WO2012132959A1 - Visual display device - Google Patents

Visual display device Download PDF

Info

Publication number
WO2012132959A1
WO2012132959A1 PCT/JP2012/056846 JP2012056846W WO2012132959A1 WO 2012132959 A1 WO2012132959 A1 WO 2012132959A1 JP 2012056846 W JP2012056846 W JP 2012056846W WO 2012132959 A1 WO2012132959 A1 WO 2012132959A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
display device
visual display
image
reflecting surface
Prior art date
Application number
PCT/JP2012/056846
Other languages
French (fr)
Japanese (ja)
Inventor
孝吉 研野
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012132959A1 publication Critical patent/WO2012132959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces

Definitions

  • the present invention relates to a visual display device capable of natural observation with both eyes.
  • Patent Documents 1 to 8 As visual display devices.
  • Patent Documents 1 to 4 are optical systems close to the present invention, but use two sets of display units each composed of a display element and an eyepiece optical system for observation with one eye.
  • Patent Documents 5 to 6 an intermediate image formed by a projector or the like is enlarged with a large concave mirror and observed with both eyes. Since the focal length of the concave mirror is longer than that of the eye, the occurrence of aberrations is reduced, and diopter and The problem of congestion deviation did not occur.
  • Patent Document 7 has a relatively short focal length, which causes problems of diopter and convergence of virtual images.
  • Patent Document 8 discloses a method of performing stereoscopic viewing with a lenticular lens and a convex lens.
  • Patent Documents 9 to 10 disclose an optical system of a head-mounted display using a holographic combiner, and an optical system of a concave mirror in which a reflecting surface is formed on a windshield in order to reduce production costs. Yes.
  • the visual display device includes: one image display surface for displaying an observation image; and an eyepiece optical system that forms two eye points for guiding the observation image to both eyes of the observer.
  • the eyepiece optical system has one reflecting surface having a positive refractive index disposed so as to face the two eye points, and performs reverse ray tracing from the two eye points to the image display surface.
  • the light beam emitted from the two eye points is reflected by the reflecting surface disposed so as to face the two eye points, and the light beam reflected by the reflecting surface is incident on the image display surface.
  • the following conditional expression (1) is satisfied.
  • S [m ⁇ 1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  • the central principal ray emitted from the two eye points from the center of the coordinate system is set to the center of the coordinate system of the center position of the central principal ray emitted from the two eye points.
  • a coordinate system having a positive direction of the Y axis and a positive direction of the X axis forming a right-handed system together with the positive direction of the Z axis and the positive direction of the Y axis.
  • the condition (2) is satisfied. ⁇ 300 ⁇ Fy ⁇ 100 (2)
  • Fy is the focal length of the reflecting surface in the Y-axis direction.
  • conditional expression (3) is satisfied. 0.9 ⁇ Fx / Fy ⁇ 1.1 (3)
  • Fx is the focal length of the reflecting surface in the X-axis direction
  • Fy is the focal length of the reflecting surface in the Y-axis direction
  • the reflecting surface has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, on the Y-axis having the same absolute value as the first value. Is smaller than the second curvature in the X-axis direction corresponding to the negative second value.
  • conditional expression (4) is satisfied.
  • S [m ⁇ 1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  • the reflecting surface is a free-form surface.
  • an aspect of the present invention is characterized in that an optical element having a refractive action is disposed closer to the image display surface than the reflection surface, and the transmission surface of the optical element is configured as a free-form surface.
  • the optical element has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis on the Y-axis having the same absolute value as the first value.
  • the shape is smaller than the second curvature in the X-axis direction corresponding to the negative second value.
  • the image display apparatus includes a lenticular lens that distributes the image displayed on the image display surface to the left and right eyes.
  • At least one of the reflecting surfaces is a semi-transmissive surface.
  • the transflective surface has a wavelength dependency.
  • FIG. 4 is a diagram showing lateral aberration charts of Example 1.
  • FIG. 4 is a diagram showing lateral aberration charts of Example 1.
  • FIG. 3 is a diagram showing a state in which a lenticular lens 45 is disposed between the image display surface 5 and the optical path of the optical element 4. It is an enlarged view near the lenticular lens 45.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 2.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 3.
  • FIG. 6 is a diagram showing lateral aberration charts of Example 3.
  • 6 is a graph showing a difference between a virtual image position due to diopter and a virtual image position due to convergence within the observation angle of view of Example 1, Example 2, and Example 3.
  • FIG. 3 is a graph showing distortion of Example 1. 6 is a graph showing distortion in Example 2. 10 is a graph showing distortion of Example 3.
  • optical system will be described based on examples.
  • FIG. 1 is a top view of a cross section including the optical paths of two central principal rays of the visual display device 1 according to the first embodiment.
  • the visual display device 1 includes one image display surface 5 that displays an observation image, and an eyepiece optical system 2 that forms two eye points E for guiding the observation image to both eyes of an observer.
  • the system 2 has one reflecting surface 4a having a positive refractive index disposed so as to face the two eye points E, and in order of back ray tracing from the two eye points E to the image display surface 2, A light beam emitted from one eye point E is reflected by the reflecting surface 4a arranged so as to face the two eye points E, and the light beam reflected by the reflecting surface 4a is incident on the image display surface 5, It is preferable that the conditional expression (1) is satisfied.
  • S [m ⁇ 1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  • HMD Head-Mounted-Display
  • the head-mounted display is positioned with respect to the observer's head because the means for relatively positioning the two eyepiece optical systems and the display element and the diameter of the eye point (exit pupil) corresponding to both eyes are small.
  • a complicated mechanism is required to give a sense of restraint to bring the device into contact with the observer's head and to maintain the positional relationship between the optical systems of both eyes.
  • the transmission type magnifying glass system using a convex lens or a Fresnel lens has a problem that the whole becomes large.
  • the convergence angle is made constant in the screen, the inclination of the virtual image plane is eliminated, and the difference between the diopter and the convergence is made ⁇ 1 [m ⁇ 1 ] or less.
  • conditional expression (1) a virtual image can be observed in the distance with both eyes, and the diopter of the virtual image and the vergence when observed with both eyes are the same, the observation angle of view is wide, and the structure is compact and has a small structure.
  • a simple visual display device can be provided.
  • the midpoint of the emission position of the central principal ray emitted from the two eye points E is defined as the center O of the coordinate system, and the central principal ray Rc emitted from the center point O of the coordinate system is the object plane 3.
  • the direction toward the intersecting point 3c is perpendicular to the positive direction of the Z axis, and is orthogonal to the line connecting the exit position Ec of the central principal ray Rc exiting from the two eye points E through the center O of the coordinate system and the positive direction of the Z axis.
  • the direction toward the image display surface 5 is as follows. It is preferable that the conditional expression (2) is satisfied. ⁇ 300 ⁇ Fy ⁇ 100 (2) However, Fy is the focal length of the reflecting surface 4a in the Y-axis direction.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the reflecting surface 4a becomes small, but the torsion of rays incident on both eyes becomes large and the eccentricity is large, resulting in large decentration aberrations. Correction becomes difficult. If the lower limit of conditional expression (2) is not reached, the reflecting surface 4a becomes large, and it becomes difficult to realize a small device.
  • Conditional expression (3) relates to astigmatism. Even if the upper limit of conditional expression (3) is exceeded or below the lower limit, astigmatism increases and it becomes difficult to observe a clear observation image.
  • the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis that is a negative second value on the Y-axis having the same absolute value as the first value.
  • the shape is preferably smaller than the corresponding second curvature in the X-axis direction.
  • the light beam emitted from the image display surface 5 travels toward the reflection surface while spreading toward both the left and right eyes, but has an eccentric arrangement, so the optical path length to the reflection surface is different above and below the viewing angle. For this reason, the opening angles of the left and right optical axes after reflection on the reflecting surface, that is, convergence are also different.
  • the diopter corresponding to the so-called focus position is adjusted so that the display surface is 2m ahead, but the convergence, that is, the angle formed by the left and right optical axes, does not have an intersection point 2m away, and is different at the top and bottom of the screen. Come on. In order to correct this, it is important to correct by increasing the curvature in the lateral (x) direction as going to the two-dimensional display element side.
  • the reflecting surface 4a is preferably a free-form surface.
  • the curvature in the X direction can be easily increased as it goes in the positive direction of the Y axis.
  • a field lens 6 as an optical element having a refractive action is arranged near the image display surface 5 from the reflection surface 4a, and the transmission surface 6b of the field lens 6 is configured by a free-form surface.
  • the transmission surface 6b As a free-form surface and disposing the field lens 6 having a refractive action close to the image display surface 5, it becomes possible to correct bow-shaped image distortion.
  • the field lens 6 has a negative second value on the Y-axis in which the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis has the same absolute value as the first value. It is preferable that the shape be larger than the second curvature in the X-axis direction corresponding to.
  • the field lens 6 has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis to a negative second value on the Y-axis having the same absolute value as the first value. More preferably, it is used simultaneously with the reflecting surface 4a having a shape smaller than the corresponding second curvature in the X-axis direction.
  • each pixel corresponds to the left and right eyes alternately.
  • At least one of the reflective surfaces is a semi-transmissive surface.
  • the reflecting surface By making the reflecting surface into a concave mirror shape, it becomes possible to observe a distant virtual image in which convergence and diopter coincide with each other even at an angle of view of 30 °.
  • a semi-transmissive concave mirror can be provided at low cost by forming a thin film having a semi-transmissive action on the concave mirror by vacuum deposition or the like.
