WO2012132967A1 - Vital sign-measuring instrument - Google Patents

Vital sign-measuring instrument Download PDF

Info

Publication number
WO2012132967A1
WO2012132967A1 PCT/JP2012/056897 JP2012056897W WO2012132967A1 WO 2012132967 A1 WO2012132967 A1 WO 2012132967A1 JP 2012056897 W JP2012056897 W JP 2012056897W WO 2012132967 A1 WO2012132967 A1 WO 2012132967A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid bag
living body
measuring instrument
fluid
respiratory
Prior art date
Application number
PCT/JP2012/056897
Other languages
French (fr)
Japanese (ja)
Inventor
広介 西尾
敬亮 吉野
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2012132967A1 publication Critical patent/WO2012132967A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0803Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the present invention relates to a vital measuring instrument used for measuring a respiratory rate of a living body.
  • Infectious diseases such as pneumonia and urinary tract infections are currently the top causes of death among the elderly.
  • infectious diseases such as pneumonia and urinary tract infections
  • pneumonia can be determined by a doctor listening to the sound of the chest with a stethoscope, and can be reliably diagnosed by performing a chest X-ray examination.
  • Urinary tract infections can be diagnosed by performing blood tests, urine culture, abdominal CT tests, abdominal echo tests, and the like. In other words, an infectious disease can be said to be a disease that can be prevented from becoming serious if it is diagnosed by a doctor or the like under an appropriate examination facility.
  • Known techniques for measuring respiratory rate include those that measure changes in temperature due to breathing by fixing a thermistor to the nose, and those that measure changes in impedance due to breathing between ECG electrodes attached to the chest and abdomen. .
  • it takes time to install the sensor and it is mainly used in ICU or the like for particularly serious patients.
  • a device that measures respiratory motion by wrapping an elastic band around the chest has been developed for sleep evaluation of patients such as sleep apnea syndrome although it is used for different purposes. There is a problem that it takes time and effort. Therefore, as described in Patent Document 1 and Patent Document 2, it is possible to place a patient on an air bag in which a sensor is embedded, and to measure the respiration rate based on body vibration caused by the patient's breathing.
  • a mattress type respiratory rate measuring device has been proposed.
  • the present invention has been made in view of the above problems, and provides a vital measuring instrument that can suitably detect respiratory vibrations regardless of the downsizing of the device, thereby improving user convenience. With the goal.
  • a vital measuring instrument of the present invention encloses a fluid therein, detects a fluid bag on which a living body is placed, and changes in pressure in the fluid bag due to respiratory vibration of the living body.
  • the vital measuring instrument of the present invention it is possible to prevent diffusion of respiratory vibrations transmitted to the fluid bag by the diffusion preventing unit disposed on the back surface of the fluid bag. Therefore, it is possible to provide a miniaturized vital measuring device capable of suitably detecting respiratory vibrations, and to improve the convenience of the user who uses the vital measuring device.
  • FIGS. 6A to 6C are diagrams illustrating a usage state of a vital measuring device according to the embodiment, in which FIG. 1A is a perspective view and FIG. 1B is a side view.
  • FIG. 2 is a diagram showing a vital measuring instrument
  • FIG. 2A is a plan view of the vital measuring instrument
  • FIG. 2B is a side view of the vital measuring instrument.
  • It is a schematic sectional drawing of a fluid bag and a diffusion prevention part.
  • It is a block diagram which simplifies and shows the whole structure of a vital measuring device. It is a figure which shows the display and each operation switch of a vital measuring device.
  • FIGS. 6A to 6C are schematic cross-sectional views of a fluid bag and a diffusion prevention unit according to modifications.
  • FIG. 7 (A) is a top view of a detection part
  • FIG.7 (B) is a side view of a detection part.
  • FIGS. 8A to 8D are diagrams for explaining the first embodiment
  • FIGS. 8A to 8D are diagrams showing comparison of respiratory vibration measurement data when using a detection unit including a fluid bag and a diffusion prevention unit, respectively.
  • It is. 10 is a schematic diagram for explaining a fluid bag used in Example 2.
  • FIG. FIG. 6 is a schematic diagram for explaining a measurement target part of a living body in Example 2.
  • Example 2 It is a figure which shows the measurement result of Example 2, and is a figure which shows the relationship between the respiratory output for every subject, and the dimension of a fluid bag. It is a figure which shows the measurement result of Example 2, and is a figure which shows the non-detection frequency by which the respiratory output was not observed. It is a figure which shows the measurement result of Example 2, and is a figure which shows the output ratio of respiration output. It is a figure which shows the measurement result of Example 3, and is a figure which shows the relationship between the respiratory output for every subject, and the thickness of an expansion-contraction restriction member.
  • the vital measuring device 10 As shown in FIG. 1, the vital measuring device 10 according to the present invention is used in a state where a subject is laid on a bed 80, a mattress or the like, and measures a respiratory rate as a basic vital of the subject. It makes it possible.
  • the subject to be used is not particularly limited, and examples thereof include an elderly person receiving home care, and a supine patient suffering from an infection such as pneumonia or urinary tract infection.
  • the vital measuring device 10 which concerns on this invention can be used not only for a supine patient but for a sitting patient. In this case, the measurement can be performed by inserting the vital measuring instrument 10 under the subject's thigh or butt, or by sandwiching the vital measuring instrument 10 between the back and the back of the chair or the wall. Moreover, it can also measure by putting it in the belt part of trousers.
  • the outline of the vital measuring instrument 10 is, as outlined, a fluid bag 50 in which a fluid is sealed and a living body 90 of a subject is placed, and respiratory vibration of the living body 90.
  • the sensor 40 detects the pressure fluctuation in the fluid bag 50 and converts it into an electrical signal, and is disposed on the back surface 53 opposite to the surface 51 disposed on the living body 90 side of the fluid bag 50, and the living body 90 is disposed in the fluid bag.
  • the support member 71 elastically supports the fluid bag 50 when placed on the fluid bag 50, and is disposed between the back surface 53 of the fluid bag 50 and the support member 71, and in a plane direction with respect to the surface 51 of the fluid bag 50.
  • the support member 71 and the expansion / contraction restriction member 73 disposed on the back surface 53 of the fluid bag 50 form a diffusion prevention unit 70 that prevents the respiratory vibration transmitted from the living body 90 to the fluid bag 50 from diffusing to the bed 80 or the mattress. (See FIG. 3).
  • the broken line part shown in FIG. 1 illustrates the periphery of the installation area of the fluid bag 50 that functions as a sensing part.
  • the “front surface” of the fluid bag 50 is a surface on the side disposed facing the living body 90 when using the vital measuring instrument
  • the “back surface” of the fluid bag 50 is the living body.
  • 90 is a surface on the side facing the bed 80 and the mattress on which 90 is laid.
  • the front surface 51 is shown on the upper side in the drawing
  • the back surface 53 is shown on the lower side in the drawing.
  • the vital measuring instrument 10 includes a detection unit 20 for detecting respiratory vibration of the living body 90 and a main body unit 30 including a display 31 for displaying measurement data detected by the detection unit 20. Have.
  • the detection unit 20 is derived from the fluid bag 50 provided so that its volume can be changed in accordance with the respiratory vibration of the living body 90, the sensor 40 installed in the fluid bag 50, and the fluid bag 50. 30 and a lead wire 61 that is electrically connected to the control circuit in the circuit 30.
  • the fluid bag 50 is composed of a sheet-like member that can enclose a fluid therein.
  • the material of the fluid bag 50 is not particularly limited. For example, flexible rubber, plastic, cloth material, etc. having airtightness can be used.
  • the fluid bag 50 is formed in a relatively small size, and can be formed so that one side of the outer peripheral portion is about 1 to 10 cm and about 1 to 20 cm, respectively, and the thickness at the time of maximum expansion is about 1 cm. Can do.
  • the sensor 40 is used for measuring respiratory vibration (body vibration) caused by the respiratory motion of the living body 90.
  • the sensor 40 detects a change in pressure (fluid pressure) in the fluid bag 50, and transmits an electric signal based on the detection result to a control circuit or the like via the lead wire 61 (see FIG. 4).
  • the sensor 40 uses a known omnidirectional microphone used for air pressure detection, but is not limited to this, and is not limited to this.
  • Various piezoelectric elements represented by condenser microphones, pressure sensors, piezoelectric films, A gauge, a capacitive surface pressure sensor, an FSR sensor, or the like can be used as appropriate in accordance with the characteristics of the fluid.
  • As the fluid air, water, oil, polymer gel, or the like can be used.
  • the location of the sensor 40 is not limited to the inside of the fluid bag 50, and can be changed as appropriate.
  • the sensor 40 can be installed inside the main body 30.
  • Transmission / reception of detection data performed between the sensor 40 and the control unit 63 to be described later is not limited to the form using the lead wire 61, but by a transmission / reception method using a general electric cable or a wireless method. It is also possible to adopt a transmission / reception method.
  • the support member 71 disposed on the back surface 53 of the fluid bag 50 supports the fluid bag 50 so as to push it up from the bed 80 side, and stabilizes the contact between the fluid bag 50 and the living body 90.
  • the fluid bag 50 is stably held with respect to the living body 90, the fluid bag 50 can be prevented from being displaced even when the living body 90 is turned over.
  • the support member 71 also functions as a cushioning material between the living body 90 and the bed 80, the respiratory vibration transmitted from the living body 90 is prevented from diffusing into the bed 80.
  • the support member 71 is provided with a side wall 72 disposed so as to surround the outer peripheral side surface of the fluid bag 50. By providing the side wall 72, the fluid bag 50 can be supported more stably.
  • the support member 71 uses a latex balloon, but is not limited to this.
  • a material made of a material that can elastically support the fluid bag 50 such as a sponge or a gel, is appropriately used. It is possible to use.
  • a fluid such as air or water is injected into the balloon through a fluid inlet (not shown) and inflated. Further, after use, the fluid injected into the balloon is discharged and stored in a case or the like together with the fluid bag 50 in a deflated state.
  • the expansion / contraction restriction member (backing material) 73 disposed between the back surface 53 of the fluid bag 50 and the support member 71 functions as a cushioning material together with the support member 71, and respiratory vibration is transmitted through the outer surface 51 of the fluid bag 50. It is prevented from reaching the bed 80 and being diffused.
  • the non-stretchable plastic film is inserted and disposed between the back surface 53 of the fluid bag 50 and the support member 71.
  • the non-stretchable plastic film is adhered to the fluid bag 50 or the support member 71. It is also possible to adopt an integrated form.
  • the stretch regulating member 73 is made of a non-stretchable plastic film, but is not limited to this.
  • a metallic thin plate, a film, or the like can be used.
  • the plastic film for example, a resin plate or film made of PET resin, polyethylene resin, polypropylene resin, polyester resin, acrylic resin, nylon resin, urethane resin, vinyl chloride resin, or the like can be used. Also, copolymers of various vinyl monomers such as ethylene vinyl acetate copolymer can be used.
  • the thickness of the expansion / contraction regulating member 73 is not particularly limited, but it is preferable to use a material having a thickness of about 0.1 mm to 5 mm from the viewpoint of miniaturization.
  • the main body 30 displays a control unit 63 that comprehensively controls the operation of the vital measuring instrument 10 and the respiratory rate measured based on the respiratory vibration detected by the sensor 40.
  • a display unit a sound output unit that emits a predetermined sound according to the detection result, an operation switch for selectively operating various functions, and a power supply unit that supplies power to the vital measuring instrument 10 Yes.
  • the main body 30 is a housing in which a control unit 63 is disposed inside, and a display 31 and an operation switch as a display unit are provided outside.
  • a hard plastic material generally used for a hard cover of electronic equipment is used.
  • the control unit 63 included in the main body 30 includes an arithmetic processing unit that performs various arithmetic processing based on an electrical signal transmitted from the sensor 40 when the pressure in the fluid bag 50 fluctuates, and a content displayed on the display unit. It has a display control circuit for controlling, and a control circuit for controlling each of the sensor 40, the arithmetic processing unit, and the display control unit 63 (see FIG. 4).
  • the arithmetic processing unit processes the electrical signal transmitted from the sensor 40, calculates respiratory vibration data, and stores a program storing a program for predicting and calculating the respiratory rate based on the temporal change of the calculated respiratory vibration data; It has a RAM for storing the calculated respiratory vibration data in time series, and an EEPROM that stores predetermined audio data and the like.
  • the arithmetic processing unit controls operations such as displaying the measured respiration rate on the display unit and issuing a warning alarm from the audio output unit.
  • the power switch 33 is for operating the power of the vital measuring instrument 10 on / off.
  • the mode switch 35 is used to switch between the real-time measurement mode and the memory data browsing mode.
  • a warning alarm function is used together.
  • the warning alarm is preferably set so that a warning sound is emitted when the respiratory rate reaches 30 times / min or more, or when it reaches 8 times / min or less, for example. This is because the respiration rate of a healthy person is about 15 to 20 times / min, and if it exceeds 25 times / min, it is judged as tachypnea.
  • the waveform confirmation switch 37 is for confirming the waveform data of the respiratory vibration stored in the RAM. By pressing the left and right waveform confirmation switches 37 in the memory data browsing mode, it is possible to display the waveform at the end of measurement from the waveform at the start of measurement on the display 31 in time series.
  • the respiratory rate calculated based on the waveform data can be displayed on the right end of the display 31. As illustrated, for example, a respiratory rate (RR) for one minute is displayed.
  • the respiration rate is calculated based on data sampled at a predetermined time on the waveform measurement start side (knitted portion in the figure. For example, about 15 seconds), and can be displayed in real time on the right end of the display unit. It has become.
  • a fluid bag 50 that functions as a sensing unit is inserted into the gap between the body 90 of the supine patient and the bed 80. Since the fluid bag 50 is formed in a small size, it can be easily inserted between the body 90 and the bed 80.
  • the support member 71 When the patient is placed on the fluid bag 50, the support member 71 supports the fluid bag 50 so as to push it up. At this time, since the support member 71 presses the fluid bag 50 against the living body 90 to improve the adhesion, generation of noise due to a change in the measurement environment due to body movement or the like is suppressed. Further, since the support member 71 is elastically deformed by the patient's own weight, the load on the patient suffering from pressure ulcer and the like and the elderly is small. The support member 71 and the expansion / contraction restriction member 73 prevent the respiratory vibration transmitted from the patient from diffusing into the bed 80. For this reason, the sensitivity is not lowered due to the diffusion of the respiratory vibration, and the respiratory vibration can be suitably detected despite the downsizing of the fluid bag 50 that functions as the sensing unit.
  • the diffusion preventing unit 70 disposed on the back surface 53 of the fluid bag 50 prevents the respiratory vibration transmitted to the fluid bag 50 from diffusing to the bed 80. Therefore, it is possible to provide a miniaturized vital measuring instrument 10 capable of suitably detecting respiratory vibration, and to improve the convenience of the user who uses the vital measuring instrument 10.
  • the vital measuring instrument 10 including the diffusion prevention unit 70 having the two-layer structure composed of the support member 71 and the expansion / contraction restriction member 73 has been described.
  • the diffusion prevention unit 70 according to the present invention is not limited to this.
  • the present invention is not limited to such a two-layer structure.
  • only the support member 71 or the expansion / contraction restriction member 73 is disposed on the back surface 53 of the fluid bag 50, and each of them functions individually as the diffusion preventing unit 70. Is possible.
  • a configuration in which only the support member 71 is bonded to the fluid bag 50 can be employed.
  • Air is used as the fluid
  • a latex balloon is used as the elastic body forming the support member 71
  • an omnidirectional microphone is used as the sensor 40 for detecting respiratory vibration.
  • the omnidirectional microphone is arranged at the end of the fluid bag 50, detects a change in air pressure transmitted from the detection unit 20, and transmits an electric signal to the control unit 63 via a cable. ing.
  • the balloon is expanded to bring the fluid bag 50 into close contact with the living body 90.
  • the balloon By closely contacting the fluid bag 50, it is possible to efficiently detect respiratory vibrations.
  • a configuration in which only the non-stretchable polymer film is bonded to the fluid bag 50 can be employed.
  • the fluid purified water is used, and as the polymer film, for example, a PET resin having a thickness of about 0.1 mm can be used.
  • a pressure sensor is used as the sensor 40 for detecting respiratory vibration. Although not shown in the figure, the pressure sensor is not disposed inside the fluid bag 50 but is disposed in the control unit 63 to detect a change in pressure transmitted from the detection unit 20.
  • the fluid bag 50 When using, the fluid bag 50 is inserted on the back side of the subject in the lying position. Since the expansion / contraction restriction member 73 disposed on the back surface 53 of the fluid bag 50 suppresses expansion / contraction deformation of the entire fluid bag 50, it is possible to prevent diffusion of respiratory vibrations transmitted to the fluid bag 50. Therefore, when the expansion / contraction restriction member 73 is used as the diffusion preventing unit 70, the sensitivity may be lowered even if a relatively flexible pressure-reducing bed or the like is used as the bed 80 in which the living body 90 is disposed. Therefore, it is possible to efficiently detect respiratory vibration.
  • the expansion / contraction restriction member 73 formed integrally with the fluid bag 50 and forming the back surface 53 of the fluid bag 50 can function as the diffusion preventing unit 70.
  • mineral oil is used as the fluid
  • the surface 51 of the fluid bag 50 is made of a highly stretchable material rich in stretch
  • the back surface 53 of the fluid bag 50 is made of a low stretch material.
  • the asymmetric structure is adopted.
  • the back surface 53 of the fluid bag 50 functions as a vibration diffusion preventing surface that prevents vibration diffusion, a relatively flexible pressure relief is applied to the bed 80 on which the body is placed, as in the case where a plate-shaped expansion / contraction restriction member is provided. Even if a bed or the like is used, it is possible to efficiently detect respiratory vibration without causing a decrease in sensitivity.
  • the diffusion preventing unit 70 is manufactured by being integrated with the fluid bag 50 in advance, it is possible to simplify the manufacturing operation as compared with the case where a separate plate or the like is used for the expansion / contraction restriction unit. Yes.
  • an increase in the thickness of the fluid bag 50 that can be caused by providing a plate-shaped expansion / contraction restriction member can be suppressed, it is possible to provide a more compact vital measuring instrument 10.
  • the highly stretchable material forming the surface 51 of the fluid bag 50 for example, natural rubber, synthetic rubber, elastomer, or the like can be used.
  • the fluid air, water, oil, polymer gel, or the like can be used.
  • the low stretchable material forming the back surface 53 of the fluid bag 50 for example, PET resin, polyethylene resin, polypropylene resin, polyester resin, acrylic resin, urethane resin, nylon resin, vinyl chloride resin, or the like can be used. .
  • Copolymers of various vinyl monomers such as ethylene vinyl acetate copolymer can also be used.
  • the material of the front surface 51 and the material of the back surface 53 are made of the same material, and the contents of the plasticizer are made different. It is also possible to employ a method of adjusting the stretchability of 53.
  • an elastic member 75 such as a sponge or a spring is inserted into the fluid bag 50, and one of the front surface 51 and the rear surface 53 of the fluid bag 50 is expanded wider than the other surface.
  • an elastic member 75 such as a sponge or a spring is inserted into the fluid bag 50, and one of the front surface 51 and the rear surface 53 of the fluid bag 50 is expanded wider than the other surface.
  • the omnidirectional microphone is arranged at the end of the fluid bag 50, detects a change in fluid pressure transmitted from the detection unit 20, and controls the measurement data by a wireless communication method. The data is transmitted to 63.
  • the installation location of the fluid bag 50 is preferably arranged near the center of the back of the living body 90 as illustrated, but is not particularly limited thereto. As long as the respiratory vibration transmitted from the living body 90 can be detected, it can be changed as appropriate.
  • the asymmetric structure in which the back surface 53 of the fluid bag 50 is made of a low-stretch material has been described.
  • the fluid bag 50 is made of a material that elastically supports the fluid bag 50 such as the support member 71. It is also possible to adopt an asymmetric structure in which the back surface 53 is configured.
  • the detection unit 20 including the fluid bag 50 and the diffusion prevention unit 70 becomes easier to install in the lower part of the living body 90 as it is thinner.
  • the detection unit 20 when installing the detection unit 20, after the detection unit 20 is stored in a thin storage cover 76 as shown in FIG.
  • the storage cover 76 can be slid as shown in the figure, and the support member 71 can be automatically expanded so that the fluid bag 50 is crimped to the living body 90.
  • a mechanism capable of automatically controlling intake and exhaust so as to obtain an appropriate pressure may be provided.
  • the number and location of the sensors 40 to be installed are not particularly limited, and can be changed as appropriate.
  • the detection accuracy can be improved by dividing the inside of the fluid bag 50 into a plurality of rooms and arranging the sensor 40 in each room.
  • the outer shape and the like of the fluid bag 50 can be changed as appropriate.
  • the fluid bag 50 when not in use is downsized. It is possible.
  • FIG. 8 the measurement data of the respiratory vibration measured on the air bed using the vital measuring device 10 which concerns on embodiment mentioned above are shown.
  • (A) shows the measurement data by the detection part provided only with the fluid bag 50.
  • FIG. (B) shows the measurement data by the detection part which provided the supporting member 71 in the fluid bag 50.
  • FIG. (C) shows the measurement data by the detection part which provided the fluid bag 50 with the expansion-contraction restriction member 73.
  • FIG. (D) shows the measurement data by the detection part provided with both the support member 71 and the expansion-contraction restriction member 73.
  • shaft in a figure has shown the change of the pressure by the voltage value, and the horizontal axis has shown measurement time.
  • the respiratory vibration waveform is buried in noise, but in the measurement by the detection unit including the support member 71 and the expansion / contraction restriction member 73, a clear respiratory vibration waveform is obtained. I was able to confirm.
  • Example 2 Next, the Example performed for the design of the suitable external dimension of the fluid bag 50 with which the vital measuring device 10 is provided is described.
  • the dimension of each part of the vital measuring device based on this invention, a shape, etc. are not limited to the form shown in the following description.
  • the back of the living body Since there are back muscles and spine that protrude from the body surface on the back of the living body, the back of the living body has an uneven surface shape although there are individual differences. For this reason, when a living body is placed on a bed or the like, a gap is formed between the back of the living body and the floor surface of the bed.
  • the back of a living body has a spine extending in the vertical direction at a substantially central portion, and there is a spine extending in the vertical direction at a position that is substantially symmetrical from the spine, and a concave body surface is formed between the spines. It is formed. Therefore, when the back of the living body is placed on the floor surface or the like, a gap is formed between the concave body surface and the floor surface.
  • the fluid bag 50 may enter the gap and the fluid bag 50 may not contact the living body. If measurement is performed in such a state, the respiratory vibration is not sufficiently transmitted to the fluid bag 50, and the subject's respiratory vibration cannot be detected.
  • the fluid bag 50 is designed to be excessively large in order to prevent the fluid bag 50 from entering the gap as described above, the fluid bag 50 is moved to a portion that does not contact the body (such as the inner wall surface of the fluid bag 50).
  • the pressure dispersion is noticeable, and due to such pressure dispersion, the measurement results vary due to the displacement of the installation location of the fluid bag 50.
  • variations in measurement results due to deviations in the installation location that occur each time use occurs so quantitative evaluation of respiratory rate data by the vital measuring instrument 10 is possible. It becomes difficult to do.
  • the respiration rate is measured using a plurality of types of fluid bags having different external dimensions, and based on the measurement result, variations in respiration rate data due to the influence of the installation location and a decrease in detection sensitivity are suppressed.
  • the fluid bag 50 As shown in FIG. 9, six fluid bags a to f having a rectangular outer shape are used for the fluid bag 50.
  • the length L in FIG. 9 is the length of the fluid bag 50 in the longitudinal direction, and the width W is the length of the fluid bag 50 in the short direction.
  • the longitudinal direction of the fluid bag 50 is arranged in a direction along the body axis A of the living body, and the short side direction is arranged in a direction intersecting with the body axis A of the living body.
  • the respiration rate was measured by arranging each fluid bag a to f at three measurement points (insertion positions) C point, M point, and E point shown in FIG.
  • Point C is the central part of the subject's spine
  • point M is a position shifted by 50 mm in the direction intersecting body axis A from point C
  • point E is shifted by 100 mm in the direction intersecting body axis A from point C.
  • the installation position in the body axis direction is around the navel at points C, M, and E.
  • the measurement was performed on four subjects A to D.
  • Measured at a plurality of locations shifted by a predetermined distance along the direction intersecting the body axis as described above is as follows.
  • the user who installs the vital measuring instrument 10 stands on the side of the subject, and as shown by the arrows in FIG. 10, the living body and the floor surface (bed or mat placement surface) are seen from the side.
  • the position of the insertion position in the direction intersecting with the body axis A is considered in consideration that the displacement of the installation location of the fluid bag 50 that occurs every time it is used tends to occur in the direction intersecting with the body axis A.
  • measurement was performed at three points of C point, M point, and E point.
  • FIG. 11 is a diagram showing the relationship between the external dimensions and insertion positions of the fluid bags a to f and the measured respiratory output. In this figure, the respiratory outputs of subjects A to D and the average value of the respiratory outputs are shown.
  • FIG. 12 is a diagram showing the number of respiratory rate non-detections in which the respiratory rate was not detected during measurement together with the average value. The measurement is performed 35 times per fluid bag, and the number of non-detections is a numerical value indicating the number of times the respiratory rate was not measured among the 35 measurements.
  • FIG. 13 is a diagram showing the output ratio of respiratory output at each insertion position C point, M point, and E point.
  • C, M, and E in FIG. 13 is an average value of the respiratory output of each of the subjects A to D at points C, M, and E shown in FIG. 10, and each of M / C and E / C Is a numerical value indicating the output ratio of the respiratory output based on the output at point C.
  • the maximum value of the respiratory output that can be detected by the fluid bag 50 increases in proportion to the increase in the size of the fluid bag 50.
  • the fluid bag a and the fluid bag b are formed with a relatively small width W, and therefore the measurement is performed with the fluid bag entering the gap formed between the back and the floor of the living body. Therefore, it can be considered that the fluid bag could not detect the respiratory vibration, or the detected respiratory vibration was weak and the respiratory rate data could not be output.
  • the fluid bag b shows a large difference in the respiratory output between the points M and E, but the fluid bag a There is no difference in respiratory output as seen in the measurement result of b.
  • pressure dispersion in the fluid bag 50 is easily generated as the size of the fluid bag is increased.
  • the area of the portion that does not function as a detection unit that captures respiratory vibrations in the fluid bag is increased in proportion to the distance away, Along with the increase in the size of the fluid bag, the detection sensitivity significantly decreases due to the displacement of the insertion position. This is the reason why the breathing output varies when the fluid bag b is used.
  • the variation in detection sensitivity due to the displacement of the insertion position is the fluid bag b, the fluid It can be confirmed that the measurement using the bag d and the fluid bag f remarkably occurs.
  • the width W of the fluid bag is formed to be about 10 mm to 30 mm and the length L of the fluid bag is about 100 mm, or the length L is formed to be 100 mm or more, it is caused by the displacement of the insertion position. It can be seen that variations in respiratory output are likely to occur.
  • the fluid bag when the width W of the fluid bag is designed with the same size as the fluid bag a and the fluid bag b, the fluid bag enters the gap between the back of the living body and the floor surface. In such a case, it has been found that the breathing vibration cannot be captured by the fluid bag, and as a result, the respiratory rate cannot be measured.
  • the fluid bag when the fluid bag is designed with the same size as the fluid bag b, the fluid bag d, and the fluid bag f, the variation in the measurement result due to the displacement of the insertion position becomes large. It was found that it was difficult to evaluate the quantitative respiratory rate data used, resulting in a decrease in user convenience.
  • the fluid bag 50 included in the vital measuring instrument 10 is preferably formed with a width W of about 20 mm to 30 mm, and a length L of about 30 mm to 90 mm (length shorter than 100 mm). It was found that it is more preferable that W is formed to be 20 mm or more and 30 mm or less and the length L is 30 to 70 mm.
  • the lining material 73 having different thicknesses is installed in the fluid bags a to f used in the above-described second embodiment, and the respiration rate is measured, and the thickness of the lining material 73 and the detection of the breathing vibration are detected. The relationship with sensitivity was examined.
  • the backing material 73 For the backing material 73, five non-stretchable PET resin plates having thicknesses of 1 mm, 2 mm, 3 mm, and 5 mm were prepared. The measurement was performed on seven subjects, subjects A to G.
  • FIG. 14 shows the measurement result of the respiratory output.
  • the detection sensitivity of the fluid bag 50 tends to improve as the thickness of the backing material 73 increases.
  • the detection sensitivity increases in proportion to the increase in the thickness of the backing material 73 from 1 mm to 5 mm. It can confirm that it has improved.
  • the thickness of the backing material 73 used in the vital measuring instrument 10 is designed to be, for example, 5 mm, thereby suppressing the significant increase in the thickness of the fluid bag 50 and detecting the sensitivity of the fluid bag 50. It was confirmed that the improvement of

