WO2012133640A1 - Method for producing hydroxyl-terminated polysulfone - Google Patents
Method for producing hydroxyl-terminated polysulfone Download PDFInfo
- Publication number
- WO2012133640A1 WO2012133640A1 PCT/JP2012/058342 JP2012058342W WO2012133640A1 WO 2012133640 A1 WO2012133640 A1 WO 2012133640A1 JP 2012058342 W JP2012058342 W JP 2012058342W WO 2012133640 A1 WO2012133640 A1 WO 2012133640A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polysulfone
- terminal
- group
- solvent
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
Definitions
- hydroxy-terminated polysulfone a polysulfone having a hydroxyl group and / or a salt thereof at the terminal
- halogen-terminated polysulfone a polysulfone having a halogen atom at the terminal
- polysulfone is excellent in heat resistance and chemical resistance, application to various applications including materials for electric and electronic parts is being studied.
- hydroxy-terminated polysulfones are preferably studied as paints, epoxy modifiers, and alloying agents by taking advantage of the reactivity of the hydroxy ends.
- Polysulfone is usually produced by polycondensation of a dihalogenosulfone compound and a dihydroxy compound using a basic compound in a solvent. At that time, the dihydroxy compound is used in excess of the dihalogenosulfone compound. Hydroxy-terminated polysulfone can be obtained, but there is a problem that it is difficult to obtain a polymer having a high degree of polymerization. In order to solve such a problem, a method for producing a hydroxy-terminated polysulfone by hydrolyzing a halogen-terminated polysulfone that is easily obtained with a high degree of polymerization has been studied. For example, Patent Document 1 discloses a halogen-terminated polysulfone. Heating a mixture comprising polysulfone, water, a basic compound and a solvent is disclosed.
- an object of the present invention is to provide a method capable of producing a polysulfone having a high hydroxy terminal ratio from a halogen-terminated polysulfone in a short time.
- the present invention comprises heating a mixture containing a polysulfone having a halogen atom at a terminal, a basic compound, and a solvent to a predetermined temperature and mixing with a metal compound that generates water at the predetermined temperature.
- a process for producing a polysulfone having a hydroxyl group and / or a salt thereof at the terminal is provided.
- a polysulfone having a high hydroxy terminal ratio can be produced from a halogen-terminated polysulfone in a short time.
- Polysulfone typically has a divalent aromatic group (residue obtained by removing two hydrogen atoms bonded to the aromatic ring from an aromatic compound), a sulfonyl group (—SO 2 —), an oxygen atom, Is a resin having a repeating unit containing From the viewpoint of heat resistance and chemical resistance, the polysulfone preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”).
- the repeating unit represented by (2) hereinafter sometimes referred to as “repeating unit (2)”
- the repeating unit represented by the following formula (3) hereinafter referred to as “repeating unit (3)
- other repeating units may be included.
- Ph 1 and Ph 2 each independently represent a phenylene group.
- the hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group, or a halogen atom.
- Ph 3 and Ph 4 each independently represent a phenylene group.
- the hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group or a halogen atom.
- R represents an alkylidene. Represents a group, oxygen atom or sulfur atom.
- Ph 5 represents a phenylene group.
- the hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group or a halogen atom.
- N represents an integer of 1 to 3.
- n is 2 or more, a plurality of Ph 5 may be the same or different from each other.
- the phenylene group represented by any of Ph 1 to Ph 5 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group. From the viewpoints of properties and chemical resistance, a p-phenylene group is preferred.
- alkyl group which may substitute a hydrogen atom in the phenylene group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t- Examples thereof include a butyl group, an n-hexyl group, a 2-ethylhexyl group, an n-octyl group, and an n-decyl group, and the carbon number thereof is usually 1 to 10.
- Examples of the aryl group which may substitute a hydrogen atom in the phenylene group include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
- the carbon number is usually 6-20.
- the hydrogen atom in the phenylene group is substituted with these groups, the number is usually 2 or less and preferably 1 or less for each phenylene group.
- alkylidene group as R examples include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group, and the number of carbon atoms is usually 1 to 5.
- the polysulfone preferably has a repeating unit (1) of 50 mol% or more, more preferably 80 mol% or more, more preferably 80 mol% or more based on the total of all repeating units from the viewpoint of heat resistance and chemical resistance. More preferably, it has substantially only the repeating unit (1).
- the polysulfone may have two or more repeating units (1) to (3) independently of each other.
- Polysulfone can be produced by polycondensation of a dihalogenosulfone compound and a dihydroxy compound corresponding to the repeating unit constituting the polysulfone.
- a resin having a repeating unit (1) uses a compound represented by the following formula (4) as a dihalogenosulfone compound (hereinafter sometimes referred to as “compound (4)”), and a dihydroxy compound represented by the following formula: It can be produced by using the compound represented by (5) (hereinafter sometimes referred to as “compound (5)”).
- the resin having the repeating unit (1) and the repeating unit (2) uses the compound (4) as the dihalogenosulfone compound and the compound represented by the following formula (6) as the dihydroxy compound (hereinafter referred to as “compound ( 6) ”may be used to produce the product.
- the resin having the repeating unit (1) and the repeating unit (3) uses the compound (4) as the dihalogenosulfone compound and the compound represented by the following formula (7) as the dihydroxy compound (hereinafter referred to as “compound ( 7) "may be used.
- X 1 and X 2 each independently represent a halogen atom. Ph 1 and Ph 2 are as defined above.
- the polycondensation is preferably performed in a solvent using a basic compound.
- a basic compound an alkali metal carbonate is preferably used.
- the alkali metal salt of carbonic acid may be an alkali carbonate that is a normal salt, an alkali bicarbonate (an alkali hydrogen carbonate) that is an acidic salt, or a mixture of both.
- an alkali bicarbonate an alkali hydrogen carbonate
- an aprotic solvent is preferably used as the alkali bicarbonate.
- dimethyl sulfoxide 1-methyl-2-pyrrolidone, sulfolane (1,1-dioxothyrane), 1,3-dimethyl-2-imidazolidinone, 1,3
- a polar solvent such as diethyl-2-imidazolidinone, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, diphenyl sulfone, N, N-dimethylacetamide is preferably used.
- halogen-terminated polysulfone is used as a raw material, and this is hydrolyzed to convert the terminal halogen atom into a hydroxyl group and / or a salt thereof (hereinafter sometimes referred to as “hydroxyl group”). To obtain a hydroxy-terminated polysulfone.
- the halogen-terminated polysulfone can be obtained by using a dihalogenosulfone compound in excess of the dihydroxy compound in the polycondensation.
- the proportion of halogen atoms in all terminal groups of the halogen-terminated polysulfone is preferably 60 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
- the halogen-terminated polysulfone preferably has a reduced viscosity of 0.2 to 0.9 dl / g, more preferably 0.3 to 0.8 dl / g, still more preferably 0.35 to 0.76 dl / g, and particularly preferably. Is 0.4 to 0.6 dl / g.
- the reduced viscosity is a measure of the degree of polymerization. The higher the reduced viscosity of the halogen-terminated polysulfone, the higher the reduced viscosity of the resulting hydroxy-terminated polysulfone, that is, the higher the degree of polymerization, and the better the heat resistance, strength, and rigidity. However, if it is too high, the melting temperature and the melt viscosity are likely to be high, the temperature required for the molding is likely to be high, and the solubility in a solvent is likely to be low.
- the longer the polycondensation time the higher the degree of polymerization of the resulting polysulfone and the higher the reduced viscosity.
- the hydrolysis of the halogen-terminated polysulfone is carried out by heating a mixture containing the halogen-terminated polysulfone, the basic compound, and the solvent to a predetermined temperature and mixing the mixture with a compound that generates water at the predetermined temperature.
- Examples of the basic compound include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and other alkali metal salts of carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide.
- Alkali metal hydroxides such as rubidium hydroxide and cesium hydroxide, alkali metal salts of acetic acid such as sodium acetate and potassium acetate, alkaline earths of carbonic acid such as calcium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate and barium hydrogen carbonate Metal salt, hydroxide of alkaline earth metal such as magnesium hydroxide, hydroxide of quaternary ammonium such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, tertiary amine such as trimethylamine and triethylamine, dimethylamine, Diechi Secondary amines, methylamine amine, primary amines ethylamine, and include ammonia, may be used two or more thereof.
- sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide are preferable from the viewpoint of easy handling, and sodium carbonate and potassium carbonate are more preferable.
- the amount of the basic compound used is usually 0.001 to 1 mol times, preferably 0.005 to 0.5 mol times, more preferably 0.005 to 0.1 mol times, still more preferably relative to the halogen-terminated polysulfone. Is 0.01 to 0.06 mole times. If the amount of the basic compound used is too large, the basic compound cannot be completely dissolved and the reaction becomes non-uniform, the basic compound remains in the polysulfone, or the polysulfone is easily colored. If the amount of basic compound used is too small, hydrolysis will not proceed easily.
- the number of moles of halogen-terminated polysulfone is obtained by dividing the weight of halogen-terminated polysulfone by the formula weight (molecular weight per unit) of the repeating unit.
- an aprotic solvent is preferably used because the solvation effect during the nucleophilic reaction is small, the reaction temperature can be set high with a high boiling point, and good solubility in halogen-terminated polysulfone is exhibited.
- an aprotic polar solvent is used.
- dimethyl sulfoxide, 1-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, sulfolane (1,1-dioxothyran), 1,3-dimethyl-2-imidazolidinone, 1, Polar solvents such as 3-diethyl-2-imidazolidinone, N-methyl-2-piperidone, dimethylsulfone, diethylsulfone, diisopropylsulfone, diphenylsulfone and the like are preferably used, and two or more of them may be used.
- dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone and diphenyl sulfone are preferable.
- the amount of the solvent used is usually 1 to 20 times by mass, preferably 1 to 10 times by mass, more preferably 2 to 5 times by mass with respect to the halogen-terminated polysulfone. If the amount of the solvent used is too small, all of the polysulfone will not dissolve, or even if it is dissolved, the viscosity will be too high and operations such as stirring will be difficult. If the amount of the solvent used is too large, the reaction rate tends to be slow, and the yield during recovery tends to decrease.
- metal compounds that generate water include hydroxides (M I OH, M II (OH) 2 , M III (OH) 3, etc.), and oxide hydrates (M I 2 O ⁇ H 2 O). , M II O.H 2 O, M III 2 O 3 .3H 2 O, etc.), hydroxide hydrates, oxyhydroxide hydrates, and various metal salts including crystal water, Two or more of these may be used.
- aluminum hydroxide crystalline alumina hydrate
- examples thereof include gibbsite (Al 2 O 3 .H 2 O (shown by Al (OH) 3 ), bayerite (a), bayerite.
- the metal compound that generates water is preferably one that generates water at a temperature of 350 ° C. or lower. If the temperature at which water is generated is too high, the solvent that can raise the temperature to that temperature is limited, and at such a high temperature, polysulfone tends to decompose and color easily.
- the amount of the metal compound used to generate water is preferably 0.01 to 10 mol times, more preferably 0.1 to 10 mol times, more preferably 0.1 to 10 mol times relative to the halogen-terminated polysulfone, expressed as the amount of water generated.
- the amount is preferably 0.1 to 6 mole times. If the amount of the metal compound that generates water is too large, the molecular weight of the resulting hydroxy-terminated polysulfone will decrease, or the amount of hydroxide residue will increase, making it difficult to recover and wash the polysulfone. When the amount of the metal compound that generates water is too small, the reaction does not proceed easily and the hydroxy terminal is difficult to be introduced.
- the reaction temperature that is, the heating temperature of the mixture, needs to be higher than the temperature at which the metal compound that generates water to be used generates water. Conversely, the metal compound that generates water has a temperature lower than the heating temperature of the mixture. It is necessary to use one that generates water.