  • the transflective surface has wavelength dependency.
  • An image can be displayed without darkening an external image by using a semi-transmission surface having a wavelength dependency.
  • the observed virtual image plane (object plane 3 on tracking) is assumed to be 2 m ahead, but this can be set arbitrarily.
  • the reflecting mirror 4a is manufactured by plastic injection molding, it is preferably a surface mirror.
  • a surface mirror By using a surface mirror, it is possible to avoid image degradation due to internal distortion that occurs during injection molding.
  • the field lens 6 has a high refractive index (MR-174, episulfide-based resin, refractive index 1.74, Abbe number 33) because aberrations are reduced.
  • the coordinate system is such that the midpoint of the emission position Ec of the central principal ray Rc emitted from the two eye points E is the center O of the coordinate system, and the two eye points E are defined from the center O of the coordinate system.
  • the direction toward the point 3c where the emitted central principal ray Rc intersects the object plane 3 is the positive direction of the Z axis, and the exit position Ec of the central principal ray Rc emitted from the two eye points E through the center O of the coordinate system is connected.
  • the right-handed orthogonal coordinate system is formed together with the positive direction of the Y-axis and the positive direction of the Z-axis and the positive direction of the Y-axis in the direction perpendicular to the elliptical line and the positive direction of the Z-axis and toward the image display surface 5.
  • FIG. 1 is a top view of a cross section including the optical path of the central principal ray of the visual display device 1 according to the first embodiment
  • FIG. 2 is an enlarged plan view of a part of the visual display device 1 according to the first embodiment
  • FIG. 4 is a graph showing the curvature of the reflecting surface in the horizontal direction.
  • lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
  • the visual display device 1 includes an eyepiece optical system 2 and an image display surface 5.
  • the eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
  • the reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 4, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis having the same absolute value as the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
  • the image display surface 5 is formed in a plane and displays an image in the plane.
  • the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a.
  • the reflection optical element 4 exits from the transmission surface 4 b and enters the image display surface 5.
  • FIG. 7 is a view showing a state in which the lenticular lens 45 is disposed between the optical path of the image display surface 5 and the optical element 4, and
  • FIG. 8 is an enlarged view of the vicinity of the lenticular lens 45.
  • the lenticular lens 45 is disposed between the optical path of the image display surface 5 and the optical element 4, and distributes the image displayed on the image display surface 5 to the left and right eyes.
  • the image display surface 5 can alternately correspond to the left-eye pixel 5L and the right-eye pixel 5R one by one as shown in FIG. Can be observed.
  • FIG. 9 is a top view of a cross section including the optical paths of two central principal rays of the visual display device 1 according to the second embodiment.
  • FIG. 10 is an enlarged plan view of a part of the visual display device 1 according to the second embodiment.
  • 11 is a view of the positive direction of the X axis from the YZ section.
  • FIG. 12 is a graph showing the horizontal curvature of the reflecting surface.
  • lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
  • the visual display device 1 includes an eyepiece optical system 2, an image display surface 5, and a field lens 6.
  • the eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
  • the reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 10, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis having the same absolute value as the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
  • the image display surface 5 is formed in a plane and displays an image in the plane.
  • the field lens 6 is disposed on the reflective optical element 4 side of the image display surface 5 and closer to the image display surface 5 than the reflective optical element 4, and spreads light rays accurately.
  • the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a.
  • the reflection optical element 4 exits from the transmission surface 4 b, enters the second surface 6 b of the lens 6, exits from the first surface 6 a, and enters the image display surface 5.
  • FIG. 15 is a top view of a cross section including the optical paths of the two central principal rays of the visual display device 1 according to the third embodiment.
  • FIG. 16 is an enlarged plan view of a part of the visual display device 1 according to the third embodiment.
  • 17 is a view of the positive direction of the X axis from the YZ section.
  • FIG. 18 is a graph showing the horizontal curvature of the reflecting surface, and
  • FIG. 19 is a graph showing the horizontal curvature of the field lens.
  • lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
  • the visual display device 1 includes an eyepiece optical system 2, an image display surface 5, and a field lens 6.
  • the eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
  • the reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 18, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis whose absolute value is equal to the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
  • the image display surface 5 is formed in a plane and displays an image in the plane.
  • the field lens 6 is disposed on the reflective optical element 4 side of the image display surface 5 and closer to the image display surface 5 than the reflective optical element 4, and spreads light rays accurately.
  • the second surface 6b which is a transmission surface, is a free-form surface, and as shown in FIG. 19, the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis is the first value. And a shape larger than the second curvature in the X-axis direction corresponding to the negative second value on the Y-axis having the same absolute value.
  • the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a.
  • the reflection optical element 4 exits from the transmission surface 4 b, enters the second surface 6 b that is the transmission surface of the field lens 6, exits from the first surface 6 a, and enters the image display surface 5.
  • FIG. 22 is a graph showing the difference S between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view of Example 1, Example 2, and Example 3.
  • the horizontal axis represents the virtual image position
  • the vertical axis represents the vertical angle of view.
  • FIG. 22 shows that the convergence angle in the screen is constant in the first embodiment, the second embodiment, and the third embodiment. Therefore, the virtual image position 10 due to the convergence is a constant value indicated by a straight line of a two-point difference line. is there.
  • the virtual image position 11 based on the diopter of Example 1 or the virtual image position 12 based on the diopter of Example 2 and the virtual image position 10 due to convergence have a predetermined difference S [m ⁇ 1 ] according to the vertical angle of view.
  • the difference between the virtual image position 11 due to the diopter of Example 1 and the virtual image position 10 due to convergence is S1
  • the difference between the virtual image position 12 due to the diopter according to Example 2 and the virtual image position 10 due to convergence is S2
  • the visual difference of Example 3 The difference between the virtual image position 13 due to the degree and the virtual image position 10 due to the convergence is indicated by S3.
  • Example 1 Example 2, and Example 3, the following conditional expression (4) is satisfied.
  • S [m ⁇ 1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  • Example 1 The configuration parameters of Example 1 and Example 2 are shown below.
  • “RE” indicates a reflecting surface.
  • the amount of eccentricity from the center O of the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the coordinate system defined by the center O
  • the tilt angles ( ⁇ , ⁇ , ⁇ (°), respectively) of the coordinate system defining each surface centered on the X axis, the Y axis, and the Z axis are given.
  • positive ⁇ and ⁇ mean counterclockwise rotation with respect to the positive direction of each axis
  • positive ⁇ means clockwise rotation with respect to the positive direction of the Z axis.
  • the ⁇ , ⁇ , and ⁇ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by ⁇ and then rotate it around the Z axis of another rotated new coordinate system by ⁇ . It is.
  • the eye width of the observer's eyes is indicated by the X eccentricity of the diaphragm St. In the optical path diagram in the horizontal section, the width is 60 mm.
  • optical action surfaces constituting the optical system of each embodiment when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.
  • the refractive index and the Abbe number are shown for d-line (wavelength 587.56 nm).
  • the unit of length is mm.
  • the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
  • the shape of the free-form surface FFS used in the embodiment is defined by the following equation (a). Note that the Z axis of the defining equation is the axis of the free-form surface FFS. The coefficient term for which no data is described is zero.
  • Example 1 Example 2
  • Example 3 Fy -162.256 -166.476 -211.235 fx -165.655 -160.491 -202.545 fx / fy 1.015 0.964 0.959
  • FIG. 23 is a graph showing the distortion of Example 1
  • FIG. 24 is a graph showing the distortion of Example 2
  • FIG. 25 is a graph showing the distortion of Example 3.
  • the thick solid line is distortion at an image height of 1.0 times in Example 1
  • the thin solid line is distortion at an image height of 0.7 times in Example 1
  • the thick broken line is distortion at an image height of 1.0 times in Example 2.
  • the thin broken line shows distortion at an image height of 0.7 times in Example 2
  • the thick dashed line shows distortion at an image height of 1.0 in Example 3
  • the thin dotted line shows 0.7 times the image height in Example 3. It is a distortion of time.
  • the convergence of both eyes is corrected to 0 (the inward angle 0.859 ° that coincides in 2 m ahead is 0).
  • the images displayed on the visual display devices 1 of the first, second, and third embodiments are almost rectangular and the image distortion is reduced.
  • the image display surface is described by taking a plane as an example. However, it is preferable to make the image display surface a curved surface so that the convergence and the diopter can be further matched. Further, by making the display element compatible with 3D, naked-eye 3D display is possible. For example, even when the left and right viewpoints are separated by using a parallax barrier or a lenticular lens, the left and right viewpoints are formed by the eyepiece optical system, so that autostereoscopic viewing is possible. Furthermore, 3D display in which the liquid crystal shutter glasses and the image display surface are switched synchronously is also possible. In addition, a method of changing the polarization direction for each fine scanning line and a method of using circularly polarized light can be used as they are because the polarization plane is maintained by the eyepiece optical system.
  • At least one reflecting surface is a semi-transmissive surface.
  • a semi-transmissive concave mirror can be provided at low cost by forming a thin film having a semi-transmissive action on the concave mirror by vacuum deposition or the like.
  • the semi-transmissive surface has wavelength dependency.
  • An image can be displayed without darkening an external image by using a semi-transmission surface having a wavelength dependency.