Abstract

Provided is a vital sign-measuring instrument designed to improve user-friendliness by being capable of detecting respiratory oscillations well in spite of the size of the instrument being reduced. The vital sign-measuring instrument (10) comprises: a liquid sac (50) with a liquid sealed therein and on which a living body is placed; a sensor (40), which detects the fluctuations in pressure inside the liquid sac that are associated with respiratory oscillations of the body and converts same into an electric signal; a support member (71), which is disposed on the back surface (53) of the liquid sac opposite to the front surface (51) that is disposed on the side of the body, and which elastically supports the liquid sac when the body is placed on the liquid sac; and an expansion and contraction-limiting member (73) that is disposed between the back surface of the liquid sac and the support member and is formed to expand and contract less easily in the planar direction than the front surface of the liquid sac.

Description

バイタル計測器Vital measuring instruments
 本発明は、生体の呼吸数の計測に用いられるバイタル計測器に関する。 The present invention relates to a vital measuring instrument used for measuring a respiratory rate of a living body.
 肺炎や尿路感染症等の感染症は、現在、高齢者の死亡原因の上位を占めている。一般に、高齢者感染症は発熱などの症状に乏しいケースも多く、対処の遅れによる重症化・死亡例も少なくなく問題となっている。このため、早期発見による治療の開始が重要である。通常、肺炎は、医師が聴診器で胸部の音を聞くことにより判断が可能であり、かつ、胸部X線検査を行うことで、確実に診断を行うことができる。また、尿路感染症については、血液検査や尿の培養、腹部CT検査、腹部エコー検査等を行うことで、診断することができる。つまり、感染症は、適切な検査設備のもとで医師等による診断を受ければ、重症化を回避することが可能な疾患であるといえる。しかしながら、上記のような検査設備を備え、医師が常駐している病院や特定の介護施設等の場合には、早期に診断が可能であるが、在宅介護を受けている高齢者や、一般の介護施設、あるいは、医療過疎地域にいる高齢者等の場合には、そもそもこのような診断を早期に受けることは困難である。 Infectious diseases such as pneumonia and urinary tract infections are currently the top causes of death among the elderly. In general, there are many cases of infectious diseases of elderly people who have few symptoms such as fever, and there are not a few cases of seriousness and death due to delay in coping. For this reason, it is important to start treatment by early detection. Normally, pneumonia can be determined by a doctor listening to the sound of the chest with a stethoscope, and can be reliably diagnosed by performing a chest X-ray examination. Urinary tract infections can be diagnosed by performing blood tests, urine culture, abdominal CT tests, abdominal echo tests, and the like. In other words, an infectious disease can be said to be a disease that can be prevented from becoming serious if it is diagnosed by a doctor or the like under an appropriate examination facility. However, in the case of a hospital or a specific nursing facility where doctors are stationed with the above inspection facilities, early diagnosis is possible. In the first place, it is difficult to receive such a diagnosis early in the case of an elderly person or the like in a nursing facility or a medical depopulated area.
 このため、例えば、検査設備がなく、判断する医師もいない状況下では、介護者等が、肺炎や尿路感染症等を日常のバイタル変動と区別し、感染症の疑いがあると判断した場合には、早期に病院に搬送させるといった処置をとる必要がある。 For this reason, for example, in the situation where there is no testing equipment and there is no doctor to judge, caregivers, etc., distinguish pneumonia or urinary tract infections from daily vital fluctuations and determine that there is a suspicion of infectious disease It is necessary to take measures such as transporting to a hospital at an early stage.
 しかしながら、介護者等がそのような判断まで行うことは容易ではない。また、感染症の疑いがあると判断した場合であっても、重症度に関する十分な判断をすることが出来ないことから、しばらく様子を見てから対処するのが一般的である。このため、結果として、重症化した状態で病院に搬送されてくるケースが後を絶たない。このようなことから、上述のような介護現場や医療過疎地域では、介護者等でも簡単に測定を行うことができ、かつ、容態悪化を早期に判断することが可能な機器の提供が必要不可欠である。 However, it is not easy for caregivers to make such a determination. Even if it is determined that there is a suspicion of an infectious disease, since it is not possible to make a sufficient judgment regarding the severity, it is common to deal with it after looking at the situation for a while. For this reason, as a result, the case where it is conveyed to a hospital in the state which became serious does not end. For this reason, it is indispensable to provide equipment that can be easily measured by caregivers, etc., and that can determine the deterioration of the condition at an early stage in the above-mentioned nursing care sites and medical depopulated areas. It is.
 肺炎や尿路感染症等の感染症の早期の発見にあたり、呼吸機能評価に着目した診断方法が試みられている。呼吸機能の中において、呼吸数は体温、血圧、脈拍とともに基礎バイタルに数えられ、患者の容態を判断する上で非常に重要な項目とされている。 In early detection of infectious diseases such as pneumonia and urinary tract infection, diagnostic methods focusing on respiratory function evaluation have been attempted. In the respiratory function, the respiratory rate is counted as a basic vital together with the body temperature, blood pressure, and pulse, and is regarded as an extremely important item in judging the patient's condition.
 呼吸数計測機器の公知技術としては、鼻部にサーミスタを固定することで呼吸による経温度変化を計測するもの、胸部及び腹部に取り付けたECG電極間の呼吸によるインピーダンス変化を計測するものが存在する。しかし、いずれもセンサの設置に手間がかかることもあり、特に重篤な患者を対象とし主にICUなどでの使用に留まっている。また、電極やリード線などが多数存在するため、患者の動作の自由度が狭められるなどの問題が本質的に存在する。また、用途は異なるが睡眠時無呼吸症候群など患者の睡眠評価のために胸部に伸縮性のバンドを巻きつけて呼吸運動を計測する機器が開発されているが、これも同様にセンサの設置に手間がかかるという問題が存在する。そこで、特許文献1および特許文献2に記載されているように、センサが埋設された空気袋に患者を載置させ、患者の呼吸による体振動に基づいて呼吸数の計測を行うことを可能にしたマットレスタイプの呼吸数計測器が提案されている。 Known techniques for measuring respiratory rate include those that measure changes in temperature due to breathing by fixing a thermistor to the nose, and those that measure changes in impedance due to breathing between ECG electrodes attached to the chest and abdomen. . However, in any case, it takes time to install the sensor, and it is mainly used in ICU or the like for particularly serious patients. In addition, since there are a large number of electrodes, lead wires, and the like, there is an inherent problem that the degree of freedom of movement of the patient is reduced. In addition, a device that measures respiratory motion by wrapping an elastic band around the chest has been developed for sleep evaluation of patients such as sleep apnea syndrome although it is used for different purposes. There is a problem that it takes time and effort. Therefore, as described in Patent Document 1 and Patent Document 2, it is possible to place a patient on an air bag in which a sensor is embedded, and to measure the respiration rate based on body vibration caused by the patient's breathing. A mattress type respiratory rate measuring device has been proposed.
特開2001-145605JP 2001-145605 A 特開2001-276019JP 2001-276019 A
 しかしながら、特許文献1および特許文献2に記載の呼吸数計測器においては、患者の呼吸振動をより精度よく検出するために、比較的大きな面積の空気袋上に患者を載置させる設計となっており、空気袋をベッドに常設させる構造が採用されている。空気袋の大型化に伴い呼吸数計測器を使用するユーザーの利便性の低下が招かれている。具体的には、呼吸数を入院患者の基礎バイタルとして日常的に管理したり、患者の症状の急変時に呼吸数を簡易的に計測したりする用途に適していないと言える。また、技術的課題としては、呼吸数計測の主な対象となる寝たきり高齢者は体圧分散を目的に徐圧マットやエアーベッドなどの上で横になっているケースが多く、空気袋をこれら徐圧マットやエアーベッドの上に設置しても、呼吸振動を精度よく検出することは難しいことが挙げられる。特に、空気袋のサイズが小さくなると空気袋が検出する呼吸振動が相対的に少なくなり、体圧分散マットやベッドへの呼吸振動の拡散が容易になることから、呼吸振動を精度良く検出することはさらに困難となる。 However, in the respiratory rate measuring device described in Patent Literature 1 and Patent Literature 2, the patient is placed on an air bag having a relatively large area in order to detect the patient's respiratory vibration more accurately. The air bag is permanently installed in the bed. With the increase in the size of the air bag, the convenience of the user who uses the respiration rate measuring device is reduced. Specifically, it can be said that it is not suitable for applications in which the respiratory rate is routinely managed as a basic vital for inpatients or the respiratory rate is simply measured when a patient's symptoms suddenly change. Also, as a technical issue, bedridden elderly people who are the main target of respiratory rate measurement are often lying on a slow-pressure mat or air bed for the purpose of distributing body pressure. Even if it is installed on a gradual pressure mat or an air bed, it is difficult to accurately detect respiratory vibrations. In particular, when the size of the air bag is reduced, the respiratory vibration detected by the air bag is relatively reduced, and diffusion of the respiratory vibration to the body pressure dispersion mat or bed is facilitated. Becomes even more difficult.
 本発明は、上記課題に鑑みてなされたものであり、機器の小型化に関わらず、呼吸振動を好適に検出することができ、もってユーザーの利便性の向上が図られたバイタル計測器の提供を目的とする。 The present invention has been made in view of the above problems, and provides a vital measuring instrument that can suitably detect respiratory vibrations regardless of the downsizing of the device, thereby improving user convenience. With the goal.
 上記目的を達成するための本発明のバイタル計測器は、内部に流体を封入し、生体が載置される流体袋と、生体の呼吸振動に伴う前記流体袋内の圧力の変動を検出して電気信号に変換するセンサと、前記流体袋の生体側に配置される表面と反対の裏面に配置され、前記流体袋へ伝達される呼吸振動の拡散を防止する拡散防止部と、を有している。 In order to achieve the above object, a vital measuring instrument of the present invention encloses a fluid therein, detects a fluid bag on which a living body is placed, and changes in pressure in the fluid bag due to respiratory vibration of the living body. A sensor for converting to an electrical signal; and a diffusion preventing unit disposed on the back surface opposite to the surface disposed on the living body side of the fluid bag and preventing diffusion of respiratory vibrations transmitted to the fluid bag. Yes.
 本発明のバイタル計測器によれば、流体袋の裏面に配置された拡散防止部によって流体袋へ伝達された呼吸振動の拡散を防止することができる。したがって、呼吸振動を好適に検出することが可能な小型化されたバイタル計測器を提供することができ、バイタル計測器を使用するユーザーの利便性の向上を図ることができる。 According to the vital measuring instrument of the present invention, it is possible to prevent diffusion of respiratory vibrations transmitted to the fluid bag by the diffusion preventing unit disposed on the back surface of the fluid bag. Therefore, it is possible to provide a miniaturized vital measuring device capable of suitably detecting respiratory vibrations, and to improve the convenience of the user who uses the vital measuring device.
図1は、実施形態に係るバイタル計測器の使用状態を示す図であり、図1(A)は、斜視図、図1(B)は、側面図である。1A and 1B are diagrams illustrating a usage state of a vital measuring device according to the embodiment, in which FIG. 1A is a perspective view and FIG. 1B is a side view. 図2は、バイタル計測器を示す図であり、図2(A)は、バイタル計測器の平面図、図2(B)は、バイタル計測器の側面図である。FIG. 2 is a diagram showing a vital measuring instrument, FIG. 2A is a plan view of the vital measuring instrument, and FIG. 2B is a side view of the vital measuring instrument. 流体袋および拡散防止部の概略断面図である。It is a schematic sectional drawing of a fluid bag and a diffusion prevention part. バイタル計測器の全体構成を簡略化して示すブロック図である。It is a block diagram which simplifies and shows the whole structure of a vital measuring device. バイタル計測器のディスプレイおよび各操作スイッチを示す図である。It is a figure which shows the display and each operation switch of a vital measuring device. 図6(A)~(C)はそれぞれ、改変例に係る流体袋および拡散防止部の概略断面図である。FIGS. 6A to 6C are schematic cross-sectional views of a fluid bag and a diffusion prevention unit according to modifications. バイタル計測器の検出部にスライド式カバーを備えた際の図であり、図7(A)は、検出部の平面図、図7(B)は、検出部の側面図である。It is a figure at the time of providing the slide type cover in the detection part of the vital measuring device, FIG. 7 (A) is a top view of a detection part, FIG.7 (B) is a side view of a detection part. 実施例1を説明するための図であり、図8(A)~(D)はそれぞれ、流体袋および拡散防止部を備えた検出部を用いた際の呼吸振動計測データを比較して示す図である。FIGS. 8A to 8D are diagrams for explaining the first embodiment, and FIGS. 8A to 8D are diagrams showing comparison of respiratory vibration measurement data when using a detection unit including a fluid bag and a diffusion prevention unit, respectively. It is. 実施例2において使用される流体袋を説明するための概略図である。10 is a schematic diagram for explaining a fluid bag used in Example 2. FIG. 実施例2における生体の計測対象部位を説明するための概略図である。FIG. 6 is a schematic diagram for explaining a measurement target part of a living body in Example 2. 実施例2の計測結果を示す図であり、被検者ごとの呼吸出力と流体袋の寸法との関係を示す図である。It is a figure which shows the measurement result of Example 2, and is a figure which shows the relationship between the respiratory output for every subject, and the dimension of a fluid bag. 実施例2の計測結果を示す図であり、呼吸出力が観測されなかった非検出回数を示す図である。It is a figure which shows the measurement result of Example 2, and is a figure which shows the non-detection frequency by which the respiratory output was not observed. 実施例2の計測結果を示す図であり、呼吸出力の出力比を示す図である。It is a figure which shows the measurement result of Example 2, and is a figure which shows the output ratio of respiration output. 実施例3の計測結果を示す図であり、被検者ごとの呼吸出力と伸縮規制部材の厚みとの関係を示す図である。It is a figure which shows the measurement result of Example 3, and is a figure which shows the relationship between the respiratory output for every subject, and the thickness of an expansion-contraction restriction member.