- the heating temperature of the mixture is preferably 100 to 350 ° C, more preferably 150 to 300 ° C, still more preferably 200 to 300 ° C. When the heating temperature of the mixture is too high, the solvent that can be used is limited, and polysulfone is easily decomposed and colored. When the heating temperature of the mixture is too low, the reaction does not proceed easily and the hydroxy terminal is difficult to be introduced.
- the reaction time is preferably 1 minute to 1 hour, more preferably 5 minutes to 1 hour, even more preferably 5 to 30 minutes, and particularly preferably 5 to 10 minutes.
- a polysulfone having a high hydroxy terminal ratio can be obtained, and the decomposition reaction and coloring of the polysulfone can be suppressed.
- the reaction atmosphere preferably does not contain oxygen, and the reaction is performed in an inert gas atmosphere such as nitrogen. Is preferred.
- the hydroxy-terminated polysulfone is recovered from the reaction mixture by separating the basic compound and its residue and the residue of the metal compound that generates water from the reaction mixture by filtration or centrifugation, and the resulting hydroxy-terminated polysulfone solution is obtained. Mixing with a poor solvent for hydroxy-terminated polysulfone and precipitating the hydroxy-terminated polysulfone, or mixing the reaction mixture with a poor solvent for hydroxy-terminated polysulfone and precipitating the hydroxy-terminated polysulfone Also good.
- the poor solvent for the hydroxy-terminated polysulfone examples include alcohols such as methanol, ethanol, isopropanol and butanol, nitriles such as acetonitrile, and water, and two or more of them may be used.
- the poor solvent may contain a good solvent for hydroxy-terminated polysulfone such as a reaction solvent as long as the hydroxy-terminated polysulfone can be precipitated.
- An additive such as an agent may be added.
- the contact with the acid may be performed on the reaction mixture after the reaction, or may be performed with a poor solvent. It may be performed when the terminal polysulfone is precipitated or after the precipitation.
- acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, sulfurous acid, chromic acid, hypochlorous acid, hydrocyanic acid, hydrobromic acid, boric acid, acetic acid, formic acid,
- inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, sulfurous acid, chromic acid, hypochlorous acid, hydrocyanic acid, hydrobromic acid, boric acid, acetic acid, formic acid
- organic acids such as acid, tartaric acid, stearic acid, naphthenic acid, picric acid, malic acid, and paratoluenesulfonic acid, and two or more thereof may be used.
- the amount of acid used is preferably 0.001 to 2 mol times, more preferably 0.01 to 1 mol times, and still more preferably 0.02 to 0.5 mol times with respect to 1 mol of polysulfone. If the amount of the acid used is too small, the conversion of the hydroxyl group salt to the hydroxyl group tends to be insufficient, and if too much, it is not efficient.
- the hydroxy-terminated polysulfone after precipitation recovery is washed with the poor solvent and then dried.
- the proportion of hydroxyl groups in all terminal groups is preferably 60 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
- the reduced viscosity is preferably 0.2 to 0.7 dl / g, more preferably 0.5 to 0.7 dl / g.
- the proportion of hydroxyl groups in all terminal groups is 60 mol% or more, the reduced viscosity is 0.5 to 0.7 dl / g, the proportion of hydroxy ends is high, and the degree of polymerization is high.
- Polysulfone can be obtained.
- the specific viscosity (( ⁇ 0 ) / ⁇ 0 ) is determined from the viscosity ( ⁇ ) of the solution and the viscosity ( ⁇ 0 ) of the solvent, and this specific viscosity is determined by the concentration of the solution (about 1 g / dl). ) To determine the reduced viscosity (dl / g) of polysulfone.
- Reference Example 1 (Preparation of chloro-terminated polysulfone (1))
- a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 614.2 g (2.14 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate The mixture was gradually heated to 290 ° C.
- reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating.
- the average particle diameter of the obtained powdery polysulfone was 500 ⁇ m.
- the reduced viscosity of this polysulfone was 0.52 dl / g.
- Reference Example 2 (Preparation of chloro-terminated polysulfone (2)) In a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 4,9.3 ′ (2.12 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate Add.
- the temperature was gradually raised to 290 ° C., and the reaction was carried out at 290 ° C. for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating. The average particle diameter of the obtained powdery polysulfone was 500 ⁇ m. The reduced viscosity of this polysulfone was 0.76 dl / g.
- Al hydroxide As aluminum hydroxide, “CW-375HT” manufactured by Sumitomo Chemical Co., Ltd. was used. This aluminum hydroxide has an endothermic onset of 200 ° C. and an endothermic peak of 300 ° C. by DSC measurement at a temperature rising rate of 10 ° C./min, and the theoretically released water content is 34.6% by mass.
- Example 1 In a 500 ml SUS separable flask equipped with a stirring blade, a cooling tube (Dimroth (water cooling)), a nitrogen introduction tube, and a thermometer, 166.6 g of chloro-terminated polysulfone (1) and diphenylsulfone (DPS) 230 as a solvent were used. 0.0 g was added, and the mixture was heated to 285 ° C. using an oil bath while stirring under a nitrogen gas flow, and melted and dissolved. The polysulfone concentration is 42% by mass. After dissolution and the internal temperature were stabilized, 1.98 g of finely powdered anhydrous potassium carbonate was added and dispersed, and then 5.0 g of aluminum hydroxide was added and stirred for 15 minutes.
- the reaction solution was filtered hot at 150 ° C. to separate aluminum hydroxide residue and potassium carbonate residue, and the filtrate was added dropwise to 1000 ml of hydrochloric acid methanol having a concentration of 0.1% by mass to precipitate polysulfone.
- the filter paper was washed three times with 100 ml each of N-methylpyrrolidone, and the washing solution was dropped into the hydrochloric acid methanol as it was.
- the precipitated polysulfone was washed twice with 1000 ml of water and once with 1000 ml of methanol, and then recovered and vacuum dried at 150 ° C.
- the resulting polysulfone was in the form of a white powder.
- the yield of this polysulfone (recovered polysulfone mass / raw material polysulfone mass), reduced viscosity, ratio of chloro group and hydroxyl group in all terminal groups, and loss on heating are shown in Table 1.
- Example 2 The same operation as in Example 1 was carried out except that 1.85 g (Example 2) or 200 g (Example 3) of aluminum hydroxide was used. The results are shown in Table 1.
- Example 4 The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 200 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
- Example 5 The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 300 ° C. The results are shown in Table 1.
- Example 6 The reaction was carried out in the same manner as in Example 1 except that the reaction time was 70 minutes (Example 6) or 40 minutes (Example 7). The results are shown in Table 1.
- Example 8 The same procedure as in Example 1 was carried out except that chloro-terminated polysulfone (2) was used as the raw material polysulfone and the amount of diphenylsulfone used as the solvent was 330.0 g. The results are shown in Table 1.
- Example 9 The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 360 ° C. The results are shown in Table 1.
- Comparative Example 1 In a 500 ml glass separable flask equipped with a stirring blade, a cooling tube (Dimroth (water-cooled)), a nitrogen introduction tube, and a thermometer, 20.0 g of chloro-terminated polysulfone (1) and N-methylpyrrolidone (NMP) as a solvent 200 ml, 5.4 g of water, and 2.8 g of anhydrous potassium carbonate were added, the temperature was raised to 150 ° C. using an oil bath while stirring under a nitrogen gas flow, and the reaction was continued at that temperature for 15 minutes.
- DIroth water-cooled
- NMP N-methylpyrrolidone
- the reaction solution was filtered while heated at 150 ° C. to remove potassium carbonate residue, and the filtrate was added dropwise to 500 ml of hydrochloric acid methanol having a concentration of 0.1% by mass to precipitate polysulfone.
- the filter paper was washed three times with 100 ml each of N-methylpyrrolidone, and the washing solution was dropped into the hydrochloric acid methanol as it was.
- the precipitated polysulfone was washed twice with 500 ml of water and once with 500 ml of methanol, and then recovered and vacuum dried at 150 ° C.
- the resulting polysulfone was in the form of a white powder.
- the yield of this polysulfone (recovered polysulfone mass / raw material polysulfone mass), reduced viscosity, ratio of chloro group and hydroxyl group in all terminal groups, and loss on heating are shown in Table 1.
- Comparative Examples 2 and 3 The reaction was carried out in the same manner as Comparative Example 1 except that the reaction time was 60 minutes (Comparative Example 2) or 300 minutes (Comparative Example 3). The results are shown in Table 1.
- Comparative Example 4 The same procedure as in Comparative Example 1 was performed except that 1.12 g of anhydrous potassium carbonate was used, 1.08 g of water was used, and the reaction time was 300 minutes. The results are shown in Table 1.
- Comparative Example 5 The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 80 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
The problem addressed by the present invention is to produce in a short time from a halogen-terminated polysulfone a polysulfone having a high proportion of hydroxyl termination. The present invention pertains to a method for producing a polysulfone having a hydroxyl group and/or a salt thereof at the termini by heating to a predetermined temperature a mixture containing a halogen-terminated polysulfone, a basic compound, and a solvent, and then admixing a metal compound that generates water at the predetermined temperature. Preferably, an alkali metal salt of carbonic acid is used as the basic compound; preferably, an aprotic solvent is used as the solvent; and preferably, a metal hydroxide is used as the metal compound that generates water.
Description
本発明は、末端にハロゲン原子を有するポリスルホン(以下「ハロゲン末端ポリスルホン」ということがある。)から、末端にヒドロキシル基及び/又はその塩を有するポリスルホン(以下「ヒドロキシ末端ポリスルホン」という。)を製造する方法に関する。
In the present invention, a polysulfone having a hydroxyl group and / or a salt thereof at the terminal (hereinafter referred to as “hydroxy-terminated polysulfone”) is produced from a polysulfone having a halogen atom at the terminal (hereinafter sometimes referred to as “halogen-terminated polysulfone”). On how to do.
ポリスルホンは、耐熱性や耐薬品性に優れることから、電気・電子部品の材料をはじめ、各種用途への適用が検討されている。中でも、ヒドロキシ末端ポリスルホンは、そのヒドロキシ末端の反応性を活かして、塗料やエポキシ改質剤やアロイ化剤として好ましく検討されている。
Since polysulfone is excellent in heat resistance and chemical resistance, application to various applications including materials for electric and electronic parts is being studied. Of these, hydroxy-terminated polysulfones are preferably studied as paints, epoxy modifiers, and alloying agents by taking advantage of the reactivity of the hydroxy ends.
ポリスルホンの製造は、通常、溶媒中、塩基性化合物を用いて、ジハロゲノスルホン化合物とジヒドロキシ化合物とを重縮合させることにより行われ、その際、ジヒドロキシ化合物をジハロゲノスルホン化合物より過剰に用いることにより、ヒドロキシ末端ポリスルホンを得ることができるが、高重合度のものが得られ難いという問題がある。このような問題を解消するため、高重合度のものが得られ易いハロゲン末端ポリスルホンを加水分解して、ヒドロキシ末端ポリスルホンを製造する方法が検討されており、例えば、特許文献1には、ハロゲン末端ポリスルホンと水と塩基性化合物と溶媒とを含む混合物を加熱することが開示されている。
Polysulfone is usually produced by polycondensation of a dihalogenosulfone compound and a dihydroxy compound using a basic compound in a solvent. At that time, the dihydroxy compound is used in excess of the dihalogenosulfone compound. Hydroxy-terminated polysulfone can be obtained, but there is a problem that it is difficult to obtain a polymer having a high degree of polymerization. In order to solve such a problem, a method for producing a hydroxy-terminated polysulfone by hydrolyzing a halogen-terminated polysulfone that is easily obtained with a high degree of polymerization has been studied. For example, Patent Document 1 discloses a halogen-terminated polysulfone. Heating a mixture comprising polysulfone, water, a basic compound and a solvent is disclosed.
特許文献1に開示の方法では、ヒドロキシ末端の割合が高いポリスルホンを得るには、反応に長時間を要し、反応時間を短縮すべく、反応温度を上げると、水が反応に消費される前に系外に留去され易く、かえって反応が進み難くなるという問題がある。そこで、本発明の目的は、ハロゲン末端ポリスルホンから、ヒドロキシ末端の割合が高いポリスルホンを短時間で製造しうる方法を提供することにある。
In the method disclosed in Patent Document 1, it takes a long time for the reaction to obtain a polysulfone having a high hydroxy end ratio, and when the reaction temperature is raised to shorten the reaction time, water is consumed before the reaction. However, there is a problem that the reaction is difficult to proceed because it is easily distilled out of the system. Therefore, an object of the present invention is to provide a method capable of producing a polysulfone having a high hydroxy terminal ratio from a halogen-terminated polysulfone in a short time.
前記目的を達成するため、本発明は、末端にハロゲン原子を有するポリスルホンと塩基性化合物と溶媒とを含む混合物を、所定温度に加熱し、前記所定温度で水を発生する金属化合物と混合することを特徴とする末端にヒドロキシル基及び/又はその塩を有するポリスルホンの製造方法を提供する。
In order to achieve the above object, the present invention comprises heating a mixture containing a polysulfone having a halogen atom at a terminal, a basic compound, and a solvent to a predetermined temperature and mixing with a metal compound that generates water at the predetermined temperature. A process for producing a polysulfone having a hydroxyl group and / or a salt thereof at the terminal is provided.
本発明によれば、ハロゲン末端ポリスルホンから、ヒドロキシ末端の割合が高いポリスルホンを短時間で製造することができる。
According to the present invention, a polysulfone having a high hydroxy terminal ratio can be produced from a halogen-terminated polysulfone in a short time.
ポリスルホンは、典型的には、2価の芳香族基(芳香族化合物から、その芳香環に結合した水素原子を2個除いてなる残基)とスルホニル基(-SO2-)と酸素原子とを含む繰返し単位を有する樹脂である。ポリスルホンは、耐熱性や耐薬品性の点から、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、さらに、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)や、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)等の他の繰返し単位を1種以上有していてもよい。
Polysulfone typically has a divalent aromatic group (residue obtained by removing two hydrogen atoms bonded to the aromatic ring from an aromatic compound), a sulfonyl group (—SO 2 —), an oxygen atom, Is a resin having a repeating unit containing From the viewpoint of heat resistance and chemical resistance, the polysulfone preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”). The repeating unit represented by (2) (hereinafter sometimes referred to as “repeating unit (2)”) and the repeating unit represented by the following formula (3) (hereinafter referred to as “repeating unit (3)”) And other repeating units may be included.
(1)-Ph1-SO2-Ph2-O-
(1) -Ph 1 -SO 2 -Ph 2 -O-
(Ph1及びPh2は、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基又はハロゲン原子で置換されていてもよい。)
(Ph 1 and Ph 2 each independently represent a phenylene group. The hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group, or a halogen atom.)
(2)-Ph3-R-Ph4-O-
(2) -Ph 3 -R-Ph 4 -O-
(Ph3及びPh4は、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基又はハロゲン原子で置換されていてもよい。Rは、アルキリデン基、酸素原子又は硫黄原子を表す。)
(Ph 3 and Ph 4 each independently represent a phenylene group. The hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group or a halogen atom. R represents an alkylidene. Represents a group, oxygen atom or sulfur atom.)
(3)-(Ph5)n-O-
(3)-(Ph 5 ) n —O—
(Ph5は、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基又はハロゲン原子で置換されていてもよい。nは、1~3の整数を表す。nが2以上である場合、複数存在するPh5は、互いに同一であっても異なっていてもよい。)
(Ph 5 represents a phenylene group. The hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group or a halogen atom. N represents an integer of 1 to 3. When n is 2 or more, a plurality of Ph 5 may be the same or different from each other.)
Ph1~Ph5のいずれかで表されるフェニレン基は、p-フェニレン基であってもよいし、m-フェニレン基であってもよいし、o-フェニレン基であってもよいが、耐熱性や耐薬品性の点からp-フェニレン基であることが好ましい。前記フェニレン基にある水素原子を置換していてもよいアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられ、その炭素数は、通常1~10である。前記フェニレン基にある水素原子を置換していてもよいアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられ、その炭素数は、通常6~20である。前記フェニレン基にある水素原子がこれらの基で置換されている場合、その数は、前記フェニレン基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個以下である。
The phenylene group represented by any of Ph 1 to Ph 5 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group. From the viewpoints of properties and chemical resistance, a p-phenylene group is preferred. Examples of the alkyl group which may substitute a hydrogen atom in the phenylene group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t- Examples thereof include a butyl group, an n-hexyl group, a 2-ethylhexyl group, an n-octyl group, and an n-decyl group, and the carbon number thereof is usually 1 to 10. Examples of the aryl group which may substitute a hydrogen atom in the phenylene group include a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group. The carbon number is usually 6-20. When the hydrogen atom in the phenylene group is substituted with these groups, the number is usually 2 or less and preferably 1 or less for each phenylene group.
Rであるアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基及び1-ブチリデン基が挙げられ、その炭素数は、通常1~5である。
Examples of the alkylidene group as R include a methylene group, an ethylidene group, an isopropylidene group, and a 1-butylidene group, and the number of carbon atoms is usually 1 to 5.
ポリスルホンは、耐熱性や耐薬品性の点から、繰返し単位(1)を、全繰返し単位の合計に対して、50モル%以上有することが好ましく、80モル%以上有することがより好ましく、繰返し単位として実質的に繰返し単位(1)のみを有することがさらに好ましい。なお、ポリスルホンは、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。
The polysulfone preferably has a repeating unit (1) of 50 mol% or more, more preferably 80 mol% or more, more preferably 80 mol% or more based on the total of all repeating units from the viewpoint of heat resistance and chemical resistance. More preferably, it has substantially only the repeating unit (1). The polysulfone may have two or more repeating units (1) to (3) independently of each other.
ポリスルホンは、それを構成する繰返し単位に対応するジハロゲノスルホン化合物とジヒドロキシ化合物とを重縮合させることにより、製造することができる。例えば、繰返し単位(1)を有する樹脂は、ジハロゲノスルホン化合物として下記式(4)で表される化合物(以下、「化合物(4)」ということがある。)を用い、ジヒドロキシ化合物として下記式(5)で表される化合物(以下、「化合物(5)」ということがある。)を用いることにより、製造することができる。また、繰返し単位(1)と繰返し単位(2)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(6)で表される化合物(以下、「化合物(6)」ということがある。)を用いることにより、製造することができる。また、繰返し単位(1)と繰返し単位(3)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(7)で表される化合物(以下、「化合物(7)」ということがある。)を用いることにより、製造することができる。
Polysulfone can be produced by polycondensation of a dihalogenosulfone compound and a dihydroxy compound corresponding to the repeating unit constituting the polysulfone. For example, a resin having a repeating unit (1) uses a compound represented by the following formula (4) as a dihalogenosulfone compound (hereinafter sometimes referred to as “compound (4)”), and a dihydroxy compound represented by the following formula: It can be produced by using the compound represented by (5) (hereinafter sometimes referred to as “compound (5)”). The resin having the repeating unit (1) and the repeating unit (2) uses the compound (4) as the dihalogenosulfone compound and the compound represented by the following formula (6) as the dihydroxy compound (hereinafter referred to as “compound ( 6) ”may be used to produce the product. In addition, the resin having the repeating unit (1) and the repeating unit (3) uses the compound (4) as the dihalogenosulfone compound and the compound represented by the following formula (7) as the dihydroxy compound (hereinafter referred to as “compound ( 7) "may be used.
(4)X1-Ph1-SO2-Ph2-X2
(4) X 1 -Ph 1 -SO 2 -Ph 2 -X 2
(X1は及びX2は、それぞれ独立に、ハロゲン原子を表す。Ph1及びPh2は、前記と同義である。)
(X 1 and X 2 each independently represent a halogen atom. Ph 1 and Ph 2 are as defined above.)
(5)HO-Ph1-SO2-Ph2-OH
(5) HO—Ph 1 —SO 2 —Ph 2 —OH
(Ph1及びPh2は、前記と同義である。)
(Ph 1 and Ph 2 are as defined above.)
(6)HO-Ph3-R-Ph4-OH
(6) HO—Ph 3 —R—Ph 4 —OH
(Ph3、Ph4及びRは、前記と同義である。)
(Ph 3 , Ph 4 and R are as defined above.)
(7)HO-(Ph5)n-OH
(7) HO— (Ph 5 ) n —OH
(Ph5及びnは、前記と同義である。)
(Ph 5 and n are as defined above.)
前記重縮合は、塩基性化合物を用いて、溶媒中で行うことが好ましい。塩基性化合物としては、炭酸のアルカリ金属塩が好ましく用いられる。炭酸のアルカリ金属塩は、正塩である炭酸アルカリであってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリ)であってもよいし、両者の混合物であってもよく、炭酸アルカリとしては、炭酸ナトリウムや炭酸カリウムが好ましく用いられ、重炭酸アルカリとしては、重炭酸ナトリウムや重炭酸カリウムが好ましく用いられる。溶媒としては、非プロトン性溶媒が好ましく用いられ、中でも、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン(1,1-ジオキソチラン)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン、N,N-ジメチルアセトアミド等の極性溶媒が好ましく用いられる。
The polycondensation is preferably performed in a solvent using a basic compound. As the basic compound, an alkali metal carbonate is preferably used. The alkali metal salt of carbonic acid may be an alkali carbonate that is a normal salt, an alkali bicarbonate (an alkali hydrogen carbonate) that is an acidic salt, or a mixture of both. Are preferably sodium carbonate and potassium carbonate, and sodium bicarbonate and potassium bicarbonate are preferably used as the alkali bicarbonate. As the solvent, an aprotic solvent is preferably used. Among them, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane (1,1-dioxothyrane), 1,3-dimethyl-2-imidazolidinone, 1,3 A polar solvent such as diethyl-2-imidazolidinone, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, diphenyl sulfone, N, N-dimethylacetamide is preferably used.
本発明では、原料として、ハロゲン末端ポリスルホンを用い、これを加水分解して、その末端のハロゲン原子をヒドロキシル基及び/又はその塩(以下「ヒドロキシル基類」ということがある。)に変換することにより、ヒドロキシ末端ポリスルホンを得る。
In the present invention, halogen-terminated polysulfone is used as a raw material, and this is hydrolyzed to convert the terminal halogen atom into a hydroxyl group and / or a salt thereof (hereinafter sometimes referred to as “hydroxyl group”). To obtain a hydroxy-terminated polysulfone.
ハロゲン末端ポリスルホンは、前記重縮合において、ジハロゲノスルホン化合物をジヒドロキシ化合物より過剰に用いることにより得られる。ハロゲン末端ポリスルホンの全末端基に占めるハロゲン原子の割合は、好ましくは60モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。
The halogen-terminated polysulfone can be obtained by using a dihalogenosulfone compound in excess of the dihydroxy compound in the polycondensation. The proportion of halogen atoms in all terminal groups of the halogen-terminated polysulfone is preferably 60 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
ハロゲン末端ポリスルホンは、その還元粘度が、好ましくは0.2~0.9dl/g、より好ましくは0.3~0.8dl/g、さらに好ましくは0.35~0.76dl/g、特に好ましくは0.4~0.6dl/gである。還元粘度は重合度の目安となり、ハロゲン末端ポリスルホンの還元粘度が高いほど、得られるヒドロキシ末端ポリスルホンの還元粘度が高くなり易く、すなわち重合度が高くなり易く、耐熱性や強度・剛性に優れたものとなるが、あまり高いと、溶融温度や溶融粘度が高くなり易く、その成形に必要な温度が高くなり易く、また、溶媒に対する溶解性が低くなり易い。
The halogen-terminated polysulfone preferably has a reduced viscosity of 0.2 to 0.9 dl / g, more preferably 0.3 to 0.8 dl / g, still more preferably 0.35 to 0.76 dl / g, and particularly preferably. Is 0.4 to 0.6 dl / g. The reduced viscosity is a measure of the degree of polymerization. The higher the reduced viscosity of the halogen-terminated polysulfone, the higher the reduced viscosity of the resulting hydroxy-terminated polysulfone, that is, the higher the degree of polymerization, and the better the heat resistance, strength, and rigidity. However, if it is too high, the melting temperature and the melt viscosity are likely to be high, the temperature required for the molding is likely to be high, and the solubility in a solvent is likely to be low.
前記重縮合において、仮に副反応が生じなければ、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比が1:1に近いほど、炭酸のアルカリ金属塩の使用量が多いほど、重縮合温度が高いほど、また、重縮合時間が長いほど、得られるポリスルホンの重合度が高くなり易く、還元粘度が高くなり易いが、実際は、副生する水酸化アルカリ等により、ハロゲノ基のヒドロキシル基への置換反応や解重合等の副反応が生じ、この副反応により、得られるポリスルホンの重合度が低下し易く、還元粘度が低下し易いので、この副反応の度合いも考慮して、所望の還元粘度を有するポリスルホンが得られるように、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比、炭酸のアルカリ金属塩の使用量、重縮合温度及び重縮合時間を調整することが好ましい。
In the polycondensation, if no side reaction occurs, the closer the molar ratio of the dihalogenosulfone compound and the dihydroxy compound is to 1: 1, the greater the amount of alkali metal carbonate used, the higher the polycondensation temperature. In addition, the longer the polycondensation time, the higher the degree of polymerization of the resulting polysulfone and the higher the reduced viscosity. In practice, however, the substitution reaction of a halogeno group to a hydroxyl group or the like by a by-product alkali hydroxide or the like A side reaction such as depolymerization occurs, and the degree of polymerization of the resulting polysulfone tends to decrease and the reduced viscosity tends to decrease due to this side reaction. Therefore, in consideration of the degree of this side reaction, a polysulfone having a desired reduced viscosity can be obtained. The molar ratio of the dihalogenosulfone compound to the dihydroxy compound, the amount of alkali metal carbonate used, the polycondensation temperature and the polycondensation time It is preferable to integer.
本発明では、ハロゲン末端ポリスルホンの加水分解を、ハロゲン末端ポリスルホンと塩基性化合物と溶媒とを含む混合物を所定温度に加熱し、この所定温度で水を発生する化合物と混合することにより行う。これにより、高温での速やかな加水分解が可能となり、ヒドロキシ末端の割合が高いポリスルホンを短時間で製造することができる。
In the present invention, the hydrolysis of the halogen-terminated polysulfone is carried out by heating a mixture containing the halogen-terminated polysulfone, the basic compound, and the solvent to a predetermined temperature and mixing the mixture with a compound that generates water at the predetermined temperature. Thereby, rapid hydrolysis at high temperature becomes possible, and polysulfone having a high hydroxy terminal ratio can be produced in a short time.
塩基性化合物としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸のアルカリ金属塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物、酢酸ナトリウム、酢酸カリウム等の酢酸のアルカリ金属塩、炭酸カルシウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウム等の炭酸のアルカリ土類金属塩、水酸化マグネシウム等のアルカリ土類金属の水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウムの水酸化物、トリメチルアミン、トリエチルアミン等の三級アミン、ジメチルアミン、ジエチルアミン等の二級アミン、メチルアミン、エチルアミン等の一級アミン、及びアンモニアが挙げられ、それらの2種以上を用いてもよい。中でも、取り扱い易さから、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム及び水酸化カリウムが好ましく、炭酸ナトリウム及び炭酸カリウムがより好ましい。
Examples of the basic compound include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and other alkali metal salts of carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide. Alkali metal hydroxides such as rubidium hydroxide and cesium hydroxide, alkali metal salts of acetic acid such as sodium acetate and potassium acetate, alkaline earths of carbonic acid such as calcium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate and barium hydrogen carbonate Metal salt, hydroxide of alkaline earth metal such as magnesium hydroxide, hydroxide of quaternary ammonium such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, tertiary amine such as trimethylamine and triethylamine, dimethylamine, Diechi Secondary amines, methylamine amine, primary amines ethylamine, and include ammonia, may be used two or more thereof. Among these, sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide are preferable from the viewpoint of easy handling, and sodium carbonate and potassium carbonate are more preferable.
塩基性化合物の使用量は、ハロゲン末端ポリスルホンに対し、通常0.001~1モル倍、好ましくは0.005~0.5モル倍、より好ましくは0.005~0.1モル倍、さらに好ましくは0.01~0.06モル倍である。塩基性化合物の使用量があまり多いと、塩基性化合物が溶解しきれず反応が不均一になったり、塩基性化合物がポリスルホン中に残存したり、ポリスルホンが着色したりし易くなる。塩基性化合物の使用量があまり少ないと、加水分解が進み難くなる。ここで、ハロゲン末端ポリスルホンのモル数は、ハロゲン末端ポリスルホン重量を繰り返し単位の式量(あたりの分子量)で割ったものである。
The amount of the basic compound used is usually 0.001 to 1 mol times, preferably 0.005 to 0.5 mol times, more preferably 0.005 to 0.1 mol times, still more preferably relative to the halogen-terminated polysulfone. Is 0.01 to 0.06 mole times. If the amount of the basic compound used is too large, the basic compound cannot be completely dissolved and the reaction becomes non-uniform, the basic compound remains in the polysulfone, or the polysulfone is easily colored. If the amount of basic compound used is too small, hydrolysis will not proceed easily. Here, the number of moles of halogen-terminated polysulfone is obtained by dividing the weight of halogen-terminated polysulfone by the formula weight (molecular weight per unit) of the repeating unit.
溶媒としては、求核反応時の溶媒和効果が小さく、かつ高沸点で反応温度を高く設定でき、ハロゲン末端ポリスルホンに対し良好な溶解性を示すため、好ましくは非プロトン性溶媒が用いられ、さらに好ましくは非プロトン性極性溶媒が用いられる。中でも、ジメチルスルホキシド、1-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、スルホラン(1,1-ジオキソチラン)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、N-メチル-2-ピペリドン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン等の極性溶媒が好ましく用いられ、それらの2種以上を用いてもよい。中でも、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン及びジフェニルスルホンが好ましい。
As the solvent, an aprotic solvent is preferably used because the solvation effect during the nucleophilic reaction is small, the reaction temperature can be set high with a high boiling point, and good solubility in halogen-terminated polysulfone is exhibited. Preferably an aprotic polar solvent is used. Among them, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, sulfolane (1,1-dioxothyran), 1,3-dimethyl-2-imidazolidinone, 1, Polar solvents such as 3-diethyl-2-imidazolidinone, N-methyl-2-piperidone, dimethylsulfone, diethylsulfone, diisopropylsulfone, diphenylsulfone and the like are preferably used, and two or more of them may be used. Of these, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone and diphenyl sulfone are preferable.
溶媒の使用量は、ハロゲン末端ポリスルホンに対し、通常1~20質量倍、好ましくは1~10質量倍、より好ましくは2~5質量倍である。溶媒の使用量があまり少ないと、ポリスルホンが全て溶解しなったり、溶解しても粘度が高すぎて、撹拌等の操作がし難くなったりし易い。溶媒の使用量があまり多いと、反応速度が遅くなったり、回収時の収率が低下したりし易い。
The amount of the solvent used is usually 1 to 20 times by mass, preferably 1 to 10 times by mass, more preferably 2 to 5 times by mass with respect to the halogen-terminated polysulfone. If the amount of the solvent used is too small, all of the polysulfone will not dissolve, or even if it is dissolved, the viscosity will be too high and operations such as stirring will be difficult. If the amount of the solvent used is too large, the reaction rate tends to be slow, and the yield during recovery tends to decrease.
水を発生する金属化合物としては、例えば、水酸化物(MIOH、MII(OH)2、MIII(OH)3等)、酸化物の水和物(MI
2O・H2O、MIIO・H2O、MIII
2O3・3H2O等)、水酸化物の水和物、オキシ水酸化物の水和物及び結晶水を含む各種金属塩が挙げられ、それらの2種以上を用いてもよい。中でも、水酸化アルミニウム(結晶性アルミナ水和物)が好ましく、その例としては、ギブサイト(Al2O3・H2O(示性式Al(OH)3)、バイアライト(a)、バイアライト(b)、ノルストランダイト、ジアスポア(Al2O3・H2O(示性式AlO(OH)))、ベーマイト、トーダイト(5Al2O3・H2O(示性式Al5O7(OH)))、擬ベーマイト(Al2O3・nH2O(示性式AlO(OH)・nH2O))、及びアルミノゲル(Al2O3・(H2O)n)が挙げられる。
Examples of metal compounds that generate water include hydroxides (M I OH, M II (OH) 2 , M III (OH) 3, etc.), and oxide hydrates (M I 2 O · H 2 O). , M II O.H 2 O, M III 2 O 3 .3H 2 O, etc.), hydroxide hydrates, oxyhydroxide hydrates, and various metal salts including crystal water, Two or more of these may be used. Among them, aluminum hydroxide (crystalline alumina hydrate) is preferable, and examples thereof include gibbsite (Al 2 O 3 .H 2 O (shown by Al (OH) 3 ), bayerite (a), bayerite. (B), norstrandite, diaspore (Al 2 O 3 .H 2 O (indicative formula AlO (OH))), boehmite, todite (5Al 2 O 3 .H 2 O (indicative formula Al 5 O 7 ( OH))), pseudoboehmite (Al 2 O 3 .nH 2 O (shown by the formula AlO (OH) .nH 2 O)), and aluminogel (Al 2 O 3. (H 2 O) n).
水を発生する金属化合物は、350℃以下の温度で水を発生するものであることが好ましい。水を発生する温度があまり高いと、当該温度まで温度を上げられる溶媒が限られ、また、そのような高温ではポリスルホンが分解し易く、着色し易くなる。
The metal compound that generates water is preferably one that generates water at a temperature of 350 ° C. or lower. If the temperature at which water is generated is too high, the solvent that can raise the temperature to that temperature is limited, and at such a high temperature, polysulfone tends to decompose and color easily.
水を発生する金属化合物の使用量は、それが発生する水の量で表して、ハロゲン末端ポリスルホンに対し、好ましくは0.01~10モル倍、より好ましくは0.1~10モル倍、さらに好ましくは0.1~6モル倍である。水を発生する金属化合物の使用量があまり多いと、得られるヒドロキシ末端ポリスルホンの分子量が低下したり、水酸化物残渣が多くなり、ポリスルホンの回収洗浄が困難になったりし易くなる。水を発生する金属化合物の使用量があまり少ないと、反応が進み難く、ヒドロキシ末端が導入され難くなる。
The amount of the metal compound used to generate water is preferably 0.01 to 10 mol times, more preferably 0.1 to 10 mol times, more preferably 0.1 to 10 mol times relative to the halogen-terminated polysulfone, expressed as the amount of water generated. The amount is preferably 0.1 to 6 mole times. If the amount of the metal compound that generates water is too large, the molecular weight of the resulting hydroxy-terminated polysulfone will decrease, or the amount of hydroxide residue will increase, making it difficult to recover and wash the polysulfone. When the amount of the metal compound that generates water is too small, the reaction does not proceed easily and the hydroxy terminal is difficult to be introduced.
反応温度すなわち混合物の加熱温度は、用いる水を発生する金属化合物が水を発生する温度より高くする必要があり、逆に言えば、水を発生する金属化合物としては、混合物の加熱温度より低い温度で水を発生するものを用いる必要がある。混合物の加熱温度は、好ましくは100~350℃、より好ましくは150~300℃、さらに好ましくは200~300℃である。混合物の加熱温度があまり高いと、使用できる溶媒が限られ、また、ポリスルホンが分解し易く、着色し易くなる。混合物の加熱温度があまり低いと、反応が進み難く、ヒドロキシ末端が導入され難くなる。
The reaction temperature, that is, the heating temperature of the mixture, needs to be higher than the temperature at which the metal compound that generates water to be used generates water. Conversely, the metal compound that generates water has a temperature lower than the heating temperature of the mixture. It is necessary to use one that generates water. The heating temperature of the mixture is preferably 100 to 350 ° C, more preferably 150 to 300 ° C, still more preferably 200 to 300 ° C. When the heating temperature of the mixture is too high, the solvent that can be used is limited, and polysulfone is easily decomposed and colored. When the heating temperature of the mixture is too low, the reaction does not proceed easily and the hydroxy terminal is difficult to be introduced.
反応時間は、好ましくは1分~1時間、より好ましくは5分~1時間、さらに好ましくは5~30分、特に好ましくは5~10分であり、本発明によれば、このような短時間でもヒドロキシ末端の割合が高いポリスルホンを得ることができ、ポリスルホンの分解反応や着色を抑制できる。
The reaction time is preferably 1 minute to 1 hour, more preferably 5 minutes to 1 hour, even more preferably 5 to 30 minutes, and particularly preferably 5 to 10 minutes. However, a polysulfone having a high hydroxy terminal ratio can be obtained, and the decomposition reaction and coloring of the polysulfone can be suppressed.
反応系は塩基性化合物を含み、かつ、高温であるため、ヒドロキシ末端ポリスルホンが酸化され易いことから、反応雰囲気は酸素を含まないことが好ましく、窒素等の不活性ガス雰囲気下に反応を行うことが好ましい。
Since the reaction system contains a basic compound and is at a high temperature, the hydroxy-terminated polysulfone is easily oxidized. Therefore, the reaction atmosphere preferably does not contain oxygen, and the reaction is performed in an inert gas atmosphere such as nitrogen. Is preferred.
反応混合物からのヒドロキシ末端ポリスルホンの回収は、反応混合物から、塩基性化合物及びその残渣や水を発生する金属化合物の残渣を、濾過や遠心分離により分離し、得られたヒドロキシ末端ポリスルホンの溶液を、ヒドロキシ末端ポリスルホンの貧溶媒と混合して、ヒドロキシ末端ポリスルホンを析出させることにより行ってもよいし、反応混合物を、ヒドロキシ末端ポリスルホンの貧溶媒と混合して、ヒドロキシ末端ポリスルホンを析出させることにより行ってもよい。ヒドロキシ末端ポリスルホンの貧溶媒としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール、アセトニトリル等のニトリル、及び水が挙げられ、それらの2種以上を用いてもよい。なお、この貧溶媒には、ヒドロキシ末端ポリスルホンが析出可能な範囲で反応溶媒等のヒドロキシ末端ポリスルホンの良溶媒が含まれていてもよく、また、ヒドロキシ末端ポリスルホンの析出状態を制御するために界面活性剤等の添加剤が添加されていてもよい。
The hydroxy-terminated polysulfone is recovered from the reaction mixture by separating the basic compound and its residue and the residue of the metal compound that generates water from the reaction mixture by filtration or centrifugation, and the resulting hydroxy-terminated polysulfone solution is obtained. Mixing with a poor solvent for hydroxy-terminated polysulfone and precipitating the hydroxy-terminated polysulfone, or mixing the reaction mixture with a poor solvent for hydroxy-terminated polysulfone and precipitating the hydroxy-terminated polysulfone Also good. Examples of the poor solvent for the hydroxy-terminated polysulfone include alcohols such as methanol, ethanol, isopropanol and butanol, nitriles such as acetonitrile, and water, and two or more of them may be used. The poor solvent may contain a good solvent for hydroxy-terminated polysulfone such as a reaction solvent as long as the hydroxy-terminated polysulfone can be precipitated. An additive such as an agent may be added.
ヒドロキシ末端ポリスルホンとして、末端にヒドロキシル基を有するポリスルホンを得るには、反応後に酸と接触させることが好ましく、酸との接触は、反応後の反応混合物に対し行ってもよいし、貧溶媒でヒドロキシ末端ポリスルホンを析出させる際に行ってもよいし、析出後に行ってもよい。
In order to obtain a polysulfone having a hydroxyl group at the terminal as the hydroxy-terminated polysulfone, it is preferable to contact with an acid after the reaction. The contact with the acid may be performed on the reaction mixture after the reaction, or may be performed with a poor solvent. It may be performed when the terminal polysulfone is precipitated or after the precipitation.
酸としては、例えば、塩酸、硫酸、硝酸、過塩素酸、りん酸、亜硫酸、クロム酸、次亜塩素酸、シアン化水素酸、臭化水素酸、ホウ酸等の無機酸や、酢酸、蟻酸、シュウ酸、酒石酸、ステアリン酸、ナフテン酸、ピクリン酸、りんご酸、パラトルエンスルホン酸等の有機酸が挙げられ、それらの2種以上を用いてもよい。
Examples of acids include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, sulfurous acid, chromic acid, hypochlorous acid, hydrocyanic acid, hydrobromic acid, boric acid, acetic acid, formic acid, Examples thereof include organic acids such as acid, tartaric acid, stearic acid, naphthenic acid, picric acid, malic acid, and paratoluenesulfonic acid, and two or more thereof may be used.
酸の使用量は、ポリスルホン1モルに対し、好ましくは0.001~2モル倍、より好ましくは0.01~1モル倍、さらに好ましくは0.02~0.5モル倍である。酸の使用量があまり少ないと、ヒドロキシル基の塩からヒドロキシル基への変換が不十分になり易く、あまり多いと、効率的でない。
The amount of acid used is preferably 0.001 to 2 mol times, more preferably 0.01 to 1 mol times, and still more preferably 0.02 to 0.5 mol times with respect to 1 mol of polysulfone. If the amount of the acid used is too small, the conversion of the hydroxyl group salt to the hydroxyl group tends to be insufficient, and if too much, it is not efficient.
析出回収後のヒドロキシ末端ポリスルホンは、その貧溶媒で洗浄後、乾燥することが好ましい。
It is preferable that the hydroxy-terminated polysulfone after precipitation recovery is washed with the poor solvent and then dried.
こうして得られるヒドロキシ末端ポリスルホンは、その全末端基に占めるヒドロキシル基類の割合が、好ましくは60モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。また、その還元粘度が、好ましくは0.2~0.7dl/g、より好ましくは0.5~0.7dl/gである。
In the hydroxy-terminated polysulfone thus obtained, the proportion of hydroxyl groups in all terminal groups is preferably 60 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. The reduced viscosity is preferably 0.2 to 0.7 dl / g, more preferably 0.5 to 0.7 dl / g.
本発明によれば、全末端基に占めるヒドロキシル基類の割合が60モル%以上で、還元粘度が0.5~0.7dl/gという、ヒドロキシ末端の割合が高く、かつ、高重合度のポリスルホンを得ることができる。
According to the present invention, the proportion of hydroxyl groups in all terminal groups is 60 mol% or more, the reduced viscosity is 0.5 to 0.7 dl / g, the proportion of hydroxy ends is high, and the degree of polymerization is high. Polysulfone can be obtained.
〔ポリスルホンの還元粘度の測定〕
ポリスルホン約1gをN,N-ジメチルホルムアミドに溶解させて、その容量を1dlとし、この溶液の粘度(η)を、オストワルド型粘度管を用いて、25℃で測定した。また、溶媒であるN,N-ジメチルホルムアミドの粘度(η0)を、オストワルド型粘度管を用いて、25℃で測定した。前記溶液の粘度(η)と前記溶媒の粘度(η0)から、比粘性率((η-η0)/η0)を求め、この比粘性率を、前記溶液の濃度(約1g/dl)で割ることにより、ポリスルホンの還元粘度(dl/g)を求めた。 (Measurement of reduced viscosity of polysulfone)
About 1 g of polysulfone was dissolved in N, N-dimethylformamide to make its volume 1 dl, and the viscosity (η) of this solution was measured at 25 ° C. using an Ostwald type viscosity tube. Further, the viscosity (η 0 ) of N, N-dimethylformamide as a solvent was measured at 25 ° C. using an Ostwald type viscosity tube. The specific viscosity ((η−η 0 ) / η 0 ) is determined from the viscosity (η) of the solution and the viscosity (η 0 ) of the solvent, and this specific viscosity is determined by the concentration of the solution (about 1 g / dl). ) To determine the reduced viscosity (dl / g) of polysulfone.
ポリスルホン約1gをN,N-ジメチルホルムアミドに溶解させて、その容量を1dlとし、この溶液の粘度(η)を、オストワルド型粘度管を用いて、25℃で測定した。また、溶媒であるN,N-ジメチルホルムアミドの粘度(η0)を、オストワルド型粘度管を用いて、25℃で測定した。前記溶液の粘度(η)と前記溶媒の粘度(η0)から、比粘性率((η-η0)/η0)を求め、この比粘性率を、前記溶液の濃度(約1g/dl)で割ることにより、ポリスルホンの還元粘度(dl/g)を求めた。 (Measurement of reduced viscosity of polysulfone)
About 1 g of polysulfone was dissolved in N, N-dimethylformamide to make its volume 1 dl, and the viscosity (η) of this solution was measured at 25 ° C. using an Ostwald type viscosity tube. Further, the viscosity (η 0 ) of N, N-dimethylformamide as a solvent was measured at 25 ° C. using an Ostwald type viscosity tube. The specific viscosity ((η−η 0 ) / η 0 ) is determined from the viscosity (η) of the solution and the viscosity (η 0 ) of the solvent, and this specific viscosity is determined by the concentration of the solution (about 1 g / dl). ) To determine the reduced viscosity (dl / g) of polysulfone.
〔ポリスルホン中の末端ヒドロキシル基類の個数(モル/g)の測定〕
所定量のポリスルホンをジメチルホルムアミドに溶解させ、過剰量のパラトルエンスルホン酸を加えた後、電位差滴定装置を用いて、0.05モル/Lのカリウムメトキシド/トルエン・メタノール溶液で滴定し、残存パラトルエンスルホン酸を中和した後、ヒドロキシル基を中和し、このヒドロキシル基の中和に要したカリウムメトキシドの量(モル)を、芳香族ポリスルホン樹脂の前記所定量(g)で割ることにより求めた。 [Measurement of number of terminal hydroxyl groups (mol / g) in polysulfone]
A predetermined amount of polysulfone is dissolved in dimethylformamide, an excess amount of paratoluenesulfonic acid is added, and then titrated with a 0.05 mol / L potassium methoxide / toluene / methanol solution using a potentiometric titrator. After neutralizing p-toluenesulfonic acid, the hydroxyl group is neutralized, and the amount (mol) of potassium methoxide required for neutralization of the hydroxyl group is divided by the predetermined amount (g) of the aromatic polysulfone resin. Determined by
所定量のポリスルホンをジメチルホルムアミドに溶解させ、過剰量のパラトルエンスルホン酸を加えた後、電位差滴定装置を用いて、0.05モル/Lのカリウムメトキシド/トルエン・メタノール溶液で滴定し、残存パラトルエンスルホン酸を中和した後、ヒドロキシル基を中和し、このヒドロキシル基の中和に要したカリウムメトキシドの量(モル)を、芳香族ポリスルホン樹脂の前記所定量(g)で割ることにより求めた。 [Measurement of number of terminal hydroxyl groups (mol / g) in polysulfone]
A predetermined amount of polysulfone is dissolved in dimethylformamide, an excess amount of paratoluenesulfonic acid is added, and then titrated with a 0.05 mol / L potassium methoxide / toluene / methanol solution using a potentiometric titrator. After neutralizing p-toluenesulfonic acid, the hydroxyl group is neutralized, and the amount (mol) of potassium methoxide required for neutralization of the hydroxyl group is divided by the predetermined amount (g) of the aromatic polysulfone resin. Determined by
〔ポリスルホン中の末端ハロゲン基の個数(モル/g)の測定〕
ここでは、末端ハロゲン基がクロロ基であるものを例に説明する。
400MHz核磁気共鳴装置(日本電子(株)の「AL-400」)を用い、濃度1mg/mlのポリスルホンの重水素化DMSO溶液について、積算回数100回でプロトンNMRスペクトルを測定した。クロロ基が結合するベンゼン環の炭素に隣接する炭素に結合するプロトンのシグナル(7.78ppm)の面積(HCl)と、エーテル結合の酸素原子が結合するベンゼン環の炭素に隣接する炭素に結合するプロトンのシグナル(7.4ppm)の面積(HO)から、繰返し単位1モルあたりのクロロ基のモル数(HCl/(HO/2))を求め、これに繰返し単位の式量を掛けることにより求めた。 [Measurement of the number of terminal halogen groups in polysulfone (mol / g)]
Here, an example in which the terminal halogen group is a chloro group will be described.
Using a 400 MHz nuclear magnetic resonance apparatus (“AL-400” manufactured by JEOL Ltd.), a proton NMR spectrum was measured for a deuterated DMSO solution of polysulfone having a concentration of 1 mg / ml at an accumulation count of 100 times. Bonded to the carbon adjacent to the carbon of the benzene ring to which the oxygen atom of the ether bond is bonded and the area (H Cl ) of the proton signal (7.78 ppm) bonded to the carbon adjacent to the carbon of the benzene ring to which the chloro group is bonded The number of moles of chloro group per mole of repeating units (H Cl / (H O / 2)) is determined from the area (H O ) of the proton signal (7.4 ppm), and the formula weight of the repeating unit Obtained by multiplying.
ここでは、末端ハロゲン基がクロロ基であるものを例に説明する。
400MHz核磁気共鳴装置(日本電子(株)の「AL-400」)を用い、濃度1mg/mlのポリスルホンの重水素化DMSO溶液について、積算回数100回でプロトンNMRスペクトルを測定した。クロロ基が結合するベンゼン環の炭素に隣接する炭素に結合するプロトンのシグナル(7.78ppm)の面積(HCl)と、エーテル結合の酸素原子が結合するベンゼン環の炭素に隣接する炭素に結合するプロトンのシグナル(7.4ppm)の面積(HO)から、繰返し単位1モルあたりのクロロ基のモル数(HCl/(HO/2))を求め、これに繰返し単位の式量を掛けることにより求めた。 [Measurement of the number of terminal halogen groups in polysulfone (mol / g)]
Here, an example in which the terminal halogen group is a chloro group will be described.
Using a 400 MHz nuclear magnetic resonance apparatus (“AL-400” manufactured by JEOL Ltd.), a proton NMR spectrum was measured for a deuterated DMSO solution of polysulfone having a concentration of 1 mg / ml at an accumulation count of 100 times. Bonded to the carbon adjacent to the carbon of the benzene ring to which the oxygen atom of the ether bond is bonded and the area (H Cl ) of the proton signal (7.78 ppm) bonded to the carbon adjacent to the carbon of the benzene ring to which the chloro group is bonded The number of moles of chloro group per mole of repeating units (H Cl / (H O / 2)) is determined from the area (H O ) of the proton signal (7.4 ppm), and the formula weight of the repeating unit Obtained by multiplying.
〔ポリスルホン中の全末端基に占めるハロゲン基の割合及びヒドロキシル基類の割合の算出〕
先に求めたポリスルホン中の末端ヒドロキシル基類の個数と末端ハロゲン基の個数とから、次の式により求めた。
[全末端基に占めるヒドロキシル基類の割合]=[末端ヒドロキシル基類の個数]/([末端ヒドロキシル基類の個数]+[末端ハロゲン基の個数])
[全末端基に占めるハロゲン基の割合]=[末端ハロゲン基の個数]/([末端ヒドロキシル基類の個数]+[末端ハロゲン基の個数]) [Calculation of the proportion of halogen groups and the proportion of hydroxyl groups in all terminal groups in polysulfone]
It calculated | required by the following formula from the number of terminal hydroxyl groups in the polysulfone calculated | required previously, and the number of terminal halogen groups.
[Ratio of hydroxyl groups in all terminal groups] = [number of terminal hydroxyl groups] / ([number of terminal hydroxyl groups] + [number of terminal halogen groups])
[Proportion of halogen groups in all terminal groups] = [Number of terminal halogen groups] / ([Number of terminal hydroxyl groups] + [Number of terminal halogen groups])
先に求めたポリスルホン中の末端ヒドロキシル基類の個数と末端ハロゲン基の個数とから、次の式により求めた。
[全末端基に占めるヒドロキシル基類の割合]=[末端ヒドロキシル基類の個数]/([末端ヒドロキシル基類の個数]+[末端ハロゲン基の個数])
[全末端基に占めるハロゲン基の割合]=[末端ハロゲン基の個数]/([末端ヒドロキシル基類の個数]+[末端ハロゲン基の個数]) [Calculation of the proportion of halogen groups and the proportion of hydroxyl groups in all terminal groups in polysulfone]
It calculated | required by the following formula from the number of terminal hydroxyl groups in the polysulfone calculated | required previously, and the number of terminal halogen groups.
[Ratio of hydroxyl groups in all terminal groups] = [number of terminal hydroxyl groups] / ([number of terminal hydroxyl groups] + [number of terminal halogen groups])
[Proportion of halogen groups in all terminal groups] = [Number of terminal halogen groups] / ([Number of terminal hydroxyl groups] + [Number of terminal halogen groups])
〔ポリスルホンの加熱減量の測定〕
〈加熱減量〉
熱重量分析装置((株)島津製作所の「TGA-50」)を用いて、ポリスルホン約10mgを窒素流通下、室温から600℃まで、10℃/分の速度で昇温し、10質量%減量する温度を測定した。 [Measurement of heat loss of polysulfone]
<Heating loss>
Using a thermogravimetric analyzer (“TGA-50” from Shimadzu Corporation), about 10 mg of polysulfone was heated from room temperature to 600 ° C. under nitrogen flow at a rate of 10 ° C./min, and reduced by 10 mass%. The temperature to be measured was measured.
〈加熱減量〉
熱重量分析装置((株)島津製作所の「TGA-50」)を用いて、ポリスルホン約10mgを窒素流通下、室温から600℃まで、10℃/分の速度で昇温し、10質量%減量する温度を測定した。 [Measurement of heat loss of polysulfone]
<Heating loss>
Using a thermogravimetric analyzer (“TGA-50” from Shimadzu Corporation), about 10 mg of polysulfone was heated from room temperature to 600 ° C. under nitrogen flow at a rate of 10 ° C./min, and reduced by 10 mass%. The temperature to be measured was measured.
参考例1(クロロ末端ポリスルホン(1)の調製)
撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’-ジクロロジフェニルスルホン614.2g(2.14モル)、4,4’-ジヒドロキシジフェニルスルホン525.0g(2.10モル)、及び重合溶媒としてジフェニルスルホン784.0gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム300.8gを加え、290℃まで徐々に昇温し、290℃で2時間反応させた。反応終了後、反応液を室温まで冷却し、固化した反応マスを、細かく粉砕した後、温水により洗浄して塩化カリウムを除去した。さらに、アセトンとメタノールの混合溶媒での洗浄を数回行い、重合溶媒であるジフェニルスルホンを除去し、次いで水で洗浄した後、150℃で加熱乾燥を行った。得られた粉末状のポリスルホンの平均粒径は500μmであった。このポリスルホンの還元粘度は、0.52dl/gであった。 Reference Example 1 (Preparation of chloro-terminated polysulfone (1))
In a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 614.2 g (2.14 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate The mixture was gradually heated to 290 ° C. and reacted at 290 ° C. for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating. The average particle diameter of the obtained powdery polysulfone was 500 μm. The reduced viscosity of this polysulfone was 0.52 dl / g.
撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’-ジクロロジフェニルスルホン614.2g(2.14モル)、4,4’-ジヒドロキシジフェニルスルホン525.0g(2.10モル)、及び重合溶媒としてジフェニルスルホン784.0gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム300.8gを加え、290℃まで徐々に昇温し、290℃で2時間反応させた。反応終了後、反応液を室温まで冷却し、固化した反応マスを、細かく粉砕した後、温水により洗浄して塩化カリウムを除去した。さらに、アセトンとメタノールの混合溶媒での洗浄を数回行い、重合溶媒であるジフェニルスルホンを除去し、次いで水で洗浄した後、150℃で加熱乾燥を行った。得られた粉末状のポリスルホンの平均粒径は500μmであった。このポリスルホンの還元粘度は、0.52dl/gであった。 Reference Example 1 (Preparation of chloro-terminated polysulfone (1))
In a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 614.2 g (2.14 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate The mixture was gradually heated to 290 ° C. and reacted at 290 ° C. for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating. The average particle diameter of the obtained powdery polysulfone was 500 μm. The reduced viscosity of this polysulfone was 0.52 dl / g.
参考例2(クロロ末端ポリスルホン(2)の調製)
撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’-ジクロロジフェニルスルホン609.3g(2.12モル)、4,4’-ジヒドロキシジフェニルスルホン525.0g(2.10モル)、及び重合溶媒としてジフェニルスルホン784.0gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム300.8gを加え。290℃まで徐々に昇温し、290℃で2時間反応させた。反応終了後、反応液を室温まで冷却し、固化した反応マスを、細かく粉砕した後、温水により洗浄して塩化カリウムを除去した。さらに、アセトンとメタノールの混合溶媒での洗浄を数回行い、重合溶媒であるジフェニルスルホンを除去し、次いで水で洗浄した後、150℃で加熱乾燥を行った。得られた粉末状のポリスルホンの平均粒径は500μmであった。このポリスルホンの還元粘度は、0.76dl/gであった。 Reference Example 2 (Preparation of chloro-terminated polysulfone (2))
In a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 4,9.3 ′ (2.12 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate Add. The temperature was gradually raised to 290 ° C., and the reaction was carried out at 290 ° C. for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating. The average particle diameter of the obtained powdery polysulfone was 500 μm. The reduced viscosity of this polysulfone was 0.76 dl / g.
撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた容量2000mlの重合槽に、4,4’-ジクロロジフェニルスルホン609.3g(2.12モル)、4,4’-ジヒドロキシジフェニルスルホン525.0g(2.10モル)、及び重合溶媒としてジフェニルスルホン784.0gを入れ、系内に窒素ガスを流通させながら180℃まで昇温した後、無水炭酸カリウム300.8gを加え。290℃まで徐々に昇温し、290℃で2時間反応させた。反応終了後、反応液を室温まで冷却し、固化した反応マスを、細かく粉砕した後、温水により洗浄して塩化カリウムを除去した。さらに、アセトンとメタノールの混合溶媒での洗浄を数回行い、重合溶媒であるジフェニルスルホンを除去し、次いで水で洗浄した後、150℃で加熱乾燥を行った。得られた粉末状のポリスルホンの平均粒径は500μmであった。このポリスルホンの還元粘度は、0.76dl/gであった。 Reference Example 2 (Preparation of chloro-terminated polysulfone (2))
In a polymerization tank having a capacity of 2000 ml equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 4,9.3 ′ (2.12 mol) of 4,4′-dichlorodiphenylsulfone, 4,4 After putting 525.0 g (2.10 mol) of '-dihydroxydiphenylsulfone and 784.0 g of diphenylsulfone as a polymerization solvent and raising the temperature to 180 ° C. while flowing nitrogen gas through the system, 300.8 g of anhydrous potassium carbonate Add. The temperature was gradually raised to 290 ° C., and the reaction was carried out at 290 ° C. for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the solidified reaction mass was finely pulverized and then washed with warm water to remove potassium chloride. Further, washing with a mixed solvent of acetone and methanol was performed several times to remove diphenylsulfone as a polymerization solvent, and then washing with water, followed by drying at 150 ° C. by heating. The average particle diameter of the obtained powdery polysulfone was 500 μm. The reduced viscosity of this polysulfone was 0.76 dl / g.
〔水酸化アルミニウム〕
水酸化アルミニウムとして、住友化学(株)の「CW-375HT」を用いた。この水酸化アルミニウムは、昇温速度10℃/分でのDSC測定にて、吸熱開始200℃、吸熱ピーク300℃を有しており、理論放出水分量は34.6質量%である。 [Aluminum hydroxide]
As aluminum hydroxide, “CW-375HT” manufactured by Sumitomo Chemical Co., Ltd. was used. This aluminum hydroxide has an endothermic onset of 200 ° C. and an endothermic peak of 300 ° C. by DSC measurement at a temperature rising rate of 10 ° C./min, and the theoretically released water content is 34.6% by mass.
水酸化アルミニウムとして、住友化学(株)の「CW-375HT」を用いた。この水酸化アルミニウムは、昇温速度10℃/分でのDSC測定にて、吸熱開始200℃、吸熱ピーク300℃を有しており、理論放出水分量は34.6質量%である。 [Aluminum hydroxide]
As aluminum hydroxide, “CW-375HT” manufactured by Sumitomo Chemical Co., Ltd. was used. This aluminum hydroxide has an endothermic onset of 200 ° C. and an endothermic peak of 300 ° C. by DSC measurement at a temperature rising rate of 10 ° C./min, and the theoretically released water content is 34.6% by mass.
実施例1
攪拌翼、冷却管(ジムロート(水冷))、窒素導入管、及び温度計を備えた500mlのSUS製セパラブルフラスコに、クロロ末端ポリスルホン(1)166.6g、及び溶媒としてジフェニルスルホン(DPS)230.0gを入れ、窒素ガス流通下、攪拌しながら、オイルバスを用いて285℃に昇温し、溶融、溶解させた。なお、ポリスルホン濃度は42質量%である。溶解、内温が安定した後、微粉状の無水炭酸カリウム1.98gを添加して分散させ、次いで水酸化アルミニウム5.0gを添加して、15分間攪拌した。 Example 1
In a 500 ml SUS separable flask equipped with a stirring blade, a cooling tube (Dimroth (water cooling)), a nitrogen introduction tube, and a thermometer, 166.6 g of chloro-terminated polysulfone (1) and diphenylsulfone (DPS) 230 as a solvent were used. 0.0 g was added, and the mixture was heated to 285 ° C. using an oil bath while stirring under a nitrogen gas flow, and melted and dissolved. The polysulfone concentration is 42% by mass. After dissolution and the internal temperature were stabilized, 1.98 g of finely powdered anhydrous potassium carbonate was added and dispersed, and then 5.0 g of aluminum hydroxide was added and stirred for 15 minutes.
攪拌翼、冷却管(ジムロート(水冷))、窒素導入管、及び温度計を備えた500mlのSUS製セパラブルフラスコに、クロロ末端ポリスルホン(1)166.6g、及び溶媒としてジフェニルスルホン(DPS)230.0gを入れ、窒素ガス流通下、攪拌しながら、オイルバスを用いて285℃に昇温し、溶融、溶解させた。なお、ポリスルホン濃度は42質量%である。溶解、内温が安定した後、微粉状の無水炭酸カリウム1.98gを添加して分散させ、次いで水酸化アルミニウム5.0gを添加して、15分間攪拌した。 Example 1
In a 500 ml SUS separable flask equipped with a stirring blade, a cooling tube (Dimroth (water cooling)), a nitrogen introduction tube, and a thermometer, 166.6 g of chloro-terminated polysulfone (1) and diphenylsulfone (DPS) 230 as a solvent were used. 0.0 g was added, and the mixture was heated to 285 ° C. using an oil bath while stirring under a nitrogen gas flow, and melted and dissolved. The polysulfone concentration is 42% by mass. After dissolution and the internal temperature were stabilized, 1.98 g of finely powdered anhydrous potassium carbonate was added and dispersed, and then 5.0 g of aluminum hydroxide was added and stirred for 15 minutes.
攪拌終了後、直ちに反応液を150℃で熱時濾過して、水酸化アルミニウム残渣及び炭酸カリウム残渣を濾別し、その濾液を濃度0.1質量%の塩酸メタノール1000mlに滴下し、ポリスルホンを析出させた。濾紙上を100mlずつのN-メチルピロリドンで3回洗浄し、洗液はそのまま上記塩酸メタノール中に滴下した。析出したポリスルホンを1000mlの水で2回、1000mlのメタノールで1回洗浄した後、回収して、150℃で真空乾燥した。得られたポリスルホンは白色粉末状であった。このポリスルホンの収率(回収ポリスルホン質量/原料ポリスルホン質量)、還元粘度、全末端基に占めるクロロ基の割合及びヒドロキシル基類の割合、並びに加熱減量を表1に示す。
Immediately after the stirring, the reaction solution was filtered hot at 150 ° C. to separate aluminum hydroxide residue and potassium carbonate residue, and the filtrate was added dropwise to 1000 ml of hydrochloric acid methanol having a concentration of 0.1% by mass to precipitate polysulfone. I let you. The filter paper was washed three times with 100 ml each of N-methylpyrrolidone, and the washing solution was dropped into the hydrochloric acid methanol as it was. The precipitated polysulfone was washed twice with 1000 ml of water and once with 1000 ml of methanol, and then recovered and vacuum dried at 150 ° C. The resulting polysulfone was in the form of a white powder. The yield of this polysulfone (recovered polysulfone mass / raw material polysulfone mass), reduced viscosity, ratio of chloro group and hydroxyl group in all terminal groups, and loss on heating are shown in Table 1.
実施例2、3
水酸化アルミニウムを1.85g(実施例2)又は200g(実施例3)用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Examples 2 and 3
The same operation as in Example 1 was carried out except that 1.85 g (Example 2) or 200 g (Example 3) of aluminum hydroxide was used. The results are shown in Table 1.
水酸化アルミニウムを1.85g(実施例2)又は200g(実施例3)用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Examples 2 and 3
The same operation as in Example 1 was carried out except that 1.85 g (Example 2) or 200 g (Example 3) of aluminum hydroxide was used. The results are shown in Table 1.
実施例4
反応溶媒としてN-メチルピロリドンを用い、反応温度を200℃とし、反応時間を60分としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 4
The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 200 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
反応溶媒としてN-メチルピロリドンを用い、反応温度を200℃とし、反応時間を60分としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 4
The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 200 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
実施例5
反応温度を300℃としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 5
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 300 ° C. The results are shown in Table 1.
反応温度を300℃としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 5
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 300 ° C. The results are shown in Table 1.
実施例6、7
反応時間を70分(実施例6)又は40分(実施例7)としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Examples 6 and 7
The reaction was carried out in the same manner as in Example 1 except that the reaction time was 70 minutes (Example 6) or 40 minutes (Example 7). The results are shown in Table 1.
反応時間を70分(実施例6)又は40分(実施例7)としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Examples 6 and 7
The reaction was carried out in the same manner as in Example 1 except that the reaction time was 70 minutes (Example 6) or 40 minutes (Example 7). The results are shown in Table 1.
実施例8
原料のポリスルホンとしてクロロ末端ポリスルホン(2)を用い、溶媒のジフェニルスルホンの使用量を330.0gとしたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 8
The same procedure as in Example 1 was carried out except that chloro-terminated polysulfone (2) was used as the raw material polysulfone and the amount of diphenylsulfone used as the solvent was 330.0 g. The results are shown in Table 1.
原料のポリスルホンとしてクロロ末端ポリスルホン(2)を用い、溶媒のジフェニルスルホンの使用量を330.0gとしたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 8
The same procedure as in Example 1 was carried out except that chloro-terminated polysulfone (2) was used as the raw material polysulfone and the amount of diphenylsulfone used as the solvent was 330.0 g. The results are shown in Table 1.
実施例9
反応温度を360℃としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 9
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 360 ° C. The results are shown in Table 1.
反応温度を360℃としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Example 9
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 360 ° C. The results are shown in Table 1.
比較例1
攪拌翼、冷却管(ジムロート(水冷))、窒素導入管、及び温度計を備えた500mlのガラス製セパラブルフラスコに、クロロ末端ポリスルホン(1)20.0g、溶媒としてN-メチルピロリドン(NMP)200ml、水5.4g、及び無水炭酸カリウム2.8gを入れ、窒素ガス流通下、攪拌しながら、オイルバスを用いて150℃に昇温し、その温度で15分間反応を継続した。 Comparative Example 1
In a 500 ml glass separable flask equipped with a stirring blade, a cooling tube (Dimroth (water-cooled)), a nitrogen introduction tube, and a thermometer, 20.0 g of chloro-terminated polysulfone (1) and N-methylpyrrolidone (NMP) as a solvent 200 ml, 5.4 g of water, and 2.8 g of anhydrous potassium carbonate were added, the temperature was raised to 150 ° C. using an oil bath while stirring under a nitrogen gas flow, and the reaction was continued at that temperature for 15 minutes.
攪拌翼、冷却管(ジムロート(水冷))、窒素導入管、及び温度計を備えた500mlのガラス製セパラブルフラスコに、クロロ末端ポリスルホン(1)20.0g、溶媒としてN-メチルピロリドン(NMP)200ml、水5.4g、及び無水炭酸カリウム2.8gを入れ、窒素ガス流通下、攪拌しながら、オイルバスを用いて150℃に昇温し、その温度で15分間反応を継続した。 Comparative Example 1
In a 500 ml glass separable flask equipped with a stirring blade, a cooling tube (Dimroth (water-cooled)), a nitrogen introduction tube, and a thermometer, 20.0 g of chloro-terminated polysulfone (1) and N-methylpyrrolidone (NMP) as a solvent 200 ml, 5.4 g of water, and 2.8 g of anhydrous potassium carbonate were added, the temperature was raised to 150 ° C. using an oil bath while stirring under a nitrogen gas flow, and the reaction was continued at that temperature for 15 minutes.
反応終了後、直ちに、反応液を150℃で熱時濾過して、炭酸カリウム残渣を濾過し、その濾液を濃度0.1質量%の塩酸メタノール500mlに滴下し、ポリスルホンを析出させた。濾紙上を100mlずつのN-メチルピロリドンで3回洗浄し、洗液はそのまま上記塩酸メタノール中に滴下した。析出したポリスルホンを500mlの水で2回、500mlのメタノールで1回洗浄した後、回収して、150℃で真空乾燥した。得られたポリスルホンは白色粉末状であった。このポリスルホンの収率(回収ポリスルホン質量/原料ポリスルホン質量)、還元粘度、全末端基に占めるクロロ基の割合及びヒドロキシル基類の割合、並びに加熱減量を表1に示す。
Immediately after completion of the reaction, the reaction solution was filtered while heated at 150 ° C. to remove potassium carbonate residue, and the filtrate was added dropwise to 500 ml of hydrochloric acid methanol having a concentration of 0.1% by mass to precipitate polysulfone. The filter paper was washed three times with 100 ml each of N-methylpyrrolidone, and the washing solution was dropped into the hydrochloric acid methanol as it was. The precipitated polysulfone was washed twice with 500 ml of water and once with 500 ml of methanol, and then recovered and vacuum dried at 150 ° C. The resulting polysulfone was in the form of a white powder. The yield of this polysulfone (recovered polysulfone mass / raw material polysulfone mass), reduced viscosity, ratio of chloro group and hydroxyl group in all terminal groups, and loss on heating are shown in Table 1.
比較例2、3
反応時間を60分(比較例2)又は300分(比較例3)としたこと以外は、比較例1と同様に実施した。結果を表1に示す。 Comparative Examples 2 and 3
The reaction was carried out in the same manner as Comparative Example 1 except that the reaction time was 60 minutes (Comparative Example 2) or 300 minutes (Comparative Example 3). The results are shown in Table 1.
反応時間を60分(比較例2)又は300分(比較例3)としたこと以外は、比較例1と同様に実施した。結果を表1に示す。 Comparative Examples 2 and 3
The reaction was carried out in the same manner as Comparative Example 1 except that the reaction time was 60 minutes (Comparative Example 2) or 300 minutes (Comparative Example 3). The results are shown in Table 1.
比較例4
無水炭酸カリウムを1.12g用い、水を1.08g用い、反応時間を300分としたこと以外は、比較例1と同様に実施した。結果を表1に示す。 Comparative Example 4
The same procedure as in Comparative Example 1 was performed except that 1.12 g of anhydrous potassium carbonate was used, 1.08 g of water was used, and the reaction time was 300 minutes. The results are shown in Table 1.
無水炭酸カリウムを1.12g用い、水を1.08g用い、反応時間を300分としたこと以外は、比較例1と同様に実施した。結果を表1に示す。 Comparative Example 4
The same procedure as in Comparative Example 1 was performed except that 1.12 g of anhydrous potassium carbonate was used, 1.08 g of water was used, and the reaction time was 300 minutes. The results are shown in Table 1.
比較例5
反応溶媒としてN-メチルピロリドンを用い、反応温度を80℃とし、反応時間を60分としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Comparative Example 5
The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 80 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
反応溶媒としてN-メチルピロリドンを用い、反応温度を80℃とし、反応時間を60分としたこと以外は、実施例1と同様に実施した。結果を表1に示す。 Comparative Example 5
The same procedure as in Example 1 was performed except that N-methylpyrrolidone was used as a reaction solvent, the reaction temperature was 80 ° C., and the reaction time was 60 minutes. The results are shown in Table 1.
Claims (12)
- 末端にハロゲン原子を有するポリスルホンと塩基性化合物と溶媒とを含む混合物を、所定温度に加熱し、前記所定温度で水を発生する金属化合物と混合することを特徴とする末端にヒドロキシル基及び/又はその塩を有するポリスルホンの製造方法。 A mixture containing a polysulfone having a halogen atom at a terminal, a basic compound, and a solvent is heated to a predetermined temperature and mixed with a metal compound that generates water at the predetermined temperature, and the terminal hydroxyl group and / or A method for producing polysulfone having the salt.
- 前記所定温度が、100~350℃である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the predetermined temperature is 100 to 350 ° C.
- 末端にハロゲン原子を有する前記ポリスルホンが、下記式(1)で表される繰返し単位を有するポリスルホンである請求項1に記載の製造方法。
式(1):-Ph1-SO2-Ph2-O-
(Ph1及びPh2は、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基又はハロゲン原子で置換されていてもよい。) The production method according to claim 1, wherein the polysulfone having a halogen atom at the terminal is a polysulfone having a repeating unit represented by the following formula (1).
Formula (1): —Ph 1 —SO 2 —Ph 2 —O—
(Ph 1 and Ph 2 each independently represent a phenylene group. The hydrogen atoms in the phenylene group may each independently be substituted with an alkyl group, an aryl group, or a halogen atom.) - 前記塩基性化合物が、炭酸のアルカリ金属塩である請求項1に記載の製造方法。 The method according to claim 1, wherein the basic compound is an alkali metal carbonate.
- 前記溶媒が、非プロトン性溶媒である請求項1に記載の製造方法。 The production method according to claim 1, wherein the solvent is an aprotic solvent.
- 前記金属化合物が、金属水酸化物である請求項1に記載の製造方法。 The method according to claim 1, wherein the metal compound is a metal hydroxide.
- 前記金属化合物の使用量が、前記金属化合物が発生する水の量で表して、末端にハロゲン原子を有する前記ポリスルホンに対し、0.01~10モル倍である請求項1に記載の製造方法。 The production method according to claim 1, wherein the amount of the metal compound used is expressed in terms of the amount of water generated by the metal compound and is 0.01 to 10 mole times the polysulfone having a halogen atom at the terminal.
- 末端にハロゲン原子を有する前記ポリスルホン中の全末端基に占める前記ハロゲン原子の割合が、60モル%以上である請求項1に記載の製造方法。 2. The production method according to claim 1, wherein the proportion of the halogen atoms in all terminal groups in the polysulfone having a halogen atom at the terminal is 60 mol% or more.
- 末端にヒドロキシル基及び/又はその塩を有する前記ポリスルホン中の全末端基に占める前記ヒドロキシル基及びその塩の割合が、60モル%以上である請求項1に記載の製造方法。 2. The production method according to claim 1, wherein a ratio of the hydroxyl group and a salt thereof to all terminal groups in the polysulfone having a hydroxyl group and / or a salt thereof at a terminal is 60 mol% or more.
- 末端にハロゲン原子を有する前記ポリスルホンの還元粘度が、0.2~0.9(dl/g)である請求項1に記載の製造方法。 The production method according to claim 1, wherein the reduced viscosity of the polysulfone having a halogen atom at a terminal is 0.2 to 0.9 (dl / g).
- 末端にヒドロキシル基及び/又はその塩を有する前記ポリスルホンの還元粘度が、0.2~0.7dl/gである請求項1に記載の製造方法。 The production method according to claim 1, wherein the reduced viscosity of the polysulfone having a hydroxyl group and / or a salt thereof at a terminal is 0.2 to 0.7 dl / g.
- 全末端基に占めるヒドロキシル基及び/又はその塩の割合が60モル%以上であり、還元粘度が0.5~0.7dl/gであるポリスルホン。 Polysulfone having a hydroxyl group and / or salt ratio of 60 mol% or more in all terminal groups and a reduced viscosity of 0.5 to 0.7 dl / g.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011078752A JP2012211289A (en) | 2011-03-31 | 2011-03-31 | Method for producing hydroxy-terminated polysulfone |
JP2011-078752 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133640A1 true WO2012133640A1 (en) | 2012-10-04 |
Family
ID=46931342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058342 WO2012133640A1 (en) | 2011-03-31 | 2012-03-29 | Method for producing hydroxyl-terminated polysulfone |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012211289A (en) |
WO (1) | WO2012133640A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073740A (en) * | 2022-07-19 | 2022-09-20 | 宁夏清研高分子新材料有限公司 | Polysulfone polymer and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01315422A (en) * | 1988-06-14 | 1989-12-20 | Daicel Chem Ind Ltd | Aromatic polysulfone |
JPH0341120A (en) * | 1989-07-07 | 1991-02-21 | Daicel Chem Ind Ltd | Aromatic polysulfone copolymer and its production |
JPH07173394A (en) * | 1993-12-17 | 1995-07-11 | Ube Ind Ltd | Thermoplastic resin composition |
JP2000095863A (en) * | 1998-09-25 | 2000-04-04 | Sumitomo Chem Co Ltd | Thermoplastic aromatic polysulfone resin |
JP2010001447A (en) * | 2008-02-28 | 2010-01-07 | Toray Ind Inc | Manufacturing method for aromatic polyether sulfone having hydroxyphenyl terminal end group |
JP2011178830A (en) * | 2010-02-26 | 2011-09-15 | Sumitomo Chemical Co Ltd | Thermoplastic resin composition and molded article thereof |
JP2012097139A (en) * | 2010-10-29 | 2012-05-24 | Sumitomo Chemical Co Ltd | Poly-sulfone composition |
-
2011
- 2011-03-31 JP JP2011078752A patent/JP2012211289A/en not_active Withdrawn
-
2012
- 2012-03-29 WO PCT/JP2012/058342 patent/WO2012133640A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01315422A (en) * | 1988-06-14 | 1989-12-20 | Daicel Chem Ind Ltd | Aromatic polysulfone |
JPH0341120A (en) * | 1989-07-07 | 1991-02-21 | Daicel Chem Ind Ltd | Aromatic polysulfone copolymer and its production |
JPH07173394A (en) * | 1993-12-17 | 1995-07-11 | Ube Ind Ltd | Thermoplastic resin composition |
JP2000095863A (en) * | 1998-09-25 | 2000-04-04 | Sumitomo Chem Co Ltd | Thermoplastic aromatic polysulfone resin |
JP2010001447A (en) * | 2008-02-28 | 2010-01-07 | Toray Ind Inc | Manufacturing method for aromatic polyether sulfone having hydroxyphenyl terminal end group |
JP2011178830A (en) * | 2010-02-26 | 2011-09-15 | Sumitomo Chemical Co Ltd | Thermoplastic resin composition and molded article thereof |
JP2012097139A (en) * | 2010-10-29 | 2012-05-24 | Sumitomo Chemical Co Ltd | Poly-sulfone composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073740A (en) * | 2022-07-19 | 2022-09-20 | 宁夏清研高分子新材料有限公司 | Polysulfone polymer and preparation method thereof |
CN115073740B (en) * | 2022-07-19 | 2023-08-29 | 宁夏清研高分子新材料有限公司 | Polysulfone polymer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2012211289A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2053074B1 (en) | Method for producing acid radical-containing polyarylene sulfide resin | |
WO2012133641A1 (en) | Method for producing polysulfone having reduced amount of contained halogens | |
JP5774003B2 (en) | Method for producing polybiphenylsulfone polymer with less halogen | |
JP4761173B2 (en) | Method for producing polyarylene sulfide resin | |
CN109563268B (en) | Method for preparing polyphenylene sulfide and high viscosity polyphenylene sulfide prepared by using same | |
JP4953020B2 (en) | Method for producing polyarylene sulfide resin | |
JP6845403B2 (en) | Polyarylene sulfide resin and its production method, and poly (arylene sulfonium salt) and its production method. | |
JP2002212292A (en) | Manufacturing method of polyarylene sulfide resin | |
JP5221837B2 (en) | Method for purifying polyarylene sulfide | |
WO2017130798A1 (en) | Polyarylene sulfide resin and method for producing same | |
JPH09296042A (en) | Production of polyarylene sulfide | |
JP2018502973A (en) | Desalination of polyarylethers using melt extraction | |
WO2012133640A1 (en) | Method for producing hydroxyl-terminated polysulfone | |
JP2010095614A (en) | Process for producing polyetheretherketone | |
JP5888556B2 (en) | Cross-linked polyarylene sulfide resin and method for producing the same | |
JP2012211291A (en) | Method for producing polysulfone | |
JP6370618B2 (en) | Aromatic polyether, method for producing the same, and adhesive composition | |
JPS59219332A (en) | Production of polyphenylene sulfide | |
WO2016136738A1 (en) | Polyarylene sulfide resin, method for producing same, poly(arylene sulfonium salt), and method for producing poly(arylene sulfonium salt) | |
JP2011068862A (en) | Water dispersion of aromatic polysulfone resin particle | |
JP6119252B2 (en) | Method for producing polyarylene sulfide resin | |
JPH0532780A (en) | Production of aromatic sulfide/ketone polymer | |
US20150080537A1 (en) | Method for Preparing Polyethersulfone | |
JPH0269527A (en) | New aromatic polyethersulfone, and its manufacture and use | |
JP6202298B2 (en) | Method for producing polyarylene sulfide resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12765333 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12765333 Country of ref document: EP Kind code of ref document: A1 |