Abstract

A visual display device comprises: one image display screen which displays an observed image; and an ocular optical assembly which forms two eye points for directing the observed image to both eyes of an observer. The ocular optical assembly further comprises one reflecting surface which has a positive refraction and which is positioned facing the two eye points. In backlight tracking order from the two eye points to the image display screen, a light beam which exits the two eye points is reflected by the reflecting surface which is positioned facing the two eye points, the light beam after reflection by the reflecting surface enters the image display screen, and formula (1), following, is satisfied: -1.0 ≤ S ≤ 1.0 (1) Where S[m-1] is the difference between a virtual image location by visibility and a virtual image location by congestion within an observation angle of field.

Description

視覚表示装置Visual display device
 本発明は、両眼で自然な観察をすることが可能な視覚表示装置に関する。 The present invention relates to a visual display device capable of natural observation with both eyes.
 従来、視覚表示装置として、特許文献1~8に記載されたような技術がある。 Conventionally, there are technologies as described in Patent Documents 1 to 8 as visual display devices.
特許第3155335号公報Japanese Patent No. 3155335 特許第3155337号公報Japanese Patent No. 3155337 特許第3155341号公報Japanese Patent No. 3155341 特許第3994896号公報Japanese Patent No. 3994896 特開平1-290386号公報JP-A-1-290386 特開平11-38505号公報Japanese Patent Laid-Open No. 11-38505 特開2010-44177号公報JP 2010-44177 A 特開2011-85790号公報JP 2011-85790 A 特許第4816605号公報Japanese Patent No. 4816605 特開2006-103589号公報JP 2006-103589 A 特開2003-237411号公報JP 2003-237411 A
 特許文献1~4は本発明に近い光学系であるが、片眼に表示素子と接眼光学系からなる一組の表示ユニットを2組用いて観察するものである。また、特許文献5~6はプロジェクターなどで形成した中間像を大型の凹面鏡で拡大して両眼で観察するものであり、凹面鏡の焦点距離が眼福に比べ長いために収差発生少なく、視度と輻輳のズレの問題は起こらなかった。さらに、特許文献7は比較的焦点距離が短く、虚像の視度と輻輳の問題が生じていた。また、特許文献8は、レンチキュラーレンズと凸レンズで立体視を行う方法を開示している。また、特許文献9~10は、ヘッドマウントディスプレイの光学系で、ホログラフィックコンバイナーを使用したもの、及び制作費を安価にするためにフロントガラスに反射面を形成した凹面鏡の光学系が開示されている。 Patent Documents 1 to 4 are optical systems close to the present invention, but use two sets of display units each composed of a display element and an eyepiece optical system for observation with one eye. In Patent Documents 5 to 6, an intermediate image formed by a projector or the like is enlarged with a large concave mirror and observed with both eyes. Since the focal length of the concave mirror is longer than that of the eye, the occurrence of aberrations is reduced, and diopter and The problem of congestion deviation did not occur. Furthermore, Patent Document 7 has a relatively short focal length, which causes problems of diopter and convergence of virtual images. Patent Document 8 discloses a method of performing stereoscopic viewing with a lenticular lens and a convex lens. Patent Documents 9 to 10 disclose an optical system of a head-mounted display using a holographic combiner, and an optical system of a concave mirror in which a reflecting surface is formed on a windshield in order to reduce production costs. Yes.
 本発明の一形態では、視覚表示装置は、観察像を表示する1つの画像表示面と、前記観察像を観察者の両眼に導くための2つのアイポイントを形成する接眼光学系と、を備え、前記接眼光学系は、前記2つのアイポイントと対向するように配置された正の屈折率を有する1つの反射面を有し、前記2つのアイポイントから前記画像表示面に至る逆光線追跡の順に、前記2つのアイポイントを射出した光線は、前記2つのアイポイントと対向するように配置された前記反射面で反射し、前記反射面で反射した後の光線は、前記画像表示面に入射し、以下の条件式(1)を満足することを特徴とする。
    -1.0 ≦  S  ≦ 1.0          ・・・(1)
ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
In one aspect of the present invention, the visual display device includes: one image display surface for displaying an observation image; and an eyepiece optical system that forms two eye points for guiding the observation image to both eyes of the observer. The eyepiece optical system has one reflecting surface having a positive refractive index disposed so as to face the two eye points, and performs reverse ray tracing from the two eye points to the image display surface. In order, the light beam emitted from the two eye points is reflected by the reflecting surface disposed so as to face the two eye points, and the light beam reflected by the reflecting surface is incident on the image display surface. The following conditional expression (1) is satisfied.
-1.0 ≤ S ≤ 1.0 (1)
However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
 また、本発明の一形態では、前記2つのアイポイントから射出する中心主光線の射出位置の中点を座標系の中心とし、前記座標系の中心から前記2つのアイポイントから射出した中心主光線が物体面と交差する点に向かう方向をZ軸の正方向、前記座標系の中心を通り前記2つのアイポイントから射出する中心主光線の射出位置を結んだ線と前記Z軸の正方向とに直交し前記画像表示面に近づく側に向かう方向をY軸の正方向、及びZ軸の正方向とY軸の正方向と共に右手系を形成するX軸の正方向を有する座標系において、以下の条件式(2)を満足することを特徴とする。
    -300 < Fy < -100        ・・・(2)
ただし、
Fyは前記反射面のY軸方向の焦点距離
である。
In one embodiment of the present invention, the central principal ray emitted from the two eye points from the center of the coordinate system is set to the center of the coordinate system of the center position of the central principal ray emitted from the two eye points. Is the positive direction of the Z-axis, the direction going to the point intersecting the object plane, the line connecting the emission positions of the central principal rays that pass through the center of the coordinate system and exit from the two eye points, and the positive direction of the Z-axis In a coordinate system having a positive direction of the Y axis and a positive direction of the X axis forming a right-handed system together with the positive direction of the Z axis and the positive direction of the Y axis. The condition (2) is satisfied.
−300 <Fy <−100 (2)
However,
Fy is the focal length of the reflecting surface in the Y-axis direction.
 また、本発明の一形態では、以下の条件式(3)を満足することを特徴とする。
  0.9 < Fx/Fy < 1.1     ・・・(3)
ただし、
Fxは前記反射面のX軸方向の焦点距離、
Fyは前記反射面のY軸方向の焦点距離、
である。
In one embodiment of the present invention, the following conditional expression (3) is satisfied.
0.9 <Fx / Fy <1.1 (3)
However,
Fx is the focal length of the reflecting surface in the X-axis direction,
Fy is the focal length of the reflecting surface in the Y-axis direction,
It is.
 また、本発明の一形態では、前記反射面は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さいことを特徴とする。 In one embodiment of the present invention, the reflecting surface has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, on the Y-axis having the same absolute value as the first value. Is smaller than the second curvature in the X-axis direction corresponding to the negative second value.
 また、本発明の一形態では、以下の条件式(4)を満足することを特徴とする。
    -0.5 ≦  S  ≦ 0.5                ・・・(4)
ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
In one embodiment of the present invention, the following conditional expression (4) is satisfied.
-0.5 ≤ S ≤ 0.5 (4)
However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
 また、本発明の一形態では、前記反射面は、自由曲面であることを特徴とする。 In one embodiment of the present invention, the reflecting surface is a free-form surface.
 また、本発明の一形態では、前記反射面より前記画像表示面の近くに屈折作用を有する光学素子を配置し、前記光学素子の透過面を自由曲面で構成することを特徴とする。 Also, an aspect of the present invention is characterized in that an optical element having a refractive action is disposed closer to the image display surface than the reflection surface, and the transmission surface of the optical element is configured as a free-form surface.
 また、本発明の一形態では、前記光学素子は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状であることを特徴とする。 In one embodiment of the present invention, the optical element has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis on the Y-axis having the same absolute value as the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the negative second value.
 また、本発明の一形態では、前記画像表示面に表示された映像を左右の目に振り分けるレンチキュラーレンズを有することを特徴とする。 Further, according to an aspect of the present invention, the image display apparatus includes a lenticular lens that distributes the image displayed on the image display surface to the left and right eyes.
 また、本発明の一形態では、少なくとも1つの前記反射面は、半透過面であることを特徴とする。 In one embodiment of the present invention, at least one of the reflecting surfaces is a semi-transmissive surface.
 また、本発明の一形態では、前記半透過面は、波長依存性を有することを特徴とする。 In one embodiment of the present invention, the transflective surface has a wavelength dependency.
実施例1の視覚表示装置の2つの中心主光線の光路を含む断面を上から見た図である。It is the figure which looked at the cross section containing the optical path of two center chief rays of the visual display apparatus of Example 1 from the top. 実施例1の視覚表示装置の一部を拡大した図である。It is the figure which expanded a part of visual display apparatus of Example 1. FIG. YZ断面からX軸の正方向を見た図である。It is the figure which looked at the positive direction of the X-axis from the YZ cross section. 反射面の水平方向の曲率を示すグラフである。It is a graph which shows the curvature of the horizontal direction of a reflective surface. 実施例1の横収差図を示す図である。FIG. 4 is a diagram showing lateral aberration charts of Example 1. 実施例1の横収差図を示す図である。FIG. 4 is a diagram showing lateral aberration charts of Example 1. 画像表示面5と光学素子4の光路間にレンチキュラーレンズ45を配置した状態を示す図である。FIG. 3 is a diagram showing a state in which a lenticular lens 45 is disposed between the image display surface 5 and the optical path of the optical element 4. レンチキュラーレンズ45付近の拡大図である。It is an enlarged view near the lenticular lens 45. 実施例2の視覚表示装置の2つの中心主光線の光路を含む断面を上から見た図である。It is the figure which looked at the cross section containing the optical path of two center chief rays of the visual display apparatus of Example 2 from the top. 実施例2の視覚表示装置の一部を拡大した図である。It is the figure which expanded a part of visual display apparatus of Example 2. FIG. YZ断面からX軸の正方向を見た図である。It is the figure which looked at the positive direction of the X-axis from the YZ cross section. 反射面の水平方向の曲率を示すグラフである。It is a graph which shows the curvature of the horizontal direction of a reflective surface. 実施例2の横収差図を示す図である。FIG. 6 is a diagram showing lateral aberration charts of Example 2. 実施例2の横収差図を示す図である。FIG. 6 is a diagram showing lateral aberration charts of Example 2. 実施例3の視覚表示装置の2つの中心主光線の光路を含む断面を上から見た図である。It is the figure which looked at the cross section containing the optical path of the two center principal rays of the visual display apparatus of Example 3 from the top. 実施例3の視覚表示装置の一部を拡大した図である。It is the figure which expanded a part of visual display apparatus of Example 3. FIG. YZ断面からX軸の正方向を見た図である。It is the figure which looked at the positive direction of the X-axis from the YZ cross section. 反射面の水平方向の曲率を示すグラフである。It is a graph which shows the curvature of the horizontal direction of a reflective surface. フィールドレンズの水平方向の曲率を示すグラフである。It is a graph which shows the curvature of the horizontal direction of a field lens. 実施例3の横収差図を示す図である。FIG. 6 is a diagram showing lateral aberration charts of Example 3. 実施例3の横収差図を示す図である。FIG. 6 is a diagram showing lateral aberration charts of Example 3. 実施例1、実施例2及び実施例3の観察画角内において、視度による虚像位置と輻輳による虚像位置との差を示すグラフである。6 is a graph showing a difference between a virtual image position due to diopter and a virtual image position due to convergence within the observation angle of view of Example 1, Example 2, and Example 3. FIG. 実施例1のディストーションを示すグラフである。3 is a graph showing distortion of Example 1. 実施例2のディストーションを示すグラフである。6 is a graph showing distortion in Example 2. 実施例3のディストーションを示すグラフである。10 is a graph showing distortion of Example 3.
