WO2012133373A1 - Method for producing magnetic-disk glass substrate - Google Patents

Method for producing magnetic-disk glass substrate Download PDF

Info

Publication number
WO2012133373A1
WO2012133373A1 PCT/JP2012/057870 JP2012057870W WO2012133373A1 WO 2012133373 A1 WO2012133373 A1 WO 2012133373A1 JP 2012057870 W JP2012057870 W JP 2012057870W WO 2012133373 A1 WO2012133373 A1 WO 2012133373A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
substrate precursor
precursor
main surface
Prior art date
Application number
PCT/JP2012/057870
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to JP2013507589A priority Critical patent/JPWO2012133373A1/en
Publication of WO2012133373A1 publication Critical patent/WO2012133373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass

Definitions

  • the present invention relates to a method for producing a glass substrate for a magnetic disk.
  • the recording capacity of magnetic recording media has become higher.
  • the gap (head flying height) between the magnetic recording medium and the head for reading and writing the recording has decreased to a level of several nm.
  • head flying height decreases, the head and the magnetic recording medium collide with each other to cause a phenomenon called head crash, which easily causes a read / write error of the hard disk.
  • the above error There are several possible causes of the above error, and one of the causes is the influence of deposits adhering to the surface of the glass substrate.
  • the adhering matter adheres to the surface of the glass substrate, so that the head flying height becomes non-uniform and head crushing tends to occur.
  • the above deposits may be iron, oxides thereof, carbon, and the like that are slightly present in the environment. Among these, in particular, cerium oxide tends to remain on the glass substrate. For this reason, various attempts have been made so far to remove cerium oxide adhering to the surface of the glass substrate.
  • Patent Document 1 the surface of a glass substrate is polished with cerium oxide, and then the main surface of the glass substrate is etched to remove cerium oxide attached to the surface of the glass substrate. A method of removing is disclosed.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a method of manufacturing a glass substrate for a magnetic disk that can obtain a stable head flying height when taken into a hard disk. is there.
  • the cause of non-uniform head flying height of the glass substrate produced by the method of Patent Document 1 is that the flatness and smoothness of the end surface portion of the glass substrate are inferior. I found. Furthermore, when the cause of inferior flatness and smoothness of the end face portion was examined, in the cleaning step of removing the main surface of the glass substrate, the sag of the etching solution occurs when the glass substrate is pulled up from the cleaning solution. It was found that the outer peripheral side was excessively etched when viewed from the center side of the glass substrate due to liquid sag.
  • the method for producing a glass substrate for a magnetic disk of the present invention includes a step of polishing the main surface of a disk-shaped glass substrate precursor, and the step of polishing the main surface includes at least a rough polishing step.
  • This is a two-stage polishing with a precision polishing process, and includes a cleaning process between the rough polishing process and the precision polishing process, and the cleaning process is performed at a main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is the process of removing.
  • the above washing step is preferably a step of removing the main surface of the glass substrate precursor using a solution having a surface tension of 30 to 50 mN / m.
  • a solution having a surface tension of 30 to 50 mN / m By removing the main surface of the glass substrate precursor with the etching solution having the surface tension as described above, the flatness and smoothness of the end face can be enhanced. If the surface tension is less than 30 mN / m, bubbles are likely to be generated, so that etching unevenness occurs on the entire surface of the glass substrate precursor. In addition, since bubbles tend to gather near the end face, the smoothness and flatness of the end of the glass substrate precursor are affected as a result.
  • the cleaning step is preferably a step of removing a thickness of 30 to 100 nm from the main surface of the glass substrate precursor. If the removal amount is less than 30 nm, the cleaning effect may not be sufficiently obtained. Moreover, when it exceeds 100 nm, it will affect the shape of the edge part of a glass substrate precursor.
  • the precision polishing step is preferably a step of removing a thickness of 0.3 ⁇ m or more and 5 ⁇ m or less from the main surface of the glass substrate precursor.
  • the surface roughness and waviness deteriorated in the step of removing the main surface of the glass substrate precursor cannot be corrected. If the thickness exceeding 5 ⁇ m is removed, so-called sagging occurs at the end face of the glass substrate precursor.
  • the method for producing a glass substrate for magnetic disk of the present invention has the above-described configuration, so that a glass substrate for magnetic disk capable of obtaining a stable head flying height when taken into a hard disk can be produced. Show the effect.
  • FIG. 1 is a perspective view showing an example of a glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention.
  • the glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive apparatus.
  • Such a glass substrate for a magnetic disk has a disk shape as shown in FIG. 1, and a hole 1H is formed at the center thereof.
  • the surface of the glass substrate 1 for magnetic disks means the front main surface 1A, the back main surface 1B, the inner peripheral end surface 1C, and the outer peripheral end surface 1D.
  • the size and shape of the magnetic disk glass substrate 1 of the present invention are not particularly limited, and are, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch.
  • the thickness of the magnetic disk glass substrate 1 is preferably 0.30 to 2.2 mm, for example, from the viewpoint of preventing breakage.
  • the thickness of the glass substrate 1 for magnetic disks is calculated by the average of the values measured at a plurality of arbitrary points to be pointed on the glass substrate.
  • a typical example of the magnetic disk glass substrate 1 of the present invention is as follows.
  • the magnetic disk glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • a 2.5-inch hard disk uses a glass substrate for a magnetic disk having an outer diameter of 65 mm.
  • Aluminosilicate glass is preferably used as the material constituting the magnetic disk glass substrate of the present invention.
  • the composition of such an aluminosilicate glass is 58% to 75% by weight of SiO 2 , 5% to 23% by weight of Al 2 O 3 , 3% to 10% by weight of Li 2 O, 4% to 13% by weight. % Na 2 O as a main component.
  • the method for producing a glass substrate for a magnetic disk according to the present invention includes a polishing step of polishing the main surface of a disk-shaped glass substrate precursor, and the polishing step includes at least a rough polishing step and a precision polishing step.
  • This is a two-stage polishing, and includes a cleaning process between the rough polishing process and the precision polishing process, and the cleaning process is a process of removing the main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is characterized by being.
  • the glass substrate precursor is not excessively etched even if the etching solution causes dripping. Therefore, the flatness and smoothness of the glass substrate precursor can be improved.
  • the glass substrate for a magnetic disk produced in this manner has excellent flatness and smoothness, and therefore has an excellent property that head crushing hardly occurs.
  • the method for producing a glass substrate for a magnetic disk of the present invention can include other steps as long as the cleaning step is performed between the rough polishing step and the precision polishing step.
  • a direct press process for processing a molten glass into a disk shape for example, a coring process for forming a hole in the center of the glass substrate precursor, and chamfering the inner peripheral end surface and the outer peripheral end surface of the glass substrate precursor.
  • Examples thereof include an inside / outside processing step, a lapping step for grinding the main surface of the glass substrate precursor, and the like.
  • a glass substrate precursor may be produced by cutting a sheet glass formed by a draw method or a float method with a grinding wheel.
  • the method for manufacturing a glass substrate for a magnetic disk of the present invention includes a rough polishing step, a cleaning step, and a precision polishing step in this order, as long as the cleaning step removes the main surface of the glass substrate precursor at the above speed. Further, a cleaning step or a polishing step may be included between these steps, and the order of other steps may be appropriately changed.
  • a molten glass is prepared by melting a glass material.
  • the molten glass is poured into a lower mold and press-formed with an upper mold and a barrel mold to obtain a disk-shaped glass substrate precursor.
  • the process of obtaining the glass substrate precursor from the molten glass in this way is called a direct press process.
  • the production method of the present invention is not limited to the method for producing a glass substrate precursor by a direct pressing process, and a downdraw method or a float method may be used.
  • a hole is made in the central portion of the glass substrate precursor in the coring process.
  • a hole is drilled in the center by grinding with a core drill or the like equipped with a diamond grindstone or the like in the cutter part.
  • the size of the hole can be appropriately changed depending on the outer diameter of the glass substrate precursor. For example, a hole having an inner diameter of 20 mm (the diameter of the hole 1H in the center) is formed at the center of the glass substrate precursor having an outer shape of 65 mm. Open.
  • Step S30 A lapping process is performed on both the front and back surfaces of the glass substrate precursor.
  • the rough lapping is performed by, for example, a double-sided lapping apparatus.
  • the overall shape, parallelism, flatness and thickness of the glass substrate precursor can be preliminarily adjusted.
  • Step S40 Next, in the inside / outside processing step, chamfering of the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor is performed. Thereby, the flatness of the end surface of the glass substrate precursor can be increased.
  • End face polishing process Step S50
  • the outer peripheral end face and the inner peripheral end face of the glass substrate precursor are polished by a brush polishing method using a slurry (free abrasive grains) containing cerium oxide abrasive grains as polishing abrasive grains.
  • the brush polishing method the outer peripheral end face and the inner peripheral end face are polished while rotating the glass substrate precursor.
  • the inner peripheral end face of the glass substrate precursor is processed into a mirror surface state by further polishing the inner peripheral end face with a magnetic polishing method. Finally, the surface of the glass substrate precursor is washed with water.
  • Step S60 Next, in the fine lapping process, the front and back surfaces of the glass substrate precursor are ground using a fixed abrasive polishing pad.
  • a fine lapping process can be ground using a known grinding machine called a double-side grinding machine using a planetary gear mechanism.
  • This double-sided grinding machine is equipped with a disk-shaped upper and lower surface plate arranged in parallel with each other in parallel, and the front and back surfaces of the glass substrate precursor are placed on the surfaces facing the upper surface plate and the lower surface plate, respectively. A plurality of diamond pellets for grinding are attached.
  • the carrier is provided with a plurality of holes, and the glass substrate precursor is fitted into the holes and arranged.
  • the upper surface plate, the lower surface plate, the internal gear, and the sun gear can be operated by separate driving, and the upper surface plate and the lower surface plate rotate in opposite directions.
  • the carrier sandwiched between the surface plates through the diamond pellets revolves in the same direction as the lower surface plate with respect to the rotation center of the surface plate while rotating while holding a plurality of glass substrate precursors.
  • the front and back surfaces of the glass substrate precursor can be ground by supplying a grinding liquid between the upper surface plate and the glass substrate precursor and between the lower surface plate and the glass substrate precursor. it can.
  • the weight of the surface plate applied to the glass substrate precursor and the number of rotations of the surface plate are adjusted as appropriate according to the desired grinding state.
  • the weight in the first wrapping step and the second wrapping step is preferably 60 g / cm 2 to 120 g / cm 2 .
  • the rotation speed of the surface plate is about 10 rpm to 30 rpm, and the rotation speed of the upper surface plate is about 30% to 40% slower than the rotation speed of the lower surface plate.
  • Ra is preferably 0.05 to 0.4 ⁇ m, and the flatness of the main surface is 7 to 10 ⁇ m. It is preferable. By setting it as such a surface state, the polishing efficiency in the subsequent first polishing step can be enhanced.
  • the main surface polishing step performs at least two-step polishing, that is, a rough polishing step and a precision polishing step.
  • the rough polishing process is performed to remove scratches and distortions remaining on the front and back surfaces of the glass substrate precursor in the fine lapping process, and the precise polishing process is performed to mirror-finish the front and back surfaces of the glass substrate precursor. It is.
  • the method for producing a glass substrate for a magnetic disk of the present invention includes a cleaning step between the rough polishing step and the precision polishing step, and the cleaning step is performed at a main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is the process of removing. In the following, the rough polishing process, the cleaning process, and the precision polishing process in the main surface polishing process will be described in this order.
  • the glass substrate precursor is immersed in an etching solution to remove deposits such as abrasives adhering to the main surface by cleaning.
  • This cleaning step is characterized in that the main surface of the glass substrate precursor is removed at a rate of 100 nm / min or less.
  • the removal rate of the glass substrate precursor by the above washing is preferably as slow as possible from the viewpoint of not impairing the uniformity of the outer periphery of the glass substrate precursor even when sag of the etching solution occurs. If it is less than 10 nm / min, the time required for the step of cleaning the glass substrate precursor becomes too long, which is not preferable for production. When the removal rate of the glass substrate precursor exceeds 100 nm / min, the outer peripheral side of the glass substrate precursor is excessively etched by the liquid dripping after cleaning, and the uniformity on the outer peripheral side is impaired, which is not preferable.
  • the etching solution used in the cleaning process preferably has a surface tension of 30 to 50 mN / m, more preferably a surface tension of 40 to 48 mN / m.
  • a surface tension of 30 to 50 mN / m more preferably a surface tension of 40 to 48 mN / m.
  • the cleaning step it is preferable to remove the thickness of 30 to 100 nm from the main surface of the glass substrate precursor, and more preferably to remove the thickness of 35 to 80 nm. If the thickness of the removal amount is less than 30 nm, the removal amount of the glass substrate precursor is insufficient, and there is a possibility that the deposit remains on the main surface of the glass substrate precursor. The surface may be etched too much.
  • an etching solution used in the cleaning process it is preferable to use an aqueous solution in which hydrogen fluoride, ammonium hydrogen fluoride, sodium fluoride, silicon fluoride acid or the like is dissolved in water.
  • hydrogen fluoride when hydrogen fluoride is dissolved, It is more preferable to use an aqueous solution in which 0.1 to 1% by mass of hydrogen fluoride is mixed.
  • the temperature of the etching solution varies depending on the material of the etching solution, but it is preferable to immerse the glass substrate precursor in a state adjusted to 20 to 50 ° C.
  • an ultrasonic wave of about 80 kHz. Thereafter, ultrasonic cleaning at 120 kHz may be performed with a neutral detergent to further perform ultrasonic cleaning, or the main surface may be treated by rinsing with pure water.
  • Step S73 the front and back surfaces of the glass substrate precursor are polished using a polishing pad that is a soft polisher (suede) with respect to the glass substrate precursor.
  • a polishing pad that is a soft polisher (suede) with respect to the glass substrate precursor.
  • polishing process it is preferable to use a silica abrasive grain finer than the cerium oxide used at the rough
  • Step S80 It is preferable to wash and dry the glass substrate precursor after the above polishing with a neutral detergent and pure water. By performing such cleaning, foreign substances adhering to the glass substrate precursor can be washed away, and the main surface of the magnetic disk glass substrate can be stabilized and excellent in long-term storage stability. .
  • a glass substrate for a magnetic disk can be produced as described above.
  • a magnetic disk can be obtained by performing a magnetic thin film formation process with respect to the glass substrate for magnetic disks produced in this way.
  • Example 1 a glass substrate for a magnetic disk was manufactured by performing the following steps in order.
  • molten glass was prepared by melting a glass material.
  • the molten glass was poured into a lower mold and directly pressed using an upper mold and a barrel mold to obtain a disk-shaped glass substrate precursor having a diameter of 66 mm ⁇ and a thickness of 1.2 mm.
  • Aluminosilicate glass was used as the glass material.
  • the glass substrate precursor is set in a double-sided wrapping apparatus, and alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 ⁇ m) are used, and the load on the surface plate on alumina is set to about 100 kg.
  • the front and back surfaces of the glass substrate precursor were polished.
  • the glass substrate precursor thus housed in the carrier had a surface accuracy of both sides of 0 ⁇ m to 1 ⁇ m and a surface roughness Rmax of about 6 ⁇ m.
  • End face polishing step: S50 Subsequently, the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor were polished while rotating the glass substrate precursor by a brush polishing method using a slurry (free abrasive particles) containing cerium oxide abrasive grains as polishing abrasive grains. .
  • polishing was performed until the surface roughness of the outer peripheral end face and the inner peripheral end face of the glass substrate precursor was about 0.4 ⁇ m in Rmax and about 0.1 ⁇ m in Ra.
  • the inner peripheral side end face was further polished by a magnetic polishing method to be processed into a mirror surface state to prevent particles and the like from being generated. And after grind
  • both the front and back surfaces of the glass substrate precursor were set in a double-side grinding machine using a planetary gear mechanism. Then, using a diamond sheet, the weight of the platen applied to the glass substrate precursor is changed from 60 g / cm 2 to 120 g / cm 2 , the rotation speed of the platen is changed from 10 rpm to 30 rpm, and the rotation speed of the upper platen is decreased. The front and back surfaces of the glass substrate precursor were polished at a rate slower by about 30% to 40% than the platen rotation speed. Thus, lapping was performed until the surface roughness Ra of the main surface of the glass substrate precursor was 0.1 ⁇ m or less and the flatness was 7 ⁇ m or less.
  • Polishing liquid Cerium oxide (average particle size 1.3 ⁇ m) + water load: 80 to 100 g / cm 2 Polishing time: 30 to 50 minutes Removal method: 35 to 45 ⁇ m (Washing process: S72)
  • polishing agent adhering to the main surface of the said glass substrate precursor was removed by washing
  • the cleaning was performed by using an aqueous solution containing 1% by mass of HF as an etchant, immersing the glass substrate precursor in this, and etching the glass substrate precursor at an etching rate of 10 nm / min. At this time, the temperature of the etching solution was adjusted to 30 ° C., and the surface tension of the etching solution was 48 mN / m. Thereafter, ultrasonic cleaning was performed by irradiating 120 kHz ultrasonic waves with a neutral detergent, and finally, rinsing with pure water was performed to dry IPA.
  • Table 1 shows the etching rate and removal amount of the glass substrate precursor in the cleaning process, the surface tension of the solution used in the cleaning process, and the stock removal of the glass substrate precursor in the precision polishing process for Example 1 above.
  • the glass substrates for magnetic disks of Examples 2 to 10 and Comparative Example 1 were produced by the same method as in Example 1 except for the above.
  • Comparative Example 2 a glass substrate for a magnetic disk was produced by the same method as in Example 1 except that the cleaning process and the precision polishing process in the order of the processes in Example 1 were reversed. That is, the main surface of the glass substrate precursor was cleaned in the order of the rough polishing step, the precision polishing step, and the cleaning step, thereby producing a magnetic disk glass substrate of Comparative Example 2.
  • the glass substrates for magnetic disks of Examples 1 to 10 had low glide avalanche values, whereas the glass substrates for magnetic disks of Comparative Examples 1 and 2 had high glide avalanche values.
  • the cleaning process is performed between the rough polishing process and the precision polishing process, and the removal rate of the glass substrate precursor in the cleaning process is high. Since it was 100 nm / min or less, the glass substrate for magnetic disk having high flatness and smoothness could be produced without excessive etching of the outer diameter of the glass substrate precursor even when liquid dripping occurred. Conceivable.
  • the removal rate of the glass substrate precursor in the cleaning process is 120 nm / min, so that part of the outer diameter of the glass substrate precursor is excessively removed when the etching solution is dripped. As a result, the flatness and smoothness of the glass substrate for magnetic disks were impaired. Moreover, in Comparative Example 2, since the cleaning process was performed after the precision polishing, the non-uniformity of the outer shape of the glass substrate precursor generated in the cleaning process could not be adjusted in the precision polishing process.
  • the glass substrate for magnetic disk manufactured according to the manufacturing method of the present invention has high flatness and smoothness.
  • Example 6 when the cleaning process is performed using an etching solution having a high surface tension (surface tension 67 mN / m), the flatness and smoothness of the magnetic disk glass substrate are significantly reduced. there were. This is presumably because the etching liquid having a high surface tension was used to etch excessively even when liquid dripping occurred.
  • the GA value slightly increased when cleaning was performed using an etching solution having a surface tension of less than 30 mN / m. This is because the surface tension of the etching solution is small, and fine bubbles are generated in the etching solution, resulting in uneven etching and dripping, and the flatness of the end surface of the glass substrate precursor is deteriorated. it is conceivable that.
  • 1 Glass substrate precursor 1A front main surface, 1B back main surface, 1C inner peripheral end surface, 1D outer peripheral end surface, 1H hole.

