present invention is to provide an apparatus and method for adjusting interference of a synchronization signal between heterogeneous cells using a TDM-based intercell interference coordination scheme.
  • Another technical problem of the present invention is to provide an apparatus and method for providing an ABS pattern for adjusting interference of a synchronization signal.
  • a base station for coordinating intercell interference in a heterogeneous network system.
  • the base station is a subframe in which the transmission power of the synchronization signal is reduced so that the subframe scheduled for transmission of the synchronization signal of the base station does not cause interference to a heterogeneous base station based on time division multiplexing (Almost Blank Subframe: ABS).
  • a signal receiving unit for receiving wireless network information including an additional ABS pattern indicating whether or not, a measuring unit measuring a signal received from the heterogeneous base station, and the measured signal and the additional ABS pattern.
  • a power adjusting unit for adjusting the transmission power of the synchronization signal.
  • a method for coordinating intercell interference by a base station in a heterogeneous network system further includes an additional ABS pattern indicating whether or not a subframe in which transmission of a synchronization signal of a base station is scheduled based on time division multiplexing is a subframe in which transmission power of the synchronization signal is reduced so as not to interfere with a heterogeneous base station.
  • Receiving wireless network information comprising a; measuring a signal received from the heterogeneous base station; and based on the measured signal and the additional ABS pattern, adjusting the transmission power of the synchronization signal; .
  • an Operation and Management for coordinating intercell interference in a heterogeneous network system.
  • the maintenance apparatus configures a basic ABS pattern of the femto base station based on synchronization with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station and the neighboring femto base station, the synchronization signal of the femto base station.
  • the pattern configuration unit constituting the additional ABS pattern for the sub-frame is mapped, and a transmission unit for transmitting the cell interference adjustment information including the basic ABS pattern and the additional ABS pattern to the femto base station.
  • a method for coordinating interference between maintenance cells in a heterogeneous network system may include configuring a basic ABS pattern of the femto base station based on synchronization with an ABS pattern of a macro base station including coverage of a femto base station or a macro base station neighboring to the femto base station, wherein the synchronization signal of the femto base station is Constructing additional ABS patterns for the mapped subframes, and transmitting cell interference coordination information including the basic ABS pattern and the additional ABS pattern to the femto base station.
  • Interference between synchronization signals occurring between heterogeneous cells can be reduced, and errors in cell search and cell selection accessible to a terminal in idle state without membership of a femto cell can be reduced.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to the present invention.
  • FIG. 3 is a diagram schematically illustrating a concept of a heterogeneous network including a macro base station, a femto base station, and a pico base station according to the present invention.
  • FIG. 4 is a diagram schematically illustrating that a terminal is affected by interference between a macro cell, a femto cell and a pico cell in downlink.
  • FIG. 5 is a diagram illustrating a frame pattern for inter-cell interference coordination in a heterogeneous network system according to an embodiment of the present invention.
  • TDD radio frame structure is a TDD radio frame structure according to the present invention.
  • FIG. 7 is a flowchart illustrating a method of transmitting inter-cell interference coordination information according to the present invention.
  • FIG. 8 is an explanatory diagram illustrating a method of constructing an ABS pattern according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method for receiving inter-cell interference coordination information by a femto base station according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method for transmitting, by a maintenance apparatus, inter-cell interference coordination information according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a femto base station and a maintenance apparatus according to an embodiment of the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a station that communicates with the terminal 10, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an access point, a home eNB, and a relay. ), Or a remote radio head (RRH).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • RRH remote radio head
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to the Serving Gateway (S-GW) through the Mobility Management Entity (MME) and the S1-U through the Evolved Packet Core (EPC) 30, more specifically, through the S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • the S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
  • OAM Operaation and Management
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal 10 and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems. Layer), L2 (second layer), and L3 (third layer), among which the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • the RRC (Radio Resource Control) layer located in the third layer plays a role of controlling radio resources between the terminal 10 and the network. To this end, the RRC layer exchanges an RRC message between the terminal 10 and the base station.
  • OSI Open System Interconnection
  • a physical layer (PHY) layer provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer belonging to a second layer through a transport channel.
  • MAC medium access control
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • Functions of the RLC layer belonging to the second layer include concatenation, segmentation, and reassembly of the RLC SDUs.
  • the RLC layer In order to guarantee the various Quality of Service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
  • a Radio Resource Control (RRC) layer belonging to the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal 10 and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • the terminal 10 If there is an RRC connection between the RRC layer of the terminal 10 and the RRC layer of the E-UTRAN, the terminal 10 is in an RRC CONNECTED state, otherwise the RRC idle (RRC IDLE) ) State.
  • the downlink transport channel for transmitting data from the network to the terminal 10 includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal 10 to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of symbols in the time domain.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for a physical control channel called a physical downlink control channel (PDCCH).
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connected state is connected. Idle state. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE.
  • the terminal of the RRC idle state is not identified by the E-UTRAN and managed by the core network in units of a tracking area, which is a larger area unit than the cell. That is, the presence of the terminal in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • PLMN Public Land Mobile Network
  • MCCs Mobile Country Codes
  • IMCs International Mobile Subscriber Identity
  • GSM Global System for Mobile Communication
  • An equivalent HPLMN list refers to a PLMN code list that replaces the HPLMN code extracted from IMSI to allow the provision of multiple HPLMN codes.
  • the EHPLMN list is stored in a universal subscriber identity module (USIM).
  • the EHPLMN list may include HPLMN codes extracted from IMSI. If the HPLMN code extracted from IMSI is not included in the EHPLMN list, the HPLMN should be treated as Visited PLMN when selecting a PLMN. Visited PLMNs are PLMNs different from HPLMNs and EHPLMNs, if any.
  • a Registered PLMN is a PLMN from which certain LR results occur. In general, in a shared network, an RPLMN is a PLMN defined by the PLMN identification of a core network operator that allows LR.
  • the UE searches for the appropriate cell of the selected PLMN and stays in the RRC idle state in the cell.
  • the UE in the RRC idle state selects a cell capable of providing possible services and adjusts to the control channel of the selected cell. This process is called "camp on a cell.”
  • camp on a cell When camping is completed, the terminal may register its presence in the registration area of the selected cell. This is called location registration (LR).
  • LR location registration
  • the terminal regularly registers its presence in the registration area or when entering a new tracking area (TA).
  • the registration area refers to any area where the terminal may roam without a location registration procedure.
  • the UE If the UE leaves the service area of the cell or finds a more suitable cell, the UE reselects the most suitable cell in the PLMN and camps on. If a new cell is included in another registration area, a location registration request is performed. If the terminal leaves the service area of the PLMN, a new PLMN may be automatically selected or a new PLMN may be manually selected by the user.
  • the terminal initially accesses the network through the control channel of the camped cell after initiating a call.
  • the PLMN When the PLMN receives a call for the terminal, the PLMN knows the registration area of the cell where the terminal is camped on. Therefore, the PLMN may send a paging message for the terminal through the control channel of all cells in the registration area. The terminal may receive a paging message since it is already adjusted for the control channel of the camped cell.
  • the terminal If the terminal cannot find a suitable cell to camp on, or if a subscriber identity module (SIM) card is not inserted or if a specific response to a location registration request is received (for example, an "illegal terminal"), the terminal is connected to the PLMN. Regardless, try to camp on and enter the "limited service" state.
  • the limited service state is an emergency call only state.
  • the UE in the RRC idle state When the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state. There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an upstream data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • FIG. 2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to the present invention.
  • the terminal selects a PLMN and a radio access technology (RAT) to be serviced (S210).
  • the user of the terminal may select the PLMN and the RAT, or may use the one stored in the USIM.
  • the terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (S220).
  • the terminal receives system information periodically transmitted by the base station.
  • a specific value is a value defined in the system to ensure the quality of a physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal determines whether network registration is necessary (S230), and if necessary, registers its information (eg, IMSI) in order to receive a service (eg, paging) from the network (S240).
  • the terminal does not register with the network to which it connects every time the cell is selected. For example, if the system information of the network to be registered (for example, Tracking Area Identity (TAI)) is different from the information of the network known to the user, the network is registered in the network.
  • TAI Tracking Area Identity
  • the terminal selects another cell that provides better signal characteristics than the cell of the base station to which the terminal is connected ( S250).
  • This process is referred to as cell reselection, distinguished from initial cell selection in step S220.
  • a time constraint may be set in order to prevent the cell from being frequently reselected according to the change of the signal characteristic.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC dormant state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the UE in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection.
  • cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • the terminal does not have any prior information on the radio channel. Therefore, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies the cell selection criteria.
  • the other is a cell selection process using stored information.
  • cell selection is performed by using information stored in a terminal for a wireless channel or by using information broadcast in a cell. Therefore, the cell selection may be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • Equation 1 The cell selection criterion used by the terminal in the cell selection process is shown in Equation 1 below.
  • Srxlev Q rxlevmeas- (Q rxlevmin + Q rxlevminoffset ) + Pcompensation.
  • Q rxlevmeas is the reception level of the measured cell (RSRP)
  • Q rxlevmin is the minimum required reception level (dBm) in the cell
  • Q rxlevminoffset is the offset for Q rxlevmin
  • Pcompensation max (P EMAX -P UMAX , 0 (dB)
  • P EMAX is the maximum transmit power (dBm) that the terminal can transmit in the cell
  • P UMAX is the maximum transmit power (dBm) of the terminal radio transmitter (RF) according to the performance of the terminal.
  • Equation 1 the UE can know that the cell selected to the strength and quality of the measured signal is greater than a specific value.
  • the specific value is defined in the cell providing the service.
  • parameters used in Equation 1 are broadcast through system information, and the terminal receives these parameter values and uses them in cell selection criteria.
  • the terminal When the terminal selects a cell that satisfies the cell selection criteria, the terminal receives information necessary for the RRC idle state operation of the terminal in the cell from the system information of the cell. After the UE receives all the information necessary for the RRC idle state operation, the UE waits in the idle mode to request a service (eg, an originating call) or to receive a service (eg, a terminating call) from the network.
  • a service eg, an originating call
  • a service eg, a terminating call
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process is aimed at selecting a cell that provides the best quality to a terminal in view of the quality of a radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • pico cells can generally be used in communication shadow areas that are not covered by macro cells alone, or in areas with high data service requirements, so-called hot zones.
  • a femto eNB is generally used in an indoor office or home.
  • the wireless relay can supplement the coverage of the macro cell.
  • FIG. 3 is a diagram schematically illustrating a concept of a heterogeneous network including a macro base station, a femto base station, and a pico base station according to the present invention.
  • FIG. 3 illustrates a heterogeneous network composed of a macro base station, a femto base station, and a pico base station for convenience of description, the heterogeneous network may include a relay or another type of base station.
  • a macro base station 310, a femto base station 320, and a pico base station 330 are operated together in a heterogeneous network.
  • the macro base station 310, the femto base station 320, and the pico base station 330 provide the cell coverage of the macro cell, the femto cell, and the pico cell, respectively, to the terminal.
  • the femto base station 320 is a low power wireless access point, for example, a micro mobile base station used indoors, such as at home or office.
  • the femto base station 320 may access a mobile communication core network using a DSL or cable broadband of a home or office.
  • the femto base station 320 may support a self-organization function. Self-organization functions are classified into a self-configuration function, a self-optimization function, and a self-monitoring function.
  • Self-configuration is a feature that allows a wireless base station to be installed on its own based on an initial installation profile without going through a cell planning step.
  • Self-configuration functions shall satisfy the following requirements.
  • First, the femto base station 320 must be able to establish a secure link (Mobile Operation and Management Network (MON)) according to the network operator's security policy.
  • MON Mobile Operation and Management Network
  • the femto base station 320 management system should be able to initiate the provision of transport resources to the femto base station 320 in order to establish a signaling link with the PLMN.
  • the femto base station 320 management system should provide the femto base station 320 with wireless network specific information that allows the femto base station 320 is automatically set to an operational state.
  • Self-Optimization is a function that identifies neighboring base stations, obtains information, optimizes the neighboring base station list, and optimizes coverage and communication capacity according to subscriber and traffic changes.
  • Self-Monitoring is a function to control service performance not to be degraded through collected information.
  • the femtocell may distinguish registered users from unregistered users and allow access only to registered users.
  • Cells that allow access only to registered users are called Closed Subscriber Groups (hereinafter referred to as "CSGs"), and those that allow access to general users are also called Open Subscriber Groups (“OSGs"). It is called. It is also possible to mix these two methods.
  • the femto base station 320 is called a Home NodeB (HNB) or Home eNodeB (HeNB) in 3GPP.
  • the femto base station 320 aims to provide specialized services only to members belonging to the CSG.
  • the cell provided by the femto base station 320 is referred to as a CSG cell.
  • Each CSG has its own unique identifier, which is called a CSG identity (CSG identity).
  • the UE may have a list of CSGs belonging to its members, which is also called a white list. You can check which CSG your CSG cell supports by reading the CSG ID included in the system information.
  • the terminal reading the CSG ID is regarded as a cell that can access the cell only when the UE is a member of the CSG cell, that is, when the CSG corresponding to the CSG ID is included in its CSG whitelist.
  • the femto base station 320 does not always need to allow access to the CSG terminal. In addition, depending on the configuration setting of the femto base station 320, it is possible to allow the connection of the terminal other than the CSG member. Which terminal is allowed to access is changed according to the configuration setting of the femto base station 320, where the configuration setting means the setting of the operation mode of the femto base station 320.
  • the operation mode of the femto base station 320 is divided into three types according to which UE provides a service.
  • Closed access mode A mode in which a service is provided only to a specific CSG member.
  • the femto base station 320 provides a CSG cell.
  • Open access mode A mode in which a service is provided without restriction of a specific CSG member like a general BS.
  • the femto base station 320 provides a general cell that is not a CSG cell.
  • Hybrid access mode A mode in which a CSG service can be provided to a specific CSG member and a service is provided to a non-CSG member like a normal cell.
  • CSG member UEs are recognized as CSG cells, and non-CSG member UEs are recognized as normal cells. Such a cell is called a hybrid cell.
  • the user can access a desired cell among the macro cell and the femto cell to use the data service.
  • the end user using the macro cell will not be able to use the femto cell even if the macro cell is interfering with the femto cell transmitting a strong signal.
  • Macro base stations are connected to each other via an X2 interface.
  • the X2 interface maintains the operation of seamless and lossless handover between base stations and supports management of radio resources. Therefore, the X2 interface plays a large role in inter-cell interference coordination (ICIC) between macro base stations.
  • ICIC inter-cell interference coordination
  • FIG. 4 is a diagram schematically illustrating that a terminal is affected by interference between a macro cell, a femto cell and a pico cell in downlink.
  • the terminal 450 may access a femto base station 430 and use a femto cell.
  • the terminal 460 cannot access the femto cell with strong signal strength.
  • the terminal 460 may receive the interference signal from the femto cell.
  • the terminal 440 may access the pico base station 420 and use the pico cell. However, at this time, the terminal 440 may receive interference by the signal of the macro base station 410.
  • inter-cell interference is a macro cell or a pico cell that is more affected by the interference or has to be protected from the interference.
  • an aggressor cell that affects or is less affected by the Victim cell by the interference is a femto cell.
  • Inter-Cell Interfernce Coordination is a method of reducing inter-cell interference.
  • inter-cell interference coordination is a method for supporting reliable communication to a user when a user belonging to a big team cell is near an aggregator cell.
  • a scheduler may be imposed on the use of certain time and / or frequency resources. It may also impose a constraint on the scheduler how much power to use for a particular time and / or frequency resource.
  • FIG. 5 is a diagram illustrating a frame pattern for inter-cell interference coordination in a heterogeneous network system according to an embodiment of the present invention.
  • FIG. 5 for convenience of description, a frame pattern for inter-cell interference coordination between a macrocell of a macro base station and a femtocell of a femto base station is illustrated, but this is only an example, and the frame pattern of FIG. The same may be applied to the pico base station, the macro base station and the micro base station, the femto base station and the pico base station.
  • a frame pattern is configured such that interference does not occur between different types of cells (macro cell and femto cell).
  • the macro cell hardly transmits a signal, so the transmission power is very low. Therefore, in this case, since there is almost no signal transmitted in the subframe, such a subframe is called ABS (almost blank subframe: ABS).
  • ABS is used by the femto cell and used to rule out interference with the macro cell.
  • ABS is defined as a subframe that reduces or does not transmit power such as control information, data information, and signaling (signals transmitted for channel measurement and synchronization) transmitted through the subframe.
  • ABS a pattern to which ABS is applied is called an ABS pattern, and the ABS pattern may be configured, for example, in units of 40 ms.
  • ABS is formed in a specific pattern in a radio frame for coordination of interference, which is also called a frame pattern.
  • the interference is adjusted by variably configuring the ABS in any periodic section composed of a plurality of subframes.
  • ABS is a time division multiplexing (TDM) based inter-cell interference coordination scheme in which heterogeneous cells share time resources such as subframes.
  • the interference can be adjusted by variably configuring the frame pattern structure itself within any periodic interval composed of multiple subframes.
  • a primary synchronization signal (hereinafter referred to as PSS) and a secondary synchronization signal (hereinafter referred to as SSS) are used for the UE to perform a cell search.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal is generated based on a physical cell ID (PCI) for identifying a base station or a cell.
  • PCI physical cell ID
  • the terminal checks the PCI from the PSS and the SSS, it can distinguish from which cell the signal is received.
  • the synchronization signal may be transmitted every subframe (for example, five subframes) of a certain period in each frame, or may be transmitted in a variable period.
  • the synchronization signal is physically mapped to at least one multiplexing symbol, for example an OFDM symbol.
  • the synchronization signal may be mapped not only to initial synchronization and cell information but also to additional OFDM symbols for synchronization and cell information during handover.
  • the synchronization signal may be called a preamble.
  • the PSS may be used for the terminal to obtain synchronization of an OFDM symbol or slot.
  • the SSS may be used by the UE to acquire synchronization of a subframe or a frame.
  • interference between the heterogeneous cells is equally applied to the synchronization signal. For example, suppose that a UE that does not belong to the CSG belongs to the femto cell coverage. If the UE is camped on the macro cell, the UE does not receive the PSS and SSS of the macro cell due to interference from the PSS or SSS of the femto cell. As a result, the cell search of the terminal cannot be performed smoothly.
  • interference between heterogeneous cells generated by the synchronization signal is referred to as interference between synchronization signals.
  • each base station may operate in an asynchronous manner to adjust interference between synchronization signals. For example, by setting different subframe offsets for each base station, interference between synchronization signals can be avoided.
  • FDD frequency division duplex
  • TDD time division duplex
  • TDD radio frame structure is a TDD radio frame structure according to the present invention.
  • a radio frame includes two half-frames. Each half frame has the same structure.
  • the half frame includes five subframes and three fields Downlink Pilot Time Slot (DwPTS), Guard Period, and Uplink Pilot Time Slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 shows an example of configuration information of a radio frame.
  • the configuration information of a radio frame is information indicating which rule is allocated (or reserved) for uplink and downlink to all subframes in one radio frame.
  • 'D' indicates that the subframe is used for downlink transmission
  • 'U' indicates that the subframe is used for uplink transmission
  • 'S' indicates that the subframe is used for a special purpose, and is used for frame synchronization or downlink transmission.
  • a subframe used for downlink transmission is simply called a downlink subframe
  • a subframe used for uplink transmission is simply called an uplink subframe.
  • Each configuration has a different position and number of downlink subframes and uplink subframes in one radio frame.
  • the point of time from the downlink to the uplink or the time from the uplink to the downlink is called a switching point.
  • the switch-point periodicity means a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and are 5 ms or 10 ms. For example, in setting 0, D-> S-> U-> U-> U is switched from 0th to 4th subframe, and D-> S is the same as before from 5th to 9th subframe. Switch to-> U-> U-> U. Since one subframe is 1ms, the periodicity at the switching time is 5ms. That is, the periodicity of the switching time is less than one radio frame length (10ms), and the switching mode in the radio frame is repeated once.
  • the 0th, 5th subframe, and DwPTS are used for downlink transmission.
  • the first subframe of all settings and the sixth subframe of settings 0, 1, 2, and 6 consist of DwPTS, guard period, and UpPTS.
  • the length of time for each field depends on the setting.
  • the remaining eight subframes, except for the first and sixth subframes, consist of two slots.
  • UpPTS and the 2nd and 7th subframes are reserved for uplink transmission.
  • the switching period is every 10 ms
  • UpPTS and the second subframe are reserved for uplink transmission
  • DwPTS the seventh and ninth subframe are reserved for downlink transmission.
  • the SSS may be mapped to the last OFDM symbol of the first slot belonging to the 0th subframe or the last OFDM symbol of the 11th slot belonging to the fifth subframe.
  • the SSS is mapped to an antenna port such as PSS.
  • the PSS is transmitted in the first and sixth subframe, it may be mapped to the third OFDM symbol of the OFDM symbols constituting each subframe.
  • the PSS transmitted in the 'S' subframe is mapped to the DwPTS.
  • the ABS pattern In order to adjust the interference between synchronization signals in the TDD system, it is necessary to limit the ABS pattern.
  • heterogeneous cells such as a macro cell, a micro cell, a pico cell, a femto cell, etc. based on a TDD system coexist, and in a wireless communication system using a TDM scheme for coordination of inter-cell interference, a transmission power of a synchronization signal of a femto cell is adjusted.
  • Method is required.
  • the method may configure a subframe carrying a synchronization signal of the femto cell with ABS, change an ABS pattern, or apply a restriction.
  • the configuration of the ABS pattern may be performed by an operation and management (OAM) device that is responsible for the maintenance, maintenance, management of femto cells.
  • OAM operation and management
  • FIG. 7 is a flowchart illustrating a method of transmitting inter-cell interference coordination information according to the present invention.
  • a subject for coordinating inter-cell interference is a femto base station and a maintenance apparatus.
  • FIG. 7 it is assumed that a subject for coordinating inter-cell interference is a femto base station and a maintenance apparatus.
  • a management device In the technical concept of FIG. Of course, the same applies to the management device.
  • a UE is camped on a macro cell provided by a macro eNB.
  • the macro cell transmits a synchronization signal to the terminal so that the camped-on terminal acquires synchronization (S700).
  • the UE camped on the macro cell receives a general cell signal and a synchronization signal from the macro cell.
  • the UE, the macro base station, and the femto eNB may all operate based on a TDD-based frame structure, for example, the frame structure of FIG. 6.
  • the terminal may be in an RRC idle state.
  • the femto base station When the femto base station is powered on (S702), the femto base station transmits the security link setting information for establishing a secure link with the OAM (S705).
  • the security link is set up based on the information stored in the memory when the product of the femto base station is shipped.
  • the femto base station transmits a synchronization signal to the terminal in a subframe of a predetermined position (S707).
  • the synchronization signal of the femto base station may interfere with the synchronization signal of the macro base station.
  • the terminal receives the synchronization signal of the macro base station interfered with the synchronization signal of the femto base station.
  • the maintenance apparatus configures an elementary ABS pattern of the femto base station based on whether the femto base station is synchronized with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station neighboring to the femto base station,
  • An additional ABS pattern which is an ABS pattern for subframes to which a sync signal is mapped, is configured (S710).
  • the additional ABS pattern indicates whether or not the subframe in which the transmission of the synchronization signal of the base station is scheduled based on time division multiplexing is an ABS in which the transmission power of the synchronization signal is reduced so as not to interfere with the heterogeneous eNB. For example, if the subframe transmitting the PSS and SSS of the femto cell is the same as the subframe transmitting the PSS and SSS of the macro cell, since the interference between synchronization signals occurs in the PSS and SSS of the macro cell, the maintenance apparatus is added. ABS pattern can be configured.
  • the maintenance unit may optionally configure additional ABS patterns, such as setting additional ABS patterns only when necessary.
  • the additional ABS pattern may be configured periodically or randomly. This may be determined according to the correlation between the cell search period of the terminal in the wireless communication system and the additional ABS pattern.
  • the maintenance apparatus may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
  • the basic ABS pattern and the additional ABS pattern may be referred to as a first pattern and a second pattern, respectively.
  • the first pattern is configured to have a controlled transmit power in a subframe determined in consideration of the femto base station and a macro base station
  • the second pattern is configured to have a controlled transmit power in a subframe determined in consideration of the femto base station.
  • the first pattern may be an ABS pattern configured to include controlled coverage of the femto base station or to have a controlled transmission power in consideration of the macro base station neighboring the femto base station.
  • the second pattern may be an ABS pattern configured to have a controlled transmission power in a subframe in which a synchronization signal of the femto base station is to be transmitted.
  • FIG. 8 is an explanatory diagram illustrating a method of constructing an ABS pattern according to an embodiment of the present invention.
  • the basic ABS pattern and the additional ABS pattern are combined to form one combined ABS pattern.
  • the basic ABS pattern is repeated in units of 40 ms, and indicates whether the ABS for the entire subframe of the femto cell as a bitmap. For example, if the bit is 0, the corresponding subframe is non-ABS. If the bit is 1, the corresponding subframe is ABS.
  • the default ABS pattern is 011001... 01, so that the subframes to which each bit is mapped are sequentially non-ABS, ABS, ABS, non-ABS, non-ABS, ABS. non-ABS, ABS.
  • the additional ABS pattern collects only subframes scheduled to transmit a synchronization signal of the femto base station among all subframes of the femto cell and indicates whether the ABS or non-ABS is a continuous bitmap.
  • the nth (n ⁇ 0) bits from the left significant bit (LSB) correspond to the subframe in which the nth sync signal is transmitted.
  • the subframe in which the 0th synchronization signal is transmitted is actually the 0th subframe
  • the subframe in which the 1st synchronization signal is transmitted is actually the 5th subframe.
  • the additional ABS pattern is 1100111100... As shown in FIG. 8. If configured as 111, the bits corresponding to the subframes through which the 0th and 1st sync signals are transmitted are all represented by 1, so the corresponding subframes are ABS. Subframes in which the second and third synchronization signals are transmitted are non-ABS.
  • the additional ABS pattern may be repeated in 1280 ms units, for example.
  • the additional ABS pattern takes precedence over the basic ABS pattern. That is, even if a specific subframe is set to ABS in the basic ABS pattern, if the specific subframe is non-ABS in the additional ABS pattern, the specific subframe is set to non-ABS in the integrated ABS pattern. On the contrary, even if a specific subframe is set to non-ABS in the basic ABS pattern, if the specific subframe is ABS in the additional ABS pattern, the specific subframe is set to ABS in the integrated ABS pattern. This is called a priority rule.
  • the basic ABS pattern 011001... 01 is repeated, in addition to the repeated basic ABS pattern ABS pattern 1100111100... If 111 is combined, then 1xx--1... --00 --- 1...
  • An integrated ABS pattern of 3200 ms length, such as -11 --- is formed.
  • 'x' is a subframe set to ABS in the basic ABS pattern and is a subframe irrelevant to the additional ABS pattern.
  • the subframe irrelevant to the additional ABS pattern means a subframe in which the synchronization signal is not transmitted.
  • '-' Is a subframe set to non-ABS in the basic ABS pattern and is a subframe independent of the additional ABS pattern.
  • '1' is a subframe set to ABS by the additional ABS pattern.
  • '0' is a subframe set to non-ABS by the additional ABS pattern.
  • the maintenance apparatus transmits wireless network information necessary for the femto base station to the femto base station (S715).
  • the radio network information includes at least one of inter-cell interference coordination information and radio configuration information.
  • Inter-cell interference coordination information (ICIC information) includes a basic ABS pattern and an additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern.
  • the radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
  • the macro base station transmits the macro cell signal to the terminal (S720).
  • the macro cell signal is transmitted to the terminal, but the femto base station may also receive the macro cell signal.
  • the femto base station measures the macro cell signal received from the macro base station (S725).
  • the macro cell signal may be a synchronization signal of the macro base station.
  • the femto base station measures the strength of the synchronization signal transmitted from the macro base station, that is, the PSS and the SSS based on the radio configuration information.
  • the measure of the strength of the synchronization signal may be a reference signal received power (RSRP) and a reference signal received quality (RSSRQ).
  • RSRP reference signal received power
  • RSSRQ reference signal received quality
  • the definitions of RSRP and RSRQ are as follows.
  • RSRP is obtained as a linear average of the power contribution of the resource elements.
  • the resource elements carry cell specific reference signals within the considered measurement frequency bandwidth.
  • the reference point of the RSRP is an antenna connector of the terminal.
  • RSRQ is defined as a ratio between RSRP and Received Signal Strength Indicator (RSSI) as shown in Equation (2).
  • N is the number of resource elements of the carrier RSSI measurement bandwidth of the radio access network.
  • RSSI includes a linear average of the total received power. The total received power is observed only within an OFDM symbol containing reference symbols within the measurement bandwidth and is a value obtained over N resource blocks.
  • the reference symbols may be OFDM symbols in which a cell-specific reference signal (CRS) exists. Alternatively, the reference symbols may be all OFDM symbols in a subframe.
  • CRS cell-specific reference signal
  • the femto base station adjusts the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the additional ABS pattern (S730). For example, the femto base station reduces the transmission power size of the synchronization signal to be transmitted in the subframe set to ABS by an additional ABS pattern to a certain size, or changes the transmission power size of the synchronization signal to be transmitted in the subframe set to non-ABS. Operation may be performed.
  • the femto base station can determine whether to adjust the transmission power of the PSS or SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in subframe units of neighboring macro base stations, the femto base station does not adjust the transmission power of the PSS or SSS signal.
  • the femto base station maps the femtocell synchronization signal of which the transmission power is adjusted to a predetermined subframe (that is, additional ABS) and transmits the same to the terminal.
  • the synchronization signal of the femto base station whose transmission power is adjusted may be transmitted to the terminal without causing interference to the synchronization signal of the macro cell (S735).
  • the terminal receives the synchronization signal of the macro cell transmitted by the macro base station, which is not disturbed by the femtocell synchronization signal through the ABS defined by the additional ABS pattern (S737).
  • the terminal may receive the synchronization signal transmitted from the femto base station and the synchronization signal transmitted from the macro base station in any particular subframe.
  • the synchronization signal transmitted from the femto base station is a synchronization signal to which the basic ABS pattern, which is the first pattern of the present invention, and the additional ABS pattern, which is the second pattern, are applied. It is a signal.
  • the transmission power is set so that the power of the synchronization signal is close to zero according to the ABS technique. In addition, it is actually set to 0, that is, may not receive a synchronization signal from the femto base station (S735).
  • the terminal can properly receive the synchronization signal of the macro base station as the interference coordination receives the synchronization signal from the actual femto base station. That is, the synchronization signal of the femto base station whose transmission power is adjusted does not interfere with the synchronization signal of the macro cell. Accordingly, the terminal can properly receive the synchronization signal transmitted from the macro base station (S737).
  • the femto base station is shown to transmit a synchronization signal of the transmission power is adjusted to the terminal, this is only an example, it may be transmitted to other terminals belonging to the CSG of the femto base station.
  • the terminal receives the synchronization signal of the macro cell in the intact state without interference, and acquires synchronization with the macro base station (S740).
  • heterogeneous cells of various types such as macro cells, micro cells, pico cells, femto cells, etc. coexist and use a TDM scheme such as an ABS pattern to control interference between heterogeneous cells, a femto based on the TDM scheme
  • a TDM scheme such as an ABS pattern to control interference between heterogeneous cells
  • a femto based on the TDM scheme By controlling the transmission power of the PSS and the SSS of the cell, errors in cell search and cell selection accessible to idle mode terminals, especially terminals without membership of the femto cell, can be reduced.
  • FIG. 7 has been described as an inter-cell interference coordination method in a TDD frame structure, this is only an example, and the inter-cell interference coordination method in FIG. 7 may be equally applied to the FDD frame structure.
  • FIG. 9 is a flowchart illustrating a method for receiving inter-cell interference coordination information by a femto base station according to an embodiment of the present invention.
  • the femto base station transmits security link configuration information for establishing a security link with the maintenance apparatus OAM to the maintenance apparatus OAM (S900).
  • the security link is set up based on the information stored in the memory when the product of the femto base station is shipped.
  • the femto base station receives wireless network information from the maintenance apparatus (S905).
  • the radio network information includes at least one of inter-cell interference coordination information and radio configuration information.
  • Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG.
  • the radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
  • the femto base station measures the macro cell signal received from the macro base station (S910).
  • the macro cell signal may be a synchronization signal of the macro base station.
  • the femto base station measures the strength of the synchronization signal transmitted from the macro base station, that is, the PSS and the SSS based on the radio configuration information.
  • the measure of the strength of the synchronization signal may be RSRP or RSRQ.
  • the femto base station adjusts the magnitude of the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the additional ABS pattern (S915). For example, the femto base station reduces the transmission power size of the synchronization signal to be transmitted in the subframe set to ABS by an additional ABS pattern to a certain size, or changes the transmission power size of the synchronization signal to be transmitted in the subframe set to non-ABS. Operation may be performed.
  • the femto base station can determine whether to adjust the transmission power of the PSS or SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in subframe units of neighboring macro base stations, the femto base station does not adjust the transmission power of the PSS or SSS signal.
  • the femto base station maps and transmits the synchronization signal whose transmission power is adjusted to a predetermined subframe (S920).
  • a predetermined subframe S920
  • the femto base station is shown to transmit a synchronization signal of the transmission power is adjusted to the terminal, this is only an example, it may be transmitted to other terminals belonging to the CSG of the femto base station.
  • FIG. 10 is a flowchart illustrating a method for transmitting, by a maintenance apparatus, inter-cell interference coordination information according to an embodiment of the present invention.
  • the maintenance apparatus receives security link configuration information from the femto base station requesting the establishment of a secure link (S1000).
  • the maintenance apparatus configures the basic ABS pattern of the femto base station based on whether the femto base station is synchronized with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station neighboring the femto base station, and the synchronization signal of the femto cell is An additional ABS pattern that is an ABS pattern for subframes to be mapped is configured (S1005).
  • ABS pattern can be configured.
  • the maintenance unit may optionally configure additional ABS patterns, such as setting additional ABS patterns only when necessary.
  • the maintenance apparatus may construct additional ABS patterns periodically or randomly. This may be determined according to the correlation between the cell search period of the terminal in the wireless communication system and the additional ABS pattern.
  • the maintenance apparatus may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
  • the maintenance apparatus transmits wireless network information required for the femto base station to the femto base station (S1010).
  • the radio network information includes at least one of inter-cell interference coordination information and radio configuration information.
  • Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern.
  • the radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
  • FIG. 11 is a block diagram illustrating a femto base station and a maintenance apparatus according to an embodiment of the present invention.
  • the femto base station 1100 includes a security link setting unit 1105, a signal receiving unit 1110, a measuring unit 1115, a power adjusting unit 1120, and a signal transmitting unit 1125.
  • the security link setting unit 1105 generates security link setting information for the femto base station 1100 to establish a security link with the maintenance apparatus 1150, and transmits it to the signal transmission unit 1125.
  • the security link is set up based on the information stored in the memory when the product of the femto base station is shipped.
  • the signal receiver 1110 receives wireless network information from the maintenance apparatus 1150 and sends the wireless network information to the power adjuster 1120, and receives the macro cell signal from the macro base station 1170 and sends it to the measurement unit 1115.
  • the radio network information includes at least one of inter-cell interference coordination information and radio configuration information.
  • Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern.
  • the radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
  • the basic ABS pattern and the additional ABS pattern may be referred to as a first pattern and a second pattern, respectively.
  • the first pattern is configured to have a controlled transmission power in a subframe determined in consideration of the femto base station 1100 and the macro base station 1170
  • the second pattern is controlled in a subframe determined in consideration of the femto base station 1100. It is configured to have a transmitted power.
  • the first pattern may include an coverage of the femto base station 1100 or an ABS pattern configured to have a controlled transmission power in consideration of the macro base station 1170 neighboring the femto base station 1100.
  • the second pattern may be an ABS pattern configured to have a controlled transmission power in a subframe in which a synchronization signal of the femto base station 1100 is to be transmitted.
  • the measuring unit 1115 measures the strength of the macro cell signal.
  • the measure of the macro cell signal measured by the measurer 1115 may be RSRP or RSRQ.
  • the macro cell signal may be a synchronization signal of the macro base station.
  • the power adjuster 1120 configures the ABS pattern of the femto base station 1100.
  • the power adjusting unit 1120 includes the coverage of the femto base station 1100 or in consideration of the macro base station 1170 adjacent to the femto base station 1100, the ABS is configured so that the first pattern has a controlled transmission power (almost blank subframe) pattern is confirmed, and the second pattern is the ABS pattern configured to have a controlled transmission power in the subframe to which the synchronization signal of the femto base station 1100 is transmitted.
  • the power adjusting unit 1120 configures an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern, and is measured.
  • the transmission power of the synchronization signal is adjusted based on the strength of the synchronization signal and the configured integrated ABS pattern or the additional ABS pattern.
  • the power adjusting unit 1120 is configured with at least one subframe in which the second pattern is scheduled to transmit a synchronization signal of the femto base station 1100, and successively whether each subframe is ABS or non-ABS. Check that the instruction is in bitmap form.
  • the power adjusting unit 1120 adjusts the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the received integrated ABS pattern or the additional ABS pattern.
  • the power adjusting unit 1120 reduces the transmission power of the synchronization signal to be transmitted in the subframe set to ABS by a further ABS pattern to a certain size, or transmit power of the synchronization signal to be transmitted in the subframe set to non-ABS. Actions such as not changing the size can be taken.
  • the power adjuster 1120 may determine whether to adjust the transmission power of the PSS or the SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in units of subframes of neighboring macro base stations, the power adjuster 1120 does not adjust the transmission power of the PSS or SSS signal.
  • the signal transmitter 1125 transmits the security link setting information to the maintenance apparatus 1150, and transmits a synchronization signal whose transmission power is adjusted to a terminal (not shown) in a subframe set to ABS.
  • the maintenance apparatus 1150 may include a security information receiver 1155, a pattern constructer 1160, and a transmitter 1165.
  • the security information receiver 1155 receives the security link configuration information from the femto base station 1100.
  • the pattern configuring unit 1160 is based on whether the macro base station 1170 including coverage of the femto base station 1100 or the femto base station 1100 is synchronized with the ABS pattern of the macro base station neighboring to the femto base station 1100.
  • An ABS pattern is configured, and an additional ABS pattern which is an ABS pattern for subframes to which a synchronization signal of a femtocell is mapped is configured.
  • the pattern configuring unit 1160 has a controlled transmission power in consideration of the macro base station 1170 including the coverage of the femto base station 1100 or the first pattern includes the femto base station 1100.
  • Configure ABS pattern In addition, the pattern configuring unit 1160 configures the ABS pattern so that the second pattern has a controlled transmission power in a subframe in which the synchronization signal of the femto base station 1100 is to be transmitted.
  • the pattern configuration unit 1100 may be configured such that the second pattern has priority over the first pattern.
  • the pattern configuration unit 1160 consists of at least one subframe in which the second pattern is scheduled to transmit the synchronization signal of the femto base station 1100, a continuous bitmap whether each subframe is ABS or non-ABS It can be configured to indicate in the form.
  • the pattern configuration unit 1160 may selectively configure additional ABS patterns, such as setting additional ABS patterns only when necessary.
  • the pattern configuring unit 1160 may periodically configure the additional ABS pattern or randomly.
  • the pattern configuring unit 1160 may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
  • the transmitter 1165 transmits wireless network information including intercell interference coordination information including a basic ABS pattern, an additional ABS pattern, or an integrated ABS pattern to the femto base station 1100.
  • the terminal 1180 includes a receiver 1185, a transmitter 1190, and a synchronization performer 1119.
  • the receiver 1185 receives a cell signal and a synchronization signal from various base stations of the heterogeneous network system.
  • the receiver 1185 may receive the synchronization signal of the macro base station 1170 by giving priority to the second pattern over the first pattern.
  • the receiver 1185 controls the first pattern configured to have a controlled transmission power in a predetermined subframe in consideration of the femto base station 1100 and the macro base station 1170, and controls in a predetermined subframe in consideration of the femto base station 1100.
  • the synchronization signal of the macro base station 1170 may be received based on the second pattern configured to have a predetermined transmission power.
  • the terminal 1180 may be located in the cell coverage of the femto base station 1100 in a state of camping on a macro cell of the macro base station 1170 and may be in a state of receiving an interference signal from the femto base station 1100.
  • the receiver 1185 receives both the synchronization signal of the macro cell and the synchronization signal of the femto cell.
  • the synchronization performing unit 1119 performs a synchronization acquisition procedure using a synchronization signal transmitted from a cell camped on by the terminal 1180, and acquires synchronization. If the receiving unit 1185 receives the synchronization signal of the macro cell interfered by the synchronization signal of the femto cell, the synchronization performing unit 1119 cannot successfully acquire synchronization for the macro cell.
  • the receiver 1185 is an intact macro not interfered by the synchronization signal of the femtocell in the corresponding subframe. Receive the synchronization signal of the cell.
  • the synchronization performing unit 1119 may successfully acquire synchronization for the macro cell using the synchronization signal of the macro cell in which interference is removed or reduced, at least in the ABS defined by the additional ABS pattern.
  • the transmitter 1190 transmits an uplink signal to the macro base station 1170 based on the synchronization obtained using the synchronization signal of the macro cell in which the interference is eliminated or reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to an apparatus and a method for transmitting interference control information between heterogeneous cells. The present invention discloses a base station comprising: a signal reception unit for receiving wireless network information including an additional ABS pattern, which indicates whether a subframe, in which a synchronization signal transmission from a base station is scheduled, based on time division multiplexing, is a subframe (ABS) in which the transmission power of the synchronization signal is reduced so as not to cause interference with a heterogeneous base station; a measurement unit for measuring the signal which is received by the heterogeneous base station; and a power adjustment unit for adjusting the transmission power of the synchronization signal based on the measured signal and the additional ABS pattern. According to the present invention, interference between synchronization cells, which is generated between the heterogeneous cells, is reduced, and error in searching and selecting a cell, which is accessible by a user equipment in a resting state not having a femtocell membership, can also be reduced.

