WO2012133171A1 - Method for manufacturing ink-jet head, and ink-jet head - Google Patents

Method for manufacturing ink-jet head, and ink-jet head Download PDF

Info

Publication number
WO2012133171A1
WO2012133171A1 PCT/JP2012/057490 JP2012057490W WO2012133171A1 WO 2012133171 A1 WO2012133171 A1 WO 2012133171A1 JP 2012057490 W JP2012057490 W JP 2012057490W WO 2012133171 A1 WO2012133171 A1 WO 2012133171A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
sacrificial layer
substrate
layer
ink chamber
Prior art date
Application number
PCT/JP2012/057490
Other languages
French (fr)
Japanese (ja)
Inventor
有希 穂苅
雅章 栗田
徳子 篠田
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2012133171A1 publication Critical patent/WO2012133171A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • B41J2/1603Production of bubble jet print heads of the front shooter type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1637Manufacturing processes molding
    • B41J2/1639Manufacturing processes molding sacrificial molding

Definitions

  • the present disclosure relates to a method of manufacturing an ink discharge head used for an ink jet printer or the like, and the ink discharge head.
  • a heat source driving type ink discharge head used in an inkjet printer or the like generates bubbles in ink using a heat source. Ink droplets are ejected by the expansion force of the bubbles.
  • the ink discharge head has an ink chamber in order to hold the discharged ink.
  • a plurality of ink chambers are provided on one surface (for example, the upper surface) of the substrate.
  • the ink chamber has an ink supply port that penetrates the substrate in the thickness direction. Ink is supplied to the ink chamber from the other surface (for example, the lower surface) of the substrate through the ink supply port.
  • the ink discharge head for example, there is a method of forming a sacrificial layer for securing a space of the ink flow path at a position corresponding to the ink flow path such as an ink chamber provided on the substrate.
  • the flow path wall and the nozzle layer that define the ink flow path are formed on the substrate so as to be in contact with the sacrificial layer.
  • the sacrificial layer is removed from the substrate to form a space for the ink flow path.
  • an ink supply port is formed from the lower surface of a silicon substrate by wet etching or the like. The sacrificial layer is removed through the ink supply port.
  • the ink supply port In order to remove the sacrificial layer from the ink supply port, the ink supply port needs to be formed in a state where the sacrificial layer is present on the substrate.
  • the sacrificial layer existing on the ink supply port is exposed to an etching solution for etching the silicon substrate.
  • the sacrificial layer is altered by exposing the sacrificial layer to the etching solution of the substrate.
  • a method of forming a protective layer having ink resistance and anisotropic etching resistance on the upper surface of the substrate is conceivable.
  • the sacrificial layer may be altered.
  • the altered sacrificial layer causes blackening or the like.
  • the inventors have discovered that this altered sacrificial layer produces a residue for the solvent that dissolves the sacrificial layer.
  • the sacrificial layer residue may remain in the ink chamber.
  • the volume of the ink chamber changes due to the remaining residue. Since the volume change of the ink quality is not uniform, there is a possibility that the volume varies among individual ink chambers provided on the substrate. As a result, the amount of ink droplets ejected for each ink chamber may change.
  • the present disclosure provides a method of manufacturing an ink discharge head that can prevent the residue of the sacrificial layer from remaining in the ink chamber when the sacrificial layer is removed, and can maintain the volume of the ink chamber with high accuracy, and the ink discharge head.
  • the purpose is to do.
  • one aspect of the present invention provides a preparatory step of preparing a plate-like substrate and an energy generating element formed on one surface of the substrate, and an ink flow path including an ink chamber.
  • a sacrificial layer provided at a position corresponding to the above, a flow path wall that includes at least the sacrificial layer and the energy generating element, and partitions the ink chamber, and a nozzle layer provided on the flow path wall and the sacrificial layer Forming an ink chamber on the one surface, forming a discharge hole penetrating the nozzle layer in the thickness direction, forming the discharge hole in the nozzle layer, and performing the sacrifice after the discharge hole forming step.
  • the sacrificial layer is discharged from the ink chamber through the discharge hole provided in the nozzle layer.
  • an ink supply port is formed in the substrate by etching. Therefore, the sacrificial layer is removed without being affected by the etching that creates the ink supply port.
  • the sacrificial layer does not change in quality, and the residue of the sacrificial layer is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber can be maintained with high accuracy.
  • the ink chamber forming step includes a channel wall forming step of forming the channel wall on the one surface and a space formed by the channel wall after the channel wall forming step.
  • a nozzle layer forming step of forming the nozzle layer is a channel wall forming step of forming the channel wall on the one surface and a space formed by the channel wall after the channel wall forming step.
  • the nozzle layer is formed thereon. Accordingly, the surface of the nozzle layer on the ink chamber side can be formed with high accuracy, and the height of the ink chamber can be determined with high accuracy. As a result, the volume of the ink chamber is maintained with high accuracy.
  • a highly flat silicon substrate having a total thickness variation of 2 ⁇ m or less may be prepared as the substrate.
  • the ink discharge head is manufactured using the high flat silicon whose total thickness variation is 2 ⁇ m or less. Since the total thickness variation is 2 ⁇ m or less, the distance between the substrate and the nozzle layer is accurately determined regardless of the position on the substrate. As a result, the volume of the ink chamber is maintained with high accuracy.
  • the flattening step may include a cutting step of flattening the upper surface of the sacrificial layer by cutting from the upper surface of the sacrificial layer toward the substrate.
  • the flattening process various processing methods such as polishing and cutting can be used.
  • the abrasive grains of the polishing tool adhere to the sacrificial layer, and there is a problem that the abrasive grains remain in the ink chamber after the sacrificial layer is removed.
  • cutting is preferable to polishing because such a problem does not occur.
  • the machining height is defined by using the lower surface of the workpiece as a reference surface. If the thickness of the substrate varies greatly depending on the location, the bottom surface of the substrate and the top surface of the sacrificial layer after removal are made parallel, so the thickness of the sacrificial layer varies depending on the position on the substrate.
  • the ink further includes a protective layer preparing step of preparing a protective layer having ink resistance and anisotropic etching resistance on the one surface before the ink chamber forming step and after the preparing step.
  • the supply port forming step includes a substrate removal step of removing the substrate from the other surface toward the one surface by anisotropic etching at a position corresponding to the ink supply port of the substrate, and the substrate removal step. And a protective layer removing step of removing the protective layer formed at a position corresponding to the ink supply port from the other surface.
  • the protective layer functions as an etching stop layer when performing anisotropic etching on the substrate. Therefore, the etchant for anisotropic etching is prevented from flowing into the ink chamber.
  • the sacrificial layer removing step may be performed after the substrate removing step, and the protective layer removing step may be performed after the sacrificial layer removing step.
  • the sacrificial layer is removed after the substrate is removed by anisotropic etching. Then, after the sacrificial layer is removed, the protective layer is removed.
  • the substrate is removed by anisotropic etching, the sacrificial layer is not exposed to the etchant for anisotropic etching because the protective layer functions as an etching stop layer.
  • the sacrificial layer is removed before the protective layer is removed by dry etching or the like. Therefore, the sacrificial layer is removed without being exposed to dry etching or the like for removing the protective layer. As a result, the sacrificial layer does not change in quality, and the residue of the sacrificial layer is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber can be maintained with high accuracy.
  • the discharge hole forming step further forms an additional discharge hole in the nozzle layer, and the sacrificial layer removal step discharges the sacrificial layer to the outside of the ink chamber through the discharge hole and the additional discharge hole. By doing so, the sacrificial layer may be removed.
  • the sacrificial layer is discharged from the ink chamber through the additional discharge hole in addition to the discharge hole.
  • the sacrificial layer can be reliably removed from the ink chamber.
  • another aspect of the present disclosure includes a plate-shaped substrate, an energy generation element provided on one surface of the substrate, and a flow path that partitions an ink chamber including at least the energy generation element. And a nozzle layer provided on the flow path wall, wherein the substrate has an ink supply port penetrating the substrate in a thickness direction, and the nozzle layer is located at a position corresponding to the energy generating element.
  • a sealing member that covers the additional hole on the surface opposite to the ink discharge head.
  • the residue of the sacrificial layer is prevented from remaining in the ink chamber, and the ink ejection head in a state where the sacrificial layer is reliably removed from the ink chamber can be obtained.
  • an ink discharge head manufacturing method capable of preventing a residue of a sacrificial layer from remaining in an ink chamber when the sacrificial layer is removed and maintaining the volume of the ink chamber with high accuracy, and an ink discharge head. can get.
  • FIG. 3 is a perspective view showing the ink discharge head 100.
  • FIG. 3 is a cross-sectional view showing the ink discharge head 100.
  • FIG. 3 is an explanatory diagram of a method for manufacturing the ink discharge head 100. Explanatory drawing of the manufacturing method of the ink discharge head 100 (continuation of FIG. 3).
  • the ink discharge head 100 has a plurality of discharge holes A aligned in one direction.
  • Each of the ejection holes A communicates with an individually provided ink chamber CH (see FIG. 2).
  • heaters 13 (see FIG. 2) functioning as energy generating elements are respectively provided.
  • Ink is supplied to the ink chamber CH through the ink supply port B connected from the lower surface of the ink discharge head 100 to the ink chamber CH.
  • a part of the ink supplied to the ink chamber CH becomes bubbles due to the heating of the heater 13.
  • the ink in the ink chamber CH pushed out by the bubbles is ejected from the ejection hole A.
  • FIG. 2A is a cross-sectional view of the ink discharge head 100 cut in a direction orthogonal to the alignment direction of the plurality of discharge holes A (that is, a cross section aa in FIG. 1).
  • the layer structure of the ink discharge head 100 is mainly composed of a substrate 11, insulating layers 12 a and 12 b, a protective layer 14, a flow path wall 15, and a nozzle layer 17.
  • the substrate 11 has an ink supply port B that penetrates the substrate 11 in the thickness direction (vertical direction in FIG. 2).
  • the ink moves from the lower surface of the substrate 11 to the upper surface of the substrate 11 through the ink supply port B.
  • the ink passes through the ink flow path partitioned by the flow path wall 15 and flows into the ink chamber CH defined by the nozzle layer 17 and the flow path wall 15.
  • each layer structure will be described.
  • An insulating layer 12 a is formed on one surface (for example, the upper surface) of the substrate 11.
  • a heater 13 is formed on the insulating layer 12a.
  • the term “formed on the upper surface (one surface) of the substrate 11 is formed in direct contact with the upper surface of the substrate 11, and is formed on the upper surface side of the substrate 11 with some configuration in between. It also means that. Of course, the term “formed on the lower surface (the other surface)” should be interpreted in the same manner.
  • the protective layer 14 is provided so as to cover the upper surface of the substrate 11. That is, the protective layer 14 is formed on the insulating layer 12 a and the heater 13.
  • the flow path wall 15 is erected upward from the upper surface of the substrate 11.
  • the flow path wall 15 surrounds the heater 13 and the ink supply port B.
  • the flow path wall 15 may be either in a state of surrounding the heater 13 and the ink supply port B over the entire circumference or in a state of being surrounded with a part or one side opened.
  • the nozzle layer 17 extends laterally from the upper end of the flow path wall 15.
  • the nozzle layer 17 and the flow path wall 15 define an ink flow path through which ink flows on the upper surface of the substrate 11.
  • a discharge hole A penetrating the nozzle layer 17 in the thickness direction is formed at a position facing the heater 13 of the nozzle layer 17.
  • a sealing member 18 is provided at a position facing the ink supply port B of the nozzle layer 17. The sealing member 18 prevents the ink in the ink chamber CH from being ejected upward from other than the ejection holes A by closing the through holes penetrating the nozzle layer 17 in the thickness direction.
  • a silicon substrate 11 having an insulating layer 12a and an insulating layer 12b is prepared.
  • the substrate 11 a highly flat silicon substrate having a total thickness variation (TTV) of 2 ⁇ m or less is used.
  • TTV total thickness variation
  • the insulating layer 12a and the insulating layer 12b are made of, for example, silicon oxide.
  • the insulating layer 12a and the insulating layer 12b are formed, for example, by thermally oxidizing a silicon substrate 11.
  • the insulating layer 12a and the insulating layer 12b may be prepared by using a ready-made substrate in which silicon oxide films are provided on both surfaces in advance.
  • the thickness of the substrate 11 is about 625 ⁇ m.
  • the thickness of the insulating layer 12a and the insulating layer 12b is, for example, about 1 to 5 ⁇ m.
  • Silicon oxide has ink resistance and anisotropic etching resistance. Therefore, the insulating layer 12a alone functions as a protective layer.
  • the heater 13 is formed on the insulating layer 12a.
  • the heater 13 is formed, for example, by depositing a resistance heating element such as tantalum nitride (TaN) or tantalum aluminum (TaAl) at a position where the heater 13 is formed by a sputtering method so as to have a thickness of about 200 to 1000 mm. Is done.
  • a resistance heating element such as tantalum nitride (TaN) or tantalum aluminum (TaAl)
  • a protective layer 14 having ink resistance and anisotropic etching resistance is formed so as to cover the upper surface of the substrate 11.
  • the protective layer 14 is formed so as to cover the heater 13 and the insulating layer 12a.
  • the protective layer 14 can be obtained by depositing silicon nitride on the heater 13 and the insulating layer 12a by, for example, chemical vapor deposition (plasma CVD) using plasma or sputtering.
  • the thickness of the protective layer 14 is about 0.4 ⁇ m, for example.
  • the flow path wall 15 is formed on the protective layer 14 so as to include the heater 13 on the substrate 11.
  • the flow path wall 15 is formed of a completely cured epoxy resin. Note that the flow path wall 15 may be either in a state in which the heater 13 is surrounded over the entire circumference or in a state in which a part or one side is open. Further, the film thickness of the flow path wall 15 may be adjusted to be, for example, about 10-30 ⁇ m.
  • the sacrificial layer 16 is formed.
  • the sacrificial layer 16 is also formed in a region covering the upper surface of the flow path wall 15.
  • the sacrificial layer 16 is formed by injecting a semi-cured resin into the space formed by the flow path wall 15 and drying it.
  • a semi-cured resin In this embodiment, a polyimide material and photo nice of Toray Industries, Inc. are used in a semi-cured state as the semi-cured resin.
  • Photo Nice is soluble in an alkaline solution, but insoluble in an organic solvent.
  • the epoxy resin constituting the flow path wall 15 is completely cured by heat or light before the sacrificial layer 16 is injected.
  • the epoxy resin constituting the flow path wall 15 is soluble in an organic solvent when not cured, but is insoluble in an organic solvent when cured. Therefore, cross mixing does not occur between the flow path wall 15 and the sacrificial layer 16.
  • a novolac resin may be used as the sacrificial layer 16.
  • EP4080G, EP4050G manufactured by Asahi Organic Materials Co., Ltd. dissolved in an organic solvent such as propylene glycol monomethyl ether acetate (PGMEA) can be used.
  • PMEA propylene glycol monomethyl ether acetate
  • the novolak resin has extremely low solubility in xylene and toluene, but dissolves in an alkaline aqueous solution and acetone. Since the epoxy resin constituting the flow path wall 15 is completely cured, it is insoluble in the organic solvent. Therefore, even when novolac resin is used, no cross-mixing occurs between the flow path wall 15 and the sacrificial layer 16.
  • the sacrificial layer 16 is removed from the upper surface so that the upper surface of the sacrificial layer 16 becomes flat.
  • the sacrificial layer 16 remains on the flow path wall 15, there is a possibility that the adjacent ink chambers CH communicate with each other. Therefore, it is desirable that the sacrificial layer 16 be flattened until the sacrificial layer 16 and the flow path wall 15 are located on the same plane, in other words, until the upper surface of the flow path wall 15 is exposed. At this time, the upper surface of the flow path wall 15 may be slightly removed.
  • the surface of the nozzle layer 17 on the ink chamber CH side can be formed with high accuracy, and the height of the ink chamber CH can be determined with high accuracy. As a result, the volume of the ink chamber CH is maintained with high accuracy.
  • planarization various processing methods such as polishing and cutting can be used.
  • the planarization of the sacrificial layer 16 is performed by cutting.
  • the abrasive grains do not remain in the sacrificial layer 16 as in polishing, and the residue is prevented from remaining in the ink chamber CH when the sacrificial layer 16 is removed.
  • the substrate 11 is placed on a processing table of a cutting device.
  • the cutting height is defined by using the lower surface of the substrate 11 as a reference surface.
  • the thickness of the substrate 11 varies greatly depending on the location, the lower surface of the substrate 11 and the upper surface of the sacrificial layer 16 after removal are made parallel, so that the thickness of the sacrificial layer 16 varies depending on the position on the substrate 11.
  • the substrate 11 is made of highly flat silicon, the tilt of the substrate is sufficiently suppressed. Therefore, even if the sacrificial layer 16 is planarized by cutting, the thickness of the sacrificial layer 16 is kept constant regardless of the position on the substrate 11. For this reason, the volume of the ink chamber CH is maintained with high accuracy.
  • the sacrificial layer 16 may be slightly dissolved from the upper surface by dipping the ink discharge head 100 in an alkaline solution after the flattening by cutting. Thereby, the upper surface of the sacrificial layer 16 becomes flatter.
  • the nozzle layer 17 is formed so as to cover the flow path wall 15 and the sacrificial layer 16.
  • the nozzle layer 17 is formed so as not to dissolve the sacrificial layer 16.
  • spin coating or spray coating using a solvent that does not dissolve the resin of the sacrificial layer 16 is performed.
  • a solvent such as xylene or toluene, a silane coupling agent, and a photopolymerization initiator is used. Since xylene and toluene do not dissolve semi-cured polyimide or novolak resin, they are convenient as a solvent for the resin forming the nozzle layer 17.
  • the resin constituting the nozzle layer 17 is dried in order to improve the adhesion with the flow path wall 16 and drive out the solvent remaining in the nozzle layer 17.
  • This drying may be performed, for example, by a method such as heating the ink ejection head 100 or exposing it to a vacuum.
  • the ink ejection head 100 is exposed to an environment of 70 ° C. for about 30 minutes, for example.
  • the ink ejection head 100 is exposed to an environment of 10 Torr or less for about 8 hours, for example.
  • the film thickness of the nozzle layer 17 is adjusted to 20-50 ⁇ m.
  • nozzle holes A and additional discharge holes C penetrating the nozzle layer 17 in the vertical direction are formed in the nozzle layer 17.
  • the discharge hole A is provided at a position facing the heater 13.
  • the additional discharge hole C is provided at a position away from the nozzle hole A.
  • the size of the additional discharge hole C is arbitrary. As an example, the size of the additional discharge hole C is larger than the size of the discharge hole A so that the dissolved sacrificial layer 16 can easily pass through.
  • a plurality of additional discharge holes C having a size smaller than the size of the discharge holes A may be provided in the nozzle layer 17 for each ink chamber CH.
  • a plurality of additional discharge holes C larger than the size of the discharge holes A may be provided in the nozzle layer 17.
  • the discharge hole A and the additional discharge hole C are formed by photolithography. Specifically, a photomask is placed at a position corresponding to the discharge hole A and the additional discharge hole C on the upper surface of the nozzle layer 17.
  • the nozzle layer 17 is irradiated with ultraviolet rays from above the photomask.
  • the nozzle layer 17 is cured except for the positions of the discharge holes A and the additional discharge holes C by the ultraviolet irradiation. Then, by immersing the ink discharge head 100 in the developer, the uncured resin at the positions of the discharge holes A and the additional discharge holes C is dissolved, and the discharge holes A and the additional discharge holes C are developed.
  • a solvent that does not dissolve the sacrificial layer 16 such as xylene or toluene is used as a developer.
  • the sacrificial layer 16 such as PGMEA, acetone, or an alkaline aqueous solution may be removed to a part of the sacrificial layer 16 in the vicinity of the discharge hole A and the additional discharge hole C using a solvent that can dissolve the sacrificial layer 16. .
  • the substrate 11 is anisotropically etched from the lower surface.
  • an etching mask is formed on the lower surface of the substrate 11.
  • the insulating layer 12b is used as an etching mask. That is, an opening is formed in the insulating layer 12b at a position facing the additional discharge hole C, whereby an etching mask is formed.
  • the opening is formed by removing a part of the insulating layer 12b by dry etching using a gas such as tetrafluoromethane (CF4) or wet etching using a hydrofluoric acid solution.
  • the substrate 11 is immersed in an etching solution for anisotropic wet etching.
  • an alkaline aqueous solution such as an aqueous potassium hydroxide (KOH) solution or an aqueous tetramethylammonium hydroxide (TMAH) solution is used as the etching solution.
  • the etching rate of the silicon oxide film constituting the insulating layer 12a is sufficiently slower than the etching rate of silicon constituting the substrate 11 with respect to the alkaline aqueous solution that is the etching solution. Therefore, anisotropic etching that proceeds from the lower surface of the substrate 11 toward the upper surface stops at the lower surface of the insulating layer 12a. That is, the insulating layer 12a functions as an etching stop layer. Therefore, the sacrificial layer 16 does not come into contact with the alkaline aqueous solution that is an etching solution. Therefore, alteration of the sacrificial layer 16 is prevented.
  • KOH potassium hydroxide
  • TMAH aqueous tetramethylammonium hydroxide
  • the sacrificial layer 16 is removed.
  • the ink ejection head 100 is immersed in a 2.38% TMAH alkaline aqueous solution.
  • the ink ejection head 100 is immersed in an organic solvent such as acetone or PGMEA. As the sacrificial layer 16 dissolved in the solvent flows out from the discharge hole A and the additional discharge hole C, the sacrificial layer 16 is removed.
  • the sacrificial layer 16 is removed before the ink supply port B penetrates, the sacrificial layer 16 is not altered, and the residue of the sacrificial layer 16 is prevented from remaining in the ink chamber CH. Further, since the additional discharge hole C is provided, the sacrificial layer 16 can be reliably removed from the ink chamber.
  • the insulating film 12a and the protective layer 14 formed at the position corresponding to the ink supply port B are removed.
  • the insulating layer 12a and the protective layer 14 are removed from the lower surface of the substrate 11, for example, by dry etching using CF4.
  • the sacrificial layer 16 is removed before the insulating film 12a and the protective layer 14 are removed by dry etching. Therefore, the sacrificial layer 16 is removed without being exposed to dry etching or the like for removing the insulating film 12a and the protective layer 14.
  • the sacrificial layer 16 does not change in quality, and the residue of the sacrificial layer 16 is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber CH is kept with high accuracy.
  • the sealing member 18 is formed in the nozzle layer 17 so as to cover the additional discharge hole C.
  • the adhesive film is attached to the position of the additional discharge hole C on the upper surface of the nozzle layer 17.
  • the adhesive film is obtained by spin coating or spray coating a resin material constituting the sealing member 18 on a resin film 19 such as polyethylene terephthalate (PET) or polyimide.
  • the resin material constituting the sealing member 18 is a mixture of an epoxy resin dissolved in a solvent such as xylene or toluene, a silane coupling agent, and a photopolymerization initiator, as with the nozzle layer 17. Used.
  • the sealing member 18 is cured.
  • the sealing member 18 is cured by irradiation with ultraviolet rays.
  • the ink ejection head 100 is manufactured by the process described above.
  • the nozzle layer 17 is formed by applying and drying a resin dissolved in a solvent.
  • the nozzle layer 17 may be formed by placing a film-like photocurable resin or a film-like resin having discharge holes formed thereon.
  • the sacrificial layer 16 was eluted from the discharge port A and the additional discharge port C (FIG. 4C).
  • the sacrificial layer 16 may be eluted only from the discharge port A without forming the additional discharge port C.
  • the ejection holes A are always provided in the ink ejection head 100. Therefore, when the sacrificial layer 16 is eluted only from the discharge hole A without providing the additional discharge port C, it is not necessary to form a special configuration for removing the sacrificial layer 16. Therefore, it leads to simplification of the manufacturing process.
  • the insulating layer 12 a provided under the heater 13 and the protective layer 14 provided on the heater 13 are formed on the upper surface of the substrate 11.
  • Both the insulating layer 12a and the protective layer 14 have ink resistance and etching resistance against wet etching with an alkaline solution.
  • any one of the layers may be omitted.
  • a protective film that functions as an etching stop layer may be provided on the upper surface of the substrate 11 when the substrate 11 is wet-etched.
  • the sealing member 18 seals the additional discharge hole C using a sticking film (see FIG. 4E).
  • the sealing member 18 may seal the additional discharge hole C by covering the upper surface of the nozzle layer 17 by, for example, spray coating or spin coating.
  • a mask is placed on the discharge hole A before the resin material constituting the sealing member 18 is applied to the upper surface of the nozzle layer 17 so as not to block the discharge hole A.
  • the additional discharge hole C is formed of a plurality of fine holes so that the sealing member 18 does not flow into the ink chamber CH through the additional discharge hole C. In this case, the size of the additional discharge hole C is determined depending on the viscosity of the sealing member 18.

Abstract

Provided is a method for manufacturing an ink-jet head, wherein a residue of a sacrificial layer is prevented from being left in an ink chamber at the time of removing the sacrificial layer, and the volume of the ink chamber can be accurately maintained. Also provided is an ink-jet head. A board-like substrate (11), and a heater (13) formed on one surface of the substrate (11) are prepared. Then, one surface of the substrate (11) has formed thereon: a sacrificial layer (16), which is provided at a position that corresponds to an ink flow channel; a flow channel wall (15), which includes at least the sacrificial layer (16) and the heater (13), and which partitions an ink chamber (CH); and a nozzle layer (17), which is provided on the flow channel wall (15) and the sacrificial layer (16). Then, a jetting port (A), from which an ink is to be jetted, is formed in the nozzle layer (17). Then, the sacrificial layer (16) is removed by taking out the sacrificial layer (16) to the outside of the ink chamber (CH) through the jetting port (A). Then, an ink supply port (B) that penetrates the substrate (11) from the other surface thereof to the one surface is formed from the other surface by etching.

Description

インク吐出ヘッドの製造方法及びインク吐出ヘッドInk discharge head manufacturing method and ink discharge head
 本開示は、インクジェットプリンター等に用いられるインク吐出ヘッドを製造する方法と、インク吐出ヘッドとに関する。 The present disclosure relates to a method of manufacturing an ink discharge head used for an ink jet printer or the like, and the ink discharge head.
 インクジェットプリンター等に用いられる熱源駆動方式のインク吐出ヘッドは、熱源を用いてインクに気泡を発生させる。気泡の膨張力により、インク液滴が吐出される。インク吐出ヘッドは、吐出されるインクを保持するために、インク室を有する。このインク室は、基板の一方の面(例えば、上面)に複数設けられる。インク室は、基板を厚み方向に貫通するインク供給口を有する。インクは、基板の他方の面(例えば、下面)から、インク供給口を通過し、インク室に対して供給される。 A heat source driving type ink discharge head used in an inkjet printer or the like generates bubbles in ink using a heat source. Ink droplets are ejected by the expansion force of the bubbles. The ink discharge head has an ink chamber in order to hold the discharged ink. A plurality of ink chambers are provided on one surface (for example, the upper surface) of the substrate. The ink chamber has an ink supply port that penetrates the substrate in the thickness direction. Ink is supplied to the ink chamber from the other surface (for example, the lower surface) of the substrate through the ink supply port.
 インク吐出ヘッドの製造方法には、例えば、基板上に設けられるインク室などのインク流路に対応する位置に、インク流路の空間を確保するための犠牲層を形成する手法がある。そして、インク流路を区画する流路壁やノズル層は、この犠牲層に接するようにして基板上に形成される。流路壁やノズル層が形成された後、インク流路の空間を形成するために、犠牲層は基板上から除去される。特許文献1では、シリコンの基板の下面から、ウェットエッチングなどによってインク供給口が形成される。犠牲層は、そのインク供給口を通って除去される。 As a method for manufacturing the ink discharge head, for example, there is a method of forming a sacrificial layer for securing a space of the ink flow path at a position corresponding to the ink flow path such as an ink chamber provided on the substrate. The flow path wall and the nozzle layer that define the ink flow path are formed on the substrate so as to be in contact with the sacrificial layer. After the flow path wall and the nozzle layer are formed, the sacrificial layer is removed from the substrate to form a space for the ink flow path. In Patent Document 1, an ink supply port is formed from the lower surface of a silicon substrate by wet etching or the like. The sacrificial layer is removed through the ink supply port.
米国特許第7285226号公報(請求項1など)US Pat. No. 7,285,226 (Claim 1 etc.)
 犠牲層をインク供給口から除去するためには、犠牲層が基板上に存在した状態で、インク供給口が形成される必要がある。インク供給口の形成がウェットエッチングによって行われる場合、シリコン製の基板をエッチングするエッチング溶液に、インク供給口の上に存在する犠牲層が曝される。しかし、犠牲層を基板のエッチング溶液に曝すことにより、犠牲層が変質することが、本発明者らによって発見された。犠牲層をエッチング溶液に曝さないために、耐インク性及び耐異方性エッチング性を有する保護層を、基板の上面に形成する方法が考えられる。しかし、この場合、インク供給口の上に形成された保護膜を除去する際に、ドライエッチングなどが必要となる。犠牲層がドライエッチングに曝されるため、同様に、犠牲層が変質する可能性がある。変質した犠牲層は、黒色化などを生じる。本発明者らは、この変質した犠牲層が、犠牲層を溶解する溶媒に対して、残渣を生じることを発見した。犠牲層の残渣は、インク室内に残留する可能性がある。残留した残渣により、インク室の体積が変化する。インク質の体積変化は一様ではないので、基板上に設けられる個々のインク室の間で体積が異なる可能性が出てくる。その結果、インク室毎に吐出されるインクの液滴量が変化する可能性がある。 In order to remove the sacrificial layer from the ink supply port, the ink supply port needs to be formed in a state where the sacrificial layer is present on the substrate. When the ink supply port is formed by wet etching, the sacrificial layer existing on the ink supply port is exposed to an etching solution for etching the silicon substrate. However, it has been discovered by the present inventors that the sacrificial layer is altered by exposing the sacrificial layer to the etching solution of the substrate. In order not to expose the sacrificial layer to the etching solution, a method of forming a protective layer having ink resistance and anisotropic etching resistance on the upper surface of the substrate is conceivable. However, in this case, dry etching or the like is required when removing the protective film formed on the ink supply port. Similarly, since the sacrificial layer is exposed to dry etching, the sacrificial layer may be altered. The altered sacrificial layer causes blackening or the like. The inventors have discovered that this altered sacrificial layer produces a residue for the solvent that dissolves the sacrificial layer. The sacrificial layer residue may remain in the ink chamber. The volume of the ink chamber changes due to the remaining residue. Since the volume change of the ink quality is not uniform, there is a possibility that the volume varies among individual ink chambers provided on the substrate. As a result, the amount of ink droplets ejected for each ink chamber may change.
 本開示は、犠牲層の除去時に犠牲層の残渣がインク室内に残留することを防止し、インク室の体積を精度良く保つことが可能なインク吐出ヘッドの製造方法と、インク吐出ヘッドとを提供することを目的とする。 The present disclosure provides a method of manufacturing an ink discharge head that can prevent the residue of the sacrificial layer from remaining in the ink chamber when the sacrificial layer is removed, and can maintain the volume of the ink chamber with high accuracy, and the ink discharge head. The purpose is to do.
 上記課題を解決するために、本発明の一側面は、板状の基板と、前記基板の一方の面に形成されたエネルギー発生素子と、を準備する準備工程と、インク室を含むインク流路に対応する位置に設けられる犠牲層と、前記犠牲層及び前記エネルギー発生素子を少なくとも含み、前記インク室を区画する流路壁と、前記流路壁及び前記犠牲層の上に設けられるノズル層とを、前記一方の面に形成するインク室形成工程と、前記ノズル層を厚み方向に貫通する吐出孔を、前記ノズル層に形成する吐出孔形成工程と、前記吐出孔形成工程の後に、前記犠牲層を前記吐出孔を通って前記インク室の外部に排出することで、前記犠牲層を除去する犠牲層除去工程と、前記犠牲層除去工程の後に、前記基板を前記厚み方向に貫通するインク供給口を、前記他方の面からエッチングによって形成するインク供給口形成工程と、を備えるインク吐出ヘッドの製造方法である。 In order to solve the above-described problems, one aspect of the present invention provides a preparatory step of preparing a plate-like substrate and an energy generating element formed on one surface of the substrate, and an ink flow path including an ink chamber. A sacrificial layer provided at a position corresponding to the above, a flow path wall that includes at least the sacrificial layer and the energy generating element, and partitions the ink chamber, and a nozzle layer provided on the flow path wall and the sacrificial layer Forming an ink chamber on the one surface, forming a discharge hole penetrating the nozzle layer in the thickness direction, forming the discharge hole in the nozzle layer, and performing the sacrifice after the discharge hole forming step. A sacrificial layer removing step for removing the sacrificial layer by discharging the layer to the outside of the ink chamber through the ejection holes, and an ink supply penetrating the substrate in the thickness direction after the sacrificial layer removing step Mouth, said Square and an ink supply port forming step of forming by etching from the surface of a method of manufacturing an ink jet head comprising a.
 これによれば、ノズル層に設けられた吐出孔を通って、犠牲層がインク室から排出される。そして、犠牲層が除去された後で、基板にインク供給口がエッチングによって形成される。従って、犠牲層はインク供給口を作成するエッチングの影響を受けることなく、除去される。その結果、犠牲層は変質しないので、犠牲層の残渣がインク室内に残留することが防止される。従って、インク室の体積が精度良く保たれる。 According to this, the sacrificial layer is discharged from the ink chamber through the discharge hole provided in the nozzle layer. After the sacrificial layer is removed, an ink supply port is formed in the substrate by etching. Therefore, the sacrificial layer is removed without being affected by the etching that creates the ink supply port. As a result, the sacrificial layer does not change in quality, and the residue of the sacrificial layer is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber can be maintained with high accuracy.
 さらに、前記インク室形成工程は、前記流路壁を前記一方の面に形成する流路壁形成工程と、前記流路壁形成工程の後に、前記流路壁により形成された空間に、前記犠牲層を形成する犠牲層形成工程と、前記犠牲層形成工程の後に、前記犠牲層の上面を平坦化する平坦化工程と、前記平坦化工程の後に、前記犠牲層及び前記流路壁の上に前記ノズル層を形成するノズル層形成工程と、を有してもよい。 Further, the ink chamber forming step includes a channel wall forming step of forming the channel wall on the one surface and a space formed by the channel wall after the channel wall forming step. A sacrificial layer forming step of forming a layer, a planarizing step of planarizing an upper surface of the sacrificial layer after the sacrificial layer forming step, and on the sacrificial layer and the flow path wall after the planarizing step. A nozzle layer forming step of forming the nozzle layer.
 これによれば、犠牲層の上面が平坦化された後で、その上にノズル層が形成される。従って、ノズル層のインク室側の面を精度よく形成できるとともに、インク室の高さも精度よく決定することが可能となる。その結果、インク室の体積が精度良く保たれる。 According to this, after the upper surface of the sacrificial layer is flattened, the nozzle layer is formed thereon. Accordingly, the surface of the nozzle layer on the ink chamber side can be formed with high accuracy, and the height of the ink chamber can be determined with high accuracy. As a result, the volume of the ink chamber is maintained with high accuracy.
 さらに、前記準備工程は、前記基板として、全厚さ変動が2μm以下となる高平坦シリコン基板を準備してもよい。 Further, in the preparation step, a highly flat silicon substrate having a total thickness variation of 2 μm or less may be prepared as the substrate.
 これによれば、全厚さ変動が2μm以下となる高平坦シリコンを用いて、インク吐出ヘッドが製造される。全厚さ変動が2μm以下なので、基板上の位置に関らず、基板とノズル層との距離が精度よく決定される。その結果、インク室の体積が精度良く保たれる。 According to this, the ink discharge head is manufactured using the high flat silicon whose total thickness variation is 2 μm or less. Since the total thickness variation is 2 μm or less, the distance between the substrate and the nozzle layer is accurately determined regardless of the position on the substrate. As a result, the volume of the ink chamber is maintained with high accuracy.
 さらに、前記平坦化工程は、前記犠牲層の上面から前記基板に向けて切削することで、前記犠牲層の上面を平坦化する切削工程を有してもよい。 Furthermore, the flattening step may include a cutting step of flattening the upper surface of the sacrificial layer by cutting from the upper surface of the sacrificial layer toward the substrate.
 平坦化工程としては、研磨、切削など、様々な加工方法が利用できる。研磨で平坦化が行われると、研磨工具の砥粒が犠牲層に付着し、犠牲層除去後にインク室に砥粒が残る問題が生じる。一方、切削は、このような問題は生じないため、研磨よりも望ましい。しかし、切削は多くの場合、ワークの下面を基準面として、加工高さが定義される。仮に基板の厚みが場所によって大きく異なると、基板の下面と除去後の犠牲層の上面とが平行にされるため、犠牲層の厚さが、基板上の位置によって異なってくる。これは、インク室の体積の変動に繋がる。しかし、高平坦シリコンが用いられることによって、基板の傾きは十分に押えられる。従って、切削によって犠牲層を平坦化しても、犠牲層の厚さは基板上の位置に関らず一定に保たれる。その結果、インク室の体積が精度良く保たれる。 As the flattening process, various processing methods such as polishing and cutting can be used. When flattening is performed by polishing, the abrasive grains of the polishing tool adhere to the sacrificial layer, and there is a problem that the abrasive grains remain in the ink chamber after the sacrificial layer is removed. On the other hand, cutting is preferable to polishing because such a problem does not occur. However, in many cases, the machining height is defined by using the lower surface of the workpiece as a reference surface. If the thickness of the substrate varies greatly depending on the location, the bottom surface of the substrate and the top surface of the sacrificial layer after removal are made parallel, so the thickness of the sacrificial layer varies depending on the position on the substrate. This leads to fluctuations in the volume of the ink chamber. However, the use of highly flat silicon suppresses the substrate tilt sufficiently. Therefore, even if the sacrificial layer is flattened by cutting, the thickness of the sacrificial layer is kept constant regardless of the position on the substrate. As a result, the volume of the ink chamber is maintained with high accuracy.
 さらに、前記インク室形成工程の前且つ前記準備工程の後に、耐インク性及び耐異方性エッチング性を有する保護層を、前記一方の面に準備する保護層準備工程をさらに有し、前記インク供給口形成工程は、前記基板の前記インク供給口に対応する位置において、異方性エッチングによって前記他方の面から前記一方の面へ向けて前記基板を削除する基板除去工程と、前記基板除去工程の後に、前記インク供給口に対応する位置に形成された前記保護層を、前記他方の面から除去する保護層除去工程とを有してもよい。 The ink further includes a protective layer preparing step of preparing a protective layer having ink resistance and anisotropic etching resistance on the one surface before the ink chamber forming step and after the preparing step. The supply port forming step includes a substrate removal step of removing the substrate from the other surface toward the one surface by anisotropic etching at a position corresponding to the ink supply port of the substrate, and the substrate removal step. And a protective layer removing step of removing the protective layer formed at a position corresponding to the ink supply port from the other surface.
 これによれば、基板に対して異方性エッチングを行う際に、保護層がエッチングストップ層として機能する。従って、異方性エッチングのエッチャントがインク室内に流入することが防止される。 According to this, the protective layer functions as an etching stop layer when performing anisotropic etching on the substrate. Therefore, the etchant for anisotropic etching is prevented from flowing into the ink chamber.
 さらに、前記基板除去工程の後に、前記犠牲層除去工程が行われ、前記犠牲層除去工程の後に、前記保護層除去工程が行われてもよい。 Further, the sacrificial layer removing step may be performed after the substrate removing step, and the protective layer removing step may be performed after the sacrificial layer removing step.
 これによれば、異方性エッチングによって基板が除去された後に、犠牲層が除去される。そして、犠牲層が除去された後に、保護層が除去される。異方性エッチングによって基板が除去される際には、保護層がエッチングストップ層として機能するため、犠牲層は異方性エッチングのエッチャントに曝されない。また、保護層をドライエッチングなどで除去する前に犠牲層が除去される。そのため、犠牲層は保護層を除去するためのドライエッチングなどに曝される事なく、除去される。その結果、犠牲層は変質しないので、犠牲層の残渣がインク室内に残留することが防止される。従って、インク室の体積が精度良く保たれる。 According to this, the sacrificial layer is removed after the substrate is removed by anisotropic etching. Then, after the sacrificial layer is removed, the protective layer is removed. When the substrate is removed by anisotropic etching, the sacrificial layer is not exposed to the etchant for anisotropic etching because the protective layer functions as an etching stop layer. Further, the sacrificial layer is removed before the protective layer is removed by dry etching or the like. Therefore, the sacrificial layer is removed without being exposed to dry etching or the like for removing the protective layer. As a result, the sacrificial layer does not change in quality, and the residue of the sacrificial layer is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber can be maintained with high accuracy.
 また、前記吐出孔形成工程はさらに、追加排出孔を前記ノズル層に形成し、前記犠牲層除去工程は、前記犠牲層を前記吐出孔及び前記追加排出孔を通って前記インク室の外部に排出することで、前記犠牲層を除去してもよい。 The discharge hole forming step further forms an additional discharge hole in the nozzle layer, and the sacrificial layer removal step discharges the sacrificial layer to the outside of the ink chamber through the discharge hole and the additional discharge hole. By doing so, the sacrificial layer may be removed.
 これによれば、犠牲層は、吐出孔に加えて、追加排出孔を通ってインク室から排出される。そのため、インク室から確実に犠牲層を除去することが可能になる。 According to this, the sacrificial layer is discharged from the ink chamber through the additional discharge hole in addition to the discharge hole. As a result, the sacrificial layer can be reliably removed from the ink chamber.
 上記課題を解決するために、本開示の他の側面は、板状の基板と、前記基板の一方の面に設けられるエネルギー発生素子と、前記エネルギー発生素子を少なくとも含むインク室を区画する流路壁と、前記流路壁の上に設けられるノズル層とを備え、前記基板は、前記基板を厚み方向に貫通するインク供給口を有し、前記ノズル層は、前記エネルギー発生素子に対応する位置に設けられ、前記ノズル層を前記厚み方向に貫通する吐出孔と、前記吐出孔から離間する位置に設けられ、前記ノズル層を前記厚み方向に貫通する追加孔と、前記ノズル層の前記インク室と反対側の面において、前記追加孔を覆う封止部材とを有する、インク吐出ヘッドである。 In order to solve the above problem, another aspect of the present disclosure includes a plate-shaped substrate, an energy generation element provided on one surface of the substrate, and a flow path that partitions an ink chamber including at least the energy generation element. And a nozzle layer provided on the flow path wall, wherein the substrate has an ink supply port penetrating the substrate in a thickness direction, and the nozzle layer is located at a position corresponding to the energy generating element. A discharge hole penetrating through the nozzle layer in the thickness direction; an additional hole penetrating the nozzle layer in the thickness direction; and the ink chamber of the nozzle layer. And a sealing member that covers the additional hole on the surface opposite to the ink discharge head.
 これによれば、犠牲層の残渣がインク室内に残留することが防止され、インク室から確実に犠牲層が除去された状態のインク吐出ヘッドが得られる。 According to this, the residue of the sacrificial layer is prevented from remaining in the ink chamber, and the ink ejection head in a state where the sacrificial layer is reliably removed from the ink chamber can be obtained.
 本開示によれば、犠牲層の除去時に犠牲層の残渣がインク室内に残留することを防止し、インク室の体積を精度良く保つことが可能なインク吐出ヘッドの製造方法と、インク吐出ヘッドが得られる。 According to the present disclosure, there is provided an ink discharge head manufacturing method capable of preventing a residue of a sacrificial layer from remaining in an ink chamber when the sacrificial layer is removed and maintaining the volume of the ink chamber with high accuracy, and an ink discharge head. can get.
インク吐出ヘッド100を示す斜視図。FIG. 3 is a perspective view showing the ink discharge head 100. インク吐出ヘッド100を示す断面図。FIG. 3 is a cross-sectional view showing the ink discharge head 100. インク吐出ヘッド100の製造方法の説明図。FIG. 3 is an explanatory diagram of a method for manufacturing the ink discharge head 100. インク吐出ヘッド100の製造方法の説明図(図3の続き)。Explanatory drawing of the manufacturing method of the ink discharge head 100 (continuation of FIG. 3).
 以下に図面を参照しつつ、本開示に係る実施形態を示す。なお、参照する図面は、本開示が採用しうる技術的特徴を説明するために用いられる。図面に記載されている構成は、それのみに限定する趣旨ではなく、単なる説明例である。例えば、以下に説明する各構成において、所定の構成を省略し、または他の構成などに置換してもよい。また、他の構成を含むようにしてもよい。まず、図1及び図2を用いて、インク吐出ヘッド100の構成について説明する。 Embodiments according to the present disclosure will be described below with reference to the drawings. Note that the drawings referred to are used to describe technical features that can be adopted by the present disclosure. The configuration described in the drawings is not intended to be limited to that, but merely an illustrative example. For example, in each configuration described below, a predetermined configuration may be omitted or replaced with another configuration. Moreover, you may make it include another structure. First, the configuration of the ink discharge head 100 will be described with reference to FIGS. 1 and 2.
[インク吐出ヘッド100の構成]
 図1に示されるように、インク吐出ヘッド100は、一方向に整列した複数の吐出孔Aを有する。この吐出孔Aのそれぞれは、個別に設けられたインク室CH(図2参照)にそれぞれ連通する。インク室CH内には、エネルギー発生素子として機能するヒーター13(図2参照)が、それぞれ設けられる。インク吐出ヘッド100の下面からインク室CHへとつながるインク供給口Bによって、インク室CHへとインクが供給される。インク室CHに供給されたインクは、ヒーター13の加熱によりその一部が気泡となる。この気泡によって押し出されたインク室CH内のインクは、吐出孔Aから吐出する。
[Configuration of Ink Ejection Head 100]
As shown in FIG. 1, the ink discharge head 100 has a plurality of discharge holes A aligned in one direction. Each of the ejection holes A communicates with an individually provided ink chamber CH (see FIG. 2). In the ink chamber CH, heaters 13 (see FIG. 2) functioning as energy generating elements are respectively provided. Ink is supplied to the ink chamber CH through the ink supply port B connected from the lower surface of the ink discharge head 100 to the ink chamber CH. A part of the ink supplied to the ink chamber CH becomes bubbles due to the heating of the heater 13. The ink in the ink chamber CH pushed out by the bubbles is ejected from the ejection hole A.
 図2(A)は、インク吐出ヘッド100を、複数の吐出孔Aの整列方向と直交する方向に切断した断面(即ち、図1のa―a断面)の図である。インク吐出ヘッド100の層構造は、基板11と、絶縁層12a,12bと、保護層14と、流路壁15と、ノズル層17とから主に構成される。基板11は、基板11を厚み方向(図2における上下方向)に貫通するインク供給口Bを有する。インクは、基板11の下面から、このインク供給口Bを通って基板11の上面に移動する。その後、インクは、流路壁15で仕切られるインク流路を通過して、ノズル層17及び流路壁15で区画されるインク室CHに流入する。以下、各層構造について説明する。 FIG. 2A is a cross-sectional view of the ink discharge head 100 cut in a direction orthogonal to the alignment direction of the plurality of discharge holes A (that is, a cross section aa in FIG. 1). The layer structure of the ink discharge head 100 is mainly composed of a substrate 11, insulating layers 12 a and 12 b, a protective layer 14, a flow path wall 15, and a nozzle layer 17. The substrate 11 has an ink supply port B that penetrates the substrate 11 in the thickness direction (vertical direction in FIG. 2). The ink moves from the lower surface of the substrate 11 to the upper surface of the substrate 11 through the ink supply port B. Thereafter, the ink passes through the ink flow path partitioned by the flow path wall 15 and flows into the ink chamber CH defined by the nozzle layer 17 and the flow path wall 15. Hereinafter, each layer structure will be described.
 基板11の一方の面(例えば、上面)には、絶縁層12aが形成される。絶縁層12a上には、ヒーター13が形成される。なお、基板11の上面(一方の面)に形成されるという文言は、基板11の上面に直接接触して形成されることは勿論、基板11の上面側に何らかの構成を間に挟んで形成されることも含む意味である。勿論、下面(他方の面)に形成されるという文言も、同様に解釈されるべきである。 An insulating layer 12 a is formed on one surface (for example, the upper surface) of the substrate 11. A heater 13 is formed on the insulating layer 12a. The term “formed on the upper surface (one surface) of the substrate 11 is formed in direct contact with the upper surface of the substrate 11, and is formed on the upper surface side of the substrate 11 with some configuration in between. It also means that. Of course, the term “formed on the lower surface (the other surface)” should be interpreted in the same manner.
 保護層14は、基板11の上面を覆うように設けられる。即ち、保護層14は、絶縁層12a及びヒーター13の上に形成される。 The protective layer 14 is provided so as to cover the upper surface of the substrate 11. That is, the protective layer 14 is formed on the insulating layer 12 a and the heater 13.
 流路壁15は、基板11の上面から、上方に向けて立設される。流路壁15は、ヒーター13及びインク供給口Bを囲う。なお、流路壁15は、ヒーター13及びインク供給口Bを全周に渡って囲う様態であっても、一部や一辺が開口した状態で囲う様態であっても、どちらでも差し支えない。 The flow path wall 15 is erected upward from the upper surface of the substrate 11. The flow path wall 15 surrounds the heater 13 and the ink supply port B. The flow path wall 15 may be either in a state of surrounding the heater 13 and the ink supply port B over the entire circumference or in a state of being surrounded with a part or one side opened.
 ノズル層17は、流路壁15の上端から横方向に延出する。このノズル層17と、流路壁15とによって、基板11の上面においてインクが流れるインク流路が規定される。ノズル層17のヒーター13に対向する位置には、ノズル層17を厚み方向に貫通する吐出孔Aが形成される。また、ノズル層17のインク供給口Bに対向する位置には、封止部材18が設けられる。封止部材18は、ノズル層17を厚み方向に貫通する貫通孔を塞ぐことによって、インク室CHのインクが吐出孔A以外から上方に吐出されることを防止する。 The nozzle layer 17 extends laterally from the upper end of the flow path wall 15. The nozzle layer 17 and the flow path wall 15 define an ink flow path through which ink flows on the upper surface of the substrate 11. A discharge hole A penetrating the nozzle layer 17 in the thickness direction is formed at a position facing the heater 13 of the nozzle layer 17. A sealing member 18 is provided at a position facing the ink supply port B of the nozzle layer 17. The sealing member 18 prevents the ink in the ink chamber CH from being ejected upward from other than the ejection holes A by closing the through holes penetrating the nozzle layer 17 in the thickness direction.
[インク吐出ヘッド100の製造方法]
 以下、図3及び図4を用いて、インク吐出ヘッド100の製造工程を説明する。
[Method for Manufacturing Ink Discharge Head 100]
Hereinafter, the manufacturing process of the ink ejection head 100 will be described with reference to FIGS. 3 and 4.
 先ず、図3(A)に示されるように、絶縁層12a及び絶縁層12bを有するシリコン製の基板11が準備される。本実施形態では、基板11として、全厚さ変動(Total Thickness Variation:TTV)が2μm以下となる、高平坦シリコン基板が利用される。これによって、基板11上の位置に関らず、基板11とノズル層17との距離が精度よく決定される。その結果、インク室CHの体積が精度良く保たれる。絶縁層12a及び絶縁層12bは、例えば、酸化シリコンによって構成される。絶縁層12a及び絶縁層12bは、例えば、シリコン製の基板11を熱酸化することで形成される。或いは、予め両面に酸化シリコン膜が設けられた既製品の基板を用いることで、絶縁層12a及び絶縁層12bが準備されても差し支えない。本実施形態では、一例として、基板11の厚みは、625μm程度である。また、絶縁層12a及び絶縁層12bの厚みは、例えば、1~5μm程度である。なお、酸化シリコンは耐インク性及び耐異方性エッチング性を有する。従って、絶縁層12a単体でも、保護層として機能する。 First, as shown in FIG. 3A, a silicon substrate 11 having an insulating layer 12a and an insulating layer 12b is prepared. In the present embodiment, as the substrate 11, a highly flat silicon substrate having a total thickness variation (TTV) of 2 μm or less is used. As a result, the distance between the substrate 11 and the nozzle layer 17 is accurately determined regardless of the position on the substrate 11. As a result, the volume of the ink chamber CH is maintained with high accuracy. The insulating layer 12a and the insulating layer 12b are made of, for example, silicon oxide. The insulating layer 12a and the insulating layer 12b are formed, for example, by thermally oxidizing a silicon substrate 11. Alternatively, the insulating layer 12a and the insulating layer 12b may be prepared by using a ready-made substrate in which silicon oxide films are provided on both surfaces in advance. In the present embodiment, as an example, the thickness of the substrate 11 is about 625 μm. The thickness of the insulating layer 12a and the insulating layer 12b is, for example, about 1 to 5 μm. Silicon oxide has ink resistance and anisotropic etching resistance. Therefore, the insulating layer 12a alone functions as a protective layer.
 次に、図3(B)に示されるように、絶縁層12aの上に、ヒーター13が形成される。ヒーター13は、例えば、窒化タンタル(TaN)やタンタル・アルミニウム(TaAl)などの抵抗発熱体を、200~1000Å程度の厚みになるように、スパッタリング法によってヒーター13の形成位置に堆積することで形成される。 Next, as shown in FIG. 3B, the heater 13 is formed on the insulating layer 12a. The heater 13 is formed, for example, by depositing a resistance heating element such as tantalum nitride (TaN) or tantalum aluminum (TaAl) at a position where the heater 13 is formed by a sputtering method so as to have a thickness of about 200 to 1000 mm. Is done.
 次に、図3(C)に示されるように、耐インク性及び耐異方性エッチング性を有する保護層14が、基板11の上面を覆うように形成される。本実施形態では、ヒーター13及び絶縁層12aを被覆するように、保護層14が形成される。保護層14は、例えば、プラズマを利用した化学気相成長(プラズマCVD)やスパッタリング法によって、窒化シリコンをヒーター13及び絶縁層12a上に成膜することで得られる。なお、保護層14の厚みは、例えば、0.4μm程度である。 Next, as shown in FIG. 3C, a protective layer 14 having ink resistance and anisotropic etching resistance is formed so as to cover the upper surface of the substrate 11. In the present embodiment, the protective layer 14 is formed so as to cover the heater 13 and the insulating layer 12a. The protective layer 14 can be obtained by depositing silicon nitride on the heater 13 and the insulating layer 12a by, for example, chemical vapor deposition (plasma CVD) using plasma or sputtering. In addition, the thickness of the protective layer 14 is about 0.4 μm, for example.
 次に、図3(D)に示されるように、基板11上のヒーター13を含むように、流路壁15が、保護層14の上に形成される。本実施形態では、流路壁15は、完全に硬化したエポキシ樹脂で形成される。なお、流路壁15は、ヒーター13を全周に渡って囲う様態であっても、一部や一辺が開口した状態で囲う様態であっても、どちらでも差し支えない。また、流路壁15の膜厚は、例えば10-30μm程度になるように調整されてよい。 Next, as shown in FIG. 3D, the flow path wall 15 is formed on the protective layer 14 so as to include the heater 13 on the substrate 11. In the present embodiment, the flow path wall 15 is formed of a completely cured epoxy resin. Note that the flow path wall 15 may be either in a state in which the heater 13 is surrounded over the entire circumference or in a state in which a part or one side is open. Further, the film thickness of the flow path wall 15 may be adjusted to be, for example, about 10-30 μm.
 次に、図3(E)に示されるように、犠牲層16が形成される。犠牲層16は、流路壁15の上面を覆う領域にも形成される。たとえば、犠牲層16の形成は、流路壁15によって形成された空間に、半硬化樹脂を注入し乾燥させることで行われる。本実施形態では、半硬化樹脂として、東レ(株)のポリイミド材、フォトニースが半硬化状態で使用される。フォトニースは、アルカリ溶液には可溶であるが、有機溶剤には不溶である。流路壁15を構成するエポキシ樹脂は、熱や光によって、犠牲層16が注入される前に、完全に硬化している。流路壁15を構成するエポキシ樹脂は、非硬化時には有機溶剤に可溶であるが、硬化時には有機溶剤に不溶である。そのため、流路壁15と犠牲層16との間で、クロスミキシングは生じない。また、犠牲層16として、ノボラック樹脂が利用されても良い。ノボラック樹脂としては、一例として、旭有機材工業(株)製のEP4080G、EP4050Gなどをプロピレングリコールモノメチルエーテルアセタート(PGMEA)などの有機溶剤に溶解したものが利用可能である。ノボラック樹脂は、キシレンやトルエンなどには溶解性が極めて低いが、アルカリ水溶液やアセトンなどには溶解する。流路壁15を構成するエポキシ樹脂は、完全に硬化しているため、有機溶剤に対して不溶となっている。そのため、ノボラック樹脂が利用される場合でも、流路壁15と犠牲層16との間で、クロスミキシングは生じない。 Next, as shown in FIG. 3E, the sacrificial layer 16 is formed. The sacrificial layer 16 is also formed in a region covering the upper surface of the flow path wall 15. For example, the sacrificial layer 16 is formed by injecting a semi-cured resin into the space formed by the flow path wall 15 and drying it. In this embodiment, a polyimide material and photo nice of Toray Industries, Inc. are used in a semi-cured state as the semi-cured resin. Photo Nice is soluble in an alkaline solution, but insoluble in an organic solvent. The epoxy resin constituting the flow path wall 15 is completely cured by heat or light before the sacrificial layer 16 is injected. The epoxy resin constituting the flow path wall 15 is soluble in an organic solvent when not cured, but is insoluble in an organic solvent when cured. Therefore, cross mixing does not occur between the flow path wall 15 and the sacrificial layer 16. Further, a novolac resin may be used as the sacrificial layer 16. As an example of the novolak resin, EP4080G, EP4050G manufactured by Asahi Organic Materials Co., Ltd. dissolved in an organic solvent such as propylene glycol monomethyl ether acetate (PGMEA) can be used. The novolak resin has extremely low solubility in xylene and toluene, but dissolves in an alkaline aqueous solution and acetone. Since the epoxy resin constituting the flow path wall 15 is completely cured, it is insoluble in the organic solvent. Therefore, even when novolac resin is used, no cross-mixing occurs between the flow path wall 15 and the sacrificial layer 16.
 次に、図3(F)に示されるように、犠牲層16の上面が平坦になるように、犠牲層16が上面から削除される。ここで、犠牲層16が流路壁15の上に残っていると、隣接するインク室CHの間が連通する可能性がある。そのため、犠牲層16と流路壁15とが同一平面上に位置するまで、換言すれば、流路壁15の上面が露出するまで、犠牲層16が平坦化されるのが望ましい。このとき、流路壁15の上面も僅かながら削除されてよい。犠牲層16の上面が平坦化されるので、ノズル層17のインク室CH側の面を精度よく形成できるとともに、インク室CHの高さも精度よく決定することが可能となる。その結果、インク室CHの体積が精度良く保たれる。 Next, as shown in FIG. 3F, the sacrificial layer 16 is removed from the upper surface so that the upper surface of the sacrificial layer 16 becomes flat. Here, if the sacrificial layer 16 remains on the flow path wall 15, there is a possibility that the adjacent ink chambers CH communicate with each other. Therefore, it is desirable that the sacrificial layer 16 be flattened until the sacrificial layer 16 and the flow path wall 15 are located on the same plane, in other words, until the upper surface of the flow path wall 15 is exposed. At this time, the upper surface of the flow path wall 15 may be slightly removed. Since the upper surface of the sacrificial layer 16 is flattened, the surface of the nozzle layer 17 on the ink chamber CH side can be formed with high accuracy, and the height of the ink chamber CH can be determined with high accuracy. As a result, the volume of the ink chamber CH is maintained with high accuracy.
平坦化には、研磨、切削など、様々な加工方法が利用できる。本実施形態では、一例として、犠牲層16の平坦化は、切削によって行われる。これにより、研磨のように砥粒が犠牲層16に残留することがなく、犠牲層16の除去時に残渣がインク室CHに残ることが防止される。切削の際に、基板11は切削装置の加工台の上に載置される。一般に、切削は、基板11の下面を基準面として、加工高さが定義される。仮に、基板11の厚みが場所によって大きく異なると、基板11の下面と除去後の犠牲層16の上面とが平行にされるため、犠牲層16の厚さが、基板11上の位置によって異なる。しかし、本実施形態では、基板11には高平坦シリコンが用いられているため、基板の傾きは十分に押えられている。従って、犠牲層16が切削によって平坦化されても、犠牲層16の厚さは基板11上の位置に関らず一定に保たれる。そのため、インク室CHの体積が精度良く保たれる。なお、切削よる平坦化の後で、インク吐出ヘッド100をアルカリ溶液に浸すことで、犠牲層16を上面から微量溶解させてもよい。これによって、犠牲層16の上面がより平坦になる。 For the planarization, various processing methods such as polishing and cutting can be used. In the present embodiment, as an example, the planarization of the sacrificial layer 16 is performed by cutting. As a result, the abrasive grains do not remain in the sacrificial layer 16 as in polishing, and the residue is prevented from remaining in the ink chamber CH when the sacrificial layer 16 is removed. At the time of cutting, the substrate 11 is placed on a processing table of a cutting device. In general, the cutting height is defined by using the lower surface of the substrate 11 as a reference surface. If the thickness of the substrate 11 varies greatly depending on the location, the lower surface of the substrate 11 and the upper surface of the sacrificial layer 16 after removal are made parallel, so that the thickness of the sacrificial layer 16 varies depending on the position on the substrate 11. However, in this embodiment, since the substrate 11 is made of highly flat silicon, the tilt of the substrate is sufficiently suppressed. Therefore, even if the sacrificial layer 16 is planarized by cutting, the thickness of the sacrificial layer 16 is kept constant regardless of the position on the substrate 11. For this reason, the volume of the ink chamber CH is maintained with high accuracy. Note that the sacrificial layer 16 may be slightly dissolved from the upper surface by dipping the ink discharge head 100 in an alkaline solution after the flattening by cutting. Thereby, the upper surface of the sacrificial layer 16 becomes flatter.
 次に、図3(G)に示されるように、流路壁15及び犠牲層16を覆うように、ノズル層17が形成される。ノズル層17は、犠牲層16を溶解しないように形成される。そのために、例えば、犠牲層16の樹脂を溶解しないような溶媒を使ってのスピンコートやスプレーコートなどが行われる。ノズル層17の形成には、例えば、キシレンやトルエンなどの溶媒に溶解したエポキシ樹脂と、シランカップリング剤と、光重合開始剤とを混合したものが利用される。キシレンやトルエンは、半硬化ポリイミドやノボラック樹脂を溶解しないため、ノズル層17を形成する樹脂の溶媒として好都合である。ノズル層17を構成する樹脂の塗布後は、流路壁16との密着性をよくするとともにノズル層17に残った溶媒を追い出すために、ノズル層17を構成する樹脂が乾燥される。この乾燥は、例えば、インク吐出ヘッド100を、加熱する、真空中に暴露するなどの方法によって行われてよい。加熱による乾燥の場合、インク吐出ヘッド100は、例えば、70℃の環境下に約30分間曝される。また、真空暴露による乾燥の場合、インク吐出ヘッド100は、例えば、10Torr以下の環境下に約8時間曝される。また、ノズル層17の膜厚は、20-50μmなどに調整される。 Next, as shown in FIG. 3G, the nozzle layer 17 is formed so as to cover the flow path wall 15 and the sacrificial layer 16. The nozzle layer 17 is formed so as not to dissolve the sacrificial layer 16. For this purpose, for example, spin coating or spray coating using a solvent that does not dissolve the resin of the sacrificial layer 16 is performed. For the formation of the nozzle layer 17, for example, a mixture of an epoxy resin dissolved in a solvent such as xylene or toluene, a silane coupling agent, and a photopolymerization initiator is used. Since xylene and toluene do not dissolve semi-cured polyimide or novolak resin, they are convenient as a solvent for the resin forming the nozzle layer 17. After application of the resin constituting the nozzle layer 17, the resin constituting the nozzle layer 17 is dried in order to improve the adhesion with the flow path wall 16 and drive out the solvent remaining in the nozzle layer 17. This drying may be performed, for example, by a method such as heating the ink ejection head 100 or exposing it to a vacuum. In the case of drying by heating, the ink ejection head 100 is exposed to an environment of 70 ° C. for about 30 minutes, for example. In the case of drying by vacuum exposure, the ink ejection head 100 is exposed to an environment of 10 Torr or less for about 8 hours, for example. The film thickness of the nozzle layer 17 is adjusted to 20-50 μm.
 次に、図4(A)に示されるように、ノズル層17を上下方向に貫通するノズル孔A及び追加排出孔Cが、ノズル層17に形成される。吐出孔Aは、ヒーター13に対向する位置に設けられる。追加排出孔Cは、ノズル孔Aから離間する位置に設けられる。なお、追加排出孔Cのサイズは任意である。一例として、追加排出孔Cのサイズは、溶解した犠牲層16が通過しやすいように、吐出孔Aのサイズよりも大きい。あるいは、吐出孔Aのサイズよりも小さなサイズの追加排出孔Cが、個々のインク室CH毎にノズル層17に複数設けられてもよい。勿論、吐出孔Aのサイズよりも大きな追加排出孔Cが、ノズル層17に複数設けられてもよい。吐出孔A及び追加排出孔Cの形成は、フォトリソグラフィーによって行われる。具体的には、ノズル層17上面の吐出孔A及び追加排出孔Cに対応する位置に、フォトマスクが載置される。そして、フォトマスクの上から紫外線がノズル層17に対して照射される。紫外線照射によって、吐出孔A及び追加排出孔Cの位置を除いて、ノズル層17が硬化する。そして、インク吐出ヘッド100を現像液に浸すことで、吐出孔A及び追加排出孔Cの位置の硬化していない樹脂が溶解し、吐出孔A及び追加排出孔Cが現像される。なお、吐出孔A及び追加排出孔Cの現像には、キシレンやトルエンなど、犠牲層16を溶解しない溶媒が現像液として利用される。但し、PGMEAやアセトンやアルカリ水溶液などの、犠牲層16も溶解可能な溶媒を利用して、吐出孔A及び追加排出孔C近辺にある犠牲層16の一部まで除去してしまっても差し支えない。 Next, as shown in FIG. 4A, nozzle holes A and additional discharge holes C penetrating the nozzle layer 17 in the vertical direction are formed in the nozzle layer 17. The discharge hole A is provided at a position facing the heater 13. The additional discharge hole C is provided at a position away from the nozzle hole A. The size of the additional discharge hole C is arbitrary. As an example, the size of the additional discharge hole C is larger than the size of the discharge hole A so that the dissolved sacrificial layer 16 can easily pass through. Alternatively, a plurality of additional discharge holes C having a size smaller than the size of the discharge holes A may be provided in the nozzle layer 17 for each ink chamber CH. Of course, a plurality of additional discharge holes C larger than the size of the discharge holes A may be provided in the nozzle layer 17. The discharge hole A and the additional discharge hole C are formed by photolithography. Specifically, a photomask is placed at a position corresponding to the discharge hole A and the additional discharge hole C on the upper surface of the nozzle layer 17. The nozzle layer 17 is irradiated with ultraviolet rays from above the photomask. The nozzle layer 17 is cured except for the positions of the discharge holes A and the additional discharge holes C by the ultraviolet irradiation. Then, by immersing the ink discharge head 100 in the developer, the uncured resin at the positions of the discharge holes A and the additional discharge holes C is dissolved, and the discharge holes A and the additional discharge holes C are developed. In developing the discharge holes A and the additional discharge holes C, a solvent that does not dissolve the sacrificial layer 16 such as xylene or toluene is used as a developer. However, the sacrificial layer 16 such as PGMEA, acetone, or an alkaline aqueous solution may be removed to a part of the sacrificial layer 16 in the vicinity of the discharge hole A and the additional discharge hole C using a solvent that can dissolve the sacrificial layer 16. .
 次に、図4(B)に示されるように、基板11が、下面から異方性エッチングされる。具体的には、先ず、基板11の下面にエッチングマスクが形成される。本実施形態では、エッチングマスクとして、絶縁層12bが利用される。即ち、絶縁層12bの、追加排出孔Cに対向する位置に開口が形成されることで、エッチングマスクが形成される。この開口は、例えば、四フッ化メタン(CF4)などのガスを用いたドライエッチングや、フッ化水素酸溶液を用いたウェットエッチングによって、絶縁層12bの一部を除去することによって形成される。そして基板11が、異方性ウェットエッチング用のエッチング溶液に浸される。本実施形態では、エッチング溶液として、水酸化カリウム(KOH)水溶液やテトラメチルアンモニウムヒドロキシド(TMAH)水溶液などのアルカリ水溶液が用いられる。エッチング溶液であるアルカリ水溶液に対して、絶縁層12aを構成する酸化シリコン膜のエッチング速度は、基板11を構成するシリコンのエッチング速度に比べて十分に遅い。そのため、基板11の下面から上面に向かって進行する異方性エッチングは、絶縁層12aの下面で止まる。即ち、絶縁層12aは、エッチングストップ層として機能する。従って、犠牲層16は、エッチング溶液であるアルカリ水溶液に接触しない。そのため、犠牲層16の変質が防止される。 Next, as shown in FIG. 4B, the substrate 11 is anisotropically etched from the lower surface. Specifically, first, an etching mask is formed on the lower surface of the substrate 11. In the present embodiment, the insulating layer 12b is used as an etching mask. That is, an opening is formed in the insulating layer 12b at a position facing the additional discharge hole C, whereby an etching mask is formed. The opening is formed by removing a part of the insulating layer 12b by dry etching using a gas such as tetrafluoromethane (CF4) or wet etching using a hydrofluoric acid solution. Then, the substrate 11 is immersed in an etching solution for anisotropic wet etching. In this embodiment, an alkaline aqueous solution such as an aqueous potassium hydroxide (KOH) solution or an aqueous tetramethylammonium hydroxide (TMAH) solution is used as the etching solution. The etching rate of the silicon oxide film constituting the insulating layer 12a is sufficiently slower than the etching rate of silicon constituting the substrate 11 with respect to the alkaline aqueous solution that is the etching solution. Therefore, anisotropic etching that proceeds from the lower surface of the substrate 11 toward the upper surface stops at the lower surface of the insulating layer 12a. That is, the insulating layer 12a functions as an etching stop layer. Therefore, the sacrificial layer 16 does not come into contact with the alkaline aqueous solution that is an etching solution. Therefore, alteration of the sacrificial layer 16 is prevented.
 次に、図4(C)に示されるように、犠牲層16が除去される。犠牲層16が半硬化ポリイミドで構成される場合、TMAH2.38%のアルカリ水溶液に対して、インク吐出ヘッド100が浸される。犠牲層16がノボラック樹脂で構成される場合、アセトンやPGMEAなどの有機溶剤に対して、インク吐出ヘッド100が浸される。溶媒に溶解した犠牲層16が吐出孔A及び追加排出孔Cから流出することで、犠牲層16が除去される。インク供給口Bが貫通する前に犠牲層16が除去されるので、犠牲層16は変質せず、犠牲層16の残渣がインク室内CHに残留することが防止される。また、追加排出孔Cが設けられるので、インク室から確実に犠牲層16を除去することが可能になる。 Next, as shown in FIG. 4C, the sacrificial layer 16 is removed. In the case where the sacrificial layer 16 is made of semi-cured polyimide, the ink ejection head 100 is immersed in a 2.38% TMAH alkaline aqueous solution. When the sacrificial layer 16 is composed of a novolac resin, the ink ejection head 100 is immersed in an organic solvent such as acetone or PGMEA. As the sacrificial layer 16 dissolved in the solvent flows out from the discharge hole A and the additional discharge hole C, the sacrificial layer 16 is removed. Since the sacrificial layer 16 is removed before the ink supply port B penetrates, the sacrificial layer 16 is not altered, and the residue of the sacrificial layer 16 is prevented from remaining in the ink chamber CH. Further, since the additional discharge hole C is provided, the sacrificial layer 16 can be reliably removed from the ink chamber.
 次に、図4(D)に示されるように、インク供給口Bに対応する位置に形成された絶縁膜12a及び保護層14が、除去される。本実施形態では、絶縁層12a及び保護層14は、例えば、基板11の下面から、CF4を用いたドライエッチングによって除去される。犠牲層16は、絶縁膜12a及び保護層14がドライエッチングで除去され前に、除去される。そのため、犠牲層16は、絶縁膜12a及び保護層14を除去するためのドライエッチングなどに曝される事なく、除去される。その結果、犠牲層16は変質しないので、犠牲層16の残渣がインク室内に残留することが防止される。従って、インク室CHの体積が精度良く保たれる。 Next, as shown in FIG. 4D, the insulating film 12a and the protective layer 14 formed at the position corresponding to the ink supply port B are removed. In the present embodiment, the insulating layer 12a and the protective layer 14 are removed from the lower surface of the substrate 11, for example, by dry etching using CF4. The sacrificial layer 16 is removed before the insulating film 12a and the protective layer 14 are removed by dry etching. Therefore, the sacrificial layer 16 is removed without being exposed to dry etching or the like for removing the insulating film 12a and the protective layer 14. As a result, the sacrificial layer 16 does not change in quality, and the residue of the sacrificial layer 16 is prevented from remaining in the ink chamber. Therefore, the volume of the ink chamber CH is kept with high accuracy.
 次に、図4(E)に示されるように、追加排出孔Cを覆うようにして、封止部材18が、ノズル層17に形成される。具体的には、貼付フィルムが、ノズル層17上面の追加排出孔Cの位置に貼り付けられる。貼付フィルムは、ポリエチレンテレフタラート(PET)やポリイミドなどの樹脂フィルム19上に、封止部材18を構成する樹脂材料をスピンコートやスプレーコートすることで得られる。なお、封止部材18を構成する樹脂材料としては、ノズル層17と同様に、キシレンやトルエンなどの溶媒に溶解したエポキシ樹脂と、シランカップリング剤と、光重合開始剤とを混合したものが利用される。 Next, as shown in FIG. 4E, the sealing member 18 is formed in the nozzle layer 17 so as to cover the additional discharge hole C. Specifically, the adhesive film is attached to the position of the additional discharge hole C on the upper surface of the nozzle layer 17. The adhesive film is obtained by spin coating or spray coating a resin material constituting the sealing member 18 on a resin film 19 such as polyethylene terephthalate (PET) or polyimide. The resin material constituting the sealing member 18 is a mixture of an epoxy resin dissolved in a solvent such as xylene or toluene, a silane coupling agent, and a photopolymerization initiator, as with the nozzle layer 17. Used.
 最後に、貼付フィルムの樹脂フィルム19が剥がされた後に、封止部材18が硬化される。封止部材18の硬化は、紫外線の照射によって行われる。以上説明した工程により、インク吐出ヘッド100が製造される。 Finally, after the resin film 19 of the adhesive film is peeled off, the sealing member 18 is cured. The sealing member 18 is cured by irradiation with ultraviolet rays. The ink ejection head 100 is manufactured by the process described above.
 本開示は、今までに述べた実施形態に限定されることは無く、その趣旨を逸脱しない範囲において種々の変形・変更が可能である。以下にその一例を述べる。 The present disclosure is not limited to the embodiments described so far, and various modifications and changes can be made without departing from the spirit of the present disclosure. An example is described below.
 前記した実施形態では、ノズル層17は、溶媒に溶解させた樹脂を塗布・乾燥することで形成された。しかし、封止部材18の形成と同じように、フィルム状の光硬化性樹脂や吐出孔が形成されたフィルム状の樹脂を載置して、ノズル層17が形成されても差し支えない。 In the above-described embodiment, the nozzle layer 17 is formed by applying and drying a resin dissolved in a solvent. However, as with the formation of the sealing member 18, the nozzle layer 17 may be formed by placing a film-like photocurable resin or a film-like resin having discharge holes formed thereon.
 前記した実施形態では、吐出口Aと追加排出口Cとから、犠牲層16が溶出された(図4C)。しかし、追加排出口Cが形成されずに、吐出口Aだけから犠牲層16が溶出されても差し支えない。吐出孔Aは、インク吐出ヘッド100に必ず設けられる構成である。そのため、追加排出口Cが設けられずに、吐出孔Aだけから犠牲層16が溶出される場合は、犠牲層16を除去するための特別な構成を形成する必要がなくなる。従って、製造工程の簡易化に繋がる。 In the above-described embodiment, the sacrificial layer 16 was eluted from the discharge port A and the additional discharge port C (FIG. 4C). However, the sacrificial layer 16 may be eluted only from the discharge port A without forming the additional discharge port C. The ejection holes A are always provided in the ink ejection head 100. Therefore, when the sacrificial layer 16 is eluted only from the discharge hole A without providing the additional discharge port C, it is not necessary to form a special configuration for removing the sacrificial layer 16. Therefore, it leads to simplification of the manufacturing process.
 前記した実施形態では、ヒーター13の下に設けられる絶縁層12aと、ヒーター13の上に設けられる保護層14とが、基板11の上面に形成された。絶縁層12a及び保護層14の両方は、耐インク性と、アルカリ溶液によるウェットエッチングに対して耐エッチング性とを有する。しかし、何れか一方の層が省略されても差し支えない。要は、基板11のウェットエッチングの際に、エッチングストップ層として機能する保護膜が、基板11の上面に設けられていればよい。 In the above-described embodiment, the insulating layer 12 a provided under the heater 13 and the protective layer 14 provided on the heater 13 are formed on the upper surface of the substrate 11. Both the insulating layer 12a and the protective layer 14 have ink resistance and etching resistance against wet etching with an alkaline solution. However, any one of the layers may be omitted. In short, a protective film that functions as an etching stop layer may be provided on the upper surface of the substrate 11 when the substrate 11 is wet-etched.
前記した実施形態では、貼付フィルムを用いて、封止部材18が追加排出孔Cを封止する(図4(E)参照)。しかし、封止部材18は、例えばスプレーコートやスピンコートなどによって、ノズル層17の上面を覆うことで追加排出孔Cを封止してもよい。この場合、吐出孔Aを塞がないように、封止部材18を構成する樹脂材料がノズル層17の上面に塗布される前に、吐出孔A上にマスクが載置される。そして、追加排出孔Cを通って封止部材18がインク室CH内に流れ込まないように、追加排出孔Cは複数の微細な孔から形成される。この場合、追加排出孔Cのサイズは、封止部材18の粘度に依存して決定される。 In the above-described embodiment, the sealing member 18 seals the additional discharge hole C using a sticking film (see FIG. 4E). However, the sealing member 18 may seal the additional discharge hole C by covering the upper surface of the nozzle layer 17 by, for example, spray coating or spin coating. In this case, a mask is placed on the discharge hole A before the resin material constituting the sealing member 18 is applied to the upper surface of the nozzle layer 17 so as not to block the discharge hole A. The additional discharge hole C is formed of a plurality of fine holes so that the sealing member 18 does not flow into the ink chamber CH through the additional discharge hole C. In this case, the size of the additional discharge hole C is determined depending on the viscosity of the sealing member 18.
100 インク吐出ヘッド
11   基板
12a,12b 絶縁層
13   ヒーター
14 保護層
15 流路壁
16 犠牲層
17 ノズル層
18 封止部材
A 吐出孔
B インク供給口
C 追加排出孔
100 Ink Discharge Head 11 Substrate 12a, 12b Insulating Layer 13 Heater 14 Protective Layer 15 Channel Wall 16 Sacrificial Layer 17 Nozzle Layer 18 Sealing Member A Discharge Hole B Ink Supply Port C Additional Discharge Hole

Claims (8)

  1.  板状の基板と、前記基板の一方の面に形成されたエネルギー発生素子と、を準備する準備工程と、
     インク室を含むインク流路に対応する位置に設けられる犠牲層と、前記犠牲層及び前記エネルギー発生素子を少なくとも含み、前記インク室を区画する流路壁と、前記流路壁及び前記犠牲層の上に設けられるノズル層とを、前記一方の面に形成するインク室形成工程と、
     前記ノズル層を厚み方向に貫通する吐出孔を、前記ノズル層に形成する吐出孔形成工程と、
     前記吐出孔形成工程の後に、前記犠牲層を前記吐出孔を通って前記インク室の外部に排出することで、前記犠牲層を除去する犠牲層除去工程と、
     前記犠牲層除去工程の後に、前記基板を前記厚み方向に貫通するインク供給口を、前記他方の面からエッチングによって形成するインク供給口形成工程と、
    を備えることを特徴とするインク吐出ヘッドの製造方法。
    A preparation step of preparing a plate-shaped substrate and an energy generating element formed on one surface of the substrate;
    A sacrificial layer provided at a position corresponding to an ink flow path including an ink chamber; a flow path wall including at least the sacrificial layer and the energy generating element; and defining the ink chamber; and An ink chamber forming step of forming a nozzle layer provided on the one surface;
    A discharge hole forming step of forming a discharge hole penetrating the nozzle layer in the thickness direction in the nozzle layer;
    A sacrificial layer removing step of removing the sacrificial layer by discharging the sacrificial layer through the ejection holes to the outside of the ink chamber after the ejection hole forming step;
    An ink supply port forming step of forming an ink supply port penetrating the substrate in the thickness direction by etching from the other surface after the sacrificial layer removing step;
    An ink discharge head manufacturing method comprising:
  2.  前記インク室形成工程は、
     前記流路壁を前記一方の面に形成する流路壁形成工程と、
     前記流路壁形成工程の後に、前記流路壁により形成された空間に、前記犠牲層を形成する犠牲層形成工程と、
     前記犠牲層形成工程の後に、前記犠牲層の上面を平坦化する平坦化工程と、
     前記平坦化工程の後に、前記犠牲層及び前記流路壁の上に前記ノズル層を形成するノズル層形成工程と、
     を有する請求項1に記載のインク吐出ヘッドの製造方法。
    The ink chamber forming step includes
    A flow path wall forming step of forming the flow path wall on the one surface;
    A sacrificial layer forming step of forming the sacrificial layer in the space formed by the flow channel wall after the flow channel wall forming step;
    A planarization step of planarizing the upper surface of the sacrificial layer after the sacrificial layer formation step;
    A nozzle layer forming step of forming the nozzle layer on the sacrificial layer and the flow path wall after the planarization step;
    The method for manufacturing an ink ejection head according to claim 1, comprising:
  3.  前記準備工程は、前記基板として、全厚さ変動が2μm以下となる高平坦シリコン基板を準備する、
    請求項2に記載のインク吐出ヘッドの製造方法。
    In the preparation step, as the substrate, a highly flat silicon substrate having a total thickness variation of 2 μm or less is prepared.
    A method for manufacturing the ink ejection head according to claim 2.
  4.  前記平坦化工程は、前記犠牲層の上面から前記基板に向けて切削することで、前記犠牲層の上面を平坦化する切削工程を有する、
    請求項3に記載のインク吐出ヘッドの製造方法。
    The planarization step includes a cutting step of planarizing the upper surface of the sacrificial layer by cutting from the upper surface of the sacrificial layer toward the substrate.
    A method for manufacturing the ink ejection head according to claim 3.
  5.  前記インク室形成工程の前且つ前記準備工程の後に、耐インク性及び耐異方性エッチング性を有する保護層を、前記一方の面に準備する保護層準備工程をさらに有し、
     前記インク供給口形成工程は、
     前記基板の前記インク供給口に対応する位置において、異方性エッチングによって前記他方の面から前記一方の面へ向けて前記基板を削除する基板除去工程と、
     前記基板除去工程の後に、前記インク供給口に対応する位置に形成された前記保護層を、前記他方の面から除去する保護層除去工程とを有する、
    請求項1に記載のインク吐出ヘッドの製造方法。
    A protective layer preparation step of preparing a protective layer having ink resistance and anisotropic etching resistance on the one surface before the ink chamber formation step and after the preparation step;
    The ink supply port forming step includes
    A substrate removing step of deleting the substrate from the other surface toward the one surface by anisotropic etching at a position corresponding to the ink supply port of the substrate;
    A protective layer removing step of removing the protective layer formed at a position corresponding to the ink supply port from the other surface after the substrate removing step;
    The method for manufacturing an ink ejection head according to claim 1.
  6.  前記基板除去工程の後に、前記犠牲層除去工程が行われ、
     前記犠牲層除去工程の後に、前記保護層除去工程が行われる、
    請求項5に記載のインク吐出ヘッドの製造方法。
    The sacrificial layer removal step is performed after the substrate removal step,
    The protective layer removing step is performed after the sacrificial layer removing step.
    A method for manufacturing the ink ejection head according to claim 5.
  7.  前記吐出孔形成工程はさらに、追加排出孔を前記ノズル層に形成し、
     前記犠牲層除去工程は、前記犠牲層を前記吐出孔及び前記追加排出孔を通って前記インク室の外部に排出することで、前記犠牲層を除去し、
     前記犠牲層除去工程の後に、前記追加排出孔を封止する封止工程をさらに備える、
    請求項1に記載のインク吐出ヘッドの製造方法。
    The discharge hole forming step further forms an additional discharge hole in the nozzle layer,
    The sacrificial layer removing step removes the sacrificial layer by discharging the sacrificial layer to the outside of the ink chamber through the ejection hole and the additional discharge hole,
    A sealing step of sealing the additional discharge hole after the sacrificial layer removal step;
    The method for manufacturing an ink ejection head according to claim 1.
  8.  板状の基板と、
     前記基板の一方の面に設けられるエネルギー発生素子と、
     前記エネルギー発生素子を少なくとも含むインク室を区画する流路壁と、
     前記流路壁の上に設けられるノズル層とを備え、
     前記基板は、前記基板を厚み方向に貫通するインク供給口を有し、
     前記ノズル層は、
     前記エネルギー発生素子に対応する位置に設けられ、前記ノズル層を前記厚み方向に貫通する吐出孔と、
     前記吐出孔から離間する位置に設けられ、前記ノズル層を前記厚み方向に貫通する追加孔と、
     前記ノズル層の前記インク室と反対側の面において、前記追加孔を覆う封止部材とを有する、
    ことを特徴とするインク吐出ヘッド。
    A plate-like substrate;
    An energy generating element provided on one surface of the substrate;
    A flow path wall defining an ink chamber including at least the energy generating element;
    A nozzle layer provided on the flow path wall,
    The substrate has an ink supply port that penetrates the substrate in the thickness direction;
    The nozzle layer is
    A discharge hole provided at a position corresponding to the energy generating element and penetrating the nozzle layer in the thickness direction;
    An additional hole provided at a position away from the discharge hole and penetrating the nozzle layer in the thickness direction;
    A sealing member that covers the additional hole on the surface of the nozzle layer opposite to the ink chamber;
    An ink discharge head.
PCT/JP2012/057490 2011-03-31 2012-03-23 Method for manufacturing ink-jet head, and ink-jet head WO2012133171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077584A JP2012210757A (en) 2011-03-31 2011-03-31 Ink discharge head, and method for manufacturing inkjet head
JP2011-077584 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133171A1 true WO2012133171A1 (en) 2012-10-04

Family

ID=46930895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057490 WO2012133171A1 (en) 2011-03-31 2012-03-23 Method for manufacturing ink-jet head, and ink-jet head

Country Status (2)

Country Link
JP (1) JP2012210757A (en)
WO (1) WO2012133171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089317A1 (en) 2021-11-19 2023-05-25 Oxford University Innovation Limited Sterol production in yeast

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085195B (en) * 2013-09-27 2016-02-03 大连理工大学 The manufacture method of jet head liquid, jet head liquid and printing device
JP7263091B2 (en) * 2019-04-17 2023-04-24 キヤノン株式会社 Structure manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159764A (en) * 2004-12-09 2006-06-22 Canon Inc Inkjet head and method for manufacturing it
JP2007245639A (en) * 2006-03-17 2007-09-27 Canon Inc Manufacturing method of inkjet recording head
JP2008023715A (en) * 2006-07-18 2008-02-07 Canon Inc Liquid ejecting head and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159764A (en) * 2004-12-09 2006-06-22 Canon Inc Inkjet head and method for manufacturing it
JP2007245639A (en) * 2006-03-17 2007-09-27 Canon Inc Manufacturing method of inkjet recording head
JP2008023715A (en) * 2006-07-18 2008-02-07 Canon Inc Liquid ejecting head and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089317A1 (en) 2021-11-19 2023-05-25 Oxford University Innovation Limited Sterol production in yeast

Also Published As

Publication number Publication date
JP2012210757A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US8109607B2 (en) Fluid ejector structure and fabrication method
JP3833989B2 (en) Inkjet printhead manufacturing method
JP4834426B2 (en) Method for manufacturing ink jet recording head
JP5224771B2 (en) Manufacturing method of recording head substrate
JP2005205916A (en) Method of manufacturing monolithic inkjet printhead
JP6112809B2 (en) Method for manufacturing droplet discharge head
KR20080060003A (en) Method for manufacturing ink-jet print head
JP2012020470A (en) Liquid ejection head, and method of manufacturing the same
WO2012133171A1 (en) Method for manufacturing ink-jet head, and ink-jet head
EP2170611B1 (en) Fluid ejector device
US8241510B2 (en) Inkjet recording head, method for producing same, and semiconductor device
JP2014121873A (en) Method for manufacturing ink discharge head
JP6039259B2 (en) Liquid discharge head and manufacturing method thereof
US7575303B2 (en) Liquid-ejection head and method for producing the same
JP5328606B2 (en) Method for manufacturing liquid discharge head
JP2015066909A (en) Ink ejection head and manufacturing method of ink ejection head
JP2014198386A (en) Method of manufacturing ink discharge head
US10632754B2 (en) Perforated substrate processing method and liquid ejection head manufacturing method
JP2014200939A (en) Ink jet recording head, and manufacturing method of the same
JP2012192713A (en) Method of manufacturing ink discharge head
JP2010162887A (en) Inkjet head and method for manufacturing the same
JP2015101075A (en) Manufacturing method of ink jet head, and the ink jet head
JP2014083824A (en) Method for manufacturing liquid discharge head
JP2006082331A (en) Process for manufacturing ink jet recording head
JP2014069353A (en) Manufacturing method of ink discharge head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765103

Country of ref document: EP

Kind code of ref document: A1