WO2012133040A1 - Calixarene derivative - Google Patents

Calixarene derivative Download PDF

Info

Publication number
WO2012133040A1
WO2012133040A1 PCT/JP2012/057169 JP2012057169W WO2012133040A1 WO 2012133040 A1 WO2012133040 A1 WO 2012133040A1 JP 2012057169 W JP2012057169 W JP 2012057169W WO 2012133040 A1 WO2012133040 A1 WO 2012133040A1
Authority
WO
WIPO (PCT)
Prior art keywords
arene
group
resist
synthesis
calixarene derivative
Prior art date
Application number
PCT/JP2012/057169
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 誠
真由美 岸
誠司 東野
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2013507428A priority Critical patent/JPWO2012133040A1/en
Publication of WO2012133040A1 publication Critical patent/WO2012133040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to novel calixarene derivatives. More specifically, the present invention is a novel calix suitably used for a pattern for forming a fine structure represented by a semiconductor device, a semiconductor integrated circuit, an imprint mold, etc., or a photo mask, etc. It relates to an arene derivative. The present invention further relates to a resist material containing the calixarene derivative, and a pattern forming method using the resist material.
  • LSI semiconductor integrated circuits
  • photomasks in which patterns of electronic circuits are formed with a light shielding material on a transparent substrate
  • lithography processes using photoresists in manufacturing processes such as imprint molds It is microfabricated.
  • a thin film of photoresist is formed on a silicon substrate or a quartz substrate on which a light shielding thin film is laminated, and high energy radiation such as excimer laser, X-ray, electron beam or the like is selectively added to this. Only a portion is irradiated to form a latent image of a pattern, and thereafter, a resist pattern obtained by developing is used as a mask for etching.
  • a photosensitive material called a resist material dissolved in an organic solvent is coated on a substrate having a layer to be processed on the surface, and the organic solvent is evaporated by prebaking to form a resist. Form a film.
  • the resist film is partially irradiated with light, and an unnecessary portion of the resist film is dissolved and removed using a developing solution to form a resist pattern on the substrate.
  • the layer to be processed on the substrate having this resist pattern as a mask is dry etched or wet etched.
  • micropatterning is completed by removing the resist pattern.
  • a wide variety of organic resists sensitive to electron beams are known, and resist patterns are formed by various methods.
  • a polymer thin film of an ethylenically unsaturated monomer such as polymethyl methacrylate is provided on a substrate as a resist film, and then a predetermined image is formed by irradiating an electron beam, and a low molecular weight ketone such as acetone
  • Patent Document 1 A method of forming a fine pattern by developing using a kind is proposed (see Patent Document 1).
  • FIG. 2 of Patent Document 2 shows exposure characteristics (sensitivity curve) when exposed to an electron beam of 50 keV and developed with ethyl lactate or xylene. According to this exposure characteristic, the sensitivity of the resist used in this method is about 1 to 2 (mC / cm 2 ).
  • the resist sensitivity of the calix [4] arene derivative having high resolution is about 2 (mC / cm 2 ).
  • this sensitivity can be used, in order to improve the throughput and to improve the productivity, it is possible to use a resist material that can be further enhanced in sensitivity than the calix [4] arene derivative described in Patent Document 2.
  • Development was desired.
  • the resist sensitivity is obtained by setting the resist film thickness before development (the resist film thickness after applying a resist and performing prebaking as necessary) as a reference film thickness, and obtaining it after development minimum exposure the film thickness of the resist pattern that is comes to coincide with the reference thickness is the one represented by (mC / cm 2).
  • an object of the present invention is to provide a compound capable of forming a pattern having higher resolution and higher sensitivity and higher etching resistance than conventional calixarene derivatives, and to provide a resist material containing the compound. It is in.
  • Another object of the present invention is to provide an exposure method and a microfabrication method using the resist material.
  • X, Y and Z are each a hydrogen atom or a halogen atom
  • R 1 is an alkyl group or an acetyl group
  • R 2 and R 3 are each a hydrogen atom or a halogenated methyl group
  • n is an integer of 0 to 3
  • R 1, R 2, and where R 3 is present in plural the plurality of R 1, R 2, and R 3 are each be the same group or in different groups.
  • a resist material comprising the calixarene derivative.
  • a resist pattern forming method comprises the steps of forming a latent image and developing the latent image.
  • the calixarene derivative of the present invention is a compound into which a group having a specific double bond is introduced in the molecule. Therefore, a resist material containing the calixarene derivative can form a pattern with higher sensitivity than a resist material containing a conventional calixarene derivative, and the etching resistance can be enhanced by increasing the crosslink density. Industrial use value is high.
  • Example 7 is a sensitivity curve of Example 1.
  • the calixarene derivative of the present invention has the following formula (1)
  • R 1 is an alkyl group or an acetyl group.
  • R 1 may be the same or different groups.
  • the alkyl group includes an alkyl group having 1 to 10 carbon atoms, and may be linear or branched. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, isobutyl group, t-butyl group and hexyl group.
  • R 1 enhances the solubility of the calixarene derivative in various solvents, facilitates the formation of a resist film by the calixarene derivative, and makes the calixarene derivative with high sensitivity.
  • it is an alkyl group of 1 to 5 carbon atoms, and more preferably an alkyl group of 1 to 2 carbon atoms.
  • R 2 and R 3 are each a hydrogen atom or a halogenated methyl group.
  • R 2 there are a plurality, specifically, when n is 0, 1 or 2, R 2 may be be the same group or different groups.
  • R 3 may be the same or different groups.
  • halogenated methyl group what is a group which has one halogen atom is preferable.
  • the halogen atom include chlorine atom, bromine atom and iodine atom, among which chlorine atom is preferable. That is, the most preferred group is chloromethyl group.
  • This halogenated methyl group becomes a crosslinking point when exposed to high energy rays, and at least one of all R 2 and R 3 present in the molecule because it can sensitize the calixarene derivative. It is preferred that the group is a halogenated methyl group. More preferred is a case in which 2 to 4 of all R 2 and R 3 are halogenated methyl groups. It is more preferable that all R 2 and R 3 be groups of 3 or more and 4 or less be halogenated methyl groups, and particularly preferable that all R 2 and R 3 be halogenated methyl groups. Is the case.
  • the halogen atom includes a chlorine atom, a bromine atom and an iodine atom.
  • X and Y are hydrogen atoms
  • Z is a hydrogen atom, in order to make it easy to form a radical, and the resulting radical is stable and the resulting calixarene derivative exhibits higher sensitivity. It is preferably a hydrogen atom or a halogen atom, in particular a chlorine atom.
  • n is an integer of 0 to 3.
  • N is preferably from 0 to 2
  • particularly preferable compounds include compounds having the following groups.
  • R 1 is an alkyl group or an acetyl group
  • R 2 and R 3 are a hydrogen atom or a halogenated methyl group
  • at least three of R 2 and R 3 are a halogenated methyl group
  • X and Y are hydrogen atoms
  • Z is a hydrogen atom or a halogen atom
  • n is an integer of 0 to 2
  • the halogenated methyl group is preferably a chloromethyl group.
  • the compound include the following calixarene derivatives.
  • calixarene derivatives the following compounds are preferable as having particularly high sensitivity.
  • R 1 is an alkyl group having 1 to 2 carbon atoms
  • R 2 and R 3 are a hydrogen atom or a halogenated methyl group
  • at least three of R 2 and R 3 are a halogenated methyl group
  • X, Y and Z are hydrogen atoms
  • n is an integer of 0 to 2
  • the halogenated methyl group is preferably a chloromethyl group.
  • the compound include the following calixarene derivatives.
  • the method for producing the calixarene derivative of the present invention is not particularly limited, it can be produced by the following method.
  • the compound is de-t-butylated to produce 25, 26, 27, 28-tetrahydroxycalix [4] arene (hereinafter simply referred to as "calix [4] arene”).
  • a halogenated methyl group may be introduced as necessary.
  • a method generally known as Williamson's ether synthesis can be adopted.
  • non-patent literature GUITSCHE et al .: “Tetrahedron", 39, pp. 409-426, 1983
  • non-patent literature van LOON et al .: “Journal of Organic Chemistry", vol. 55, The method described in pp. 5639-5646 (1990) can be employed.
  • the number of n can be adjusted by adjusting the reaction conditions.
  • transduced this halogenated methyl group is also called “halogenated methyl aryloxy calix [4] arene” hereafter.
  • Patent Document 2 Non-patent Document (Nagasaki et al .: “Tetrahedron", Vol. 48, pp.
  • the calixarene derivative of the present invention can be produced by the method as described above.
  • the structure of the resulting calixarene derivative can be determined by IR, NMR, LC-MS and the like.
  • introduction of an allyl group can be confirmed from a characteristic signal of a proton attached to a double bond derived from an allyl group.
  • two types of double doublets are observed at ⁇ 5.0 to 6.0 ppm.
  • One is a proton located in cis with respect to the methylene group of the allyl group, and the coupling constants are 17.0 Hz and 2.0 Hz.
  • the other is a proton located in trans to the methylene group of the allyl group, and the coupling constants are 10.0 Hz and 2.0 Hz.
  • the present invention also provides a resist material comprising the above calixarene derivative. Next, this resist material will be described.
  • the resist material of the present invention contains the calixarene derivative represented by the above formula (1).
  • the calixarene derivative represented by the above formula (1) one type can be used alone, or a mixture of two or more types can be used. That is, it may be a mixture of ones having different numbers of n, or a mixture of ones in which a plurality of R 1 , R 2 and R 3 are different groups.
  • calixarene derivative even when a mixture of calixarene derivatives is used, it is simply described as a calixarene derivative.
  • the resist material of the present invention includes ethyl lactate (EL), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl propionate, n-butyl acetate, 2-heptanone and the like.
  • organic solvents such as In addition, if necessary, known additives such as surfactants can also be included.
  • the resist material of the present invention is prepared by dissolving all the components such as calixarene derivatives and additives added if necessary in the above organic solvent, and then filtering it using a membrane filter or the like as required. Be done.
  • the content of the calixarene derivative contained in the prepared resist material may be appropriately determined according to the desired film thickness of the resist film, the type of calixarene derivative, etc. It is up to 10% by mass.
  • Such resist materials can be used to form a pattern. Next, a method of forming this resist pattern will be described.
  • ⁇ Method of forming resist pattern> In order to form a resist pattern using the resist material, the following method may be employed. Specifically, after applying the resist material onto a substrate to be treated, a step of prebaking to form a resist film, and selectively exposing the resist film with high energy rays to form a latent image of a desired pattern. A resist pattern can be formed by performing the forming step and the developing step. Each step will be described in detail below.
  • the substrate to which the resist material is applied is not particularly limited, and a known substrate such as a silicon substrate, a photomask, and an oxide film, a nitride film, a metal thin film, etc. formed on the above substrate.
  • a filmed substrate is used.
  • the above resist material is coated on the substrate to be processed by a known method such as spin coating, and then baked (prebaked) to form a resist film containing the calixarene derivative.
  • pre-baking heat treatment is preferably performed at a temperature of 80 to 130 ° C. for about 10 seconds to 5 minutes using a hot plate or the like.
  • the film thickness of the formed resist film may be suitably determined in accordance with the application etc. to be used, but it is usually 5 to 300 nm.
  • a resist film containing the above calixarene derivative can be formed on a substrate to be treated.
  • the step of selectively exposing the resist film to high energy rays to form a latent image of a pattern will be described.
  • ⁇ Step of forming a latent image of a pattern> high energy rays are selectively exposed on the resist film on the substrate obtained in the resist film forming step to form a latent image of a pattern.
  • the high energy ray is not particularly limited as long as it is a radiation source capable of forming a latent image on the resist film by energy irradiation, and examples thereof include an electron beam, an X ray, and an ion beam.
  • the portion to which the high energy ray is exposed may be appropriately determined according to the pattern to be formed. Therefore, a known method can be adopted as a method of selectively exposing high energy rays, and for example, direct exposure or irradiation through a mask may be performed.
  • a latent image of a pattern can be formed on the resist film.
  • a substrate obtained by the above method that is, a resist film containing the above calixarene derivative is laminated, and the resist film is selectively exposed to high energy rays to form a latent image of a pattern.
  • the substrate thus obtained (hereinafter, also simply referred to as a substrate obtained in the latent image forming step) may be developed with a developer containing an organic solvent.
  • the latent image is developed by removing a portion of the resist film not exposed to the high energy beam with a developer containing an organic solvent.
  • the developing solution used in this development uses a solvent having different dissolution rates in the exposed area and the unexposed area.
  • the developer used in the present invention includes ethyl lactate (EL), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl propionate, n-butyl acetate, 2-butyl acetate used as a solvent for resist materials.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • ethyl propionate ethyl propionate
  • n-butyl acetate ethyl propionate
  • 2-butyl acetate 2-butyl acetate
  • xylene xylene
  • alcohols ethanol, isopropyl alcohol and the like
  • glycol ethers hydrofluoroalkyl ether and the like
  • the method for developing the substrate obtained in the latent image forming step using the developer is not particularly limited, and a known method can be adopted. Specifically, a method of immersing the substrate in a bath filled with the developer (dip method), a method of placing the developer on the surface of the substrate (paddle method), and spraying the developer onto the substrate Method (spray method) is generally used. Among these methods, the paddle method or the spray method is preferred in order to reduce particles.
  • the substrate obtained in the latent image forming step is coated with the developer at a temperature of usually 10 ° C. or more and 35 ° C. or less, preferably 15 ° C. or more and 30 ° C. or less and allowed to stand. Or continue spraying the developer onto the substrate for a predetermined period of time.
  • the settling time or spraying time is not particularly limited, but is preferably 30 seconds or more and 5 minutes or less in consideration of throughput. If it is a combination of the calixarene derivative and the developer, a pattern can be sufficiently formed in the above temperature range and the above time.
  • the substrate on which the resist pattern has been formed by development according to the above method is, if necessary, removed of the remaining developer and the like by a rinse liquid.
  • the organic solvent used as the rinse solution may be the same as or different from the developer described above, but preferably has a boiling point of 150 ° C. or less at atmospheric pressure, and in view of drying easiness, the boiling point is 120 C. or less is more preferable.
  • the above-mentioned development step and this rinse step can be alternately repeated about 2 to 10 times.
  • the substrate is rotated at high speed or the like to shake off and remove the chemical solution to perform drying.
  • the calixarene derivative with the developer, a fine resist pattern is formed.
  • a calixarene derivative having a structure shown in Table 1 (Example) and Table 2 (Comparative Example) is synthesized according to the following synthesis example, and the calixarene derivative and propylene glycol monomethyl ether acetate (PGMEA) can be used as a calixarene derivative. It mixed and melt
  • HDPE high density polyethylene
  • an electron beam lithography system CAVL-9410NA manufactured by Crestec
  • CAVL-9410NA manufactured by Crestec
  • a beam current of 100 pA adjusting the exposure amount
  • a 200 ⁇ m wide line & space pattern was drawn for the sensitivity evaluation (latent image forming step).
  • IPA isopropyl alcohol
  • the sensitivity of the resist pattern thus obtained was evaluated by the following method.
  • ⁇ Sensitivity> The film thickness of the 200 ⁇ m wide line & space pattern was measured, the relationship between the exposure amount (irradiation amount) and the film thickness was plotted, and a sensitivity curve was created.
  • the electron beam exposure (exposure D) was determined from this sensitivity curve, and the exposure (D) was evaluated as an index of sensitivity.
  • ⁇ Etching resistance> A resist film formed on a silicon wafer was exposed at an electron beam irradiation dose of 2 mC / cm 2 at an acceleration voltage of 50 kV and a beam current of 100 pA using an electron beam lithography system CAVL-9410NA (made by Crestec), and a line of 200 ⁇ m width & Space pattern was drawn (latent image formation process). Subsequently, isopropyl alcohol (IPA) was applied at 23 ° C. on the substrate obtained in the latent image forming step, and development was performed for 60 seconds (developing step). After development, rinsing was performed by dropping a rinse solution (IPA) for 30 seconds while rotating the substrate at 300 rpm.
  • IPA isopropyl alcohol
  • the substrate was rotated at a speed of 2,000 revolutions per minute to shake off and remove the rinse solution, thereby forming a resist pattern.
  • the film thickness of this 200 ⁇ m wide line & space pattern was measured by a stylus type profilometer.
  • etching was performed under the following conditions, and the film thickness after the treatment was similarly measured. The etching rate was determined from the film thickness difference before and after the treatment and the treatment time. CHF 3 etching conditions; CHF 3 flow rate: 50 sccm, microwave power: 100 W, pressure: 2.0 Pa
  • the sensitivity curve about Example 1 was shown in FIG.
  • the sensitivity curve is obtained by measuring the film thickness of the exposed portion using a film thickness measuring instrument, the exposure amount on the horizontal axis, and the film thickness on the vertical axis.
  • the exposure amount (D) was determined.
  • the approximate straight line at the rising portion of the sensitivity curve (a straight line rising to the right shown by the dotted line in the figure) and the approximate straight line at the flat portion (the horizontal straight line shown by the dotted line in the figure).
  • the exposure amount at the intersection was determined as the exposure amount (D).
  • the above evaluations were performed using the exposure dose (D) for each example and comparative example, and the results are shown in Table 1 (example) and Table 2 (comparative example).
  • the solvent was distilled off with an evaporator to obtain a mixture of white crystals and a colorless transparent liquid.
  • To this mixture was slowly added 500 ml of methanol while stirring to reprecipitate.
  • the white crystals were filtered through a Kiriyama funnel and washed with 150 ml of methanol.
  • the obtained white crystals were dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 66.4 g of the objective calix [4] arene.
  • the yield was 84.6%, and the HPLC purity was 97.3%.
  • the organic phase was then washed with 20% aqueous sodium chloride solution, predried over anhydrous magnesium sulfate and filtered.
  • the solvent was distilled off with an evaporator to obtain a yellow transparent liquid.
  • To this yellow liquid was slowly added 200 ml of methanol while stirring to reprecipitate.
  • the crystals were filtered through a Kiriyama funnel and washed with 100 ml of methanol.
  • the obtained white crystals were dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 23.2 g of the target product, allyloxycalix [4] arene.
  • the yield was 70.4%, and the HPLC purity was 94.5%.
  • the structure was identified by 1 H-NMR and LC-MS.
  • the mixture was in the form of a white slurry, and the liquid temperature rose to about 40.degree.
  • the mixture was heated in an oil bath so that the liquid temperature would be 80 to 85.degree.
  • the mixture was uniformly dissolved when the liquid temperature exceeded 70 ° C., and became a colorless and transparent liquid.
  • the oil bath was removed and allowed to cool.
  • the reaction mixture was transferred to a separatory funnel, and 300 ml of chloroform was added to separate the organic phase.
  • the aqueous phase is extracted three times with 300 ml of chloroform and combined with the organic phase.
  • the organic phase was washed three times with 300 ml of water, and it was confirmed that the pH of the aqueous phase became neutral.
  • the organic phase was predried over anhydrous magnesium sulfate and filtered.
  • the solvent was distilled off with an evaporator to obtain an orange liquid.
  • the yield was 7.5%, and the HPLC purity was 99.6%.
  • the structure was identified by 1 H-NMR and LC-MS.
  • Synthesis Example 2 Synthesis of Calixarene Derivative of Example 2
  • the chloromethylation reaction was carried out using the allyloxycalix [4] arene synthesized in Synthesis Example 1.
  • the chloromethylation reaction was carried out in the same manner as in Synthesis Example 1 except that dioxane was changed to 1,2-dimethoxyethane.
  • the yield was 2.5%, and the HPLC purity was 99.2%.
  • the structure was identified by 1 H-NMR and LC-MS.
  • Synthesis Example 3 Synthesis of Calixarene Derivative of Example 3 First, using the calix [4] arene obtained in Synthesis Example 1, a dimethoxycalix [4] arene is synthesized, then, an allyl group is introduced, and finally, a halogenated methyl group is introduced to obtain calixarene. The derivative was synthesized. First, the synthesis of dimethoxycalixarene was performed by the following method.
  • a reactor was assembled by attaching a mechanical stirrer, a thermometer and a Dimroto to a 1 L glass four-necked flask. 50.0 g (0.12 mol) of calix [4] arene, 44.0 g (0.24 mol) of methyl p-toluenesulfonate, 18.0 g (0.13 mol) of anhydrous potassium carbonate, and 600 ml of dehydrated acetonitrile in a flask Charged and stirred at 300 rpm. The mixture was heated in an oil bath and reacted under reflux conditions for 5 hours.
  • the obtained white solid was dried under vacuum (50 ° C., 12 hours or more) to obtain 41.4 g of the target product dimethoxycalix [4] arene.
  • the yield was 77.4%, and the HPLC purity was 98.3%.
  • the synthesis of dimethoxydiaryroxycalix [4] arene was carried out by introducing an allyl group.
  • the white solid was dissolved in 300 ml chloroform and then 1000 ml methanol was slowly added with stirring to reprecipitate. The solid was filtered through a Kiriyama funnel and washed with 200 ml of methanol. The obtained white solid was dried under vacuum (for more than 12 hours at 50 ° C.) to obtain 36.4 g of the target product dimethoxydiaryloxycalix [4] arene. The yield was 72.7%, and the HPLC purity was 98.7%. Finally, introduction of a halogenated methyl group (chloromethyl group) was carried out by the following method.
  • Synthesis Example 4 Synthesis of Calixarene Derivative of Example 4 Using the calix [4] arene obtained by the method of Synthesis Example 1, synthesis of diacetoxycalix [4] arene was performed.
  • the aqueous phase is extracted three times with 200 ml of chloroform and combined with the organic phase.
  • the organic phase was washed 5 times with 300 ml of water, and it was confirmed that the pH of the aqueous phase became neutral.
  • the organic phase was predried over anhydrous magnesium sulfate and filtered.
  • the solvent was distilled off with an evaporator to obtain a pale yellow solid.
  • the solid was dissolved in 600 ml chloroform and then 1200 ml methanol was slowly added with stirring to reprecipitate. The solid was filtered through a Kiriyama funnel and washed with 200 ml of methanol.
  • the obtained white solid was dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 41.4 g of the target product diacetoxycalix [4] arene.
  • the yield was 74.0%, and the HPLC purity was 99.1%.
  • synthesis of diacetoxydiaryloxycalix [4] arene by introducing an allyl group was performed.
  • Synthesis Example 5 Synthesis of Calixarene Derivative of Example 5 ⁇ Synthesis of Dipropoxycalix [4] arene> The synthesis was conducted in the same manner as in Synthesis Example 3 except that propyl iodide was used instead of methyl p-toluenesulfonate in the synthesis of dimethoxycalix [4] arene. The yield was 76.2%, and the HPLC purity was 99.3%. Subsequently, dipropoxydiaryloxycalix [4] arene was synthesized by introducing an allyl group.
  • Synthesis Example 6 Synthesis of Calixarene Derivative of Example 6 ⁇ Synthesis of trichloromethyldimethoxydiaryloxycalix [4] arene>
  • the chloromethylation reaction was carried out using the dimethoxydiaryroxycalix [4] arene synthesized in Synthesis Example 3 as a raw material.
  • the chloromethylation reaction was carried out in the same manner as in Synthesis Example 3 except that dioxane was changed to 1,2-dimethoxyethane.
  • the yield was 3.1%, and the HPLC purity was 97.6%.
  • the structure was identified by 1 H-NMR and LC-MS.
  • Synthesis Example 7 Synthesis of Calixarene Derivative of Example 7 ⁇ Synthesis of trichloromethyldiacetoxydiaryloxy [4] calixarene>
  • the chloromethylation reaction was carried out using diacetoxydiaryloxycalix [4] arene synthesized in Synthesis Example 4 as a raw material.
  • the chloromethylation reaction was carried out in the same manner as in Synthesis Example 4 except that dioxane was changed to 1,2-dimethoxyethane.
  • the yield was 2.8% and the HPLC purity was 98.9%.
  • the structure was identified by 1 H-NMR and LC-MS.
  • Synthesis Example 8 Synthesis of Calixarene Derivative of Example 8 ⁇ Synthesis of dichloroaryloxycalix [4] arene> The synthesis was conducted in the same manner as in Synthesis Example 1 except that 1,1-dichloroallyl bromide was used instead of allyl bromide in the synthesis of allyloxycalix [4] arene. The yield was 77.4%, and the HPLC purity was 98.6%. Then, the synthesis of chloromethyl dichloro aryloxy calix [4] arene by chloromethylation was performed by the following method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a calixarene derivative represented by formula (1). (In the formula, X, Y, and Z are hydrogen atoms or halogen atoms, R1 is an alykl group or an acetyl group, R2 and R3 are hydrogen atoms or halogenated methyl groups, n is an integer from 0 to 3, and when there is a plurality of R1, R2, and R3 then the plurality of R1, R2 and R3 may be the same groups or different groups.) The calixarene derivative is useful as an electron-beam resist material suitable for microfabrication.