 以下、図面を参照しつつ、本発明を実施形態に基づいて説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the present invention will be described based on embodiments with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 図1に示すように、本発明に係るバイタル計測器10は、例えば、被験者をベッド80やマットレスなどに横たえさせた状態で使用されるものであり、被験者の基礎バイタルとしての呼吸数を計測することを可能にするものである。使用対象となる被験者は、特に制限されるものではないが、例えば、在宅介護を受けている高齢者、肺炎や尿路感染症等の感染症を患った臥位患者などが挙げられる。また、本発明に係るバイタル計測器10は、臥位患者だけでなく、座位患者にも用いることができる。この場合、バイタル計測器10を被験者の腿やおしりの下に挿入したり、背中と椅子の背や壁などとの間に挟み込んだりしたりすることで測定を行うことができる。また、ズボンのベルト部位に挟み込むことで測定を行うことも出来る。 As shown in FIG. 1, the vital measuring device 10 according to the present invention is used in a state where a subject is laid on a bed 80, a mattress or the like, and measures a respiratory rate as a basic vital of the subject. It makes it possible. The subject to be used is not particularly limited, and examples thereof include an elderly person receiving home care, and a supine patient suffering from an infection such as pneumonia or urinary tract infection. Moreover, the vital measuring device 10 which concerns on this invention can be used not only for a supine patient but for a sitting patient. In this case, the measurement can be performed by inserting the vital measuring instrument 10 under the subject's thigh or butt, or by sandwiching the vital measuring instrument 10 between the back and the back of the chair or the wall. Moreover, it can also measure by putting it in the belt part of trousers.
 図1~図3を参照して、実施形態に係るバイタル計測器10は、概説すれば、内部に流体を封入し、被験者の生体90が載置される流体袋50と、生体90の呼吸振動に伴う流体袋50内の圧力の変動を検出して電気信号に変換するセンサ40と、流体袋50の生体90側に配置される表面51と反対の裏面53に配置され、生体90が流体袋50に載置されたときに流体袋50を弾性的に支持する支持部材71と、流体袋50の裏面53と支持部材71との間に配置され、流体袋50の表面51よりも面方向に伸縮変形し難く形成された伸縮規制部材73と、を有している。流体袋50の裏面53に配置された支持部材71および伸縮規制部材73は、生体90から流体袋50へ伝達された呼吸振動がベッド80やマットレスへ拡散することを防止する拡散防止部70をなしている(図3を参照)。なお、図1に示す破線部は、感知部として機能する流体袋50の設置エリア周辺を例示するものである。 With reference to FIGS. 1 to 3, the outline of the vital measuring instrument 10 according to the embodiment is, as outlined, a fluid bag 50 in which a fluid is sealed and a living body 90 of a subject is placed, and respiratory vibration of the living body 90. The sensor 40 detects the pressure fluctuation in the fluid bag 50 and converts it into an electrical signal, and is disposed on the back surface 53 opposite to the surface 51 disposed on the living body 90 side of the fluid bag 50, and the living body 90 is disposed in the fluid bag. The support member 71 elastically supports the fluid bag 50 when placed on the fluid bag 50, and is disposed between the back surface 53 of the fluid bag 50 and the support member 71, and in a plane direction with respect to the surface 51 of the fluid bag 50. And an expansion / contraction restricting member 73 formed to be difficult to expand and contract. The support member 71 and the expansion / contraction restriction member 73 disposed on the back surface 53 of the fluid bag 50 form a diffusion prevention unit 70 that prevents the respiratory vibration transmitted from the living body 90 to the fluid bag 50 from diffusing to the bed 80 or the mattress. (See FIG. 3). In addition, the broken line part shown in FIG. 1 illustrates the periphery of the installation area of the fluid bag 50 that functions as a sensing part.
 実施形態の説明において、流体袋50の「表面」とは、バイタル計測器を使用する際に生体90に向かい合わせて配置される側の面であり、流体袋50の「裏面」とは、生体90が横たえられるベッド80やマットレスに向かい合わせて配置される側の面である。図3において、表面51は図中上側に示され、裏面53は図中下側に示される。 In the description of the embodiment, the “front surface” of the fluid bag 50 is a surface on the side disposed facing the living body 90 when using the vital measuring instrument, and the “back surface” of the fluid bag 50 is the living body. 90 is a surface on the side facing the bed 80 and the mattress on which 90 is laid. In FIG. 3, the front surface 51 is shown on the upper side in the drawing, and the back surface 53 is shown on the lower side in the drawing.
 図2を参照して、バイタル計測器10は、生体90の呼吸振動を検出するための検出部20と、検出部20が検出した計測データ等を表示するディスプレイ31を備える本体部30と、を有している。 Referring to FIG. 2, the vital measuring instrument 10 includes a detection unit 20 for detecting respiratory vibration of the living body 90 and a main body unit 30 including a display 31 for displaying measurement data detected by the detection unit 20. Have.
 検出部20は、生体90の呼吸振動に合わせて容積が変動可能に設けられた流体袋50と、流体袋50内に設置されたセンサ40と、流体袋50から導出され、センサ40と本体部30内の制御回路に電気的に接続されるリード線61と、を有している。 The detection unit 20 is derived from the fluid bag 50 provided so that its volume can be changed in accordance with the respiratory vibration of the living body 90, the sensor 40 installed in the fluid bag 50, and the fluid bag 50. 30 and a lead wire 61 that is electrically connected to the control circuit in the circuit 30.
 流体袋50は、内部に流体を封入し得るシート状の部材から構成されている。流体袋50の材質は特に制限されるものではないが、例えば、気密性を有する柔軟なゴム、プラスチック、布材等を使用することができる。流体袋50は、比較的小型に形成されており、外周部分の一辺をそれぞれ1~10cm、1~20cm程度に形成することができ、最大膨張時の厚みが1cm程度になるように形成することができる。 The fluid bag 50 is composed of a sheet-like member that can enclose a fluid therein. The material of the fluid bag 50 is not particularly limited. For example, flexible rubber, plastic, cloth material, etc. having airtightness can be used. The fluid bag 50 is formed in a relatively small size, and can be formed so that one side of the outer peripheral portion is about 1 to 10 cm and about 1 to 20 cm, respectively, and the thickness at the time of maximum expansion is about 1 cm. Can do.
 センサ40は、生体90の呼吸運動に起因する呼吸振動(体振動)を計測するために用いられている。 The sensor 40 is used for measuring respiratory vibration (body vibration) caused by the respiratory motion of the living body 90.
 センサ40は、流体袋50内の圧力(流体圧)の変動を検出し、検出結果に基づいた電気信号をリード線61を介して制御回路などに送信する(図4を参照)。センサ40には、空気圧の検出に用いられる公知の無指向性マイクロフォンを使用しているが、これに限定されるものではなく、コンデンサマイクロフォン、圧力センサ、圧電フィルムに代表される各種圧電素子、歪みゲージ、静電容量型面圧センサ、FSRセンサなどを流体の特性に合わせて適宜使用することが可能である。流体としては、空気・水・オイル・高分子ゲルなどを使用することができる。 The sensor 40 detects a change in pressure (fluid pressure) in the fluid bag 50, and transmits an electric signal based on the detection result to a control circuit or the like via the lead wire 61 (see FIG. 4). The sensor 40 uses a known omnidirectional microphone used for air pressure detection, but is not limited to this, and is not limited to this. Various piezoelectric elements represented by condenser microphones, pressure sensors, piezoelectric films, A gauge, a capacitive surface pressure sensor, an FSR sensor, or the like can be used as appropriate in accordance with the characteristics of the fluid. As the fluid, air, water, oil, polymer gel, or the like can be used.
 センサ40の配置箇所は、流体袋50内部のみに限定されるものではなく、適宜変更することが可能である。例えば、流体袋50内部に連通する流体通路を設け、その流体通路の途上にセンサ40を設置する形態などを採用することが可能である。また、本体部30内部にセンサ40を設置することも可能である。センサ40と後述する制御部63との間で行われる検出データの送受信は、リード線61を用いた形態に限定されるものではなく、一般的な電気ケーブルを使用した送受信方法や、無線方式による送受信方法を採用することも可能である。 The location of the sensor 40 is not limited to the inside of the fluid bag 50, and can be changed as appropriate. For example, it is possible to employ a form in which a fluid passage communicating with the inside of the fluid bag 50 is provided, and the sensor 40 is installed in the middle of the fluid passage. In addition, the sensor 40 can be installed inside the main body 30. Transmission / reception of detection data performed between the sensor 40 and the control unit 63 to be described later is not limited to the form using the lead wire 61, but by a transmission / reception method using a general electric cable or a wireless method. It is also possible to adopt a transmission / reception method.
 図3を参照して、流体袋50の裏面53に配置された支持部材71は、流体袋50をベッド80側から押し上げるように支持して、流体袋50と生体90との接触を安定させる機能を発揮する。生体90に対して流体袋50が安定的に保持されるため、生体90が寝返りするような場合においても流体袋50に位置ずれが生じることを防止することができる。また、支持部材71は、生体90とベッド80との間において緩衝材としても機能するため、生体90から伝達される呼吸振動がベッド80へ拡散することが防止される。図示されるように、支持部材71には、流体袋50の外周側面を囲むように配置される側壁72を設けている。側壁72を設けることにより、流体袋50をより安定的に支持させることを可能にしている。 Referring to FIG. 3, the support member 71 disposed on the back surface 53 of the fluid bag 50 supports the fluid bag 50 so as to push it up from the bed 80 side, and stabilizes the contact between the fluid bag 50 and the living body 90. To demonstrate. Since the fluid bag 50 is stably held with respect to the living body 90, the fluid bag 50 can be prevented from being displaced even when the living body 90 is turned over. In addition, since the support member 71 also functions as a cushioning material between the living body 90 and the bed 80, the respiratory vibration transmitted from the living body 90 is prevented from diffusing into the bed 80. As shown in the figure, the support member 71 is provided with a side wall 72 disposed so as to surround the outer peripheral side surface of the fluid bag 50. By providing the side wall 72, the fluid bag 50 can be supported more stably.
 支持部材71には、ラテックス製のバルーンを使用しているが、これに限定されるものではなく、例えば、スポンジやゲルなどのように弾性的に流体袋50を支持し得る材質のものを適宜使用することが可能である。バルーンを使用する際、流体注入口(図中省略する)を介してバルーン内部に空気や水等の流体を注入させて膨張させる。また、使用後は、バルーン内部に注入した流体が排出され、しぼんだ状態で流体袋50とともにケースなどに収納されて持ち運ばれる。 The support member 71 uses a latex balloon, but is not limited to this. For example, a material made of a material that can elastically support the fluid bag 50, such as a sponge or a gel, is appropriately used. It is possible to use. When the balloon is used, a fluid such as air or water is injected into the balloon through a fluid inlet (not shown) and inflated. Further, after use, the fluid injected into the balloon is discharged and stored in a case or the like together with the fluid bag 50 in a deflated state.
 流体袋50の裏面53と支持部材71との間に配置された伸縮規制部材(裏打ち材)73は、支持部材71とともに緩衝材として機能し、呼吸振動が流体袋50の外表面51を伝わってベッド80まで到達して拡散されてしまうことを防止する。実施形態にあっては、非伸縮性のプラスチックフィルムを流体袋50の裏面53と支持部材71との間に挿入して配置する形態としているが、例えば、流体袋50や支持部材71に接着させて一体化させた形態とすることも可能である。 The expansion / contraction restriction member (backing material) 73 disposed between the back surface 53 of the fluid bag 50 and the support member 71 functions as a cushioning material together with the support member 71, and respiratory vibration is transmitted through the outer surface 51 of the fluid bag 50. It is prevented from reaching the bed 80 and being diffused. In the embodiment, the non-stretchable plastic film is inserted and disposed between the back surface 53 of the fluid bag 50 and the support member 71. For example, the non-stretchable plastic film is adhered to the fluid bag 50 or the support member 71. It is also possible to adopt an integrated form.
 伸縮規制部材73には、非伸縮性のプラスチックフィルムを使用しているが、これに限定されるものではなく、例えば、金属性の薄状プレート、フィルムなどを使用することも可能である。また、プラスチックフィルムとしては、例えば、PET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、アクリル樹脂、ナイロン樹脂、ウレタン樹脂、塩化ビニル樹脂などからなる樹脂製プレート、フィルムを使用することができる。また、エチレン酢酸ビニルコポリマーなど各種ビニルモノマーの共重合体を使用することもできる。伸縮規制部材73の厚みは、特に制限されるものではないが、小型化を図る観点から、0.1mm~5mm程度の厚みのものを使用するのが好ましい。 The stretch regulating member 73 is made of a non-stretchable plastic film, but is not limited to this. For example, a metallic thin plate, a film, or the like can be used. As the plastic film, for example, a resin plate or film made of PET resin, polyethylene resin, polypropylene resin, polyester resin, acrylic resin, nylon resin, urethane resin, vinyl chloride resin, or the like can be used. Also, copolymers of various vinyl monomers such as ethylene vinyl acetate copolymer can be used. The thickness of the expansion / contraction regulating member 73 is not particularly limited, but it is preferable to use a material having a thickness of about 0.1 mm to 5 mm from the viewpoint of miniaturization.
 図2および図4を参照して、本体部30は、バイタル計測器10の動作を統括的に制御する制御部63と、センサ40が検出した呼吸振動に基づいて計測された呼吸数を表示する表示部と、検出結果に応じて所定の音声を発する音声出力部と、各種機能を選択的に動作させるための操作スイッチと、バイタル計測器10に電源を供給する電源部と、を有している。 With reference to FIGS. 2 and 4, the main body 30 displays a control unit 63 that comprehensively controls the operation of the vital measuring instrument 10 and the respiratory rate measured based on the respiratory vibration detected by the sensor 40. A display unit, a sound output unit that emits a predetermined sound according to the detection result, an operation switch for selectively operating various functions, and a power supply unit that supplies power to the vital measuring instrument 10 Yes.
 本体部30は、内部には制御部63が配置され、外部には表示部としてのディスプレイ31や操作スイッチが設けられた筺体である。筺体の材料には、電子機器類のハードカバーに一般的に用いられる硬質のプラスチック材料が使用されている。 The main body 30 is a housing in which a control unit 63 is disposed inside, and a display 31 and an operation switch as a display unit are provided outside. As the material of the housing, a hard plastic material generally used for a hard cover of electronic equipment is used.
 本体部30が備える制御部63は、流体袋50内の圧力が変動した際にセンサ40から送信される電気信号に基づいて各種演算処理を行う演算処理部と、表示部に表示される内容を制御する表示制御回路と、センサ40、演算処理部、表示制御部63のそれぞれを制御する制御回路と、を有している(図4を参照)。 The control unit 63 included in the main body 30 includes an arithmetic processing unit that performs various arithmetic processing based on an electrical signal transmitted from the sensor 40 when the pressure in the fluid bag 50 fluctuates, and a content displayed on the display unit. It has a display control circuit for controlling, and a control circuit for controlling each of the sensor 40, the arithmetic processing unit, and the display control unit 63 (see FIG. 4).
 演算処理部は、センサ40から送信された電気信号を処理し、呼吸振動データを算出するとともに、算出された呼吸振動データの時間変化に基づいて呼吸数を予測演算するプログラムを格納したROMと、算出された呼吸振動データを時系列で記憶するためのRAMと、所定の音声データ等を格納したEEPROMと、を有している。演算処理部は、計測された呼吸数を表示部に表示したり、音声出力部から警告アラームを発したりするといった動作の制御を行う。 The arithmetic processing unit processes the electrical signal transmitted from the sensor 40, calculates respiratory vibration data, and stores a program storing a program for predicting and calculating the respiratory rate based on the temporal change of the calculated respiratory vibration data; It has a RAM for storing the calculated respiratory vibration data in time series, and an EEPROM that stores predetermined audio data and the like. The arithmetic processing unit controls operations such as displaying the measured respiration rate on the display unit and issuing a warning alarm from the audio output unit.
 図5を参照して、電源スイッチ33は、バイタル計測器10の電源のオン/オフを操作するためのものである。モード切り替えスイッチ35は、リアルタイム計測モードと、メモリデータ閲覧モードとを切り替えるために使用される。リアルタイム計測モードを使用する場合には、例えば、警告アラーム機能が併用される。設定を超えた呼吸数が計測されたときには、警告音を発して、ユーザーにバイタル異常の発生を早期に知らせることが可能になっている。警告アラームは、例えば、呼吸数が30回/min以上に達したときや、8回/min以下に達したときに警告音が発せられるように設定することが好ましい。健常者の呼吸数は15~20回/min程度とされており、25回/minを越える場合には頻呼吸と判断されるためである。 Referring to FIG. 5, the power switch 33 is for operating the power of the vital measuring instrument 10 on / off. The mode switch 35 is used to switch between the real-time measurement mode and the memory data browsing mode. When using the real-time measurement mode, for example, a warning alarm function is used together. When the respiratory rate exceeding the setting is measured, a warning sound is emitted to notify the user of the occurrence of vital abnormality at an early stage. The warning alarm is preferably set so that a warning sound is emitted when the respiratory rate reaches 30 times / min or more, or when it reaches 8 times / min or less, for example. This is because the respiration rate of a healthy person is about 15 to 20 times / min, and if it exceeds 25 times / min, it is judged as tachypnea.
 波形確認スイッチ37は、RAMに記憶された呼吸振動の波形データを確認するためのものである。メモリデータ閲覧モードにおいて、左右それぞれの波形確認スイッチ37を押すことで、計測開始時の波形から計測終了時における波形を時系列に沿ってディスプレイ31に表示することが可能になっている。 The waveform confirmation switch 37 is for confirming the waveform data of the respiratory vibration stored in the RAM. By pressing the left and right waveform confirmation switches 37 in the memory data browsing mode, it is possible to display the waveform at the end of measurement from the waveform at the start of measurement on the display 31 in time series.
 ディスプレイ31の右端には、波形データに基づいて算出された呼吸数を表示することが可能になっている。図示されるように、例えば、1分間における呼吸数(RR:Respiratory Rate)が表示される。呼吸数は、波形計測の開始側の所定の時間(図中の編み掛け部分。例えば、15秒程度。)でサンプリングしたデータに基づいて算出され、表示部の右端にリアルタイムで表示させることが可能になっている。 The respiratory rate calculated based on the waveform data can be displayed on the right end of the display 31. As illustrated, for example, a respiratory rate (RR) for one minute is displayed. The respiration rate is calculated based on data sampled at a predetermined time on the waveform measurement start side (knitted portion in the figure. For example, about 15 seconds), and can be displayed in real time on the right end of the display unit. It has become.
 次に、実施形態に係るバイタル計測器の使用方法について説明する。 Next, a method for using the vital measuring instrument according to the embodiment will be described.
 図1に示すように、臥位患者の身体90とベッド80との間の隙間に感知部として機能する流体袋50を挿入する。流体袋50を小型化して形成しているため、身体90とベッド80との間に容易に挿入することができる。 As shown in FIG. 1, a fluid bag 50 that functions as a sensing unit is inserted into the gap between the body 90 of the supine patient and the bed 80. Since the fluid bag 50 is formed in a small size, it can be easily inserted between the body 90 and the bed 80.
 流体袋50上に患者が載置されると、支持部材71が流体袋50を押し上げるように支持する。この際、支持部材71が流体袋50を生体90に押し付けて密着性を向上させるため、体動などによる計測環境の変化に伴うノイズの発生が抑制される。また、支持部材71が患者自身の重みにより弾性的に変形するため、褥瘡等を患った患者や高齢者に対する負荷が小さい。そして、支持部材71および伸縮規制部材73は、患者から伝達される呼吸振動がベッド80へ拡散されてしまうことを防止する。このため、呼吸振動の拡散による感度の低下が招かれることがなく、感知部として機能する流体袋50を小型化しているにも関わらず、呼吸振動を好適に検出することができる。 When the patient is placed on the fluid bag 50, the support member 71 supports the fluid bag 50 so as to push it up. At this time, since the support member 71 presses the fluid bag 50 against the living body 90 to improve the adhesion, generation of noise due to a change in the measurement environment due to body movement or the like is suppressed. Further, since the support member 71 is elastically deformed by the patient's own weight, the load on the patient suffering from pressure ulcer and the like and the elderly is small. The support member 71 and the expansion / contraction restriction member 73 prevent the respiratory vibration transmitted from the patient from diffusing into the bed 80. For this reason, the sensitivity is not lowered due to the diffusion of the respiratory vibration, and the respiratory vibration can be suitably detected despite the downsizing of the fluid bag 50 that functions as the sensing unit.
 上述したように、本実施形態によれば、流体袋50の裏面53に配置された拡散防止部70は、流体袋50へ伝達された呼吸振動がベッド80へ拡散することを防止する。したがって、呼吸振動を好適に検出することが可能な小型化されたバイタル計測器10を提供することができ、バイタル計測器10を使用するユーザーの利便性の向上を図ることができる。 As described above, according to the present embodiment, the diffusion preventing unit 70 disposed on the back surface 53 of the fluid bag 50 prevents the respiratory vibration transmitted to the fluid bag 50 from diffusing to the bed 80. Therefore, it is possible to provide a miniaturized vital measuring instrument 10 capable of suitably detecting respiratory vibration, and to improve the convenience of the user who uses the vital measuring instrument 10.
 (拡散防止部の改変例)
 上述した実施形態にあっては、支持部材71と伸縮規制部材73とからなる2層構造の拡散防止部70を備えたバイタル計測器10について説明したが、本発明に係る拡散防止部70はこのような2層構造の形態のものに限定されるものではない。例えば、図6(A)~(C)に示されるように、支持部材71または伸縮規制部材73のみを流体袋50の裏面53に配置して、それぞれを個別に拡散防止部70として機能させることが可能である。
(Modification example of the diffusion prevention unit)
In the embodiment described above, the vital measuring instrument 10 including the diffusion prevention unit 70 having the two-layer structure composed of the support member 71 and the expansion / contraction restriction member 73 has been described. However, the diffusion prevention unit 70 according to the present invention is not limited to this. The present invention is not limited to such a two-layer structure. For example, as shown in FIGS. 6A to 6C, only the support member 71 or the expansion / contraction restriction member 73 is disposed on the back surface 53 of the fluid bag 50, and each of them functions individually as the diffusion preventing unit 70. Is possible.
 図6(A)に示すように、例えば、流体袋50に支持部材71のみを接着させた構成を採用することができる。流体としては空気を使用し、支持部材71をなす弾性体としてはラテックス製のバルーンを使用し、呼吸振動を検出するためのセンサ40としては無指向性マイクロフォンを使用している。なお図中省略するが、無指向性マイクロフォンは流体袋50の端部に配置し、検出部20から伝わる空気圧の変動を検出し、ケーブルを介して電気信号を制御部63へ送信する構造となっている。 As shown in FIG. 6A, for example, a configuration in which only the support member 71 is bonded to the fluid bag 50 can be employed. Air is used as the fluid, a latex balloon is used as the elastic body forming the support member 71, and an omnidirectional microphone is used as the sensor 40 for detecting respiratory vibration. Although not shown in the drawing, the omnidirectional microphone is arranged at the end of the fluid bag 50, detects a change in air pressure transmitted from the detection unit 20, and transmits an electric signal to the control unit 63 via a cable. ing.
 使用時には、臥位状態にある被験者の背中側に流体袋50を挿入した後、バルーンを拡張して生体90に対して流体袋50を密着させる。流体袋50を密着させることにより、効率的に呼吸振動を検出することが可能になっている。 At the time of use, after inserting the fluid bag 50 on the back side of the subject in the lying position, the balloon is expanded to bring the fluid bag 50 into close contact with the living body 90. By closely contacting the fluid bag 50, it is possible to efficiently detect respiratory vibrations.
 図6(B)に示すように、例えば、流体袋50に非伸縮性の高分子フィルムのみを接着させた構成を採用することができる。流体としては精製水を使用し、高分子フィルムとしては、例えば、厚さ0.1mm程度のPET樹脂を使用することが可能である。呼吸振動を検出するためのセンサ40として、圧力センサが使用されている。なお図中省略するが、圧力センサは流体袋50内部に配置せず、制御部63に配置し、検出部20から伝わる圧力の変動を検出させている。 As shown in FIG. 6B, for example, a configuration in which only the non-stretchable polymer film is bonded to the fluid bag 50 can be employed. As the fluid, purified water is used, and as the polymer film, for example, a PET resin having a thickness of about 0.1 mm can be used. A pressure sensor is used as the sensor 40 for detecting respiratory vibration. Although not shown in the figure, the pressure sensor is not disposed inside the fluid bag 50 but is disposed in the control unit 63 to detect a change in pressure transmitted from the detection unit 20.
 使用時には、臥位状態にある被験者の背中側に流体袋50が挿入される。流体袋50の裏面53に配置された伸縮規制部材73が、流体袋50全体の伸縮変形を抑制するため、流体袋50に伝達される呼吸振動の拡散が生じることを防止することができる。したがって、伸縮規制部材73を拡散防止部70として使用する場合には、生体90が配置されるベッド80に比較的柔軟な除圧ベッドなどが使用されていても、感度の低下が招かれることがなく、効率的に呼吸振動を検出することが可能になる。 When using, the fluid bag 50 is inserted on the back side of the subject in the lying position. Since the expansion / contraction restriction member 73 disposed on the back surface 53 of the fluid bag 50 suppresses expansion / contraction deformation of the entire fluid bag 50, it is possible to prevent diffusion of respiratory vibrations transmitted to the fluid bag 50. Therefore, when the expansion / contraction restriction member 73 is used as the diffusion preventing unit 70, the sensitivity may be lowered even if a relatively flexible pressure-reducing bed or the like is used as the bed 80 in which the living body 90 is disposed. Therefore, it is possible to efficiently detect respiratory vibration.
 図6(C)に示すように、例えば、流体袋50に一体的に形成され流体袋50の裏面53をなす伸縮規制部材73を拡散防止部70として機能させることができる。図示例にあっては、流体としてミネラルオイルを使用し、流体袋50の表面51を伸縮性に富んだ高伸縮性の素材によって構成し、流体袋50の裏面53を低伸縮性の素材によって構成した非対称構造が採用されている。 As shown in FIG. 6C, for example, the expansion / contraction restriction member 73 formed integrally with the fluid bag 50 and forming the back surface 53 of the fluid bag 50 can function as the diffusion preventing unit 70. In the illustrated example, mineral oil is used as the fluid, the surface 51 of the fluid bag 50 is made of a highly stretchable material rich in stretch, and the back surface 53 of the fluid bag 50 is made of a low stretch material. The asymmetric structure is adopted.
 流体袋50の裏面53が振動の拡散を防止する振動拡散防止面として機能するため、プレート形状の伸縮規制部材を設けた場合と同様に、身体が配置されるベッド80に比較的柔軟な除圧ベッドなどが使用されていても、感度の低下が招かれることがなく、効率的に呼吸振動を検出することが可能になっている。また、拡散防止部70が流体袋50に予め一体化させて製造されるため、別部材のプレート等を伸縮規制部に用いる場合と比べて、製造作業の簡略化を図ることが可能になっている。くわえて、プレート形状の伸縮規制部材を設けることによって生じ得る流体袋50の厚みの増加を抑制することができるため、より小型化されたバイタル計測器10を提供することが可能になっている。 Since the back surface 53 of the fluid bag 50 functions as a vibration diffusion preventing surface that prevents vibration diffusion, a relatively flexible pressure relief is applied to the bed 80 on which the body is placed, as in the case where a plate-shaped expansion / contraction restriction member is provided. Even if a bed or the like is used, it is possible to efficiently detect respiratory vibration without causing a decrease in sensitivity. In addition, since the diffusion preventing unit 70 is manufactured by being integrated with the fluid bag 50 in advance, it is possible to simplify the manufacturing operation as compared with the case where a separate plate or the like is used for the expansion / contraction restriction unit. Yes. In addition, since an increase in the thickness of the fluid bag 50 that can be caused by providing a plate-shaped expansion / contraction restriction member can be suppressed, it is possible to provide a more compact vital measuring instrument 10.
 流体袋50の表面51をなす高伸縮性の素材としては、例えば、天然ゴム、合成ゴム、エラストマーなどを用いることが可能である。また、流体としては、空気・水・オイル・高分子ゲルなどを使用することができる。流体袋50の裏面53をなす低伸縮性の素材としては、例えば、PET樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ナイロン樹脂、塩化ビニル樹脂などを用いることが可能である。エチレン酢酸ビニルコポリマーなど各種ビニルモノマーの共重合体を使用することもできる。また、表面51と裏面53における非対象構造を形成する方法として、例えば、表面51の素材および裏面53の素材を同一の材料で構成し可塑剤の含有量を異ならせることによって、表面51と裏面53の伸縮性を調整する方法を採用することも可能である。 As the highly stretchable material forming the surface 51 of the fluid bag 50, for example, natural rubber, synthetic rubber, elastomer, or the like can be used. As the fluid, air, water, oil, polymer gel, or the like can be used. As the low stretchable material forming the back surface 53 of the fluid bag 50, for example, PET resin, polyethylene resin, polypropylene resin, polyester resin, acrylic resin, urethane resin, nylon resin, vinyl chloride resin, or the like can be used. . Copolymers of various vinyl monomers such as ethylene vinyl acetate copolymer can also be used. Moreover, as a method of forming the non-target structure on the front surface 51 and the back surface 53, for example, the material of the front surface 51 and the material of the back surface 53 are made of the same material, and the contents of the plasticizer are made different. It is also possible to employ a method of adjusting the stretchability of 53.
 図示するように、例えば、流体袋50内にスポンジやバネなどの弾性部材75を挿入し、流体袋50の表面51および裏面53の一方の面を他方の面よりも押し広げて拡張させた状態とすることにより、面方向の伸縮性を機械的に調整する方法を採用することも可能である。 As shown in the figure, for example, an elastic member 75 such as a sponge or a spring is inserted into the fluid bag 50, and one of the front surface 51 and the rear surface 53 of the fluid bag 50 is expanded wider than the other surface. Thus, it is also possible to adopt a method of mechanically adjusting the stretchability in the surface direction.
 センサ40等の配置については図中省略するが、無指向性マイクロフォンは流体袋50の端部に配置し、検出部20から伝わる流体圧の変動を検出し、無線通信方式により計測データを制御部63へ送信する構造となっている。 Although the arrangement of the sensor 40 and the like is omitted in the drawing, the omnidirectional microphone is arranged at the end of the fluid bag 50, detects a change in fluid pressure transmitted from the detection unit 20, and controls the measurement data by a wireless communication method. The data is transmitted to 63.
 上述した実施形態は適宜変更することが可能である。 The embodiment described above can be changed as appropriate.
 流体袋50の設置箇所は、生体90との接触面積を向上させる観点から、図示されたように生体90の背中の中心付近に配置されるのが好ましいが、これに特に限定されるものではなく、生体90から伝達される呼吸振動を検出し得る限りにおいて適宜変更することが可能である。 From the viewpoint of improving the contact area with the living body 90, the installation location of the fluid bag 50 is preferably arranged near the center of the back of the living body 90 as illustrated, but is not particularly limited thereto. As long as the respiratory vibration transmitted from the living body 90 can be detected, it can be changed as appropriate.
 改変例において、流体袋50の裏面53が低伸縮性の素材によって構成された非対称構造を説明したが、例えば、支持部材71のように流体袋50を弾性的に支持する素材によって流体袋50の裏面53を構成させた非対称構造を採用することも可能である。 In the modified example, the asymmetric structure in which the back surface 53 of the fluid bag 50 is made of a low-stretch material has been described. For example, the fluid bag 50 is made of a material that elastically supports the fluid bag 50 such as the support member 71. It is also possible to adopt an asymmetric structure in which the back surface 53 is configured.
 また、流体袋50及び拡散防止部70を含む検出部20は、薄いほど生体90の下部への設置が容易になる。このことを踏まえ、検出部20を設置する際は、図7に示すように検出部20が薄型の格納カバー76に収納されている状態とし、検出部20を生体90の下部へ挿入した後、格納カバー76を図示するようにスライドさせ、支持部材71が自動的に拡張して、流体袋50を生体90へ圧着させる構造とすることも可能である。支持部材71にバルーンを用いた場合においては、適切な圧力になるように吸気、排気を自動制御することができる機構を設けても良い。 In addition, the detection unit 20 including the fluid bag 50 and the diffusion prevention unit 70 becomes easier to install in the lower part of the living body 90 as it is thinner. Based on this, when installing the detection unit 20, after the detection unit 20 is stored in a thin storage cover 76 as shown in FIG. The storage cover 76 can be slid as shown in the figure, and the support member 71 can be automatically expanded so that the fluid bag 50 is crimped to the living body 90. In the case where a balloon is used as the support member 71, a mechanism capable of automatically controlling intake and exhaust so as to obtain an appropriate pressure may be provided.
 センサ40の設置個数や設置箇所は特に限定されるものではなく、必要に応じて適宜変更することが可能である。例えば、流体袋50内部を複数個の部屋に分割し、それぞれの部屋ごとにセンサ40を配置することによって検出精度の向上を図ることができる。流体袋50の外形形状等も適宜変更することが可能であり、例えば、折り目が予め形成された蛇腹形状の流体袋50などを利用することによって、未使用時の流体袋50の小型化を図ることが可能である。 The number and location of the sensors 40 to be installed are not particularly limited, and can be changed as appropriate. For example, the detection accuracy can be improved by dividing the inside of the fluid bag 50 into a plurality of rooms and arranging the sensor 40 in each room. The outer shape and the like of the fluid bag 50 can be changed as appropriate. For example, by using the bellows-shaped fluid bag 50 in which folds are formed in advance, the fluid bag 50 when not in use is downsized. It is possible.
 <実施例1>
 図8には、上述した実施形態に係るバイタル計測器10を使用してエアーベッド上で計測した呼吸振動の計測データを示す。(A)は、流体袋50のみを備えた検出部による計測データを示す。(B)は、流体袋50に支持部材71を備えさせた検出部による計測データを示す。(C)は、流体袋50に伸縮規制部材73を備えさせた検出部による計測データを示す。(D)は、支持部材71及び伸縮規制部材73の両方を備えさせた検出部による計測データを示す。なお、図中の縦軸は圧力の変化を電圧値で示しており、横軸は計測時間を示している。流体袋50のみを備えた検出部による計測では呼吸振動波形がノイズに埋もれてしまっていているが、支持部材71や伸縮規制部材73を備えた検出部による計測では明瞭な呼吸振動波形が得られることが確認できた。
<Example 1>
In FIG. 8, the measurement data of the respiratory vibration measured on the air bed using the vital measuring device 10 which concerns on embodiment mentioned above are shown. (A) shows the measurement data by the detection part provided only with the fluid bag 50. FIG. (B) shows the measurement data by the detection part which provided the supporting member 71 in the fluid bag 50. FIG. (C) shows the measurement data by the detection part which provided the fluid bag 50 with the expansion-contraction restriction member 73. FIG. (D) shows the measurement data by the detection part provided with both the support member 71 and the expansion-contraction restriction member 73. FIG. In addition, the vertical axis | shaft in a figure has shown the change of the pressure by the voltage value, and the horizontal axis has shown measurement time. In the measurement by the detection unit including only the fluid bag 50, the respiratory vibration waveform is buried in noise, but in the measurement by the detection unit including the support member 71 and the expansion / contraction restriction member 73, a clear respiratory vibration waveform is obtained. I was able to confirm.
 <実施例2>
 次に、バイタル計測器10が備える流体袋50の好適な外形寸法の設計のために行われた実施例について説明する。なお、本発明に係るバイタル計測器の各部の寸法や形状等は、以下の説明において示される形態に限定されることはない。
<Example 2>
Next, the Example performed for the design of the suitable external dimension of the fluid bag 50 with which the vital measuring device 10 is provided is described. In addition, the dimension of each part of the vital measuring device based on this invention, a shape, etc. are not limited to the form shown in the following description.
 生体の背中には体表から隆起する背筋や背骨が存在するため、生体の背中は個人差があるものの凹凸した面形状を有する。このため、生体をベッドなどに載置させると、生体の背中とベッドの床面との間には隙間が形成される。簡単に説明すると、生体の背中は、略中央部分に縦方向に伸びる背骨があり、この背骨から左右略対称な位置には縦方向に伸びる背筋があり、背筋の間には凹状の体表面が形成される。したがって、生体の背中が床面等に載置されると、凹状の体表面と床面との間に隙間が形成される。 Since there are back muscles and spine that protrude from the body surface on the back of the living body, the back of the living body has an uneven surface shape although there are individual differences. For this reason, when a living body is placed on a bed or the like, a gap is formed between the back of the living body and the floor surface of the bed. Briefly, the back of a living body has a spine extending in the vertical direction at a substantially central portion, and there is a spine extending in the vertical direction at a position that is substantially symmetrical from the spine, and a concave body surface is formed between the spines. It is formed. Therefore, when the back of the living body is placed on the floor surface or the like, a gap is formed between the concave body surface and the floor surface.
 バイタル計測器を使用した計測において、例えば、流体袋50が過度に小さく設計されていると、上記の隙間に流体袋50が入り込んでしまって流体袋50が生体に接触しない状況が起こり得る。このような状態で計測が行われると、呼吸振動が流体袋50に十分に伝達されず、被験者の呼吸振動を検出することができなくなる。 In measurement using a vital measuring instrument, for example, if the fluid bag 50 is designed to be too small, the fluid bag 50 may enter the gap and the fluid bag 50 may not contact the living body. If measurement is performed in such a state, the respiratory vibration is not sufficiently transmitted to the fluid bag 50, and the subject's respiratory vibration cannot be detected.
 一方で、上記のような隙間に流体袋50が入り込むことを防止するために、流体袋50を過度に大きく設計すると、流体袋50において体と接触しない部分(流体袋50の内壁面等)への圧力分散が顕著に生じ、このような圧力分散に起因して、流体袋50の設置箇所のずれに伴う計測結果のばらつきが生じる。これにより、被験者の健康状態や病状の変化とは関係なく、使用の都度生じる設置箇所のずれに起因した計測結果のばらつきが発生するため、バイタル計測器10による呼吸数データの定量的な評価を行うことが難しくなる。また、このような計測結果のばらつきが生じることを防止するために、流体袋50の設置箇所の厳密な位置決めをユーザーに求めると、ユーザーに過度な負担を掛けることになり、使い勝手の悪いデバイスを提供することになってしまう。そこで、本実施例では、外形寸法の異なる複数種類の流体袋を使用した呼吸数の計測を実施し、その計測結果に基づき、設置箇所の影響による呼吸数データのばらつきや検出感度の低下を抑えることが可能な好適な流体袋の設計を試みた。以下に、本実施例の計測条件および計測結果をそれぞれ説明する。 On the other hand, if the fluid bag 50 is designed to be excessively large in order to prevent the fluid bag 50 from entering the gap as described above, the fluid bag 50 is moved to a portion that does not contact the body (such as the inner wall surface of the fluid bag 50). The pressure dispersion is noticeable, and due to such pressure dispersion, the measurement results vary due to the displacement of the installation location of the fluid bag 50. As a result, regardless of changes in the health condition or medical condition of the subject, variations in measurement results due to deviations in the installation location that occur each time use occurs, so quantitative evaluation of respiratory rate data by the vital measuring instrument 10 is possible. It becomes difficult to do. Further, in order to prevent such a variation in the measurement results, if the user is required to strictly position the installation location of the fluid bag 50, an excessive burden is placed on the user, and a device that is not easy to use is obtained. Will be provided. Therefore, in this embodiment, the respiration rate is measured using a plurality of types of fluid bags having different external dimensions, and based on the measurement result, variations in respiration rate data due to the influence of the installation location and a decrease in detection sensitivity are suppressed. An attempt was made to design a suitable fluid bag capable of. Below, the measurement conditions and measurement results of the present embodiment will be described.
 図9に示すように、流体袋50には、矩形状の外形形状を備える6つの流体袋a~fを使用した。図9中の長さLは流体袋50の長手方向の長さであり、幅Wは流体袋50の短手方向の長さである。なお、図10に示すように、流体袋50の長手方向は、生体の体軸Aに沿った方向に配置し、短手方向は生体の体軸Aと交差する方向に配置した。 As shown in FIG. 9, six fluid bags a to f having a rectangular outer shape are used for the fluid bag 50. The length L in FIG. 9 is the length of the fluid bag 50 in the longitudinal direction, and the width W is the length of the fluid bag 50 in the short direction. As shown in FIG. 10, the longitudinal direction of the fluid bag 50 is arranged in a direction along the body axis A of the living body, and the short side direction is arranged in a direction intersecting with the body axis A of the living body.
 呼吸数の計測は、各流体袋a~fを、図10に示す、C点、M点、E点の3つの測定箇所(挿入位置)に配置して行った。C点は被験者の背骨の中央部分であり、M点はC点から体軸Aと交差する方向に50mmずらした位置であり、E点はC点から体軸Aと交差する方向に100mmずらした位置である。体軸方向における設置位置は、C点、M点、E点ともに臍下周辺である。また、計測は、被験者A~Dの4人を対象にして行った。 The respiration rate was measured by arranging each fluid bag a to f at three measurement points (insertion positions) C point, M point, and E point shown in FIG. Point C is the central part of the subject's spine, point M is a position shifted by 50 mm in the direction intersecting body axis A from point C, and point E is shifted by 100 mm in the direction intersecting body axis A from point C. Position. The installation position in the body axis direction is around the navel at points C, M, and E. The measurement was performed on four subjects A to D.
 上記のように体軸と交差する方向に沿って所定の距離ずらした複数の場所で計測を行ったのは、次のような理由による。通常の使用態様ではバイタル計測器10を設置するユーザーは、被験者の側方に立ち、図10中の矢印で示すように、側方から生体と床面(ベッドやマットの載置面)との間に流体袋50を挿し込む作業を行うことが想定される。したがって、本実施例では、使用の都度生じる流体袋50の設置箇所の位置ずれは、体軸Aと交差する方向に生じ易くなることを考慮し、体軸Aと交差する方向における挿入位置の位置ずれの影響が計測結果にどのように反映されるかを検討するために、C点、M点、E点の3箇所で計測を行った。 Measured at a plurality of locations shifted by a predetermined distance along the direction intersecting the body axis as described above is as follows. In a normal usage mode, the user who installs the vital measuring instrument 10 stands on the side of the subject, and as shown by the arrows in FIG. 10, the living body and the floor surface (bed or mat placement surface) are seen from the side. It is assumed that the operation of inserting the fluid bag 50 in between is performed. Therefore, in the present embodiment, the position of the insertion position in the direction intersecting with the body axis A is considered in consideration that the displacement of the installation location of the fluid bag 50 that occurs every time it is used tends to occur in the direction intersecting with the body axis A. In order to examine how the influence of the deviation is reflected in the measurement result, measurement was performed at three points of C point, M point, and E point.
 図11は、各流体袋a~fの外形寸法・挿入位置と計測された呼吸出力との関係を示す図である。この図には、各被験者A~Dの呼吸出力、およびその呼吸出力の平均値が示される。 FIG. 11 is a diagram showing the relationship between the external dimensions and insertion positions of the fluid bags a to f and the measured respiratory output. In this figure, the respiratory outputs of subjects A to D and the average value of the respiratory outputs are shown.
 図12は、上記平均値とともに計測時に呼吸数が検出されなかった呼吸数非検出回数を示す図である。計測は、1つの流体袋につき35回実施しており、非検出回数は35回の計測のうち呼吸数が計測されなかった回数を示す数値である。 FIG. 12 is a diagram showing the number of respiratory rate non-detections in which the respiratory rate was not detected during measurement together with the average value. The measurement is performed 35 times per fluid bag, and the number of non-detections is a numerical value indicating the number of times the respiratory rate was not measured among the 35 measurements.
 図13は、各挿入位置C点、M点、E点における呼吸出力の出力比を示す図である。図13におけるC、M、Eのそれぞれは、図10に示したC点、M点、E点での各被験者A~Dの呼吸出力の平均値であり、M/C、E/Cのそれぞれは、C点での出力を基準とした呼吸出力の出力比を示す数値である。 FIG. 13 is a diagram showing the output ratio of respiratory output at each insertion position C point, M point, and E point. Each of C, M, and E in FIG. 13 is an average value of the respiratory output of each of the subjects A to D at points C, M, and E shown in FIG. 10, and each of M / C and E / C Is a numerical value indicating the output ratio of the respiratory output based on the output at point C.
 図11および図12に示すように、流体袋50のサイズが大きくなると、これに比例して、流体袋50が検出し得る呼吸出力の最大値が大きくなることが確認できる。また、図12に示すように、流体袋a、流体袋bを使用した計測においては、呼吸数を検出することができなかった呼吸数の非検出状態が観測されていることがわかる。これは、流体袋a、流体袋bでは幅Wが比較的小さく形成されるため、生体の背中と床面との間に形成された隙間内に流体袋が入り込んだ状態で計測が行われてしまい、流体袋が呼吸振動を検出できなかった、もしくは検出された呼吸振動が微弱であり呼吸数データを出力することができなかったことが原因であると考えらえる。 As shown in FIG. 11 and FIG. 12, it can be confirmed that the maximum value of the respiratory output that can be detected by the fluid bag 50 increases in proportion to the increase in the size of the fluid bag 50. Moreover, as shown in FIG. 12, in the measurement using the fluid bag a and the fluid bag b, it can be seen that a non-detected state of the respiratory rate in which the respiratory rate could not be detected was observed. This is because the fluid bag a and the fluid bag b are formed with a relatively small width W, and therefore the measurement is performed with the fluid bag entering the gap formed between the back and the floor of the living body. Therefore, it can be considered that the fluid bag could not detect the respiratory vibration, or the detected respiratory vibration was weak and the respiratory rate data could not be output.
 図11および図13に示す計測結果より、比較的大きなサイズの流体袋を使用した計測では、挿入位置との関係で呼吸出力にばらつきが生じることがわかる。これは、次のような理由による。 From the measurement results shown in FIGS. 11 and 13, it can be seen that in the measurement using a relatively large fluid bag, the respiratory output varies depending on the insertion position. This is due to the following reason.
 図11に示すように、比較的小さな外形寸法を備える流体袋aの各挿入位置C点、M点、E点における計測結果の平均値と、流体袋aよりも大きな外形寸法を備える流体袋bの各挿入位置C点、M点、E点における計測結果の平均値とを比較すると、流体袋bではM点とE点との呼吸出力に大きな差が見られるが、流体袋aでは流体袋bの計測結果に見られるような呼吸出力の差は見られない。前述したように、流体袋のサイズが大型化すると、大型化に伴って流体袋50内の圧力分散が生じ易くなる。また、流体袋の挿入位置が生体の背中の中心から挿入方向に沿って離れると、離れた距離に比例して、流体袋において呼吸振動を捉える検出部として機能しない部分の面積も大きくなるため、流体袋の大型化と相俟って挿入位置のずれによる検出感度の低下が顕著に生じる。これが、流体袋bを使用したときに呼吸出力にばらつきが生じる原因である。 As shown in FIG. 11, the average value of the measurement results at the insertion positions C, M, and E of the fluid bag a having a relatively small outer dimension, and the fluid bag b having an outer dimension larger than the fluid bag a. When the average values of the measurement results at each of the insertion positions C, M, and E are compared, the fluid bag b shows a large difference in the respiratory output between the points M and E, but the fluid bag a There is no difference in respiratory output as seen in the measurement result of b. As described above, when the size of the fluid bag is increased, pressure dispersion in the fluid bag 50 is easily generated as the size of the fluid bag is increased. In addition, when the insertion position of the fluid bag is separated from the center of the back of the living body along the insertion direction, the area of the portion that does not function as a detection unit that captures respiratory vibrations in the fluid bag is increased in proportion to the distance away, Along with the increase in the size of the fluid bag, the detection sensitivity significantly decreases due to the displacement of the insertion position. This is the reason why the breathing output varies when the fluid bag b is used.
 図13に示すように、中心位置C点の呼吸出力に対する挿入位置M点、挿入位置E点の呼吸出力の出力比から、挿入位置のずれに起因する検出感度のばらつきは、流体袋b、流体袋d、流体袋fを使用した計測で顕著に生じることが確認できる。この結果より、流体袋の幅Wが10mm~30mm程度で形成され、かつ、流体袋の長さLが100mm程度、もしくは長さLが100mm以上で形成される場合には、挿入位置のずれによる呼吸出力のばらつきが生じ易くなっていることがわかる。 As shown in FIG. 13, from the output ratio of the breathing output at the insertion position M point and the insertion position E point to the breathing output at the center position C point, the variation in detection sensitivity due to the displacement of the insertion position is the fluid bag b, the fluid It can be confirmed that the measurement using the bag d and the fluid bag f remarkably occurs. As a result, when the width W of the fluid bag is formed to be about 10 mm to 30 mm and the length L of the fluid bag is about 100 mm, or the length L is formed to be 100 mm or more, it is caused by the displacement of the insertion position. It can be seen that variations in respiratory output are likely to occur.
 以上、本実施例により、流体袋の幅Wが流体袋a、流体袋bと同程度の寸法で設計される場合には、生体の背中と床面との間の隙間に流体袋が入り込んでしまうことがあり、このようなときには流体袋で呼吸振動を捉えることができず、その結果、呼吸数を計測することができないといった問題が起こることがわかった。また、流体袋が流体袋b、流体袋d、流体袋fと同程度の寸法で設計される場合には、挿入位置のずれに伴う計測結果のばらつきが大きくなってしまうため、バイタル計測器を使用した定量的な呼吸数データの評価が難しくなり、ユーザーの利便性の低下を招いてしまうということがわかった。 As described above, according to this embodiment, when the width W of the fluid bag is designed with the same size as the fluid bag a and the fluid bag b, the fluid bag enters the gap between the back of the living body and the floor surface. In such a case, it has been found that the breathing vibration cannot be captured by the fluid bag, and as a result, the respiratory rate cannot be measured. In addition, when the fluid bag is designed with the same size as the fluid bag b, the fluid bag d, and the fluid bag f, the variation in the measurement result due to the displacement of the insertion position becomes large. It was found that it was difficult to evaluate the quantitative respiratory rate data used, resulting in a decrease in user convenience.
 一方で、流体袋c、流体袋eを使用した計測においては、上記のいずれの問題も生じることがなく、良好な計測結果を得ることができた。すなわち、バイタル計測器10が備える流体袋50は、幅Wが20mm~30mm程度で形成され、長さLが30mm~90mm(100mmより短い長さ)程度で形成されることが好ましく、さらに、幅Wが20mm以上30mm以下、長さLが30~70mmで形成されることがより好ましいということがわかった。 On the other hand, in the measurement using the fluid bag c and the fluid bag e, none of the above problems occurred, and a good measurement result could be obtained. That is, the fluid bag 50 included in the vital measuring instrument 10 is preferably formed with a width W of about 20 mm to 30 mm, and a length L of about 30 mm to 90 mm (length shorter than 100 mm). It was found that it is more preferable that W is formed to be 20 mm or more and 30 mm or less and the length L is 30 to 70 mm.
 <実施例3>
 次に、バイタル計測器10が備える流体袋50の裏面に設置される伸縮規制部材(裏打ち材)73の好適な厚さ寸法の設計のために行われた実施例について説明する。
<Example 3>
Next, an embodiment performed for designing a suitable thickness dimension of the expansion / contraction regulating member (backing material) 73 installed on the back surface of the fluid bag 50 provided in the vital measuring instrument 10 will be described.
 本実施例では、前述した実施例2において使用した流体袋a~fに、異なる厚さを備える裏打ち材73を設置して呼吸数の計測を実施し、裏打ち材73の厚さと呼吸振動の検出感度との関係について調べた。 In the present embodiment, the lining material 73 having different thicknesses is installed in the fluid bags a to f used in the above-described second embodiment, and the respiration rate is measured, and the thickness of the lining material 73 and the detection of the breathing vibration are detected. The relationship with sensitivity was examined.
 裏打ち材73には、厚さが、1mm、2mm、3mm、5mmの5つの非伸縮性のPET樹脂プレートを準備した。また、計測は、被験者A~Gの7人の被験者を対象にして行った。 For the backing material 73, five non-stretchable PET resin plates having thicknesses of 1 mm, 2 mm, 3 mm, and 5 mm were prepared. The measurement was performed on seven subjects, subjects A to G.
 図14には、呼吸出力の計測結果を示す。この結果より、裏打ち材73の厚さが増すほど、流体袋50の検知感度が向上する傾向にあることがわかる。特に、前述した実施例において好適な寸法であることが確認された流体袋c、および流体袋eについては、裏打ち材73の厚さが1mmから5mmへと増加するのに比例して検出感度も向上していることが確認できる。以上、本実施例により、バイタル計測器10に使用する裏打ち材73の厚さを、例えば、5mmに設計することにより、流体袋50の厚みの大幅な増加を抑えつつ、流体袋50の検出感度の向上を図ることができることが確認できた。 FIG. 14 shows the measurement result of the respiratory output. This result shows that the detection sensitivity of the fluid bag 50 tends to improve as the thickness of the backing material 73 increases. In particular, for the fluid bag c and the fluid bag e that have been confirmed to be suitable dimensions in the above-described embodiments, the detection sensitivity increases in proportion to the increase in the thickness of the backing material 73 from 1 mm to 5 mm. It can confirm that it has improved. As described above, according to the present embodiment, the thickness of the backing material 73 used in the vital measuring instrument 10 is designed to be, for example, 5 mm, thereby suppressing the significant increase in the thickness of the fluid bag 50 and detecting the sensitivity of the fluid bag 50. It was confirmed that the improvement of
 本出願は、2011年3月29日に出願された日本国特許出願第2011-072527号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2011-072527 filed on March 29, 2011, the disclosure of which is incorporated by reference in its entirety.
10  バイタル計測器、
20  検出部、
30  本体部、
40  センサ、
50  流体袋、
51  表面、
53  裏面、
70  拡散防止部、
71  支持部材、
73  伸縮規制部材、
75  弾性部材、
80  ベッド、
90  生体。
10 vital measuring instruments,
20 detector,
30 body part,
40 sensors,
50 fluid bags,
51 surface,
53 Back side,
70 Diffusion prevention part,
71 support members,
73 Expansion / contraction regulating member,
75 elastic members,
80 beds,
90 Living organisms.