Abstract

Provided is a method for producing a magnetic-disk glass substrate that can achieve a stable head levitation amount when integrated into a hard disk. This method for producing a magnetic-disk glass substrate involves a step of polishing the principal surface of a disk-shaped glass substrate precursor and is characterized in that: in the step of polishing the principal surface, at least two stages of polishing including a rough polishing step and a precise polishing step are performed; a cleaning step is performed between the rough polishing step and the precise polishing step; and the cleaning step is a step of removing the principal surface of the glass substrate precursor at a rate of 100 nm/min or less.

Description

磁気ディスク用ガラス基板の製造方法Manufacturing method of glass substrate for magnetic disk
 本発明は、磁気ディスク用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for a magnetic disk.
 近年、ハードディスクドライブ(HDD)においては、磁気記録媒体の記録容量が高密度化してきている。これに伴い、磁気記録媒体と記録の読み書きを行なうヘッドとのギャップ(ヘッド浮上量)は数nmレベルまで低下している。ヘッド浮上量が低下すると、ヘッドと磁気記録媒体とが衝突してヘッドクラッシュと呼ばれる現象が起き、ハードディスクの読み書きエラーが起こりやすくなる。 In recent years, in hard disk drives (HDD), the recording capacity of magnetic recording media has become higher. Along with this, the gap (head flying height) between the magnetic recording medium and the head for reading and writing the recording has decreased to a level of several nm. When the head flying height decreases, the head and the magnetic recording medium collide with each other to cause a phenomenon called head crash, which easily causes a read / write error of the hard disk.
 上記のエラーの原因はいくつか考えられるが、その原因の1つとしてガラス基板の表面に付着した付着物による影響を挙げることができる。すなわち、ガラス基板の表面に付着物が付着していることにより、ヘッド浮上量が不均一になりヘッドクラッシュが生じやすくなる。上記の付着物は、研磨工程で研磨剤として用いられる酸化セリウムやコロイダルシリカの他、環境にわずかに存在する鉄およびその酸化物、カーボン等の可能性が考えられる。これらの中でも、特に酸化セリウムはガラス基板に残存しやすい。このため、これまでガラス基板の表面に付着した酸化セリウムを除去する種々の試みがなされている。 There are several possible causes of the above error, and one of the causes is the influence of deposits adhering to the surface of the glass substrate. In other words, the adhering matter adheres to the surface of the glass substrate, so that the head flying height becomes non-uniform and head crushing tends to occur. In addition to cerium oxide and colloidal silica used as an abrasive in the polishing process, the above deposits may be iron, oxides thereof, carbon, and the like that are slightly present in the environment. Among these, in particular, cerium oxide tends to remain on the glass substrate. For this reason, various attempts have been made so far to remove cerium oxide adhering to the surface of the glass substrate.
 たとえば特開2008-269767号公報(特許文献1)では、酸化セリウムを用いてガラス基板の表面を研磨した後に、ガラス基板の主表面をエッチングすることにより、ガラス基板の表面に付着した酸化セリウムを除去する方法が開示されている。 For example, in Japanese Patent Application Laid-Open No. 2008-269767 (Patent Document 1), the surface of a glass substrate is polished with cerium oxide, and then the main surface of the glass substrate is etched to remove cerium oxide attached to the surface of the glass substrate. A method of removing is disclosed.
特開2008-269767号公報JP 2008-269767 A
 しかしながら、特許文献1のガラス基板を用いて作製した磁気ディスクをハードディスクに搭載して使用すると、ヘッド浮上量が不均一になり、ヘッドと衝突したり、読み書きエラーが生じたりすることがあった。 However, when a magnetic disk manufactured using the glass substrate of Patent Document 1 is mounted on a hard disk and used, the flying height of the head becomes non-uniform and may collide with the head or cause a read / write error.
 本発明は、このような状況下においてなされたものであり、その目的とするところは、ハードディスクに取り込んだ際に安定したヘッド浮上量が得られる磁気ディスク用ガラス基板の製造方法を提供することにある。 The present invention has been made under such circumstances, and an object of the present invention is to provide a method of manufacturing a glass substrate for a magnetic disk that can obtain a stable head flying height when taken into a hard disk. is there.
 本発明者らは、特許文献1の方法で作製したガラス基板のヘッド浮上量が不均一になる原因を検討したところ、ガラス基板の端面部の平坦性および平滑性が劣ることが原因であることを見出した。さらに、この端面部の平坦性および平滑性が劣る原因を検討したところ、ガラス基板の主表面を除去する洗浄工程において、ガラス基板を洗浄溶液から引き上げたときにエッチング液の液ダレが生じ、この液ダレが原因でガラス基板の中心側から見て外周側が過剰にエッチングされることに起因するのではないかとの知見を得た。 When the present inventors examined the cause of non-uniform head flying height of the glass substrate produced by the method of Patent Document 1, the cause is that the flatness and smoothness of the end surface portion of the glass substrate are inferior. I found. Furthermore, when the cause of inferior flatness and smoothness of the end face portion was examined, in the cleaning step of removing the main surface of the glass substrate, the sag of the etching solution occurs when the glass substrate is pulled up from the cleaning solution. It was found that the outer peripheral side was excessively etched when viewed from the center side of the glass substrate due to liquid sag.
 本発明者らは、かかる知見に基づき、研磨工程後のガラス基板の洗浄工程で行なうエッチングの条件に関し、鋭意検討を重ねることにより本発明を完成した。すなわち、本発明の磁気ディスク用ガラス基板の製造方法は、円盤状のガラス基板前駆体の主表面を研磨する工程を含むものであって、該主表面を研磨する工程は、少なくとも粗研磨工程と精密研磨工程との2段階の研磨を行なうものであり、粗研磨工程と精密研磨工程との間に洗浄工程を含み、該洗浄工程は、100nm/min以下の速度でガラス基板前駆体の主表面を除去する工程であることを特徴とする。 Based on this knowledge, the inventors of the present invention have completed the present invention by earnestly examining the etching conditions performed in the glass substrate cleaning process after the polishing process. That is, the method for producing a glass substrate for a magnetic disk of the present invention includes a step of polishing the main surface of a disk-shaped glass substrate precursor, and the step of polishing the main surface includes at least a rough polishing step. This is a two-stage polishing with a precision polishing process, and includes a cleaning process between the rough polishing process and the precision polishing process, and the cleaning process is performed at a main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is the process of removing.
 上記の洗浄工程は、30~50mN/mの表面張力の溶液を用いてガラス基板前駆体の主表面を除去する工程であることが好ましい。上記のような表面張力を有するエッチング液でガラス基板前駆体の主表面を除去することにより、端面部の平坦度および平滑性を高めることができる。表面張力が30mN/m未満であると、気泡が発生しやすくなるため、ガラス基板前駆体の全面にエッチングムラが発生してしまう。また、端面部付近に泡が集まりやすくなるため、結果としてガラス基板前駆体の端部の平滑性および平坦性に影響がある。また、50mN/mを超えると、ガラス基板前駆体への濡れ性が悪くなり、端部付近の平坦度および平滑性に影響がある。洗浄工程は、ガラス基板前駆体の主表面から30~100nmの厚みを除去する工程であることが好ましい。30nmより除去量が少ないと洗浄効果を十分に得ることができない可能性がある。また、100nmを超えると、ガラス基板前駆体の端部の形状に影響を与える。上記の精密研磨工程は、ガラス基板前駆体の主表面から0.3μm以上5μm以下の厚みを除去する工程であることが好ましい。0.3μm未満である場合は、ガラス基板前駆体の主表面を除去する工程で悪化した表面粗さやうねりを修正しきれない。また、5μmを超える厚みを除去すると、ガラス基板前駆体の端面部にいわゆるダレが発生する。 The above washing step is preferably a step of removing the main surface of the glass substrate precursor using a solution having a surface tension of 30 to 50 mN / m. By removing the main surface of the glass substrate precursor with the etching solution having the surface tension as described above, the flatness and smoothness of the end face can be enhanced. If the surface tension is less than 30 mN / m, bubbles are likely to be generated, so that etching unevenness occurs on the entire surface of the glass substrate precursor. In addition, since bubbles tend to gather near the end face, the smoothness and flatness of the end of the glass substrate precursor are affected as a result. Moreover, when it exceeds 50 mN / m, the wettability to a glass substrate precursor will worsen, and the flatness and smoothness of an edge part vicinity will be affected. The cleaning step is preferably a step of removing a thickness of 30 to 100 nm from the main surface of the glass substrate precursor. If the removal amount is less than 30 nm, the cleaning effect may not be sufficiently obtained. Moreover, when it exceeds 100 nm, it will affect the shape of the edge part of a glass substrate precursor. The precision polishing step is preferably a step of removing a thickness of 0.3 μm or more and 5 μm or less from the main surface of the glass substrate precursor. When it is less than 0.3 μm, the surface roughness and waviness deteriorated in the step of removing the main surface of the glass substrate precursor cannot be corrected. If the thickness exceeding 5 μm is removed, so-called sagging occurs at the end face of the glass substrate precursor.
 本発明の磁気ディスク用ガラス基板の製造方法は、上記のような構成を有することにより、ハードディスクに取り込んだ際に安定したヘッド浮上量が得られる磁気ディスク用ガラス基板を製造し得るという極めて優れた効果を示す。 The method for producing a glass substrate for magnetic disk of the present invention has the above-described configuration, so that a glass substrate for magnetic disk capable of obtaining a stable head flying height when taken into a hard disk can be produced. Show the effect.
本発明の製造方法によって製造される磁気ディスク用ガラス基板の一例を示す斜視図である。It is a perspective view which shows an example of the glass substrate for magnetic discs manufactured by the manufacturing method of this invention. 本発明の磁気ディスク用ガラス基板の製造方法の工程の順序の一例を示すフローチャートである。It is a flowchart which shows an example of the order of the process of the manufacturing method of the glass substrate for magnetic discs of this invention.
 以下、本発明の磁気ディスク用ガラス基板およびその製造方法について図面およびフローチャートを用いて説明する。なお、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。 Hereinafter, the glass substrate for magnetic disk of the present invention and the manufacturing method thereof will be described with reference to the drawings and flowcharts. Note that dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 <磁気ディスク用ガラス基板>
 図1は、本発明の製造方法によって製造される磁気ディスク用ガラス基板の一例を示す斜視図である。本発明の製造方法によって製造される磁気ディスク用ガラス基板は、ハードディスクドライブ装置等の情報記録装置において情報記録媒体の基板として用いられるものである。このような磁気ディスク用ガラス基板は、図1に示されるように円盤形状であり、その中心に孔1Hが形成されている。磁気ディスク用ガラス基板1の表面とは、表主表面1A、裏主表面1B、内周端面1C、および外周端面1Dを意味する。
<Glass substrate for magnetic disk>
FIG. 1 is a perspective view showing an example of a glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention. The glass substrate for a magnetic disk manufactured by the manufacturing method of the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive apparatus. Such a glass substrate for a magnetic disk has a disk shape as shown in FIG. 1, and a hole 1H is formed at the center thereof. The surface of the glass substrate 1 for magnetic disks means the front main surface 1A, the back main surface 1B, the inner peripheral end surface 1C, and the outer peripheral end surface 1D.
 本発明の磁気ディスク用ガラス基板1の大きさや形状は特に限定されず、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。磁気ディスク用ガラス基板1の厚さは、破損防止の観点からたとえば0.30~2.2mmであることが好ましい。なお、磁気ディスク用ガラス基板1の厚さは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される。本発明の磁気ディスク用ガラス基板1の代表的な一例を示すと、磁気ディスク用ガラス基板の外径が約64mmであり、内径が約20mmであり、厚さが約0.8mmである。なお、一般的に2.5インチ型のハードディスクには、外径が65mmの磁気ディスク用ガラス基板を用いる。 The size and shape of the magnetic disk glass substrate 1 of the present invention are not particularly limited, and are, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. The thickness of the magnetic disk glass substrate 1 is preferably 0.30 to 2.2 mm, for example, from the viewpoint of preventing breakage. In addition, the thickness of the glass substrate 1 for magnetic disks is calculated by the average of the values measured at a plurality of arbitrary points to be pointed on the glass substrate. A typical example of the magnetic disk glass substrate 1 of the present invention is as follows. The magnetic disk glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm. In general, a 2.5-inch hard disk uses a glass substrate for a magnetic disk having an outer diameter of 65 mm.
 本発明の磁気ディスク用ガラス基板を構成する材料は、アルミノシリケートガラスが好適に用いられる。かかるアルミノシリケートガラスの組成は、58質量%~75質量%のSiO2、5質量%~23質量%のAl23、3質量%~10質量%のLi2O、4質量%~13質量%のNa2Oを主成分として含有するものである。なお、このようなアルミノシリケートガラスのみに限定されるものではなく、種々のガラスの組成を用いることができる。 Aluminosilicate glass is preferably used as the material constituting the magnetic disk glass substrate of the present invention. The composition of such an aluminosilicate glass is 58% to 75% by weight of SiO 2 , 5% to 23% by weight of Al 2 O 3 , 3% to 10% by weight of Li 2 O, 4% to 13% by weight. % Na 2 O as a main component. In addition, it is not limited only to such an aluminosilicate glass, The composition of various glass can be used.
 <磁気ディスク用ガラス基板の製造方法>
 本発明の磁気ディスク用ガラス基板の製造方法は、円盤状のガラス基板前駆体の主表面を研磨する研磨工程を含むものであって、該研磨工程は、少なくとも粗研磨工程と精密研磨工程との2段階の研磨を行なうものであり、粗研磨工程と精密研磨工程との間に洗浄工程を含み、該洗浄工程は、ガラス基板前駆体の主表面を100nm/min以下の速度で除去する工程であることを特徴とする。
<Method for manufacturing glass substrate for magnetic disk>
The method for producing a glass substrate for a magnetic disk according to the present invention includes a polishing step of polishing the main surface of a disk-shaped glass substrate precursor, and the polishing step includes at least a rough polishing step and a precision polishing step. This is a two-stage polishing, and includes a cleaning process between the rough polishing process and the precision polishing process, and the cleaning process is a process of removing the main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is characterized by being.
 本発明のように洗浄工程においてガラス基板前駆体の主表面を100nm/min以下の速度でエッチングすることにより、エッチング液が液ダレを起こしても、ガラス基板前駆体を過剰にエッチングすることがないため、ガラス基板前駆体の平坦性および平滑性を高めることができる。このようにして作製された磁気ディスク用ガラス基板は、平坦性および平滑性が高いため、ヘッドクラッシュが生じにくいという優れた性質を示す。 By etching the main surface of the glass substrate precursor at a rate of 100 nm / min or less in the cleaning step as in the present invention, the glass substrate precursor is not excessively etched even if the etching solution causes dripping. Therefore, the flatness and smoothness of the glass substrate precursor can be improved. The glass substrate for a magnetic disk produced in this manner has excellent flatness and smoothness, and therefore has an excellent property that head crushing hardly occurs.
 本発明の磁気ディスク用ガラス基板を製造する方法は、このように粗研磨工程と精密研磨工程との間に洗浄工程を行なう限り、他の工程を含むことができる。ここで、他の工程としては、たとえば溶融ガラスを円盤状に加工するダイレクトプレス工程、ガラス基板前駆体の中心に穴をあけるコアリング工程、ガラス基板前駆体の内周端面および外周端面を面取りする内外加工工程、ガラス基板前駆体の主表面を研削するラッピング工程等を挙げることができる。 The method for producing a glass substrate for a magnetic disk of the present invention can include other steps as long as the cleaning step is performed between the rough polishing step and the precision polishing step. Here, as other processes, for example, a direct press process for processing a molten glass into a disk shape, a coring process for forming a hole in the center of the glass substrate precursor, and chamfering the inner peripheral end surface and the outer peripheral end surface of the glass substrate precursor. Examples thereof include an inside / outside processing step, a lapping step for grinding the main surface of the glass substrate precursor, and the like.
 以下においては、ダイレクトプレス法によってガラス基板前駆体を作製する場合を説明するが、本発明の製造方法は、ダイレクトプレス法によってガラス基板前駆体を作製する方法のみに限定されるものではなく、ダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出してガラス基板前駆体を作製しても差し支えない。 In the following, a case where a glass substrate precursor is produced by a direct press method will be described. However, the production method of the present invention is not limited to a method for producing a glass substrate precursor by a direct press method. A glass substrate precursor may be produced by cutting a sheet glass formed by a draw method or a float method with a grinding wheel.
 本発明の磁気ディスク用ガラス基板を図2のフローチャートにしたがって作製するときの各工程を説明する。なお、本発明の磁気ディスク用ガラス基板の製造方法は、粗研磨工程と洗浄工程と精密研磨工程とをこの順に含み、該洗浄工程が上記の速度でガラス基板前駆体の主表面を除去する限り、さらにこれらの各工程の間に洗浄工程または研磨工程を含んでもよいし、その他の工程の順序を適宜変更しても差し支えない。 Each process when producing the glass substrate for magnetic disk of the present invention according to the flowchart of FIG. 2 will be described. The method for manufacturing a glass substrate for a magnetic disk of the present invention includes a rough polishing step, a cleaning step, and a precision polishing step in this order, as long as the cleaning step removes the main surface of the glass substrate precursor at the above speed. Further, a cleaning step or a polishing step may be included between these steps, and the order of other steps may be appropriately changed.
 (ダイレクトプレス工程:ステップS10)
 まず、ガラス素材を溶融させて溶融ガラスを準備する。この溶融ガラスを下型に流し込み、上型および胴型によってプレス成形することにより円盤状のガラス基板前駆体を得る。このようにして溶融ガラスからガラス基板前駆体を得る工程のことをダイレクトプレス工程と呼ぶ。なお、上述したように、本発明の製造方法は、ダイレクトプレス工程によってガラス基板前駆体を作製するもののみに限られるものではなく、ダウンドロー法やフロート法を用いてもよい。
(Direct press process: Step S10)
First, a molten glass is prepared by melting a glass material. The molten glass is poured into a lower mold and press-formed with an upper mold and a barrel mold to obtain a disk-shaped glass substrate precursor. The process of obtaining the glass substrate precursor from the molten glass in this way is called a direct press process. As described above, the production method of the present invention is not limited to the method for producing a glass substrate precursor by a direct pressing process, and a downdraw method or a float method may be used.
 (コアリング加工工程:ステップS20)
 次に、コアリング加工工程で、ガラス基板前駆体の中心部に穴を開ける。穴開けは、カッター部にダイヤモンド砥石等を備えたコアドリル等で研削することで中心部に穴を開ける。穴の大きさは、ガラス基板前駆体の外径によって適宜変更することができ、たとえば外形が65mmのガラス基板前駆体の中心部には20mmの内径の孔(中心部の孔1Hの直径)を開ける。
(Coring process: Step S20)
Next, a hole is made in the central portion of the glass substrate precursor in the coring process. In the drilling, a hole is drilled in the center by grinding with a core drill or the like equipped with a diamond grindstone or the like in the cutter part. The size of the hole can be appropriately changed depending on the outer diameter of the glass substrate precursor. For example, a hole having an inner diameter of 20 mm (the diameter of the hole 1H in the center) is formed at the center of the glass substrate precursor having an outer shape of 65 mm. Open.
 (粗ラッピング工程:ステップS30)
 上記のガラス基板前駆体の表裏の両面に対し、ラッピング加工を施す。ここで、粗ラッピング加工では、たとえば両面ラッピング装置によって行なう。これによりガラス基板前駆体の全体形状、平行度、平坦度および厚みを予備的に調整することができる。
(Rough wrapping process: Step S30)
A lapping process is performed on both the front and back surfaces of the glass substrate precursor. Here, the rough lapping is performed by, for example, a double-sided lapping apparatus. As a result, the overall shape, parallelism, flatness and thickness of the glass substrate precursor can be preliminarily adjusted.
 (内外加工工程:ステップS40)
 次に、内外加工工程において、上記のガラス基板前駆体の外周端面および内周端面の面取り加工を行なう。これによりガラス基板前駆体の端面の平坦度を高めることができる。
(Internal / external machining process: Step S40)
Next, in the inside / outside processing step, chamfering of the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor is performed. Thereby, the flatness of the end surface of the glass substrate precursor can be increased.
 (端面研磨工程:ステップS50)
 続いて、端面研磨工程では、研磨砥粒として酸化セリウム砥粒を含むスラリー(遊離砥粒)を用いたブラシ研磨法により、ガラス基板前駆体の外周端面および内周端面を研磨する。ブラシ研磨法ではガラス基板前駆体を回転させながら外周端面および内周端面を研磨する。上記の内周側端面に対し、さらに磁気研磨法による研磨を行なうことにより、ガラス基板前駆体の内周端面を鏡面状態に加工する。そして、最後にガラス基板前駆体の表面を水で洗浄する。
(End face polishing process: Step S50)
Subsequently, in the end face polishing step, the outer peripheral end face and the inner peripheral end face of the glass substrate precursor are polished by a brush polishing method using a slurry (free abrasive grains) containing cerium oxide abrasive grains as polishing abrasive grains. In the brush polishing method, the outer peripheral end face and the inner peripheral end face are polished while rotating the glass substrate precursor. The inner peripheral end face of the glass substrate precursor is processed into a mirror surface state by further polishing the inner peripheral end face with a magnetic polishing method. Finally, the surface of the glass substrate precursor is washed with water.
 (精ラッピング工程:ステップS60)
 次いで、精ラッピング工程では、固定砥粒研磨パッドを用いてガラス基板前駆体の表裏を研削する。かかる精ラッピング工程は、遊星歯車機構を利用した両面研削機と呼ばれる公知の研削機を使用して研削することができる。この両面研削機は、上下に配置された円盤状の上定盤と下定盤とが互いに平行に備えられており、上定盤および下定盤が対向するそれぞれの面にガラス基板前駆体の表裏を研削するための複数のダイヤモンドペレットが貼り付けてある。
(Fine wrapping process: Step S60)
Next, in the fine lapping process, the front and back surfaces of the glass substrate precursor are ground using a fixed abrasive polishing pad. Such a fine lapping process can be ground using a known grinding machine called a double-side grinding machine using a planetary gear mechanism. This double-sided grinding machine is equipped with a disk-shaped upper and lower surface plate arranged in parallel with each other in parallel, and the front and back surfaces of the glass substrate precursor are placed on the surfaces facing the upper surface plate and the lower surface plate, respectively. A plurality of diamond pellets for grinding are attached.
 上定盤と下定盤との間には、下定盤の外周に円環状に設けられたインターナルギアと下定盤の回転軸の周囲に設けられたサンギアとに結合して回転するキャリアが複数ある。このキャリアには、複数の穴が設けられており、この穴にガラス基板前駆体をはめ込んで配置する。なお、上定盤、下定盤、インターナルギア、およびサンギアは別駆動で動作することができ、上定盤および下定盤が互いに逆方向に回転する。 Between the upper surface plate and the lower surface plate, there are a plurality of carriers that rotate in combination with an internal gear provided in an annular shape on the outer periphery of the lower surface plate and a sun gear provided around the rotation axis of the lower surface plate. The carrier is provided with a plurality of holes, and the glass substrate precursor is fitted into the holes and arranged. The upper surface plate, the lower surface plate, the internal gear, and the sun gear can be operated by separate driving, and the upper surface plate and the lower surface plate rotate in opposite directions.
 そして、ダイヤモンドペレットを介して定盤に挟まれているキャリアが、複数のガラス基板前駆体を保持した状態で、自転しながら定盤の回転中心に対して下定盤と同じ方向に公転する。このように動作する研削機において、上定盤とガラス基板前駆体の間および下定盤とガラス基板前駆体との間に研削液を供給することによりガラス基板前駆体の表裏の研削を行なうことができる。 Then, the carrier sandwiched between the surface plates through the diamond pellets revolves in the same direction as the lower surface plate with respect to the rotation center of the surface plate while rotating while holding a plurality of glass substrate precursors. In the grinding machine operating in this way, the front and back surfaces of the glass substrate precursor can be ground by supplying a grinding liquid between the upper surface plate and the glass substrate precursor and between the lower surface plate and the glass substrate precursor. it can.
 この両面研磨機を使用する際、ガラス基板前駆体に加わる定盤の加重及び定盤の回転数を所望の研削状態に応じて適宜調整する。精ラッピング工程においては、第1ラッピング工程および第2ラッピング工程の2回に分けてラッピングを行なうことが好ましい。第1ラッピング工程および第2ラッピング工程における加重は、60g/cm2から120g/cm2とするのが好ましい。また、定盤の回転数は、10rpmから30rpm程度とし、上定盤の回転数を下定盤の回転数より30%から40%程度遅くするのが好ましい。第2ラッピング工程を終えた時点で、ガラス基板前駆体の大きなうねり、欠け、ひび等の欠陥は除去される。 When using this double-side polishing machine, the weight of the surface plate applied to the glass substrate precursor and the number of rotations of the surface plate are adjusted as appropriate according to the desired grinding state. In the fine wrapping process, it is preferable to perform the wrapping in two steps of the first wrapping process and the second wrapping process. The weight in the first wrapping step and the second wrapping step is preferably 60 g / cm 2 to 120 g / cm 2 . Further, it is preferable that the rotation speed of the surface plate is about 10 rpm to 30 rpm, and the rotation speed of the upper surface plate is about 30% to 40% slower than the rotation speed of the lower surface plate. At the time when the second lapping process is completed, defects such as large undulation, chipping and cracking of the glass substrate precursor are removed.
 上記の定盤による加重を大きくするか、または定盤の回転数を速くすると、ガラス基板前駆体の研削量は多くなるが、加重を大きくしすぎるとガラス基板前駆体の面粗さが悪くなるため好ましくない。また、定盤の回転数が速すぎると平坦度が良好とならない。また加重が小さすぎたり、定盤の回転数が遅すぎたりしても、研削量が少なくなるため製造効率が低くなる。 Increasing the weight by the surface plate or increasing the rotation speed of the surface plate will increase the amount of grinding of the glass substrate precursor, but if the load is increased too much, the surface roughness of the glass substrate precursor will deteriorate. Therefore, it is not preferable. Further, when the rotation speed of the surface plate is too fast, the flatness is not good. Moreover, even if the load is too small or the rotation speed of the surface plate is too slow, the amount of grinding is reduced and the production efficiency is lowered.
 上記の精ラッピング工程を終えた後のガラス基板前駆体の主表面の面粗さは、Raが0.05~0.4μmであることが好ましく、主表面の平坦度は、7~10μmであることが好ましい。このような面状態とすることにより、後の第1ポリッシング工程での研磨の効率を高めることができる。 As for the surface roughness of the main surface of the glass substrate precursor after the fine lapping step, Ra is preferably 0.05 to 0.4 μm, and the flatness of the main surface is 7 to 10 μm. It is preferable. By setting it as such a surface state, the polishing efficiency in the subsequent first polishing step can be enhanced.
 (主表面研磨工程:ステップS70)
 主表面研磨工程は、少なくとも粗研磨工程と精密研磨工程との2段階の研磨を行なうものである。粗研磨工程は、精ラッピング工程でガラス基板前駆体の表裏に残留した傷や歪みを除去するために行なうものであり、精密研磨工程は、ガラス基板前駆体の表裏を鏡面加工するために行なうものである。本発明の磁気ディスク用ガラス基板の製造方法は、上記の粗研磨工程と精密研磨工程との間に洗浄工程を含み、該洗浄工程が、100nm/min以下の速度でガラス基板前駆体の主表面を除去する工程であることを特徴とする。以下においては、主表面研磨工程中の粗研磨工程、洗浄工程、精密研磨工程をこの順に説明する。
(Main surface polishing step: Step S70)
The main surface polishing step performs at least two-step polishing, that is, a rough polishing step and a precision polishing step. The rough polishing process is performed to remove scratches and distortions remaining on the front and back surfaces of the glass substrate precursor in the fine lapping process, and the precise polishing process is performed to mirror-finish the front and back surfaces of the glass substrate precursor. It is. The method for producing a glass substrate for a magnetic disk of the present invention includes a cleaning step between the rough polishing step and the precision polishing step, and the cleaning step is performed at a main surface of the glass substrate precursor at a rate of 100 nm / min or less. It is the process of removing. In the following, the rough polishing process, the cleaning process, and the precision polishing process in the main surface polishing process will be described in this order.
 (粗研磨工程:ステップS71)
 まず、粗研磨工程では、ポリッシャがスウェードパッドである研磨パッドを上記の両面研磨機にセットし、ガラス基板前駆体の表裏を研磨する。そして、上記ガラス基板前駆体の主表面に付着している研磨剤等の付着物を洗浄によって除去する。このようにしてガラス基板前駆体の表裏に付着した付着物のうちの平均粒子径が大きなものを除去する。
(Rough polishing process: Step S71)
First, in the rough polishing step, a polishing pad whose polisher is a suede pad is set in the double-side polishing machine, and the front and back surfaces of the glass substrate precursor are polished. And deposits, such as an abrasive | polishing agent adhering to the main surface of the said glass substrate precursor, are removed by washing | cleaning. Thus, the thing with a big average particle diameter of the deposit | attachments adhering to the front and back of a glass substrate precursor is removed.
 (洗浄工程:ステップS72)
 次に、洗浄工程では、ガラス基板前駆体をエッチング液に浸漬させることによって、その主表面に付着している研磨剤等の付着物を洗浄によって除去する。かかる洗浄工程では、100nm/min以下の速度でガラス基板前駆体の主表面を除去することを特徴とする。このような低速でガラス基板前駆体を洗浄することにより、洗浄液から取り出すときに液ダレが生じても、ガラス基板前駆体の外周の均一性が損なわれにくく、磁気ディスク用ガラス基板の平坦性および平滑性を高めることができる。
(Washing process: Step S72)
Next, in the cleaning step, the glass substrate precursor is immersed in an etching solution to remove deposits such as abrasives adhering to the main surface by cleaning. This cleaning step is characterized in that the main surface of the glass substrate precursor is removed at a rate of 100 nm / min or less. By washing the glass substrate precursor at such a low speed, even if liquid sag occurs when the glass substrate precursor is taken out from the cleaning liquid, the uniformity of the outer periphery of the glass substrate precursor is hardly impaired, and the flatness of the glass substrate for magnetic disks and Smoothness can be improved.
 上記のように液ダレが生じたときにもガラス基板前駆体の外周がエッチングされにくくするためには、10~80nm/minであることが好ましく、より好ましくは30~60nm/minである。上記の洗浄によるガラス基板前駆体の除去速度は、エッチング液の液ダレが生じたときにもガラス基板前駆体の外周の均一性を損なわないという観点からは可能な限り遅くすることが好ましいが、10nm/min未満であると、ガラス基板前駆体の洗浄工程に要する時間が長くなりすぎるため製造上好ましくない。ガラス基板前駆体の除去速度が100nm/minを超えると、洗浄後の液ダレによってガラス基板前駆体の外周側が過剰にエッチングされ、外周側の均一性が損なわれるため好ましくない。 In order to make it difficult for the outer periphery of the glass substrate precursor to be etched even when dripping occurs as described above, it is preferably 10 to 80 nm / min, more preferably 30 to 60 nm / min. The removal rate of the glass substrate precursor by the above washing is preferably as slow as possible from the viewpoint of not impairing the uniformity of the outer periphery of the glass substrate precursor even when sag of the etching solution occurs. If it is less than 10 nm / min, the time required for the step of cleaning the glass substrate precursor becomes too long, which is not preferable for production. When the removal rate of the glass substrate precursor exceeds 100 nm / min, the outer peripheral side of the glass substrate precursor is excessively etched by the liquid dripping after cleaning, and the uniformity on the outer peripheral side is impaired, which is not preferable.
 また、洗浄工程で用いるエッチング液は、30~50mN/mの表面張力であることが好ましく、より好ましくは40~48mN/mの表面張力である。このような表面張力のエッチング液を用いることにより、エッチング液がガラス基板前駆体の主表面に濡れやすくなるため、液ダレが発生しにくくなり、ガラス基板前駆体の外周部が過剰にエッチングされることを防止することができる。 Further, the etching solution used in the cleaning process preferably has a surface tension of 30 to 50 mN / m, more preferably a surface tension of 40 to 48 mN / m. By using an etching solution having such a surface tension, the etching solution is easily wetted to the main surface of the glass substrate precursor, so that dripping is less likely to occur and the outer peripheral portion of the glass substrate precursor is excessively etched. This can be prevented.
 ここで、洗浄工程では、ガラス基板前駆体の主表面から30~100nmの厚みを除去することが好ましく、より好ましくは35~80nmの厚みを除去することである。除去量の厚みが30nm未満であると、ガラス基板前駆体の除去量が足りずに、付着物がガラス基板前駆体の主表面に残るおそれがあり、100nmを超えると、ガラス基板前駆体の主表面をエッチングし過ぎる可能性がある。 Here, in the cleaning step, it is preferable to remove the thickness of 30 to 100 nm from the main surface of the glass substrate precursor, and more preferably to remove the thickness of 35 to 80 nm. If the thickness of the removal amount is less than 30 nm, the removal amount of the glass substrate precursor is insufficient, and there is a possibility that the deposit remains on the main surface of the glass substrate precursor. The surface may be etched too much.
 洗浄工程で用いられるエッチング液としては、フッ化水素、フッ化水素アンモニウム、フッ化ナトリウム、フッ化ケイ素酸等を水に溶解させた水溶液を用いることが好ましく、たとえばフッ化水素を溶解させる場合は、0.1~1質量%のフッ化水素を混合した水溶液を用いることがより好ましい。また、エッチング液の温度は、エッチング液の材料によっても異なるが、20~50℃に調整した状態でガラス基板前駆体を浸漬させることが好ましい。また、ガラス基板前駆体をエッチング液に浸漬させるときは80kHz程度の超音波を照射することが好ましい。その後、中性洗剤で120kHzの超音波を照射してさらに超音波洗浄を行なってもよいし、純水でリンスを行なって主表面を処理してもよい。 As an etching solution used in the cleaning process, it is preferable to use an aqueous solution in which hydrogen fluoride, ammonium hydrogen fluoride, sodium fluoride, silicon fluoride acid or the like is dissolved in water. For example, when hydrogen fluoride is dissolved, It is more preferable to use an aqueous solution in which 0.1 to 1% by mass of hydrogen fluoride is mixed. The temperature of the etching solution varies depending on the material of the etching solution, but it is preferable to immerse the glass substrate precursor in a state adjusted to 20 to 50 ° C. Moreover, when immersing a glass substrate precursor in an etching liquid, it is preferable to irradiate an ultrasonic wave of about 80 kHz. Thereafter, ultrasonic cleaning at 120 kHz may be performed with a neutral detergent to further perform ultrasonic cleaning, or the main surface may be treated by rinsing with pure water.
 (精密研磨工程:ステップS73)
 続いて、精密研磨工程では、ガラス基板前駆体に対し、軟質ポリッシャ(スウェード)である研磨パッドを用いて、ガラス基板前駆体の表裏を研磨する。ここで、精密研磨工程では、ガラス基板前駆体の主表面から0.3μm以上の厚みを除去することが好ましい。0.3μm未満の厚みであると、上記の洗浄工程で発生した過剰なエッチングエリアを除去することができずに、磁気ディスク用ガラス基板の平滑性が低下することになるため好ましくない。また、精密研磨工程で用いる研磨剤としては、粗研磨工程で用いた酸化セリウムよりも微細なシリカ砥粒を用いることが好ましい。
(Precision polishing process: Step S73)
Subsequently, in the precision polishing step, the front and back surfaces of the glass substrate precursor are polished using a polishing pad that is a soft polisher (suede) with respect to the glass substrate precursor. Here, in the precision polishing step, it is preferable to remove a thickness of 0.3 μm or more from the main surface of the glass substrate precursor. If the thickness is less than 0.3 μm, an excessive etching area generated in the above-described cleaning process cannot be removed, and the smoothness of the magnetic disk glass substrate is lowered, which is not preferable. Moreover, as an abrasive | polishing agent used at a precision grinding | polishing process, it is preferable to use a silica abrasive grain finer than the cerium oxide used at the rough | crude grinding | polishing process.
 (最終洗浄工程:ステップS80)
 上記の研磨を終えたガラス基板前駆体に対し、中性洗剤および純水にて洗浄し乾燥させることが好ましい。このような洗浄を行なうことにより、ガラス基板前駆体に付着した異物を洗い流すことができる他、磁気ディスク用ガラス基板の主表面を安定にし、長期の保存安定性に優れたものとすることができる。以上のようにして磁気ディスク用ガラス基板を作製することができる。なお、このようにして作製した磁気ディスク用ガラス基板に対し、さらに磁気薄膜形成工程を行なうことにより、磁気ディスクを得ることができる。
(Final cleaning process: Step S80)
It is preferable to wash and dry the glass substrate precursor after the above polishing with a neutral detergent and pure water. By performing such cleaning, foreign substances adhering to the glass substrate precursor can be washed away, and the main surface of the magnetic disk glass substrate can be stabilized and excellent in long-term storage stability. . A glass substrate for a magnetic disk can be produced as described above. In addition, a magnetic disk can be obtained by performing a magnetic thin film formation process with respect to the glass substrate for magnetic disks produced in this way.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 本実施例では、以下の各工程の順に行なうことにより磁気ディスク用ガラス基板を製造した。
<Example 1>
In this example, a glass substrate for a magnetic disk was manufactured by performing the following steps in order.
 (ダイレクトプレス工程:S10)
 まず、ガラス素材を溶融させることにより溶融ガラスを準備した。この溶融ガラスを下型に流し入れて、上型および胴型を用いてダイレクトプレスすることにより、直径66mmφ、厚さ1.2mmの円盤状のガラス基板前駆体を得た。上記のガラス素材としては、アルミノシリケートガラスを用いた。
(Direct press process: S10)
First, molten glass was prepared by melting a glass material. The molten glass was poured into a lower mold and directly pressed using an upper mold and a barrel mold to obtain a disk-shaped glass substrate precursor having a diameter of 66 mmφ and a thickness of 1.2 mm. Aluminosilicate glass was used as the glass material.
 (コアリング加工工程:S20)
 次に、カッター部にダイヤモンド砥石等を備えたコアドリルでガラス基板前駆体の中心部を研削することにより穴を開けた。このようにして外径が65mmのガラス基板前駆体の中心部に20mmの内径の孔(中心部の孔1Hの直径)を開けた。
(Coring process: S20)
Next, a hole was made by grinding the central portion of the glass substrate precursor with a core drill having a diamond grindstone or the like in the cutter portion. In this way, a hole having an inner diameter of 20 mm (diameter of the hole 1H in the central part) was formed in the central part of the glass substrate precursor having an outer diameter of 65 mm.
 (粗ラッピング工程:S30)
 次に、ガラス基板前駆体を両面ラッピング装置にセットして、#400(粒径約40~60μm)の粒度のアルミナ砥粒を用いて、アルミナ上定盤の荷重を100kg程度に設定して、ガラス基板前駆体の表裏面を研磨した。このようにしてキャリア内に収納したガラス基板前駆体は、その両面の面精度が0μm~1μmであり、表面粗さRmaxが6μm程度であった。
(Coarse lapping process: S30)
Next, the glass substrate precursor is set in a double-sided wrapping apparatus, and alumina abrasive grains having a particle size of # 400 (particle size of about 40 to 60 μm) are used, and the load on the surface plate on alumina is set to about 100 kg. The front and back surfaces of the glass substrate precursor were polished. The glass substrate precursor thus housed in the carrier had a surface accuracy of both sides of 0 μm to 1 μm and a surface roughness Rmax of about 6 μm.
 (内外加工工程:S40)
 次に、上記のガラス基板前駆体の外周端面および内周端面の面取り加工を行なった。これによりガラス基板前駆体の端面の面粗さは、Rmaxで2μm程度となった。
(Internal / external machining process: S40)
Next, chamfering of the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor was performed. As a result, the surface roughness of the end surface of the glass substrate precursor was about 2 μm in Rmax.
 (端面研磨工程:S50)
 続いて、研磨砥粒として酸化セリウム砥粒を含むスラリー(遊離砥粒)を用いて、ブラシ研磨方法により、ガラス基板前駆体を回転させながらガラス基板前駆体の外周端面および内周端面を研磨した。ここでは、ガラス基板前駆体の外周端面および内周端面の表面粗さがRmaxで0.4μm、Raで0.1μm程度になるまで研磨を行なった。
(End face polishing step: S50)
Subsequently, the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor were polished while rotating the glass substrate precursor by a brush polishing method using a slurry (free abrasive particles) containing cerium oxide abrasive grains as polishing abrasive grains. . Here, polishing was performed until the surface roughness of the outer peripheral end face and the inner peripheral end face of the glass substrate precursor was about 0.4 μm in Rmax and about 0.1 μm in Ra.
 上記の内周側端面に対し、さらに磁気研磨法による研磨を行なうことにより、パーティクル等の発塵を防止する鏡面状態に加工した。そして、このようにして内周端面を研磨した後に、ガラス基板前駆体の主表面を水で洗浄した。 The inner peripheral side end face was further polished by a magnetic polishing method to be processed into a mirror surface state to prevent particles and the like from being generated. And after grind | polishing the inner peripheral end surface in this way, the main surface of the glass substrate precursor was wash | cleaned with water.
 (精ラッピング工程:S60)
 次いで、精ラッピング工程では、上記のガラス基板前駆体の表裏の両面を遊星歯車機構を利用した両面研削機にセットした。そして、ダイヤモンドシートを用いて、ガラス基板前駆体に加わる定盤の加重を60g/cm2から120g/cm2として、定盤の回転数を10rpmから30rpmとし、上の定盤の回転数を下の定盤回転数より30%から40%程度遅くして、ガラス基板前駆体の表裏を研磨した。このようにしてガラス基板前駆体の主表面の表面粗さRaが0.1μm以下で、平坦度を7μm以下となるまでラッピングを行なった。
(Fine wrapping process: S60)
Next, in the fine lapping process, both the front and back surfaces of the glass substrate precursor were set in a double-side grinding machine using a planetary gear mechanism. Then, using a diamond sheet, the weight of the platen applied to the glass substrate precursor is changed from 60 g / cm 2 to 120 g / cm 2 , the rotation speed of the platen is changed from 10 rpm to 30 rpm, and the rotation speed of the upper platen is decreased. The front and back surfaces of the glass substrate precursor were polished at a rate slower by about 30% to 40% than the platen rotation speed. Thus, lapping was performed until the surface roughness Ra of the main surface of the glass substrate precursor was 0.1 μm or less and the flatness was 7 μm or less.
 (主表面研磨工程:S70)
 主表面研磨工程においては、以下のように粗研磨工程と精密研磨工程との間に洗浄工程を行なった。
(Main surface polishing step: S70)
In the main surface polishing process, a cleaning process was performed between the rough polishing process and the precision polishing process as follows.
 (粗研磨工程:S71)
 まず、上述した両面研磨装置を用いて精ラッピング工程で残留した傷や歪みを除去するための粗研磨工程を行なった。この粗研磨工程においては、ポリッシャがスウェードパッドである研磨パッドを用いて、以下の条件でガラス基板前駆体の表裏を研磨した。
(Rough polishing step: S71)
First, the rough polishing process for removing the flaw and distortion which remained in the fine lapping process was performed using the double-side polish apparatus mentioned above. In this rough polishing step, the front and back surfaces of the glass substrate precursor were polished under the following conditions using a polishing pad whose polisher was a suede pad.
 研磨液 :酸化セリウム(平均粒径1.3μm)+水
 荷 重 :80~100g/cm2
 研磨時間:30分~50分
 除去法 :35μm~45μm
 (洗浄工程:S72)
 次に、上記ガラス基板前駆体の主表面に付着している研磨剤を洗浄によって除去した。該洗浄は、1質量%HFを含む水溶液をエッチング液として用い、これにガラス基板前駆体を浸漬させて、10nm/minのエッチングレートでガラス基板前駆体をエッチングすることにより行なった。このときエッチング液の温度を30℃に調整しており、エッチング液の表面張力は48mN/mであった。その後、中性洗剤で120kHzの超音波を照射して超音波洗浄を行ない、最後に純水でリンスを行なってIPA乾燥した。
Polishing liquid: Cerium oxide (average particle size 1.3 μm) + water load: 80 to 100 g / cm 2
Polishing time: 30 to 50 minutes Removal method: 35 to 45 μm
(Washing process: S72)
Next, the abrasive | polishing agent adhering to the main surface of the said glass substrate precursor was removed by washing | cleaning. The cleaning was performed by using an aqueous solution containing 1% by mass of HF as an etchant, immersing the glass substrate precursor in this, and etching the glass substrate precursor at an etching rate of 10 nm / min. At this time, the temperature of the etching solution was adjusted to 30 ° C., and the surface tension of the etching solution was 48 mN / m. Thereafter, ultrasonic cleaning was performed by irradiating 120 kHz ultrasonic waves with a neutral detergent, and finally, rinsing with pure water was performed to dry IPA.
 (精密研磨工程:S73)
 続いて、精密研磨工程では、軟質ポリッシャ(スウェード)である研磨パッドを用いて、ガラス基板前駆体の表裏を研磨し、ガラス基板前駆体の主表面から1μmの厚みを除去した。なお、精密研磨工程で用いる研磨剤としては、粗研磨工程で用いた酸化セリウムよりも微細なシリカ砥粒を用いた。
(Precision polishing process: S73)
Subsequently, in the precision polishing step, the front and back surfaces of the glass substrate precursor were polished using a polishing pad that was a soft polisher (suede) to remove a thickness of 1 μm from the main surface of the glass substrate precursor. In addition, as an abrasive | polishing agent used at a precision grinding | polishing process, the silica abrasive grain finer than the cerium oxide used at the rough | crude grinding | polishing process was used.
 (最終洗浄工程:S80)
 上記研磨処理を終えたガラス基板前駆体に対し、中性洗剤および純水にて洗浄し乾燥させた。以上のようにして本実施例の磁気ディスク用ガラス基板を作製した。
(Final cleaning process: S80)
The glass substrate precursor after the polishing treatment was washed with a neutral detergent and pure water and dried. As described above, the magnetic disk glass substrate of this example was produced.
 <実施例2~10、比較例1>
 上記の実施例1に対し、洗浄工程におけるガラス基板前駆体のエッチングレート、除去量、洗浄工程に用いる溶液の表面張力、精密研磨工程におけるガラス基板前駆体の取代を表1の各欄に示したように異なる他は、実施例1と同様の方法によって、実施例2~10および比較例1の磁気ディスク用ガラス基板を作製した。
<Examples 2 to 10, Comparative Example 1>
Table 1 shows the etching rate and removal amount of the glass substrate precursor in the cleaning process, the surface tension of the solution used in the cleaning process, and the stock removal of the glass substrate precursor in the precision polishing process for Example 1 above. The glass substrates for magnetic disks of Examples 2 to 10 and Comparative Example 1 were produced by the same method as in Example 1 except for the above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <比較例2>
 比較例2では、実施例1の工程の順序のうちの洗浄工程と精密研磨工程とを逆にしたことが異なる他は、実施例1と同様の方法によって磁気ディスク用ガラス基板を作製した。すなわち、粗研磨工程、精密研磨工程、洗浄工程の順にガラス基板前駆体の主表面を洗浄することにより、比較例2の磁気ディスク用ガラス基板を作製した。
<Comparative Example 2>
In Comparative Example 2, a glass substrate for a magnetic disk was produced by the same method as in Example 1 except that the cleaning process and the precision polishing process in the order of the processes in Example 1 were reversed. That is, the main surface of the glass substrate precursor was cleaned in the order of the rough polishing step, the precision polishing step, and the cleaning step, thereby producing a magnetic disk glass substrate of Comparative Example 2.
 <評価>
 上記の各実施例および各比較例で作製した磁気ディスク用ガラス基板に磁性膜を成膜してメディアを作製した後に、GAテスターに搭載し、ヘッド浮上安定性(グライドアバラン値(GA値))を測定した。その結果を表1の「GA値」の欄に示す。GA値の測定は、ドライブに見立ててメディアを7200rpmの回転数で回転させ、その上をヘッドが徐々に低下していき、r32の地点のヘッドの浮上が不安定になった高さをGA値とした。ここで、r32とは基板の中心から32mmの地点のことである。r32のGA値を測定することにより、ガラス基板前駆体の外端部付近での平坦度の影響がわかる。なお、GA値が低いほど、ヘッド浮上安定性が優れていることを示し、磁気ディスク用ガラス基板の平坦性および平滑性が高いことを示している。
<Evaluation>
After a magnetic film was formed on the magnetic disk glass substrate prepared in each of the above examples and comparative examples, a medium was prepared, and then mounted on a GA tester, and the head floating stability (glide avalan value (GA value)) Was measured. The results are shown in the “GA value” column of Table 1. The GA value is measured by rotating the media at a rotational speed of 7200 rpm as if it were a drive, and the head gradually falls on it, and the height at which the head at the point r32 becomes unstable becomes the GA value. It was. Here, r32 is a point 32 mm from the center of the substrate. By measuring the GA value of r32, the influence of flatness in the vicinity of the outer end portion of the glass substrate precursor can be understood. The lower the GA value, the better the head floating stability, and the higher the flatness and smoothness of the magnetic disk glass substrate.
 表1から明らかなように、実施例1~10の磁気ディスク用ガラス基板は、グライドアバランチ値が低いのに対し、比較例1~2の磁気ディスク用ガラス基板は、グライドアバランチ値が高かった。 As is clear from Table 1, the glass substrates for magnetic disks of Examples 1 to 10 had low glide avalanche values, whereas the glass substrates for magnetic disks of Comparative Examples 1 and 2 had high glide avalanche values.
 上記の表1のGA値の結果の理由として、実施例1~10では、粗研磨工程と精密研磨工程との間に洗浄工程を行なっており、該洗浄工程におけるガラス基板前駆体の除去速度が100nm/min以下であったため、液ダレが生じてもガラス基板前駆体の外径が過剰にエッチングされずに、平坦性および平滑性の高い磁気ディスク用ガラス基板を作製することができたものと考えられる。 As a reason for the results of the GA values in Table 1 above, in Examples 1 to 10, the cleaning process is performed between the rough polishing process and the precision polishing process, and the removal rate of the glass substrate precursor in the cleaning process is high. Since it was 100 nm / min or less, the glass substrate for magnetic disk having high flatness and smoothness could be produced without excessive etching of the outer diameter of the glass substrate precursor even when liquid dripping occurred. Conceivable.
 一方、比較例1では、洗浄工程におけるガラス基板前駆体の除去速度が120nm/minであることにより、エッチング液の液ダレが生じたときにガラス基板前駆体の外径の一部が過剰に除去されたため、磁気ディスク用ガラス基板の平坦性および平滑性が損なわれたものであった。また、比較例2では、精密研磨後に洗浄工程を行なっているため、洗浄工程で生じたガラス基板前駆体の外形の不均一性を精密研磨工程で整えることができなかった。 On the other hand, in Comparative Example 1, the removal rate of the glass substrate precursor in the cleaning process is 120 nm / min, so that part of the outer diameter of the glass substrate precursor is excessively removed when the etching solution is dripped. As a result, the flatness and smoothness of the glass substrate for magnetic disks were impaired. Moreover, in Comparative Example 2, since the cleaning process was performed after the precision polishing, the non-uniformity of the outer shape of the glass substrate precursor generated in the cleaning process could not be adjusted in the precision polishing process.
 したがって、本発明の製造方法に従って製造された磁気ディスク用ガラス基板は、平坦性および平滑性が高いことが示された。特に、実施例6に示されるように、表面張力が高い(表面張力67mN/m)エッチング液を用いて洗浄工程を行なったときに磁気ディスク用ガラス基板の平坦性および平滑性の低下が顕著であった。これは、表面張力が高いエッチング液を用いることにより、液ダレが生じたときにも過剰にエッチングされたからと考えられる。 Therefore, it was shown that the glass substrate for magnetic disk manufactured according to the manufacturing method of the present invention has high flatness and smoothness. In particular, as shown in Example 6, when the cleaning process is performed using an etching solution having a high surface tension (surface tension 67 mN / m), the flatness and smoothness of the magnetic disk glass substrate are significantly reduced. there were. This is presumably because the etching liquid having a high surface tension was used to etch excessively even when liquid dripping occurred.
 また、実施例7~8に示されるように、精密研磨工程における取代を0.3μm以下としたときに、磁気ディスク用ガラス基板の平坦性および平滑性の向上が顕著であった。これは、洗浄工程で不均一となったガラス基板前駆体の端面を精密研磨工程で均一に整えることができたことによるものと考えられる。 Further, as shown in Examples 7 to 8, when the machining allowance in the precision polishing step was set to 0.3 μm or less, the flatness and smoothness of the magnetic disk glass substrate were significantly improved. This is considered to be due to the fact that the end face of the glass substrate precursor that became non-uniform in the cleaning process could be uniformly prepared in the precision polishing process.
 また、実施例10で示されるように、表面張力が30mN/m未満のエッチング液を用いて洗浄したときにGA値が若干上昇した。これは、エッチング液の表面張力が小さいことにより、エッチング液に微小な泡が発生して、エッチングムラとなって液ダレが発生し、ガラス基板前駆体の端面の平坦性が悪化したことによるものと考えられる。 Also, as shown in Example 10, the GA value slightly increased when cleaning was performed using an etching solution having a surface tension of less than 30 mN / m. This is because the surface tension of the etching solution is small, and fine bubbles are generated in the etching solution, resulting in uneven etching and dripping, and the flatness of the end surface of the glass substrate precursor is deteriorated. it is conceivable that.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ガラス基板前駆体、1A 表主表面、1B 裏主表面、1C 内周端面、1D 外周端面、1H 孔。 1 Glass substrate precursor, 1A front main surface, 1B back main surface, 1C inner peripheral end surface, 1D outer peripheral end surface, 1H hole.

Claims (4)

  1.  円盤状のガラス基板前駆体の主表面を研磨する工程を含む磁気ディスク用ガラス基板の製造方法であって、
     前記主表面を研磨する工程は、少なくとも粗研磨工程と精密研磨工程との2段階の研磨を行なうものであり、
     前記粗研磨工程と前記精密研磨工程との間に洗浄工程を含み、
     前記洗浄工程は、100nm/min以下の速度で前記ガラス基板前駆体の主表面を除去する工程である、磁気ディスク用ガラス基板の製造方法。
    A method for producing a glass substrate for a magnetic disk comprising a step of polishing a main surface of a disk-shaped glass substrate precursor,
    The step of polishing the main surface is at least two-step polishing of a rough polishing step and a precision polishing step,
    Including a cleaning step between the rough polishing step and the precision polishing step;
    The said washing | cleaning process is a manufacturing method of the glass substrate for magnetic discs which is a process of removing the main surface of the said glass substrate precursor at a speed | rate of 100 nm / min or less.
  2.  前記洗浄工程は、30~50mN/mの表面張力の溶液を用いて前記ガラス基板前駆体の主表面を除去する工程である、請求項1に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the cleaning step is a step of removing the main surface of the glass substrate precursor using a solution having a surface tension of 30 to 50 mN / m.
  3.  前記洗浄工程は、前記ガラス基板前駆体の主表面から30~100nmの厚みを除去する工程である、請求項1または2に記載の磁気ディスク用ガラス基板の製造方法。 3. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the cleaning step is a step of removing a thickness of 30 to 100 nm from the main surface of the glass substrate precursor.
  4.  前記精密研磨工程は、前記ガラス基板前駆体の主表面から0.3μm以上の厚みを除去する工程である、請求項1~3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 4. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the precision polishing step is a step of removing a thickness of 0.3 μm or more from the main surface of the glass substrate precursor.
PCT/JP2012/057870 2011-03-30 2012-03-27 Method for producing magnetic-disk glass substrate WO2012133373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507589A JPWO2012133373A1 (en) 2011-03-30 2012-03-27 Manufacturing method of glass substrate for magnetic disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-074195 2011-03-30
JP2011074195 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133373A1 true WO2012133373A1 (en) 2012-10-04

Family

ID=46931090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057870 WO2012133373A1 (en) 2011-03-30 2012-03-27 Method for producing magnetic-disk glass substrate

Country Status (2)

Country Link
JP (1) JPWO2012133373A1 (en)
WO (1) WO2012133373A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146250A (en) * 2002-07-17 2006-06-08 Hoya Corp Glass substrate for mask blank and transfer mask
JP2008269767A (en) * 2007-03-29 2008-11-06 Hoya Corp Manufacturing method of glass substrate for magnetic disk and magnetic disk manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146250A (en) * 2002-07-17 2006-06-08 Hoya Corp Glass substrate for mask blank and transfer mask
JP2008269767A (en) * 2007-03-29 2008-11-06 Hoya Corp Manufacturing method of glass substrate for magnetic disk and magnetic disk manufacturing method

Also Published As

Publication number Publication date
JPWO2012133373A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP4993046B2 (en) Manufacturing method of glass substrate for information recording medium
JP2010257562A (en) Substrate for magnetic disk and method for manufacturing the same
JP2009214219A (en) Manufacturing method for glass substrate for magnetic disk
JP2007118172A (en) Polishing device, polishing method, manufacturing method for glass substrate for magnetic disk, and method for magnetic method
JP4198607B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5361185B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP2007118173A (en) Polishing brush, brush adjusting fixture, and polishing brush adjusting method
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5319095B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2007102843A (en) Glass substrate for magnetic recording medium and magnetic disk
WO2019088209A1 (en) Polishing liquid, method for manufacturing glass substrate, and method for manufacturing magnetic disk
JP3156265U (en) Polishing brush, brush adjusting jig, glass substrate for magnetic disk, and magnetic disk
JP2009151881A (en) Glass substrate for magnetic disk, magnetic disk, and method of manufacturing glass substrate for magnetic disk
JP4723341B2 (en) Glass substrate for magnetic recording medium and method for manufacturing magnetic disk
WO2012133373A1 (en) Method for producing magnetic-disk glass substrate
CN108564970B (en) Method for manufacturing glass substrate, and method for manufacturing glass substrate for magnetic disk
WO2012133374A1 (en) Method for producing magnetic-disk glass substrate
JP5731245B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2014208266A1 (en) Hdd glass substrate manufacturing method
JP2007245265A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP6034580B2 (en) Manufacturing method of glass substrate for HDD
JP2012203922A (en) Manufacturing method for glass substrate for magnetic disk
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5792932B2 (en) Glass substrate polishing method and glass substrate manufacturing method using the glass substrate polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764455

Country of ref document: EP

Kind code of ref document: A1