Description

カリックスアレーン誘導体Calixarene derivatives
 本発明は、新規なカリックスアレーン誘導体に関する。より詳細には、本発明は、半導体デバイス、半導体集積回路、およびインプリント用モールド等に代表される微細な構造体を形成するためのパターン、又はフォトマスク等に、好適に用いられる新規なカリックスアレーン誘導体に関する。本発明は、さらに、該カリックスアレーン誘導体を含むレジスト材、および該レジスト材を使用したパターン形成方法に関する。 The present invention relates to novel calixarene derivatives. More specifically, the present invention is a novel calix suitably used for a pattern for forming a fine structure represented by a semiconductor device, a semiconductor integrated circuit, an imprint mold, etc., or a photo mask, etc. It relates to an arene derivative. The present invention further relates to a resist material containing the calixarene derivative, and a pattern forming method using the resist material.
 半導体集積回路(LSI)などのような半導体素子、透明基板上に電子回路のパターンを遮光性材料で形成したフォトマスク、およびインプリント用モールド等の製造プロセスにおいて、フォトレジストを用いたリソグラフィー法による微細加工がなされている。これは、シリコン基板上、または、遮光性薄膜を積層した石英基板上に、フォトレジストの薄膜を形成させ、これにエキシマレーザー、X線、電子線等のような高エネルギー線を選択的に一部のみに照射してパターンの潜像を形成し、その後、現像処理して得られたレジストパターンをマスクとしてエッチングするものである。 Semiconductor devices such as semiconductor integrated circuits (LSI), etc., photomasks in which patterns of electronic circuits are formed with a light shielding material on a transparent substrate, and lithography processes using photoresists in manufacturing processes such as imprint molds It is microfabricated. In this method, a thin film of photoresist is formed on a silicon substrate or a quartz substrate on which a light shielding thin film is laminated, and high energy radiation such as excimer laser, X-ray, electron beam or the like is selectively added to this. Only a portion is irradiated to form a latent image of a pattern, and thereafter, a resist pattern obtained by developing is used as a mask for etching.
 さらに詳しく説明すると、フォトリソグラフィ技術では、先ず、被加工層を表面に有する基板上に、レジスト材料と呼ばれる感光性材料を有機溶剤に溶かしたものを塗布し、プリベークによって有機溶剤を蒸発させてレジスト膜を形成する。次いで、レジスト膜に部分的に光を照射し、さらに、現像液を用いて不要な部分のレジスト膜を溶解除去することにより、基板上にレジストパターンを形成する。その後、このレジストパターンをマスクとして有する基板上の被加工層をドライエッチング、またはウエットエッチングする。そして、最後に、レジストパターンを除去することにより、微細加工が完成する。 More specifically, in the photolithography technology, first, a photosensitive material called a resist material dissolved in an organic solvent is coated on a substrate having a layer to be processed on the surface, and the organic solvent is evaporated by prebaking to form a resist. Form a film. Next, the resist film is partially irradiated with light, and an unnecessary portion of the resist film is dissolved and removed using a developing solution to form a resist pattern on the substrate. Thereafter, the layer to be processed on the substrate having this resist pattern as a mask is dry etched or wet etched. Finally, micropatterning is completed by removing the resist pattern.
 フォトマスクやインプリント用モールドの製造工程では、多くの場合、既に電子線描画装置やレーザー描画装置を用いてパターンが形成されている。また、シリコン基板上に形成するLSIなどのような半導体素子についても、さらなる微細化に向けて同様に電子線描画装置等を用いたパターン形成の検討が開始されている。そのため、近年、電子線用レジストを用いたプロセスの開発が盛んに進められている。このような電子線レジストには、高エッチング耐性、高解像度、および高感度であることが望まれている。 In the manufacturing process of a photomask and a mold for imprint, in many cases, a pattern is already formed using an electron beam drawing apparatus or a laser drawing apparatus. Also, with regard to semiconductor elements such as LSIs formed on a silicon substrate, examination of pattern formation using an electron beam drawing apparatus and the like has been started for further miniaturization. Therefore, in recent years, development of processes using resists for electron beams has been actively promoted. Such electron beam resists are desired to have high etching resistance, high resolution, and high sensitivity.
 電子線に感応する有機レジストは多種多様のものが知られており、様々な方法でレジストパターンが形成されている。例えば、ポリメチルメタクリレートのようなエチレン性不飽和単量体の重合体薄膜を基板上にレジスト膜として設けた後、電子線を照射して所定の画像形成を行い、アセトンのような低分子ケトン類を用いて現像することにより、微細パターンを形成する方法が提案されている(特許文献1参照)。また、同様にカリックスアレーン誘導体を含むレジスト材料の薄膜をレジスト膜として設けた後、電子線を照射して所定の画像形成を行い、乳酸エチル、プロピレングリコールモノメチルエーテル、または2-ヘプタノン等を用いて現像することにより、微細パターンを形成する方法が提案されている(特許文献2参照)。 A wide variety of organic resists sensitive to electron beams are known, and resist patterns are formed by various methods. For example, a polymer thin film of an ethylenically unsaturated monomer such as polymethyl methacrylate is provided on a substrate as a resist film, and then a predetermined image is formed by irradiating an electron beam, and a low molecular weight ketone such as acetone A method of forming a fine pattern by developing using a kind is proposed (see Patent Document 1). Similarly, after a thin film of a resist material containing a calixarene derivative is provided as a resist film, a predetermined image is formed by irradiating an electron beam, and ethyl lactate, propylene glycol monomethyl ether, or 2-heptanone or the like is used. A method of forming a fine pattern by development is proposed (see Patent Document 2).
 特許文献1の方法によれば、微細パターンを作製できる。しかし、ポリメチルメタクリレートのようなエチレン性不飽和単量体の重合体はエッチング耐性が低いので、このレジストをマスクにして被加工層を深くエッチングする場合、レジストパターンのアスペクト比を大きくしてパターン高さを高くする必要があった。また、現像液が引火点の低い低分子ケトン類であるため、防爆設備等を備える必要があった。 According to the method of Patent Document 1, a fine pattern can be produced. However, since polymers of ethylenically unsaturated monomers such as polymethyl methacrylate have low etching resistance, when etching a layer to be processed deeply using this resist as a mask, the aspect ratio of the resist pattern is increased to make the pattern It was necessary to raise the height. In addition, since the developer is a low molecular weight ketone having a low flash point, it has been necessary to provide an explosion-proof device and the like.
 一方、特許文献2の方法によれば、カリックスアレーン誘導体を含むレジスト材料を使用しているため、エッチング耐性が高く、パターン幅10nm以下のパターンを形成できる。しかしながら、この方法で使用しているカリックスアレーン誘導体を含むレジスト材料は、他のレジスト材料と比較して感度が低く、露光量を多くしなければならない点で改善の余地があった。例えば、特許文献2の図2には、50keVの電子線で露光し、乳酸エチル、またはキシレンで現像したときの露光特性(感度曲線)が示されている。この露光特性によれば、この方法で使用されたレジストの感度は、約1~2(mC/cm)となっている。特に、高解像度を有するカリックス[4]アレーン誘導体のレジスト感度は、約2(mC/cm)となっている。この感度でも使用することはできるが、スループットを向上させ、より生産性を高めるためには、特許文献2に記載されたカリックス[4]アレーン誘導体よりも、より一層、高感度化できるレジスト材の開発が望まれていた。なお、該特許文献2によれば、レジスト感度とは、現像前のレジスト膜厚(レジストを塗布し、必要に応じてプリベークを行った後のレジスト膜厚)を基準膜厚とし、現像後に得られたレジストパターンの膜厚が基準膜厚と一致するようになる最低露光量(mC/cm)で表されるものであるとされている。 On the other hand, according to the method of Patent Document 2, since a resist material containing a calixarene derivative is used, the etching resistance is high, and a pattern having a pattern width of 10 nm or less can be formed. However, the resist material containing the calixarene derivative used in this method has low sensitivity as compared with other resist materials, and there is room for improvement in that the amount of exposure has to be increased. For example, FIG. 2 of Patent Document 2 shows exposure characteristics (sensitivity curve) when exposed to an electron beam of 50 keV and developed with ethyl lactate or xylene. According to this exposure characteristic, the sensitivity of the resist used in this method is about 1 to 2 (mC / cm 2 ). In particular, the resist sensitivity of the calix [4] arene derivative having high resolution is about 2 (mC / cm 2 ). Although this sensitivity can be used, in order to improve the throughput and to improve the productivity, it is possible to use a resist material that can be further enhanced in sensitivity than the calix [4] arene derivative described in Patent Document 2. Development was desired. According to Patent Document 2, the resist sensitivity is obtained by setting the resist film thickness before development (the resist film thickness after applying a resist and performing prebaking as necessary) as a reference film thickness, and obtaining it after development minimum exposure the film thickness of the resist pattern that is comes to coincide with the reference thickness is the one represented by (mC / cm 2).
特開平8-262738号公報JP-A-8-262738 国際公開第2004/022513号パンフレットWO 2004/022513 pamphlet
 従って、本発明の目的は、従来のカリックスアレーン誘導体よりも、高解像度であり、且つ高感度でエッチング耐性の高いパターンを形成できる化合物を提供すること、および該化合物を含むレジスト材料を提供することにある。 Therefore, an object of the present invention is to provide a compound capable of forming a pattern having higher resolution and higher sensitivity and higher etching resistance than conventional calixarene derivatives, and to provide a resist material containing the compound. It is in.
 また、本発明の目的は、該レジスト材料を用いた露光方法並びに微細加工方法を提供することにある。 Another object of the present invention is to provide an exposure method and a microfabrication method using the resist material.
 本発明者らは、上記目的を達成するために鋭意研究した。その結果、カリックス[4]アレーン誘導体に、特定の置換基(特定のアリル基)を導入した化合物が上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors diligently studied to achieve the above object. As a result, it has been found that a compound in which a specific substituent (specific allyl group) is introduced into a calix [4] arene derivative can solve the above problems, and the present invention has been completed.
 すなわち、本発明によれば、
 下記式(1)
That is, according to the present invention,
Following formula (1)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、
 X、Y、およびZは、それぞれ、水素原子、又はハロゲン原子であり、
 Rは、アルキル基、又はアセチル基であり、
 R、およびRは、それぞれ、水素原子、又はハロゲン化メチル基であり、
 nは、0~3の整数であり、
 R、R、およびRがそれぞれ複数存在する場合には、その複数のR、R、およびRは、それぞれ、同一の基であっても、異なる基でもよい。)
で示されるカリックスアレーン誘導体が提供される。
(In the formula,
X, Y and Z are each a hydrogen atom or a halogen atom,
R 1 is an alkyl group or an acetyl group,
R 2 and R 3 are each a hydrogen atom or a halogenated methyl group,
n is an integer of 0 to 3,
When R 1, R 2, and where R 3 is present in plural, the plurality of R 1, R 2, and R 3 are each be the same group or in different groups. )
There is provided a calixarene derivative shown by
 本発明によれば、また、前記カリックスアレーン誘導体を含むレジスト材料が提供される。 According to the present invention, there is also provided a resist material comprising the calixarene derivative.
 本発明によれば、さらに、前記レジスト材料を被処理基板上に塗布した後、プリベークしてレジスト膜を形成する工程と、該レジスト膜を高エネルギー線で選択的に露光して所望のパターンの潜像を形成する工程と、前記潜像を現像する工程とを含むレジストパターン形成方法が提供される。 Further, according to the present invention, after applying the resist material onto a substrate to be treated, prebaking to form a resist film, and selectively exposing the resist film with high energy rays to form a desired pattern A resist pattern forming method is provided, which comprises the steps of forming a latent image and developing the latent image.
 本発明のカリックスアレーン誘導体は、分子内に特定の二重結合を有する基が導入された化合物である。そのため、該カリックスアレーン誘導体を含むレジスト材は、従来のカリックスアレーン誘導体を含むレジスト材よりも、高感度でパターンを形成することができ、且つ架橋密度を増やすことでエッチング耐性を高めることができ、工業的利用価値が高い。 The calixarene derivative of the present invention is a compound into which a group having a specific double bond is introduced in the molecule. Therefore, a resist material containing the calixarene derivative can form a pattern with higher sensitivity than a resist material containing a conventional calixarene derivative, and the etching resistance can be enhanced by increasing the crosslink density. Industrial use value is high.
実施例1の感度曲線である。7 is a sensitivity curve of Example 1;
 以下、本発明について、詳細に説明する。先ずは、カリックスアレーン誘導体について説明する。 Hereinafter, the present invention will be described in detail. First, calixarene derivatives are described.
 本発明のカリックスアレーン誘導体は、下記式(1) The calixarene derivative of the present invention has the following formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で示される化合物である。 It is a compound shown by these.
 前記式(1)で示されるカリックスアレーン誘導体において、Rは、アルキル基、又はアセチル基である。なお、Rが複数存在する場合、具体的には、nが2または3の場合、Rは、同一の基であっても異なる基であってもよい。 In the calixarene derivative represented by the above formula (1), R 1 is an alkyl group or an acetyl group. When a plurality of R 1 are present, specifically, when n is 2 or 3, R 1 may be the same or different groups.
 アルキル基としては、炭素数1~10のアルキル基が挙げられ、直鎖状、又は分岐状のものであってもよい。具体的な基を例示すると、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、t-ブチル基、ヘキシル基等が挙げられる。上記各基のうちRは、上記カリックスアレーン誘導体の各種溶剤への溶解性を高くし、上記カリックスアレーン誘導体によるレジスト膜の形成を容易にし、さらに、上記カリックスアレーン誘導体を高い感度のものにするために、好ましくは炭素数1~5のアルキル基であり、さらに好ましくは炭素数1~2のアルキル基である。 The alkyl group includes an alkyl group having 1 to 10 carbon atoms, and may be linear or branched. Specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, isobutyl group, t-butyl group and hexyl group. Among the above groups, R 1 enhances the solubility of the calixarene derivative in various solvents, facilitates the formation of a resist film by the calixarene derivative, and makes the calixarene derivative with high sensitivity. Preferably, it is an alkyl group of 1 to 5 carbon atoms, and more preferably an alkyl group of 1 to 2 carbon atoms.