Claims (6)

  1.  生体の呼吸数を計測するためのバイタル計測器であって、
     内部に流体を封入し、生体が載置される流体袋と、
     生体の呼吸振動に伴う前記流体袋内の圧力の変動を検出して電気信号に変換するセンサと、
     前記流体袋の生体側に配置される表面と反対の裏面に配置され、前記流体袋へ伝達される呼吸振動の拡散を防止する拡散防止部と、を有することを特徴とするバイタル計測器。
    A vital measuring instrument for measuring the respiration rate of a living body,
    A fluid bag in which a fluid is sealed and a living body is placed;
    A sensor that detects a change in pressure in the fluid bag accompanying a respiratory vibration of a living body and converts it into an electrical signal;
    A vital measuring instrument, comprising: a diffusion preventing unit disposed on a back surface opposite to the surface disposed on the living body side of the fluid bag, and preventing diffusion of respiratory vibrations transmitted to the fluid bag.
  2.  前記拡散防止部は、生体が前記流体袋に載置されたときに前記流体袋を弾性的に支持する支持部材を有することを特徴とする請求項1に記載のバイタル計測器。 2. The vital measuring instrument according to claim 1, wherein the diffusion preventing unit includes a support member that elastically supports the fluid bag when a living body is placed on the fluid bag.
  3.  前記拡散防止部は、前記流体袋の表面よりも面方向に伸縮変形し難く形成された伸縮規制部材を有することを特徴とする請求項1または請求項2に記載のバイタル計測器。 3. The vital measuring instrument according to claim 1, wherein the diffusion preventing part includes an expansion / contraction regulating member formed to be less likely to expand and contract in a plane direction than the surface of the fluid bag.
  4.  前記拡散防止部は、前記流体袋に一体的に形成されており、前記流体袋の裏面をなしていることを特徴とする請求項1~3のいずれか1項に記載のバイタル計測器。 The vital measuring instrument according to any one of claims 1 to 3, wherein the diffusion preventing part is formed integrally with the fluid bag and forms the back surface of the fluid bag.
  5.  生体の呼吸数を計測するためのバイタル計測器であって、
     内部に流体を封入し、生体が載置される流体袋と、
     生体の呼吸振動に伴う前記流体袋内の圧力の変動を検出して電気信号に変換するセンサと、
     前記流体袋の生体側に配置される表面と反対の裏面に配置され、生体が前記流体袋に載置されたときに前記流体袋を弾性的に支持する支持部材と、
     前記流体袋の裏面と前記支持部材との間に配置され、前記流体袋の表面よりも面方向に伸縮変形し難く形成された伸縮規制部材と、を有することを特徴とするバイタル計測器。
    A vital measuring instrument for measuring the respiration rate of a living body,
    A fluid bag in which a fluid is sealed and a living body is placed;
    A sensor that detects a change in pressure in the fluid bag accompanying a respiratory vibration of a living body and converts it into an electrical signal;
    A support member disposed on the back surface opposite to the surface disposed on the living body side of the fluid bag, and elastically supporting the fluid bag when the living body is placed on the fluid bag;
    A vital measuring instrument, comprising: an expansion / contraction regulating member disposed between the back surface of the fluid bag and the support member and formed to be less elastic to deform in a plane direction than the surface of the fluid bag.
  6.  前記流体袋は、生体の体軸方向に沿って配置される長辺の長さをLとし、前記体軸と交差する方向に沿って配置される短辺の長さをWとする矩形形状に形成される場合において、
     前記長辺の長さLが30mm以上90mm以下、かつ前記短辺の長さWが20mm以上30mm以下に形成される、ことを特徴とする請求項1~5のいずれか1項に記載のバイタル計測器。
    The fluid bag has a rectangular shape in which the length of the long side arranged along the body axis direction of the living body is L and the length of the short side arranged along the direction intersecting the body axis is W. When formed,
    6. The vital according to claim 1, wherein the length L of the long side is 30 mm or more and 90 mm or less, and the length W of the short side is 20 mm or more and 30 mm or less. Measuring instrument.
PCT/JP2012/056897 2011-03-29 2012-03-16 Vital sign-measuring instrument WO2012132967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-072527 2011-03-29
JP2011072527A JP2014113169A (en) 2011-03-29 2011-03-29 Vital measuring instrument

Publications (1)

Publication Number Publication Date
WO2012132967A1 true WO2012132967A1 (en) 2012-10-04

Family

ID=46930700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056897 WO2012132967A1 (en) 2011-03-29 2012-03-16 Vital sign-measuring instrument

Country Status (2)

Country Link
JP (1) JP2014113169A (en)
WO (1) WO2012132967A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325482B2 (en) * 2015-04-06 2018-05-16 バンドー化学株式会社 Capacitance type sensor sheet and sensor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120754A1 (en) * 2005-05-13 2006-11-16 Seijirou Tomita Biosignal detecting device
JP2011019879A (en) * 2009-07-15 2011-02-03 Sleep System Kenkyusho:Kk Sleep quality evaluation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120754A1 (en) * 2005-05-13 2006-11-16 Seijirou Tomita Biosignal detecting device
JP2011019879A (en) * 2009-07-15 2011-02-03 Sleep System Kenkyusho:Kk Sleep quality evaluation apparatus

Also Published As

Publication number Publication date
JP2014113169A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
EP3416603B1 (en) Support evaluation device
US20080097250A1 (en) Biological Information Measuring Panel, and Biological Information Measuring Device
US20090054792A1 (en) Heartbeat/respiration sensor and body monitor employing same
JP5256022B2 (en) Proximity sensor
AU2003291808B2 (en) Device and method for passive patient monitoring
JP5210264B2 (en) Device that collects and transmits biological information
JP4101768B2 (en) Wound factor measurement device
JP3543392B2 (en) Sleep respiration information measurement device
US11457848B2 (en) System and method for determining incontinence device replacement interval
EP1247488A1 (en) Biological information collecting device comprising closed pneumatic sound sensor
JP2014061223A (en) Vital measuring instrument
WO2012132967A1 (en) Vital sign-measuring instrument
JP2013066570A (en) Vital measuring instrument
EP3231407B1 (en) Support device with sensing elements
JP2002052009A (en) Air mat for measuring subject data
JP2013198618A (en) Vital measuring instrument
JP5006018B2 (en) Biological information measurement panel and biological information measurement system using the same
JP5036261B2 (en) Biological information measurement panel
CN114948501A (en) Automatic turning-over mattress and mattress control method
JP2008099957A (en) Sheet for measuring biometric information
WO2013042465A1 (en) Vital-sign-measuring instrument
JP3198194U (en) Biological measuring device
US20220029086A1 (en) Presence determination device
WO2013046926A1 (en) Vital-sign-measuring instrument
JP2014064654A (en) Vital measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP