WO2012133978A1 - Wavelength monitoring module for wavelength division multiplex optical communication - Google Patents
Wavelength monitoring module for wavelength division multiplex optical communication Download PDFInfo
- Publication number
- WO2012133978A1 WO2012133978A1 PCT/KR2011/002864 KR2011002864W WO2012133978A1 WO 2012133978 A1 WO2012133978 A1 WO 2012133978A1 KR 2011002864 W KR2011002864 W KR 2011002864W WO 2012133978 A1 WO2012133978 A1 WO 2012133978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- optical waveguide
- optical
- signal
- monitor module
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 47
- 238000004891 communication Methods 0.000 title claims abstract description 27
- 238000012544 monitoring process Methods 0.000 title abstract description 5
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000002840 optical waveguide grating Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 238000003491 array Methods 0.000 claims 4
- 241001270131 Agaricus moelleri Species 0.000 claims 2
- 239000013307 optical fiber Substances 0.000 abstract description 4
- 230000035515 penetration Effects 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07955—Monitoring or measuring power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2581—Multimode transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07957—Monitoring or measuring wavelength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0221—Power control, e.g. to keep the total optical power constant
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0307—Multiplexers; Demultiplexers
Definitions
- signals are loaded on dozens of different wavelengths and transmitted through a single optical fiber, and the signals are separated and received at the receiving end. These dozens of other wavelengths use light sources of a predetermined specific wavelength.
- the light source to be used can be classified into a light source that emits light of a fixed wavelength and a light source that can vary the wavelength.
- an optical waveguide grating device is widely used as a wavelength multiplexer and a wavelength demultiplexer.
- Each channel of the optical waveguide lattice element is assigned a specific wavelength, and the light loss is increased when light is applied at a wavelength different from that of the specific wavelength. Therefore, it is necessary to maintain exactly the wavelength assigned to each port for the smooth operation of the communication system.
- a light source that emits light of a fixed wavelength should be used in the port of the optical waveguide lattice element to which the wavelength is assigned, and in the case of a tunable light source, the wavelength should be set to the wavelength assigned to the connected channel.
- the optical wavelength can be changed due to the external factors such as the change of ambient temperature and the failure of the control of the light source. .
- the optical wavelength measuring instrument has a laser having a reference wavelength therein, and is configured to measure an exact wavelength of the wavelength to be measured by constructing an interferometer therein.
- a wavelength monitor function is required to detect a change in the wavelength used and to keep the communication system in an optimal state.
- Optical wavelength measuring instruments for measuring the wavelength of a light source are bulky and have difficulty in measuring wavelengths of several channels at the same time. In addition, they are generally expensive in the form of measurement equipment and are difficult to use in communication systems.
- the present invention relates to a wavelength monitor module configured to perform a wavelength monitor function by applying to a wavelength division multiplexed communication system.
- the present invention constitutes a simple wavelength monitor module applicable to a wavelength division multiplexing communication system.
- wavelength division multiplexing communication dozens of different wavelengths are used simultaneously, so they can be configured for simultaneous monitoring.
- a change in wavelength is indicated by an increase in transmission loss of a communication channel.
- the change in wavelength is used to detect a change in the wavelength so that the wavelength can be monitored with the accuracy required by the system.
- the present invention easily and inexpensively implements a multi-channel wavelength monitor that can be used in a wavelength division multiplexing system having dozens of channels using an optical waveguide grating element and a photodetector array. In addition, it works with the system to provide easy means to identify changes in wavelengths and keep the system stable.
- Fig. 2 Transmission characteristics of the Gaussian optical waveguide grating according to the wavelength of a specific channel
- 3 is a transmission characteristic according to the wavelength of a specific channel of the flat top optical waveguide lattice element
- a part of the transmission optical signal is applied to the optical waveguide lattice element 105 through the optical fiber 103 by using the tap coupler 102 to the optical fibers 101 and 104 through which the wavelength multiplexed signal is transmitted.
- a circuit 108 which separates each assigned wavelength in the output channel 106, attaches a photodetector array 107 to each output channel to detect the light output at each wavelength, and signal-processes the light output.
- the branch output of the tap coupler 102 used in the configuration of the present invention is a value of 0.1% to 30% of the input strength. In the configuration of the present invention, the tab coupler 102 is not an essential element.
- the tap coupler 102 When the multiplexed optical signal is applied to the input of the optical waveguide lattice element, except for the tab coupler, the tap coupler 102 functions as a wavelength monitor. In fact, tap couplers are a necessary element for use in wavelength division multiple systems.
- the optical waveguide lattice element 105 used in the configuration of the present invention uses a temperature-independent optical waveguide lattice element or an optical waveguide lattice element whose temperature is controlled so that the characteristic does not change according to the ambient temperature. do.
- the optical waveguide lattice element has a Gaussian type having a Gaussian distribution type as shown in FIG. 2 and a flat top type having a constant distribution form at a specific wavelength range as shown in FIG. 3.
- a method of detecting a change in wavelength using an optical output characteristic according to the wavelength of the optical waveguide thermal lattice device is used.
- W 0 denotes an accurate wavelength allocated to a specific channel in a communication system
- W 1 , W 2 , and W 3 denote wavelengths deviated from the allocated wavelength.
- P 0 , P 1 , P 2 , and P 3 represent light outputs at wavelengths W 0 , W 1 , W 2 , and W 3 according to the characteristics of the optical waveguide lattice element.
- the initial power value for each channel at the correct wavelength W 0 is stored in the signal processing circuit, and the wavelength-power characteristic for each channel is stored and measured when the wavelength deviates from the reference.
- the wavelength change is calculated from the amount of power fluctuation. If the calculated wavelength change is greater than the allowable wavelength change set by the system, it is configured to send a "system error" signal and reset the light source wavelength. In the case of wavelength resetting, the light output of the photodetector increases by increasing or decreasing the wavelength of the light source so that the system sends a "system normal” signal and operates normally when the wavelength change tolerance is reached.
- the optical waveguide lattice element can monitor the wavelength change more precisely when the Gaussian type is used because the change of the light output is larger than the flat top type. have.
- an optical waveguide lattice element having a smaller bandwidth of optical output characteristics can be used.
- the optical waveguide lattice element having a bandwidth in the range of 10% to 100% of the line width of the optical waveguide lattice element used in the multiplexer and demultiplexer used in the wavelength division multiplexing system can be used in the wavelength monitor module for wavelength division multiple communication. As the narrower is used, the change in light output is larger with respect to the same wavelength change, so that the precise wavelength change can be detected.
- a component of a wavelength division multiplexing communication system provides a means for constantly monitoring the deviation of a set wavelength required by a system for dozens of wavelength channels.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Optical Integrated Circuits (AREA)
Abstract
In a wavelength division multiplexing (WDM) communication system, where optical signals of various wavelengths are bundled and transmitted as one optical fiber and, and divided into optical signals each having different wavelengths and received at the receiving end, maintaining each of determined transmission wavelengths is essential in maintaining the performance of the communication system. The present invention relates to a configuration and an operation of a wavelength monitoring module for detecting and informing any change of such predetermined transmission wavelengths in the operation process of a system, and which is necessary for optimizing the performance of the system thereafter. A wavelength multiplexer, which has a function of bundling the optical signals of various wavelengths, and a wavelength demultiplexer, which has a function of dividing the optical signals transmitted with various wavelengths bundled, into each of the wavelengths, usually use an arrayed waveguide grating (AWG) device, and is configured to measure the change in an optical output according to the change in the wavelengths using penetration characteristic according to the wavelength of the AWG device, for wavelength monitoring.
Description
파장분할 다중화 통신 시스템에서는 수 십 개의 다른 파장의 광에 신호를 실어 하나의 광섬유로 전송 후 수신단에서 각각의 파장으로 분리하여 신호를 받는다. 이러한 수 십 개의 다른 파장은 미리 정해진 특정한 파장의 광원을 사용한다. 사용되는 광원으로는 고정된 파장의 광을 내는 광원, 파장을 가변할 수 있은 광원으로 나눌 수 있다. 일반적으로 파장 다중화기와 파장 역다중화기로 광도파로열격자 소자가 널리 사용된다. 광도파로열격자 소자의 각각의 채널에는 특정 파장이 할당되며, 특정 파장과 다른 파장이 광이 인가되는 경우에 광손실의 증가하게 된다. 그러므로 원활한 통신 시스템의 동작을 위해서는 각각의 포트에 할당된 파장을 정확히 유지할 필요가 있다. 고정된 파장의 광을 내는 광원은 그 파장이 할당된 광도파로열격자 소자의 포트에 사용되어야 하며 파장 가변 광원의 경우에도 연결된 채널에 할당된 파장으로 파장을 설정해야 한다. 이렇게 구성된 통신 시스템에서도 주위 온도 변화 등 외부적 요인과 광원 제어의 실패 등으로 인하여 광 파장의 변동이 생길 수 있으므로 파장의 변동을 모니터하여 통신 시스템을 최적의 상태로 유지하기 위한 파장 모니터 기능이 필요하다.In a wavelength division multiplexing communication system, signals are loaded on dozens of different wavelengths and transmitted through a single optical fiber, and the signals are separated and received at the receiving end. These dozens of other wavelengths use light sources of a predetermined specific wavelength. The light source to be used can be classified into a light source that emits light of a fixed wavelength and a light source that can vary the wavelength. In general, an optical waveguide grating device is widely used as a wavelength multiplexer and a wavelength demultiplexer. Each channel of the optical waveguide lattice element is assigned a specific wavelength, and the light loss is increased when light is applied at a wavelength different from that of the specific wavelength. Therefore, it is necessary to maintain exactly the wavelength assigned to each port for the smooth operation of the communication system. A light source that emits light of a fixed wavelength should be used in the port of the optical waveguide lattice element to which the wavelength is assigned, and in the case of a tunable light source, the wavelength should be set to the wavelength assigned to the connected channel. In the communication system configured as described above, the optical wavelength can be changed due to the external factors such as the change of ambient temperature and the failure of the control of the light source. .
광원의 정확한 파장을 측정하기 위해서는 광 파장 측정기(optical wavelength meter)가 사용된다. 광 파장 측정기는 내부에 기준이 되는 파장의 레이저를 가지고 있으며, 내부에 간섭계를 구성하여 측정하고자 하는 파장의 정확한 파장을 측정하도록 만들어져 있다.To measure the exact wavelength of the light source, an optical wavelength meter is used. The optical wavelength measuring instrument has a laser having a reference wavelength therein, and is configured to measure an exact wavelength of the wavelength to be measured by constructing an interferometer therein.
파장분할 다중화 통신 시스템에서 사용 파장의 변화를 감지하여 통신 시스템을 최적의 상태로 유지하기 위한 파장 모니터 기능이 필요하다. 광원의 파장을 측정하는 광 파장 측정기는 부피가 크고, 동시에 여러 채널의 파장을 측정하는데 어려움이 있다. 또한 일반적으로 계측 장비 형태로 고가이며 통신 시스템에 사용하는 데 어려움이 있다. 본 발명은 파장분할 다중화 통신 시스템에 적용하여 파장 모니터 기능을 수행하도록 구성된 파장 모니터 모듈에 관한 것이다.In the wavelength division multiplexing communication system, a wavelength monitor function is required to detect a change in the wavelength used and to keep the communication system in an optimal state. Optical wavelength measuring instruments for measuring the wavelength of a light source are bulky and have difficulty in measuring wavelengths of several channels at the same time. In addition, they are generally expensive in the form of measurement equipment and are difficult to use in communication systems. The present invention relates to a wavelength monitor module configured to perform a wavelength monitor function by applying to a wavelength division multiplexed communication system.
본 발명은 파장분할 다중 통신 시스템에 적용 가능한 간단한 구조의 파장 모니터 모듈을 구성한다. 파장분할 다중 통신에서는 수 십 개의 다른 파장을 동시에 사용하므로 이를 동시에 모니터할 수 있도록 구성한다. 일반적으로 파장분할 다중 통신 시스템에서 파장의 변화는 통신 채널의 전송 손실의 증가로 나타나는데, 이를 이용하여 파장의 변화를 감지할 수 있도록 구성함으로써 시스템에서 요구되는 정확도로 파장을 모니터할 수 있도록 한다.The present invention constitutes a simple wavelength monitor module applicable to a wavelength division multiplexing communication system. In wavelength division multiplexing communication, dozens of different wavelengths are used simultaneously, so they can be configured for simultaneous monitoring. In general, in a wavelength division multiple communication system, a change in wavelength is indicated by an increase in transmission loss of a communication channel. The change in wavelength is used to detect a change in the wavelength so that the wavelength can be monitored with the accuracy required by the system.
본 발명은 광도파로격자 소자와 광검출기 어레이를 사용하여 수 십 개의 채널을 갖는 파장분할 다중화 시스템에 사용할 수 있는 다채널 파장 모니터를 저가로 용이하게 구현하였다. 또한 시스템과 연동하여 손쉽게 파장 변화를 파악하고 시스템을 안정적으로 유지할 수 있는 수단을 제공한다.The present invention easily and inexpensively implements a multi-channel wavelength monitor that can be used in a wavelength division multiplexing system having dozens of channels using an optical waveguide grating element and a photodetector array. In addition, it works with the system to provide easy means to identify changes in wavelengths and keep the system stable.
도 1 파장 모니터 모듈의 구성Fig. 1 Configuration of Wavelength Monitor Module
도 2 가우시안 형 광도파로열격자 소자의 특정 채널의 파장에 따른 투과 특성Fig. 2 Transmission characteristics of the Gaussian optical waveguide grating according to the wavelength of a specific channel
도 3 플랫탑 형 광도파로열격자 소자의 특정 채널의 파장에 따른 투과 특성3 is a transmission characteristic according to the wavelength of a specific channel of the flat top optical waveguide lattice element
도 4 파장 모니터 모듈의 구동 흐름도4 is a flow chart of driving the wavelength monitor module
도 1에서와 같이 파장 다중화된 신호가 전송되는 광섬유(101, 104)에 탭 결합기(102)를 사용하여 전송 광신호의 일부를 광섬유(103)을 통하여 광도파로열격자 소자(105)로 인가하여 출력 채널(106)에서 각각의 할당 파장으로 분리하고, 각각의 출력 채널에 광검출기 어레이(107)를 부착하여 각각의 파장의 광출력을 검출하도록 하고, 광출력을 신호 처리하는 회로(108)를 구성한다. 본 발명의 구성에 사용되는 탭 결합기(102)의 분기 출력은 입력세기의 0.1%~30%의 값으로 한다. 본 발명의 구성에서 탭 결합기(102)는 필수요소는 아니며, 탭 결합기를 제외하여도 다중화된 광신호를 광도파로열격자 소자의 입력에 인가하면 파장 모니터의 기능을 수행한다. 실제로 탭 결합기는 파장분할 다중 시스템에 사용시 필요한 요소이다. 본 발명의 구성에 사용되는 광도파로열격자 소자(105)는 온도 무의존 광도파로열격자(athermal AWG) 소자를 사용하거나 온도 제어되어 주변 온도에 따라 특성이 변하지 않도록 한 광도파로열격자 소자를 사용한다. 광도파로열격자 소자는 파장에 따른 광출력 특성이 도 2에서처럼 가우시안 분포 형태를 갖는 가우시안 형과 도 3에서처럼 최대 광출력이 특정파장 범위에서 일정한 분포 형태를 갖는 플랫탑 형이 있다. 본 발명에서는 이러한 광도파로열격자 소자의 파장에 따른 광출력 특성을 이용하여 파장의 변화를 감지하는 방법을 사용한다. 도 2와 도 3에서 W0는 통신 시스템에서 특정 채널에 할당된 정확한 파장을 의미하며 W1, W2, W3는 할당된 파장에서 벗어난 파장을 나타낸다. 도 2와 도 3에서 P0, P1, P2, P3는 광도파로열격자 소자의 특성에 의해 각각의 파장 W0, W1, W2, W3에서의 광출력을 나타낸다. 파장이 할당된 파장 W0에서 벗어나게 되면 광출력은 떨어지게 되며, 이러한 변화는 광도파로열격자 소자(105)의 출력 채널들에 연결된 광검출기 어레이(106)에서 감지된다. 즉 통신 시스템에서 사용하는 모든 할당된 파장에 대하여 이에 상응하는 광출력의 변화를 감지할 수 있다. 이러한 광출력의 변화를 측정하면 역으로 광파장을 변화를 알 수 있다. 물론 할당 파장 W0을 중심으로 광출력 특성이 거의 좌우 대칭이므로 장파장으로의 변화인지 단파장으로의 변화인지는 명확히 알 수 없다. 실제로 통신 시스템에 적용 시에는 도 4에서와 같이 신호 처리 회로 내에 정확한 할당 파장 W0에서의 채널별 초기 파워 값을 기억하고, 채널별 파장-파워 특성을 기억하여, 이를 기준으로 파장이 벗어날 때 측정되는 파워 변동량으로부터 파장 변화를 산출한다. 산출된 파장변화가 시스템에서 설정한 허용 파장 변화 보다 크면 "시스템 오류" 신호를 보내고 광원 파장 재설정을 하도록 구성한다. 파장 재설정의 경우에 광원의 파장을 증가시키거나 감소시켜 광검출기의 광출력이 증가하여 파장변화 허용치 내에 들면 시스템은 "시스템 정상" 신호를 보내고 정상 동작하게 된다.As shown in FIG. 1, a part of the transmission optical signal is applied to the optical waveguide lattice element 105 through the optical fiber 103 by using the tap coupler 102 to the optical fibers 101 and 104 through which the wavelength multiplexed signal is transmitted. A circuit 108 which separates each assigned wavelength in the output channel 106, attaches a photodetector array 107 to each output channel to detect the light output at each wavelength, and signal-processes the light output. Configure. The branch output of the tap coupler 102 used in the configuration of the present invention is a value of 0.1% to 30% of the input strength. In the configuration of the present invention, the tab coupler 102 is not an essential element. When the multiplexed optical signal is applied to the input of the optical waveguide lattice element, except for the tab coupler, the tap coupler 102 functions as a wavelength monitor. In fact, tap couplers are a necessary element for use in wavelength division multiple systems. The optical waveguide lattice element 105 used in the configuration of the present invention uses a temperature-independent optical waveguide lattice element or an optical waveguide lattice element whose temperature is controlled so that the characteristic does not change according to the ambient temperature. do. The optical waveguide lattice element has a Gaussian type having a Gaussian distribution type as shown in FIG. 2 and a flat top type having a constant distribution form at a specific wavelength range as shown in FIG. 3. In the present invention, a method of detecting a change in wavelength using an optical output characteristic according to the wavelength of the optical waveguide thermal lattice device is used. In FIG. 2 and FIG. 3, W 0 denotes an accurate wavelength allocated to a specific channel in a communication system, and W 1 , W 2 , and W 3 denote wavelengths deviated from the allocated wavelength. In FIG. 2 and FIG. 3, P 0 , P 1 , P 2 , and P 3 represent light outputs at wavelengths W 0 , W 1 , W 2 , and W 3 according to the characteristics of the optical waveguide lattice element. When the wavelength deviates from the assigned wavelength W 0 , the light output falls, and this change is sensed in the photodetector array 106 connected to the output channels of the optical waveguide grating element 105. That is, it is possible to detect a change in the corresponding light output for all assigned wavelengths used in the communication system. By measuring this change in light output, we can see the change in light wavelength. Of course, since the light output characteristic is almost symmetrical around the assigned wavelength W 0 , it is not clear whether the change is to a long wavelength or a short wavelength. When applied to a communication system, as shown in FIG. 4, the initial power value for each channel at the correct wavelength W 0 is stored in the signal processing circuit, and the wavelength-power characteristic for each channel is stored and measured when the wavelength deviates from the reference. The wavelength change is calculated from the amount of power fluctuation. If the calculated wavelength change is greater than the allowable wavelength change set by the system, it is configured to send a "system error" signal and reset the light source wavelength. In the case of wavelength resetting, the light output of the photodetector increases by increasing or decreasing the wavelength of the light source so that the system sends a "system normal" signal and operates normally when the wavelength change tolerance is reached.
광도파로열격자 소자는 도 2와 도 3을 비교하면 가우시안 형이 파장의 변화에 대하여 광출력의 변화가 프랫탑 형에 비하여 크므로 가우시안 형을 사용하는 경우가 파장 변화를 더욱 정교하게 모니터할 수 있다. 더욱 정밀한 파장 변화를 감지하고자 하는 경우에는 광출력 특성의 대역폭(band width)이 더 작은 광도파로열격자 소자를 사용하면 된다. 파장분할 다중화 시스템에서 사용하는 다중화기와 역다중화기에 사용되는 광도파로열격자 소자의 선폭의 10%~100% 범위의 대역폭을 갖는 광도파로열격자 소자를 파장분할 다중 통신용 파장 모니터 모듈에 사용할 수 있으며 대역폭이 좁은 것을 사용할수록 동일한 파장의 변화에 대하여 광출력의 변화가 크므로 정밀한 파장변화를 감지할 수 있다.Compared to FIG. 2 and FIG. 3, the optical waveguide lattice element can monitor the wavelength change more precisely when the Gaussian type is used because the change of the light output is larger than the flat top type. have. In order to detect a more precise wavelength change, an optical waveguide lattice element having a smaller bandwidth of optical output characteristics can be used. The optical waveguide lattice element having a bandwidth in the range of 10% to 100% of the line width of the optical waveguide lattice element used in the multiplexer and demultiplexer used in the wavelength division multiplexing system can be used in the wavelength monitor module for wavelength division multiple communication. As the narrower is used, the change in light output is larger with respect to the same wavelength change, so that the precise wavelength change can be detected.
파장분할 다중화 통신시스템의 구성 요소로 수 십개의 파장 채널에 대하여 시스템에서 요구하는 설정된 파장에서 벗어나는 정도를 상시로 모니터하는 수단을 제공한다.A component of a wavelength division multiplexing communication system provides a means for constantly monitoring the deviation of a set wavelength required by a system for dozens of wavelength channels.
Claims (8)
- 인가된 파장다중 광신호를 각각의 파장으로 분리하는 가우시안 형 광도파로열격자 소자,Gaussian type optical waveguide lattice element for separating an applied wavelength multiple optical signal into respective wavelengths,광도파로열격자 소자의 다수의 출력 채널에 결합되는 광검출기 어레이,An array of photodetectors coupled to multiple output channels of the optical waveguide grating element,광검출기 어레이의 다수의 출력을 신호 처리하여 파장 변화를 감지하기 위한 전기 회로Electrical circuitry to signal wavelength variations by signal processing multiple outputs of photodetector arrays를 구비한 파장분할 다중 통신용 파장 모니터 모듈Wavelength Monitor Module for Wavelength Division Multiple Communication
- 인가된 파장다중 광신호를 각각의 파장으로 분리하는 플랫탑 형 광도파로열격자 소자,A flat top optical waveguide lattice element which separates an applied wavelength multiple optical signal into respective wavelengths,광도파로열격자 소자의 다수의 출력 채널에 결합되는 광검출기 어레이,An array of photodetectors coupled to multiple output channels of the optical waveguide grating element,광검출기 어레이의 다수의 출력을 신호 처리하여 파장 변화를 감지하기 위한 전기 회로Electrical circuitry to signal wavelength variations by signal processing multiple outputs of photodetector arrays를 구비한 파장분할 다중 통신용 파장 모니터 모듈Wavelength Monitor Module for Wavelength Division Multiple Communication
- 전송 파장다중 광신호의 광파워의 일부를 분기하는 기능의 탭 결합기,A tap combiner for splitting a part of optical power of a transmission wavelength multiple optical signal,분기된 파장다중 광신호를 각각의 파장으로 분리하는 가우시안 형 광도파로열격자 소자,Gaussian type optical waveguide lattice element for splitting a split wavelength multiple optical signal into respective wavelengths,광도파로열격자 소자의 다수의 출력 채널에 결합되는 광검출기 어레이,An array of photodetectors coupled to multiple output channels of the optical waveguide grating element,광검출기 어레이의 다수의 출력을 신호 처리하여 파장 변화를 감지하기 위한 전기 회로Electrical circuitry to signal wavelength variations by signal processing multiple outputs of photodetector arrays를 구비한 파장분할 다중 통신용 파장 모니터 모듈Wavelength Monitor Module for Wavelength Division Multiple Communication
- 전송 파장다중 광신호의 광파워의 일부를 분기하는 기능의 탭 결합기,A tap combiner for splitting a part of optical power of a transmission wavelength multiple optical signal,분기된 파장다중 광신호를 각각의 파장으로 분리하는 플랫탑 형 광도파로열격자 소자,A flat-top optical waveguide lattice element for splitting a split wavelength multiple optical signal into respective wavelengths,광도파로열격자 소자의 다수의 출력 채널에 결합되는 광검출기 어레이,An array of photodetectors coupled to multiple output channels of the optical waveguide grating element,광검출기 어레이의 다수의 출력을 신호 처리하여 파장 변화를 감지하기 위한 전기 회로Electrical circuitry to signal wavelength variations by signal processing multiple outputs of photodetector arrays를 구비한 파장분할 다중 통신용 파장 모니터 모듈Wavelength Monitor Module for Wavelength Division Multiple Communication
- 제3항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 3 to 4,탭 결합기의 분기 출력은 입력세기의 0.1%~30%의 범위가 되는 것을 특징으로 하는 파장분할 다중 통신용 파장 모니터 모듈Wavelength monitor module for wavelength division multiple communication, characterized in that the branch output of the tap coupler is in the range of 0.1% to 30% of the input strength.
- 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,사용되는 광도파로열격자 소자의 파장에 따른 광출력 특성의 대역폭은 파장 다중화기와 역다중화기에 사용되는 광도파로열격자 소자의 대역폭의 10%~100% 사이의 값을 갖는 것을 특징으로 하는 파장분할 다중 통신용 파장 모니터 모듈The bandwidth of the optical output characteristics according to the wavelength of the optical waveguide lattice element used is between 10% and 100% of the bandwidth of the optical waveguide lattice element used in the wavelength multiplexer and demultiplexer. Wavelength Monitor Module for Communication
- 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,광검출기는 광도파로열격자의 출력 채널 각각에 하나씩 부착된 구조의 파장분할 다중화 통신용 파장 모니터 모듈A photodetector is a wavelength monitor module for wavelength division multiplexing communication having one structure attached to each output channel of an optical waveguide grating.
- 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,신호 처리용 전기회로는 채널별 할당 파장에 대한 초기의 각각의 광출력 세기 및 사용된 광도파로열격자 소자의 채널별 파장에 따른 광출력 특성을 기억하는 기능을 가지며, 기억된 값과 측정값의 차이로부터 파장의 변동량을 산출 하는 기능을 갖는 파장분할 다중화 통신용 파장 모니터 모듈The electric circuit for signal processing has a function of storing the initial optical power intensity for each channel-specific assigned wavelength and the optical power characteristic according to the wavelength of each channel of the optical waveguide lattice element used. Wavelength monitor module for wavelength division multiplexing communication having a function of calculating the variation of wavelength from the difference
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0027768 | 2011-03-28 | ||
KR1020110027768A KR20120109253A (en) | 2011-03-28 | 2011-03-28 | Optical wavelength monitoring module for wavelength division multiplexing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133978A1 true WO2012133978A1 (en) | 2012-10-04 |
Family
ID=46931643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002864 WO2012133978A1 (en) | 2011-03-28 | 2011-04-21 | Wavelength monitoring module for wavelength division multiplex optical communication |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20120109253A (en) |
WO (1) | WO2012133978A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016175595A1 (en) * | 2015-04-29 | 2016-11-03 | (주)켐옵틱스 | Wavelength-variable optical receiver using waveguide bragg gratings |
EP3672122A4 (en) * | 2018-10-09 | 2021-01-27 | Huawei Technologies Co., Ltd. | Calibration apparatus and method, and wavelength division multiplexing system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102335752B1 (en) * | 2020-01-06 | 2021-12-06 | 주식회사 피피아이 | High resolution optical wavelength power meter, reflected optical wavelength scanning device using the same and reflected optical wavelength scanning system using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990059272A (en) * | 1997-12-30 | 1999-07-26 | 서평원 | Channel monitoring device in WDM system |
KR20000031650A (en) * | 1998-11-09 | 2000-06-05 | 정선종 | Signal strength detect device of wave division multiplexed optical signal employing arrayed-waveguide grating |
KR20020037909A (en) * | 2000-11-16 | 2002-05-23 | 윤덕용 | Apparatus for monitoring optical frequencies of WDM signals |
JP2010107377A (en) * | 2008-10-30 | 2010-05-13 | Nippon Telegr & Teleph Corp <Ntt> | Device and method for monitoring optical wavelength multiplex signal |
-
2011
- 2011-03-28 KR KR1020110027768A patent/KR20120109253A/en not_active Application Discontinuation
- 2011-04-21 WO PCT/KR2011/002864 patent/WO2012133978A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990059272A (en) * | 1997-12-30 | 1999-07-26 | 서평원 | Channel monitoring device in WDM system |
KR20000031650A (en) * | 1998-11-09 | 2000-06-05 | 정선종 | Signal strength detect device of wave division multiplexed optical signal employing arrayed-waveguide grating |
KR20020037909A (en) * | 2000-11-16 | 2002-05-23 | 윤덕용 | Apparatus for monitoring optical frequencies of WDM signals |
JP2010107377A (en) * | 2008-10-30 | 2010-05-13 | Nippon Telegr & Teleph Corp <Ntt> | Device and method for monitoring optical wavelength multiplex signal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016175595A1 (en) * | 2015-04-29 | 2016-11-03 | (주)켐옵틱스 | Wavelength-variable optical receiver using waveguide bragg gratings |
EP3672122A4 (en) * | 2018-10-09 | 2021-01-27 | Huawei Technologies Co., Ltd. | Calibration apparatus and method, and wavelength division multiplexing system |
US11119003B2 (en) | 2018-10-09 | 2021-09-14 | Huawei Technologies Co., Ltd. | Calibration apparatus and method, and wavelength division multiplexing system |
Also Published As
Publication number | Publication date |
---|---|
KR20120109253A (en) | 2012-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7542673B2 (en) | Fault localization apparatus for optical line in wavelength division multiplexed passive optical network | |
US6535309B1 (en) | Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method | |
US8995828B2 (en) | Optical transmission device, optical transmission system and optical transmission method | |
US8655185B2 (en) | Optical node, optical network system, and method for measuring polarization mode dispersion | |
US20140334812A1 (en) | Wavelength multiplexing optical communication device | |
JP5994508B2 (en) | Transmission device, communication system, and transmission level control method | |
CN107646175B (en) | Optical signal monitoring device and system of wavelength division multiplexing passive optical network | |
US6961128B2 (en) | Apparatus for detecting cross-talk and method therefor | |
CN1138163C (en) | Array waveguide grating assembly and apparatus for monitoring light signals using same | |
WO2012133978A1 (en) | Wavelength monitoring module for wavelength division multiplex optical communication | |
US20130101254A1 (en) | Optical performance monitoring system | |
US9602200B2 (en) | Multiple wavelength optical assemblies for inline measurement of optical power and fiber optic networks | |
US7123788B2 (en) | Apparatus for monitoring optical frequencies of WDM signals | |
US20200400885A1 (en) | Optical Spectrum Shaper and Optical Signal Monitor Using Same | |
US20180167139A1 (en) | Communication apparatus, communication method, and communication system | |
US8068730B2 (en) | Wavelength division multiplex signal monitoring system and wavelength division multiplex transmission device equipped with the same | |
US20050232627A1 (en) | Method and apparatus for optical performance monitoring | |
JP5627427B2 (en) | Wavelength multiplexing transmission apparatus and wavelength multiplexing transmission system | |
KR102040537B1 (en) | PLC type optical module for wavelength power meter | |
JP2011249943A (en) | Wavelength division multiplex transmission system, optical channel monitor, optical channel monitor method, and wavelength division multiplex transmission method | |
KR20130058797A (en) | Muli-channel distributed temperature sensor for branching route | |
KR101855409B1 (en) | One chip type wavelength power meter | |
KR102259886B1 (en) | Apparatus and method for tuning optical transceiver wavelength | |
KR20060101167A (en) | Optical power measuring apparatus and method thereof | |
US11781888B2 (en) | Reflected light wavelength scanning device including silicon photonics interrogator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11862494 Country of ref document: EP Kind code of ref document: A1 |