WO2012133977A1 - Aggregation wavelength division multiplexing node module - Google Patents

Aggregation wavelength division multiplexing node module Download PDF

Info

Publication number
WO2012133977A1
WO2012133977A1 PCT/KR2011/002862 KR2011002862W WO2012133977A1 WO 2012133977 A1 WO2012133977 A1 WO 2012133977A1 KR 2011002862 W KR2011002862 W KR 2011002862W WO 2012133977 A1 WO2012133977 A1 WO 2012133977A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
output
demultiplexer
division multiplexing
array
Prior art date
Application number
PCT/KR2011/002862
Other languages
French (fr)
Korean (ko)
Inventor
이태형
이형재
김태훈
유병권
Original Assignee
(주)포인테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인테크 filed Critical (주)포인테크
Publication of WO2012133977A1 publication Critical patent/WO2012133977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information

Definitions

  • Wavelength Division Multiplexing In a Wavelength Division Multiplexing (WDM) communication system in which optical signals of several wavelengths are bundled and transmitted to one optical fiber and the optical signal of each wavelength is separated again at the receiving end, An arrayed waveguide grating (AWG) device using a planar waveguide technique is widely used as an element that is bundled with one optical fiber and separated into optical signals of respective wavelengths.
  • a node In a wavelength division multiplexing communication, a node is a light source, a photodetector, a multiplexer (MUX), a demultiplexer (DMX), a channel monitor, And the like.
  • a wavelength multiplexer for bundling several wavelengths into one optical fiber is transmitted
  • a wavelength demultiplexer for separating optical signals of several wavelengths into respective wavelengths, and optical channel states such as the intensity, wavelength, and optical signal to noise ratio (OSNR) of the optical signals of the respective wavelengths transmitted It requires a channel monitor to identify. In such a WDM communication system, since there are dozens of communication channels, the same number of channel monitors are required to monitor the status of each channel.
  • the wavelength characteristics of the optical waveguide thermal grating device which is a wavelength multiplexing and wavelength demultiplexing device, vary greatly depending on the ambient temperature. In order to prevent this characteristic change, a method of controlling the temperature of the device is mainly used.
  • a wavelength multiplexer In order to perform wavelength division multiplexing in the wavelength division multiplexing communication system, core components such as a wavelength multiplexer, a wavelength demultiplexer, and a channel monitor are required except for a light source and a photodetector.
  • a discrete device was used to form one optical waveguide lattice element used as a wavelength multiplexer and one optical waveguide lattice element used as a wavelength demultiplexer, a tap coupler as many as the number of wavelength channels used in the system,
  • the optical fibers are connected to each other by using a photodetector as many as the number of channels, which is disadvantageous in that the modularization operation is cumbersome and bulky.
  • the optical waveguide thermal grating device used as a wavelength multiplexer and a demultiplexer has a characteristic in which the center wavelength of the filter moves according to the ambient temperature to be used, so that the temperature is controlled so that the characteristics do not change. Control is required.
  • the present invention has the disadvantages of increasing the volume and complexity of connection between optical fibers generated when one wavelength multiplexer, one wavelength demultiplexer, one tap coupler as many as the number of wavelength channels,
  • the present invention is an invention constituted so as to constitute elements in an integrated form so as to simplify fabrication and reduce the volume dramatically.
  • the optical waveguide thermal grating device used as a wavelength multiplexer and a demultiplexer is configured to maintain constant characteristics even with temperature change, and to use the device without external temperature control.
  • the present invention achieves integration and miniaturization in addition to easiness of fabrication by using such an integrated chip level device in the form of an array of connection points and implementing various connection points through the use of integrated chips or direct connection between chips.
  • a wavelength demultiplexer and a wavelength demultiplexer that operate without temperature control using a temperature-independent optical waveguide thermal grating device are implemented to realize ease of use.
  • FIG. 3 is a block diagram of an integrated optical tap combiner array chip
  • the present invention relates to a device used in one node in WDM communication.
  • a temperature independent wavelength multiplexer 102 in a package 101, a temperature independent wavelength multiplexer 102, a temperature independent demultiplexer 103, An array (tap coupler array) 104, a photo detector array 105, and a signal processing circuit 106 are integrated and configured.
  • two optical waveguide lattice elements fabricated on one chip 201 are respectively connected to a wavelength demultiplexer 207-206-205-204-203 and a wavelength demultiplexer 214- 215-216-217-218), the integrated configuration is obtained as compared with the case of using two separate chips. Further, the optical waveguide thermal grating device is configured to perform a temperature independent operation so that no separate temperature control is required.
  • FIG. 1 In FIG. 1
  • the single channel optical waveguide sections 203 and 214 are separated from the chip 201 for adhesion independent of temperature, the substrates for recombination 209 and 222 are adhered and fixed to the rest of the chip, After the alignment of the channel optical waveguide part is performed using the coupling pillars 211 and 224 coupled to the temperature compensating metal rods 212 and 225, the single channel waveguide part and the spacers 210, Channel optical waveguide part can be moved along the cut surface.
  • the thus formed optical waveguide thermal grating device shifts the position of the single-channel optical waveguide (203, 214) through the thermal expansion and the thermal contraction of the metal rod due to the increase and decrease of the temperature so as to compensate for the wavelength change so that the wavelength is maintained Temperature independent operation.
  • the tap combiner array chips 219 fabricated by using the same planar waveguide fabrication technique as the fabrication method of the optical waveguide thermal grating device are directly aligned and bonded to the output of the optical waveguide thermal grating device used as a wavelength demultiplexer, The ease of manufacture and volume are reduced as compared with the case of using it.
  • 3 shows the configuration of a tap combiner array chip.
  • the intervals of the input units 302 of the tap combiner array are set to be the same as the intervals of the output unit of the optical waveguide thermal grating device used as the wavelength demultiplexer and the intervals of the output units 306 and 307 of the tap array Arrays 220 are formed.
  • a fan-out unit 303 For this purpose, a fan-out unit 303, a straight line unit 204, a directional coupling unit for branching light to a specific value between 1% and 10%, a main output waveguide unit 306, And a tap output waveguide unit 307.
  • the optical wavelength of the individual optical signal detected by the photodetector through the individual optical wavelength of the optical signal passing through the individual port of the wavelength demultiplexer output section and the output port of the individual tap combiner of the tap combiner array is the same wavelength.
  • the photodetector is used in an array form instead of an individual device, thereby facilitating fabrication and reducing the volume of the device.
  • the optical detector is fabricated in a form coupled with an optical fiber, and an optical fiber array block 220 in which optical fibers coupled to the main output optical fiber and the optical detector are alternately arranged is manufactured and attached to the output portion of the tap combiner array 220.
  • a circuit board is built and embodied so that the circuit can be configured to monitor the intensity of light detected by the photodetector in the system so that it can communicate with the outside.
  • the optical waveguide thermal grating device used as the wavelength multiplexer and the wavelength demultiplexer may be constituted by independent optical waveguide thermal grating device chips sharing the same substrate as in the embodiment, or by using an independent device chip having the respective substrates can do.
  • the tap combiner array provided at the output of the wavelength demultiplexer can be fabricated on a separate substrate outside the wavelength demultiplexer or on the same substrate as the wavelength demultiplexer.
  • the present invention is an invention realized by integrating the function of performing wavelength multiplexing and demultiplexing functions and monitoring the status of each wavelength channel in a wavelength division multiplexing optical communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present invention relates to a configuration of and a method for manufacturing a wavelength division multiplexing node module having aggregated, as optical components used in a wavelength division multiplexing (WDM) node, a wavelength multiplexer (MUX), a wavelength demultiplexer (DMX), and a channel monitor. The aggregation wavelength division multiplexing node module is configured to: use two arrayed waveguide grating devices manufactured on one aggregation optical device chip, one as a wavelength MUX and the other as a wavelength DMX; couple, to an output portion of the arrayed waveguide grating device used as a wavelength DMX, a chip manufactured with an aggregation optical light tap coupler for diverging a part of an outputting light in array; and composing a photodetector array on the output to comprehend the signal status of each of communication channels. In addition, the arrayed waveguide grating devices used as a wavelength MUX and a wavelength DMX comprise a temperature-nondependent arrayed waveguide grating device so as to enable a stable operation unrelated to the change in the surrounding temperature.

Description

집적 파장분할 다중화 노드 모듈Integrated wavelength division multiplexing node module
여러 개의 파장의 광 신호를 묶어 하나의 광섬유로 전송하고 수신단에서 다시 각각의 파장의 광 신호를 분리하여 수신하는 파장분할 다중화(Wavelength Division Multiplexing: WDM) 통신 시스템에서는 기본적으로 여러 개의 파장의 광신호를 하나의 광섬유로 묶어주고 다시 각각의 파장의 광 신호로 분리하는 소자로 평면도파로 기술을 이용한 광도파로열격자(arrayed waveguide grating: AWG) 소자를 널리 사용하고 있다. 통신망에서 신호를 주고 받는 위치를 노드(node)라고 하는데 파장분할 다중 통신에서 노드는 광원, 광검출기, 파장 다중화기(multiplexer: MUX), 파장 역다중화기 (demultiplexer:DMX), 채널 모니터(channel monitor) 등의 광부품으로 구성된다. In a Wavelength Division Multiplexing (WDM) communication system in which optical signals of several wavelengths are bundled and transmitted to one optical fiber and the optical signal of each wavelength is separated again at the receiving end, An arrayed waveguide grating (AWG) device using a planar waveguide technique is widely used as an element that is bundled with one optical fiber and separated into optical signals of respective wavelengths. In a wavelength division multiplexing communication, a node is a light source, a photodetector, a multiplexer (MUX), a demultiplexer (DMX), a channel monitor, And the like.
하나의 광섬유에 여러 개의 다른 파장의 광 신호를 묶어 전송하고 수신단에서 다시 각각의 파장의 광 신호를 분리하여 수신하는 파장분할 다중화 통신 시스템에서 여러 개의 파장을 하나의 광섬유로 묶어주는 파장 다중화기와 전송되어 온 여러 개의 파장의 광신호를 각각의 파장으로 분리하는 파장 역다중화기 및 전송되는 각각의 파장의 광신호의 세기, 파장, 광 신호잡음비(Optical signal to noise ratio:OSNR) 등의 광 채널의 상태를 파악하는 채널 모니터를 필요로 한다. 이러한 파장분할 다중화 통신 시스템에서는 수 십개의 통신 채널을 가지므로 각각의 채널의 상태를 모니터 하기위해서는 같은 수 만큼의 채널 모니터가 필요하다. 또한 파장 다중화 및 파장 역다중화 소자인 광도파로열격자 소자는 주위의 온도에 따라 파장 특성이 많이 변화한다. 이러한 특성 변화를 막기위해 소자를 온도 제어하는 방식이 주로 사용된다.In a wavelength division multiplexing communication system in which optical signals of several different wavelengths are bundled and transmitted to one optical fiber and optical signals of respective wavelengths are separately received at the receiving end, a wavelength multiplexer for bundling several wavelengths into one optical fiber is transmitted A wavelength demultiplexer for separating optical signals of several wavelengths into respective wavelengths, and optical channel states such as the intensity, wavelength, and optical signal to noise ratio (OSNR) of the optical signals of the respective wavelengths transmitted It requires a channel monitor to identify. In such a WDM communication system, since there are dozens of communication channels, the same number of channel monitors are required to monitor the status of each channel. In addition, the wavelength characteristics of the optical waveguide thermal grating device, which is a wavelength multiplexing and wavelength demultiplexing device, vary greatly depending on the ambient temperature. In order to prevent this characteristic change, a method of controlling the temperature of the device is mainly used.
파장분할 다중화 통신시스템을 구성함에 있어서 파장분할 다중화의 기능을 수행하기 위해서는 광원과 광검출기를 제외하고 파장 다중화기, 파장 역다중화기, 채널 모니터 등의 핵심 부품이 필요하다. 기존에는 개별 소자(discrete device)로 제작하여 파장 다중화기로 사용되는 광도파로열 격자 소자 1개와 파장 역다중화기로 사용되는 광도파로열 격자 소자 1개, 시스템에서 사용하는 파장 채널수 만큼의 탭 결합기, 파장 채널 수 만큼의 광검출기를 사용하여 광섬유 끼리 접속을 함으로써 모듈화 작업이 번거로우며 부피가 커지는 단점이 있다. 또한 파장 다중화기와 역다중화기로 사용되는 일반적인 광도파로열격자 소자는 사용하는 주위 온도에 따라 필터의 중심파장이 이동하는 특성이 있어 온도를 제어하여 특성이 변하지 않도록 사용하므로 히터와 온도센서를 이용하여 온도 제어를 필요로 한다.In order to perform wavelength division multiplexing in the wavelength division multiplexing communication system, core components such as a wavelength multiplexer, a wavelength demultiplexer, and a channel monitor are required except for a light source and a photodetector. In the past, a discrete device was used to form one optical waveguide lattice element used as a wavelength multiplexer and one optical waveguide lattice element used as a wavelength demultiplexer, a tap coupler as many as the number of wavelength channels used in the system, The optical fibers are connected to each other by using a photodetector as many as the number of channels, which is disadvantageous in that the modularization operation is cumbersome and bulky. In general, the optical waveguide thermal grating device used as a wavelength multiplexer and a demultiplexer has a characteristic in which the center wavelength of the filter moves according to the ambient temperature to be used, so that the temperature is controlled so that the characteristics do not change. Control is required.
본 발명은 파장 다중화기 1개, 파장 역다중화기 1개, 파장 채널 수 만큼의 탭 결합기, 파장 채널 수 만큼의 광검출기를 개별 소자로 구성할 때 발생하는 광섬유간의 접속의 번거로움과 부피가 커지는 단점을 해결하기 위하여 집적된 형태로 소자를 구성하여 간단한 제작과 부피를 획기적으로 줄이도록 구성한 발명이다. 또한 파장 다중화기와 역다중화기로 사용되는 광도파로열격자 소자는 온도 변화에도 일정한 특성을 유지하도록 구성하여 외부의 온도 제어 없이 사용할 수 있도록 구성한다.Disclosure of Invention Problems to be Solved by the Invention The present invention has the disadvantages of increasing the volume and complexity of connection between optical fibers generated when one wavelength multiplexer, one wavelength demultiplexer, one tap coupler as many as the number of wavelength channels, The present invention is an invention constituted so as to constitute elements in an integrated form so as to simplify fabrication and reduce the volume dramatically. Also, the optical waveguide thermal grating device used as a wavelength multiplexer and a demultiplexer is configured to maintain constant characteristics even with temperature change, and to use the device without external temperature control.
개별 소자를 사용한 파장분할 다중 노드를 구성하는 경우 많은 수의 광섬유간 융착 접속이나 광커넥터 간의 접속을 필요로 하므로 구성의 번거로움과 많은 공간을 차지하는 단점이 있다. 본 발명은 이러한 접속점을 어레이 형태의 칩 레벨 소자를 이용하고 집적된 칩을 사용하거나 칩 간의 직접 접속을 통하여 동시에 여러 접속점을 구현하므로 제작의 용이성과 더불어 집적화, 소형화를 달성한다. 뿐만 아니라 온도 무의존 광도파로열격자 소자를 사용하여 온도 제어가 필요없이 동작하는 파장 다중화기와 파장 역다중화기를 구현하여 사용의 용이성을 구현한다.When wavelength-division multiple nodes using individual devices are used, a large number of fusion splicing between optical fibers and connection between optical connectors are required, so that there is a disadvantage that the configuration is troublesome and occupies a large space. The present invention achieves integration and miniaturization in addition to easiness of fabrication by using such an integrated chip level device in the form of an array of connection points and implementing various connection points through the use of integrated chips or direct connection between chips. In addition, a wavelength demultiplexer and a wavelength demultiplexer that operate without temperature control using a temperature-independent optical waveguide thermal grating device are implemented to realize ease of use.
도 1 집적 파장분할 다중화 노드 모듈의 개략도1 schematic diagram of an integrated wavelength division multiplexing node module
도 2 집적 파장분할 다중화 노드 모듈의 실제 구성의 일례2 An example of the actual configuration of the integrated wavelength division multiplexing node module
도 3 집적광학 탭 결합기 어레이 칩의 구성도FIG. 3 is a block diagram of an integrated optical tap combiner array chip
본 발명은 파장분할 다중통신에서 하나의 노드에 사용되는 소자에 관한 것으로 도 1에서 처럼 하나의 패키지(101) 내에 온도 무의존 파장 다중화기(102)와 온도 무의존 역다중화기(103), 탭 결합기 어레이(tap coupler array)(104), 광검출기(photo detector) 어레이(105) 및 신호처리회로(106)를 집적하여 구성한다.The present invention relates to a device used in one node in WDM communication. As shown in FIG. 1, in a package 101, a temperature independent wavelength multiplexer 102, a temperature independent demultiplexer 103, An array (tap coupler array) 104, a photo detector array 105, and a signal processing circuit 106 are integrated and configured.
본 발명의 일실시 예로 도 2에서처럼 하나의 칩(201)에 제작된 두 개의 광도파로열격자 소자를 각각 파장 다중화기(207-206-205-204-203으로 구성)와 파장 역다중화기(214-215-216-217-218로 구성)로 사용함으로써 두 개의 개별 칩을 사용하여 구성하는 경우에 비하여 집적된 구성을 한다. 또한 광도파로열격자 소자를 온도 무의존 동작을 하도록 구성하여 별도의 온도 제어를 필요로 하지 않도록 구성한다. 도 2에서는 온도 무의존 동작을 위하여 단일 채널 광도파로부(203, 214)를 칩(201)으로부터 분리하고, 재결합용 기판(209, 222)을 칩의 나머지 부분과 접착 고정한 후 정렬용 기판 위에서 단일 채널 광도파로부를 정렬 후 온도 보상용 금속막대(212, 225)에 결합된 결합용 기둥(211, 224)을 이용하여 단일 채널 도파로부와 칩의 두께만큼의 두께를 갖는 스페이서(specer)(210, 223)가 부착된 정렬용 기판과 결합하여 단일 채널 광도파로부가 절단면을 따라서 이동할 수 있도록 구성한다. 이렇게 구성된 광도파로열격자 소자는 온도의 증가 및 감소에 따른 파장의 변화를 금속막대의 열팽창 및 열수축을 통하여 단일 채널 광도파로(203, 214)의 위치를 이동하여 파장변화를 보상하여 파장이 유지되도록 온도 무의존 동작을 하게 된다. 그리고 파장 역다중화기로 사용되는 광도파로열격자 소자의 출력에 광도파로열격자 소자의 제작 방법과 동일한 평면 도파로 제작기술을 사용하여 제작된 탭 결합기 어레이 칩(219)을 직접 정렬 접합하여 개별 탭 결합기를 사용하여 구성하는 경우에 비하여 제작의 용이성과 부피를 줄인다. 도 3은 탭 결합기 어레이 칩의 구성을 보여주고 있다. 탭 결합기 어레이의 입력부(302) 간격은 파장 역다중화기로 사용되는 광도파로열격자 소자의 출력부 간격과 같은 간격으로 제작하고, 탭 어레이의 출력부(306, 307) 간격은 출력부에 부착할 광섬유 어레이(220)의 간격과 일치하도록 구성한다. 이를 위하여 팬아웃(fan-out)부(303), 직선부(204), 1% ~ 10% 사이의 특정 값으로 광을 분기해 내는 방향성결합(directional coupling)부, 주출력 도파로부(306), 탭 출력 도파로부(307)로 구성된다. 파장 역다중화기 출력부의 개별 포트를 통과하는 광신호의 개별 광파장과 탭 결합기 어레이의 개별 탭 결합기의 출력 포트를 통과하여 광검출기에 검출되는 개별 광신호의 광파장은 동일한 광파장이다. 탭 결합기 어레이(219)와 광검출기(221)의 결합에 있어서도 광검출기를 개별 소자가 아닌 어레이 형태의 것을 사용하여 제작을 용이하게 하고 소자의 부피를 줄인다. 광검출기는 광섬유로 결합된 형태로 제작하고 주출력 광섬유와 광검출기와 결합된 광섬유를 교대로 배열한 광섬유 어레이 블록(220)을 제작하여 탭 결합기 어레이(220)의 출력부에 정렬 부착한다. 광검출기에서 검출된 광의 세기를 시스템에서 모니터할 수 있도록 회로를 구성하여 외부와 통신할 수 있도록 하는 회로 기판을 구현하여 내장한다.2, two optical waveguide lattice elements fabricated on one chip 201 are respectively connected to a wavelength demultiplexer 207-206-205-204-203 and a wavelength demultiplexer 214- 215-216-217-218), the integrated configuration is obtained as compared with the case of using two separate chips. Further, the optical waveguide thermal grating device is configured to perform a temperature independent operation so that no separate temperature control is required. In FIG. 2, the single channel optical waveguide sections 203 and 214 are separated from the chip 201 for adhesion independent of temperature, the substrates for recombination 209 and 222 are adhered and fixed to the rest of the chip, After the alignment of the channel optical waveguide part is performed using the coupling pillars 211 and 224 coupled to the temperature compensating metal rods 212 and 225, the single channel waveguide part and the spacers 210, Channel optical waveguide part can be moved along the cut surface. The thus formed optical waveguide thermal grating device shifts the position of the single-channel optical waveguide (203, 214) through the thermal expansion and the thermal contraction of the metal rod due to the increase and decrease of the temperature so as to compensate for the wavelength change so that the wavelength is maintained Temperature independent operation. Then, the tap combiner array chips 219 fabricated by using the same planar waveguide fabrication technique as the fabrication method of the optical waveguide thermal grating device are directly aligned and bonded to the output of the optical waveguide thermal grating device used as a wavelength demultiplexer, The ease of manufacture and volume are reduced as compared with the case of using it. 3 shows the configuration of a tap combiner array chip. The intervals of the input units 302 of the tap combiner array are set to be the same as the intervals of the output unit of the optical waveguide thermal grating device used as the wavelength demultiplexer and the intervals of the output units 306 and 307 of the tap array Arrays 220 are formed. For this purpose, a fan-out unit 303, a straight line unit 204, a directional coupling unit for branching light to a specific value between 1% and 10%, a main output waveguide unit 306, And a tap output waveguide unit 307. The optical wavelength of the individual optical signal detected by the photodetector through the individual optical wavelength of the optical signal passing through the individual port of the wavelength demultiplexer output section and the output port of the individual tap combiner of the tap combiner array is the same wavelength. Also in the combination of the tap combiner array 219 and the photodetector 221, the photodetector is used in an array form instead of an individual device, thereby facilitating fabrication and reducing the volume of the device. The optical detector is fabricated in a form coupled with an optical fiber, and an optical fiber array block 220 in which optical fibers coupled to the main output optical fiber and the optical detector are alternately arranged is manufactured and attached to the output portion of the tap combiner array 220. A circuit board is built and embodied so that the circuit can be configured to monitor the intensity of light detected by the photodetector in the system so that it can communicate with the outside.
본 발명에서 파장 다중화기와 파장 역다중화기로 사용되는 광도파로열격자 소자는 실시예에서 처럼 동일한 기판을 공유하는 독립된 광도파로열격자 소자 칩으로 구성하거나, 각각의 기판을 갖는 독립된 소자 칩을 사용하여 구성 할 수 있다. 또한 파장 역다중화기의 출력부에 구비된 탭결합기 어레이는 파장 역다중화기외 독립된 별도의 기판 위에 제작하거나, 파장 역다중화기와 동일한 기판 위에 제작할 수 있다.In the present invention, the optical waveguide thermal grating device used as the wavelength multiplexer and the wavelength demultiplexer may be constituted by independent optical waveguide thermal grating device chips sharing the same substrate as in the embodiment, or by using an independent device chip having the respective substrates can do. Also, the tap combiner array provided at the output of the wavelength demultiplexer can be fabricated on a separate substrate outside the wavelength demultiplexer or on the same substrate as the wavelength demultiplexer.
본 발명은 파장분할 다중화 광통신 시스템에서 파장 다중화 및 역다중화 기능을 수행하고 각각의 파장 채널의 상태를 모니터하는 기능을 집적하여 용이하게 사용할 수 있도록 구현한 발명이다.The present invention is an invention realized by integrating the function of performing wavelength multiplexing and demultiplexing functions and monitoring the status of each wavelength channel in a wavelength division multiplexing optical communication system.

Claims (8)

  1. 파장 다중화기로 사용되는 온도 무의존 광도파로열격자 소자,Temperature independent optical waveguide thermal grating device used as a wavelength multiplexer,
    파장 역다중화기로 사용되는 온도 무의존 광도파로열격자 소자,Temperature independent optical waveguide thermal grating device used as a wavelength demultiplexer,
    파장 역다중화기의 출력부에 구비되어 출력의 일부를 분기하는 기능의 탭 결합기 어레이,A tap combiner array provided in an output section of the wavelength demultiplexer and branching a part of the output,
    탭 결합기 어레이의 출력에 구비되어 탭 결합기 출력의 세기을 모니터하기 위한 광검출기 어레이A photodetector array for monitoring the intensity of the tap combiner output;
    를 구비하여 하나의 패키지 내에 구성된 파장분할 다중화 노드 모듈And a wavelength division multiplexing node module
  2. 파장 다중화기로 사용되는 온도 무의존 광도파로열격자 소자,Temperature independent optical waveguide thermal grating device used as a wavelength multiplexer,
    파장 역다중화기로 사용되는 온도 무의존 광도파로열격자 소자,Temperature independent optical waveguide thermal grating device used as a wavelength demultiplexer,
    파장 역다중화기의 출력부에 구비되어 출력의 일부를 분기하는 기능의 탭 결합기 어레이,A tap combiner array provided in an output section of the wavelength demultiplexer and branching a part of the output,
    탭 결합기 어레이의 출력에 구비되어 탭 결합기 출력의 세기을 모니터하기 위한 광검출기 어레이A photodetector array for monitoring the intensity of the tap combiner output;
    광검출기 어레이가 장착되어 광검출기로부터의 전기신호를 처리하여 외부로 전달하기 위한 전기회로 기판An electric circuit board for mounting the photodetector array to process the electric signal from the photodetector and deliver it to the outside
    을 구비하여 하나의 패키지 내에 구성된 파장분할 다중화 노드 모듈And a wavelength division multiplexing node module
  3. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    파장 다중화기와 파장 역다중화기를 각각의 기판을 갖는 독립된 광도파로열격자 소자 칩으로 구성함을 특징으로 하는 파장분할 다중화 노드 모듈Wherein the wavelength multiplexer and the wavelength demultiplexer are constituted by independent optical waveguide thermal lattice element chips each having a substrate.
  4. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    파장 다중화기와 파장 역다중화기를 동일한 기판을 공유하는 독립된 광도파로열격자 소자 칩으로 구성함을 특징으로 하는 파장분할 다중화 노드 모듈Wherein the wavelength multiplexer and the wavelength demultiplexer are constituted by an independent optical waveguide thermal grating device chip sharing the same substrate.
  5. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    파장 역다중화기의 출력부에 구비된 탭 결합기 어레이는 파장 역다중화기와 독립된 별도의 기판 위에 제작됨을 특징으로 하는 파장분할 다중화 노드 모듈And the tap combiner array provided at the output of the wavelength demultiplexer is fabricated on a separate substrate independent of the wavelength demultiplexer.
  6. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    파장 역다중화기의 출력부에 구비된 탭 결합기 어레이는 파장 역다중화기와 동일한 기판 위에 제작됨을 특징으로 하는 파장분할 다중화 노드 모듈And the tap combiner array provided at the output of the wavelength demultiplexer is fabricated on the same substrate as the wavelength demultiplexer.
  7. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    탭 결합기 어레이의 각각의 탭 출력은 주출력의 1% ~ 10%의 범위를 갖는 것을 특징으로 하는 파장분할 다중화 노드 모듈Wherein each tap output of the tap combiner array has a range of 1% to 10% of the main output.
  8. 제1항 내지 제2항 중 어느 한 항에 있어서,3. The method according to any one of claims 1 to 2,
    파장 역다중화기 출력부의 개별 포트를 통과하는 광신호의 개별 광파장과 탭 결합기 어레이의 개별 탭 결합기의 출력 포트를 통과하여 광검출기에 검출되는 개별 광신호의 광파장이 동일한 광파장 임을 특징으로 하는 파장분할 다중화 노드 모듈Wherein the optical wavelength of the individual optical signal detected by the optical detector through the individual optical wavelength of the optical signal passing through the individual port of the wavelength demultiplexer output unit and the output port of the individual tap combiner of the tap combiner array is the same wavelength. module
PCT/KR2011/002862 2011-03-28 2011-04-21 Aggregation wavelength division multiplexing node module WO2012133977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110027641A KR20120109870A (en) 2011-03-28 2011-03-28 Integrated dense wavelength division multiplexing node module
KR10-2011-0027641 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133977A1 true WO2012133977A1 (en) 2012-10-04

Family

ID=46931642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002862 WO2012133977A1 (en) 2011-03-28 2011-04-21 Aggregation wavelength division multiplexing node module

Country Status (2)

Country Link
KR (1) KR20120109870A (en)
WO (1) WO2012133977A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000031650A (en) * 1998-11-09 2000-06-05 정선종 Signal strength detect device of wave division multiplexed optical signal employing arrayed-waveguide grating
KR100322124B1 (en) * 1999-01-14 2002-02-04 윤종용 Apparatus and method for monitoring optical signal
KR20030089325A (en) * 2002-05-17 2003-11-21 주식회사 옵토스타 Apparatus having functions of monitoring and attenuating optical signal and wdm module using this
KR100493369B1 (en) * 2003-06-30 2005-06-07 주식회사 옵토스타 Athermal Wavelength Division Multiplexer Module with signal detection and variable attenuation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000031650A (en) * 1998-11-09 2000-06-05 정선종 Signal strength detect device of wave division multiplexed optical signal employing arrayed-waveguide grating
KR100322124B1 (en) * 1999-01-14 2002-02-04 윤종용 Apparatus and method for monitoring optical signal
KR20030089325A (en) * 2002-05-17 2003-11-21 주식회사 옵토스타 Apparatus having functions of monitoring and attenuating optical signal and wdm module using this
KR100493369B1 (en) * 2003-06-30 2005-06-07 주식회사 옵토스타 Athermal Wavelength Division Multiplexer Module with signal detection and variable attenuation

Also Published As

Publication number Publication date
KR20120109870A (en) 2012-10-09

Similar Documents

Publication Publication Date Title
US9374186B1 (en) Method and apparatus for construction of compact optical nodes using wavelength equalizing arrays
EP0985289B1 (en) Optical multiplexing and demultiplexing
KR102039597B1 (en) Wavelength selective switch having integrated channel monitor
US9252910B2 (en) Expandable multicast optical switch
US6535309B1 (en) Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method
US7574080B2 (en) Technique for photonic switching
US20160269809A1 (en) Optical network switching device
WO2020105779A1 (en) Multi-channel, bi-directional optical communication module
JP2007148042A (en) Wavelength selective optical switch, optical multiplexer, optical demultiplexer, and wavelength selective optical switch module
EP3902167A1 (en) Routing combiner, routing wave combining method, wavelength division routing method, and network system
US9647790B2 (en) Reconfigurable optical switch apparatus
US20120155871A1 (en) Optical transport apparatus and optical transport system
CN111224737B (en) Transmission system, transmission device, and transmission method
JP4864771B2 (en) Optical signal monitoring apparatus, optical system, and optical signal monitoring method
EP3499282B1 (en) Polarization independent optical device
US8494369B2 (en) Planar lightwave circuit
US20150215687A1 (en) Wavelength multiplexer, and method and program for identifying failed portion
JP2006319857A (en) Single-core bidirectional wavelength multiplexed transmission system
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
WO2012133977A1 (en) Aggregation wavelength division multiplexing node module
JP2000224108A (en) Wavelength division multiplexer demltiplexer
US6792182B1 (en) Optical cross connect device with single grating
JPH0252316A (en) Wavelength multiplex transmission module with monitoring function
JP2007155777A (en) Monitoring circuit
JP4365879B1 (en) Planar lightwave circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862789

Country of ref document: EP

Kind code of ref document: A1