 前記式(1)において、R、およびRは、それぞれ、水素原子、又はハロゲン化メチル基である。なお、Rが複数存在する場合、具体的には、nが0、1または2の場合、Rは、同一の基であっても異なる基であってもよい。また、Rが複数存在する場合、具体的には、nが2または3の場合、Rは、同一の基であっても異なる基であってもよい。 In Formula (1), R 2 and R 3 are each a hydrogen atom or a halogenated methyl group. In the case where R 2 there are a plurality, specifically, when n is 0, 1 or 2, R 2 may be be the same group or different groups. When a plurality of R 3 are present, specifically, when n is 2 or 3, R 3 may be the same or different groups.
 ハロゲン化メチル基としては、ハロゲン原子を1つ有する基であるものが好ましい。ハロゲン原子を具体的に例示すると、塩素原子、臭素原子およびヨウ素原子が挙げられ、中でも、塩素原子が好適である。つまり、最も好ましい基は、クロロメチル基である。このハロゲン化メチル基は、高エネルギー線を露光した際、架橋点となり、上記カリックスアレーン誘導体を高感度化できるという理由で、分子内に存在する全てのR、およびRのうち少なくとも1つの基がハロゲン化メチル基であることが好ましい。より好ましいのは、全てのR、およびRのうち2以上4以下の基がハロゲン化メチル基となる場合である。さらに好ましいのは、全てのR、およびRのうち3以上4以下の基がハロゲン化メチル基となる場合であり、特に好ましいのは、全てのR、およびRがハロゲン化メチル基となる場合である。 As a halogenated methyl group, what is a group which has one halogen atom is preferable. Specific examples of the halogen atom include chlorine atom, bromine atom and iodine atom, among which chlorine atom is preferable. That is, the most preferred group is chloromethyl group. This halogenated methyl group becomes a crosslinking point when exposed to high energy rays, and at least one of all R 2 and R 3 present in the molecule because it can sensitize the calixarene derivative. It is preferred that the group is a halogenated methyl group. More preferred is a case in which 2 to 4 of all R 2 and R 3 are halogenated methyl groups. It is more preferable that all R 2 and R 3 be groups of 3 or more and 4 or less be halogenated methyl groups, and particularly preferable that all R 2 and R 3 be halogenated methyl groups. Is the case.
 本発明のカリックスアレーン誘導体の最大の特徴は、分子内に特定の二重結合を有する基、すなわち-CHXCY=CZ基、を有する点にある。この特定の基を有することにより、高感度にパターンを形成できるものと考えられる。この-CHXCY=CZ基において、X、Y、およびZは、それぞれ、水素原子、又はハロゲン原子である。ハロゲン原子としては、塩素原子、臭素原子およびヨウ素原子が挙げられる。中でも、ラジカルの生成しやすさと、その生成ラジカルが安定であって、且つ得られるカリックスアレーン誘導体がより高い感度を示すものとなるためには、X、およびYが水素原子であって、Zが水素原子、又はハロゲン原子、特に塩素原子であることが好ましい。この中でも、特に、上記効果が最も発揮されるという点では、X、Y、およびZは、水素原子であることが好ましい。つまり、-CHXCY=CZ基は、アリル基となることが最も好ましい。 The greatest feature of the calixarene derivative of the present invention is that it has a group having a specific double bond in the molecule, ie, -CHXCY = CZ 2 group. By having this specific group, it is considered that a pattern can be formed with high sensitivity. In this -CHXCY = CZ 2 group, X, Y and Z are each a hydrogen atom or a halogen atom. The halogen atom includes a chlorine atom, a bromine atom and an iodine atom. Among them, X and Y are hydrogen atoms, and Z is a hydrogen atom, in order to make it easy to form a radical, and the resulting radical is stable and the resulting calixarene derivative exhibits higher sensitivity. It is preferably a hydrogen atom or a halogen atom, in particular a chlorine atom. Among these, X, Y and Z are preferably hydrogen atoms, in particular, in that the above-mentioned effects are most exhibited. That is, the —CHXCY = CZ 2 group is most preferably an allyl group.
 また、前記式(1)で示されるカリックスアレーン誘導体において、nは0~3の整数である。高感度化に寄与している-CHXCY=CZ基の分子中の割合を増やし、高感度化するという点において、nは0~2であることが好ましく、nは0~1であることがさらに好ましい。 In the calixarene derivative represented by the formula (1), n is an integer of 0 to 3. N is preferably from 0 to 2, and n is from 0 to 1 in terms of increasing the ratio of -CHXCY = CZ 2 groups contributing to high sensitivity to increase the sensitivity. More preferable.
 上記カリックスアレーン誘導体の中でも、特に、好適な化合物としては、以下の基を有する化合物が挙げられる。 Among the above-mentioned calixarene derivatives, particularly preferable compounds include compounds having the following groups.
 すなわち、前記式(1)において、
 Rが、アルキル基、又はアセチル基であって、
 R、およびRが、水素原子、又はハロゲン化メチル基であって、R、およびRのうち3つ以上の基がハロゲン化メチル基であり、
 X、およびYが、水素原子であり、
 Zが、水素原子、又はハロゲン原子であり、
 nが0~2の整数である、
であるようなカリックスアレーン誘導体である。中でも、ハロゲン化メチル基は、クロロメチル基であることが好ましい。
That is, in the formula (1),
R 1 is an alkyl group or an acetyl group,
R 2 and R 3 are a hydrogen atom or a halogenated methyl group, and at least three of R 2 and R 3 are a halogenated methyl group,
X and Y are hydrogen atoms,
Z is a hydrogen atom or a halogen atom,
n is an integer of 0 to 2,
Are calixarene derivatives such as Among them, the halogenated methyl group is preferably a chloromethyl group.
 具体的な化合物を例示すると、以下のカリックスアレーン誘導体が挙げられる。 Specific examples of the compound include the following calixarene derivatives.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 これらのカリックスアレーン誘導体の中でも、特に高い感度を有するものとして、次のような化合物が好ましい。 Among these calixarene derivatives, the following compounds are preferable as having particularly high sensitivity.
 すなわち、前記式(1)において、
 Rが、炭素数1~2のアルキル基であって、
 R、およびRが、水素原子、又はハロゲン化メチル基であって、R、およびRのうち3つ以上の基がハロゲン化メチル基であり、
 X、Y、およびZが、水素原子であり、
 nが0~2の整数である、
であるようなカリックスアレーン誘導体である。中でも、ハロゲン化メチル基は、クロロメチル基であるものが好ましい。
That is, in the formula (1),
R 1 is an alkyl group having 1 to 2 carbon atoms,
R 2 and R 3 are a hydrogen atom or a halogenated methyl group, and at least three of R 2 and R 3 are a halogenated methyl group,
X, Y and Z are hydrogen atoms,
n is an integer of 0 to 2,
Are calixarene derivatives such as Among them, the halogenated methyl group is preferably a chloromethyl group.
 具体的な化合物を例示すると、以下のカリックスアレーン誘導体が挙げられる。 Specific examples of the compound include the following calixarene derivatives.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 次に、上記カリックスアレーン誘導体の製造方法、およびその誘導体の同定方法について説明する。 Next, a method for producing the above calixarene derivative and a method for identifying the derivative thereof will be described.
 <カリックスアレーン誘導体の製造方法および同定方法>
 本発明のカリックスアレーン誘導体の製造方法は、特に制限されるものではないが、以下の方法により製造することができる。先ず、例えば、市販の5,11,17,23-テトラ-t-ブチル-25,26,27,28-テトラヒドロキシカリックス[4]アレーン(以下、単に「t-ブチルカリックス[4]アレーン」ともいう)を脱t-ブチル化し、25,26,27,28-テトラヒドロキシカリックス[4]アレーン(以下、単に「カリックス[4]アレーン」ともいう)を製造する。そして、これに、-CHXCY=CZ基(以下、単にアリル基ともいう)を導入し、次いで、必要に応じて、ハロゲン化メチル基を導入してやればよい。
<Production Method and Identification Method of Calixarene Derivative>
Although the method for producing the calixarene derivative of the present invention is not particularly limited, it can be produced by the following method. First, for example, commercially available 5,11,17,23-tetra-t-butyl-25,26,27,28-tetrahydroxycalix [4] arene (hereinafter simply referred to as "t-butylcalix [4] arene") The compound is de-t-butylated to produce 25, 26, 27, 28-tetrahydroxycalix [4] arene (hereinafter simply referred to as "calix [4] arene"). Then, a -CHXCY = CZ 2 group (hereinafter, also simply referred to as an allyl group) may be introduced to this, and then a halogenated methyl group may be introduced as necessary.
 原料のカリックス[4]アレーンの水酸基部分に、-CHXCY=CZ基を導入する方法としては、ウィリアムソンのエーテル合成として一般に知られている方法を採用することができる。例えば、非特許文献(GUTSCHEら:「テトラヘドロン」、第39巻、409~426頁、1983年)、または非特許文献(van LOONら:「ジャーナル・オブ・オーガニック・ケミストリー」、第55巻、5639~5646頁、1990年)に記載の方法を採用することができる。この際、反応条件を調整することにより、nの数を調整することができる。 As a method for introducing a —CHXCY = CZ 2 group into the hydroxyl group of calix [4] arene as a raw material, a method generally known as Williamson's ether synthesis can be adopted. For example, non-patent literature (GUTSCHE et al .: "Tetrahedron", 39, pp. 409-426, 1983), or non-patent literature (van LOON et al .: "Journal of Organic Chemistry", vol. 55, The method described in pp. 5639-5646 (1990) can be employed. At this time, the number of n can be adjusted by adjusting the reaction conditions.
 次に、上記方法により、-CHXCY=CZ基を導入した化合物(以下、「アリロキシカリックス[4]アレーン」ともいう)に、必要に応じて、ハロゲン化メチル基を導入する。つまり、ベンゼン環の水素をハロゲン化メチル基に変換する。このハロゲン化メチル基を導入した化合物を、以下、「ハロゲン化メチルアリロキシカリックス[4]アレーン」ともいう。ハロゲン化メチル基を導入する方法としては、例えば、特許文献2、非特許文献(長崎等:「テトラへドロン」、第48巻、797~804頁、1992年)、または特開2004-123586号公報等に記載の方法を採用することができる。この際、反応条件を調整することにより、nの数、R、およびRへのハロゲン化メチル基の導入割合を調整することができる。 Next, if necessary, a halogenated methyl group is introduced into the compound having a —CHXCY = CZ 2 group introduced (hereinafter also referred to as “allyloxycalix [4] arene”) by the above method. That is, hydrogen of the benzene ring is converted to a halogenated methyl group. The compound which introduce | transduced this halogenated methyl group is also called "halogenated methyl aryloxy calix [4] arene" hereafter. As a method for introducing a halogenated methyl group, for example, Patent Document 2, Non-patent Document (Nagasaki et al .: "Tetrahedron", Vol. 48, pp. 797-804, 1992), or JP-A-2004-123586 The method described in the publication can be adopted. At this time, by adjusting the reaction conditions, it is possible to adjust the number of n, R 2 and the introduction ratio of the halogenated methyl group to R 3 .
 以上のような方法により、本発明のカリックスアレーン誘導体を製造することができる。得られたカリックスアレーン誘導体は、IR、NMR、およびLC-MS等により、その構造を決定することができる。特に、H-NMRでは、アリル基由来の二重結合についたプロトンの特徴的なシグナルから、例えば、アリル基の導入を確認することができる。具体的には、δ5.0~6.0ppmに2種類のダブルダブレットが観測される。ひとつは、アリル基のメチレン基に対して、シスに位置するプロトンであり、カップリング定数は、17.0Hzと2.0Hzである。もうひとつは、アリル基のメチレン基に対して、トランスに位置するプロトンであり、カップリング定数は、10.0Hzと2.0Hzである。 The calixarene derivative of the present invention can be produced by the method as described above. The structure of the resulting calixarene derivative can be determined by IR, NMR, LC-MS and the like. In particular, in 1 H-NMR, for example, introduction of an allyl group can be confirmed from a characteristic signal of a proton attached to a double bond derived from an allyl group. Specifically, two types of double doublets are observed at δ 5.0 to 6.0 ppm. One is a proton located in cis with respect to the methylene group of the allyl group, and the coupling constants are 17.0 Hz and 2.0 Hz. The other is a proton located in trans to the methylene group of the allyl group, and the coupling constants are 10.0 Hz and 2.0 Hz.
 本発明は、また、上記カリックスアレーン誘導体を含むレジスト材料をも提供する。次に、このレジスト材料について説明する。 The present invention also provides a resist material comprising the above calixarene derivative. Next, this resist material will be described.
 <レジスト材料>
 本発明のレジスト材料は、前記式(1)で示されるカリックスアレーン誘導体を含むものである。前記式(1)で示されるカリックスアレーン誘導体は、1種類のものを単独で使用することもできるし、2種類以上の混合物を使用することもできる。つまり、nの数が異なるものの混合物、あるいは、複数存在するR、R、およびRが、それぞれ異なる基であるものの混合物、であってもよい。
<Resist material>
The resist material of the present invention contains the calixarene derivative represented by the above formula (1). As the calixarene derivative represented by the above formula (1), one type can be used alone, or a mixture of two or more types can be used. That is, it may be a mixture of ones having different numbers of n, or a mixture of ones in which a plurality of R 1 , R 2 and R 3 are different groups.
 以下の説明においては、カリックスアレーン誘導体の混合物を使用する場合にも、単にカリックスアレーン誘導体として説明する。 In the following description, even when a mixture of calixarene derivatives is used, it is simply described as a calixarene derivative.
 本発明のレジスト材料は、前記カリックスアレーン誘導体以外に、乳酸エチル(EL)、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピオン酸エチル、酢酸-nブチル、2-ヘプタノンなどのような有機溶剤を含むことができる。また、必要に応じて、公知の添加剤、例えば、界面活性剤などを含むこともできる。 In addition to the calixarene derivatives, the resist material of the present invention includes ethyl lactate (EL), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl propionate, n-butyl acetate, 2-heptanone and the like. And organic solvents such as In addition, if necessary, known additives such as surfactants can also be included.
 本発明のレジスト材料は、カリックスアレーン誘導体、及び必要に応じて配合される添加剤等の全ての成分を上記有機溶剤に溶解させた後、必要に応じメンブレンフィルターなどを用いて濾過することにより調製される。なお、この調製されたレジスト材料中に含まれるカリックスアレーン誘導体の含有量は、所望とするレジスト膜の膜厚、カリックスアレーン誘導体の種類等に応じて適宜決定すればよいが、通常、0.1~10質量%である。 The resist material of the present invention is prepared by dissolving all the components such as calixarene derivatives and additives added if necessary in the above organic solvent, and then filtering it using a membrane filter or the like as required. Be done. The content of the calixarene derivative contained in the prepared resist material may be appropriately determined according to the desired film thickness of the resist film, the type of calixarene derivative, etc. It is up to 10% by mass.
 このようなレジスト材料を使用して、パターンを形成することができる。次に、このレジストパターンの形成方法について説明する。 Such resist materials can be used to form a pattern. Next, a method of forming this resist pattern will be described.
 <レジストパターンの形成方法>
 前記レジスト材料を使用してレジストパターンを形成するには、以下の方法を採用すればよい。具体的には、前記レジスト材料を被処理基板上に塗布した後、プリベークしてレジスト膜を形成する工程と、該レジスト膜を高エネルギー線で選択的に露光して所望のパターンの潜像を形成する工程と、前記潜像を現像する工程を実施することにより、レジストパターンを形成することができる。以下、各工程について詳細に説明する。
<Method of forming resist pattern>
In order to form a resist pattern using the resist material, the following method may be employed. Specifically, after applying the resist material onto a substrate to be treated, a step of prebaking to form a resist film, and selectively exposing the resist film with high energy rays to form a latent image of a desired pattern. A resist pattern can be formed by performing the forming step and the developing step. Each step will be described in detail below.
 <レジスト膜を形成する工程>
 本発明において、レジスト材料を塗布する被処理基板は、特に制限されるものでなく、公知の基板、例えば、シリコン基板、フォトマスク、および前記の基板に酸化膜、窒化膜、金属薄膜等を成膜した基板が使用される。
<Step of Forming a Resist Film>
In the present invention, the substrate to which the resist material is applied is not particularly limited, and a known substrate such as a silicon substrate, a photomask, and an oxide film, a nitride film, a metal thin film, etc. formed on the above substrate. A filmed substrate is used.
 これら被処理基板上に、公知の方法、例えば、スピンコーティング法等により上記レジスト材料を塗布した後、ベーク(プリベーク)することにより、上記カリックスアレーン誘導体を含むレジスト膜を形成する。この時、プリベークとしては、ホットプレート等を用いて80~130℃の温度で10秒~5分程度加熱処理することが好ましい。この形成されたレジスト膜の膜厚は、使用する用途等に応じて適宜決定すればよいが、通常、5~300nmである。 The above resist material is coated on the substrate to be processed by a known method such as spin coating, and then baked (prebaked) to form a resist film containing the calixarene derivative. At this time, as pre-baking, heat treatment is preferably performed at a temperature of 80 to 130 ° C. for about 10 seconds to 5 minutes using a hot plate or the like. The film thickness of the formed resist film may be suitably determined in accordance with the application etc. to be used, but it is usually 5 to 300 nm.
 以上の方法により、被処理基板上に上記カリックスアレーン誘導体を含むレジスト膜を形成することができる。次に、前記レジスト膜に高エネルギー線を選択的に露光させ、パターンの潜像を形成する工程について説明する。 By the above method, a resist film containing the above calixarene derivative can be formed on a substrate to be treated. Next, the step of selectively exposing the resist film to high energy rays to form a latent image of a pattern will be described.
 <パターンの潜像を形成する工程>
 本発明においては、上記レジスト膜形成工程により得られた基板上のレジスト膜に、高エネルギー線を選択的に露光させ、パターンの潜像を形成する。
<Step of forming a latent image of a pattern>
In the present invention, high energy rays are selectively exposed on the resist film on the substrate obtained in the resist film forming step to form a latent image of a pattern.
 上記高エネルギー線は、エネルギー照射により上記レジスト膜に潜像を形成できる線源であれば特に制限されるものではなく、例えば、電子線、X線、イオンビームなどを挙げることができる。 The high energy ray is not particularly limited as long as it is a radiation source capable of forming a latent image on the resist film by energy irradiation, and examples thereof include an electron beam, an X ray, and an ion beam.
 また、該高エネルギー線を露光させる部分は、形成しようとするパターンに応じて適宜決定すればよい。そのため、高エネルギー線を選択的に露光させる方法としては、公知の方法を採用することができ、例えば、直接描画またはマスクを介して照射してやればよい。 Further, the portion to which the high energy ray is exposed may be appropriately determined according to the pattern to be formed. Therefore, a known method can be adopted as a method of selectively exposing high energy rays, and for example, direct exposure or irradiation through a mask may be performed.
 以上の方法により、レジスト膜にパターンの潜像を形成することができる。 By the above method, a latent image of a pattern can be formed on the resist film.
 <現像工程>
 次に、本発明においては、上記方法により得られた基板、すなわち、上記カリックスアレーン誘導体を含むレジスト膜が積層され、該レジスト膜に高エネルギー線を選択的に露光させ、パターンの潜像が形成された基板(以下、単に、潜像形成工程で得られた基板ともいう)を、有機溶剤を含む現像液で現像してやればよい。
<Development process>
Next, in the present invention, a substrate obtained by the above method, that is, a resist film containing the above calixarene derivative is laminated, and the resist film is selectively exposed to high energy rays to form a latent image of a pattern. The substrate thus obtained (hereinafter, also simply referred to as a substrate obtained in the latent image forming step) may be developed with a developer containing an organic solvent.
 本発明においては、上記潜像形成工程で得られた基板において、前記高エネルギー線に露光させていないレジスト膜の部分を、有機溶剤を含む現像液で除去することにより、前記潜像を現像する。 In the present invention, in the substrate obtained in the latent image forming step, the latent image is developed by removing a portion of the resist film not exposed to the high energy beam with a developer containing an organic solvent. .
 この現像において使用する現像液は、露光部と未露光部の溶解速度が異なる溶媒を使用する。本発明で使用する現像液は、レジスト材料の溶媒として用いた乳酸エチル(EL)、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピオン酸エチル、酢酸-nブチル、2-ヘプタノンなどの他に、キシレン、アルコール類(エタノール、イソプロピルアルコールなど)、グリコールエーテル類、またはハイドロフルオロアルキルエーテルなどが用いられる。これらの現像液は、単独でも、混合でも使用できる。 The developing solution used in this development uses a solvent having different dissolution rates in the exposed area and the unexposed area. The developer used in the present invention includes ethyl lactate (EL), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl propionate, n-butyl acetate, 2-butyl acetate used as a solvent for resist materials. Besides heptanone and the like, xylene, alcohols (ethanol, isopropyl alcohol and the like), glycol ethers, hydrofluoroalkyl ether and the like are used. These developers can be used alone or in combination.
 次に、前記現像液を使用し、上記潜像形成工程で得られた基板の現像を行う方法について説明する。 Next, a method of developing the substrate obtained in the latent image forming step using the developer will be described.
 前記現像液を用いて潜像形成工程で得られた基板を現像する方法は、特に制限されるものではなく、公知の方法を採用することができる。具体的には、上記現像液が満たされた槽の中に該基板を浸漬する方法(ディップ法)、上記現像液を該基板表面に載せる方法(パドル法)および上記現像液を該基板に噴霧する方法(スプレー法)が一般的に用いられる。これらの方法のうち、パーティクルを低減するためには、パドル法、またはスプレー法が好ましい。 The method for developing the substrate obtained in the latent image forming step using the developer is not particularly limited, and a known method can be adopted. Specifically, a method of immersing the substrate in a bath filled with the developer (dip method), a method of placing the developer on the surface of the substrate (paddle method), and spraying the developer onto the substrate Method (spray method) is generally used. Among these methods, the paddle method or the spray method is preferred in order to reduce particles.
 より具体的な現像方法を説明すると、潜像形成工程で得られた基板に、通常、10℃以上35℃以下、好ましくは15℃以上30℃以下の温度の上記現像液を塗布して静置するか、又は所定時間、該基板に該現像液を噴霧し続ける。静置する時間、又は噴霧する時間は、特に制限されるものではないが、スループットを考慮すると30秒以上5分以下とすることが好ましい。上記カリックスアレーン誘導体と上記現像液との組み合わせであれば、上記温度範囲および上記時間で十分にパターンを形成することができる。 A more specific developing method will be described. The substrate obtained in the latent image forming step is coated with the developer at a temperature of usually 10 ° C. or more and 35 ° C. or less, preferably 15 ° C. or more and 30 ° C. or less and allowed to stand. Or continue spraying the developer onto the substrate for a predetermined period of time. The settling time or spraying time is not particularly limited, but is preferably 30 seconds or more and 5 minutes or less in consideration of throughput. If it is a combination of the calixarene derivative and the developer, a pattern can be sufficiently formed in the above temperature range and the above time.
 以上の工程を実施することによりレジストパターンを形成することができる。次に、これら工程の後処理について説明する。 By performing the above steps, a resist pattern can be formed. Next, post-processing of these steps will be described.
 <後処理>
 上記方法により現像してレジストパターンが形成された基板は、必要に応じてリンス液によって残存現像液等を除去する。リンス液として用いられる有機溶剤は、前記現像液と同じものでも、異なっていてもよいが、大気圧下での沸点が150℃以下のものが好ましく、乾燥しやすさを考慮すると、沸点が120℃以下のものがより好ましい。また、上記の現像工程とこのリンス工程を2~10回程度交互に繰り返し行うこともできる。
<Post-processing>
The substrate on which the resist pattern has been formed by development according to the above method is, if necessary, removed of the remaining developer and the like by a rinse liquid. The organic solvent used as the rinse solution may be the same as or different from the developer described above, but preferably has a boiling point of 150 ° C. or less at atmospheric pressure, and in view of drying easiness, the boiling point is 120 C. or less is more preferable. In addition, the above-mentioned development step and this rinse step can be alternately repeated about 2 to 10 times.
 この後、基板を高速で回転させるなどして薬液を振り切り除去することにより、乾燥を行う。上記で説明したように、上記カリックスアレーン誘導体と上記現像液とを組み合わせることにより、微細なレジストパターンが形成される。 After that, the substrate is rotated at high speed or the like to shake off and remove the chemical solution to perform drying. As described above, by combining the calixarene derivative with the developer, a fine resist pattern is formed.
 以下に、実施例及び比較例を挙げて、本発明についてさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。 EXAMPLES The present invention will be more specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
 [実施例1~8および比較例1~4]
 表1(実施例)および表2(比較例)に示す構造を有するカリックスアレーン誘導体を下記の合成例に従って合成し、このカリックスアレーン誘導体とプロピレングリコールモノメチルエーテルアセテート(PGMEA)とを、カリックスアレーン誘導体の濃度が2質量%になるように混合溶解した。次いで、得られた溶液をポアサイズ0.05μmの高密度ポリエチレン(HDPE)製メンブランフィルターで濾過してレジスト材料を調製した。4インチシリコンウエハに、前記レジスト材料をスピンコートした後、110℃のホットプレート上で60秒間ベークして膜厚が約35nm(固形物として)のレジスト膜を形成した(レジスト膜形成工程)。
[Examples 1 to 8 and Comparative Examples 1 to 4]
A calixarene derivative having a structure shown in Table 1 (Example) and Table 2 (Comparative Example) is synthesized according to the following synthesis example, and the calixarene derivative and propylene glycol monomethyl ether acetate (PGMEA) can be used as a calixarene derivative. It mixed and melt | dissolved so that a density | concentration might be 2 mass%. Then, the obtained solution was filtered with a membrane filter made of high density polyethylene (HDPE) with a pore size of 0.05 μm to prepare a resist material. The resist material was spin-coated on a 4-inch silicon wafer and baked on a hot plate at 110 ° C. for 60 seconds to form a resist film having a thickness of about 35 nm (as a solid) (resist film forming step).
 次いで、シリコンウエハ上に形成されたレジスト膜に、電子線描画装置CAVL-9410NA(クレステック社製)を用い、加速電圧50kVおよびビーム電流100pAで、電子線照射量を調節して(露光量を調節して)、感度評価用に200μm幅のライン&スペースパターンを描画した(潜像形成工程)。 Then, using a resist film formed on a silicon wafer, an electron beam lithography system CAVL-9410NA (manufactured by Crestec) is used to adjust the electron beam irradiation amount at an acceleration voltage of 50 kV and a beam current of 100 pA (adjusting the exposure amount ) And a 200 μm wide line & space pattern was drawn for the sensitivity evaluation (latent image forming step).
 次いで、上記潜像形成工程で得られた基板上に、23℃でイソプロピルアルコール(IPA)を塗布して60秒間現像を行った(現像工程)。現像後、分速300回転で基板を回転させながらリンス液(IPA)を30秒間滴下することにより、リンスを行った。最後に、基板を、分速2000回転で回転させてリンス液を振り切り除去することにより、乾燥させてレジストパターンを形成した。 Subsequently, isopropyl alcohol (IPA) was applied at 23 ° C. on the substrate obtained in the latent image forming step, and development was performed for 60 seconds (developing step). After development, rinsing was performed by dropping a rinse solution (IPA) for 30 seconds while rotating the substrate at 300 rpm. Finally, the substrate was rotated at a speed of 2,000 revolutions per minute to shake off and remove the rinse solution, thereby forming a resist pattern.
 このようにして得られたレジストパターンについて、以下の方法により、感度を評価した。 The sensitivity of the resist pattern thus obtained was evaluated by the following method.
 <感度>
 上記の200μm幅のライン&スペースパターンの膜厚を測定し、露光量(照射量)と膜厚の関係をプロットし、感度曲線を作成した。この感度曲線から電子線露光量(露光量D)を求め、該露光量(D)を感度の指標として評価した。
<Sensitivity>
The film thickness of the 200 μm wide line & space pattern was measured, the relationship between the exposure amount (irradiation amount) and the film thickness was plotted, and a sensitivity curve was created. The electron beam exposure (exposure D) was determined from this sensitivity curve, and the exposure (D) was evaluated as an index of sensitivity.
 <エッチング耐性>
 シリコンウエハ上に形成されたレジスト膜に、電子線描画装置CAVL-9410NA(クレステック社製)を用い、加速電圧50kVおよびビーム電流100pAで、電子線照射量2mC/cm2で露光し、200μm幅のライン&スペースパターンを描画した(潜像形成工程)。次いで、上記潜像形成工程で得られた基板上に、23℃でイソプロピルアルコール(IPA)を塗布して60秒間現像を行った(現像工程)。現像後、分速300回転で基板を回転させながらリンス液(IPA)を30秒間滴下することにより、リンスを行った。最後に、基板を、分速2000回転で回転させてリンス液を振り切り除去することにより、乾燥させてレジストパターンを形成した。この200μm幅のライン&スペースパターンの膜厚を触針式段差計で測定した。次に、これを下記の条件でエッチングを行い、処理後の膜厚を同様に測定した。処理前後の膜厚差と処理時間からエッチング速度を求めた。
CHF エッチング条件;
   CHF流量:50sccm、マイクロ波パワー:100W、圧力:2.0Pa
 
<Etching resistance>
A resist film formed on a silicon wafer was exposed at an electron beam irradiation dose of 2 mC / cm 2 at an acceleration voltage of 50 kV and a beam current of 100 pA using an electron beam lithography system CAVL-9410NA (made by Crestec), and a line of 200 μm width & Space pattern was drawn (latent image formation process). Subsequently, isopropyl alcohol (IPA) was applied at 23 ° C. on the substrate obtained in the latent image forming step, and development was performed for 60 seconds (developing step). After development, rinsing was performed by dropping a rinse solution (IPA) for 30 seconds while rotating the substrate at 300 rpm. Finally, the substrate was rotated at a speed of 2,000 revolutions per minute to shake off and remove the rinse solution, thereby forming a resist pattern. The film thickness of this 200 μm wide line & space pattern was measured by a stylus type profilometer. Next, etching was performed under the following conditions, and the film thickness after the treatment was similarly measured. The etching rate was determined from the film thickness difference before and after the treatment and the treatment time.
CHF 3 etching conditions;
CHF 3 flow rate: 50 sccm, microwave power: 100 W, pressure: 2.0 Pa
 なお、図1に、実施例1についての感度曲線を示した。この感度曲線は、膜厚測定器を用いて露光部分の膜厚を測定し、横軸に露光量、縦軸に膜厚を表したものである。各実施例および比較例において同様にして、このような感度曲線を作成し、露光量(D)を求めた。具体的には、図1に示すように、感度曲線の立ち上がり部の近似直線(図中に点線で示される右上がりの直線)と平坦部の近似直線(図中に点線で示される水平な直線)との交点を求め、その交点における露光量(図1では約0.5mC/cm)を露光量(D)として求めた。各実施例および比較例について、この露光量(D)により上記評価を行い、その結果を表1(実施例)および表2(比較例)に示した。 In addition, the sensitivity curve about Example 1 was shown in FIG. The sensitivity curve is obtained by measuring the film thickness of the exposed portion using a film thickness measuring instrument, the exposure amount on the horizontal axis, and the film thickness on the vertical axis. In the same manner as in each of the examples and the comparative examples, such a sensitivity curve was created, and the exposure amount (D) was determined. Specifically, as shown in FIG. 1, the approximate straight line at the rising portion of the sensitivity curve (a straight line rising to the right shown by the dotted line in the figure) and the approximate straight line at the flat portion (the horizontal straight line shown by the dotted line in the figure). And the exposure amount at the intersection (about 0.5 mC / cm 2 in FIG. 1) was determined as the exposure amount (D). The above evaluations were performed using the exposure dose (D) for each example and comparative example, and the results are shown in Table 1 (example) and Table 2 (comparative example).
 <合成例>
 実施例1~8のカリックスアレーン誘導体の合成例を下記に示す。
<Composition example>
Examples of synthesis of calixarene derivatives of Examples 1 to 8 are shown below.
 <合成例1:実施例1のカリックスアレーン誘導体の合成>
 原料としてt-ブチルカリックス[4]アレーンを用いて、先ず脱t-ブチル化反応、次いで、アリル基の導入反応、最後にハロゲン化メチル化反応の順で反応を行うことにより、ハロゲン化メチルアリロキシカリックス[4]アレーンを合成した。まず、脱t-ブチル化反応による、カリックス[4]アレーンの合成を下記の方法で行った。
Synthesis Example 1 Synthesis of Calixarene Derivative of Example 1
Using t-butylcalix [4] arene as a raw material, the reaction is carried out in the order of de-t-butylation reaction first, then introduction reaction of allyl group, and finally halogenated methylation reaction, Roxicalix [4] arene was synthesized. First, the synthesis of calix [4] arene by the de-t-butylation reaction was carried out by the following method.
 <カリックス[4]アレーンの合成>
 2Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計およびガス導入管を取り付けて反応装置を組み立てた。フラスコに原料であるt-ブチルカリックス[4]アレーン(スガイ化学社製)120.0g(0.19mol)、フェノール83.5g(0.89mol)および脱水トルエン1360mlを素早く仕込み、窒素フロー下、300rpmで撹拌した。このとき、原料であるt-ブチルカリックス[4]アレーンは溶解せずに懸濁していた。次に、グローブバッグ中で秤量した無水塩化アルミニウム(III)125.8g(0.94mol)をフラスコに一気に投入した。投入後、液温は30℃程度まで上昇した。約5分で均一に溶解し、淡黄色透明溶液になった。室温で5時間反応させた後、1規定の塩酸400mlをゆっくり加えて、反応をクエンチした。反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム300mlで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、白色結晶と無色透明液体の混合物を得た。この混合物にメタノール500mlを撹拌しながら、ゆっくり加えて再沈殿させた。桐山ロートで白色結晶をろ過し、メタノール150mlで洗浄した。得られた白色結晶を真空乾燥(50℃で12時間以上)し、目的物であるカリックス[4]アレーン66.4gを得た。収率は84.6%、HPLC純度は97.3%であった。
<Synthesis of Calix [4] arene>
The reactor was assembled by attaching a mechanical stirrer, a thermometer and a gas introduction pipe to a 2 L glass four-necked flask. Quickly charge 120.0 g (0.19 mol) of t-butylcalix [4] arene (made by Sugai Chemical Co., Ltd.), 83.5 g (0.89 mol) of phenol and 1360 ml of dehydrated toluene in a flask, under a nitrogen flow, 300 rpm Stir. At this time, t-butylcalix [4] arene, which is a raw material, was suspended without being dissolved. Next, 125.8 g (0.94 mol) of anhydrous aluminum chloride (III) weighed in a glove bag was charged at once to the flask. After the addition, the solution temperature rose to about 30 ° C. It dissolved uniformly in about 5 minutes, becoming a pale yellow clear solution. After reacting for 5 hours at room temperature, 400 ml of 1 N hydrochloric acid was slowly added to quench the reaction. The reaction mixture was transferred to a separatory funnel and the organic phase was separated. The aqueous phase is then extracted three times with 300 ml of chloroform and combined with the organic phase. The organic phase was predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a mixture of white crystals and a colorless transparent liquid. To this mixture was slowly added 500 ml of methanol while stirring to reprecipitate. The white crystals were filtered through a Kiriyama funnel and washed with 150 ml of methanol. The obtained white crystals were dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 66.4 g of the objective calix [4] arene. The yield was 84.6%, and the HPLC purity was 97.3%.
 次いで、アリル基の導入によるアリロキシカリックス[4]アレーンの合成を、下記の方法で行った。 Subsequently, synthesis of aryloxycalix [4] arene by introduction of an allyl group was performed by the following method.
 <アリロキシカリックス[4]アレーンの合成>
 1Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計、滴下ロートおよびガス導入管を取り付けて反応装置を組み立てた。フラスコに原料であるカリックス[4]アレーン24.0g(0.057mol)、脱水N,N-ジメチルホルムアミド40mlおよび脱水テトラヒドロフラン400mlを仕込み、窒素フロー下、300rpmで撹拌した。原料のカリックス[4]アレーンはすぐに溶解し、無色透明溶液になった。次に、カリウムt-ブトキシド38.1g(0.339mol)を素早くフラスコに投入した。30℃程度まで発熱し、無色透明溶液からオレンジ色スラリー状になった。液温が室温程度になってから、臭化アリル82.1g(0.678mol)を30分かけて滴下した。液温は40℃程度になった。滴下終了後2時間反応させた後、1規定の塩酸400mlをゆっくり加えて、反応をクエンチした。反応混合物を分液ロートに移し、クロロホルム700mlを加えて、有機相を分液した。次に有機相を20%塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、黄色透明液体を得た。この黄色液体にメタノール200mlを撹拌しながら、ゆっくり加えて、再沈殿させた。桐山ロートにて結晶をろ過し、メタノール100mlで洗浄した。得られた白色結晶を真空乾燥(50℃で12時間以上)し、目的物であるアリロキシカリックス[4]アレーン23.2gを得た。収率は70.4%、HPLC純度は94.5%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.0~4.5ppm(m、16H)、δ4.8~5.4ppm(m、8H)、δ5.8~6.2ppm(m、4H)、δ6.3~7.3ppm(m、12H)、LC-MS:M=584、M+1=585であった。最後にハロゲン化メチル基(クロロメチル基)の導入を以下の方法で行った。
<Synthesis of aryloxycalix [4] arene>
A mechanical stirrer, a thermometer, a dropping funnel and a gas inlet tube were attached to a 1 L glass four-necked flask to assemble a reactor. The flask was charged with 24.0 g (0.057 mol) of calix [4] arene as a raw material, 40 ml of dehydrated N, N-dimethylformamide and 400 ml of dehydrated tetrahydrofuran and stirred at 300 rpm under a nitrogen flow. The raw material calix [4] arene dissolved immediately and became a colorless and transparent solution. Next, 38.1 g (0.339 mol) of potassium t-butoxide was quickly charged into the flask. The mixture exothermed to about 30 ° C. and turned into an orange slurry from a colorless and transparent solution. After the liquid temperature reached about room temperature, 82.1 g (0.678 mol) of allyl bromide was added dropwise over 30 minutes. The liquid temperature became about 40 ° C. After reaction for 2 hours after completion of dropwise addition, 400 ml of 1 N hydrochloric acid was slowly added to quench the reaction. The reaction mixture was transferred to a separatory funnel, and 700 ml of chloroform was added to separate the organic phase. The organic phase was then washed with 20% aqueous sodium chloride solution, predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a yellow transparent liquid. To this yellow liquid was slowly added 200 ml of methanol while stirring to reprecipitate. The crystals were filtered through a Kiriyama funnel and washed with 100 ml of methanol. The obtained white crystals were dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 23.2 g of the target product, allyloxycalix [4] arene. The yield was 70.4%, and the HPLC purity was 94.5%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.0 to 4.5 ppm (m, 16 H), δ 4.8 to 5.4 ppm (m, 8 H), δ 5.8 to 6.2 ppm (m, 4H), δ 6.3 to 7.3 ppm (m, 12H), LC-MS: M = 584, M + 1 = 585. Finally, introduction of a halogenated methyl group (chloromethyl group) was carried out by the following method.
 <ハロゲン化メチル(クロロメチル)アリロキシカリックス[4]アレーンの合成:カリックスアレーン誘導体の合成>
 1Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計およびジムロートを取り付けて反応装置を組み立てた。フラスコに原料であるアリロキシカリックス[4]アレーン10.0g(0.017mol)、パラホルムアルデヒド10.5g(0.350mol)、ジオキサン500ml、濃塩酸100ml、酢酸50mlおよび85%リン酸75mlを仕込み、350rpmで撹拌した。混合物は白色スラリー状であり、液温は40℃程度まで上昇した。液温が80~85℃になるようにオイルバスで加熱した。混合物は液温が70℃を超えたあたりから、均一に溶解し、無色透明液体になった。80~85℃で4時間反応させた後、オイルバスを外し、放冷した。反応混合物を分液ロートに移し、クロロホルム300mlを加えて有機相を分液した。水相をクロロホルム300mlで3回抽出し、有機相と合わせた。有機相を水300mlで3回洗浄し、水相のpHが中性になったことを確認した。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、オレンジ色液体を得た。この粗体をカラムクロマトグラフィー(充填剤:ワコーゲルC-200、展開溶媒:テトラヒドロフラン/ヘキサン=1/4)にて精製し、白色固体1.0gを得た。収率は7.5%、HPLC純度は99.6%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.56ppm(s、8H)、δ4.18ppm(m、8H)、δ4.38ppm(s、8H)、δ5.08ppm(dd、J=17.0、2.0Hz、4H)、δ5.22ppm(dd、J=10.0、2.0Hz、4H)、δ5.94ppm(m、4H)、δ6.99ppm(s、8H)、LC-MS:M=776、M+2=778、M+4=780、M+6=782であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
<Synthesis of Halogenated Methyl (Chloromethyl) Allyloxycalix [4] arene: Synthesis of Calixarene Derivative>
A reactor was assembled by attaching a mechanical stirrer, a thermometer and a Dimroto to a 1 L glass four-necked flask. A flask is charged with 10.0 g (0.017 mol) of allyloxycalix [4] arene, 10.5 g (0.350 mol) of paraformaldehyde, 500 ml of dioxane, 100 ml of concentrated hydrochloric acid, 50 ml of acetic acid, and 75 ml of 85% phosphoric acid. Stir at 350 rpm. The mixture was in the form of a white slurry, and the liquid temperature rose to about 40.degree. The mixture was heated in an oil bath so that the liquid temperature would be 80 to 85.degree. The mixture was uniformly dissolved when the liquid temperature exceeded 70 ° C., and became a colorless and transparent liquid. After reacting at 80 to 85 ° C. for 4 hours, the oil bath was removed and allowed to cool. The reaction mixture was transferred to a separatory funnel, and 300 ml of chloroform was added to separate the organic phase. The aqueous phase is extracted three times with 300 ml of chloroform and combined with the organic phase. The organic phase was washed three times with 300 ml of water, and it was confirmed that the pH of the aqueous phase became neutral. The organic phase was predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain an orange liquid. The crude product was purified by column chromatography (filler: Wakogel C-200, developing solvent: tetrahydrofuran / hexane = 1/4) to obtain 1.0 g of a white solid. The yield was 7.5%, and the HPLC purity was 99.6%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.56 ppm (s, 8 H), δ 4.18 ppm (m, 8 H), δ 4.38 ppm (s, 8 H), δ 5.08 ppm (dd, J = 17) .0, 2.0 Hz, 4 H), .delta. 5.22 ppm (dd, J = 10.0, 2.0 Hz, 4 H), .delta. 5.94 ppm (m, 4 H), .delta. 6.99 ppm (s, 8 H), LC-MS M = 776, M + 2 = 778, M + 4 = 780, and M + 6 = 782. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例2:実施例2のカリックスアレーン誘導体の合成>
 合成例1で合成したアリロキシカリックス[4]アレーンを用いて、クロロメチル化反応を行った。クロロメチル化反応は、ジオキサンを1,2-ジメトキシエタンに変更した以外は、合成例1の方法と同様に行った。収率は2.5%、HPLC純度は99.2%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.5~4.5ppm(m、22H)、δ5.0~6.0ppm(m、12H)、δ6.3~7.3ppm(m、9H)、LC-MS:M=728、M+2=730、M+4=732、M+6=734であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
Synthesis Example 2 Synthesis of Calixarene Derivative of Example 2
The chloromethylation reaction was carried out using the allyloxycalix [4] arene synthesized in Synthesis Example 1. The chloromethylation reaction was carried out in the same manner as in Synthesis Example 1 except that dioxane was changed to 1,2-dimethoxyethane. The yield was 2.5%, and the HPLC purity was 99.2%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.5 to 4.5 ppm (m, 22 H), δ 5.0 to 6.0 ppm (m, 12 H), δ 6.3 to 7.3 ppm (m, 9H), LC-MS: M = 728, M + 2 = 730, M + 4 = 732, M + 6 = 734. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例3:実施例3のカリックスアレーン誘導体の合成>
 合成例1で得られたカリックス[4]アレーンを用いて、まず、ジメトキシカリックス[4]アレーンを合成し、次いで、アリル基を導入し、最後にハロゲン化メチル基を導入することによって、カリックスアレーン誘導体を合成した。まず、ジメトキシカリックスアレーンの合成を下記の方法で行った。
Synthesis Example 3 Synthesis of Calixarene Derivative of Example 3
First, using the calix [4] arene obtained in Synthesis Example 1, a dimethoxycalix [4] arene is synthesized, then, an allyl group is introduced, and finally, a halogenated methyl group is introduced to obtain calixarene. The derivative was synthesized. First, the synthesis of dimethoxycalixarene was performed by the following method.
 <ジメトキシカリックス[4]アレーンの合成>
 1Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計およびジムロートを取り付けて反応装置を組み立てた。フラスコに原料であるカリックス[4]アレーン50.0g(0.12mol)、p-トルエンスルホン酸メチル44.0g(0.24mol)、無水炭酸カリウム18.0g(0.13mol)および脱水アセトニトリル600mlを仕込み、300rpmで撹拌した。オイルバスで加熱し、還流条件下で5時間反応させた。その後、1規定の塩酸200mlをゆっくり加えて、反応をクエンチした。反応混合物を分液ロートに移し、クロロホルム600mlを加えて有機相を分液した。次に有機相を20%塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、白色固体を得た。この白色固体をクロロホルム500mlに溶かし、次にメタノール1000mlを撹拌しながら、ゆっくり加えて、再沈殿させた。桐山ロートにて固体をろ過し、メタノール200mlで洗浄した。得られた白色固体を真空乾燥(50℃、12時間以上)し、目的物であるジメトキシカリックス[4]アレーン41.4gを得た。収率は77.4%、HPLC純度は98.3%であった。次いで、アリル基の導入によるジメトキシジアリロキシカリックス[4]アレーンの合成を行った。
<Synthesis of Dimethoxycalix [4] arene>
A reactor was assembled by attaching a mechanical stirrer, a thermometer and a Dimroto to a 1 L glass four-necked flask. 50.0 g (0.12 mol) of calix [4] arene, 44.0 g (0.24 mol) of methyl p-toluenesulfonate, 18.0 g (0.13 mol) of anhydrous potassium carbonate, and 600 ml of dehydrated acetonitrile in a flask Charged and stirred at 300 rpm. The mixture was heated in an oil bath and reacted under reflux conditions for 5 hours. Thereafter, 200 ml of 1 N hydrochloric acid was slowly added to quench the reaction. The reaction mixture was transferred to a separatory funnel, and 600 ml of chloroform was added to separate the organic phase. The organic phase was then washed with 20% aqueous sodium chloride solution, predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a white solid. The white solid was dissolved in 500 ml chloroform and then 1000 ml methanol was slowly added with stirring to reprecipitate. The solid was filtered through a Kiriyama funnel and washed with 200 ml of methanol. The obtained white solid was dried under vacuum (50 ° C., 12 hours or more) to obtain 41.4 g of the target product dimethoxycalix [4] arene. The yield was 77.4%, and the HPLC purity was 98.3%. Then, the synthesis of dimethoxydiaryroxycalix [4] arene was carried out by introducing an allyl group.
 <ジメトキシジアリロキシカリックス[4]アレーンの合成>
 1Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計、滴下ロートおよびガス導入管を取り付けて反応装置を組み立てた。フラスコに原料であるジメトキシカリックス[4]アレーン40.0g(0.094mol)、脱水N,N-ジメチルホルムアミド50mlおよび脱水テトラヒドロフラン500mlを仕込み、窒素フロー下、300rpmで撹拌した。次に、カリウムt-ブトキシド31.5g(0.281mol)を素早くフラスコに投入した。混合物は30℃程度まで発熱し、淡黄色スラリー状になった。液温が室温程度になってから、臭化アリル68.0g(0.562mol)を10分かけて滴下した。液温は40℃程度になった。滴下終了後5時間反応させた後、1規定の塩酸200mlをゆっくり加えて、反応をクエンチした。反応混合物を分液ロートに移し、クロロホルム800mlを加えて、有機相を分液した。次に有機相を20%塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、白色固体を得た。この白色固体をクロロホルム300mlに溶かし、次にメタノール1000mlを撹拌しながら、ゆっくり加えて、再沈殿させた。桐山ロートにて固体をろ過し、メタノール200mlで洗浄した。得られた白色固体を真空乾燥(50℃で12時間以上)し、目的物であるジメトキシジアリロキシカリックス[4]アレーン36.4gを得た。収率は72.7%、HPLC純度は98.7%であった。最後にハロゲン化メチル基(クロロメチル基)の導入を以下の方法で行った。
<Synthesis of Dimethoxydiaryloxycalix [4] arene>
A mechanical stirrer, a thermometer, a dropping funnel and a gas inlet tube were attached to a 1 L glass four-necked flask to assemble a reactor. The flask was charged with 40.0 g (0.094 mol) of the starting material dimethoxycalix [4] arene, 50 ml of dehydrated N, N-dimethylformamide and 500 ml of dehydrated tetrahydrofuran and stirred at 300 rpm under a nitrogen flow. Next, 31.5 g (0.281 mol) of potassium t-butoxide was quickly charged into the flask. The mixture exothermed to about 30 ° C. to give a pale yellow slurry. After the liquid temperature reached about room temperature, 68.0 g (0.562 mol) of allyl bromide was added dropwise over 10 minutes. The liquid temperature became about 40 ° C. After reacting for 5 hours after completion of the dropwise addition, 200 ml of 1 N hydrochloric acid was slowly added to quench the reaction. The reaction mixture was transferred to a separatory funnel, 800 ml of chloroform was added, and the organic phase was separated. The organic phase was then washed with 20% aqueous sodium chloride solution, predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a white solid. The white solid was dissolved in 300 ml chloroform and then 1000 ml methanol was slowly added with stirring to reprecipitate. The solid was filtered through a Kiriyama funnel and washed with 200 ml of methanol. The obtained white solid was dried under vacuum (for more than 12 hours at 50 ° C.) to obtain 36.4 g of the target product dimethoxydiaryloxycalix [4] arene. The yield was 72.7%, and the HPLC purity was 98.7%. Finally, introduction of a halogenated methyl group (chloromethyl group) was carried out by the following method.
 <ハロゲン化メチル(クロロメチル)ジメトキシジアリロキシカリックス[4]アレーンの合成:カリックスアレーン誘導体の合成>
 1Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計およびジムロートを取り付けて反応装置を組み立てた。フラスコに原料であるジメトキシジアリロキシカリックス[4]アレーン32.0g(0.060mol)、パラホルムアルデヒド36.0g(1.20mol)、ジオキサン500ml、濃塩酸100ml、酢酸50mlおよび85%リン酸75mlを仕込み、350rpmで撹拌した。混合物は白色スラリー状になり、すべては溶解しなかった。液温が80~85℃になるようにオイルバスで加熱した。液温が70℃を超えたあたりから、混合物は白色スラリー状からほぼ無色透明の溶液になった。80~85℃で7時間反応させた後、オイルバスを外し、放冷した。反応混合物を分液ロートに移し、クロロホルム200mlを加えて有機相を分液した。水相をクロロホルム200mlで3回抽出し、有機相と合わせた。有機相を水300mlで5回洗浄し、水相のpHが中性になったことを確認した。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、オレンジ色固体を得た。この粗体をカラムクロマトグラフィー(充填剤:ワコーゲルC-200、展開溶媒:テトラヒドロフラン/ヘキサン=1/4)にて精製し、白色固体4.5gを得た。収率は10.3%、HPLC純度は97.4%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.0~4.6ppm(m、26H)、δ5.3~6.1ppm(m、6H)、δ7.0~7.3ppm(m、8H)、LC-MS:M=724、M+2=726、M+4=728、M+6=730であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
<Synthesis of Halogenated Methyl (Chloromethyl) Dimethoxydiaryloxycalix [4] arene: Synthesis of Calixarene Derivative>
A reactor was assembled by attaching a mechanical stirrer, a thermometer and a Dimroto to a 1 L glass four-necked flask. 32.0 g (0.060 mol) of dimethoxydiaryroxycalix [4] arene, 36.0 g (1.20 mol) of paraformaldehyde, 500 ml of dioxane, 100 ml of concentrated hydrochloric acid, 50 ml of acetic acid and 50 ml of 85% phosphoric acid in a flask Charge and stir at 350 rpm. The mixture became a white slurry and all did not dissolve. The mixture was heated in an oil bath so that the liquid temperature would be 80 to 85.degree. As the solution temperature exceeded 70 ° C., the mixture turned from a white slurry to an almost colorless and clear solution. After reacting at 80 to 85 ° C. for 7 hours, the oil bath was removed and allowed to cool. The reaction mixture was transferred to a separatory funnel, and 200 ml of chloroform was added to separate the organic phase. The aqueous phase is extracted three times with 200 ml of chloroform and combined with the organic phase. The organic phase was washed 5 times with 300 ml of water, and it was confirmed that the pH of the aqueous phase became neutral. The organic phase was predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain an orange solid. The crude product was purified by column chromatography (filler: Wakogel C-200, developing solvent: tetrahydrofuran / hexane = 1/4) to obtain 4.5 g of a white solid. The yield was 10.3%, and the HPLC purity was 97.4%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.0 to 4.6 ppm (m, 26 H), δ 5.3 to 6.1 ppm (m, 6 H), δ 7.0 to 7.3 ppm (m, 8H), LC-MS: M = 724, M + 2 = 726, M + 4 = 728, M + 6 = 730. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例4:実施例4のカリックスアレーン誘導体の合成>
 合成例1の方法で得られたカリックス[4]アレーンを用いて、ジアセトキシカリックス[4]アレーンの合成を行った。
Synthesis Example 4 Synthesis of Calixarene Derivative of Example 4
Using the calix [4] arene obtained by the method of Synthesis Example 1, synthesis of diacetoxycalix [4] arene was performed.
 <ジアセトキシカリックス[4]アレーンの合成>
 2Lのガラス製四つ口フラスコに、メカニカルスターラー、温度計および滴下ロートを取り付けて反応装置を組み立てた。フラスコに原料であるカリックス[4]アレーン45.0g(0.11mol)、無水酢酸22.4g(0.22mol)およびトリフルオロ酢酸680mlを仕込み、300rpmで撹拌した。室温で3時間反応させた後、水600mlをゆっくり加えて、反応をクエンチした。反応混合物を分液ロートに移し、クロロホルム800mlを加えて有機相を分液した。水相をクロロホルム200mlで3回抽出し、有機相と合わせた。有機相を水300mlで5回洗浄し、水相のpHが中性になったことを確認した。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、淡黄色固体を得た。この固体をクロロホルム600mlに溶かし、次にメタノール1200mlを撹拌しながら、ゆっくり加えて、再沈殿させた。桐山ロートにて固体をろ過し、メタノール200mlで洗浄した。得られた白色固体を真空乾燥(50℃で12時間以上)し、目的物であるジアセトキシカリックス[4]アレーン41.4gを得た。収率は74.0%、HPLC純度は99.1%であった。次いで、アリル基の導入によるジアセトキシジアリロキシカリックス[4]アレーンの合成を行った。
<Synthesis of Diacetoxycalix [4] arene>
A mechanical stirrer, a thermometer and a dropping funnel were attached to a 2 L glass four-necked flask to assemble a reactor. The flask was charged with 45.0 g (0.11 mol) of calix [4] arene as a raw material, 22.4 g (0.22 mol) of acetic anhydride and 680 ml of trifluoroacetic acid, and the mixture was stirred at 300 rpm. After reacting for 3 hours at room temperature, 600 ml of water was slowly added to quench the reaction. The reaction mixture was transferred to a separatory funnel, and 800 ml of chloroform was added to separate the organic phase. The aqueous phase is extracted three times with 200 ml of chloroform and combined with the organic phase. The organic phase was washed 5 times with 300 ml of water, and it was confirmed that the pH of the aqueous phase became neutral. The organic phase was predried over anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a pale yellow solid. The solid was dissolved in 600 ml chloroform and then 1200 ml methanol was slowly added with stirring to reprecipitate. The solid was filtered through a Kiriyama funnel and washed with 200 ml of methanol. The obtained white solid was dried under vacuum (for 12 hours or more at 50 ° C.) to obtain 41.4 g of the target product diacetoxycalix [4] arene. The yield was 74.0%, and the HPLC purity was 99.1%. Next, synthesis of diacetoxydiaryloxycalix [4] arene by introducing an allyl group was performed.
 <ジアセトキシジアリロキシカリックス[4]アレーンの合成>
 合成例3のジメトキシジアリロキシカリックス[4]アレーンの合成において、ジメトキシカリックス[4]アレーンの代わりに、ジアセトキシカリックス[4]アレーンを用いた以外は同様に行った。収率は70.2%、HPLC純度は98.9%であった。最後にハロゲン化メチル基(クロロメチル基)の導入を以下の方法で行った。
<Synthesis of Diacetoxydiaryroxycalix [4] arene>
The same procedure as in Synthesis Example 3 was repeated except that diacetoxycalix [4] arene was used instead of dimethoxycalix [4] arene. The yield was 70.2%, and the HPLC purity was 98.9%. Finally, introduction of a halogenated methyl group (chloromethyl group) was carried out by the following method.
 <ハロゲン化メチル(クロロメチル)ジアセトキシジアリロキシカリックス[4]アレーンの合成:カリックスアレーン誘導体の合成>
 合成例3のクロロメチルジメトキシジアリロキシカリックス[4]アレーンの合成において、原料であるジメトキシジアリロキシカリックス[4]アレーンの代わりに、ジアセトキシジアリロキシカリックス[4]アレーンを用いた以外は同様に行った。収率は12.6%、HPLC純度は98.8%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ1.53ppm(s、6H)、δ3.5~4.6ppm(m、20H)、δ5.0~6.0ppm(m、6H)、δ7.0~7.3ppm(m、8H)、LC-MS:M=780、M+2=782、M+4=784、M+6=786であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
<Synthesis of Halogenated Methyl (Chloromethyl) Diacetoxydiaryloxycalix [4] arene: Synthesis of Calixarene Derivative>
In the synthesis of chloromethyldimethoxydiaryloxycalix [4] arene of Synthesis Example 3, except that diacetoxydiaryloxycalix [4] arene was used instead of dimethoxydiaryloxycalix [4] arene as a raw material I did the same. The yield was 12.6% and the HPLC purity was 98.8%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 1.53 ppm (s, 6 H), δ 3.5 to 4.6 ppm (m, 20 H), δ 5.0 to 6.0 ppm (m, 6 H), δ 7 .0 to 7.3 ppm (m, 8H), LC-MS: M = 780, M + 2 = 782, M + 4 = 784, M + 6 = 786. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例5:実施例5のカリックスアレーン誘導体の合成>
 <ジプロポキシカリックス[4]アレーンの合成>
 合成例3のジメトキシカリックス[4]アレーンの合成において、p-トルエンスルホン酸メチルの代わりに、ヨウ化プロピルを用いる以外は同様に行った。収率は76.2%、HPLC純度は99.3%であった。次いで、アリル基を導入することにより、ジプロポキシジアリロキシカリックス[4]アレーンを合成した。
Synthesis Example 5 Synthesis of Calixarene Derivative of Example 5
<Synthesis of Dipropoxycalix [4] arene>
The synthesis was conducted in the same manner as in Synthesis Example 3 except that propyl iodide was used instead of methyl p-toluenesulfonate in the synthesis of dimethoxycalix [4] arene. The yield was 76.2%, and the HPLC purity was 99.3%. Subsequently, dipropoxydiaryloxycalix [4] arene was synthesized by introducing an allyl group.
 <ジプロポキシジアリロキシカリックス[4]アレーンの合成>
 合成例3のジメトキシジアリロキシカリックス[4]アレーンの合成において、ジメトキシカリックス[4]アレーンの代わりに、ジプロポキシカリックス[4]アレーンを用いた以外は同様に行った。収率は73.5%、HPLC純度は97.8%であった。最後にハロゲン化メチル基(クロロメチル基)の導入を以下の方法で行った。
<Synthesis of Dipropoxydiaryroxycalix [4] arene>
The same procedure as in Synthesis Example 3 was repeated except that dipropoxy calix [4] arene was used in place of dimethoxycalix [4] arene in the synthesis of dimethoxydiaryloxy calix [4] arene. The yield was 73.5%, and the HPLC purity was 97.8%. Finally, introduction of a halogenated methyl group (chloromethyl group) was carried out by the following method.
 <ハロゲン化メチル(クロロメチル)ジプロポキシジアリロキシカリックス[4]アレーンの合成:カリックスアレーン誘導体の合成>
 合成例3のクロロメチルジメトキシジアリロキシカリックス[4]アレーンの合成において、原料であるジメトキシジアリロキシカリックス[4]アレーンの代わりに、ジプロポキシジアリロキシカリックス[4]アレーンを用いた以外は同様に行った。収率は12.8%、HPLC純度は98.1%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ1.05ppm(t、J=7.0Hz、6H)、δ1.91ppm(m、4H)、δ3.5~4.5ppm(m、24H)、δ5.0~6.0ppm(m、6H)、δ7.0~7.3ppm(m、8H)、LC-MS:M=780、M+2=782、M+4=784、M+6=786であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
<Synthesis of Halogenated Methyl (Chloromethyl) dipropoxydiaryloxycalix [4] arene: Synthesis of Calixarene Derivative>
In the synthesis of chloromethyldimethoxydiaryloxycalix [4] arene of Synthesis Example 3, except that dipropoxydiaryloxycalix [4] arene was used instead of dimethoxydiaryloxycalix [4] arene as the raw material. I did the same. The yield was 12.8% and the HPLC purity was 98.1%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 1.05 ppm (t, J = 7.0 Hz, 6 H), δ 1.91 ppm (m, 4 H), δ 3.5 to 4.5 ppm (m, 24 H) 5.0-6.0 ppm (m, 6H), δ 7.0-7.3 ppm (m, 8H), LC-MS: M = 780, M + 2 = 782, M + 4 = 784, M + 6 = 786. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例6:実施例6のカリックスアレーン誘導体の合成>
 <トリクロロメチルジメトキシジアリロキシカリックス[4]アレーンの合成>
 合成例3で合成したジメトキシジアリロキシカリックス[4]アレーンを原料に用いて、クロロメチル化反応を行った。クロロメチル化反応は、ジオキサンを1,2-ジメトキシエタンに変更した以外は、合成例3と同様に行った。収率は3.1%、HPLC純度は97.6%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.0~4.6ppm(m、24H)、δ5.3~6.1ppm(m、6H)、δ7.0~7.3ppm(m、9H)、LC-MS:M=676、M+2=678、M+4=680、M+6=682であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
Synthesis Example 6 Synthesis of Calixarene Derivative of Example 6
<Synthesis of trichloromethyldimethoxydiaryloxycalix [4] arene>
The chloromethylation reaction was carried out using the dimethoxydiaryroxycalix [4] arene synthesized in Synthesis Example 3 as a raw material. The chloromethylation reaction was carried out in the same manner as in Synthesis Example 3 except that dioxane was changed to 1,2-dimethoxyethane. The yield was 3.1%, and the HPLC purity was 97.6%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.0 to 4.6 ppm (m, 24 H), δ 5.3 to 6.1 ppm (m, 6 H), δ 7.0 to 7.3 ppm (m, 9H), LC-MS: M = 676, M + 2 = 678, M + 4 = 680, M + 6 = 682. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例7:実施例7のカリックスアレーン誘導体の合成>
 <トリクロロメチルジアセトキシジアリロキシ[4]カリックスアレーンの合成>
 合成例4で合成したジアセトキシジアリロキシカリックス[4]アレーンを原料に用いて、クロロメチル化反応を行った。クロロメチル化反応は、ジオキサンを1,2-ジメトキシエタンに変更した以外は、合成例4と同様に行った。収率は2.8%、HPLC純度は98.9%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ1.53ppm(s、6H)、δ3.5~4.6ppm(m、18H)、δ5.0~6.0ppm(m、6H)、δ7.0~7.3ppm(m、9H)、LC-MS:M=732、M+2=734、M+4=736、M+6=738であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
Synthesis Example 7 Synthesis of Calixarene Derivative of Example 7
<Synthesis of trichloromethyldiacetoxydiaryloxy [4] calixarene>
The chloromethylation reaction was carried out using diacetoxydiaryloxycalix [4] arene synthesized in Synthesis Example 4 as a raw material. The chloromethylation reaction was carried out in the same manner as in Synthesis Example 4 except that dioxane was changed to 1,2-dimethoxyethane. The yield was 2.8% and the HPLC purity was 98.9%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 1.53 ppm (s, 6 H), δ 3.5 to 4.6 ppm (m, 18 H), δ 5.0 to 6.0 ppm (m, 6 H), δ 7 .0 to 7.3 ppm (m, 9H), LC-MS: M = 732, M + 2 = 734, M + 4 = 736, M + 6 = 738. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
 <合成例8:実施例8のカリックスアレーン誘導体の合成>
 <ジクロロアリロキシカリックス[4]アレーンの合成>
 合成例1のアリロキシカリックス[4]アレーンの合成において、臭化アリルの代わりに、臭化1,1-ジクロロアリルを用いた以外は同様に行った。収率は77.4%、HPLC純度は98.6%であった。次いで、クロロメチル化によるクロロメチルジクロロアリロキシカリックス[4]アレーンの合成を下記の方法で行った。
Synthesis Example 8 Synthesis of Calixarene Derivative of Example 8
<Synthesis of dichloroaryloxycalix [4] arene>
The synthesis was conducted in the same manner as in Synthesis Example 1 except that 1,1-dichloroallyl bromide was used instead of allyl bromide in the synthesis of allyloxycalix [4] arene. The yield was 77.4%, and the HPLC purity was 98.6%. Then, the synthesis of chloromethyl dichloro aryloxy calix [4] arene by chloromethylation was performed by the following method.
 <クロロメチルジクロロアリロキシカリックス[4]アレーンの合成>
 合成例1のクロロメチルアリロキシカリックス[4]アレーンの合成において、原料であるアリロキシカリックス[4]アレーンの代わりに、ジクロロアリロキシカリックス[4]アレーンを用いた以外は同様に行った。収率は8.3%、HPLC純度は98.1%であった。構造はH-NMRとLC-MSにて同定を行った。結果は、H-NMR(500MHz、CDCl):δ3.5~4.6ppm(m、24H)、δ5.4~6.0ppm(m、4H)、δ7.0~7.3ppm(m、8H)、LC-MS:M=1048、M+2=1050、M+4=1052、M+6=1054、M+8=1056、M+10=1058、M+12=1060であった。以上の結果から、このものは表1に示す構造のカリックスアレーン誘導体であることが分かった。
<Synthesis of Chloromethyldichloroalyloxycalix [4] arene>
The same procedure as in Synthesis Example 1 was repeated except that dichloroallyloxycalix [4] arene was used instead of allyloxycalix [4] arene as a raw material. The yield was 8.3%, and the HPLC purity was 98.1%. The structure was identified by 1 H-NMR and LC-MS. The results are as follows: 1 H-NMR (500 MHz, CDCl 3 ): δ 3.5 to 4.6 ppm (m, 24 H), δ 5.4 to 6.0 ppm (m, 4 H), δ 7.0 to 7.3 ppm (m, 8H), LC-MS: M = 1048, M + 2 = 1050, M + 4 = 1052, M + 6 = 1054, M + 8 = 1056, M + 10 = 1058, M + 12 = 1060. From the above results, it was found that this was a calixarene derivative having the structure shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (3)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     X、Y、およびZは、それぞれ、水素原子、又はハロゲン原子であり、
     Rは、アルキル基、又はアセチル基であり、
     R、およびRは、それぞれ、水素原子、又はハロゲン化メチル基であり、
     nは、0~3の整数であり、
     R、R、およびRがそれぞれ複数存在する場合には、その複数のR、R、およびRは、それぞれ、同一の基であっても、異なる基でもよい。)
    で示されるカリックスアレーン誘導体。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula,
    X, Y and Z are each a hydrogen atom or a halogen atom,
    R 1 is an alkyl group or an acetyl group,
    R 2 and R 3 are each a hydrogen atom or a halogenated methyl group,
    n is an integer of 0 to 3,
    When R 1, R 2, and where R 3 is present in plural, the plurality of R 1, R 2, and R 3 are each be the same group or in different groups. )
    Calixarene derivative shown in the.
  2.  請求項1に記載のカリックスアレーン誘導体を含むレジスト材料。 A resist material comprising the calixarene derivative according to claim 1.
  3.  請求項2に記載のレジスト材料を被処理基板上に塗布した後、プリベークしてレジスト膜を形成する工程と、該レジスト膜を高エネルギー線で選択的に露光して所望のパターンの潜像を形成する工程と、前記潜像を現像する工程とを含むレジストパターン形成方法。
     
     
    A resist material according to claim 2 is coated on a substrate to be treated, and then prebaked to form a resist film, and the resist film is selectively exposed to high energy rays to form a latent image of a desired pattern. A resist pattern forming method comprising: forming; and developing the latent image.

PCT/JP2012/057169 2011-03-28 2012-03-21 Calixarene derivative WO2012133040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507428A JPWO2012133040A1 (en) 2011-03-28 2012-03-21 Calixarene derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-069762 2011-03-28
JP2011069762 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133040A1 true WO2012133040A1 (en) 2012-10-04

Family

ID=46930772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057169 WO2012133040A1 (en) 2011-03-28 2012-03-21 Calixarene derivative

Country Status (3)

Country Link
JP (1) JPWO2012133040A1 (en)
TW (1) TW201247616A (en)
WO (1) WO2012133040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073583A1 (en) * 2011-11-18 2013-05-23 三菱瓦斯化学株式会社 Cyclic compound, method for producing same, radiation-sensitive composition, and method for forming resist pattern
US9182666B2 (en) 2011-11-18 2015-11-10 Mitsubishi Gas Chemical Co., Inc. Cyclic compound, method for producing the same, radiation-sensitive composition, and resist pattern formation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504106A (en) * 1993-10-19 1997-04-22 イギリス国 Sensor for neutral molecules
WO2006042104A2 (en) * 2004-10-04 2006-04-20 Regents Of The University Of Minnesota Calixarene-based peptide conformation mimetics, methods of use, and methods of making
JP2011084487A (en) * 2009-10-13 2011-04-28 Shinshu Univ Calixarene derivative for sensitive material, calixarene-based composite material and sensor element and sensor using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504106A (en) * 1993-10-19 1997-04-22 イギリス国 Sensor for neutral molecules
WO2006042104A2 (en) * 2004-10-04 2006-04-20 Regents Of The University Of Minnesota Calixarene-based peptide conformation mimetics, methods of use, and methods of making
JP2011084487A (en) * 2009-10-13 2011-04-28 Shinshu Univ Calixarene derivative for sensitive material, calixarene-based composite material and sensor element and sensor using them

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHINESE JOURNAL OF CHEMISTRY, vol. 17, no. 6, 1999, pages 674 - 683 *
MICROELECTRONIC ENGINEERING, vol. 67-68, 2003, pages 292 - 299 *
TETRAHEDRON, vol. 61, 2005, pages 3853 - 3858 *
TETRAHEDRON, vol. 67, 9 March 2011 (2011-03-09), pages 3238 - 3247 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073583A1 (en) * 2011-11-18 2013-05-23 三菱瓦斯化学株式会社 Cyclic compound, method for producing same, radiation-sensitive composition, and method for forming resist pattern
JPWO2013073583A1 (en) * 2011-11-18 2015-04-02 三菱瓦斯化学株式会社 CYCLIC COMPOUND, PROCESS FOR PRODUCING THE SAME, RADIOSENSITIVE COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
US9182666B2 (en) 2011-11-18 2015-11-10 Mitsubishi Gas Chemical Co., Inc. Cyclic compound, method for producing the same, radiation-sensitive composition, and resist pattern formation method

Also Published As

Publication number Publication date
TW201247616A (en) 2012-12-01
JPWO2012133040A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5111106B2 (en) Calix resorcinarene compound, photoresist substrate comprising the same, and composition thereof
TWI642654B (en) Composition and method for manufacturing device
JP4854023B2 (en) Photosensitive composition
JPWO2020040161A1 (en) A compound, a composition containing the compound, a method for forming a resist pattern, and a method for forming an insulating film.
TWI493283B (en) Fluorine-free fused ring heteroaromatic photoacid generators, resist compositions containing the same, and the using method thereof
JPWO2005097725A1 (en) Calix resorcinarene compound, photoresist substrate and composition thereof
WO2023086682A1 (en) Lithography compositions and methods for forming resist patterns and/or making semiconductor devices
JPWO2020040162A1 (en) A compound, a composition containing the compound, a method for forming a resist pattern, and a method for forming an insulating film.
WO2012133040A1 (en) Calixarene derivative
JP2005089387A (en) Resist compound, method for producing the same, and radiation-sensitive composition
JP5618893B2 (en) Calix [4] arene composition
KR20240103989A (en) Cyclosiloxane-based cluster compound and photoresist composition comprising the same
KR102679790B1 (en) Resist compound for photolithography, Method for forming the same, and Method for manufacturing semiconductor devices using the same
JP5874331B2 (en) Chemically amplified photoresist composition
WO2012133050A1 (en) Thiacalix[4]arene derivative
JPH0756354A (en) Silicon-containing high molecular compound and resist material using the same
JP5812914B2 (en) Resist composition
TWI498369B (en) Acid quencher for resist and resist composition comprising same
JP2676902B2 (en) Triphenylmethane derivative and process for producing the same
KR102756998B1 (en) Underlayer compound for photolithography, multilayered structure formed using the same, and method for manufacturing semiconductor devices using the same
JP2008063309A (en) Method for producing polymerizable compound
US20250123564A1 (en) Resist composition and method of forming pattern by using the same
US8853345B2 (en) Polymer, method for producing the same, and resist composition containing the same
JP2005112814A (en) Resist compound and radiation-sensitive composition
KR20250043230A (en) Resist composition for photolithography and Method for manufacturing semiconductor devices using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765126

Country of ref document: EP

Kind code of ref document: A1