Description

이종셀간 간섭조정정보의 전송장치 및 방법Apparatus and method for transmitting interference coordination information between different cells
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 이종셀간 간섭조정정보의 전송장치 및 방법에 관한 것이다. The present invention relates to wireless communication, and more particularly, to an apparatus and method for transmitting inter-cell interference coordination information.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.The 3rd Generation Partnership Project (3GPP) long term evolution (LTE), an improvement of the Universal Mobile Telecommunications System (UMTS), is introduced as a 3GPP release 8. 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink. A multiple input multiple output (MIMO) with up to four antennas is employed. Recently, a discussion on 3GPP LTE-Advanced (LTE-A), an evolution of 3GPP LTE, is underway.
무선 통신 기술이 발달함에 따라서, 이종(異種) 네트워크(Heterogeneous Network, 이하 '이종 네트워크'라 함) 환경이 대두되고 있다. As wireless communication technology develops, a heterogeneous network (hereinafter referred to as a heterogeneous network) environment is emerging.
상기 이종 네트워크 환경은 매크로 셀(Macro Cell), 펨토 셀(Femto Cell) 그리고 피코 셀(Pico Cell) 등이 함께 이용된다. 펨토 셀과 피코 셀은 매크로 셀과 대비할 때, 기존 이동 통신 서비스 반경보다 작은 지역을 커버하는 시스템이다. The heterogeneous network environment includes a macro cell, a femto cell, a pico cell, and the like. The femto cell and pico cell are systems that cover an area smaller than the radius of the existing mobile communication service as compared to the macro cell.
이러한 통신 시스템에서 매크로셀, 펨토셀 및 피코셀 중 어느 하나의 셀에 존재하는 사용자 단말은 다른 셀에서 발생하는 신호에 의해 신호 간섭이 유발되는 셀 간 간섭(inter cell interference)이 일어나게 된다. 특히, 매크로셀과 통신하는 단말이 펨토셀의 간섭영역에 진입하는 경우, 매크로셀로부터 동기신호(synchronization signal)를 제대로 획득할 수 없는 문제가 있다.In such a communication system, a user terminal present in any one of a macrocell, a femtocell, and a picocell may cause inter-cell interference in which signal interference is caused by a signal generated from another cell. In particular, when a terminal communicating with a macrocell enters an interference region of a femtocell, there is a problem in that a synchronization signal cannot be properly obtained from the macrocell.
본 발명의 기술적 과제는 이종셀간 간섭조정정보의 전송장치 및 방법을 제공함에 있다.The present invention provides an apparatus and method for transmitting interference coordination information between heterogeneous cells.
본 발명의 다른 기술적 과제는 이종셀간 동기신호의 간섭을 조정하는 전력조정장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and a method for adjusting power of interference between synchronization signals between different cells.
본 발명의 또 다른 기술적 과제는 TDM 기반의 셀간 간섭 조정방식을 이용하여 이종셀간 동기신호의 간섭을 조정하는 장치 및 방법을 제공함에 있다.Another technical problem of the present invention is to provide an apparatus and method for adjusting interference of a synchronization signal between heterogeneous cells using a TDM-based intercell interference coordination scheme.
본 발명의 또 다른 기술적 과제는 동기신호의 간섭을 조정하는 ABS 패턴을 제공하는 장치 및 방법을 제공함에 있다. Another technical problem of the present invention is to provide an apparatus and method for providing an ABS pattern for adjusting interference of a synchronization signal.
본 발명의 일 양태에 따르면, 이종 네트워크 시스템에서 셀간 간섭을 조정하는 기지국을 제공한다. 상기 기지국은 시분할 다중화에 기반하여 기지국의 동기신호의 전송이 예정된 서브프레임이, 이종 기지국(Heterogeneous eNB)에 간섭을 일으키지 않도록 상기 동기신호의 전송전력이 감소하는 서브프레임(Almost Blank Subframe: 이하 ABS)인지 아닌지를 지시하는 추가(additional) ABS 패턴(pattern)을 포함하는 무선 네트워크 정보를 수신하는 신호 수신부, 상기 이종 기지국으로부터 수신되는 신호를 측정하는 측정부, 및 상기 측정된 신호 및 상기 추가 ABS 패턴에 기반하여, 상기 동기신호의 전송전력을 조정하는 전력조정부를 포함한다. According to an aspect of the present invention, there is provided a base station for coordinating intercell interference in a heterogeneous network system. The base station is a subframe in which the transmission power of the synchronization signal is reduced so that the subframe scheduled for transmission of the synchronization signal of the base station does not cause interference to a heterogeneous base station based on time division multiplexing (Almost Blank Subframe: ABS). A signal receiving unit for receiving wireless network information including an additional ABS pattern indicating whether or not, a measuring unit measuring a signal received from the heterogeneous base station, and the measured signal and the additional ABS pattern. And a power adjusting unit for adjusting the transmission power of the synchronization signal.
본 발명의 다른 양태에 따르면, 이종 네트워크 시스템에서 기지국에 의해 셀간 간섭을 조정하는 방법을 제공한다. 상기 방법은 시분할 다중화에 기반하여 기지국의 동기신호의 전송이 예정된 서브프레임이, 이종 기지국에 간섭을 일으키지 않도록 상기 동기신호의 전송전력이 감소하는 서브프레임(이하 ABS)인지 아닌지를 지시하는 추가 ABS 패턴을 포함하는 무선 네트워크 정보를 수신하는 단계, 상기 이종 기지국으로부터 수신되는 신호를 측정하는 단계, 및 상기 측정된 신호 및 상기 추가 ABS 패턴에 기반하여, 상기 동기신호의 전송전력을 조정하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for coordinating intercell interference by a base station in a heterogeneous network system. The method further includes an additional ABS pattern indicating whether or not a subframe in which transmission of a synchronization signal of a base station is scheduled based on time division multiplexing is a subframe in which transmission power of the synchronization signal is reduced so as not to interfere with a heterogeneous base station. Receiving wireless network information comprising a; measuring a signal received from the heterogeneous base station; and based on the measured signal and the additional ABS pattern, adjusting the transmission power of the synchronization signal; .
본 발명의 또 다른 양태에 따르면, 이종 네트워크 시스템에서 셀간 간섭을 조정하는 유지관리장치(Operation and Management: OAM)를 제공한다. 상기 유지관리장치는 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 상기 펨토 기지국과 이웃하는 매크로 기지국의 ABS 패턴과 동기화 여부를 기반으로 상기 펨토 기지국의 기본 ABS 패턴을 구성하고, 상기 펨토 기지국의 동기신호가 맵핑되는 서브프레임들에 대한 추가 ABS 패턴을 구성하는 패턴 구성부, 및 상기 기본 ABS 패턴과 상기 추가 ABS 패턴을 포함하는 셀간간섭 조정정보를 상기 펨토 기지국으로 전송하는 전송부를 포함한다. According to another aspect of the present invention, there is provided an Operation and Management (OAM) for coordinating intercell interference in a heterogeneous network system. The maintenance apparatus configures a basic ABS pattern of the femto base station based on synchronization with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station and the neighboring femto base station, the synchronization signal of the femto base station The pattern configuration unit constituting the additional ABS pattern for the sub-frame is mapped, and a transmission unit for transmitting the cell interference adjustment information including the basic ABS pattern and the additional ABS pattern to the femto base station.
본 발명의 또 다른 양태에 따르면, 이종 네트워크 시스템에서 유지관리장치 셀간 간섭을 조정하는 방법을 제공한다. 상기 방법은 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 상기 펨토 기지국과 이웃하는 매크로 기지국의 ABS 패턴과 동기화 여부를 기반으로 상기 펨토 기지국의 기본 ABS 패턴을 구성하는 단계, 상기 펨토 기지국의 동기신호가 맵핑되는 서브프레임들에 대한 추가 ABS 패턴을 구성하는 단계, 및 상기 기본 ABS 패턴과 상기 추가 ABS 패턴을 포함하는 셀간간섭 조정정보를 상기 펨토 기지국으로 전송하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for coordinating interference between maintenance cells in a heterogeneous network system. The method may include configuring a basic ABS pattern of the femto base station based on synchronization with an ABS pattern of a macro base station including coverage of a femto base station or a macro base station neighboring to the femto base station, wherein the synchronization signal of the femto base station is Constructing additional ABS patterns for the mapped subframes, and transmitting cell interference coordination information including the basic ABS pattern and the additional ABS pattern to the femto base station.
이종셀들 상호간에 발생하는 동기신호간 간섭이 줄어들고, 펨토 셀의 멤버쉽이 없는 휴지 상태의 단말이 접근 가능한 셀 검색 및 셀 선택에서의 오류가 줄어들 수 있다. Interference between synchronization signals occurring between heterogeneous cells can be reduced, and errors in cell search and cell selection accessible to a terminal in idle state without membership of a femto cell can be reduced.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명에 따른 RRC 휴지 상태인 단말의 셀 선택 과정을 나타내는 예시도이다.2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to the present invention.
도 3은 본 발명에 따른 매크로 기지국, 펨토 기지국 그리고 피코 기지국로 구성된 이종 네트워크의 개념을 개략적으로 설명하는 도면이다.3 is a diagram schematically illustrating a concept of a heterogeneous network including a macro base station, a femto base station, and a pico base station according to the present invention.
도 4는 하향링크에서 매크로 셀, 펨토 셀 그리고 피코 셀 간의 간섭에 의해 단말이 영향을 받는 것을 개략적으로 설명하는 도면이다.4 is a diagram schematically illustrating that a terminal is affected by interference between a macro cell, a femto cell and a pico cell in downlink.
도 5는 본 발명의 일 예에 따른 이종 네트워크 시스템에서의 셀간 간섭 조정을 위한 프레임 패턴을 나타내는 도면이다. 5 is a diagram illustrating a frame pattern for inter-cell interference coordination in a heterogeneous network system according to an embodiment of the present invention.
도 6은 본 발명에 따른 TDD 무선 프레임 구조이다. 6 is a TDD radio frame structure according to the present invention.
도 7은 본 발명에 따른 셀간 간섭조정 정보를 전송하는 방법을 나타내는 흐름도이다.7 is a flowchart illustrating a method of transmitting inter-cell interference coordination information according to the present invention.
도 8은 본 발명의 일 예에 따른 ABS 패턴을 구성하는 방법을 설명하는 설명도이다. 8 is an explanatory diagram illustrating a method of constructing an ABS pattern according to an embodiment of the present invention.
도 9는 본 발명의 일 예에 따른 펨토 기지국이 셀간 간섭조정 정보를 수신하는 방법을 나타내는 순서도이다.9 is a flowchart illustrating a method for receiving inter-cell interference coordination information by a femto base station according to an embodiment of the present invention.
도 10은 본 발명의 일 예에 따른 유지관리장치가 셀간 간섭조정 정보를 전송하는 방법을 나타내는 순서도이다.10 is a flowchart illustrating a method for transmitting, by a maintenance apparatus, inter-cell interference coordination information according to an embodiment of the present invention.
도 11은 본 발명의 일 예에 따른 펨토 기지국과 유지관리장치를 도시한 블록도이다.11 is a block diagram illustrating a femto base station and a maintenance apparatus according to an embodiment of the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that the detailed description of the related well-known configuration or function may obscure the subject matter of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.1 shows a wireless communication system to which the present invention is applied. This may also be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or Long Term Evolution (LTE) / LTE-A system.
도 1을 참조하면, E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 지점(station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 가내 기지국(home eNB), 릴레이(relay), 원격무선헤드(remote radio head: RRH) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE). The terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like. . The base station 20 refers to a station that communicates with the terminal 10, and includes an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, an access point, a home eNB, and a relay. ), Or a remote radio head (RRH).
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core: 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. S1 인터페이스는 MME와 신호를 교환함으로써 단말(10)의 이동을 지원하기 위한 OAM(Operation and Management) 정보를 주고받는다. The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to the Serving Gateway (S-GW) through the Mobility Management Entity (MME) and the S1-U through the Evolved Packet Core (EPC) 30, more specifically, through the S1 interface. The S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다. EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. S-GW is a gateway having an E-UTRAN as an endpoint, and P-GW is a gateway having a PDN as an endpoint.
단말(10)과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI)기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이중에서 제 1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말(10)과 망간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말(10)과 기지국간 RRC 메시지를 교환한다.Layers of the Radio Interface Protocol between the terminal 10 and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems. Layer), L2 (second layer), and L3 (third layer), among which the physical layer belonging to the first layer provides an information transfer service using a physical channel. The RRC (Radio Resource Control) layer located in the third layer plays a role of controlling radio resources between the terminal 10 and the network. To this end, the RRC layer exchanges an RRC message between the terminal 10 and the base station.
물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 제2계층에 속하는 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. A physical layer (PHY) layer provides an information transfer service to a higher layer by using a physical channel. The physical layer is connected to a medium access control (MAC) layer belonging to a second layer through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조되며, 시간과 주파수를 무선자원으로 활용한다.Data moves between physical layers between physical layers, that is, between physical layers of a transmitter and a receiver. The physical channel is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다. The functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
제2계층에 속하는 RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. Functions of the RLC layer belonging to the second layer include concatenation, segmentation, and reassembly of the RLC SDUs. In order to guarantee the various Quality of Service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM). AM RLC provides error correction through an automatic repeat request (ARQ).
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. The functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
제3계층에 속하는 RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말(10)과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.A Radio Resource Control (RRC) layer belonging to the third layer is defined only in the control plane. The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal 10 and the network. The establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. RB can be further divided into SRB (Signaling RB) and DRB (Data RB). The SRB is used as a path for transmitting RRC messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
단말(10)의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말(10)은 RRC 연결(RRC CONNECTED) 상태에 있게 되고, 그렇지 못할 경우 RRC 휴지 (RRC IDLE) 상태에 있게 된다.If there is an RRC connection between the RRC layer of the terminal 10 and the RRC layer of the E-UTRAN, the terminal 10 is in an RRC CONNECTED state, otherwise the RRC idle (RRC IDLE) ) State.
네트워크에서 단말(10)로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말(10)에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.The downlink transport channel for transmitting data from the network to the terminal 10 includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transport channel for transmitting data from the terminal 10 to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages. have.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic (MTCH). Channel).
물리채널(Physical Channel)은 시간 영역에서 여러 개의 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 심볼(Symbol)들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel)이라는 물리 제어채널을 위해 해당 서브프레임의 특정 심볼들(가령, 첫 번째 심볼)의 특정 부반송파들을 이용할 수 있다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several symbols in the time domain and several sub-carriers in the frequency domain. One sub-frame consists of a plurality of symbols in the time domain. One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for a physical control channel called a physical downlink control channel (PDCCH). The transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다. Hereinafter, the RRC state and the RRC connection method of the UE will be described in detail.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state), 연결되어 있지 않은 경우는 RRC 휴지(Idle) 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 휴지 상태의 단말은 E-UTRAN에 의해 파악되지 않으며, 셀 보다 더 큰 지역 단위인 트랙킹 구역(Tracking Area) 단위로 핵심 망이 관리한다. 즉, RRC 휴지 상태의 단말의 존부는 큰 지역 단위로만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.The RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connected state is connected. Idle state. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the terminal of the RRC idle state is not identified by the E-UTRAN and managed by the core network in units of a tracking area, which is a larger area unit than the cell. That is, the presence of the terminal in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 PLMN(Public Land Mobile Network)과의 접속을 만들려는 시도를 한다. 접속된 특정 PLMN은 자동적으로 또는 수동적으로 선택될 수 있다. 여기서, PLMN은 차량내 또는 도보중인 지상의 사용자에 의해 사용되기 위한 무선통신 시스템을 의미한다. 또는 PLMN은 위성 이외의 지상기반의 기지국을 사용하는 모든 이동 무선 네트워크를 지시할 수도 있다. 홈PLMN은 GSM(Global System for Mobile Communication) 네트워크의 개별 사용자에 대한 확인을 위해 사용되는 유일한(unique) 15-digit 코드인 IMSI(International Mobile Subscriber Identity)내에 포함된 MCC(Mobile Country Code)와 MNC(Mobile Network Code)이 동일한 PLMN이다. 동등한(equivalent) HPLMN 리스트(EHPLMN)는 다중 HPLMN 코드의 제공을 허용하기 위해 IMSI로부터 추출되는 HPLMN 코드를 대신하는 PLMN 코드 리스트를 말한다. EHPLMN 리스트는 USIM(universal subscriber identity module)에 저장된다. EHPLMN 리스트는 IMSI로부터 추출되는 HPLMN 코드를 포함할 수도 있다. 만일 IMSI로부터 추출되는 HPLMN 코드가 EHPLMN 리스트에 포함되어 있지 않다면, HPLMN은 PLMN 선택시 Visited PLMN으로 취급되어야 한다. Visited PLMN은 HPLMN 및 EHPLMN(존재하는 경우)과 다른 PLMN이다. 등록된(Registered) PLMN (RPLMN)는 어떤 LR 결과들이 발생하는 PLMN이다. 일반적으로 공유 네트워크에서 RPLMN은 LR을 허용한 코어(Core) 네트워크 운영자(operator)의 PLMN 확인에 의해 정의되는 PLMN이다.When the user first turns on the terminal, the terminal attempts to make a connection with the Public Land Mobile Network (PLMN). The specific PLMN connected can be selected automatically or manually. Here, PLMN refers to a wireless communication system for use by a user in a vehicle or on the ground while walking. Alternatively, the PLMN may indicate all mobile wireless networks using land-based base stations other than satellites. Home PLMNs are Mobile Country Codes (MCCs) and MNCs (IMCs) contained within the International Mobile Subscriber Identity (IMSI), a unique 15-digit code used to identify individual users in a Global System for Mobile Communication (GSM) network. Mobile Network Code) is the same PLMN. An equivalent HPLMN list (EHPLMN) refers to a PLMN code list that replaces the HPLMN code extracted from IMSI to allow the provision of multiple HPLMN codes. The EHPLMN list is stored in a universal subscriber identity module (USIM). The EHPLMN list may include HPLMN codes extracted from IMSI. If the HPLMN code extracted from IMSI is not included in the EHPLMN list, the HPLMN should be treated as Visited PLMN when selecting a PLMN. Visited PLMNs are PLMNs different from HPLMNs and EHPLMNs, if any. A Registered PLMN (RPLMN) is a PLMN from which certain LR results occur. In general, in a shared network, an RPLMN is a PLMN defined by the PLMN identification of a core network operator that allows LR.
단말은 선택된 PLMN의 적절한 셀을 탐색한 후 해당 셀에서 RRC 휴지 상태에 머무른다. RRC 휴지 상태의 단말은 가능한 서비스들을 제공할 수 있는 셀을 선택하고, 선택된 셀의 제어채널에 맞게 조정한다. 이러한 과정을 "셀에 캠프온한다(camp on a cell)"라고 한다. 캠프온이 완료되면 단말은 선택된 셀의 등록영역(registration area)에 자신의 존재를 등록할 수 있다. 이를 위치 등록 (location registration: LR)이라 한다. 단말은 등록영역내의 자신의 존재를 정규적으로 등록하거나 새로운 추적영역(TA: tracking area)에 진입했을 때 등록한다. 등록영역은 단말이 위치 등록절차 없이 로밍(roaming)할 수도 있는 임의의 영역을 말한다. The UE searches for the appropriate cell of the selected PLMN and stays in the RRC idle state in the cell. The UE in the RRC idle state selects a cell capable of providing possible services and adjusts to the control channel of the selected cell. This process is called "camp on a cell." When camping is completed, the terminal may register its presence in the registration area of the selected cell. This is called location registration (LR). The terminal regularly registers its presence in the registration area or when entering a new tracking area (TA). The registration area refers to any area where the terminal may roam without a location registration procedure.
만일 단말이 셀의 서비스 영역을 벗어나거나 또는 좀더 적당한 셀을 찾은 경우, 단말은 PLMN내의 가장 적당한 셀을 재선택하고 캠프온한다. 만일 새로운 셀이 다른 등록영역에 포함되어 있는 경우 위치 등록 요청이 수행된다. 만일 단말이 PLMN의 서비스 영역을 벗어나게 된 경우, 자동적으로 새로운 PLMN이 선택되거나 사용자에 의해 수동적으로 새로운 PLMN이 선택될 수 있다.If the UE leaves the service area of the cell or finds a more suitable cell, the UE reselects the most suitable cell in the PLMN and camps on. If a new cell is included in another registration area, a location registration request is performed. If the terminal leaves the service area of the PLMN, a new PLMN may be automatically selected or a new PLMN may be manually selected by the user.
RRC 휴지 상태의 단말이 캠프온을 진행하는 목적은 다음과 같다.The purpose of proceeding camp on the terminal of the RRC idle state is as follows.
1) 단말이 PLMN으로부터 시스템 정보를 수신 1) UE receives system information from PLMN
2) 단말이 호(call)를 초기화한 이후 캠프온된 셀의 제어제널을 통하여 네트워크에 처음에 접속2) The terminal initially accesses the network through the control channel of the camped cell after initiating a call.
3) 페이징 메시지(paging message) 수신 : PLMN이 단말에 대한 호를 수신한 경우, PLMN은 단말이 캠프온된 셀의 등록영역을 알고 있다. 따라서 PLMN은 등록영역에 있는 모든 셀의 제어체널을 통하여 단말을 위한 페이징 메시지를 보낼 수 있다. 단말은 이미 캠프온한 셀의 제어채널에 맞게 조정해놓은 상태이므로 페이징 메시지를 수신할 수 있다.3) Receiving a paging message: When the PLMN receives a call for the terminal, the PLMN knows the registration area of the cell where the terminal is camped on. Therefore, the PLMN may send a paging message for the terminal through the control channel of all cells in the registration area. The terminal may receive a paging message since it is already adjusted for the control channel of the camped cell.
4) 셀의 브로드캐스팅 메시지를 수신4) receive the cell's broadcasting message
만일 단말이 캠프온하기 적당한 셀을 찾을 수 없거나 SIM(subscriber identity module)카드가 삽입되지 않은 경우 또는 위치 등록 요청에 대한 특정 응답을 수신한 경우 (예를 들어 "불법 단말기"), 단말은 PLMN에 상관없이 캠프온을 시도하고 "제한된 서비스" 상태로 진입한다. 상기 제한된 서비스 상태는 응급전화만이 가능한 상태다.If the terminal cannot find a suitable cell to camp on, or if a subscriber identity module (SIM) card is not inserted or if a specific response to a location registration request is received (for example, an "illegal terminal"), the terminal is connected to the PLMN. Regardless, try to camp on and enter the "limited service" state. The limited service state is an emergency call only state.
RRC 휴지 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립(establishment)하고, RRC 연결 상태로 천이한다. RRC 휴지 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다. When the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state. There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an upstream data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
도 2는 본 발명에 따른 RRC 휴지 상태인 단말의 셀 선택 과정을 나타내는 예시도이다.2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to the present invention.
도 2를 참조하면, 단말은 서비스받고자 하는 PLMN과 RAT(Radio Access Technology)을 선택한다(S210). 단말의 사용자가 PLMN과 RAT를 선택할 수도 있으며, USIM에 저장되어 있는 것을 사용할 수도 있다.Referring to FIG. 2, the terminal selects a PLMN and a radio access technology (RAT) to be serviced (S210). The user of the terminal may select the PLMN and the RAT, or may use the one stored in the USIM.
단말은 측정한 기지국과 신호세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 선택한다(S220). 그리고, 단말은 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 특정한 값은 데이터 송/수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.The terminal selects a cell having the largest value among the measured base station and a cell whose signal strength or quality is greater than a specific value (S220). The terminal receives system information periodically transmitted by the base station. A specific value is a value defined in the system to ensure the quality of a physical signal in data transmission / reception. Therefore, the value may vary depending on the RAT applied.
단말은 네트워크 등록이 필요한지 판단하고(S230), 만일 필요하면, 네트워크로부터 서비스(예: 호출(Paging))를 받기 위하여 자신의 정보(예:IMSI)를 등록한다(S240). 단말은 셀을 선택할 때마다 접속하는 네트워크에 등록을 하는 것은 아니다. 예를 들어, 등록할 네트워크의 시스템 정보(예: 트랙킹 구역 식별자 (Tracking Area Identity; TAI))와 자신이 알고 있는 네트워크의 정보가 다른 경우에 네트워크에 등록을 한다.The terminal determines whether network registration is necessary (S230), and if necessary, registers its information (eg, IMSI) in order to receive a service (eg, paging) from the network (S240). The terminal does not register with the network to which it connects every time the cell is selected. For example, if the system information of the network to be registered (for example, Tracking Area Identity (TAI)) is different from the information of the network known to the user, the network is registered in the network.
단말은 서비스받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀 보다 더 좋은 신호 특성을 제공하는 다른 셀을 선택한다(S250). 이 과정을 상기 단계 S220의 초기 셀 선택(Initial Cell Selection)과 구분하여 셀 재선택(Cell Reselection)이라 한다. 이때, 신호특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약조건을 둘 수도 있다.If the value of the strength or quality of the signal measured from the base station being served is lower than the value measured from the base station of the adjacent cell, the terminal selects another cell that provides better signal characteristics than the cell of the base station to which the terminal is connected ( S250). This process is referred to as cell reselection, distinguished from initial cell selection in step S220. In this case, a time constraint may be set in order to prevent the cell from being frequently reselected according to the change of the signal characteristic.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다. Next, a procedure of selecting a cell by the terminal will be described in detail.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.When the power is turned on or staying in the cell, the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
RRC 휴지 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 단말이 RRC 휴지 상태에 진입하면, 단말은 RRC 휴지 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 단말이 RRC 휴지 상태와 같은 서비스 대기 상태로 머물기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택(Cell Selection)이라고 한다. 중요한 점은, 셀 선택은 단말이 RRC 휴지 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라고 하더라도, 단말의 셀 선택 과정에서 선택될 수 있다.The UE in the RRC dormant state should always select a cell of appropriate quality and prepare to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the UE in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to stay in a service standby state such as an RRC idle state is called cell selection. Importantly, since cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if this cell is not the cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
셀 선택 과정은 크게 두 가지로 나뉜다. There are two main cell selection processes.
먼저 초기 셀 선택 과정으로, 이 과정에서는 단말이 무선 채널에 대한 사전 정보가 없다. 따라서 단말은 적절한 셀을 찾기 위해 모든 무선 채널을 검색한다. 각 채널에서 단말은 가장 강한 셀을 찾는다. 이후, 단말이 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾기만 하면 해당 셀을 선택한다. First, as an initial cell selection process, the terminal does not have any prior information on the radio channel. Therefore, the terminal searches all radio channels to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell that satisfies the cell selection criteria.
다른 하나는 저장된 정보를 활용하는 셀 선택 과정으로, 이 과정에서는 무선 채널에 대해 단말에 저장되어 있는 정보를 활용하거나, 셀에서 브로드캐스트하고 있는 정보를 활용하여 셀 선택을 한다. 따라서 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적절한(suitable) 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.The other is a cell selection process using stored information. In this process, cell selection is performed by using information stored in a terminal for a wireless channel or by using information broadcast in a cell. Therefore, the cell selection may be faster than the initial cell selection process. The UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
셀 선택 과정에서 단말이 사용하는 셀 선택 기준은 다음 수학식 1과 같다. The cell selection criterion used by the terminal in the cell selection process is shown in Equation 1 below.
수학식 1
Figure PCTKR2012002296-appb-M000001
Equation 1
Figure PCTKR2012002296-appb-M000001
여기서, Srxlev = Qrxlevmeas - (Qrxlevmin + Qrxlevminoffset) + Pcompensation이다. Qrxlevmeas는 측정된 셀의 수신 레벨 (RSRP), Qrxlevmin는 셀에서의 최소 필요 수신 레벨(dBm), Qrxlevminoffset는 Qrxlevmin 에 대한 오프셋(offset), Pcompensation=max(PEMAX - PUMAX, 0) (dB), PEMAX는 단말이 해당 셀에서 전송해도 좋은 최대 전송 전력 (dBm), PUMAX는 단말의 성능에 따른 단말 무선 전송부(RF)의 최대 전송 전력(dBm)이다.Here, Srxlev = Q rxlevmeas- (Q rxlevmin + Q rxlevminoffset ) + Pcompensation. Q rxlevmeas is the reception level of the measured cell (RSRP), Q rxlevmin is the minimum required reception level (dBm) in the cell, Q rxlevminoffset is the offset for Q rxlevmin , Pcompensation = max (P EMAX -P UMAX , 0 (dB), P EMAX is the maximum transmit power (dBm) that the terminal can transmit in the cell, P UMAX is the maximum transmit power (dBm) of the terminal radio transmitter (RF) according to the performance of the terminal.
수학식 1에서, 단말은 측정한 신호의 세기와 품질이 특정한 값보다 큰 셀을 선택한다는 것을 알 수 있다. 특정한 값은 서비스를 제공하는 셀에서 정의된 것이다. 또한, 수학식 1에서 사용되는 파라미터들은 시스템 정보를 통해 브로드캐스트되고, 단말은 이 파라미터 값들을 수신하여 셀 선택 기준에 사용한다.In Equation 1, the UE can know that the cell selected to the strength and quality of the measured signal is greater than a specific value. The specific value is defined in the cell providing the service. In addition, parameters used in Equation 1 are broadcast through system information, and the terminal receives these parameter values and uses them in cell selection criteria.
단말이 셀 선택 기준을 만족하는 셀을 선택하면, 단말은 해당 셀의 시스템 정보로부터 해당 셀에서 상기 단말의 RRC 휴지 상태 동작에 필요한 정보를 수신한다. 단말이 RRC 휴지 상태 동작에 필요한 모든 정보를 수신한 후, 네트워크로 서비스를 요청(예:Originating Call)하거나 네트워크로부터 서비스(예: Terminating Call)를 받기 위해 휴지 모드에서 대기한다.When the terminal selects a cell that satisfies the cell selection criteria, the terminal receives information necessary for the RRC idle state operation of the terminal in the cell from the system information of the cell. After the UE receives all the information necessary for the RRC idle state operation, the UE waits in the idle mode to request a service (eg, an originating call) or to receive a service (eg, a terminating call) from the network.
단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택(Cell Reselection)이라고 한다. 셀 재선택 과정은, 무선 신호의 품질 관점에서, 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는데 목적이 있다. After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to a change in mobility or a wireless environment of the terminal. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection. The cell reselection process is aimed at selecting a cell that provides the best quality to a terminal in view of the quality of a radio signal.
무선 신호의 품질 관점 이외에, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려한다.In addition to the quality of the wireless signal, the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
이하, 이종 네트워크(Heterogeneous Network)에 대해서 설명한다.Hereinafter, a heterogeneous network will be described.
매크로(macro) 셀과 마이크로(micro) 셀의 단순한 셀 분할로는 증가하는 데이터 서비스에 대한 요구를 충족하기 어렵다. 따라서 피코 셀(pico cell), 펨토 셀(femto cell) 그리고 무선 릴레이 등을 이용하여, 실내외 소규모 영역에 대한 데이터 서비스를 운용할 수 있다. 소형 셀들의 용도가 특별히 한정되어 있지는 않지만, 일반적으로 피코 셀은 매크로 셀만으로는 커버되지 않는 통신 음영 지역이나, 데이터 서비스 요구가 많은 영역, 소위 핫존(hotzone)에 이용될 수 있다. 펨토 기지국(femto eNB)은 일반적으로 실내 사무실이나 가정에서 이용될 수 있다. 또한, 무선 릴레이는 매크로 셀의 커버리지(coverage)를 보완할 수 있다. 이종 네트워크를 구성함에 따라서, 데이터 서비스의 음영 지역을 없앨 수 있을 뿐 아니라, 데이터 전송 속도의 증가를 도모할 수 있다. Simple cell division of macro and micro cells is difficult to meet the growing demand for data services. Therefore, data services for indoor and outdoor small areas can be operated using pico cells, femto cells, and wireless relays. Although the use of small cells is not particularly limited, pico cells can generally be used in communication shadow areas that are not covered by macro cells alone, or in areas with high data service requirements, so-called hot zones. A femto eNB is generally used in an indoor office or home. In addition, the wireless relay can supplement the coverage of the macro cell. By configuring a heterogeneous network, not only the shadow area of the data service can be eliminated, but also the data transmission speed can be increased.
도 3은 본 발명에 따른 매크로 기지국, 펨토 기지국 그리고 피코 기지국으로 구성된 이종 네트워크의 개념을 개략적으로 설명하는 도면이다. 도 3에서는 설명의 편의를 위해 매크로 기지국, 펨토 기지국 그리고 피코 기지국으로 구성된 이종 네트워크를 설명하고 있으나, 이종 네트워크는 릴레이 또는 다른 유형의 기지국을 포함하여 구성될 수도 있다. 3 is a diagram schematically illustrating a concept of a heterogeneous network including a macro base station, a femto base station, and a pico base station according to the present invention. Although FIG. 3 illustrates a heterogeneous network composed of a macro base station, a femto base station, and a pico base station for convenience of description, the heterogeneous network may include a relay or another type of base station.
도 3을 참조하면, 이종 네트워크에는 매크로 기지국(310)과 펨토 기지국(320) 그리고 피코 기지국(330)이 함께 운용되고 있다. 매크로 기지국(310)과 펨토 기지국(320) 그리고 피코 기지국(330)은 각각 자신의 셀 커버리지인 매크로 셀, 펨토 셀 및 피코 셀을 단말에 제공한다. Referring to FIG. 3, a macro base station 310, a femto base station 320, and a pico base station 330 are operated together in a heterogeneous network. The macro base station 310, the femto base station 320, and the pico base station 330 provide the cell coverage of the macro cell, the femto cell, and the pico cell, respectively, to the terminal.
펨토 기지국(320)은 저전력 무선 접속 포인트로서, 예컨대 가정이나 사무실 등 실내에서 사용되는 초소형 이동 통신용 기지국이다. 펨토 기지국(320)은 가정이나 사무실의 DSL 도는 케이블 브로드밴드 등을 이용하여 이동 통신 코어 네트워크에 접속할 수 있다. 펨토 기지국(320)에는 자기 조직(Self-Organization) 기능이 지원될 수 있다. 자기 조직 기능은 자기 구성(Self-Configuration) 기능, 자기 최적화(Self-Optimization) 기능, 자기 모니터링(Self-Monitoring) 기능 등으로 분류된다. The femto base station 320 is a low power wireless access point, for example, a micro mobile base station used indoors, such as at home or office. The femto base station 320 may access a mobile communication core network using a DSL or cable broadband of a home or office. The femto base station 320 may support a self-organization function. Self-organization functions are classified into a self-configuration function, a self-optimization function, and a self-monitoring function.
자기 구성(Self-Configuration) 기능은 셀 플래닝(Cell Planning) 단계를 거치지 않고, 초기 설치 프로파일에 근거해서 자체적으로 무선 기지국을 설치할 수 있도록 하는 기능이다. 자기 구성 기능은 다음과 같은 요구사항을 만족하여야 한다. 첫째, 펨토 기지국(320)이 네트워크 사업자의 보안 정책에 따라 이동형 유지관리 네트워크(Mobile Operation and Management Network: MON)와 보안링크(secured link)를 설정할 수 있어야 한다. 둘째, 펨토 기지국(320) 관리 시스템(HNB Management System: HMS)과 펨토 기지국(320)은 펨토 기지국(320)의 소프트웨어 다운로드와 활성화를 초기화할 수 있어야 한다. 셋째, 펨토 기지국(320) 관리 시스템은 PLMN과 시그널링 링크를 설정(establish)하기 위해 펨토 기지국(320)에 대한 전송자원(transport resource)의 제공을 초기화할 수 있어야 한다. 넷째, 펨토 기지국(320) 관리 시스템은 펨토 기지국(320)이 자동적으로 운용상태(operable state)로 설정되도록 하는 무선 네트워크 특정 정보를 펨토 기지국(320)에 제공하여야 한다. Self-configuration is a feature that allows a wireless base station to be installed on its own based on an initial installation profile without going through a cell planning step. Self-configuration functions shall satisfy the following requirements. First, the femto base station 320 must be able to establish a secure link (Mobile Operation and Management Network (MON)) according to the network operator's security policy. Second, the femto base station 320 management system (HMS) and the femto base station 320 should be able to initiate the software download and activation of the femto base station 320. Third, the femto base station 320 management system should be able to initiate the provision of transport resources to the femto base station 320 in order to establish a signaling link with the PLMN. Fourth, the femto base station 320 management system should provide the femto base station 320 with wireless network specific information that allows the femto base station 320 is automatically set to an operational state.
자기 최적화(Self-Optimization) 기능은 인접한 기지국을 식별하고 정보를 취득해서 인접 기지국 리스트를 최적화하고, 가입자 및 트래픽 변화에 따라서 커버리지와 통신 용량을 최적화하는 기능이다. 자기 모니터링(Self-Monitoring) 기능은 수집한 정보를 통해서 서비스 성능이 저하되지 않도록 제어하는 기능이다.Self-Optimization is a function that identifies neighboring base stations, obtains information, optimizes the neighboring base station list, and optimizes coverage and communication capacity according to subscriber and traffic changes. Self-Monitoring is a function to control service performance not to be degraded through collected information.
펨토 셀은 등록된 사용자와 등록되지 않은 사용자를 구분하여, 등록된 사용자에게만 접속을 허용할 수 있다. 등록된 사용자에게만 접속을 허용하는 셀을 폐쇄형 그룹(Closed Subscriber Group, 이하 "CSG"라고 함)이라고 하고, 일반 사용자에게도 접속을 허용하는 것을 개방형 그룹(Open Subscriber Group, 이하 "OSG"라고 함)이라고 한다. 또한, 이 두 방식을 혼용하여 운용할 수도 있다.The femtocell may distinguish registered users from unregistered users and allow access only to registered users. Cells that allow access only to registered users are called Closed Subscriber Groups (hereinafter referred to as "CSGs"), and those that allow access to general users are also called Open Subscriber Groups ("OSGs"). It is called. It is also possible to mix these two methods.
펨토 기지국(320)을 3GPP에서는 HNB(Home NodeB) 또는 HeNB(Home eNodeB)라고 부른다. 펨토 기지국(320)은 CSG에 속하는 멤버에게만 특화된 서비스를 제공하는 것을 목적으로 한다. 서비스를 제공하는 관점에서, 펨토 기지국(320)이 CSG 그룹에게만 서비스를 제공할 때에, 이 펨토 기지국(320)이 제공하는 셀은 CSG 셀이라고 일컫는다. The femto base station 320 is called a Home NodeB (HNB) or Home eNodeB (HeNB) in 3GPP. The femto base station 320 aims to provide specialized services only to members belonging to the CSG. In terms of providing a service, when the femto base station 320 provides a service only to the CSG group, the cell provided by the femto base station 320 is referred to as a CSG cell.
각 CSG는 각기 고유의 식별자를 가지고 있으며, 이 식별자를 CSG ID(CSG identity)라고 부른다. 단말은 자신이 멤버로 속한 CSG의 목록을 가질 수 있는데, 이러한 CSG의 목록을 화이트 리스트라고도 한다. CSG 셀이 어떤 CSG를 지원하는지를 시스템 정보에 포함된 CSG ID를 읽어서 확인할 수 있다. CSG ID를 읽은 단말은 자신이 해당 CSG 셀의 멤버일 경우에만, 즉 CSG ID에 해당되는 CSG가 자신의 CSG 화이트리스트에 포함되어 있을 경우에 해당 셀을 접속할 수 있는 셀로 간주한다.Each CSG has its own unique identifier, which is called a CSG identity (CSG identity). The UE may have a list of CSGs belonging to its members, which is also called a white list. You can check which CSG your CSG cell supports by reading the CSG ID included in the system information. The terminal reading the CSG ID is regarded as a cell that can access the cell only when the UE is a member of the CSG cell, that is, when the CSG corresponding to the CSG ID is included in its CSG whitelist.
펨토 기지국(320)이라고 해서 항상 CSG 단말에게 접속을 허용할 필요는 없다. 또한 펨토 기지국(320)의 구성 설정에 따라 CSG 멤버가 아닌 단말의 접속도 허용할 수가 있다. 어떤 단말에게 접속을 허용할지는 펨토 기지국(320)의 구성 설정에 따라 바뀌는데, 여기서 구성 설정은 펨토 기지국(320)의 동작 모드의 설정을 의미한다. 펨토 기지국(320)의 동작 모드는 어떤 단말에게 서비스를 제공하는지에 따라 아래의 3가지로 구분된다.The femto base station 320 does not always need to allow access to the CSG terminal. In addition, depending on the configuration setting of the femto base station 320, it is possible to allow the connection of the terminal other than the CSG member. Which terminal is allowed to access is changed according to the configuration setting of the femto base station 320, where the configuration setting means the setting of the operation mode of the femto base station 320. The operation mode of the femto base station 320 is divided into three types according to which UE provides a service.
1) 폐쇄 접속 모드(Closed access mode): 특정 CSG 멤버에게만 서비스를 제공하는 모드. 펨토 기지국(320)은 CSG 셀을 제공한다.1) Closed access mode: A mode in which a service is provided only to a specific CSG member. The femto base station 320 provides a CSG cell.
2) 개방 접속 모드(Open access mode): 일반 BS처럼 특정 CSG 멤버라는 제약이 없이 서비스를 제공하는 모드. 펨토 기지국(320)은 CSG 셀이 아닌 일반적 셀을 제공한다. 2) Open access mode: A mode in which a service is provided without restriction of a specific CSG member like a general BS. The femto base station 320 provides a general cell that is not a CSG cell.
3) 하이브리드 접속 모드(Hybrid access mode): 특정 CSG 멤버에게는 CSG 서비스를 제공할 수 있고, 비 CSG 멤버에게도 일반 셀처럼 서비스를 제공하는 모드. CSG 멤버 UE에게는 CSG 셀로 인식이 되고, 비 CSG 멤버 UE에게는 일반 셀처럼 인식이 된다. 이러한 셀을 하이브리드 셀(Hybrid cell)이라고 부른다.3) Hybrid access mode: A mode in which a CSG service can be provided to a specific CSG member and a service is provided to a non-CSG member like a normal cell. CSG member UEs are recognized as CSG cells, and non-CSG member UEs are recognized as normal cells. Such a cell is called a hybrid cell.
펨토 셀이 매크로 셀과 함께 운용되고 있는 이종 네트워크에서 펨토 셀이 개방 접속 모드인 경우에, 사용자는 매크로 셀과 펨토 셀 중에서 원하는 셀로 접속해서 데이터 서비스를 이용할 수 있다.When the femto cell is in an open access mode in a heterogeneous network in which the femto cell is operated together with the macro cell, the user can access a desired cell among the macro cell and the femto cell to use the data service.
펨토 셀이 예컨대, 폐쇄 모드인 경우에, 매크로 셀을 사용하는 일반 사용자는 매크로 셀이 강한 세기의 신호를 전송하는 펨토 셀로부터 간섭을 받고 있더라도 펨토 셀을 이용할 수 없게 된다. If the femto cell is in, for example, a closed mode, the end user using the macro cell will not be able to use the femto cell even if the macro cell is interfering with the femto cell transmitting a strong signal.
매크로 기지국들은 X2 인터페이스(interface)를 통해 서로 연결된다. X2 인터페이스는, 기지국 간의 끊김없는(seamless) 핸드오버 및 무손실(lossless) 핸드오버의 운용을 유지하고 무선 자원의 운용(management)을 지원한다. 따라서, 매크로 기지국들 사이의 셀간 간섭 조정(Inter-Cell Interference Coordination: ICIC)에 X2 인터페이스가 큰 역할을 한다. Macro base stations are connected to each other via an X2 interface. The X2 interface maintains the operation of seamless and lossless handover between base stations and supports management of radio resources. Therefore, the X2 interface plays a large role in inter-cell interference coordination (ICIC) between macro base stations.
이에 반해, 매크로 기지국과 펨토 기지국(320) 사이에는 X2와 같은 인터페이스가 없다. 따라서, 매크로 기지국(310)과 펨토 기지국(320) 사이에서는 동적인 시그널링(Dynamic Signaling)이 이루어지지 않는다. In contrast, there is no interface such as X2 between the macro base station and the femto base station 320. Therefore, dynamic signaling is not performed between the macro base station 310 and the femto base station 320.
도 4는 하향링크에서 매크로 셀, 펨토 셀 그리고 피코 셀 간의 간섭에 의해 단말이 영향을 받는 것을 개략적으로 설명하는 도면이다.4 is a diagram schematically illustrating that a terminal is affected by interference between a macro cell, a femto cell and a pico cell in downlink.
도 4를 참조하면, 단말(450)은 펨토 기지국(430)에 접속하여 펨토 셀을 이용할 수 있다. 하지만, 펨토 기지국(430)이 CSG 모드이고, 펨토 기지국(430) 근처에 있는 단말(460)이 CSG의 등록된 사용자 단말이 아니라면, 단말(460)은 신호 세기가 강한 펨토 셀에 접속할 수 없고, 펨토 셀의 신호 세기와 비교하여 상대적으로 신호 세기가 약한 매크로 기지국(410)에 접속할 수밖에 없다. 따라서, 이 경우에 단말(460)은 펨토 셀로부터 간섭 신호를 수신할 수 있다. Referring to FIG. 4, the terminal 450 may access a femto base station 430 and use a femto cell. However, if the femto base station 430 is in the CSG mode, and the terminal 460 near the femto base station 430 is not a registered user terminal of the CSG, the terminal 460 cannot access the femto cell with strong signal strength. There is no choice but to access the macro base station 410 which has a relatively weak signal strength compared to the signal strength of the femto cell. Therefore, in this case, the terminal 460 may receive the interference signal from the femto cell.
또한, 단말(440)은 피코 기지국(420)에 접속하여 피코 셀을 이용할 수 있다. 하지만, 이때 단말(440)은 매크로 기지국(410)의 신호에 의한 간섭을 받을 수 있다. In addition, the terminal 440 may access the pico base station 420 and use the pico cell. However, at this time, the terminal 440 may receive interference by the signal of the macro base station 410.
이처럼 이종 셀간의 간섭(Inter-Cell Interference)에 대하여, 간섭에 의한 영향을 더 크게 받거나 간섭으로부터 더 보호해야 하는 빅팀(victim) 셀은 매크로 셀 또는 피코 셀이다. 이에 반해, 간섭에 의해 빅팀 셀에 영향을 미치거나 간섭의 영향을 덜 받는 어그레서(aggressor) 셀은 펨토 셀이다. As such, inter-cell interference is a macro cell or a pico cell that is more affected by the interference or has to be protected from the interference. On the other hand, an aggressor cell that affects or is less affected by the Victim cell by the interference is a femto cell.
셀간 간섭을 줄이는 방법으로 셀간 간섭 조정(Inter-Cell Interfernce Coordination: ICIC)이 있다. 일반적으로 셀간 간섭 조정은, 빅팀 셀에 속한 사용자가 어그레서 셀 근처에 있는 경우에, 사용자에게 신뢰성 있는 통신을 지원해주기 위한 방법이다. 셀 간의 간섭을 조정하기 위해서, 예컨대, 어떤 시간 및/또는 주파수 자원의 사용에 대하여 스케줄러에 제약을 부과할 수 있다. 또한, 특정 시간 및/또는 주파수 자원에 얼마나 큰 전력을 사용할지에 대한 제약을 스케줄러에 부과할 수도 있다. Inter-Cell Interfernce Coordination (ICIC) is a method of reducing inter-cell interference. In general, inter-cell interference coordination is a method for supporting reliable communication to a user when a user belonging to a big team cell is near an aggregator cell. In order to coordinate inter-cell interference, for example, a scheduler may be imposed on the use of certain time and / or frequency resources. It may also impose a constraint on the scheduler how much power to use for a particular time and / or frequency resource.
도 5는 본 발명의 일 예에 따른 이종 네트워크 시스템에서의 셀간 간섭 조정을 위한 프레임 패턴을 나타내는 도면이다. 도 5에서는 설명의 편의를 위해 매크로 기지국의 매크로 셀(Macrocell)과 펨토 기지국의 펨토셀(Femtocell)간의 셀간 간섭 조정을 위한 프레임 패턴을 도시하였으나, 이는 일례일 뿐이고, 도 5의 프레임 패턴은 매크로 기지국과 피코 기지국간, 매크로 기지국과 마이크로 기지국간, 펨토 기지국과 피코 기지국간에도 동일하게 적용될 수 있음은 물론이다. 5 is a diagram illustrating a frame pattern for inter-cell interference coordination in a heterogeneous network system according to an embodiment of the present invention. In FIG. 5, for convenience of description, a frame pattern for inter-cell interference coordination between a macrocell of a macro base station and a femtocell of a femto base station is illustrated, but this is only an example, and the frame pattern of FIG. The same may be applied to the pico base station, the macro base station and the micro base station, the femto base station and the pico base station.
도 5를 참조하면, 서로 다른 종류의 셀들(매크로 셀과 펨토 셀)간에 간섭이 발생하지 않도록 프레임 패턴이 구성된다. 예를 들어, 매크로 셀의 3번째 서브프레임에서는, 매크로 셀이 신호를 거의 송출하지 않아 전송전력이 매우 낮다. 따라서, 이 경우 서브프레임에서 전송되는 신호가 거의 없으므로 이러한 서브프레임을 ABS(almost blank subframe: ABS)라 한다. ABS는 펨토 셀이 이용할 수 있도록 하고, 매크로 셀과의 간섭을 배제하기 위해 사용된다. 여기서, ABS는 서브프레임을 통하여 전송되는 제어정보, 데이터 정보, 시그널링(채널측정 및 동기화 등을 위해 전송되는 신호들) 등의 전송 파워를 줄이거나 전송을 하지 않는 서브프레임으로 정의한다. 물론 역 호환성(backwards compatibility)을 위해 단말에게 꼭 필요한 제어 정보 및 데이터 정보, 시그널링, 시스템 정보를 전송할 수 있어야 한다. 그리고 ABS가 적용되는 패턴을 ABS 패턴이라 하는데, ABS 패턴은 예를 들어 40ms단위로 구성될 수 있다. 또는 간섭의 조정을 위해 무선 프레임내에서 ABS가 특정한 패턴으로 형성되는데, 이를 프레임 패턴이라고도 한다. 프레임 패턴을 이용하면 다수의 서브프레임들로 구성된 임의의 주기적인 구간내의 ABS가 가변적으로 구성됨으로써 간섭이 조정된다.Referring to FIG. 5, a frame pattern is configured such that interference does not occur between different types of cells (macro cell and femto cell). For example, in the third subframe of the macro cell, the macro cell hardly transmits a signal, so the transmission power is very low. Therefore, in this case, since there is almost no signal transmitted in the subframe, such a subframe is called ABS (almost blank subframe: ABS). ABS is used by the femto cell and used to rule out interference with the macro cell. Here, ABS is defined as a subframe that reduces or does not transmit power such as control information, data information, and signaling (signals transmitted for channel measurement and synchronization) transmitted through the subframe. Of course, it is necessary to transmit control information, data information, signaling, and system information necessary for the terminal for backwards compatibility. In addition, a pattern to which ABS is applied is called an ABS pattern, and the ABS pattern may be configured, for example, in units of 40 ms. Alternatively, ABS is formed in a specific pattern in a radio frame for coordination of interference, which is also called a frame pattern. Using the frame pattern, the interference is adjusted by variably configuring the ABS in any periodic section composed of a plurality of subframes.
ABS는 서브프레임과 같은 시간자원을 이종 셀들이 나누어 사용하는 TDM(Time Division Multiplexing) 기반의 셀간 간섭의 조정 방식이다. 다수의 서브프레임들로 구성된 임의의 주기적인 구간내의 프레임 패턴 구조 자체를 가변적으로 구성함으로써 간섭이 조정될 수 있다. ABS is a time division multiplexing (TDM) based inter-cell interference coordination scheme in which heterogeneous cells share time resources such as subframes. The interference can be adjusted by variably configuring the frame pattern structure itself within any periodic interval composed of multiple subframes.
이하에서 동기신호에 관하여 설명한다. 단말이 셀 검색(cell search)를 수행하는데 주동기신호(primary synchronization signal: 이하 PSS)와 부동기신호(secondary synchronization signal: 이하 SSS)가 사용된다. 동기신호는 기지국 또는 셀을 식별하는 물리셀 식별자(physical cell ID: PCI)를 기반으로 생성된다. 단말은 PSS와 SSS로부터 PCI를 확인하면, 신호가 어떠한 셀로부터 수신된 것인지를 구분할 수 있다.The synchronization signal will be described below. A primary synchronization signal (hereinafter referred to as PSS) and a secondary synchronization signal (hereinafter referred to as SSS) are used for the UE to perform a cell search. The synchronization signal is generated based on a physical cell ID (PCI) for identifying a base station or a cell. When the terminal checks the PCI from the PSS and the SSS, it can distinguish from which cell the signal is received.
동기신호는 매 프레임(frame)내에서 일정한 주기의 서브프레임(예를 들어 5개의 서브프레임)마다 전송될 수 있으며, 가변적인 주기로 전송될 수도 있다. 동기신호는 물리적으로 적어도 하나의 다중화 심벌(multiplexing symbol), 예를 들어 OFDM 심벌에 맵핑된다. 그러나, 동기신호는 초기 동기 및 셀정보뿐만 아니라 핸드오버(handover)시의 동기 및 셀 정보를 위한 추가적인 OFDM 심벌에 맵핑될 수도 있다. 동기신호는 프리앰블(preamble)이라 불릴 수도 있다. PSS는 단말이 OFDM 심벌 또는 슬롯(slot)의 동기를 획득하는데 사용될 수 있다. SSS는 단말이 서브프레임 또는 프레임의 동기를 획득하는데 사용될 수 있다. The synchronization signal may be transmitted every subframe (for example, five subframes) of a certain period in each frame, or may be transmitted in a variable period. The synchronization signal is physically mapped to at least one multiplexing symbol, for example an OFDM symbol. However, the synchronization signal may be mapped not only to initial synchronization and cell information but also to additional OFDM symbols for synchronization and cell information during handover. The synchronization signal may be called a preamble. The PSS may be used for the terminal to obtain synchronization of an OFDM symbol or slot. The SSS may be used by the UE to acquire synchronization of a subframe or a frame.
전술된 이종 셀들간에 간섭은 동기신호에 대해서도 동일하게 적용된다. 예를 들어 CSG에 속하지 않는 단말이 펨토 셀의 커버리지에 속한다고 가정하자. 만약 단말이 매크로 셀에 캠프온한 상태라면, 단말은 펨토 셀의 PSS 또는 SSS로부터의 간섭 때문에 매크로 셀의 PSS와 SSS를 수신하지 못한다. 이로 인해 단말의 셀 검색이 원활히 이루어질 수 없다. 이하에서 동기신호로 인해 발생하는 이종 셀들간의 간섭을 동기신호간 간섭이라 한다. FDD(Frequency Division Duplex) 시스템의 경우, 동기신호간 간섭을 조정하기 위해 각 기지국이 비동기 방식으로 동작할 수 있다. 예를 들어 각 기지국마다 서로 다른 서브프레임 오프셋(offset)을 설정하면 동기신호간 간섭을 피할 수 있다. The above-described interference between the heterogeneous cells is equally applied to the synchronization signal. For example, suppose that a UE that does not belong to the CSG belongs to the femto cell coverage. If the UE is camped on the macro cell, the UE does not receive the PSS and SSS of the macro cell due to interference from the PSS or SSS of the femto cell. As a result, the cell search of the terminal cannot be performed smoothly. Hereinafter, interference between heterogeneous cells generated by the synchronization signal is referred to as interference between synchronization signals. In the case of a frequency division duplex (FDD) system, each base station may operate in an asynchronous manner to adjust interference between synchronization signals. For example, by setting different subframe offsets for each base station, interference between synchronization signals can be avoided.
반면 TDD(Time Division Duplex) 시스템에서는 하향링크와 상향링크간의 간섭을 피하기 위해 모든 기지국간의 서브프레임 동기를 맞추므로, 동기신호간 간섭을 조정하기 위해 각 기지국이 비동기 방식으로 동작할 수 없다. On the other hand, in a time division duplex (TDD) system, subframe synchronization is performed between all base stations in order to avoid interference between downlink and uplink, and thus, each base station cannot operate in an asynchronous manner to adjust interference between synchronization signals.
도 6은 본 발명에 따른 TDD 무선 프레임 구조이다. 6 is a TDD radio frame structure according to the present invention.
도 6을 참조하면, 무선 프레임은 두 개의 하프프레임(half-frame)을 포함한다. 각 하프프레임의 구조는 동일하다. 하프프레임은 5개의 서브프레임과 3개의 필드(field) DwPTS(Downlink Pilot Time Slot: DwPTS), 보호구간(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.Referring to FIG. 6, a radio frame includes two half-frames. Each half frame has the same structure. The half frame includes five subframes and three fields Downlink Pilot Time Slot (DwPTS), Guard Period, and Uplink Pilot Time Slot (UpPTS). DwPTS is used for initial cell search, synchronization or channel estimation at the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
표 1은 무선 프레임의 설정정보(configuration)의 일 예를 나타낸다. 무선 프레임의 설정정보는 하나의 무선프레임내의 모든 서브프레임에 상향링크와 하향링크가 어떠한 규칙에 의해 할당(또는 예약)되는지를 나타내는 정보이다.Table 1 shows an example of configuration information of a radio frame. The configuration information of a radio frame is information indicating which rule is allocated (or reserved) for uplink and downlink to all subframes in one radio frame.
표 1
Configuration Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
Table 1
Configuration Switch-point periodicity Subframe number
0 One 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
One
5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
표 1을 참조하면, 'D'는 서브프레임이 하향링크 전송을 위해 사용되는 것임을 나타내고, 'U'는 서브프레임이 상향링크 전송을 위해 사용되는 것임을 나타낸다. 'S'는 서브프레임이 특별한 용도로 쓰임을 나타내며, 프레임 동기(sync)를 맞추거나, 또는 하향링크 전송을 위해 사용되는 것임을 나타낸다. 이하에서 하향링크 전송을 위해 사용되는 서브프레임을 간단히 하향링크 서브프레임이라 하고, 상향링크 전송을 위해 사용되는 서브프레임을 간단히 상향링크 서브프레임이라 한다. 각 설정마다 하나의 무선 프레임내의 하향링크 서브프레임과 상향링크 서브프레임의 배치(position) 및 개수가 서로 다르다.Referring to Table 1, 'D' indicates that the subframe is used for downlink transmission, and 'U' indicates that the subframe is used for uplink transmission. 'S' indicates that the subframe is used for a special purpose, and is used for frame synchronization or downlink transmission. Hereinafter, a subframe used for downlink transmission is simply called a downlink subframe, and a subframe used for uplink transmission is simply called an uplink subframe. Each configuration has a different position and number of downlink subframes and uplink subframes in one radio frame.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환시점(switching point)이라 한다. 전환시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms 이다. 예를 들어, 설정 0에서 보면, 0번째부터 4번째 서브프레임까지 D->S->U->U->U로 전환되고, 5번째부터 9번째 서브프레임까지 이전과 동일하게 D->S->U->U->U로 전환된다. 하나의 서브프레임이 1ms이므로, 전환시점의 주기성은 5ms이다. 즉, 전환시점의 주기성은 하나의 무선 프레임 길이(10ms)보다 적으며, 무선 프레임내에서 전환되는 양상이 1회 반복된다.The point of time from the downlink to the uplink or the time from the uplink to the downlink is called a switching point. The switch-point periodicity means a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and are 5 ms or 10 ms. For example, in setting 0, D-> S-> U-> U-> U is switched from 0th to 4th subframe, and D-> S is the same as before from 5th to 9th subframe. Switch to-> U-> U-> U. Since one subframe is 1ms, the periodicity at the switching time is 5ms. That is, the periodicity of the switching time is less than one radio frame length (10ms), and the switching mode in the radio frame is repeated once.
모든 설정에 있어서, 0번째, 5번째 서브프레임, 및 DwPTS는 하향링크 전송을 위해 사용된다. 모든 설정의 1번째 서브프레임과 설정 0, 1, 2, 및 6의 6번째 서브프레임은 DwPTS, 보호구간, 및 UpPTS로 구성된다. 각 필드의 시간길이는 설정에 따라 다르다. 상기 1번째 및 6번째 서브프레임을 제외한 나머지 8개의 서브프레임은 2개의 슬롯으로 구성된다. In all configurations, the 0th, 5th subframe, and DwPTS are used for downlink transmission. The first subframe of all settings and the sixth subframe of settings 0, 1, 2, and 6 consist of DwPTS, guard period, and UpPTS. The length of time for each field depends on the setting. The remaining eight subframes, except for the first and sixth subframes, consist of two slots.
전환시점의 주기가 매 5ms인 경우, UpPTS와 2번째 및 7번째 서브프레임은 상향링크 전송으로 예약된다. 한편, 전환시점의 주기가 매 10ms인 경우, UpPTS와 2번째 서브프레임은 상향링크 전송으로 예약되고, DwPTS, 7번째 및 9번째 서브프레임은 하향링크 전송으로 예약된다.If the period of switching time is every 5ms, UpPTS and the 2nd and 7th subframes are reserved for uplink transmission. On the other hand, when the switching period is every 10 ms, UpPTS and the second subframe are reserved for uplink transmission, and DwPTS, the seventh and ninth subframe are reserved for downlink transmission.
SSS는 0번째 서브프레임에 속하는 1번째 슬롯의 마지막 OFDM 심벌 또는 5번째 서브프레임에 속하는 11번째 슬롯의 마지막 OFDM 심벌에 매핑될 수 있다. SSS는 PSS와 같은 안테나 포트(antenna port)에 매핑된다. 한편, PSS는 1번째 및 6번째 서브프레임에서 전송되는데, 각 서브프레임을 구성하는 OFDM 심벌들 중 3번째 OFDM 심벌에 맵핑될 수 있다. 특히 'S'인 서브프레임에서 전송되는 PSS는 DwPTS에 맵핑된다. The SSS may be mapped to the last OFDM symbol of the first slot belonging to the 0th subframe or the last OFDM symbol of the 11th slot belonging to the fifth subframe. The SSS is mapped to an antenna port such as PSS. On the other hand, the PSS is transmitted in the first and sixth subframe, it may be mapped to the third OFDM symbol of the OFDM symbols constituting each subframe. In particular, the PSS transmitted in the 'S' subframe is mapped to the DwPTS.
TDD 시스템에서의 동기신호간 간섭을 조정하기 위해 ABS 패턴에 제한을 둘 필요가 있다. 즉 TDD 시스템 기반의 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀 등과 같은 이종셀들이 공존하고, 셀간 간섭의 조정을 위해 TDM 방식을 이용하는 무선 통신시스템에서, 펨토 셀의 동기신호의 송신전력을 조정하는 방법이 요구된다. 일례로, 상기 방법은 펨토 셀의 동기신호를 실은(carry) 서브프레임을 ABS로 구성하고, ABS 패턴을 변경하거나, 제한을 가할 수 있다. ABS 패턴의 구성은 펨토 셀들의 유지, 보수, 관리를 담당하는 유지관리(Operations And Management: OAM) 장치에 의해 수행될 수 있다. In order to adjust the interference between synchronization signals in the TDD system, it is necessary to limit the ABS pattern. In other words, heterogeneous cells such as a macro cell, a micro cell, a pico cell, a femto cell, etc. based on a TDD system coexist, and in a wireless communication system using a TDM scheme for coordination of inter-cell interference, a transmission power of a synchronization signal of a femto cell is adjusted. Method is required. For example, the method may configure a subframe carrying a synchronization signal of the femto cell with ABS, change an ABS pattern, or apply a restriction. The configuration of the ABS pattern may be performed by an operation and management (OAM) device that is responsible for the maintenance, maintenance, management of femto cells.
도 7은 본 발명에 따른 셀간 간섭조정 정보를 전송하는 방법을 나타내는 흐름도이다. 도 7에서는 셀간 간섭을 조정하는 주체가 펨토 기지국과 유지관리장치인 것으로 가정하고 설명하나, 도 7의 기술적 사상은 셀간 간섭을 조정하는 주체가 피코 셀과 유지관리장치인 경우와, 마이크로 셀과 유지관리장치인 경우에도 동일하게 적용될 수 있음은 물론이다. 7 is a flowchart illustrating a method of transmitting inter-cell interference coordination information according to the present invention. In FIG. 7, it is assumed that a subject for coordinating inter-cell interference is a femto base station and a maintenance apparatus. However, in the technical concept of FIG. Of course, the same applies to the management device.
도 7을 참조하면, 단말(UE)은 매크로 기지국(Macro eNB)이 제공하는 매크로 셀에 캠프온된 상태이다. 매크로 셀은 캠프온된 단말이 동기를 획득하도록 동기신호를 단말로 전송한다(S700). 매크로 셀에 캠프온된 단말은 매크로 셀로부터 일반적인 셀 신호와 동기신호를 수신한다. 단말, 매크로 기지국, 펨토 기지국(Femto eNB)은 모두 TDD 기반의 프레임 구조, 예를 들어 도 6의 프레임 구조에 기반하여 동작(operate)할 수 있다. 단말은 RRC 휴지 상태일 수도 있다. 펨토 기지국의 전원이 켜지면(S702), 펨토 기지국은 유지관리장치(OAM)와 보안링크를 설정하기 위한 보안링크 설정정보를 전송한다(S705). 보안링크는 펨토 기지국의 제품 출하 시 메모리 내에 저장되어 있는 정보를 기반으로 설정된다. 또한, 펨토 기지국은 정해진 위치의 서브프레임에서 동기신호를 단말로 전송한다(S707). 이때, 펨토 기지국의 동기신호는 매크로 기지국의 동기신호에 간섭을 일으킬 수 있다. 그 결과, 단말은 펨토 기지국의 동기신호에 의해 간섭된 매크로 기지국의 동기신호를 수신한다. Referring to FIG. 7, a UE is camped on a macro cell provided by a macro eNB. The macro cell transmits a synchronization signal to the terminal so that the camped-on terminal acquires synchronization (S700). The UE camped on the macro cell receives a general cell signal and a synchronization signal from the macro cell. The UE, the macro base station, and the femto eNB may all operate based on a TDD-based frame structure, for example, the frame structure of FIG. 6. The terminal may be in an RRC idle state. When the femto base station is powered on (S702), the femto base station transmits the security link setting information for establishing a secure link with the OAM (S705). The security link is set up based on the information stored in the memory when the product of the femto base station is shipped. In addition, the femto base station transmits a synchronization signal to the terminal in a subframe of a predetermined position (S707). At this time, the synchronization signal of the femto base station may interfere with the synchronization signal of the macro base station. As a result, the terminal receives the synchronization signal of the macro base station interfered with the synchronization signal of the femto base station.
유지관리장치는 펨토 기지국이 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국의 ABS 패턴과 동기화 여부를 기반으로 펨토 기지국의 기본(elementary) ABS 패턴을 구성하고, 펨토 셀의 동기신호가 맵핑되는 서브프레임들에 대한 ABS 패턴인 추가(additional) ABS 패턴을 구성한다(S710). The maintenance apparatus configures an elementary ABS pattern of the femto base station based on whether the femto base station is synchronized with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station neighboring to the femto base station, An additional ABS pattern, which is an ABS pattern for subframes to which a sync signal is mapped, is configured (S710).
추가 ABS 패턴은, 시분할 다중화에 기반하여 기지국의 동기신호의 전송이 예정된 서브프레임이, 이종 기지국(Heterogeneous eNB)에 간섭을 일으키지 않도록 상기 동기신호의 전송전력이 감소하는 ABS인지 아닌지를 지시한다. 예를 들어 펨토 셀의 PSS와 SSS를 전송하는 서브프레임이 매크로 셀의 PSS와 SSS를 전송하는 서브프레임과 동일한 경우, 매크로 셀의 PSS와 SSS에 동기신호간 간섭이 발생하므로, 유지관리장치는 추가 ABS 패턴을 구성할 수 있다. 유지관리장치는 필요한 경우에만 추가 ABS 패턴을 설정하는 등 선택적으로 추가 ABS 패턴을 구성할 수 있다. 추가 ABS 패턴은 주기적으로 구성될 수도 있고, 랜덤하게 구성될 수도 있다. 이는 무선 통신 시스템 내의 단말의 셀 검색 주기와 추가 ABS 패턴간의 상관관계에 따라 결정될 수 있다. The additional ABS pattern indicates whether or not the subframe in which the transmission of the synchronization signal of the base station is scheduled based on time division multiplexing is an ABS in which the transmission power of the synchronization signal is reduced so as not to interfere with the heterogeneous eNB. For example, if the subframe transmitting the PSS and SSS of the femto cell is the same as the subframe transmitting the PSS and SSS of the macro cell, since the interference between synchronization signals occurs in the PSS and SSS of the macro cell, the maintenance apparatus is added. ABS pattern can be configured. The maintenance unit may optionally configure additional ABS patterns, such as setting additional ABS patterns only when necessary. The additional ABS pattern may be configured periodically or randomly. This may be determined according to the correlation between the cell search period of the terminal in the wireless communication system and the additional ABS pattern.
유지관리장치는 기본 ABS 패턴과 추가 ABS 패턴을 구별하지 않고, 동기신호간 간섭까지 고려한 하나의 통합 ABS 패턴을 구성할 수도 있다.The maintenance apparatus may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
기본 ABS 패턴과 추가 ABS 패턴은 각각 제1패턴 및 제2패턴이라 불릴 수 있다. 이때 제1패턴은 펨토 기지국과 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성되고, 제2패턴은 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된다. 또한 제1패턴은, 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS 패턴일 수 있다. 또한 제2패턴은, 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴일 수 있다. The basic ABS pattern and the additional ABS pattern may be referred to as a first pattern and a second pattern, respectively. In this case, the first pattern is configured to have a controlled transmit power in a subframe determined in consideration of the femto base station and a macro base station, and the second pattern is configured to have a controlled transmit power in a subframe determined in consideration of the femto base station. Further, the first pattern may be an ABS pattern configured to include controlled coverage of the femto base station or to have a controlled transmission power in consideration of the macro base station neighboring the femto base station. In addition, the second pattern may be an ABS pattern configured to have a controlled transmission power in a subframe in which a synchronization signal of the femto base station is to be transmitted.
도 8은 본 발명의 일 예에 따른 ABS 패턴을 구성하는 방법을 설명하는 설명도이다. 8 is an explanatory diagram illustrating a method of constructing an ABS pattern according to an embodiment of the present invention.
도 8을 참조하면, 기본 ABS 패턴과 추가 ABS 패턴이 결합하여 하나의 통합(combined) ABS 패턴을 구성한다. 기본 ABS 패턴은 40ms단위로 반복되고, 펨토 셀의 전체 서브프레임에 대한 ABS 여부를 비트맵으로 지시한다. 예를 들어 비트가 0이면 대응하는 서브프레임이 non-ABS이고, 비트가 1이면 대응하는 서브프레임이 ABS임을 나타낸다. 기본 ABS 패턴이 011001…01이므로 각 비트가 맵핑되는 서브프레임들은 순차적으로 non-ABS, ABS, ABS, non-ABS, non-ABS, ABS …non-ABS, ABS이다. Referring to FIG. 8, the basic ABS pattern and the additional ABS pattern are combined to form one combined ABS pattern. The basic ABS pattern is repeated in units of 40 ms, and indicates whether the ABS for the entire subframe of the femto cell as a bitmap. For example, if the bit is 0, the corresponding subframe is non-ABS. If the bit is 1, the corresponding subframe is ABS. The default ABS pattern is 011001... 01, so that the subframes to which each bit is mapped are sequentially non-ABS, ABS, ABS, non-ABS, non-ABS, ABS. non-ABS, ABS.
한편, 추가 ABS 패턴은 펨토 셀의 전체 서브프레임 중에서 펨토 기지국의 동기신호의 전송이 예정된 서브프레임들만을 모아서 ABS 또는 non-ABS인지를 연속적인 비트맵으로 지시한다. 왼쪽 LSB(least significant bit)부터 n번째(n≥0) 비트는 n번째 동기신호가 전송되는 서브프레임에 대응한다. 예를 들어 0번째 동기신호가 전송되는 서브프레임은 실제로 0번째 서브프레임이고, 1번째 동기신호가 전송되는 서브프레임은 실제로 5번 서브프레임이다. Meanwhile, the additional ABS pattern collects only subframes scheduled to transmit a synchronization signal of the femto base station among all subframes of the femto cell and indicates whether the ABS or non-ABS is a continuous bitmap. The nth (n≥0) bits from the left significant bit (LSB) correspond to the subframe in which the nth sync signal is transmitted. For example, the subframe in which the 0th synchronization signal is transmitted is actually the 0th subframe, and the subframe in which the 1st synchronization signal is transmitted is actually the 5th subframe.
추가 ABS 패턴이 도 8과 같이 1100111100…111로 구성되면, 0번째와 1번째 동기신호가 전송되는 서브프레임들에 대응하는 비트는 모두 1로 표시되므로, 해당 서브프레임들은 ABS이다. 그리고 2번째와 3번째 동기신호가 전송되는 서브프레임들은 non-ABS이다. 추가 ABS 패턴은 예를 들어 1280ms 단위로 반복될 수 있다. The additional ABS pattern is 1100111100... As shown in FIG. 8. If configured as 111, the bits corresponding to the subframes through which the 0th and 1st sync signals are transmitted are all represented by 1, so the corresponding subframes are ABS. Subframes in which the second and third synchronization signals are transmitted are non-ABS. The additional ABS pattern may be repeated in 1280 ms units, for example.
추가 ABS 패턴은 기본 ABS 패턴에 우선한다. 즉, 기본 ABS 패턴에서 특정 서브프레임이 ABS로 설정되어 있다 하더라도, 추가 ABS 패턴에서 상기 특정 서브프레임이 non-ABS이면 통합 ABS 패턴에서는 상기 특정 서브프레임이 non-ABS로 설정된다. 반대로 기본 ABS 패턴에서 특정 서브프레임이 non-ABS로 설정되어 있다 하더라도, 추가 ABS 패턴에서 상기 특정 서브프레임이 ABS이면 통합 ABS 패턴에서는 상기 특정 서브프레임이 ABS로 설정된다. 이를 우선순위법칙(priority rule)이라 한다. The additional ABS pattern takes precedence over the basic ABS pattern. That is, even if a specific subframe is set to ABS in the basic ABS pattern, if the specific subframe is non-ABS in the additional ABS pattern, the specific subframe is set to non-ABS in the integrated ABS pattern. On the contrary, even if a specific subframe is set to non-ABS in the basic ABS pattern, if the specific subframe is ABS in the additional ABS pattern, the specific subframe is set to ABS in the integrated ABS pattern. This is called a priority rule.
도 8과 같이 기본 ABS 패턴 011001…01이 반복되고, 상기 반복되는 기본 ABS 패턴에 추가 ABS 패턴 1100111100…111이 결합하면, 우선순위법칙에 따라 1xx--1…--00---1…-11---과 같은 3200ms길이의 통합 ABS 패턴이 형성된다. 여기서, 'x'는 기본 ABS 패턴에서 ABS로 설정된 서브프레임으로서 추가 ABS 패턴과 무관한 서브프레임이다. 여기서, 추가 ABS 패턴과 무관한 서브프레임이란 동기신호가 전송되지 않는 서브프레임을 의미한다. '-'는 기본 ABS 패턴에서 non-ABS로 설정된 서브프레임으로서, 추가 ABS 패턴과 무관한 서브프레임이다. '1'은 추가 ABS 패턴에 의해 ABS로 설정된 서브프레임이다. '0'은 추가 ABS 패턴에 의해 non-ABS로 설정된 서브프레임이다. 8, the basic ABS pattern 011001... 01 is repeated, in addition to the repeated basic ABS pattern ABS pattern 1100111100... If 111 is combined, then 1xx--1... --00 --- 1... An integrated ABS pattern of 3200 ms length, such as -11 --- is formed. Here, 'x' is a subframe set to ABS in the basic ABS pattern and is a subframe irrelevant to the additional ABS pattern. Here, the subframe irrelevant to the additional ABS pattern means a subframe in which the synchronization signal is not transmitted. '-' Is a subframe set to non-ABS in the basic ABS pattern and is a subframe independent of the additional ABS pattern. '1' is a subframe set to ABS by the additional ABS pattern. '0' is a subframe set to non-ABS by the additional ABS pattern.
다시 도 7을 참조하면, 유지관리장치는 펨토 기지국에 필요한 무선 네트워크 정보를 펨토 기지국으로 전송한다(S715). 무선 네트워크 정보는 셀간 간섭조정 정보 및 무선구성정보 중 적어도 하나를 포함한다. 셀간 간섭조정 정보(ICIC information)는 펨토 셀의 기본 ABS 패턴과 추가 ABS 패턴을 포함하거나, 통합 ABS 패턴을 포함한다. 만약 셀간 간섭조정 정보가 기본 ABS 패턴과 추가 ABS 패턴을 포함하는 경우, 펨토 기지국은 기본 ABS 패턴과 추가 ABS 패턴을 기반으로 도 8과 같이 통합 ABS 패턴을 구성할 수 있다. Referring back to FIG. 7, the maintenance apparatus transmits wireless network information necessary for the femto base station to the femto base station (S715). The radio network information includes at least one of inter-cell interference coordination information and radio configuration information. Inter-cell interference coordination information (ICIC information) includes a basic ABS pattern and an additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern.
무선구성정보는 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국에 대한 현존하는 무선 환경의 무선 파라미터를 포함한다. The radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
매크로 기지국은 매크로 셀 신호를 단말로 전송한다(S720). 매크로 셀 신호는 단말에 대하여 전송되지만, 펨토 기지국도 매크로 셀 신호를 수신할 수 있다. The macro base station transmits the macro cell signal to the terminal (S720). The macro cell signal is transmitted to the terminal, but the femto base station may also receive the macro cell signal.
따라서 펨토 기지국은 매크로 기지국으로부터 수신되는 매크로 셀 신호를 측정한다(S725). 매크로 셀 신호는 매크로 기지국의 동기신호일 수 있다. 펨토 기지국은 무선구성정보를 기반으로 매크로 기지국이 전송하는 동기신호, 즉 PSS와 SSS의 세기를 측정한다. 동기신호의 세기를 측정하는 척도는 참조신호 대 수신 파워(Reference Signal Received Power, RSRP)와 참조신호 대 수신 품질(Reference Signal Received Quality, RSRQ)이 될 수 있다. RSRP와 RSRQ의 정의는 다음과 같다. RSRP는 자원요소들의 전력기여(power contribution)에 대한 선형평균(linear average)으로서 구해진다. 여기서, 자원요소들은 고려되는 측정 주파수 대역폭내의 셀특정 기준신호를 운반한다. RSRP의 기준점(reference point)은 단말의 안테나 커넥터(antenna connector)이다. 한편, RSRQ는 수학식 2와 같이 RSRP와 수신신호 강도지시자(Received Signal Strength Indicator: RSSI)간의 비율로서 정의된다. Therefore, the femto base station measures the macro cell signal received from the macro base station (S725). The macro cell signal may be a synchronization signal of the macro base station. The femto base station measures the strength of the synchronization signal transmitted from the macro base station, that is, the PSS and the SSS based on the radio configuration information. The measure of the strength of the synchronization signal may be a reference signal received power (RSRP) and a reference signal received quality (RSSRQ). The definitions of RSRP and RSRQ are as follows. RSRP is obtained as a linear average of the power contribution of the resource elements. Here, the resource elements carry cell specific reference signals within the considered measurement frequency bandwidth. The reference point of the RSRP is an antenna connector of the terminal. Meanwhile, RSRQ is defined as a ratio between RSRP and Received Signal Strength Indicator (RSSI) as shown in Equation (2).
수학식 2
Figure PCTKR2012002296-appb-M000002
Equation 2
Figure PCTKR2012002296-appb-M000002
여기서, N은 무선접속망의 반송파 RSSI 측정 대역폭의 자원요소들의 개수이다. 수학식 2에서 분자와 분모에 대한 측정은 동일한 자원블록의 집합에 대해 수행된다. RSSI는 전체 수신 전력의 선형평균치를 포함한다. 전체 수신 전력은 측정 대역폭내의 기준심볼들을 포함하는 OFDM 심볼내에서만 관측되며, N개의 자원블록에 걸쳐서 얻어지는 값이다. 상기 기준심볼들은 CRS (cell-specific reference signal)이 존재하는 OFDM 심볼들이 될 수 있다. 또는 상기 기준심볼들은 서브프레임 내의 모든 OFDM 심볼들이 될 수 있다.Here, N is the number of resource elements of the carrier RSSI measurement bandwidth of the radio access network. In Equation 2, the measurements of the numerator and the denominator are performed on the same set of resource blocks. RSSI includes a linear average of the total received power. The total received power is observed only within an OFDM symbol containing reference symbols within the measurement bandwidth and is a value obtained over N resource blocks. The reference symbols may be OFDM symbols in which a cell-specific reference signal (CRS) exists. Alternatively, the reference symbols may be all OFDM symbols in a subframe.
펨토 기지국은 측정된 동기신호의 세기와, 추가 ABS 패턴을 기반으로 동기신호의 전송전력의 크기를 조정한다(S730). 예를 들어 펨토 기지국은 추가 ABS 패턴에 의해 ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 일정한 크기로 줄이거나, non-ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 변경하지 않는 등의 동작을 취할 수 있다. The femto base station adjusts the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the additional ABS pattern (S730). For example, the femto base station reduces the transmission power size of the synchronization signal to be transmitted in the subframe set to ABS by an additional ABS pattern to a certain size, or changes the transmission power size of the synchronization signal to be transmitted in the subframe set to non-ABS. Operation may be performed.
여기서, 펨토 기지국은 이웃한 매크로 기지국들의 서브프레임 정보를 기반으로 PSS 또는 SSS의 전송전력 크기를 조정하여야 하는지 확인할 수 있다. 예를 들어 이웃 매크로 기지국들의 서브프레임 단위로 동기화 설정을 할 필요가 없는 경우, 펨토 기지국은 PSS 또는 SSS 신호의 전송전력을 조정하지 않는다.Here, the femto base station can determine whether to adjust the transmission power of the PSS or SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in subframe units of neighboring macro base stations, the femto base station does not adjust the transmission power of the PSS or SSS signal.
펨토 기지국은 전송전력의 크기가 조정된 펨토셀 동기신호를 정해진 서브프레임(즉, 추가 ABS)에 맵핑하여 단말로 전송한다. 이때, 전송전력의 크기가 조정된 펨토 기지국의 동기신호는 매크로 셀의 동기신호에 간섭을 일으키지 않고, 단말로 전송될 수 있다(S735). 한편, 단말의 입장에서는 추가 ABS 패턴에 의해 정의된 ABS를 통해, 펨토셀 동기신호에 의해 방해되지 않는, 매크로 기지국에 의해 전송된 매크로 셀의 동기신호를 수신한다(S737). The femto base station maps the femtocell synchronization signal of which the transmission power is adjusted to a predetermined subframe (that is, additional ABS) and transmits the same to the terminal. At this time, the synchronization signal of the femto base station whose transmission power is adjusted may be transmitted to the terminal without causing interference to the synchronization signal of the macro cell (S735). On the other hand, the terminal receives the synchronization signal of the macro cell transmitted by the macro base station, which is not disturbed by the femtocell synchronization signal through the ABS defined by the additional ABS pattern (S737).
다시 설명하면, 단말은 임의의 특정 서브프레임에서 펨토 기지국로부터 전송되는 동기 신호와 매크로 기지국으로부터 전송되는 동기 신호를 수신할 수 있다. 이때, 상기 펨토 기지국으로부터 전송되는 동기 신호는 본 발명의 제1패턴인 기본 ABS패턴과, 제2패턴인 추가 ABS패턴이 적용된 동기신호로써, 단계 707에서 전송된 동기신호보다 송신전력이 조정된 동기신호이다. 여기서, 동기신호의 전력은 ABS기법에 따라 0에 가깝도록 전송전력이 설정된다. 또한, 실제 O으로 설정된 즉, 펨토 기지국으로부터 동기 신호를 수신하지 않을 수도 있다(S735). In other words, the terminal may receive the synchronization signal transmitted from the femto base station and the synchronization signal transmitted from the macro base station in any particular subframe. In this case, the synchronization signal transmitted from the femto base station is a synchronization signal to which the basic ABS pattern, which is the first pattern of the present invention, and the additional ABS pattern, which is the second pattern, are applied. It is a signal. Here, the transmission power is set so that the power of the synchronization signal is close to zero according to the ABS technique. In addition, it is actually set to 0, that is, may not receive a synchronization signal from the femto base station (S735).
따라서, 단말은 실제 펨토 기지국으로부터 간섭 조정이 동기 신호를 수신함에 따라 매크로 기지국의 동기 신호를 제대로 수신할 수 있다. 즉, 전송전력의 크기가 조정된 펨토 기지국의 동기신호는 매크로 셀의 동기신호에 간섭을 일으키지 않으며, 이에, 단말은 매크로 기지국으로부터 전송되는 동기신호를 제대로 수신할 수 있다 (S737).Therefore, the terminal can properly receive the synchronization signal of the macro base station as the interference coordination receives the synchronization signal from the actual femto base station. That is, the synchronization signal of the femto base station whose transmission power is adjusted does not interfere with the synchronization signal of the macro cell. Accordingly, the terminal can properly receive the synchronization signal transmitted from the macro base station (S737).
여기서, 펨토 기지국이 전송전력의 크기가 조정된 동기신호를 단말로 전송하는 것으로 도시하였으나, 이는 예시일 뿐이고, 펨토 기지국의 CSG에 속하는 다른 단말에 전송될 수도 있다. Here, although the femto base station is shown to transmit a synchronization signal of the transmission power is adjusted to the terminal, this is only an example, it may be transmitted to other terminals belonging to the CSG of the femto base station.
단말은 간섭을 받지 않은 온전한 상태의 매크로 셀의 동기신호를 수신하여, 매크로 기지국에 대한 동기를 획득한다(S740). The terminal receives the synchronization signal of the macro cell in the intact state without interference, and acquires synchronization with the macro base station (S740).
이로서 매크로 셀, 마이크로 셀, 피코 셀, 펨토 셀 등과 같이 다양한 형태의 이종셀들이 공존하며 이종셀들 상호간에 발생하는 간섭을 제어하기 위해 ABS 패턴과 같은 TDM 방식을 이용하는 경우, TDM 방식을 기반으로 펨토 셀의 PSS와 SSS의 송신전력을 제어하여 휴지 모드 단말, 특히 펨토 셀의 멤버쉽이 없는 단말이 접근 가능한 셀 검색 및 셀 선택에서의 오류가 줄어들 수 있다. As such, when heterogeneous cells of various types such as macro cells, micro cells, pico cells, femto cells, etc. coexist and use a TDM scheme such as an ABS pattern to control interference between heterogeneous cells, a femto based on the TDM scheme By controlling the transmission power of the PSS and the SSS of the cell, errors in cell search and cell selection accessible to idle mode terminals, especially terminals without membership of the femto cell, can be reduced.
도 7에서는 TDD 프레임 구조에서의 셀간 간섭조정 방법으로 설명하였으나, 이는 예시일 뿐이고, FDD 프레임 구조에서도 도 7에서의 셀간 간섭조정 방법은 동일하게 적용될 수 있음은 물론이다. Although FIG. 7 has been described as an inter-cell interference coordination method in a TDD frame structure, this is only an example, and the inter-cell interference coordination method in FIG. 7 may be equally applied to the FDD frame structure.
도 9는 본 발명의 일 예에 따른 펨토 기지국이 셀간 간섭조정 정보를 수신하는 방법을 나타내는 순서도이다.9 is a flowchart illustrating a method for receiving inter-cell interference coordination information by a femto base station according to an embodiment of the present invention.
도 9를 참조하면, 펨토 기지국은 유지관리장치(OAM)와 보안링크를 설정하기 위한 보안링크 설정정보를 유지관리장치(OAM)로 전송한다(S900). 보안링크는 펨토 기지국의 제품 출하 시 메모리 내에 저장되어 있는 정보를 기반으로 설정된다. 펨토 기지국은 무선 네트워크 정보를 유지관리장치로부터 수신한다(S905). 무선 네트워크 정보는 셀간 간섭조정 정보 및 무선구성정보 중 적어도 하나를 포함한다. 셀간 간섭조정 정보는 펨토 셀의 기본 ABS 패턴과 추가 ABS 패턴을 포함하거나, 통합 ABS 패턴을 포함한다. 만약 셀간 간섭조정 정보가 기본 ABS 패턴과 추가 ABS 패턴을 포함하는 경우, 펨토 기지국은 기본 ABS 패턴과 추가 ABS 패턴을 기반으로 도 8과 같이 통합 ABS 패턴을 구성할 수 있다. 무선구성정보는 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국에 대한 현존하는 무선 환경의 무선 파라미터를 포함한다. Referring to FIG. 9, the femto base station transmits security link configuration information for establishing a security link with the maintenance apparatus OAM to the maintenance apparatus OAM (S900). The security link is set up based on the information stored in the memory when the product of the femto base station is shipped. The femto base station receives wireless network information from the maintenance apparatus (S905). The radio network information includes at least one of inter-cell interference coordination information and radio configuration information. Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern. The radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
펨토 기지국은 매크로 기지국으로부터 수신되는 매크로 셀 신호를 측정한다(S910). 매크로 셀 신호는 매크로 기지국의 동기신호일 수 있다. 펨토 기지국은 무선구성정보를 기반으로 매크로 기지국이 전송하는 동기신호, 즉 PSS와 SSS의 세기를 측정한다. 동기신호의 세기를 측정하는 척도는 RSRP 또는 RSRQ가 될 수 있다. The femto base station measures the macro cell signal received from the macro base station (S910). The macro cell signal may be a synchronization signal of the macro base station. The femto base station measures the strength of the synchronization signal transmitted from the macro base station, that is, the PSS and the SSS based on the radio configuration information. The measure of the strength of the synchronization signal may be RSRP or RSRQ.
펨토 기지국은 측정된 동기신호의 세기와, 추가 ABS 패턴을 기반으로 동기신호의 전송전력의 크기를 조정한다(S915). 예를 들어 펨토 기지국은 추가 ABS 패턴에 의해 ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 일정한 크기로 줄이거나, non-ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 변경하지 않는 등의 동작을 취할 수 있다. 여기서, 펨토 기지국은 이웃한 매크로 기지국들의 서브프레임 정보를 기반으로 PSS 또는 SSS의 전송전력 크기를 조정하여야 하는지 확인할 수 있다. 예를 들어 이웃 매크로 기지국들의 서브프레임 단위로 동기화 설정을 할 필요가 없는 경우, 펨토 기지국은 PSS 또는 SSS 신호의 전송전력은 조정하지 않는다.The femto base station adjusts the magnitude of the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the additional ABS pattern (S915). For example, the femto base station reduces the transmission power size of the synchronization signal to be transmitted in the subframe set to ABS by an additional ABS pattern to a certain size, or changes the transmission power size of the synchronization signal to be transmitted in the subframe set to non-ABS. Operation may be performed. Here, the femto base station can determine whether to adjust the transmission power of the PSS or SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in subframe units of neighboring macro base stations, the femto base station does not adjust the transmission power of the PSS or SSS signal.
펨토 기지국은 전송전력의 크기가 조정된 동기신호를 정해진 서브프레임에 맵핑하여 전송한다(S920). 여기서, 펨토 기지국이 전송전력의 크기가 조정된 동기신호를 단말로 전송하는 것으로 도시하였으나, 이는 예시일 뿐이고, 펨토 기지국의 CSG에 속하는 다른 단말에 전송될 수도 있다. The femto base station maps and transmits the synchronization signal whose transmission power is adjusted to a predetermined subframe (S920). Here, although the femto base station is shown to transmit a synchronization signal of the transmission power is adjusted to the terminal, this is only an example, it may be transmitted to other terminals belonging to the CSG of the femto base station.
도 10은 본 발명의 일 예에 따른 유지관리장치가 셀간 간섭조정 정보를 전송하는 방법을 나타내는 순서도이다.10 is a flowchart illustrating a method for transmitting, by a maintenance apparatus, inter-cell interference coordination information according to an embodiment of the present invention.
도 10을 참조하면, 유지관리장치는 보안링크의 설정을 요청하는 보안링크 설정정보를 펨토 기지국으로부터 수신한다(S1000). 유지관리장치는 펨토 기지국이 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국의 ABS 패턴과 동기화 여부를 기반으로 펨토 기지국의 기본 ABS 패턴을 구성하고, 펨토 셀의 동기신호가 맵핑되는 서브프레임들에 대한 ABS 패턴인 추가 ABS 패턴을 구성한다(S1005). 예를 들어 펨토 셀의 PSS와 SSS를 전송하는 서브프레임이 매크로 셀의 PSS와 SSS를 전송하는 서브프레임과 동일한 경우, 매크로 셀의 PSS와 SSS에 동기신호간 간섭이 발생하므로, 유지관리장치는 추가 ABS 패턴을 구성할 수 있다. 유지관리장치는 필요한 경우에만 추가 ABS 패턴을 설정하는 등 선택적으로 추가 ABS 패턴을 구성할 수 있다. Referring to FIG. 10, the maintenance apparatus receives security link configuration information from the femto base station requesting the establishment of a secure link (S1000). The maintenance apparatus configures the basic ABS pattern of the femto base station based on whether the femto base station is synchronized with the ABS pattern of the macro base station including the coverage of the femto base station or the macro base station neighboring the femto base station, and the synchronization signal of the femto cell is An additional ABS pattern that is an ABS pattern for subframes to be mapped is configured (S1005). For example, if the subframe transmitting the PSS and SSS of the femto cell is the same as the subframe transmitting the PSS and SSS of the macro cell, since the interference between synchronization signals occurs in the PSS and SSS of the macro cell, the maintenance apparatus is added. ABS pattern can be configured. The maintenance unit may optionally configure additional ABS patterns, such as setting additional ABS patterns only when necessary.
유지관리장치는 추가 ABS 패턴을 주기적으로 구성할 수도 있고, 랜덤하게 구성할 수도 있다. 이는 무선 통신 시스템 내의 단말의 셀 검색 주기와 추가 ABS 패턴간의 상관관계에 따라 결정될 수 있다. 유지관리장치는 기본 ABS 패턴과 추가 ABS 패턴을 구별하지 않고, 동기신호간 간섭까지 고려한 하나의 통합 ABS 패턴을 구성할 수도 있다. The maintenance apparatus may construct additional ABS patterns periodically or randomly. This may be determined according to the correlation between the cell search period of the terminal in the wireless communication system and the additional ABS pattern. The maintenance apparatus may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
유지관리장치는 펨토 기지국에 필요한 무선 네트워크 정보를 펨토 기지국으로 전송한다(S1010). 무선 네트워크 정보는 셀간 간섭조정 정보 및 무선구성정보 중 적어도 하나를 포함한다. 셀간 간섭조정 정보는 펨토 셀의 기본 ABS 패턴과 추가 ABS 패턴을 포함하거나, 통합 ABS 패턴을 포함한다. 만약 셀간 간섭조정 정보가 기본 ABS 패턴과 추가 ABS 패턴을 포함하는 경우, 펨토 기지국은 기본 ABS 패턴과 추가 ABS 패턴을 기반으로 도 8과 같이 통합 ABS 패턴을 구성할 수 있다. 무선구성정보는 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국에 대한 현존하는 무선 환경의 무선 파라미터를 포함한다. The maintenance apparatus transmits wireless network information required for the femto base station to the femto base station (S1010). The radio network information includes at least one of inter-cell interference coordination information and radio configuration information. Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern. If the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the femto base station may configure an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern. The radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station.
도 11은 본 발명의 일 예에 따른 펨토 기지국과 유지관리장치를 도시한 블록도이다.11 is a block diagram illustrating a femto base station and a maintenance apparatus according to an embodiment of the present invention.
도 11을 참조하면, 펨토 기지국(1100)은 보안링크 설정부(1105), 신호 수신부(1110), 측정부(1115), 전력조정부(1120) 및 신호 전송부(1125)를 포함한다. Referring to FIG. 11, the femto base station 1100 includes a security link setting unit 1105, a signal receiving unit 1110, a measuring unit 1115, a power adjusting unit 1120, and a signal transmitting unit 1125.
보안링크 설정부(1105)는 펨토 기지국(1100)이 유지관리장치(1150)와 보안링크(security link)를 설정하기 위한 보안링크 설정정보를 생성하고, 이를 신호 전송부(1125)로 보낸다. 보안링크는 펨토 기지국의 제품 출하 시 메모리 내에 저장되어 있는 정보를 기반으로 설정된다. The security link setting unit 1105 generates security link setting information for the femto base station 1100 to establish a security link with the maintenance apparatus 1150, and transmits it to the signal transmission unit 1125. The security link is set up based on the information stored in the memory when the product of the femto base station is shipped.
신호 수신부(1110)는 유지관리장치(1150)로부터 무선 네트워크 정보를 수신하여 전력조정부(1120)로 보내고, 매크로 기지국(1170)으로부터 매크로 셀 신호를 수신하여 측정부(1115)로 보낸다. The signal receiver 1110 receives wireless network information from the maintenance apparatus 1150 and sends the wireless network information to the power adjuster 1120, and receives the macro cell signal from the macro base station 1170 and sends it to the measurement unit 1115.
무선 네트워크 정보는 셀간 간섭조정 정보 및 무선구성정보 중 적어도 하나를 포함한다. 셀간 간섭조정 정보는 펨토 셀의 기본 ABS 패턴과 추가 ABS 패턴을 포함하거나, 통합 ABS 패턴을 포함한다. 무선구성정보는 펨토 기지국의 커버리지를 포함하는 매크로 기지국, 또는 펨토 기지국과 이웃하는 매크로 기지국에 대한 현존하는 무선 환경의 무선 파라미터를 포함한다. 기본 ABS 패턴과 추가 ABS 패턴은 각각 제1패턴 및 제2패턴이라 불릴 수 있다. 이때 제1패턴은 펨토 기지국(1100)과 매크로 기지국(1170)을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성되고, 제2패턴은 펨토 기지국(1100)을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된다. 또한 제1패턴은, 펨토 기지국(1100)의 커버리지를 포함하거나 또는 상기 펨토 기지국(1100)과 이웃한 매크로 기지국(1170)을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS 패턴일 수 있다. 또한 제2패턴은, 펨토 기지국(1100)의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴일 수 있다. The radio network information includes at least one of inter-cell interference coordination information and radio configuration information. Inter-cell interference coordination information includes the basic ABS pattern and the additional ABS pattern of the femto cell, or includes an integrated ABS pattern. The radio configuration information includes radio parameters of an existing radio environment for a macro base station including coverage of a femto base station, or a macro base station neighboring to a femto base station. The basic ABS pattern and the additional ABS pattern may be referred to as a first pattern and a second pattern, respectively. At this time, the first pattern is configured to have a controlled transmission power in a subframe determined in consideration of the femto base station 1100 and the macro base station 1170, and the second pattern is controlled in a subframe determined in consideration of the femto base station 1100. It is configured to have a transmitted power. In addition, the first pattern may include an coverage of the femto base station 1100 or an ABS pattern configured to have a controlled transmission power in consideration of the macro base station 1170 neighboring the femto base station 1100. In addition, the second pattern may be an ABS pattern configured to have a controlled transmission power in a subframe in which a synchronization signal of the femto base station 1100 is to be transmitted.
측정부(1115)는 매크로 셀 신호의 세기를 측정한다. 측정부(1115)가 측정하는 매크로 셀 신호의 척도는 RSRP 또는 RSRQ일 수 있다. 매크로 셀 신호는 매크로 기지국의 동기신호일 수 있다. The measuring unit 1115 measures the strength of the macro cell signal. The measure of the macro cell signal measured by the measurer 1115 may be RSRP or RSRQ. The macro cell signal may be a synchronization signal of the macro base station.
전력조정부(1120)는 펨토 기지국(1100)의 ABS 패턴을 구성한다. 일례로서, 전력조정부(1120)는 펨토 기지국(1100)의 커버리지를 포함하거나 또는 펨토 기지국(1100)과 이웃한 매크로 기지국(1170)을 고려하여, 제1패턴이 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴임을 확인하고, 제2패턴이 펨토 기지국(1100)의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 확인한다. The power adjuster 1120 configures the ABS pattern of the femto base station 1100. As an example, the power adjusting unit 1120 includes the coverage of the femto base station 1100 or in consideration of the macro base station 1170 adjacent to the femto base station 1100, the ABS is configured so that the first pattern has a controlled transmission power (almost blank subframe) pattern is confirmed, and the second pattern is the ABS pattern configured to have a controlled transmission power in the subframe to which the synchronization signal of the femto base station 1100 is transmitted.
다른 예로서, 셀간 간섭조정 정보가 기본 ABS 패턴과 추가 ABS 패턴을 포함하는 경우, 전력조정부(1120)는 기본 ABS 패턴과 추가 ABS 패턴을 기반으로 도 8과 같이 통합 ABS 패턴을 구성하고, 측정된 동기신호의 세기 및 구성된 통합 ABS 패턴 또는 추가 ABS 패턴을 기반으로 동기신호의 전송전력을 조정한다. As another example, when the inter-cell interference coordination information includes a basic ABS pattern and an additional ABS pattern, the power adjusting unit 1120 configures an integrated ABS pattern as shown in FIG. 8 based on the basic ABS pattern and the additional ABS pattern, and is measured. The transmission power of the synchronization signal is adjusted based on the strength of the synchronization signal and the configured integrated ABS pattern or the additional ABS pattern.
또 다른 예로서, 전력조정부(1120)는 제2패턴이, 펨토 기지국(1100)의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시함을 확인한다. As another example, the power adjusting unit 1120 is configured with at least one subframe in which the second pattern is scheduled to transmit a synchronization signal of the femto base station 1100, and successively whether each subframe is ABS or non-ABS. Check that the instruction is in bitmap form.
만약 셀간 간섭조정 정보가 통합 ABS 패턴을 포함하는 경우, 전력조정부(1120)는 측정된 동기신호의 세기 및 수신된 통합 ABS 패턴 또는 추가 ABS 패턴을 기반으로 동기신호의 전송전력을 조정한다. If the inter-cell interference coordination information includes the integrated ABS pattern, the power adjusting unit 1120 adjusts the transmission power of the synchronization signal based on the measured strength of the synchronization signal and the received integrated ABS pattern or the additional ABS pattern.
예를 들어 전력조정부(1120)는 추가 ABS 패턴에 의해 ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 일정한 크기로 줄이거나, non-ABS로 설정된 서브프레임에서 전송될 동기신호의 전송전력 크기를 변경하지 않는 등의 동작을 취할 수 있다. 여기서, 전력조정부(1120)는 이웃한 매크로 기지국들의 서브프레임 정보를 기반으로 PSS 또는 SSS의 전송전력 크기를 조정하여야 하는지 확인할 수 있다. 예를 들어 이웃 매크로 기지국들의 서브프레임 단위로 동기화 설정을 할 필요가 없는 경우, 전력조정부(1120)는 PSS 또는 SSS 신호의 전송전력은 조정하지 않는다.For example, the power adjusting unit 1120 reduces the transmission power of the synchronization signal to be transmitted in the subframe set to ABS by a further ABS pattern to a certain size, or transmit power of the synchronization signal to be transmitted in the subframe set to non-ABS. Actions such as not changing the size can be taken. Here, the power adjuster 1120 may determine whether to adjust the transmission power of the PSS or the SSS based on the subframe information of neighboring macro base stations. For example, when it is not necessary to set synchronization in units of subframes of neighboring macro base stations, the power adjuster 1120 does not adjust the transmission power of the PSS or SSS signal.
신호 전송부(1125)는 보안링크 설정정보를 유지관리장치(1150)로 전송하고, 전송전력이 조정된 동기신호를 ABS로 설정된 서브프레임에서 단말(미도시)로 전송한다. The signal transmitter 1125 transmits the security link setting information to the maintenance apparatus 1150, and transmits a synchronization signal whose transmission power is adjusted to a terminal (not shown) in a subframe set to ABS.
유지관리장치(1150)는 보안정보 수신부(1155), 패턴 구성부(1160) 및 전송부(1165)를 포함한다. The maintenance apparatus 1150 may include a security information receiver 1155, a pattern constructer 1160, and a transmitter 1165.
보안정보 수신부(1155)는 보안링크 설정정보를 펨토 기지국(1100)으로부터 수신한다. The security information receiver 1155 receives the security link configuration information from the femto base station 1100.
패턴 구성부(1160)는 펨토 기지국(1100)의 커버리지를 포함하는 매크로 기지국(1170), 또는 펨토 기지국(1100)과 이웃하는 매크로 기지국의 ABS 패턴과 동기화 여부를 기반으로 펨토 기지국(1100)의 기본 ABS 패턴을 구성하고, 펨토 셀의 동기신호가 맵핑되는 서브프레임들에 대한 ABS 패턴인 추가 ABS 패턴을 구성한다. The pattern configuring unit 1160 is based on whether the macro base station 1170 including coverage of the femto base station 1100 or the femto base station 1100 is synchronized with the ABS pattern of the macro base station neighboring to the femto base station 1100. An ABS pattern is configured, and an additional ABS pattern which is an ABS pattern for subframes to which a synchronization signal of a femtocell is mapped is configured.
보다 구체적으로, 패턴 구성부(1160)는 제1패턴이, 펨토 기지국(1100)의 커버리지를 포함하거나 또는 펨토 기지국(1100)과 이웃한 매크로 기지국(1170)을 고려하여, 제어된 전송전력을 가지도록 ABS 패턴을 구성한다. 또한 패턴 구성부(1160)는 제2패턴이 펨토 기지국(1100)의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 ABS 패턴을 구성한다. 패턴 구성부(1100)는 제2패턴이 제1패턴보다 우선순위를 가지도록 구성할 수 있다. More specifically, the pattern configuring unit 1160 has a controlled transmission power in consideration of the macro base station 1170 including the coverage of the femto base station 1100 or the first pattern includes the femto base station 1100. Configure ABS pattern. In addition, the pattern configuring unit 1160 configures the ABS pattern so that the second pattern has a controlled transmission power in a subframe in which the synchronization signal of the femto base station 1100 is to be transmitted. The pattern configuration unit 1100 may be configured such that the second pattern has priority over the first pattern.
한편, 패턴 구성부(1160)는 제2패턴이, 펨토 기지국(1100)의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시하도록 구성할 수 있다. On the other hand, the pattern configuration unit 1160 consists of at least one subframe in which the second pattern is scheduled to transmit the synchronization signal of the femto base station 1100, a continuous bitmap whether each subframe is ABS or non-ABS It can be configured to indicate in the form.
예를 들어 펨토 셀의 PSS와 SSS를 전송하는 서브프레임이 매크로 셀의 PSS와 SSS를 전송하는 서브프레임과 동일한 경우, 매크로 셀의 PSS와 SSS에 동기신호간 간섭이 발생하므로, 패턴 구성부(1160)는 추가 ABS 패턴을 구성할 수 있다. 패턴 구성부(1160)는 필요한 경우에만 추가 ABS 패턴을 설정하는 등 선택적으로 추가 ABS 패턴을 구성할 수 있다. 패턴 구성부(1160)는 추가 ABS 패턴을 주기적으로 구성할 수도 있고, 랜덤하게 구성할 수도 있다. 패턴 구성부(1160)는 기본 ABS 패턴과 추가 ABS 패턴을 구별하지 않고, 동기신호간 간섭까지 고려한 하나의 통합 ABS 패턴을 구성할 수도 있다. For example, when the subframe transmitting the PSS and SSS of the femto cell is the same as the subframe transmitting the PSS and SSS of the macro cell, interference between synchronization signals occurs in the PSS and SSS of the macro cell. ) May constitute an additional ABS pattern. The pattern configuration unit 1160 may selectively configure additional ABS patterns, such as setting additional ABS patterns only when necessary. The pattern configuring unit 1160 may periodically configure the additional ABS pattern or randomly. The pattern configuring unit 1160 may configure one integrated ABS pattern considering interference between synchronization signals without distinguishing the basic ABS pattern from the additional ABS pattern.
전송부(1165)는 기본 ABS 패턴, 추가 ABS 패턴 또는 통합 ABS 패턴을 포함하는 셀간 간섭조정 정보를 포함하는 무선 네트워크 정보를 펨토 기지국(1100)으로 전송한다. The transmitter 1165 transmits wireless network information including intercell interference coordination information including a basic ABS pattern, an additional ABS pattern, or an integrated ABS pattern to the femto base station 1100.
단말(1180)은 수신부(1185), 전송부(1190) 및 동기 수행부(1195)를 포함한다. The terminal 1180 includes a receiver 1185, a transmitter 1190, and a synchronization performer 1119.
수신부(1185)는 이종 네트워크 시스템의 각종 기지국으로부터 셀 신호 및 동기신호를 수신한다. 특히, 수신부(1185)는 제1패턴보다 제2패턴에 우선순위를 두어 매크로 기지국(1170)의 동기신호를 수신할 수 있다. 또한 수신부(1185)는 펨토 기지국(1100)과 매크로 기지국(1170)을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 펨토 기지국(1100)을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴에 기반하여 매크로 기지국(1170)의 동기신호를 수신할 수 있다. The receiver 1185 receives a cell signal and a synchronization signal from various base stations of the heterogeneous network system. In particular, the receiver 1185 may receive the synchronization signal of the macro base station 1170 by giving priority to the second pattern over the first pattern. In addition, the receiver 1185 controls the first pattern configured to have a controlled transmission power in a predetermined subframe in consideration of the femto base station 1100 and the macro base station 1170, and controls in a predetermined subframe in consideration of the femto base station 1100. The synchronization signal of the macro base station 1170 may be received based on the second pattern configured to have a predetermined transmission power.
단말(1180)은 매크로 기지국(1170)의 매크로 셀에 캠프온한 상태에서, 펨토 기지국(1100)의 셀 커버리지에 위치하고 있어 펨토 기지국(1100)으로부터 간섭신호를 수신하는 상태에 놓여져 있을 수 있다. 특히 펨토 기지국(1100)이 동기신호를 CSG 단말로 전송하는 경우, 수신부(1185)는 매크로 셀의 동기신호와 펨토 셀의 동기신호를 모두 수신한다. The terminal 1180 may be located in the cell coverage of the femto base station 1100 in a state of camping on a macro cell of the macro base station 1170 and may be in a state of receiving an interference signal from the femto base station 1100. In particular, when the femto base station 1100 transmits the synchronization signal to the CSG terminal, the receiver 1185 receives both the synchronization signal of the macro cell and the synchronization signal of the femto cell.
동기 수행부(1195)는 단말(1180)이 캠프온 한 셀로부터 전송되는 동기신호를 이용하여 동기 획득 절차를 수행하고, 동기를 획득한다. 만약 수신부(1185)가 펨토 셀의 동기신호에 의해 간섭된 매크로 셀의 동기신호를 수신하는 경우, 동기 수행부(1195)는 매크로 셀에 대한 동기를 성공적으로 획득할 수 없다. The synchronization performing unit 1119 performs a synchronization acquisition procedure using a synchronization signal transmitted from a cell camped on by the terminal 1180, and acquires synchronization. If the receiving unit 1185 receives the synchronization signal of the macro cell interfered by the synchronization signal of the femto cell, the synchronization performing unit 1119 cannot successfully acquire synchronization for the macro cell.
한편, 추가 ABS 패턴에 의해 정의된 서브프레임에서 펨토 기지국(1100)이 동기신호의 전송전력을 일정한 크기로 낮추면, 수신부(1185)는 해당 서브프레임에서 펨토 셀의 동기신호에 의해 간섭되지 않은 온전한 매크로 셀의 동기신호를 수신한다. 이때, 동기 수행부(1195)는 적어도 추가 ABS 패턴에 의해 정의된 ABS에서, 간섭이 제거된 또는 줄어든 매크로 셀의 동기신호를 이용하여 매크로 셀에 대한 동기를 성공적으로 획득할 수 있다. On the other hand, if the femto base station 1100 lowers the transmission power of the synchronization signal to a certain size in a subframe defined by the additional ABS pattern, the receiver 1185 is an intact macro not interfered by the synchronization signal of the femtocell in the corresponding subframe. Receive the synchronization signal of the cell. In this case, the synchronization performing unit 1119 may successfully acquire synchronization for the macro cell using the synchronization signal of the macro cell in which interference is removed or reduced, at least in the ABS defined by the additional ABS pattern.
전송부(1190)는 간섭이 제거된 또는 줄어든 매크로 셀의 동기신호를 이용하여 획득된 동기에 기반하여, 매크로 기지국(1170)으로 상향링크 신호를 전송한다. The transmitter 1190 transmits an uplink signal to the macro base station 1170 based on the synchronization obtained using the synchronization signal of the macro cell in which the interference is eliminated or reduced.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.The above-described embodiments include examples of various aspects. While not all possible combinations may be described to represent the various aspects, one of ordinary skill in the art will recognize that other combinations are possible. Accordingly, the invention is intended to embrace all other replacements, modifications and variations that fall within the scope of the following claims.

Claims (24)

  1. 이종 네트워크 시스템에서 셀간 간섭을 조정하는 펨토(femto) 기지국에 있어서,In a femto base station for coordinating inter-cell interference in a heterogeneous network system,
    상기 펨토 기지국과 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴을, 수신하는 수신부; Receiving a first pattern configured to have a controlled transmission power in a subframe determined in consideration of the femto base station and a macro base station, and a second pattern configured to have a controlled transmission power in a subframe determined in consideration of the femto base station, Receiving unit;
    상기 매크로 기지국으로부터 전송된 동기신호의 세기를 측정하는 측정부; 및A measuring unit measuring the strength of a synchronization signal transmitted from the macro base station; And
    상기 측정된 동기신호의 세기를 기반으로 상기 제1패턴과 상기 제2패턴을 적용하여 상기 펨토 기지국의 동기신호의 전송전력을 조정하는 전력조정부를 포함하되,It includes a power adjustment unit for adjusting the transmission power of the synchronization signal of the femto base station by applying the first pattern and the second pattern based on the measured strength of the synchronization signal,
    상기 제1패턴 및 제2패턴 각각은, 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며,Each of the first pattern and the second pattern has a controlled transmission power for at least one or more subframes among a plurality of subframes periodically.
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 포함함을 특징으로 하는, 펨토 기지국. And at least one subframe is configured to be variably configured.
  2. 제 1 항에 있어서, 상기 전력조정부는The method of claim 1, wherein the power adjustment unit
    상기 제1패턴이, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴이며, The first pattern is an ABS (almost blank subframe) pattern configured to have a controlled transmission power in consideration of the macro base station adjacent to the femto base station or the coverage of the femto base station,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 확인하며, Confirming that the second pattern is an ABS pattern configured to have a controlled transmission power in a subframe in which the synchronization signal of the femto base station is to be transmitted,
    여기서, 상기 제2패턴이 상기 제1패턴보다 우선순위를 가짐을 확인함을 특징으로 하는, 펨토 기지국.Here, the femto base station, characterized in that the second pattern has a priority over the first pattern.
  3. 제 1 항에 있어서, 상기 전력조정부는The method of claim 1, wherein the power adjustment unit
    상기 제2패턴이, 상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시함을 확인함을 특징으로 하는, 펨토 기지국.Confirming that the second pattern includes at least one subframe in which transmission of a synchronization signal of the femto base station is scheduled, and indicates whether each subframe is ABS or non-ABS in a continuous bitmap form. Said, femto base station.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전력조정부는 상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 구성하고, 상기 구성된 통합 ABS패턴을 적용하여 상기 펨토 기지국의 동기신호의 전송전력을 조정함을 포함함을 특징으로 하는, 펨토 기지국. And the power adjusting unit configures an integrated ABS pattern reflecting ABS of each of the first pattern and the second pattern, and adjusts transmission power of a synchronization signal of the femto base station by applying the configured integrated ABS pattern. A femto base station.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 수신부는 상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 상기 유지관리장치로부터 수신함을 더 포함함을 특징으로 하는, 펨토 기지국.The receiving unit further comprises receiving an integrated ABS pattern reflecting the ABS of each of the first pattern and the second pattern from the maintenance device, femto base station.
  6. 이종 네트워크 시스템에서 셀간 간섭을 조정하는 방법에 있어서, In a method for coordinating intercell interference in a heterogeneous network system,
    펨토 기지국에 의해, 상기 펨토 기지국과 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴을, 유지관리장치로부터 수신하는 단계; A first pattern configured to have a controlled transmit power in a subframe determined in consideration of the femto base station and a macro base station by the femto base station, and a first transmit pattern configured to have a controlled transmit power in a subframe determined in consideration of the femto base station Receiving two patterns from the maintenance apparatus;
    상기 펨토 기지국에 의해, 상기 매크로 기지국으로부터 동기신호를 수신하는 단계;Receiving, by the femto base station, a synchronization signal from the macro base station;
    상기 수신된 동기신호의 세기를 측정하는 단계; 및Measuring the strength of the received synchronization signal; And
    상기 펨토 기지국에 의해, 상기 측정된 동기신호의 세기를 기반으로 상기 제1패턴과 상기 제2패턴을 적용하여 상기 펨토 기지국의 동기신호의 전송전력을 조정하는 단계를 포함하며, Adjusting, by the femto base station, the transmission power of the synchronization signal of the femto base station by applying the first pattern and the second pattern based on the measured strength of the synchronization signal;
    여기서, 상기 제1패턴 및 제2패턴 각각은, 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며,Here, each of the first pattern and the second pattern, periodically, has a controlled transmit power for at least one subframe selected from among a plurality of subframes,
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 포함함을 특징으로 하는 셀간 간섭의 조정 방법.And the at least one subframe is variably configured.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 제1패턴은, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴이며, The first pattern is an ABS (almost blank subframe) pattern configured to have a controlled transmission power in consideration of the macro base station neighboring to the femto base station or the coverage of the femto base station,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 특징으로 하며, The second pattern is characterized in that the ABS pattern configured to have a controlled transmission power in a subframe in which the synchronization signal of the femto base station is to be transmitted,
    여기서, 상기 제2패턴이 상기 제1패턴보다 우선순위를 가짐을 특징으로 하는, 셀간 간섭의 조정방법. Wherein the second pattern has a higher priority than the first pattern.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시함을 특징으로 하는, 셀간 간섭의 조정방법. The second pattern is composed of at least one or more subframes scheduled to transmit the synchronization signal of the femto base station, characterized in that each subframe indicates whether the ABS or non-ABS in the form of a continuous bitmap, inter-cell How to adjust for interference.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 펨토 기지국에 의해, 상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 구성하는 단계와, Configuring, by the femto base station, an integrated ABS pattern reflecting the ABS of each of the first pattern and the second pattern;
    상기 구성된 통합 ABS패턴을 적용하여 상기 펨토 기지국의 동기신호의 전송전력을 조정하는 단계를 더 포함함을 특징으로 하는, 셀간 간섭의 조정방법.And adjusting the transmission power of the synchronization signal of the femto base station by applying the configured integrated ABS pattern.
  10. 제 6 항에 있어서,The method of claim 6,
    상기 펨토 기지국에 의해, 상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 상기 유지관리장치로부터 수신하는 단계를; 더 포함함을 특징으로 하는, 셀간 간섭의 조정방법.Receiving, by the femto base station, an integrated ABS pattern reflecting the ABS of each of the first pattern and the second pattern from the maintenance apparatus; Further comprising, inter-cell interference adjustment method.
  11. 이종 네트워크 시스템에서 셀간 간섭을 조정하는 유지관리장치(Operation and Management: OAM)에 있어서,In an operation and management (OAM) for coordinating inter-cell interference in a heterogeneous network system,
    펨토 기지국과 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴을 구성하는 패턴 구성부; 및A pattern constituting a first pattern configured to have controlled transmission power in a subframe determined in consideration of the femto base station and a macro base station, and a pattern constituting a second pattern configured to have controlled transmission power in a subframe determined in consideration of the femto base station Component; And
    상기 제1패턴에 관한 정보와 상기 제2패턴에 관한 정보를 상기 펨토 기지국으로 전송하는 전송부를 포함하되,Including a transmitter for transmitting the information about the first pattern and the information about the second pattern to the femto base station,
    상기 제1패턴 및 제2패턴 각각은, 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며, Each of the first pattern and the second pattern has a controlled transmission power for at least one or more subframes among a plurality of subframes periodically.
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 포함함을 특징으로 하는, 유지관리장치.And the at least one subframe is variably configured.
  12. 제 11 항에 있어서, 상기 패턴 구성부는The method of claim 11, wherein the pattern configuration portion
    상기 제1패턴이, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 ABS(almost blank subframe) 패턴을 구성하며, The first pattern includes an coverage of the femto base station or in consideration of the macro base station adjacent to the femto base station, configures an ABS (almost blank subframe) pattern to have a controlled transmission power,
    상기 제2패턴이, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 ABS 패턴을 구성함을 특징으로 하며, The second pattern is characterized by configuring an ABS pattern to have a controlled transmission power in a subframe in which the synchronization signal of the femto base station is to be transmitted,
    여기서, 상기 제2패턴이 상기 제1패턴보다 우선순위를 가지도록 구성함을 특징으로 하는, 유지관리장치. Here, the maintenance apparatus, characterized in that configured to have a priority over the first pattern.
  13. 제 11 항에 있어서, 상기 패턴 구성부는The method of claim 11, wherein the pattern configuration portion
    상기 제2패턴이, 상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시하도록 구성함을 특징으로 하는, 유지관리장치. The second pattern is composed of at least one or more subframes scheduled to transmit the synchronization signal of the femto base station, and configured to indicate whether each subframe is ABS or non-ABS in a continuous bitmap form. , Maintenance device.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 패턴 구성부는 상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 구성하고, The pattern configuration unit constitutes an integrated ABS pattern reflecting the ABS of each of the first pattern and the second pattern,
    상기 전송부는 상기 통합 ABS 패턴에 관한 정보를 상기 펨토 기지국으로 전송함을 특징으로 하는, 유지관리장치.The transmitter is characterized in that for transmitting the information on the integrated ABS pattern to the femto base station, maintenance apparatus.
  15. 이종 네트워크 시스템에서 유지관리장치에 의해 셀간 간섭을 조정하는 방법에 있어서,In a method for coordinating intercell interference by a maintenance apparatus in a heterogeneous network system,
    펨토 기지국과 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴을 구성하는 단계; 및Configuring a first pattern configured to have controlled transmission power in a predetermined subframe in consideration of a femto base station and a macro base station, and a second pattern configured to have controlled transmission power in a predetermined subframe in consideration of the femto base station ; And
    상기 제1패턴에 관한 정보와 상기 제2패턴에 관한 정보를 상기 펨토 기지국으로 전송하는 단계를 포함하되,And transmitting information about the first pattern and information about the second pattern to the femto base station,
    상기 제1패턴 및 제2패턴 각각은, 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며, Each of the first pattern and the second pattern has a controlled transmission power for at least one or more subframes among a plurality of subframes periodically.
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 포함함을 특징으로 하는, 셀간 간섭의 조정방법.And wherein said at least one subframe is variably configured.
  16. 제 15 항에 있어서, The method of claim 15,
    상기 제1패턴은, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴이며, The first pattern is an ABS (almost blank subframe) pattern configured to have a controlled transmission power in consideration of the macro base station neighboring to the femto base station or the coverage of the femto base station,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 특징으로 하며, The second pattern is characterized in that the ABS pattern configured to have a controlled transmission power in a subframe in which the synchronization signal of the femto base station is to be transmitted,
    여기서, 상기 제2패턴이 상기 제1패턴보다 우선순위를 가짐을 특징으로 하는, 셀간 간섭의 조정방법.Wherein the second pattern has a higher priority than the first pattern.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시함을 특징으로 하는, 셀간 간섭의 조정방법.The second pattern is composed of at least one or more subframes scheduled to transmit the synchronization signal of the femto base station, characterized in that each subframe indicates whether the ABS or non-ABS in the form of a continuous bitmap, inter-cell How to adjust for interference.
  18. 제 15 항에 있어서,The method of claim 15,
    상기 제1패턴과 상기 제2패턴 각각의 ABS를 반영한 통합 ABS 패턴을 구성하는 단계; 및 Constructing an integrated ABS pattern reflecting ABS of each of the first pattern and the second pattern; And
    상기 통합 ABS 패턴에 관한 정보를 상기 펨토 기지국으로 전송하는 단계를 더 포함함을 특징으로 하는, 셀간 간섭의 조정방법.And transmitting the information about the integrated ABS pattern to the femto base station.
  19. 이종 네트워크 시스템에서 동기신호를 수신하는 단말로서,A terminal for receiving a synchronization signal in a heterogeneous network system,
    펨토 기지국이 전송하는 동기신호 또는 매크로 기지국이 전송하는 신호를 수신하되, 상기 펨토 기지국과 상기 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴에 기반하여 상기 매크로 기지국의 동기신호를 수신하는 수신부;A first pattern configured to receive a synchronization signal transmitted from a femto base station or a signal transmitted from a macro base station, the first pattern configured to have a controlled transmission power in a predetermined subframe in consideration of the femto base station and the macro base station, and the femto base station A receiver for receiving a synchronization signal of the macro base station based on a second pattern configured to have a controlled transmission power in a predetermined subframe;
    상기 수신된 동기신호에 기반하여 상기 매크로 기지국의 동기를 획득하는 동기 획득부; 및A synchronization acquisition unit for obtaining synchronization of the macro base station based on the received synchronization signal; And
    상기 획득된 동기에 기반하여 상향링크 신호를 상기 매크로 기지국으로 전송하는 전송부를 포함하되,Including a transmitter for transmitting an uplink signal to the macro base station based on the obtained synchronization,
    상기 제1패턴 및 제2패턴 각각은, 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며,Each of the first pattern and the second pattern has a controlled transmit power for at least one or more subframes among a plurality of subframes periodically.
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 특징으로 하는, 단말. The predetermined at least one subframe is characterized in that it is configured variably.
  20. 제 19 항에 있어서,상기 수신부는;According to claim 19, The receiving unit;
    상기 제1패턴보다 상기 제2패턴에 우선순위를 두어 상기 매크로 기지국의 동기신호를 수신하며The synchronization signal of the macro base station is received by giving priority to the second pattern to the first pattern.
    상기 제1패턴은, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴이며, The first pattern is an ABS (almost blank subframe) pattern configured to have a controlled transmission power in consideration of the macro base station neighboring to the femto base station or the coverage of the femto base station,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 특징으로 하는, 단말. The second pattern is characterized in that the ABS pattern configured to have a controlled transmit power in a subframe in which the synchronization signal of the femto base station is to be transmitted.
  21. 제 19 항에 있어서, 상기 수신부는;20. The apparatus of claim 19, wherein the receiver;
    상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시된 상기 제2패턴을 기반하여 상기 매크로 기지국의 동기신호를 수신함을 특징으로 하는, 단말.Synchronization of the macro base station on the basis of the second pattern indicated in the form of a continuous bitmap whether at least one subframe scheduled transmission of the synchronization signal of the femto base station, each subframe is ABS or non-ABS Receiving a signal, characterized in that the terminal.
  22. 이종 네트워크 시스템에서 단말에 의한 동기신호를 수신하는 방법으로서,A method for receiving a synchronization signal by a terminal in a heterogeneous network system,
    펨토 기지국이 전송하는 신호 또는 매크로 기지국이 전송하는 신호를 수신하되, 상기 펨토 기지국과 상기 매크로 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제1패턴과, 상기 펨토 기지국을 고려하여 정해진 서브프레임에서 제어된 전송전력을 가지도록 구성된 제2패턴에 기반하여 상기 매크로 기지국의 동기신호를 수신하는 단계;Receiving a signal transmitted by the femto base station or a signal transmitted by the macro base station, in consideration of the femto base station and the macro base station, the first pattern configured to have a controlled transmission power in a predetermined subframe, and in consideration of the femto base station Receiving a synchronization signal of the macro base station based on a second pattern configured to have a controlled transmission power in a predetermined subframe;
    상기 수신된 동기신호에 기반하여 상기 매크로 기지국의 동기를 획득하는 단계; 및Acquiring synchronization of the macro base station based on the received synchronization signal; And
    상기 획득된 동기에 기반하여 상향링크 신호를 상기 매크로 기지국으로 전송하는 단계를 포함하되,Transmitting an uplink signal to the macro base station based on the obtained synchronization;
    상기 제1패턴 및 제2패턴 각각은 주기적으로, 다수의 서브프레임들 중 정해진 적어도 하나 이상의 서브프레임에 대하여 제어된 전송전력을 가지며,Each of the first pattern and the second pattern periodically has a controlled transmit power for at least one subframe selected from among a plurality of subframes.
    상기 정해진 적어도 하나 이상의 서브프레임이 가변적으로 구성됨을 특징으로 하는 동기신호의 수신방법. And at least one subframe is variably configured.
  23. 제 22 항에 있어서, 상기 동기신호를 수신하는 단계는,The method of claim 22, wherein the receiving of the synchronization signal comprises:
    상기 제1패턴보다 상기 제2패턴에 우선순위를 두어 상기 매크로 기지국의 동기신호를 수신함을 포함하며, Receiving a synchronization signal of the macro base station by giving priority to the second pattern over the first pattern,
    상기 제1패턴은, 상기 펨토 기지국의 커버리지를 포함하거나 또는 상기 펨토 기지국과 이웃한 상기 매크로 기지국을 고려하여, 제어된 전송전력을 가지도록 구성된 ABS(almost blank subframe) 패턴이며, The first pattern is an ABS (almost blank subframe) pattern configured to have a controlled transmission power in consideration of the macro base station neighboring to the femto base station or the coverage of the femto base station,
    상기 제2패턴은, 상기 펨토 기지국의 동기신호가 전송될 서브프레임에서 제어된 전송전력을 가지도록 구성된 ABS 패턴임을 특징으로 하는, 동기신호의 수신방법. The second pattern is a method of receiving a synchronization signal, characterized in that the ABS pattern configured to have a controlled transmission power in a subframe in which the synchronization signal of the femto base station is to be transmitted.
  24. 제 22 항에 있어서, 상기 동기신호를 수신하는 단계는,The method of claim 22, wherein the receiving of the synchronization signal comprises:
    상기 펨토 기지국의 동기신호의 전송이 예정된 적어도 하나 이상의 서브프레임으로 구성되며, 각 서브프레임이 ABS 또는 non-ABS인지를 연속적인 비트맵 형태로 지시된 상기 제2패턴을 고려하여, 상기 매크로 기지국의 동기신호를 수신하는 단계를 포함함을 특징으로 하는 동기신호의 수신방법.Comprising at least one or more subframes scheduled to transmit the synchronization signal of the femto base station, in consideration of the second pattern indicated in the form of a continuous bitmap whether each subframe is ABS or non-ABS, And receiving a synchronization signal.
PCT/KR2012/002296 2011-03-30 2012-03-29 Apparatus and method for transmitting interference control information between heterogeneous cells WO2012134181A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0028982 2011-03-30
KR1020110028982A KR20120110841A (en) 2011-03-30 2011-03-30 Apparatus and method for transmitting inter-heterogeneous cell interference coordination information

Publications (2)

Publication Number Publication Date
WO2012134181A2 true WO2012134181A2 (en) 2012-10-04
WO2012134181A3 WO2012134181A3 (en) 2013-01-10

Family

ID=46932132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002296 WO2012134181A2 (en) 2011-03-30 2012-03-29 Apparatus and method for transmitting interference control information between heterogeneous cells

Country Status (2)

Country Link
KR (1) KR20120110841A (en)
WO (1) WO2012134181A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093892A1 (en) * 2013-12-20 2015-06-25 삼성전자주식회사 Method and apparatus for terminal cell search in beamforming system
CN110099399A (en) * 2012-11-28 2019-08-06 索尼公司 Device in cordless communication network

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000276B1 (en) 2013-05-20 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) Connection setup for heterogeneous cellular communication networks
KR20150023109A (en) 2013-08-22 2015-03-05 한국전자통신연구원 Method and apparatus for controlling interference based on carrier aggregation for small base station
KR102265455B1 (en) * 2014-06-02 2021-06-17 삼성전자주식회사 Apparatus and method for mitigating for interference in wireless communication system
KR102140828B1 (en) * 2018-12-28 2020-08-04 콘텔라 주식회사 LBT Method of Base Station Apparatus Coexisting Heterogeneous Legacy Network and Base Station Apparatus thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112574A (en) * 2008-04-23 2009-10-28 엘지전자 주식회사 Method for communicating according to time division duplex

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112574A (en) * 2008-04-23 2009-10-28 엘지전자 주식회사 Method for communicating according to time division duplex

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
'F.ABS: Femto cell specific ABS or common ABS' 3GPP TSG-RAN2 MEETING #72 15 November 2010, *
'Support of time domain ICIC in Rel-10' 3GPP TSG RAN WG1 MEETING #62BIS 11 October 2010, *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099399A (en) * 2012-11-28 2019-08-06 索尼公司 Device in cordless communication network
WO2015093892A1 (en) * 2013-12-20 2015-06-25 삼성전자주식회사 Method and apparatus for terminal cell search in beamforming system
US10419999B2 (en) 2013-12-20 2019-09-17 Samsung Electronics Co., Ltd. Method and apparatus for terminal cell search in beamforming system

Also Published As

Publication number Publication date
KR20120110841A (en) 2012-10-10
WO2012134181A3 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2012134198A2 (en) Apparatus and method for controlling paging in heterogeneous wireless network system
WO2012138087A2 (en) Device and method for transmitting control information for inter-heterogeneous cell interference adjustment in a wireless communication system
WO2012060602A2 (en) Method and apparatus for coordinating inter-cell interference 셀간 간섭 조정 방법 및 장치
KR101617049B1 (en) Apparatus and method of reporting measurement result in wireless communication system
WO2016144099A1 (en) Method and device of reselecting cell by terminal
WO2012018221A2 (en) Apparatus and method for supporting range expansion in a wireless network
WO2014137127A1 (en) Cell reselection method and user equipment therefor
WO2013112014A1 (en) Method and apparatus for controlling dormant mode in wireless communication system
WO2011053083A2 (en) Method for detecting csg cells in wireless communication system and apparatus therefor
WO2015084046A1 (en) Cell selection method and measurement method for cell reselection
WO2012138094A2 (en) Method for transmitting location information and user equipment
WO2010137863A2 (en) Method for managing neighbor femto bs list in a broadband wireless access system
WO2015190785A1 (en) Method and apparatus for carrying out cooperative cell clustering-based cooperative communication and handover
WO2012091450A2 (en) Method and apparatus for requesting inter-cell interference coordination and method and apparatus for processing inter-cell interference coordination request
WO2010087663A2 (en) Method and apparatus for supporting csg service in wireless communication system
WO2017026836A1 (en) Sidelink ue information reporting method by ue in wireless communication system and ue using same
WO2015026098A1 (en) Method of transmitting and receiving cell information by using synchronization signal and device supporting same
WO2012134181A2 (en) Apparatus and method for transmitting interference control information between heterogeneous cells
WO2012093913A2 (en) Method for recovering connection failure in wireless communication system and device therefor
WO2012093888A2 (en) Device and method for selecting cell in wireless communication system
WO2018155918A1 (en) Method for reporting mobility history of terminal and apparatus for supporting same
WO2011055958A2 (en) Method and apparatus for measuring a channel state when receiving system information on a neighboring cell in a wireless communication system
WO2015137732A1 (en) Method and apparatus for updating andsf policy in wireless communication system
WO2016167559A1 (en) Method and device for activating or deactivating terminal-based traffic steering
WO2016163644A1 (en) Method and apparatus for performing cell reselection procedures for load distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765344

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765344

Country of ref document: EP

Kind code of ref document: A2