 以下、実施例に基づいて光学系について説明する。 Hereinafter, the optical system will be described based on examples.
 図1は、実施例1の視覚表示装置1の2つの中心主光線の光路を含む断面を上から見た図である。 FIG. 1 is a top view of a cross section including the optical paths of two central principal rays of the visual display device 1 according to the first embodiment.
 視覚表示装置1は、観察像を表示する1つの画像表示面5と、観察像を観察者の両眼に導くための2つのアイポイントEを形成する接眼光学系2と、を備え、接眼光学系2は、2つのアイポイントEと対向するように配置された正の屈折率を有する1つの反射面4aを有し、2つのアイポイントEから画像表示面5に至る逆光線追跡の順に、2つのアイポイントEを射出した光線は、2つのアイポイントEと対向するように配置された反射面4aで反射し、反射面4aで反射した後の光線は、画像表示面5に入射し、以下の条件式(1)を満足することが好ましい。
    -1.0 ≦  S  ≦ 1.0          ・・・(1)
ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
The visual display device 1 includes one image display surface 5 that displays an observation image, and an eyepiece optical system 2 that forms two eye points E for guiding the observation image to both eyes of an observer. The system 2 has one reflecting surface 4a having a positive refractive index disposed so as to face the two eye points E, and in order of back ray tracing from the two eye points E to the image display surface 2, A light beam emitted from one eye point E is reflected by the reflecting surface 4a arranged so as to face the two eye points E, and the light beam reflected by the reflecting surface 4a is incident on the image display surface 5, It is preferable that the conditional expression (1) is satisfied.
-1.0 ≤ S ≤ 1.0 (1)
However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
 従来、両眼にそれぞれ接眼光学系と表示素子を配置して観察像を提供するものとして、所謂ヘッドマウントディスプレイ:HMD(Head Mounted Display)がある。ヘッドマウントディスプレイは、2組の接眼光学系と表示素子を相対的に位置決めする手段や、両眼に対応するアイポイント(射出瞳)の径が小さいために、観察者頭部に対して位置決めする必要がある。したがって、観察者頭部に装置を接触させるために束縛感を与えたり、両眼の光学系の位置関係を保持する複雑な機構が必要である。 Conventionally, a so-called head-mounted display: HMD (Head-Mounted-Display) is known as one that provides an observation image by arranging an eyepiece optical system and a display element for each eye. The head-mounted display is positioned with respect to the observer's head because the means for relatively positioning the two eyepiece optical systems and the display element and the diameter of the eye point (exit pupil) corresponding to both eyes are small. There is a need. Therefore, a complicated mechanism is required to give a sense of restraint to bring the device into contact with the observer's head and to maintain the positional relationship between the optical systems of both eyes.
 また、凸レンズやフレネルレンズを使った透過型の虫眼鏡方式は全体が大きくなる問題があった。 Also, the transmission type magnifying glass system using a convex lens or a Fresnel lens has a problem that the whole becomes large.
 一方、反射鏡を使った偏心光路を取ると偏心収差が発生し、視度による虚像位置と輻輳による虚像位置がずれる問題がある。例えば、球面で反射鏡を構成すると、観察画角上側(視軸の表示素子側)に観察される像の輻輳角が大きくなり、手前に観察されてしまう。視度(虚像のピント位置)は中心画角で設定した2m先になっていても、両眼で観察される輻輳はそれより手前になってしまい、ひどい時は二重像に観察されてしまう不具合がある。これは表示素子と観察者の左右の眼球が3次元の偏心をしているためである。 On the other hand, if a decentered optical path using a reflecting mirror is taken, decentration aberrations occur, and there is a problem that the virtual image position due to diopter and the virtual image position due to convergence shift. For example, if the reflecting mirror is formed of a spherical surface, the angle of convergence of the image observed on the upper side of the observation angle of view (on the display element side of the visual axis) increases, and the image is observed in front. Even if the diopter (focus position of the virtual image) is 2m ahead set by the central angle of view, the convergence observed with both eyes will be closer to it, and if it is terrible, it will be observed as a double image There is a bug. This is because the display element and the left and right eyeballs of the observer are three-dimensionally eccentric.
 そこで、本実施形態では、画面内で輻輳角を一定にして、虚像面の傾きをなくし、視度と輻輳の差を±1[m-1]以下にする。 Therefore, in the present embodiment, the convergence angle is made constant in the screen, the inclination of the virtual image plane is eliminated, and the difference between the diopter and the convergence is made ± 1 [m −1 ] or less.
 条件式(1)を満足することで、両眼で遠方に虚像を観察でき、かつ、虚像の視度と両眼で観察した場合の輻輳が一致し、観察画角が広く、小型で構造が簡素な視覚表示装置を提供することが可能となる。 By satisfying conditional expression (1), a virtual image can be observed in the distance with both eyes, and the diopter of the virtual image and the vergence when observed with both eyes are the same, the observation angle of view is wide, and the structure is compact and has a small structure. A simple visual display device can be provided.
 条件式(1)の上限を上回ると、虚像面が曲がって見えてしまう。条件式(1)の下限を下回ると、平面映像で違和感を覚えてしまう。 If the upper limit of conditional expression (1) is exceeded, the virtual image plane will appear bent. If the lower limit of conditional expression (1) is not reached, the plane image will feel uncomfortable.
 また、2つのアイポイントEから射出する中心主光線の射出位置の中点を座標系の中心Oとし、座標系の中心Oから2つのアイポイントEを射出した中心主光線Rcが物体面3と交差する点3cへ向かう方向をZ軸の正方向、座標系の中心Oを通り2つのアイポイントEから射出する中心主光線Rcの射出位置Ecを結んだ線とZ軸の正方向とに直交し画像表示面5に近づく側に向かう方向をY軸の正方向、及びZ軸の正方向とY軸の正方向と共に右手直交座標系を形成するX軸の正方向を有する座標系において、以下の条件式(2)を満足することが好ましい。
    -300 < Fy < -100        ・・・(2)
ただし、
Fyは反射面4aのY軸方向の焦点距離
である。
The midpoint of the emission position of the central principal ray emitted from the two eye points E is defined as the center O of the coordinate system, and the central principal ray Rc emitted from the center point O of the coordinate system is the object plane 3. The direction toward the intersecting point 3c is perpendicular to the positive direction of the Z axis, and is orthogonal to the line connecting the exit position Ec of the central principal ray Rc exiting from the two eye points E through the center O of the coordinate system and the positive direction of the Z axis. In the coordinate system having the positive direction of the Y-axis and the positive direction of the X-axis forming the right-handed orthogonal coordinate system together with the positive direction of the Z-axis and the positive direction of the Y-axis, the direction toward the image display surface 5 is as follows. It is preferable that the conditional expression (2) is satisfied.
−300 <Fy <−100 (2)
However,
Fy is the focal length of the reflecting surface 4a in the Y-axis direction.
 条件式(2)の上限を上回ると、反射面4aは小型になるが、両眼に入射する光線のねじれが大きくなり偏心量の大きな3次元配置となるために偏心収差が大きく発生して、補正が困難となる。条件式(2)の下限を下回ると、反射面4aが大きくなり、小型の装置を実現することが難しくなる。 If the upper limit of conditional expression (2) is exceeded, the reflecting surface 4a becomes small, but the torsion of rays incident on both eyes becomes large and the eccentricity is large, resulting in large decentration aberrations. Correction becomes difficult. If the lower limit of conditional expression (2) is not reached, the reflecting surface 4a becomes large, and it becomes difficult to realize a small device.
 また、以下の条件式(3)を満足することが好ましい。
  0.9 < Fx/Fy < 1.1     ・・・(3)
ただし、
Fxは反射面4aのX軸方向の焦点距離、
Fyは反射面4aのY軸方向の焦点距離、
である。
Moreover, it is preferable that the following conditional expression (3) is satisfied.
0.9 <Fx / Fy <1.1 (3)
However,
Fx is the focal length of the reflecting surface 4a in the X-axis direction,
Fy is the focal length of the reflecting surface 4a in the Y-axis direction,
It is.
 条件式(3)は、非点収差に関するものである。条件式(3)の上限を上回っても、下限を下回っても、非点収差の発生が大きくなり、鮮明な観察像を観察することが困難となる。 Conditional expression (3) relates to astigmatism. Even if the upper limit of conditional expression (3) is exceeded or below the lower limit, astigmatism increases and it becomes difficult to observe a clear observation image.
 また、反射面4aは、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状であることが好ましい。 In addition, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis that is a negative second value on the Y-axis having the same absolute value as the first value. The shape is preferably smaller than the corresponding second curvature in the X-axis direction.
 画像表示面5から射出した光線は左右の両眼に向かうために広がりながら反射面に向かうが、偏心配置をとっているために、観察画角の上と下で反射面までの光路長が異なる。そのために反射面で反射後の左右の光軸の開き角つまり輻輳も異なってしまい。いわゆるピント位置に相当する視度は2m先に表示面があるように調整されているが、輻輳つまり左右の光軸のなす角度は2m先に交点が有るようにはならず、画面上下で異なって来る。これを補正する為に2次元表示素子側に行くにしたがって、横(x)方向の曲率を強くする事により補正することが重要である。 The light beam emitted from the image display surface 5 travels toward the reflection surface while spreading toward both the left and right eyes, but has an eccentric arrangement, so the optical path length to the reflection surface is different above and below the viewing angle. For this reason, the opening angles of the left and right optical axes after reflection on the reflecting surface, that is, convergence are also different. The diopter corresponding to the so-called focus position is adjusted so that the display surface is 2m ahead, but the convergence, that is, the angle formed by the left and right optical axes, does not have an intersection point 2m away, and is different at the top and bottom of the screen. Come on. In order to correct this, it is important to correct by increasing the curvature in the lateral (x) direction as going to the two-dimensional display element side.
 また、以下の条件式(4)を満足することが好ましい。
    -0.5 ≦  S  ≦ 0.5                ・・・(4)
ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
Moreover, it is preferable that the following conditional expression (4) is satisfied.
-0.5 ≤ S ≤ 0.5 (4)
However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
 条件式(1)と同様に、視度と輻輳がより一致すると見やすくなる。 As with conditional expression (1), it becomes easier to see when the diopter and the convergence are more consistent.
 さらに、以下の条件式(5)を満足することが好ましい。
    -0.1 ≦  S  ≦ 0.1                ・・・(5)
Furthermore, it is preferable that the following conditional expression (5) is satisfied.
-0.1 ≤ S ≤ 0.1 (5)
 また、反射面4aは、自由曲面であることが好ましい。 Further, the reflecting surface 4a is preferably a free-form surface.
 自由曲面x2y項を適切に与えることにより、Y軸の正方向に向かうにしたがって、X方向の曲率を強くすることが簡単に実現できる。 By appropriately giving the free-form surface x 2 y term, the curvature in the X direction can be easily increased as it goes in the positive direction of the Y axis.
 また、反射面4aより画像表示面5の近くに屈折作用を有する光学素子としてのフィールドレンズ6を配置し、フィールドレンズ6の透過面6bを自由曲面で構成することが好ましい。 Further, it is preferable that a field lens 6 as an optical element having a refractive action is arranged near the image display surface 5 from the reflection surface 4a, and the transmission surface 6b of the field lens 6 is configured by a free-form surface.
 透過面6bを自由曲面で構成し、屈折作用を有するフィールドレンズ6を、画像表示面5の近くに配置することで、弓なりな像歪みを補正することが可能となる。 By configuring the transmission surface 6b as a free-form surface and disposing the field lens 6 having a refractive action close to the image display surface 5, it becomes possible to correct bow-shaped image distortion.
 また、フィールドレンズ6は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも大きい形状であることが好ましい。 Further, the field lens 6 has a negative second value on the Y-axis in which the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis has the same absolute value as the first value. It is preferable that the shape be larger than the second curvature in the X-axis direction corresponding to.
 フィールドレンズ6をこのように構成することで、反射面4aで発生する弓なりの歪と台形の歪をフィールドレンズ6でうまく打ち消しあうことが可能となる。また、フィールドレンズ6は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状である反射面4aと同時に用いることがさらに好ましい。 By configuring the field lens 6 in this way, it becomes possible to successfully cancel the bow-shaped distortion and the trapezoidal distortion generated on the reflecting surface 4a with the field lens 6. Further, the field lens 6 has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis to a negative second value on the Y-axis having the same absolute value as the first value. More preferably, it is used simultaneously with the reflecting surface 4a having a shape smaller than the corresponding second curvature in the X-axis direction.
 また、画像表示面に表示された映像を左右の目に振り分けるレンチキュラーレンズを有することが好ましい。 It is also preferable to have a lenticular lens that distributes the image displayed on the image display surface to the left and right eyes.
 レンチキュラーレンズを有することで、各画素1つずつ交互に左右の目に対応させることで、自然な立体観察像を観察することが可能となる。 By having a lenticular lens, it is possible to observe a natural stereoscopic observation image by making each pixel correspond to the left and right eyes alternately.
 また、少なくとも1つの前記反射面は、半透過面であることが好ましい。反射面を凹面鏡形状にすることにより、画角30°でも輻輳と視度が一致した遠方の虚像を観察することが可能となる。さらに、凹面鏡に半透過作用を有する薄膜を真空蒸着等により成膜することにより、安価に半透過凹面鏡を提供することが可能となる。 Further, it is preferable that at least one of the reflective surfaces is a semi-transmissive surface. By making the reflecting surface into a concave mirror shape, it becomes possible to observe a distant virtual image in which convergence and diopter coincide with each other even at an angle of view of 30 °. Furthermore, a semi-transmissive concave mirror can be provided at low cost by forming a thin film having a semi-transmissive action on the concave mirror by vacuum deposition or the like.
 また、前記半透過面は、波長依存性を有することが好ましい。半透過面に波長依存性のあるものを用いることによって、外界像を暗くすることなく、像を表示することが可能となる。 Moreover, it is preferable that the transflective surface has wavelength dependency. An image can be displayed without darkening an external image by using a semi-transmission surface having a wavelength dependency.
 なお、観察される虚像面(追跡上は物体面3)は2m先を想定しているが、これは任意に設定できる。 The observed virtual image plane (object plane 3 on tracking) is assumed to be 2 m ahead, but this can be set arbitrarily.
 さらに、反射鏡4aをプラスチックの射出成形で製作する場合、表面鏡とすることが好ましい。表面鏡にすることにより、射出成形時に発生する内部歪による像の劣化を回避することが可能となる。 Furthermore, when the reflecting mirror 4a is manufactured by plastic injection molding, it is preferably a surface mirror. By using a surface mirror, it is possible to avoid image degradation due to internal distortion that occurs during injection molding.
 さらに、フィールドレンズ6は、屈折率の高い(MR-174 エピスルフィド系樹脂 屈折率1.74、アッベ数33)にすることにより収差の発生が小さくなり、好ましい。 Furthermore, it is preferable that the field lens 6 has a high refractive index (MR-174, episulfide-based resin, refractive index 1.74, Abbe number 33) because aberrations are reduced.
 以下に、視覚表示装置の実施例を説明する。光学系の構成パラメータは後記する。 Hereinafter, examples of the visual display device will be described. The configuration parameters of the optical system will be described later.
 座標系は、図1に示すように、2つのアイポイントEから射出する中心主光線Rcの射出位置Ecの中点を座標系の中心Oとし、座標系の中心Oから2つのアイポイントEを射出した中心主光線Rcが物体面3と交差する点3cへ向かう方向をZ軸の正方向、座標系の中心Oを通り2つのアイポイントEから射出する中心主光線Rcの射出位置Ecを結んだ線とZ軸の正方向とに直交し画像表示面5に近づく側に向かう方向をY軸の正方向、及びZ軸の正方向とY軸の正方向と共に右手直交座標系を形成するX軸の正方向を有する。 As shown in FIG. 1, the coordinate system is such that the midpoint of the emission position Ec of the central principal ray Rc emitted from the two eye points E is the center O of the coordinate system, and the two eye points E are defined from the center O of the coordinate system. The direction toward the point 3c where the emitted central principal ray Rc intersects the object plane 3 is the positive direction of the Z axis, and the exit position Ec of the central principal ray Rc emitted from the two eye points E through the center O of the coordinate system is connected. The right-handed orthogonal coordinate system is formed together with the positive direction of the Y-axis and the positive direction of the Z-axis and the positive direction of the Y-axis in the direction perpendicular to the elliptical line and the positive direction of the Z-axis and toward the image display surface 5. Has the positive direction of the axis.
 図1は実施例1の視覚表示装置1の中心主光線の光路を含む断面を上から見た図、図2は実施例1の視覚表示装置1の一部を拡大した平面図、図3はYZ断面からX軸の正方向を見た図である。また、図4は、反射面の水平方向の曲率を示すグラフである。さらに、この実施例の光学系全体の横収差図を図5及び図6に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。 FIG. 1 is a top view of a cross section including the optical path of the central principal ray of the visual display device 1 according to the first embodiment, FIG. 2 is an enlarged plan view of a part of the visual display device 1 according to the first embodiment, and FIG. It is the figure which looked at the positive direction of the X-axis from the YZ cross section. FIG. 4 is a graph showing the curvature of the reflecting surface in the horizontal direction. Further, lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
 視覚表示装置1は、接眼光学系2と、画像表示面5とを備える。 The visual display device 1 includes an eyepiece optical system 2 and an image display surface 5.
 接眼光学系2は、反射光学素子4を含み、観察像を観察者の両眼に導くための2つのアイポイントEを形成する。 The eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
 反射光学素子4は、反射面4a及び透過面4bを有する反射鏡からなる。図4に示すように、反射面4aは、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状である。 The reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 4, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis having the same absolute value as the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
 画像表示面5は、平面で形成されて画像を平面内に表示する。 The image display surface 5 is formed in a plane and displays an image in the plane.
 視覚表示装置1において、物体面3から入射する光束は、逆光線追跡で、射出瞳としてのアイポイントE、すなわち観察者眼球を射出して反射光学素子4に透過面4bから入射し、反射面4aで反射して、透過面4bから反射光学素子4を射出し、画像表示面5に入射する。 In the visual display device 1, the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a. The reflection optical element 4 exits from the transmission surface 4 b and enters the image display surface 5.
 このような視覚表示装置1では、観察者は、2つのアイポイントEに瞳をあわせると、画像表示面5に表示された画像を、図1に示した物体面3の位置に虚像として見ることができる。 In such a visual display device 1, when the observer puts his eyes on the two eye points E, the image displayed on the image display surface 5 is viewed as a virtual image at the position of the object surface 3 shown in FIG. 1. Can do.
 図7は画像表示面5と光学素子4の光路間にレンチキュラーレンズ45を配置した状態を示す図、図8はレンチキュラーレンズ45付近の拡大図である。 7 is a view showing a state in which the lenticular lens 45 is disposed between the optical path of the image display surface 5 and the optical element 4, and FIG. 8 is an enlarged view of the vicinity of the lenticular lens 45. FIG.
 図7に示すように、レンチキュラーレンズ45は、画像表示面5と光学素子4の光路間に配置され、画像表示面5に表示された映像を左右の目に振り分ける。 As shown in FIG. 7, the lenticular lens 45 is disposed between the optical path of the image display surface 5 and the optical element 4, and distributes the image displayed on the image display surface 5 to the left and right eyes.
 レンチキュラーレンズ45を有することで、画像表示面5は、図8に示すように、各画素1つずつ交互に左目用画素5Lと右目用画素5Rとに対応させることができ、自然な立体観察像を観察することが可能となる。 By having the lenticular lens 45, the image display surface 5 can alternately correspond to the left-eye pixel 5L and the right-eye pixel 5R one by one as shown in FIG. Can be observed.
 図9は実施例2の視覚表示装置1の2つの中心主光線の光路を含む断面を上から見た図、図10は実施例2の視覚表示装置1の一部を拡大した平面図、図11はYZ断面からX軸の正方向を見た図である。また、図12は、反射面の水平方向の曲率を示すグラフである。さらに、この実施例の光学系全体の横収差図を図13及び図14に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。 FIG. 9 is a top view of a cross section including the optical paths of two central principal rays of the visual display device 1 according to the second embodiment. FIG. 10 is an enlarged plan view of a part of the visual display device 1 according to the second embodiment. 11 is a view of the positive direction of the X axis from the YZ section. FIG. 12 is a graph showing the horizontal curvature of the reflecting surface. Further, lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
 視覚表示装置1は、接眼光学系2と、画像表示面5と、フィールドレンズ6と、を備える。 The visual display device 1 includes an eyepiece optical system 2, an image display surface 5, and a field lens 6.
 接眼光学系2は、反射光学素子4を含み、観察像を観察者の両眼に導くための2つのアイポイントEを形成する。 The eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
 反射光学素子4は、反射面4a及び透過面4bを有する反射鏡からなる。図10に示すように、反射面4aは、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状である。 The reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 10, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis having the same absolute value as the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
 画像表示面5は、平面で形成されて画像を平面内に表示する。 The image display surface 5 is formed in a plane and displays an image in the plane.
 フィールドレンズ6は、画像表示面5の反射光学素子4側であって、反射光学素子4よりも画像表示面5の近くに配置され、光線を的確に広げる。 The field lens 6 is disposed on the reflective optical element 4 side of the image display surface 5 and closer to the image display surface 5 than the reflective optical element 4, and spreads light rays accurately.
 視覚表示装置1において、物体面3から入射する光束は、逆光線追跡で、射出瞳としてのアイポイントE、すなわち観察者眼球を射出して反射光学素子4に透過面4bから入射し、反射面4aで反射して、透過面4bから反射光学素子4を射出し、レンズ6の第2面6bに入射し、第1面6aから射出し、画像表示面5に入射する。 In the visual display device 1, the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a. The reflection optical element 4 exits from the transmission surface 4 b, enters the second surface 6 b of the lens 6, exits from the first surface 6 a, and enters the image display surface 5.
 このような視覚表示装置1では、観察者は、2つのアイポイントEに瞳をあわせると、画像表示面5に表示された画像を、図9に示した物体面3の位置に虚像として見ることができる。 In such a visual display device 1, when the observer puts his eyes on the two eye points E, the observer sees the image displayed on the image display surface 5 as a virtual image at the position of the object plane 3 shown in FIG. 9. Can do.
 図15は実施例3の視覚表示装置1の2つの中心主光線の光路を含む断面を上から見た図、図16は実施例3の視覚表示装置1の一部を拡大した平面図、図17はYZ断面からX軸の正方向を見た図である。また、図18は反射面の水平方向の曲率を示すグラフ、図19はフィールドレンズの水平方向の曲率を示すグラフである。さらに、この実施例の光学系全体の横収差図を図20及び図21に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。 15 is a top view of a cross section including the optical paths of the two central principal rays of the visual display device 1 according to the third embodiment. FIG. 16 is an enlarged plan view of a part of the visual display device 1 according to the third embodiment. 17 is a view of the positive direction of the X axis from the YZ section. FIG. 18 is a graph showing the horizontal curvature of the reflecting surface, and FIG. 19 is a graph showing the horizontal curvature of the field lens. Further, lateral aberration diagrams of the entire optical system of this example are shown in FIGS. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show.
 視覚表示装置1は、接眼光学系2と、画像表示面5と、フィールドレンズ6と、を備える。 The visual display device 1 includes an eyepiece optical system 2, an image display surface 5, and a field lens 6.
 接眼光学系2は、反射光学素子4を含み、観察像を観察者の両眼に導くための2つのアイポイントEを形成する。 The eyepiece optical system 2 includes a reflective optical element 4 and forms two eye points E for guiding the observation image to both eyes of the observer.
 反射光学素子4は、反射面4a及び透過面4bを有する反射鏡からなる。図18に示すように、反射面4aは、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状である。 The reflective optical element 4 includes a reflecting mirror having a reflecting surface 4a and a transmitting surface 4b. As shown in FIG. 18, the reflecting surface 4a has a first curvature in the X-axis direction corresponding to a positive first value on the Y-axis, and a negative value on the Y-axis whose absolute value is equal to the first value. The shape is smaller than the second curvature in the X-axis direction corresponding to the second value.
 画像表示面5は、平面で形成されて画像を平面内に表示する。 The image display surface 5 is formed in a plane and displays an image in the plane.
 フィールドレンズ6は、画像表示面5の反射光学素子4側であって、反射光学素子4よりも画像表示面5の近くに配置され、光線を的確に広げる。透過面である第2面6bは、自由曲面であり、図19に示すように、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも大きい形状である。 The field lens 6 is disposed on the reflective optical element 4 side of the image display surface 5 and closer to the image display surface 5 than the reflective optical element 4, and spreads light rays accurately. The second surface 6b, which is a transmission surface, is a free-form surface, and as shown in FIG. 19, the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis is the first value. And a shape larger than the second curvature in the X-axis direction corresponding to the negative second value on the Y-axis having the same absolute value.
 視覚表示装置1において、物体面3から入射する光束は、逆光線追跡で、射出瞳としてのアイポイントE、すなわち観察者眼球を射出して反射光学素子4に透過面4bから入射し、反射面4aで反射して、透過面4bから反射光学素子4を射出し、フィールドレンズ6の透過面である第2面6bに入射し、第1面6aから射出し、画像表示面5に入射する。 In the visual display device 1, the light beam incident from the object plane 3 is reflected by the backward ray tracing, exits the eye point E as an exit pupil, that is, the observer's eyeball, enters the reflective optical element 4 from the transmission surface 4 b, and reflects the reflection surface 4 a. The reflection optical element 4 exits from the transmission surface 4 b, enters the second surface 6 b that is the transmission surface of the field lens 6, exits from the first surface 6 a, and enters the image display surface 5.
 このような視覚表示装置1では、観察者は、2つのアイポイントEに瞳をあわせると、画像表示面5に表示された画像を、図15に示した物体面3の位置に虚像として見ることができる。 In such a visual display device 1, when the observer puts his eyes on the two eye points E, the image displayed on the image display surface 5 is viewed as a virtual image at the position of the object plane 3 shown in FIG. 15. Can do.
 図22は、実施例1、実施例2、及び実施例3の観察画角内において、視度による虚像位置と輻輳による虚像位置との差Sを示すグラフである。横軸は虚像位置、縦軸は上下画角を示している。 FIG. 22 is a graph showing the difference S between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view of Example 1, Example 2, and Example 3. The horizontal axis represents the virtual image position, and the vertical axis represents the vertical angle of view.
 図22は、実施例1、実施例2、及び実施例3においては、画面内の輻輳角を一定にしているので、輻輳による虚像位置10は、二点差線の直線で示された一定値である。実施例1の視度による虚像位置11又は実施例2の視度による虚像位置12と、輻輳による虚像位置10とは、上下画角に応じて所定の差S[m-1]を有する。実施例1の視度による虚像位置11と輻輳による虚像位置10との差はS1、実施例2の視度による虚像位置12と輻輳による虚像位置10との差はS2、及び実施例3の視度による虚像位置13と輻輳による虚像位置10との差はS3で示している。 FIG. 22 shows that the convergence angle in the screen is constant in the first embodiment, the second embodiment, and the third embodiment. Therefore, the virtual image position 10 due to the convergence is a constant value indicated by a straight line of a two-point difference line. is there. The virtual image position 11 based on the diopter of Example 1 or the virtual image position 12 based on the diopter of Example 2 and the virtual image position 10 due to convergence have a predetermined difference S [m −1 ] according to the vertical angle of view. The difference between the virtual image position 11 due to the diopter of Example 1 and the virtual image position 10 due to convergence is S1, the difference between the virtual image position 12 due to the diopter according to Example 2 and the virtual image position 10 due to convergence is S2, and the visual difference of Example 3 The difference between the virtual image position 13 due to the degree and the virtual image position 10 due to the convergence is indicated by S3.
 実施例1、実施例2、及び実施例3では、以下の条件式(4)を満足している。
    -0.5 ≦  S  ≦ 0.5                ・・・(4)
ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
In Example 1, Example 2, and Example 3, the following conditional expression (4) is satisfied.
-0.5 ≤ S ≤ 0.5 (4)
However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
 以下に、上記実施例1及び実施例2の構成パラメータを示す。なお、以下の表中の “RE”は反射面を示す。 The configuration parameters of Example 1 and Example 2 are shown below. In the table below, “RE” indicates a reflecting surface.
 偏心面については、その面が定義される座標系の中心Oからの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、中心Oに定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。 For the eccentric surface, the amount of eccentricity from the center O of the coordinate system in which the surface is defined (X, Y, and Z are X, Y, and Z, respectively) and the coordinate system defined by the center O The tilt angles (α, β, γ (°), respectively) of the coordinate system defining each surface centered on the X axis, the Y axis, and the Z axis are given. In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.
 観察者両眼の眼幅が絞りStのX偏心で示されている。水平断面での光路図では、幅60mmで示されている。 The eye width of the observer's eyes is indicated by the X eccentricity of the diaphragm St. In the optical path diagram in the horizontal section, the width is 60 mm.
 また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。 Further, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.
 また、屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。 Also, the refractive index and the Abbe number are shown for d-line (wavelength 587.56 nm). The unit of length is mm. The eccentricity of each surface is expressed by the amount of eccentricity from the reference surface as described above.
 また、実施形態で用いられる自由曲面FFSの形状は、以下の式(a)で定義されるものである。なお、その定義式のZ軸が自由曲面FFSの軸となる。なお、データの記載されていない係数項は0である。 Further, the shape of the free-form surface FFS used in the embodiment is defined by the following equation (a). Note that the Z axis of the defining equation is the axis of the free-form surface FFS. The coefficient term for which no data is described is zero.
  Z=(r/R)/[1+√{1-(1+k)(r/R)}]
                    66
                   +Σ C・・・(a)
                    j=1 
ここで、(a)式の第1項は球面項、第2項は自由曲面項である。
また、球面項中、
R:頂点の曲率半径
k:コーニック定数(円錐定数)
r=√(X+Y
である。
Z = (r 2 / R) / [1 + √ {1- (1 + k) (r / R) 2 }]
66
+ Σ C j X m Y n (a)
j = 1
Here, the first term of the equation (a) is a spherical term, and the second term is a free-form surface term.
In the spherical term,
R: radius of curvature of apex k: conic constant (conical constant)
r = √ (X 2 + Y 2 )
It is.
 自由曲面項は、
 66
 Σ C
 j=1 
 =C
 +CX+C
 +C+CXY+C
 +C+CY+CXY+C10
 +C11+C12Y+C13+C14XY+C15
 +C16+C17Y+C18+C19+C20XY
 +C21
 +C22+C23Y+C24+C25+C26
 +C27XY+C28
 +C29+C30Y+C31+C32+C33
 +C34+C35XY+C36
 ・・・・・・
ただし、C(jは1以上の整数)は係数である。
The free-form surface term is
66
ΣC j X m Y n
j = 1
= C 1
+ C 2 X + C 3 Y
+ C 4 X 2 + C 5 XY + C 6 Y 2
+ C 7 X 3 + C 8 X 2 Y + C 9 XY 2 + C 10 Y 3
+ C 11 X 4 + C 12 X 3 Y + C 13 X 2 Y 2 + C 14 XY 3 + C 15 Y 4
+ C 16 X 5 + C 17 X 4 Y + C 18 X 3 Y 2 + C 19 X 2 Y 3 + C 20 XY 4
+ C 21 Y 5
+ C 22 X 6 + C 23 X 5 Y + C 24 X 4 Y 2 + C 25 X 3 Y 3 + C 26 X 2 Y 4
+ C 27 XY 5 + C 28 Y 6
+ C 29 X 7 + C 30 X 6 Y + C 31 X 5 Y 2 + C 32 X 4 Y 3 + C 33 X 3 Y 4
+ C 34 X 2 Y 5 + C 35 XY 6 + C 36 Y 7
・ ・ ・ ・ ・ ・
However, C j (j is an integer of 1 or more) is a coefficient.
実施例1
面番号  曲率半径        面間隔 偏心   屈折率 アッベ数
物体面   ∞         -2000.00
  s1    ∞(絞り)                0.00  偏心(1) 
  s2   FFS[1]           0.00 偏心(2)   1.4918  57.4
  s3   FFS[1](RE)         0.00  偏心(3)   1.4918  57.4
  s4   FFS[1]           0.00 偏心(2) 
像面    ∞                  偏心(4) 

      FFS[1]
C4  -1.4998e-003
C6  -1.5217e-003
C8  -6.5441e-007
C10 -3.2453e-008
C11 -7.4599e-009
C13 -1.5383e-008
C15 -1.7191e-009

      偏心[1] 
X  30.00 Y   0.00 Z   0.00
α   0.00 β   0.00 γ   0.00

      偏心[2] 
X   0.00 Y   0.00 Z 253.53
α -15.00 β   0.00 γ   0.00

      偏心[3] 
X   0.00 Y   0.00 Z 258.53
α -15.00 β   0.00 γ   0.00

      偏心[4] 
X   0.00 Y  78.23 Z 123.79
α  -9.03 β   0.00 γ   0.00
Example 1
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ -2000.00
s1 ∞ (diaphragm) 0.00 Eccentricity (1)
s2 FFS [1] 0.00 Eccentricity (2) 1.4918 57.4
s3 FFS [1] (RE) 0.00 Eccentricity (3) 1.4918 57.4
s4 FFS [1] 0.00 Eccentricity (2)
Image plane ∞ Eccentricity (4)

FFS [1]
C4 -1.4998e-003
C6 -1.5217e-003
C8 -6.5441e-007
C10 -3.2453e-008
C11 -7.4599e-009
C13 -1.5383e-008
C15 -1.7191e-009

Eccentric [1]
X 30.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00

Eccentric [2]
X 0.00 Y 0.00 Z 253.53
α -15.00 β 0.00 γ 0.00

Eccentric [3]
X 0.00 Y 0.00 Z 258.53
α -15.00 β 0.00 γ 0.00

Eccentric [4]
X 0.00 Y 78.23 Z 123.79
α -9.03 β 0.00 γ 0.00
実施例2
面番号  曲率半径        面間隔 偏心   屈折率 アッベ数
物体面   ∞         -2000.00
  s1    ∞(絞り)                0.00  偏心(1) 
  s2   FFS[1]           0.00 偏心(2)   1.4918  57.4
  s3   FFS[1] (RE)        0.00 偏心(3)   1.4918  57.4
  s4   FFS[1]           0.00 偏心(2) 
  s5   -100.00          -25.00 偏心(4)  1.4918  57.4
  s6    ∞             0.00
像面    ∞

             FFS[1]
C4  -1.5382e-003
C6  -1.4836e-003
C8  -1.6606e-007
C10  1.2583e-007
C11 -5.5675e-009
C13 -1.0517e-008
C15 -2.9854e-009

      偏心[1] 
X  30.00 Y   0.00 Z   0.00
α   0.00 β   0.00 γ   0.00

      偏心[2] 
X   0.00 Y   0.00 Z 251.81
α -15.00 β   0.00 γ   0.00

      偏心[3] 
X   0.00 Y   0.00 Z 256.81
α -15.00 β   0.00 γ   0.00

      偏心[4] 
X   0.00 Y  74.88 Z 142.46
α  -5.60 β   0.00 γ   0.00
Example 2
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ -2000.00
s1 ∞ (diaphragm) 0.00 Eccentricity (1)
s2 FFS [1] 0.00 Eccentricity (2) 1.4918 57.4
s3 FFS [1] (RE) 0.00 Eccentricity (3) 1.4918 57.4
s4 FFS [1] 0.00 Eccentricity (2)
s5 -100.00 -25.00 Eccentricity (4) 1.4918 57.4
s6 ∞ 0.00
Image plane ∞

FFS [1]
C4 -1.5382e-003
C6 -1.4836e-003
C8 -1.6606e-007
C10 1.2583e-007
C11 -5.5675e-009
C13 -1.0517e-008
C15 -2.9854e-009

Eccentric [1]
X 30.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00

Eccentric [2]
X 0.00 Y 0.00 Z 251.81
α -15.00 β 0.00 γ 0.00

Eccentric [3]
X 0.00 Y 0.00 Z 256.81
α -15.00 β 0.00 γ 0.00

Eccentric [4]
X 0.00 Y 74.88 Z 142.46
α -5.60 β 0.00 γ 0.00
実施例3
面番号 曲率半径         面間隔 偏心   屈折率 アッベ数
物体面   -∞         -2000.00
  s1    ∞(絞り)                0.00  偏心(1)
  s2   FFS[1]           0.00 偏心(2)   1.4918  57.4
  s3   FFS[1] (RE)        0.00 偏心(3)   1.4918  57.4
  s4   FFS[1]           0.00 偏心(2) 
  s5   FFS[2]           0.00 偏心(4)  1.5163  64.1
  s6    ∞             0.00 偏心(5) 
像面    ∞             0.00 偏心(5)

             FFS[1]
C4  -1.2220e-003
C6  -1.1722e-003
C8  -1.1146e-007
C10  7.6317e-008
C11 -2.8071e-009
C13 -6.9657e-009
C15  1.9899e-009
C68  1.0000e+000

             FFS[2]
C4  -2.9938e-003
C6  -5.9847e-003
C8   3.9268e-005
C10 -1.1160e-004
C11 -2.7861e-007
C13 -9.1271e-007
C15 -1.1595e-006
C17 -1.3077e-009

      偏心[1] 
X -30.00 Y   0.00 Z   0.00
α   0.00 β   0.00 γ   0.00

      偏心[2] 
X   0.00 Y   0.00 Z  295.00 
α -17.00 β   0.00 γ   0.00

      偏心[3] 
X   0.00 Y   0.00 Z  300.00 
α -17.00 β   0.00 γ   0.00

      偏心[4] 
X   0.00 Y  106.58  Z  145.83 
α  -2.74 β   0.00 γ   0.00

      偏心[5] 
X   0.00 Y  106.58  Z  130.83 
α  -5.12 β   0.00 γ   0.00
Example 3
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface -∞ -2000.00
s1 ∞ (diaphragm) 0.00 Eccentricity (1)
s2 FFS [1] 0.00 Eccentricity (2) 1.4918 57.4
s3 FFS [1] (RE) 0.00 Eccentricity (3) 1.4918 57.4
s4 FFS [1] 0.00 Eccentricity (2)
s5 FFS [2] 0.00 Eccentricity (4) 1.5163 64.1
s6 ∞ 0.00 Eccentricity (5)
Image plane ∞ 0.00 Eccentricity (5)

FFS [1]
C4 -1.2220e-003
C6 -1.1722e-003
C8 -1.1146e-007
C10 7.6317e-008
C11 -2.8071e-009
C13 -6.9657e-009
C15 1.9899e-009
C68 1.0000e + 000

FFS [2]
C4 -2.9938e-003
C6 -5.9847e-003
C8 3.9268e-005
C10 -1.1160e-004
C11 -2.7861e-007
C13 -9.1271e-007
C15 -1.1595e-006
C17 -1.3077e-009

Eccentric [1]
X -30.00 Y 0.00 Z 0.00
α 0.00 β 0.00 γ 0.00

Eccentric [2]
X 0.00 Y 0.00 Z 295.00
α -17.00 β 0.00 γ 0.00

Eccentric [3]
X 0.00 Y 0.00 Z 300.00
α -17.00 β 0.00 γ 0.00

Eccentric [4]
X 0.00 Y 106.58 Z 145.83
α -2.74 β 0.00 γ 0.00

Eccentric [5]
X 0.00 Y 106.58 Z 130.83
α -5.12 β 0.00 γ 0.00
 次に、上記各実施例における各種データの値を示す。 Next, the values of various data in each of the above examples are shown.
各種データ     実施例1      実施例2      実施例3
Fy            -162.256      -166.476      -211.235
fx            -165.655      -160.491      -202.545
fx/fy            1.015         0.964         0.959
Various data Example 1 Example 2 Example 3
Fy -162.256 -166.476 -211.235
fx -165.655 -160.491 -202.545
fx / fy 1.015 0.964 0.959
 図23は実施例1のディストーションを示すグラフ、図24は実施例2のディストーションを示すグラフ、図25は実施例3のディストーションを示すグラフである。太い実線は実施例1の像高1.0倍時のディストーション、細い実線は実施例1の像高0.7倍時のディストーション、太い破線は実施例2の像高1.0倍時のディストーション、細い破線は実施例2の像高0.7倍時のディストーション、太い一点鎖線は実施例3の像高1.0倍時のディストーション、細い一点鎖線は実施例3の像高0.7倍時のディストーションである。 23 is a graph showing the distortion of Example 1, FIG. 24 is a graph showing the distortion of Example 2, and FIG. 25 is a graph showing the distortion of Example 3. The thick solid line is distortion at an image height of 1.0 times in Example 1, the thin solid line is distortion at an image height of 0.7 times in Example 1, and the thick broken line is distortion at an image height of 1.0 times in Example 2. The thin broken line shows distortion at an image height of 0.7 times in Example 2, the thick dashed line shows distortion at an image height of 1.0 in Example 3, and the thin dotted line shows 0.7 times the image height in Example 3. It is a distortion of time.
 ディストーションは、順光線追跡で出したものである。物体高はX=53.13、Y=37.19、5.8インチ16:9相当で、グラフの単位は瞳位置での観察光線の角度(deg)。両眼の輻輳分については0に補正している(2m先で一致する内向角0.859°を0)。 Distorted by forward ray tracing. The object height is equivalent to X = 53.13, Y = 37.19, 5.8 inches 16: 9, and the unit of the graph is the angle (deg) of the observation beam at the pupil position. The convergence of both eyes is corrected to 0 (the inward angle 0.859 ° that coincides in 2 m ahead is 0).
 図23~図25に示すように、実施例1、実施例2、及び実施例3の視覚表示装置1で表示される画像は、ほぼ長方形を形成し、像歪みが少なくなっている。 As shown in FIG. 23 to FIG. 25, the images displayed on the visual display devices 1 of the first, second, and third embodiments are almost rectangular and the image distortion is reduced.
 なお、本実施形態では、画像表示面は平面を例に説明しているが、曲面にすることによって、さらに輻輳と視度を一致させることが可能となり好ましい。また、表示素子を3D対応にすることにより裸眼3D表示が可能となる。例えば、パララックスバリヤやレンチキュラーレンズを使うことにより左右の視点を分けた場合にも、接眼光学系で左右の視点は形成されるので、裸眼立体視が可能となる。さらに、液晶シャッタメガネと画像表示面を同期して切り替える方式の3D表示も可能である。その他、微細な走査線ごとに偏光方向を変える方式や円偏光を使う方式も接眼光学系で偏光面が保たれるので、そのまま使うことが可能となる。 In the present embodiment, the image display surface is described by taking a plane as an example. However, it is preferable to make the image display surface a curved surface so that the convergence and the diopter can be further matched. Further, by making the display element compatible with 3D, naked-eye 3D display is possible. For example, even when the left and right viewpoints are separated by using a parallax barrier or a lenticular lens, the left and right viewpoints are formed by the eyepiece optical system, so that autostereoscopic viewing is possible. Furthermore, 3D display in which the liquid crystal shutter glasses and the image display surface are switched synchronously is also possible. In addition, a method of changing the polarization direction for each fine scanning line and a method of using circularly polarized light can be used as they are because the polarization plane is maintained by the eyepiece optical system.
 さらに、実施例において、少なくとも1つの反射面は、半透過面であることが好ましい。反射面を凹面鏡形状にすることにより、画角30°でも輻輳と視度が一致した遠方の虚像を観察することが可能となる。さらに、凹面鏡に半透過作用を有する薄膜を真空蒸着等により成膜することにより、安価に半透過凹面鏡を提供することが可能となる。 Furthermore, in the embodiment, it is preferable that at least one reflecting surface is a semi-transmissive surface. By making the reflecting surface into a concave mirror shape, it becomes possible to observe a distant virtual image in which convergence and diopter coincide with each other even at an angle of view of 30 °. Furthermore, a semi-transmissive concave mirror can be provided at low cost by forming a thin film having a semi-transmissive action on the concave mirror by vacuum deposition or the like.
 また、半透過面は、波長依存性を有することが好ましい。半透過面に波長依存性のあるものを用いることによって、外界像を暗くすることなく、像を表示することが可能となる。 Moreover, it is preferable that the semi-transmissive surface has wavelength dependency. An image can be displayed without darkening an external image by using a semi-transmission surface having a wavelength dependency.
 以上、本発明の種々の実施形態について説明したが、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。 Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and embodiments configured by appropriately combining the configurations of the respective embodiments also fall within the scope of the present invention. Is.

Claims (11)

  1.  観察像を表示する1つの画像表示面と、
     前記観察像を観察者の両眼に導くための2つのアイポイントを形成する接眼光学系と、
    を備え、
     前記接眼光学系は、
     前記2つのアイポイントと対向するように配置された正の屈折率を有する1つの反射面を有し、
     前記2つのアイポイントから前記画像表示面に至る逆光線追跡の順に、
     前記2つのアイポイントを射出した光線は、前記2つのアイポイントと対向するように配置された前記反射面で反射し、
     前記反射面で反射した後の光線は、前記画像表示面に入射し、
     以下の条件式(1)を満足する事を特徴とする視覚表示装置。
        -1.0 ≦  S  ≦ 1.0          ・・・(1)
    ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
    One image display surface for displaying an observation image;
    An eyepiece optical system for forming two eye points for guiding the observation image to both eyes of the observer;
    With
    The eyepiece optical system is
    One reflective surface having a positive refractive index disposed to face the two eye points;
    In order of back ray tracing from the two eye points to the image display surface,
    The light beam emitted from the two eye points is reflected by the reflecting surface arranged so as to face the two eye points,
    The light beam reflected by the reflecting surface is incident on the image display surface,
    A visual display device characterized by satisfying the following conditional expression (1):
    -1.0 ≤ S ≤ 1.0 (1)
    However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  2.  前記2つのアイポイントから射出する中心主光線の射出位置の中点を座標系の中心とし、前記座標系の中心から前記2つのアイポイントから射出した中心主光線が物体面と交差する点に向かう方向をZ軸の正方向、前記座標系の中心を通り前記2つのアイポイントから射出する中心主光線の射出位置を結んだ線と前記Z軸の正方向とに直交し前記画像表示面に近づく側に向かう方向をY軸の正方向、及びZ軸の正方向とY軸の正方向と共に右手系を形成するX軸の正方向を有する座標系において、
     以下の条件式(2)を満足することを特徴とする請求項1に記載の視覚表示装置。
        -300 < Fy < -100        ・・・(2)
    ただし、
    Fyは前記反射面のY軸方向の焦点距離
    である。
    The midpoint of the emission position of the central chief ray emitted from the two eye points is taken as the center of the coordinate system, and the central chief ray emitted from the two eye points goes from the center of the coordinate system to the point where it intersects the object plane. The direction is orthogonal to the positive direction of the Z axis, the line connecting the emission positions of the central principal rays that pass through the center of the coordinate system and exit from the two eye points, and the positive direction of the Z axis, and approaches the image display surface. In a coordinate system having a positive direction of the Y axis, a positive direction of the Y axis, and a positive direction of the X axis that forms a right hand system together with the positive direction of the Z axis and the positive direction of the Y axis
    The visual display device according to claim 1, wherein the following conditional expression (2) is satisfied.
    −300 <Fy <−100 (2)
    However,
    Fy is the focal length of the reflecting surface in the Y-axis direction.
  3.  以下の条件式(3)を満足することを特徴とする請求項2に記載の視覚表示装置。
      0.9 < Fx/Fy < 1.1     ・・・(3)
    ただし、
    Fxは前記反射面のX軸方向の焦点距離、
    Fyは前記反射面のY軸方向の焦点距離、
    である。
    The visual display device according to claim 2, wherein the following conditional expression (3) is satisfied.
    0.9 <Fx / Fy <1.1 (3)
    However,
    Fx is the focal length of the reflecting surface in the X-axis direction,
    Fy is the focal length of the reflecting surface in the Y-axis direction,
    It is.
  4.  前記反射面は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状であることを特徴とする請求項3に記載の視覚表示装置。 In the reflecting surface, the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis corresponds to the negative second value on the Y-axis whose absolute value is equal to the first value. The visual display device according to claim 3, wherein the visual display device has a shape smaller than the second curvature in the X-axis direction.
  5.  以下の条件式(4)を満足することを特徴とする請求項1乃至請求項4のいずれか1項に記載の視覚表示装置。
        -0.5 ≦  S  ≦ 0.5                ・・・(4)
    ただし、S[m-1]は観察画角内において、視度による虚像位置と輻輳による虚像位置との差である。
    The visual display device according to any one of claims 1 to 4, wherein the following conditional expression (4) is satisfied.
    -0.5 ≤ S ≤ 0.5 (4)
    However, S [m −1 ] is the difference between the virtual image position due to diopter and the virtual image position due to convergence within the observation angle of view.
  6.  前記反射面は、自由曲面であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の視覚表示装置。 The visual display device according to claim 1, wherein the reflecting surface is a free-form surface.
  7.  前記反射面より前記画像表示面の近くに屈折作用を有する光学素子を配置し、
     前記光学素子の透過面を自由曲面で構成することを特徴とする請求項1乃至請求項6のいずれか1項に記載の視覚表示装置。
    An optical element having a refractive action is disposed closer to the image display surface than the reflective surface,
    The visual display device according to claim 1, wherein a transmission surface of the optical element is a free-form surface.
  8.  前記光学素子は、Y軸上の正の第1の値に対応するX軸方向の第1の曲率が、前記第1の値と絶対値が等しいY軸上の負の第2の値に対応するX軸方向の第2の曲率よりも小さい形状であることを特徴とする請求項7に記載の視覚表示装置。 In the optical element, the first curvature in the X-axis direction corresponding to the positive first value on the Y-axis corresponds to the negative second value on the Y-axis having the same absolute value as the first value. The visual display device according to claim 7, wherein the visual display device has a shape smaller than the second curvature in the X-axis direction.
  9.  前記画像表示面に表示された映像を左右の目に振り分けるレンチキュラーレンズを有することを特徴とする請求項1乃至請求項8のいずれか1項に記載の視覚表示装置。 The visual display device according to any one of claims 1 to 8, further comprising a lenticular lens that distributes an image displayed on the image display surface to left and right eyes.
  10.  少なくとも1つの前記反射面は、半透過面であることを特徴とする請求項1乃至請求項9のいずれか1項に記載の視覚表示装置。 10. The visual display device according to claim 1, wherein the at least one reflecting surface is a semi-transmissive surface.
  11.  前記半透過面は、波長依存性を有することを特徴とする請求項10に記載の視覚表示装置。 The visual display device according to claim 10, wherein the transflective surface has wavelength dependency.
PCT/JP2012/056846 2011-03-25 2012-03-16 Visual display device WO2012132959A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011066905 2011-03-25
JP2011-066905 2011-03-25
JP2011137234 2011-06-21
JP2011-137234 2011-06-21
JP2011224745 2011-10-12
JP2011-224745 2011-10-12

Publications (1)

Publication Number Publication Date
WO2012132959A1 true WO2012132959A1 (en) 2012-10-04

Family

ID=46930692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056846 WO2012132959A1 (en) 2011-03-25 2012-03-16 Visual display device

Country Status (1)

Country Link
WO (1) WO2012132959A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268370A (en) * 2017-01-19 2019-09-20 惠普发展公司,有限责任合伙企业 Eye gaze angle feedback in teleconference
CN112534185A (en) * 2019-04-25 2021-03-19 株式会社Lg化学 Diffraction light guide plate and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105885A (en) * 1995-10-12 1997-04-22 Canon Inc Head mount type stereoscopic image display device
WO2010018685A1 (en) * 2008-08-12 2010-02-18 オリンパス株式会社 Visual display device
JP2010164944A (en) * 2008-12-16 2010-07-29 Olympus Corp Projection optical system and visual display apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105885A (en) * 1995-10-12 1997-04-22 Canon Inc Head mount type stereoscopic image display device
WO2010018685A1 (en) * 2008-08-12 2010-02-18 オリンパス株式会社 Visual display device
JP2010164944A (en) * 2008-12-16 2010-07-29 Olympus Corp Projection optical system and visual display apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268370A (en) * 2017-01-19 2019-09-20 惠普发展公司,有限责任合伙企业 Eye gaze angle feedback in teleconference
CN112534185A (en) * 2019-04-25 2021-03-19 株式会社Lg化学 Diffraction light guide plate and method for manufacturing same
JP2021532420A (en) * 2019-04-25 2021-11-25 エルジー・ケム・リミテッド Diffraction light guide plate and manufacturing method of diffraction light guide plate
JP7374515B2 (en) 2019-04-25 2023-11-07 エルジー・ケム・リミテッド Diffraction light guide plate and method for manufacturing the diffraction light guide plate
CN112534185B (en) * 2019-04-25 2023-11-07 株式会社Lg化学 Diffraction light guide plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3636240B2 (en) Optical system
JP5290092B2 (en) Eyeglass-type image display device
JP3594264B2 (en) Image display device
JP3683317B2 (en) Image display device
US6181475B1 (en) Optical system and image display apparatus
JP3599828B2 (en) Optical device
US6008778A (en) Visual display apparatus
JP5031272B2 (en) Display optical system and image display apparatus having the same
JP5268342B2 (en) Image display device
JP2011133633A (en) Visual display device
JPH09166759A (en) Picture display device
JPH09219832A (en) Image display
JPH08122670A (en) Prism optical system
US11740459B2 (en) Head-mounted display and method for designing wide-focus lens to be used for the head-mounted display
JP2010250275A (en) Visual display device
JP4129972B2 (en) Decentered optical system
US20220276490A1 (en) Near eye display apparatus
JP5186003B2 (en) Visual display device
JPH09146038A (en) Video display device
JP2011043599A (en) Visual display device
JPH0990270A (en) Head-or face-mounted type picture display device
JPH0961748A (en) Picture display device
WO2012132959A1 (en) Visual display device
JP3486465B2 (en) Visual display device
JP2001330795A (en) Image display device having three-dimensional eccentric optical path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP