WO2012132824A1 - Method for producing polyester polyol, method for producing modified polyester, polyester polyol and modified polyester - Google Patents

Method for producing polyester polyol, method for producing modified polyester, polyester polyol and modified polyester Download PDF

Info

Publication number
WO2012132824A1
WO2012132824A1 PCT/JP2012/056019 JP2012056019W WO2012132824A1 WO 2012132824 A1 WO2012132824 A1 WO 2012132824A1 JP 2012056019 W JP2012056019 W JP 2012056019W WO 2012132824 A1 WO2012132824 A1 WO 2012132824A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
producing
group
polyester polyol
compound
Prior art date
Application number
PCT/JP2012/056019
Other languages
French (fr)
Japanese (ja)
Inventor
大地 岡本
有馬 聖夫
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to JP2013507330A priority Critical patent/JP5670552B2/en
Priority to CN201280016654.2A priority patent/CN103459462B/en
Priority to KR1020137023791A priority patent/KR101545071B1/en
Publication of WO2012132824A1 publication Critical patent/WO2012132824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a polyester polyol and a polyester-modified product using polyester as a raw material, and a polyester polyol and a polyester-modified product, and more specifically, a method for producing a polyester polyol that does not use a tin-based metal catalyst and the production method.
  • the present invention relates to a method for producing a polyester-modified product in which a polyester polyol is modified.
  • Polyester typified by polyethylene terephthalate (PET) is used in various applications such as molded products, films, and fibers.
  • PET polyethylene terephthalate
  • the amount of PET bottles has been rapidly increasing in recent years because it is lightweight, excellent in transparency and gas barrier properties, and has high strength.
  • various resins are derived by depolymerizing a polyester with a polyhydric alcohol to produce a polyester polyol, or by modifying the polyester polyol.
  • Patent Document 1 discloses the production of a coating alkyd resin using a depolymerization reaction with glycols
  • Patent Documents 2 and 3 disclose a method for producing a coating polyester resin using recycled polyester
  • Patent Document 4 discloses that recycled polyester is used as a raw material for a photocurable urethane resin. All of the resins described in the above patent documents are intended for use in coating compositions.
  • a polyester depolymerization reaction is performed by charging a raw material polyester, a polyhydric alcohol, and a depolymerization catalyst into a reactor and heating them.
  • a metal catalyst particularly a tin-based catalyst is used as a depolymerization catalyst.
  • an object of the present invention is to provide a method capable of producing a polyester polyol by depolymerizing a raw material polyester in a short time without using a tin-based metal catalyst.
  • the method for producing a polyester polyol of the present invention comprises a step of depolymerizing a raw material polyester by heating a mixture containing the raw material polyester, a polyol component, and a non-tin-based metal catalyst or a non-metallic basic catalyst as essential components. It is characterized by comprising.
  • the non-tin metal catalyst is preferably a compound selected from the group consisting of a zinc compound, a manganese compound, a lithium compound, and a calcium compound, and includes a naphthenic acid metal complex and an acetylacetone metal.
  • a compound selected from the group consisting of a complex and a metal octylate soap is more preferable.
  • the non-tin metal catalyst is zinc naphthenate, zinc acetylacetone, zinc octylate, calcium naphthenate, calcium acetylacetone, calcium octylate, lithium naphthenate, lithium acetylacetone, A compound selected from the group consisting of lithium octylate, lithium acetate, manganese naphthenate, manganese acetylacetone and manganese octylate is preferred.
  • the nonmetallic basic catalyst is a heterocyclic compound having an amidine structure.
  • the nonmetallic basic catalyst is preferably at least one selected from the group consisting of diazabicycloundecene, diazabicyclononene and derivatives thereof.
  • the polyol component preferably contains a trifunctional or higher functional polyol.
  • the raw material polyester is a regenerated polyester.
  • the method for producing a polyester polyol of the present invention it is preferable to depolymerize the raw material polyester by further adding water to a mixture containing the raw material polyester, the polyol component, and the non-tin metal catalyst as essential components.
  • the depolymerization is preferably performed at 200 to 300 ° C.
  • the mixture of the compound represented by following General formula (1) is obtained.
  • R 1 represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol
  • R 2 represents an alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms.
  • 20 represents an arylene group
  • R 3 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
  • l is an integer of 0 to 10
  • m is an integer of 1 to 10
  • n is 1 Represents an integer of ⁇ 10)
  • the polyester polyol of the present invention is obtained by any one of the above-described methods for producing a polyester polyol.
  • the method for producing a polyester-modified product of the present invention is characterized in that a polyester polyol obtained by the above-described polyester polyol production method is reacted with a compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group. It is.
  • the polyester-modified product of the present invention is obtained by the above-described method for producing a polyester-modified product.
  • the method for producing a polyester polyol of the present invention it is possible to easily convert a raw material polyester into a polyester polyol that can be dissolved in an organic solvent and can be chemically modified without using a tin-based metal catalyst.
  • the polyester polyol with which content of tin was reduced rather than what was manufactured by the method using the existing tin type catalyst can be obtained.
  • a nonmetallic basic catalyst it is possible to avoid deterioration of electrical insulation due to the influence of the residual metal catalyst of the obtained product.
  • a polyester-modified product imparted with photosensitivity can be produced at a relatively low cost with high production efficiency.
  • the basic characteristic of the method for producing a polyester polyol of the present invention is that a non-tin metal catalyst or a non-metal basic catalyst is used when depolymerizing the raw material polyester with a polyol component.
  • the tin-based metal catalyst used in the method of the present invention is preferably a zinc compound, a manganese compound, a lithium compound, or a calcium compound, and more preferably a naphthenic acid metal complex, an acetylacetone metal complex, or an octylic acid metal soap.
  • zinc naphthenate, zinc acetylacetone, zinc octylate, calcium naphthenate, calcium acetylacetone, calcium octylate, lithium naphthenate, lithium acetylacetone, lithium octylate, lithium acetate, manganese naphthenate, manganese acetylacetone and manganese octylate are particularly preferred. preferable.
  • the amount of the above-mentioned non-tin metal catalyst used is preferably 0.005 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the raw material polyester and the polyol component. is there.
  • Non-metallic basic catalyst As the nonmetallic basic catalyst used in the method of the present invention, a cyclic nitrogen-containing compound is preferable, and a heterocyclic compound having an amidine structure is more preferable. Among them, diazabicycloundecene (1,8-diazabicyclo [5.4.0] undecene-7, hereinafter also referred to as “DBU”), diazabicyclononene (1,5-diazabicyclo [4.3.0] nonene- 5, hereinafter also referred to as “DBN”) and their derivatives are particularly preferred. DBU and DBN are both strong organic bases, have similar structures, and are compounds used as catalysts for similar reactions such as urethanization and Wittig reactions.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • DBN diazabicyclononene
  • Examples of diazabicycloundecene (DBU), diazabicyclononene (DBN) and derivatives thereof include DBU, DBN, DBU carbonate, DBU carboxylate, DBU phenol salt, DBU thiol salt, DBN carbonate, Examples thereof include DBN carboxylate, DBN phenol salt, and DBN thiol salt.
  • DBU, DBN and their derivatives include, for example, U-CAT SA1, U-CAT SA102, U-CAT SA506, U-CAT SA603, U-CAT SA810, U-CAT SA831, U-CAT SA841, U-CAT SA851, U-CAT 881, U-CAT 5002 (all are trade names, manufactured by Sun Apro).
  • the amount of the nonmetallic basic catalyst used is preferably 0.005 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the raw material polyester and polyol component. It is.
  • the raw material polyester used in the method of the present invention is not particularly limited as long as it is a known polyester.
  • the method of the present invention can be applied to any polyester as long as it can be melted by heating.
  • R 4 represents an alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
  • R 5 represents a substituted or unsubstituted carbon atom having 6 to 20 carbon atoms.
  • An arylene group, O represents an integer of 1 or more.
  • Examples of the alkylene group having 1 to 10 carbon atoms that R 4 can take in the general formula (2) include a methylene group, 1,2-ethylene group, 1,3-propylene group, 1,4-butylene group, 1,2 -Butylene group, 1,5-pentylene group and the like.
  • Examples of the arylene group having 6 to 20 carbon atoms that R 4 can take in the general formula (2) include a 1,4-phenylene group and a 2,6-naphthylene group. These arylene groups may be substituted with an alkyl group, an alkoxy group, a halogen atom, or the like.
  • Examples of the arylene group having 6 to 20 carbon atoms that R 5 can take in the general formula (2) include the same groups as those exemplified for R 4 above.
  • preferable raw material polyester examples include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycondensate of ethylene terephthalate and parahydroxybenzoic acid, 4,4- Examples thereof include liquid crystal polymers such as polycondensates of dihydroxybiphenol, terephthalic acid and parahydroxybenzoic acid, and polycondensates of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid. Among these, polyethylene terephthalate is particularly preferable.
  • recycled PET and recycled PET collected from waste such as PET bottle waste are more preferable as the raw material polyester.
  • the collected PET can be crushed and washed, and the recycled PET can be obtained from the market after being washed and pelletized.
  • polyol component As the polyol component, a bifunctional polyol or a trifunctional or higher functional polyol can be used without particular limitation.
  • the said polyol component may be used individually by 1 type, and may be used in combination of 2 or more types.
  • bifunctional polyol examples include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, 1,3-butanediol, Neopentyl glycol, spiro glycol, dioxane glycol, adamantanediol, 3-methyl-1,5-pentanediol, methyloctanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 2-methylpropanediol 1, Bifunctional phenols such as 3,3-methylpentanediol 1,5, hexamethylene glycol, octylene glycol, 9-nonanediol, 2,4-diethyl-1,5-pentanediol, bisphenol A Ethylene oxide modified compound of
  • Examples of commercially available products of the above polycaprolactone diol include, for example, Plaxel 205, Plaxel L205AL, Plaxel 205U, Plaxel 208, Plaxel L208AL, Plaxel 210, Plaxel 210N, Plaxel 212, Plaxel L212AL, Plaxel 220, Plaxel 220N, Plaxel 220NP1, Plaxel L220AL, Plaxel 230, Plaxel 240, Plaxel 220EB, Plaxel 220EC (all are manufactured by Daicel Chemical Industries, Ltd.).
  • Examples of commercially available products of the hydroxyl group-terminated polyalkanediene diol include, for example, Epol (registered trademark; hydrogenated polyisoprene diol, molecular weight 1,860, average polymerization degree 26, manufactured by Idemitsu Kosan Co., Ltd.), PIP (poly Isoprene diol, molecular weight 2,200, average polymerization degree 34, manufactured by Idemitsu Kosan Co., Ltd.), polytail H (hydrogenated polybutadiene diol, molecular weight 2,200, average polymerization degree 39, manufactured by Mitsubishi Chemical Corporation), R-45HT (Polybutanediol, molecular weight 2,270, average polymerization degree 42, manufactured by Idemitsu Kosan Co., Ltd.).
  • Epol registered trademark; hydrogenated polyisoprene diol, molecular weight 1,860, average polymerization degree 26, manufactured by Idemitsu Kosan Co., Ltd.
  • PIP poly
  • Examples of the tri- or higher functional polyol include glycerin, trimethylolethane, trimethylolpropane, sorbitol, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tripentaerythritol, adamantanetriol, polycaprolactone triol, and the like.
  • Examples of the trifunctional or higher functional polyol having an aromatic ring include ethylene oxide and propylene oxide modified products of a trifunctional or higher functional phenol compound.
  • the trifunctional or higher functional polyol having a heterocyclic ring is manufactured by Shikoku Kasei Kogyo Co., Ltd. Sake etc. are mentioned.
  • Examples of commercially available products of the above polycaprolactone triol include, for example, Plaxel 303, Plaxel 305, Plaxel 308, Plaxel 312, Plaxel L312AL, Plaxel 320ML, Plaxel L320AL; Can be mentioned.
  • a plant-derived alcohol component (plant-derived polyol) may be used.
  • a castor oil alcohol component is preferable.
  • the polyol component used in the present invention preferably contains a tri- or higher functional polyol, particularly preferably trimethylolpropane.
  • the amount of the polyol component used is preferably 0.5 mol to 7.0 mol of the hydroxyl group of the polyol component, and 1.0 mol to 5.0 mol per mol of the ester bond of the raw material polyester. Is more preferable.
  • the raw material polyester is depolymerized by putting a mixture containing the above-described components into a reactor and heating the mixture.
  • a conventionally known method can be used as the heating method.
  • the above components may be mixed and then heated as a mixture, or each component may be sequentially introduced into the reactor while heating.
  • the heating temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
  • an organic solvent although a conventionally well-known solvent can be used, it is preferable to react without using an organic solvent from a viewpoint of the influence on an environment.
  • the raw material polyester it is preferable to depolymerize the raw material polyester by further adding water to a mixture containing the raw material polyester, polyol component, and non-tin metal catalyst as essential components.
  • water By adding water, the raw material polyester and polyol become slurry, which is preferable because the stirring efficiency is improved.
  • the mixture of the compound represented by following General formula (1) is obtained.
  • R 1 represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol
  • R 2 represents an alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms.
  • 20 represents an arylene group
  • R 3 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms
  • l is an integer of 0 to 10
  • m is an integer of 1 to 10
  • n is 1 Represents an integer of ⁇ 10)
  • R 1 in the general formula (1) represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol, and the polyhydric alcohol is exemplified by the above bifunctional polyol, trifunctional or higher polyol. Things can be mentioned.
  • examples of the alkylene group, arylene group, and R 3 that R 2 can take include the same groups as those described above.
  • the compound represented by the general formula (1) is a suitable raw material for the method for producing a polyester-modified product of the present invention.
  • the method for producing a polyester-modified product of the present invention is characterized in that a polyester polyol obtained by the above-described polyester polyol production method is reacted with a compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group. It is. This modification can impart photosensitivity to the polyester.
  • the modification reaction of the polyester polyol is the same as the conventionally well-known esterification reaction. In the presence or absence of an organic solvent, an acid catalyst or a polymerization inhibitor is usually added, and preferably at 80 ° C. to 130 ° C. Under a temperature range, it is performed in the range of 2 hours to 10 hours. The synthesis can be carried out at normal pressure or under pressure, and the reaction temperature can be lowered under pressure. Even if unreacted hydroxyl groups derived from the depolymerized product are present in the obtained polyester-modified product, there is no problem in properties.
  • denaturation of the polyester polyol obtained by said manufacturing method is a compound which has the group and ethylenically unsaturated group which can react with a hydroxyl group in 1 molecule. It is preferable to have one group capable of reacting with a hydroxyl group in the molecule and one or more ethylenically unsaturated groups in the molecule.
  • the group capable of reacting with a hydroxyl group include a cyclic ether group such as a carboxyl group, an isocyanate group, and an epoxy group, and a hydroxyl group.
  • Any compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group in one molecule can be used for modification of the polyester polyol obtained by the above production method. From the standpoint of reactivity, a compound having an acryloyl group or a methacryloyl group is particularly preferable.
  • Compounds having one carboxyl group and one or more ethylenically unsaturated groups include acrylic acid, dimer of acrylic acid, methacrylic acid, ⁇ -styrylacrylic acid, ⁇ -furfurylacrylic acid, crotonic acid, ⁇ -Cyanocinnamic acid, cinnamic acid, (meth) acrylic acid caprolactone adduct, and half ester compounds of saturated or unsaturated dibasic acid anhydrides and (meth) acrylates having one hydroxyl group in one molecule, etc. Can be mentioned.
  • Examples of (meth) acrylates having a hydroxyl group for producing a half ester compound include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and phenylglycidyl (meth) acrylate.
  • dibasic acid anhydride for producing the half ester compound examples include succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydro And phthalic anhydride. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • Examples of the compound having one isocyanate group and one or more ethylenically unsaturated groups in one molecule include (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, and bis (acryloxymethyl) ethyl. Examples thereof include isocyanates and modified products thereof.
  • a half urethane compound of a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule and a diisocyanate such as isophorone diisocyanate, toluylene diisocyanate, tetramethylxylene diisocyanate, hexamethylene diisocyanate is also used. be able to. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Karenz MOI-EG methacryloyloxyethoxyethyl isocyanate
  • Karenz MOI IBM is an isocyanate block of Karenz MOI
  • Karenz MOI-BP isocyanate block of Karenz MOI
  • Karenz BEI (1,1-bis (acryloxymethyl) ethyl isocyanate
  • Compounds having one cyclic ether group and one or more ethylenically unsaturated groups in one molecule include 2-hydroxyethyl (meth) acrylate glycidyl ether, 2-hydroxypropyl (meth) acrylate glycidyl ether, 3-hydroxy Propyl (meth) acrylate glycidyl ether, 2-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, 2-hydroxypentyl (meth) acrylate glycidyl ether, 6-hydroxyhexyl (meth) acrylate glycidyl Examples include ether or glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl acrylate, and the like. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the compound having a hydroxyl group and an ethylenically unsaturated group is not particularly limited as long as it is a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule.
  • Specific examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta ( And hydroxyalkyl (meth) acrylates such as (meth) acrylate. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the polyester-modified product produced by the production method of the present invention is photosensitive by reacting the polyester polyol with a compound having a group capable of reacting with a hydroxyl group and one or more ethylenically unsaturated groups to chemically modify the polyester polyol. Therefore, it is useful as a photosensitive component of a photocurable resin composition or a photocurable thermosetting resin composition.
  • oxime ester photopolymerization initiator ⁇ -aminoacetophenone photopolymerization initiator, acylphosphine oxide photopolymerization initiator, benzoin compound, acetophenone compound, anthraquinone compound, thioxanthone compound, ketal compound , A benzophenone compound, a xanthone compound, a tertiary amine compound, and other conventionally known and commonly used photopolymerization initiators, photoinitiator assistants, and sensitizers can be blended to form a photocurable resin composition.
  • Example 1 In a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen introduction tube, and a cooling tube, 192 parts of PET flakes (Mitsubishi Chemical Corporation: Novavex (trade name)), 67 parts of trimethylolpropane, zinc octylate After charging 52 parts and making the inside of the flask a nitrogen atmosphere, the flask was immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
  • PET flakes Mitsubishi Chemical Corporation: Novavex (trade name)
  • Example 2 A polyester oligomer was obtained using the same amount of zinc acetylacetone instead of the zinc octylate of Example 1.
  • Example 3 A polyester oligomer was obtained using the same amount of calcium acetylacetone instead of the zinc octylate of Example 1.
  • Example 4 A polyester oligomer was obtained using the same amount of lithium acetylacetone instead of the zinc octylate of Example 1.
  • Example 5 A polyester oligomer was obtained using the same amount of zinc naphthenate in place of the zinc octylate of Example 1.
  • Example 6 A polyester oligomer was obtained using the same amount of calcium naphthenate in place of the zinc octylate of Example 1.
  • Example 7 A polyester oligomer was obtained using the same amount of calcium octylate in place of the zinc octylate of Example 1.
  • Example 8 A polyester oligomer was obtained using the same amount of lithium naphthenate in place of the zinc octylate of Example 1.
  • Example 9 A polyester oligomer was obtained using the same amount of lithium octylate instead of the zinc octylate of Example 1.
  • Example 10 A polyester oligomer was obtained using the same amount of manganese naphthenate in place of the zinc octylate of Example 1.
  • Example 11 A polyester oligomer was obtained using the same amount of acetylacetone manganese in place of the zinc octylate of Example 1.
  • Example 12 A polyester oligomer was obtained using the same amount of manganese octylate instead of the zinc octylate of Example 1.
  • Example 13 A polyester oligomer was obtained using the same amount of lithium acetate in place of the zinc octylate of Example 1.
  • Example 14 225 parts of the polyester oligomer obtained in Example 2, 187 parts of acrylic acid, 1.87 parts of paratoluenesulfonic acid, paramethoxy, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube After adding 1.50 parts of phenol and stirring to dissolve it uniformly, it was immersed in an oil bath heated to 118 ° C., and the reaction was continued for 16.5 hours. After completion of the reaction, the acid value of the reaction solution was measured, and an acid equivalent alkaline aqueous solution was added to the flask for neutralization. Then, brine (20 wt%) was added and stirred.
  • ⁇ Tin free> The concentration (ppm) of tin contained in the depolymerized products of Examples 1 to 13 and Comparative Examples 1 and 2 was measured. The description method of evaluation is as follows. ⁇ : Tin concentration is less than 10 ppm ⁇ : Tin concentration is 10 to 500 ppm ⁇ : Tin concentration exceeds 500 ppm
  • Comparative Example 2 is completely transparent to each solvent as in Comparative Example 1 which is not tin-free, as compared to Comparative Example 2 which is turbid with respect to each solvent. It was confirmed that there was.
  • ⁇ Pencil hardness test> A pencil of B to 9H sharpened so that the tip of the pencil core was flattened against the evaluation coating film was pressed against the coating film at an angle of 45 ° C. with a load of 1 kg. As a result of scratching the coating film by about 1 cm with this load applied and measuring the hardness of the pencil on which the coating film was not peeled off, it was 6H.
  • the method of the present invention by using a non-tin metal catalyst, it is possible to easily convert the polyester into a polyester polyol that can be dissolved in an organic solvent and can be variously modified.
  • Example 15 A 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube was charged with 192 parts of recycled PET flakes having an IV value (intrinsic viscosity value) of 0.6 to 0.7, 67 parts of trimethylolpropane, DBU0 .52 parts was charged and the flask was filled with a nitrogen atmosphere, and then immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
  • IV value intrinsic viscosity value
  • Example 16 192 parts of PET flakes (Mitsubishi Chemical Corporation: Novavex (trade name)), 67 parts of trimethylolpropane, 0.52 parts of DBU in a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen introduction tube, and cooling tube After making the inside of the flask a nitrogen atmosphere, it was immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
  • Example 17 192 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 67 parts of trimethylolpropane, 0.52 parts of DBU, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen introduction tube, and cooling tube, After charging 30 parts of water and setting the inside of the flask to a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C., the temperature of the oil bath was raised to 220 ° C. while gradually removing water, and the flask became transparent. The reaction was continued until a polyester oligomer was obtained.
  • Example 18 In a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen inlet tube, and cooling tube, 192 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 67 parts of trimethylolpropane, 68 parts of pentaerythritol, DBU0 .52 parts and 30 parts of water were charged, the inside of the flask was made into a nitrogen atmosphere, then immersed in an oil bath heated to 180 ° C., and the oil bath was heated to 220 ° C. while gradually removing water, and the flask The reaction was continued until the inside became transparent to obtain a polyester oligomer.
  • Example 19 A polyester oligomer was obtained using the same amount of DBN in place of the DBU of Example 17.
  • Example 20 225 parts of the polyester oligomer obtained in Example 15, 187 parts of acrylic acid, 1.87 parts of paratoluenesulfonic acid, paramethoxy, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube After adding 1.50 parts of phenol and stirring to dissolve it uniformly, it was immersed in an oil bath heated to 118 ° C., and the reaction was continued for 16.5 hours. After completion of the reaction, the acid value of the reaction solution was measured, and an acid equivalent alkaline aqueous solution was added to the flask for neutralization. Then, brine (20 wt%) was added and stirred.
  • the comparative examples 4 and 5 are completely turbid with respect to each solvent as in the comparative example 3 which is not metal-free compared to the turbidity with respect to each solvent. It was confirmed to be transparent.
  • ⁇ Pencil hardness test> A pencil of B to 9H sharpened so that the tip of the pencil core was flattened against the evaluation coating film was pressed against the coating film at an angle of 45 ° C. with a load of 1 kg. As a result of scratching the coating film by about 1 cm with this load applied and measuring the hardness of the pencil on which the coating film was not peeled off, it was 6H.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is a method by which a polyester polyol can be produced by depolymerizing a starting material polyester within a short time without using a tin-based metal catalyst. A method for producing a polyester polyol, which is characterized by comprising a step wherein a starting material polyester is depolymerized by heating a mixture that contains, as essential ingredients, the starting material polyester, a polyol component, and a non-tin-based metal catalyst or a non-metal basic catalyst. It is preferable that the non-tin-based metal catalyst is a compound that is selected from the group consisting of zinc compounds, manganese compounds, lithium compounds and calcium compounds.

Description

ポリエステルポリオール及びポリエステル変性物の製造方法、ポリエステルポリオールおよびポリエステル変性物Polyester polyol and method for producing polyester modified product, polyester polyol and polyester modified product
 本発明は、ポリエステルを原料とするポリエステルポリオールおよびポリエステル変性物の製造方法、ポリエステルポリオールおよびポリエステル変性物に関し、詳しくは、錫系金属触媒を使用しないポリエステルポリオールの製造方法および該製造方法により得られたポリエステルポリオールを変性させるポリエステル変性物の製造方法に関する。 The present invention relates to a method for producing a polyester polyol and a polyester-modified product using polyester as a raw material, and a polyester polyol and a polyester-modified product, and more specifically, a method for producing a polyester polyol that does not use a tin-based metal catalyst and the production method. The present invention relates to a method for producing a polyester-modified product in which a polyester polyol is modified.
 ポリエチレンテレフタレート(PET)に代表されるポリエステルは、成型品、フィルム、繊維等様々な用途で使用されている。その中でもPETボトルは近年、軽量で透明性、ガスバリア性に優れ、強度も高いことから使用量が急増してきている。 Polyester typified by polyethylene terephthalate (PET) is used in various applications such as molded products, films, and fibers. Among them, the amount of PET bottles has been rapidly increasing in recent years because it is lightweight, excellent in transparency and gas barrier properties, and has high strength.
 一方、ポリエステルを多価アルコールにより解重合してポリエステルポリオールを製造したり、該ポリエステルポリオールを変性することにより様々な樹脂を誘導することが行われている。 On the other hand, various resins are derived by depolymerizing a polyester with a polyhydric alcohol to produce a polyester polyol, or by modifying the polyester polyol.
 例えば、特許文献1には、グリコール類による解重合反応を用いた塗料用アルキッド樹脂の製造が開示され、特許文献2および3には、再生ポリエステルを用いた塗料用ポリエステル樹脂の製造方法が開示され、特許文献4には、再生ポリエステルを光硬化性ウレタン樹脂の原料として利用することが開示されている。上記特許文献記載の樹脂は、いずれも塗料組成物に用いることを目的としている。 For example, Patent Document 1 discloses the production of a coating alkyd resin using a depolymerization reaction with glycols, and Patent Documents 2 and 3 disclose a method for producing a coating polyester resin using recycled polyester. Patent Document 4 discloses that recycled polyester is used as a raw material for a photocurable urethane resin. All of the resins described in the above patent documents are intended for use in coating compositions.
 従来、ポリエステルの解重合反応は、原料ポリエステルと多価アルコール、解重合触媒を反応器に仕込み、加熱することで行われている。この際、解重合触媒として金属触媒、特に錫系の触媒が用いられている。 Conventionally, a polyester depolymerization reaction is performed by charging a raw material polyester, a polyhydric alcohol, and a depolymerization catalyst into a reactor and heating them. At this time, a metal catalyst, particularly a tin-based catalyst is used as a depolymerization catalyst.
特許第3310661号Japanese Patent No. 3310661 特許第3443409号Japanese Patent No. 3443409 特許第3256537号Japanese Patent No. 3256537 特開2004-307779号公報JP 2004-307779 A
 しかしながら、錫化合物、特に有機系錫化合物は、生体に対する毒性が報告されるものがあり、環境に対する影響も指摘されている。そのため、ポリエステルの解重合反応において、錫系金属触媒に代替しうる触媒の開発が求められていた。 However, some tin compounds, particularly organic tin compounds, have been reported to be toxic to living organisms, and their effects on the environment have been pointed out. Therefore, the development of a catalyst that can replace the tin-based metal catalyst in the depolymerization reaction of polyester has been demanded.
 そこで本発明の目的は、錫系金属触媒を用いずに、原料ポリエステルを短時間に解重合してポリエステルポリオールを製造することのできる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of producing a polyester polyol by depolymerizing a raw material polyester in a short time without using a tin-based metal catalyst.
 本発明者等は上記課題を解決すべく鋭意検討した結果、非錫系金属触媒または非金属系塩基性触媒を用いることで上記課題を解決しうることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a non-tin-based metal catalyst or a non-metallic basic catalyst, and have completed the present invention. .
 すなわち、本発明のポリエステルポリオールの製造方法は、原料ポリエステル、ポリオール成分、及び、非錫系金属触媒または非金属系塩基性触媒を必須成分として含む混合物を加熱して原料ポリエステルを解重合する工程を備えることを特徴とするものである。 That is, the method for producing a polyester polyol of the present invention comprises a step of depolymerizing a raw material polyester by heating a mixture containing the raw material polyester, a polyol component, and a non-tin-based metal catalyst or a non-metallic basic catalyst as essential components. It is characterized by comprising.
 本発明のポリエステルポリオールの製造方法においては、前記非錫系金属触媒が、亜鉛化合物、マンガン化合物、リチウム化合物およびカルシウム化合物からなる群から選ばれる化合物であることが好ましく、ナフテン酸金属錯体、アセチルアセトン金属錯体およびオクチル酸金属石鹸からなる群から選ばれる化合物であることがより好ましい。 In the method for producing a polyester polyol of the present invention, the non-tin metal catalyst is preferably a compound selected from the group consisting of a zinc compound, a manganese compound, a lithium compound, and a calcium compound, and includes a naphthenic acid metal complex and an acetylacetone metal. A compound selected from the group consisting of a complex and a metal octylate soap is more preferable.
 さらに、本発明のポリエステルポリオールの製造方法においては、前記非錫系金属触媒が、ナフテン酸亜鉛、アセチルアセトン亜鉛、オクチル酸亜鉛、ナフテン酸カルシウム、アセチルアセトンカルシウム、オクチル酸カルシウム、ナフテン酸リチウム、アセチルアセトンリチウム、オクチル酸リチウム、酢酸リチウム、ナフテン酸マンガン、アセチルアセトンマンガンおよびオクチル酸マンガンからなる群から選ばれる化合物であることが好ましい。 Furthermore, in the method for producing a polyester polyol of the present invention, the non-tin metal catalyst is zinc naphthenate, zinc acetylacetone, zinc octylate, calcium naphthenate, calcium acetylacetone, calcium octylate, lithium naphthenate, lithium acetylacetone, A compound selected from the group consisting of lithium octylate, lithium acetate, manganese naphthenate, manganese acetylacetone and manganese octylate is preferred.
 本発明のポリエステルポリオールの製造方法においては、前記非金属系塩基性触媒が、アミジン構造を有する複素環式化合物であることが好ましい。 In the method for producing a polyester polyol of the present invention, it is preferable that the nonmetallic basic catalyst is a heterocyclic compound having an amidine structure.
 本発明のポリエステルポリオールの製造方法においては、前記非金属系塩基性触媒が、ジアザビシクロウンデセン、ジアザビシクロノネンおよびこれらの誘導体からなる群から選ばれる1種以上であることが好ましい。 In the method for producing a polyester polyol of the present invention, the nonmetallic basic catalyst is preferably at least one selected from the group consisting of diazabicycloundecene, diazabicyclononene and derivatives thereof.
 また、本発明のポリエステルポリオールの製造方法においては、前記ポリオール成分が、3官能以上のポリオールを含むことが好ましい。 In the method for producing a polyester polyol according to the present invention, the polyol component preferably contains a trifunctional or higher functional polyol.
 また、本発明のポリエステルポリオールの製造方法においては、前記原料ポリエステルが、再生ポリエステルであることが好ましい。 In the method for producing a polyester polyol of the present invention, it is preferable that the raw material polyester is a regenerated polyester.
 また、本発明のポリエステルポリオールの製造方法においては、原料ポリエステル、ポリオール成分、及び非錫系金属触媒を必須成分として含む混合物に、さらに水を加えて原料ポリエステルの解重合を行うことが好ましい。 Further, in the method for producing a polyester polyol of the present invention, it is preferable to depolymerize the raw material polyester by further adding water to a mixture containing the raw material polyester, the polyol component, and the non-tin metal catalyst as essential components.
 また、本発明のポリエステルポリオールの製造方法においては、前記解重合が、200~300℃で行われることが好ましい。 In the method for producing a polyester polyol of the present invention, the depolymerization is preferably performed at 200 to 300 ° C.
 また、本発明のポリエステルポリオールの製造方法においては、下記一般式(1)で表される化合物の混合物が得られることが好ましい。
Figure JPOXMLDOC01-appb-I000002
(式中、Rは(l+m)価の多価アルコールからOH基を除いた基を表し、Rは炭素原子数1~10のアルキレン基、または、置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、Rは置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、lは0~10の整数であり、mは1~10の整数であり、nは1~10の整数を表す。)
Moreover, in the manufacturing method of the polyester polyol of this invention, it is preferable that the mixture of the compound represented by following General formula (1) is obtained.
Figure JPOXMLDOC01-appb-I000002
(Wherein R 1 represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol, and R 2 represents an alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms. 20 represents an arylene group, R 3 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, l is an integer of 0 to 10, m is an integer of 1 to 10, and n is 1 Represents an integer of ~ 10)
 本発明のポリエステルポリオールは、上記何れかのポリエステルポリオールの製造方法により得られることを特徴とするものである。 The polyester polyol of the present invention is obtained by any one of the above-described methods for producing a polyester polyol.
 本発明のポリエステル変性物の製造方法は、上記のポリエステルポリオールの製造方法により得られたポリエステルポリオールに、水酸基と反応可能な基とエチレン性不飽和基を有する化合物を反応させることを特徴とするものである。 The method for producing a polyester-modified product of the present invention is characterized in that a polyester polyol obtained by the above-described polyester polyol production method is reacted with a compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group. It is.
 本発明のポリエステル変性物は、上記のポリエステル変性物の製造方法により得られることを特徴とするものである。 The polyester-modified product of the present invention is obtained by the above-described method for producing a polyester-modified product.
 本発明のポリエステルポリオールの製造方法によれば、錫系金属触媒を使用せずに、原料ポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステルポリオールへと変換することが可能である。これにより、既存の錫系触媒を用いた方法により製造したものより錫の含有量が低減されたポリエステルポリオールを得ることができる。また、非金属塩基性触媒を用いた場合には、得られた製品の残留金属触媒の影響による電気絶縁性の劣化を避けることが可能となる。
 さらに、本発明によれば、感光性を付与したポリエステル変性物を比較的低コストで生産効率良く製造することができる。
According to the method for producing a polyester polyol of the present invention, it is possible to easily convert a raw material polyester into a polyester polyol that can be dissolved in an organic solvent and can be chemically modified without using a tin-based metal catalyst. Thereby, the polyester polyol with which content of tin was reduced rather than what was manufactured by the method using the existing tin type catalyst can be obtained. In addition, when a nonmetallic basic catalyst is used, it is possible to avoid deterioration of electrical insulation due to the influence of the residual metal catalyst of the obtained product.
Furthermore, according to the present invention, a polyester-modified product imparted with photosensitivity can be produced at a relatively low cost with high production efficiency.
 本発明のポリエステルポリオールの製造方法の基本的な特徴は、原料ポリエステルをポリオール成分で解重合する際に非錫系金属触媒または非金属系塩基性触媒を用いる点にある。 The basic characteristic of the method for producing a polyester polyol of the present invention is that a non-tin metal catalyst or a non-metal basic catalyst is used when depolymerizing the raw material polyester with a polyol component.
[非錫系金属触媒]
 本発明の方法で用いる非錫系金属触媒としては、亜鉛化合物、マンガン化合物、リチウム化合物、カルシウム化合物が好ましく、ナフテン酸金属錯体、アセチルアセトン金属錯体、オクチル酸金属石鹸がより好ましい。中でも、ナフテン酸亜鉛、アセチルアセトン亜鉛、オクチル酸亜鉛、ナフテン酸カルシウム、アセチルアセトンカルシウム、オクチル酸カルシウム、ナフテン酸リチウム、アセチルアセトンリチウム、オクチル酸リチウム、酢酸リチウム、ナフテン酸マンガン、アセチルアセトンマンガンおよびオクチル酸マンガンが特に好ましい。
[Non-tin metal catalyst]
The tin-based metal catalyst used in the method of the present invention is preferably a zinc compound, a manganese compound, a lithium compound, or a calcium compound, and more preferably a naphthenic acid metal complex, an acetylacetone metal complex, or an octylic acid metal soap. Among these, zinc naphthenate, zinc acetylacetone, zinc octylate, calcium naphthenate, calcium acetylacetone, calcium octylate, lithium naphthenate, lithium acetylacetone, lithium octylate, lithium acetate, manganese naphthenate, manganese acetylacetone and manganese octylate are particularly preferred. preferable.
 上記の非錫系金属触媒の使用量は、原料ポリエステルとポリオール成分の合計量100質量部に対して、好ましくは0.005~5質量部であり、より好ましくは0.05~3質量部である。 The amount of the above-mentioned non-tin metal catalyst used is preferably 0.005 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the raw material polyester and the polyol component. is there.
[非金属系塩基性触媒]
 本発明の方法で用いる非金属系塩基性触媒としては、環状含窒素化合物が好ましく、アミジン構造を有する複素環式化合物がより好ましい。中でもジアザビシクロウンデセン(1,8‐ジアザビシクロ[5.4.0]ウンデセン‐7、以下「DBU」とも称する)、ジアザビシクロノネン(1,5‐ジアザビシクロ[4.3.0]ノネン‐5、以下「DBN」とも称する)およびこれらの誘導体が特に好ましい。DBUとDBNは、共に有機強塩基であり、構造が類似し、ウレタン化反応、Wittig反応など同様の反応の触媒に用いられる化合物である。
[Non-metallic basic catalyst]
As the nonmetallic basic catalyst used in the method of the present invention, a cyclic nitrogen-containing compound is preferable, and a heterocyclic compound having an amidine structure is more preferable. Among them, diazabicycloundecene (1,8-diazabicyclo [5.4.0] undecene-7, hereinafter also referred to as “DBU”), diazabicyclononene (1,5-diazabicyclo [4.3.0] nonene- 5, hereinafter also referred to as “DBN”) and their derivatives are particularly preferred. DBU and DBN are both strong organic bases, have similar structures, and are compounds used as catalysts for similar reactions such as urethanization and Wittig reactions.
 ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)およびこれらの誘導体としては、例えば、DBU、DBN、DBU炭酸塩、DBUカルボン酸塩、DBUフェノール塩、DBUチオール塩、DBN炭酸塩、DBNカルボン酸塩、DBNフェノール塩、DBNチオール塩が挙げられる。 Examples of diazabicycloundecene (DBU), diazabicyclononene (DBN) and derivatives thereof include DBU, DBN, DBU carbonate, DBU carboxylate, DBU phenol salt, DBU thiol salt, DBN carbonate, Examples thereof include DBN carboxylate, DBN phenol salt, and DBN thiol salt.
 DBU、DBNおよびこれらの誘導体の市販品としては、例えば、U-CAT SA1、U-CAT SA102、U-CAT SA506、U-CAT SA603、U-CAT SA810、U-CAT SA831、U-CAT SA841、U-CAT SA851、U-CAT 881、U-CAT 5002(いずれも商品名、サンアプロ社製)が挙げられる。 Commercially available products of DBU, DBN and their derivatives include, for example, U-CAT SA1, U-CAT SA102, U-CAT SA506, U-CAT SA603, U-CAT SA810, U-CAT SA831, U-CAT SA841, U-CAT SA851, U-CAT 881, U-CAT 5002 (all are trade names, manufactured by Sun Apro).
 上記の非金属系塩基性触媒の使用量は、原料ポリエステルとポリオール成分の合計量100質量部に対して、好ましくは0.005~5質量部であり、より好ましくは0.05~3質量部である。 The amount of the nonmetallic basic catalyst used is preferably 0.005 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the raw material polyester and polyol component. It is.
[原料ポリエステル]
 本発明の方法に用いる原料ポリエステルは、公知のポリエステルであれば特に限定されない。加熱により溶融することができれば、いずれのポリエステルであっても本発明の方法は適用可能である。
[Raw material polyester]
The raw material polyester used in the method of the present invention is not particularly limited as long as it is a known polyester. The method of the present invention can be applied to any polyester as long as it can be melted by heating.
 また、原料ポリエステルとしては、下記一般式(2)で表される繰り返し単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-I000003
 (式中、Rは炭素原子数1~10のアルキレン基、または、置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、Rは置換もしくは無置換の炭素原子数6~20のアリーレン基、Oは1以上の整数を表す。)
Moreover, as raw material polyester, what has a repeating unit represented by following General formula (2) is preferable.
Figure JPOXMLDOC01-appb-I000003
(Wherein R 4 represents an alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and R 5 represents a substituted or unsubstituted carbon atom having 6 to 20 carbon atoms. An arylene group, O represents an integer of 1 or more.)
 上記一般式(2)においてRがとりうる炭素数1~10のアルキレン基としては、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,5-ペンチレン基等が挙げられる。 Examples of the alkylene group having 1 to 10 carbon atoms that R 4 can take in the general formula (2) include a methylene group, 1,2-ethylene group, 1,3-propylene group, 1,4-butylene group, 1,2 -Butylene group, 1,5-pentylene group and the like.
 上記一般式(2)においてRがとりうる炭素数6~20のアリーレン基としては、1,4-フェニレン基、2,6-ナフチレン基等が挙げられる。これらアリーレン基は、アルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよい。 Examples of the arylene group having 6 to 20 carbon atoms that R 4 can take in the general formula (2) include a 1,4-phenylene group and a 2,6-naphthylene group. These arylene groups may be substituted with an alkyl group, an alkoxy group, a halogen atom, or the like.
 上記一般式(2)においてRがとりうる炭素数6~20のアリーレン基としては、上記Rで例示したものと同様のものが挙げられる。 Examples of the arylene group having 6 to 20 carbon atoms that R 5 can take in the general formula (2) include the same groups as those exemplified for R 4 above.
 好ましい原料ポリエステルの具体例としては、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、エチレンテレフタレートとパラヒドロキシ安息香酸との重縮合体、4,4-ジヒドロキシビフェノールとテレフタル酸とパラヒドロキシ安息香酸との重縮合体、2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重縮合体などの液晶ポリマー等が挙げられる。上記の中でもポリエチレンテレフタレートが特に好ましい。 Specific examples of preferable raw material polyester include polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycondensate of ethylene terephthalate and parahydroxybenzoic acid, 4,4- Examples thereof include liquid crystal polymers such as polycondensates of dihydroxybiphenol, terephthalic acid and parahydroxybenzoic acid, and polycondensates of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid. Among these, polyethylene terephthalate is particularly preferable.
 また、環境保護の観点から、ペットボトル廃材等の廃棄物から回収されたリサイクルPET及び再生PETが、原料ポリエステルとしてさらに好ましい。回収されたPETは粉砕し洗浄され、再生PETは洗浄しペレット化されたものが市場から手に入れることができる。 Also, from the viewpoint of environmental protection, recycled PET and recycled PET collected from waste such as PET bottle waste are more preferable as the raw material polyester. The collected PET can be crushed and washed, and the recycled PET can be obtained from the market after being washed and pelletized.
[ポリオール成分]
 上記ポリオール成分としては、2官能ポリオールや3官能以上のポリオールなどを特に限定せずに用いることができる。上記ポリオール成分は、1種類を単独で用いてもよく、2種類以上を組み合わせて使用してもよい。
[Polyol component]
As the polyol component, a bifunctional polyol or a trifunctional or higher functional polyol can be used without particular limitation. The said polyol component may be used individually by 1 type, and may be used in combination of 2 or more types.
 2官能ポリオールとしては、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、ネオペンチルグリコール、スピログリコール、ジオキサングリコール、アダマンタンジオール、3-メチル-1,5-ペンタンジオール、メチルオクタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、2-メチルプロパンジオール1,3、3-メチルペンタンジオール1,5、ヘキサメチレングリコール、オクチレングリコール、9-ノナンジオール、2,4-ジエチル-1,5-ペンタンジオール、ビスフェノールAのごとき二官能フェノールのエチレンオキサイド変性化合物、ビスフェノールAのごとき二官能フェノールのプロピレンオキサイド変性化合物、ビスフェノールAのエチレンオキサイド、プロピレンオキサイド共重合変性化合物、エチレンオキサイドとプロピレンオキサイドとの共重合系ポリエーテルポリオール、ポリカーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール、1,4-ポリイソプレンジオール、1,4-ポリブタジエンジオール、1,2-ポリブタジエンジオール、1,4-もしくは1,2-ポリブタジエンジオールの水素添加物といったヒドロキシル基末端ポリアルカンジエンジオール類が挙げられる。 Examples of the bifunctional polyol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, 1,3-butanediol, Neopentyl glycol, spiro glycol, dioxane glycol, adamantanediol, 3-methyl-1,5-pentanediol, methyloctanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 2-methylpropanediol 1, Bifunctional phenols such as 3,3-methylpentanediol 1,5, hexamethylene glycol, octylene glycol, 9-nonanediol, 2,4-diethyl-1,5-pentanediol, bisphenol A Ethylene oxide modified compound of bisphenol, propylene oxide modified compound of bifunctional phenol such as bisphenol A, ethylene oxide of bisphenol A, propylene oxide copolymer modified compound, polyether polyol of ethylene oxide and propylene oxide, polycarbonate diol , Polyether diol, polyester diol, polycaprolactone diol, 1,4-polyisoprene diol, 1,4-polybutadiene diol, 1,2-polybutadiene diol, 1,4- or 1,2-polybutadiene diol hydrogenated product, etc. Examples include hydroxyl group-terminated polyalkanediene diols.
 上記ポリカプロラクトンジオールの市販品の例としては、例えば、プラクセル205、プラクセルL205AL、プラクセル205U、プラクセル208、プラクセルL208AL、プラクセル210、プラクセル210N、プラクセル212、プラクセルL212AL、プラクセル220、プラクセル220N、プラクセル220NP1、プラクセルL220AL、プラクセル230、プラクセル240、プラクセル220EB、プラクセル220EC(以上いずれもダイセル化学工業(株)製)が挙げられる。 Examples of commercially available products of the above polycaprolactone diol include, for example, Plaxel 205, Plaxel L205AL, Plaxel 205U, Plaxel 208, Plaxel L208AL, Plaxel 210, Plaxel 210N, Plaxel 212, Plaxel L212AL, Plaxel 220, Plaxel 220N, Plaxel 220NP1, Plaxel L220AL, Plaxel 230, Plaxel 240, Plaxel 220EB, Plaxel 220EC (all are manufactured by Daicel Chemical Industries, Ltd.).
 上記ヒドロキシル基末端ポリアルカンジエンジオールの市販品の例としては、例えば、エポール(登録商標;水素化ポリイソプレンジオール、分子量1,860、平均重合度26、出光興産(株)製)、PIP(ポリイソプレンジオール、分子量2,200、平均重合度34、出光興産(株)製)、ポリテールH(水素化ポリブタジエンジオール、分子量2,200、平均重合度39、三菱化学(株)製)、R-45HT(ポリブタンジオール、分子量2,270、平均重合度42、出光興産(株)製)が挙げられる。 Examples of commercially available products of the hydroxyl group-terminated polyalkanediene diol include, for example, Epol (registered trademark; hydrogenated polyisoprene diol, molecular weight 1,860, average polymerization degree 26, manufactured by Idemitsu Kosan Co., Ltd.), PIP (poly Isoprene diol, molecular weight 2,200, average polymerization degree 34, manufactured by Idemitsu Kosan Co., Ltd.), polytail H (hydrogenated polybutadiene diol, molecular weight 2,200, average polymerization degree 39, manufactured by Mitsubishi Chemical Corporation), R-45HT (Polybutanediol, molecular weight 2,270, average polymerization degree 42, manufactured by Idemitsu Kosan Co., Ltd.).
 3官能以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリペンタエリスリトール、アダマンタントリオール、ポリカプロラクトントリオール等が挙げられる。また、芳香環を有する3官能以上のポリオールとして、3官能以上のフェノール化合物のエチレンオキサイド、プロピレンオキサイド変性物等が挙げられ、複素環を有する3官能以上のポリオールとしては四国化成工業(株)製セイクなどが挙げられる。 Examples of the tri- or higher functional polyol include glycerin, trimethylolethane, trimethylolpropane, sorbitol, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tripentaerythritol, adamantanetriol, polycaprolactone triol, and the like. Examples of the trifunctional or higher functional polyol having an aromatic ring include ethylene oxide and propylene oxide modified products of a trifunctional or higher functional phenol compound. The trifunctional or higher functional polyol having a heterocyclic ring is manufactured by Shikoku Kasei Kogyo Co., Ltd. Sake etc. are mentioned.
 上記ポリカプロラクトントリオールの市販品の例としては、例えば、プラクセル303、プラクセル305、プラクセル308、プラクセル312、プラクセルL312AL、プラクセル320ML、プラクセルL320AL;以上いずれもダイセル化学工業(株)製;商品名)が挙げられる。 Examples of commercially available products of the above polycaprolactone triol include, for example, Plaxel 303, Plaxel 305, Plaxel 308, Plaxel 312, Plaxel L312AL, Plaxel 320ML, Plaxel L320AL; Can be mentioned.
 ポリオール成分として、植物由来のアルコール成分(植物由来ポリオール)を用いてもよい。植物由来のアルコール成分としては、ひまし油類アルコール成分が好ましい。市販品として、例えば、URIC H-30、URIC H-31、URIC H-52、URIC H-56、URIC H-57、URIC H-62、URIC H-73X、URIC H-92、URIC H-420、URIC H-854、URIC Y-202、URIC Y-403、URIC Y-406、URIC Y-563、URIC AC-005、URIC AC-006、URIC PH-5001、URIC PH-5002、URIC PH-6000、URIC F-15、URIC F-25、URIC F-29、URIC F-40、URIC SE-2010、URIC SE-3510、URIC SE-2606、URIC SE-3506、URIC SE-2003、POLYCASTOR#10、POLYCASTOR#30、URIC SE-2003(いずれも伊藤製油社製)等が挙げられる。 As the polyol component, a plant-derived alcohol component (plant-derived polyol) may be used. As the plant-derived alcohol component, a castor oil alcohol component is preferable. As commercial products, for example, URIC H-30, URIC H-31, URIC H-52, URIC H-56, URIC H-57, URIC H-62, URIC H-73X, URIC H-92, URIC H-420 , URIC H-854, URIC Y-202, URIC Y-403, URIC Y-406, URIC Y-563, URIC AC-005, URIC AC-006, URIC PH-5001, URIC PH-5002, URIC PH-6000 , URIC F-15, URIC F-25, URIC F-29, URIC F-40, URIC SE-2010, URIC SE-3510, URIC SE-2606, URIC SE-3506, URIC SE-2003, POLYCAS OR # 10, POLYCASTOR # 30, URIC SE-2003 (all manufactured by Itoh Oil Co., Ltd.).
 本発明において使用するポリオール成分は、3官能以上のポリオールを含むことが好ましく、特にトリメチロールプロパンを含むことが好ましい。 The polyol component used in the present invention preferably contains a tri- or higher functional polyol, particularly preferably trimethylolpropane.
 上記ポリオール成分の使用量は、原料ポリエステルのエステル結合1モルに対してポリオール成分の水酸基が0.5モル~7.0モルであることが好ましく、1.0モル~5.0モルであることがより好ましい。 The amount of the polyol component used is preferably 0.5 mol to 7.0 mol of the hydroxyl group of the polyol component, and 1.0 mol to 5.0 mol per mol of the ester bond of the raw material polyester. Is more preferable.
[反応条件]
 本発明の方法においては、上記各成分を含む混合物を反応器に入れて、加熱することにより、原料ポリエステルの解重合を行う。加熱の方法は従来公知の方法を用いることができる。上記各成分を混合し、混合物としてから加熱してもよく、加熱しながら各成分を順次反応器に導入してもよい。加熱温度は、150~350℃が好ましく、200~300℃がより好ましい。また、有機溶媒を使用する場合は、従来公知の溶媒を使用することができるが、環境への影響の観点から、有機溶媒を使用しないで反応を行うことが好ましい。
[Reaction conditions]
In the method of the present invention, the raw material polyester is depolymerized by putting a mixture containing the above-described components into a reactor and heating the mixture. A conventionally known method can be used as the heating method. The above components may be mixed and then heated as a mixture, or each component may be sequentially introduced into the reactor while heating. The heating temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C. Moreover, when using an organic solvent, although a conventionally well-known solvent can be used, it is preferable to react without using an organic solvent from a viewpoint of the influence on an environment.
 本発明の方法においては、原料ポリエステル、ポリオール成分、及び非錫系金属触媒を必須成分として含む混合物に、さらに水を加えて原料ポリエステルの解重合を行うことが好ましい。水を加えることにより、原料であるポリエステルやポリオールがスラリー状となり、攪拌効率が向上する為好ましい。 In the method of the present invention, it is preferable to depolymerize the raw material polyester by further adding water to a mixture containing the raw material polyester, polyol component, and non-tin metal catalyst as essential components. By adding water, the raw material polyester and polyol become slurry, which is preferable because the stirring efficiency is improved.
 本発明のポリエステルポリオールの製造方法においては、下記一般式(1)で表される化合物の混合物が得られることが好ましい。
Figure JPOXMLDOC01-appb-I000004
(式中、Rは(l+m)価の多価アルコールからOH基を除いた基を表し、Rは炭素原子数1~10のアルキレン基、または、置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、Rは置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、lは0~10の整数であり、mは1~10の整数であり、nは1~10の整数を表す。)
In the manufacturing method of the polyester polyol of this invention, it is preferable that the mixture of the compound represented by following General formula (1) is obtained.
Figure JPOXMLDOC01-appb-I000004
(Wherein R 1 represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol, and R 2 represents an alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms. 20 represents an arylene group, R 3 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, l is an integer of 0 to 10, m is an integer of 1 to 10, and n is 1 Represents an integer of ~ 10)
 上記一般式(1)中のRは(l+m)価の多価アルコールからOH基を除いた基を表すが、該多価アルコールとして、上記の2官能ポリオール、3官能以上のポリオールで例示したものを挙げることができる。また、Rがとりうるアルキレン基、アリーレン基、Rがとり得るアリーレン基としては、上記したものと同様のものを挙げることができる。 R 1 in the general formula (1) represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol, and the polyhydric alcohol is exemplified by the above bifunctional polyol, trifunctional or higher polyol. Things can be mentioned. In addition, examples of the alkylene group, arylene group, and R 3 that R 2 can take include the same groups as those described above.
 上記一般式(1)で表される化合物は、本発明のポリエステル変性物の製造方法の好適な原材料となる。 The compound represented by the general formula (1) is a suitable raw material for the method for producing a polyester-modified product of the present invention.
[ポリエステル変性物の製造方法]
 本発明のポリエステル変性物の製造方法は、上記のポリエステルポリオールの製造方法により得られたポリエステルポリオールに、水酸基と反応可能な基とエチレン性不飽和基を有する化合物を反応させることを特徴とするものである。この変性により、ポリエステルに感光性を付与することができる。ポリエステルポリオールの変性反応は、従来周知のエステル化反応と同様であり、有機溶剤の存在下又は非存在下で、通常、酸触媒や重合禁止剤を添加して、好ましくは80℃~130℃の温度範囲のもと、2時間から10時間の範囲で行なう。常圧でも加圧下でも合成が可能であり、加圧下の場合には反応の温度を低くすることができる。尚、得られたポリエステル変性物に、解重合物由来の未反応水酸基が存在していても特性上問題ない。
[Method for producing polyester-modified product]
The method for producing a polyester-modified product of the present invention is characterized in that a polyester polyol obtained by the above-described polyester polyol production method is reacted with a compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group. It is. This modification can impart photosensitivity to the polyester. The modification reaction of the polyester polyol is the same as the conventionally well-known esterification reaction. In the presence or absence of an organic solvent, an acid catalyst or a polymerization inhibitor is usually added, and preferably at 80 ° C. to 130 ° C. Under a temperature range, it is performed in the range of 2 hours to 10 hours. The synthesis can be carried out at normal pressure or under pressure, and the reaction temperature can be lowered under pressure. Even if unreacted hydroxyl groups derived from the depolymerized product are present in the obtained polyester-modified product, there is no problem in properties.
[水酸基と反応可能な基とエチレン性不飽和基を有する化合物]
 上記の製造方法で得られたポリエステルポリオールの変性に用いられる化合物は、水酸基と反応可能な基とエチレン性不飽和基を1分子中に有する化合物である。水酸基と反応可能な基は分子中に1個、エチレン性不飽和基は分子中に1個以上有することが好ましい。上記水酸基と反応可能な基としては、カルボキシル基、イソシアネート基、エポキシ基などの環状エーテル基、水酸基等が挙げられる。
 水酸基と反応可能な基とエチレン性不飽和基を1分子中に有する化合物であれば、上記製造方法で得られたポリエステルポリオールの変性に用いることができるため、特に限定されないが、上記ポリエステルポリオールとの反応性などの点から、アクリロイル基もしくはメタクリロイル基を有する化合物が特に好ましい。
[Compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group]
The compound used for modification | denaturation of the polyester polyol obtained by said manufacturing method is a compound which has the group and ethylenically unsaturated group which can react with a hydroxyl group in 1 molecule. It is preferable to have one group capable of reacting with a hydroxyl group in the molecule and one or more ethylenically unsaturated groups in the molecule. Examples of the group capable of reacting with a hydroxyl group include a cyclic ether group such as a carboxyl group, an isocyanate group, and an epoxy group, and a hydroxyl group.
Any compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group in one molecule can be used for modification of the polyester polyol obtained by the above production method. From the standpoint of reactivity, a compound having an acryloyl group or a methacryloyl group is particularly preferable.
 1つのカルボキシル基と1つ以上のエチレン性不飽和基を有する化合物としては、アクリル酸、アクリル酸の2量体、メタクリル酸、β-スチリルアクリル酸、β-フルフリルアクリル酸、クロトン酸、α-シアノ桂皮酸、桂皮酸、(メタ)アクリル酸カプロラクトン付加物、及び飽和又は不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート類とのハーフエステル化合物などが挙げられる。ハーフエステル化合物を製造するための水酸基を有する(メタ)アクリレート類としては、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、フェニルグリシジル(メタ)アクリレートなどが挙げられる。ハーフエステル化合物を製造するための二塩基酸無水物としては、例えば無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸などが挙げられる。これらの化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
Compounds having one carboxyl group and one or more ethylenically unsaturated groups include acrylic acid, dimer of acrylic acid, methacrylic acid, β-styrylacrylic acid, β-furfurylacrylic acid, crotonic acid, α -Cyanocinnamic acid, cinnamic acid, (meth) acrylic acid caprolactone adduct, and half ester compounds of saturated or unsaturated dibasic acid anhydrides and (meth) acrylates having one hydroxyl group in one molecule, etc. Can be mentioned. Examples of (meth) acrylates having a hydroxyl group for producing a half ester compound include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, Examples include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and phenylglycidyl (meth) acrylate. Examples of the dibasic acid anhydride for producing the half ester compound include succinic anhydride, maleic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydro And phthalic anhydride. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
In the present specification, (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
 1分子中に1つのイソシアネート基と1つ以上のエチレン性不飽和基を併せ持つ化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルオキシエトキシエチルイソシアネート、ビス(アクリロキシメチル)エチルイソシアネートあるいはこれらの変性体等が挙げられる。また、1分子中に1つの水酸基と1つ以上のエチレン性不飽和基を有する化合物と、イソホロンジイソシアネート、トルイレンジイソシアネート、テトラメチルキシレンジイソシアネート、ヘキサメチレンジイソシアネートなどのジイソシアネートとのハーフウレタン化合物も使用することができる。これらの化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the compound having one isocyanate group and one or more ethylenically unsaturated groups in one molecule include (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, and bis (acryloxymethyl) ethyl. Examples thereof include isocyanates and modified products thereof. Further, a half urethane compound of a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule and a diisocyanate such as isophorone diisocyanate, toluylene diisocyanate, tetramethylxylene diisocyanate, hexamethylene diisocyanate is also used. be able to. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
 上記の1分子中に1つのイソシアネート基と1つ以上のエチレン性不飽和基を併せ持つ化合物の市販品としては、「カレンズMOI」(メタクリロイルオキシエチルイソシアネート)、「カレンズAOI」(アクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI-EG」(メタクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI一BM」(カレンズMOIのイソシアネートブロック体)、「カレンズMOI-BP」(カレンズMOIのイソシアネートブロック体)、「カレンズBEI」(1,1-ビス(アクリロキシメチル)エチルイソシアネート)が、昭和電工(株)から市販されている。なお、これらの商品名は、いずれも登録商標である。 Commercially available compounds having one isocyanate group and one or more ethylenically unsaturated groups in one molecule include “Karenz MOI” (methacryloyloxyethyl isocyanate), “Karenz AOI” (acryloyloxyethoxyethyl isocyanate). ), “Karenz MOI-EG” (methacryloyloxyethoxyethyl isocyanate), “Karenz MOI IBM” (is an isocyanate block of Karenz MOI), “Karenz MOI-BP” (isocyanate block of Karenz MOI), “Karenz BEI” (1,1-bis (acryloxymethyl) ethyl isocyanate) is commercially available from Showa Denko K.K. These trade names are registered trademarks.
 1分子中に1つの環状エーテル基と1つ以上のエチレン性不飽和基を併せ持つ化合物としては、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、3-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、2ーヒドロキシブチル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、2ーヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、6ーヒドロキシヘキシル(メタ)アクリレートグリシジルエーテルもしくはグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアクリレート等が挙げられる。これらの化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Compounds having one cyclic ether group and one or more ethylenically unsaturated groups in one molecule include 2-hydroxyethyl (meth) acrylate glycidyl ether, 2-hydroxypropyl (meth) acrylate glycidyl ether, 3-hydroxy Propyl (meth) acrylate glycidyl ether, 2-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, 2-hydroxypentyl (meth) acrylate glycidyl ether, 6-hydroxyhexyl (meth) acrylate glycidyl Examples include ether or glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl acrylate, and the like. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
 前記水酸基とエチレン性不飽和基を有する化合物としては、1分子中に1つの水酸基と1つ以上のエチレン性不飽和基を有する化合物であればよく、特に限定されない。具体的な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類が挙げられる。これらの化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The compound having a hydroxyl group and an ethylenically unsaturated group is not particularly limited as long as it is a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule. Specific examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta ( And hydroxyalkyl (meth) acrylates such as (meth) acrylate. These compounds may be used individually by 1 type, and may be used in combination of 2 or more types.
 本発明の製造方法により製造されたポリエステル変性物は、上記ポリエステルポリオールを、水酸基と反応可能な基と1つ以上のエチレン性不飽和基を有する化合物と反応させて化学変性することにより、感光性を付与した感光性化合物であるため、光硬化性樹脂組成物もしくは光硬化性熱硬化性樹脂組成物の感光性成分として有用である。例えば、上述したポリエステル変性物に、オキシムエステル系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、キサントン化合物、3級アミン化合物等の従来公知慣用の光重合開始剤や、光開始助剤及び増感剤を配合することにより、光硬化性樹脂組成物とすることができる。 The polyester-modified product produced by the production method of the present invention is photosensitive by reacting the polyester polyol with a compound having a group capable of reacting with a hydroxyl group and one or more ethylenically unsaturated groups to chemically modify the polyester polyol. Therefore, it is useful as a photosensitive component of a photocurable resin composition or a photocurable thermosetting resin composition. For example, oxime ester photopolymerization initiator, α-aminoacetophenone photopolymerization initiator, acylphosphine oxide photopolymerization initiator, benzoin compound, acetophenone compound, anthraquinone compound, thioxanthone compound, ketal compound , A benzophenone compound, a xanthone compound, a tertiary amine compound, and other conventionally known and commonly used photopolymerization initiators, photoinitiator assistants, and sensitizers can be blended to form a photocurable resin composition.
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明は下記実施例に限定されるものではない。尚、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following, “parts” and “%” are based on mass unless otherwise specified.
 [実施例1]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにPETフレーク192部(三菱化学社製:ノバベックス(商品名))、トリメチロールプロパン67部、オクチル酸亜鉛0.52部を仕込み、フラスコ内を窒素雰囲気とした後、220℃に昇温させた油浴に浸し、フラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
[Example 1]
In a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen introduction tube, and a cooling tube, 192 parts of PET flakes (Mitsubishi Chemical Corporation: Novavex (trade name)), 67 parts of trimethylolpropane, zinc octylate After charging 52 parts and making the inside of the flask a nitrogen atmosphere, the flask was immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
 [実施例2]
 実施例1のオクチル酸亜鉛に代えて同量のアセチルアセトン亜鉛を用いポリエステルオリゴマーを得た。
[Example 2]
A polyester oligomer was obtained using the same amount of zinc acetylacetone instead of the zinc octylate of Example 1.
 [実施例3]
 実施例1のオクチル酸亜鉛に代えて同量のアセチルアセトンカルシウムを用いポリエステルオリゴマーを得た。
[Example 3]
A polyester oligomer was obtained using the same amount of calcium acetylacetone instead of the zinc octylate of Example 1.
 [実施例4]
 実施例1のオクチル酸亜鉛に代えて同量のアセチルアセトンリチウムを用いポリエステルオリゴマーを得た。
[Example 4]
A polyester oligomer was obtained using the same amount of lithium acetylacetone instead of the zinc octylate of Example 1.
 [実施例5]
 実施例1のオクチル酸亜鉛に代えて同量のナフテン酸亜鉛を用いポリエステルオリゴマーを得た。
[Example 5]
A polyester oligomer was obtained using the same amount of zinc naphthenate in place of the zinc octylate of Example 1.
 [実施例6]
 実施例1のオクチル酸亜鉛に代えて同量のナフテン酸カルシウムを用いポリエステルオリゴマーを得た。
[Example 6]
A polyester oligomer was obtained using the same amount of calcium naphthenate in place of the zinc octylate of Example 1.
 [実施例7]
 実施例1のオクチル酸亜鉛に代えて同量のオクチル酸カルシウムを用いポリエステルオリゴマーを得た。
[Example 7]
A polyester oligomer was obtained using the same amount of calcium octylate in place of the zinc octylate of Example 1.
 [実施例8]
 実施例1のオクチル酸亜鉛に代えて同量のナフテン酸リチウムを用いポリエステルオリゴマーを得た。
[Example 8]
A polyester oligomer was obtained using the same amount of lithium naphthenate in place of the zinc octylate of Example 1.
 [実施例9]
 実施例1のオクチル酸亜鉛に代えて同量のオクチル酸リチウムを用いポリエステルオリゴマーを得た。
[Example 9]
A polyester oligomer was obtained using the same amount of lithium octylate instead of the zinc octylate of Example 1.
 [実施例10]
 実施例1のオクチル酸亜鉛に代えて同量のナフテン酸マンガンを用いポリエステルオリゴマーを得た。
[Example 10]
A polyester oligomer was obtained using the same amount of manganese naphthenate in place of the zinc octylate of Example 1.
 [実施例11]
 実施例1のオクチル酸亜鉛に代えて同量のアセチルアセトンマンガンを用いポリエステルオリゴマーを得た。
[Example 11]
A polyester oligomer was obtained using the same amount of acetylacetone manganese in place of the zinc octylate of Example 1.
 [実施例12]
 実施例1のオクチル酸亜鉛に代えて同量のオクチル酸マンガンを用いポリエステルオリゴマーを得た。
[Example 12]
A polyester oligomer was obtained using the same amount of manganese octylate instead of the zinc octylate of Example 1.
 [実施例13]
 実施例1のオクチル酸亜鉛に代えて同量の酢酸リチウムを用いポリエステルオリゴマーを得た。
[Example 13]
A polyester oligomer was obtained using the same amount of lithium acetate in place of the zinc octylate of Example 1.
 [実施例14]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコに実施例2で得られたポリエステルオリゴマー225部、アクリル酸187部、パラトルエンスルホン酸1.87部、パラメトキシフェノール1.50部を仕込み、攪拌して均一に溶解させた後、118℃に昇温させた油浴に浸して16.5時間反応を続けた。反応終了後、反応液の酸価を測定して酸当量のアルカリ水溶液をフラスコ内に加え、中和した。次いで、食塩水(20wt%)を加え、攪拌した。その後、溶液を分液漏斗に移し、反応液の1.4倍のメチルイソブチルケトンを加え、水相を捨てた。油相を食塩水(5wt%)にて再度洗い、水相を捨てた。その後、油相をヘキサン中に再沈した後、メチルエチルケトンに溶解させ、吸引濾過で不純物を除いた。濾液を水道水で再沈させた後、上澄み液を捨てて再沈物をさらに水道水で攪拌、洗浄し、最後にカルビトールアセテートで固形分が70%になるよう希釈し、アクリレート樹脂ワニスを得た。
[Example 14]
225 parts of the polyester oligomer obtained in Example 2, 187 parts of acrylic acid, 1.87 parts of paratoluenesulfonic acid, paramethoxy, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube After adding 1.50 parts of phenol and stirring to dissolve it uniformly, it was immersed in an oil bath heated to 118 ° C., and the reaction was continued for 16.5 hours. After completion of the reaction, the acid value of the reaction solution was measured, and an acid equivalent alkaline aqueous solution was added to the flask for neutralization. Then, brine (20 wt%) was added and stirred. Thereafter, the solution was transferred to a separatory funnel, 1.4 times as much methyl isobutyl ketone as the reaction solution was added, and the aqueous phase was discarded. The oil phase was washed again with brine (5 wt%) and the aqueous phase was discarded. Thereafter, the oil phase was reprecipitated in hexane, dissolved in methyl ethyl ketone, and impurities were removed by suction filtration. After reprecipitation of the filtrate with tap water, the supernatant is discarded, the reprecipitate is further stirred and washed with tap water, and finally diluted with carbitol acetate to a solid content of 70%. Obtained.
 [比較例1]
 実施例1のオクチル酸亜鉛に代えて同量のジブチル錫オキサイドを用いポリエステルオリゴマーを得た。
[Comparative Example 1]
A polyester oligomer was obtained using the same amount of dibutyltin oxide instead of the zinc octylate of Example 1.
 [比較例2]
 実施例1のオクチル酸亜鉛に代えて同量のジブチル錫ジラウレートを用いポリエステルオリゴマーを得た。
[Comparative Example 2]
A polyester oligomer was obtained using the same amount of dibutyltin dilaurate instead of the zinc octylate of Example 1.
 <解重合時間>
 実施例1~13及び比較例1、2の解重合に要した時間を下記表1に示す。10時間以上反応を行っても、原料が残留するものに関しては『×』と表記する。
<Depolymerization time>
The time required for depolymerization in Examples 1 to 13 and Comparative Examples 1 and 2 is shown in Table 1 below. Even if the reaction is carried out for 10 hours or longer, “x” is used for those in which raw materials remain.
 <錫フリー>
 実施例1~13及び比較例1、2の解重合物に含まれる錫の濃度(ppm)を測定した。評価の記載方法は以下の通り。
○:錫の濃度が10ppm未満
△:錫の濃度が10~500ppm
×:錫の濃度が500ppm超
<Tin free>
The concentration (ppm) of tin contained in the depolymerized products of Examples 1 to 13 and Comparative Examples 1 and 2 was measured. The description method of evaluation is as follows.
○: Tin concentration is less than 10 ppm Δ: Tin concentration is 10 to 500 ppm
×: Tin concentration exceeds 500 ppm
 <分子量>
 実施例1~13及び比較例1の解重合物の分子量をGPC(ゲル・パーミエーション・クロマトグラフィー)で測定した。測定条件は、カラムに昭和電工(株)製のShodex GPC KF-806L×3を使用し、カラム温度40℃で用いた。基準物質には標準ポリスチレンを用い、溶離液はテトラヒドロフランを1mL/分の流速で使用した。測定結果を下記表1に示す。
<Molecular weight>
The molecular weights of the depolymerized products of Examples 1 to 13 and Comparative Example 1 were measured by GPC (gel permeation chromatography). Measurement conditions were as follows. Shodex GPC KF-806L × 3 manufactured by Showa Denko Co., Ltd. was used for the column, and the column temperature was 40 ° C. Standard polystyrene was used as a reference material, and tetrahydrofuran was used as an eluent at a flow rate of 1 mL / min. The measurement results are shown in Table 1 below.
 <溶剤溶解性試験>
 実施例1~13及び比較例1、2の解重合物の溶剤溶解性を確認した。
確認方法としては解重合物50部に対して各種溶剤を50部加え、攪拌し解重合物の50wt%溶液を作成しその溶液の透明度を評価した。評価の記載方法は以下の通り
完全に透明である:○
やや濁りがある :△
濁りがある   :×
<Solvent solubility test>
The solvent solubility of the depolymerized products of Examples 1 to 13 and Comparative Examples 1 and 2 was confirmed.
As a confirmation method, 50 parts of various solvents were added to 50 parts of the depolymerized product and stirred to prepare a 50 wt% solution of the depolymerized product, and the transparency of the solution was evaluated. The description method of the evaluation is completely transparent as follows:
Slightly cloudy: △
There is turbidity: ×
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上より、溶剤溶解性において、比較例2は各溶剤に対して濁りがあるのに比して、実施例は何れも、錫フリーでない比較例1と同様、各溶剤に対して完全に透明であることが確認された。 From the above, in the solvent solubility, Comparative Example 2 is completely transparent to each solvent as in Comparative Example 1 which is not tin-free, as compared to Comparative Example 2 which is turbid with respect to each solvent. It was confirmed that there was.
 [参考例1]
 前記実施例14で得られたアクリレート樹脂ワニス100部を5部の光重合開始剤(イルガキュアー184;BASFジャパン社製)と混ぜ合わせた後、ガラス板にアプリケーターを用いて20μmの膜厚で塗布した。塗布した後、80℃の熱風循環式乾燥炉で20分間乾燥し、高圧水銀灯搭載の露光装置を用いて、露光量1J/cmで露光し、評価塗膜を得た。
[Reference Example 1]
100 parts of the acrylate resin varnish obtained in Example 14 was mixed with 5 parts of a photopolymerization initiator (Irgacure 184; manufactured by BASF Japan Ltd.), and then applied to a glass plate with a thickness of 20 μm using an applicator. did. After coating, the film was dried for 20 minutes in a hot air circulation drying oven at 80 ° C., and exposed using an exposure apparatus equipped with a high-pressure mercury lamp at an exposure amount of 1 J / cm 2 to obtain an evaluation coating film.
 <ラビングテスト>
 前記評価塗膜をアセトンを含ませたウエスにて50回こすったところ、表面の溶解が無く、十分に硬化していることが確認された。
<Rubbing test>
When the evaluation coating film was rubbed 50 times with a waste cloth containing acetone, it was confirmed that there was no surface dissolution and the film was sufficiently cured.
 <鉛筆硬度試験>
 前記評価塗膜に鉛筆の芯の先が平らになるように研がれたBから9Hの鉛筆を、塗膜に対して45℃の角度で1kgの荷重をかけて押し付けた。この荷重をかけた状態で約1cm程度塗膜を引っかき、塗膜の剥がれない鉛筆の硬さを測定した結果、6Hであった。
<Pencil hardness test>
A pencil of B to 9H sharpened so that the tip of the pencil core was flattened against the evaluation coating film was pressed against the coating film at an angle of 45 ° C. with a load of 1 kg. As a result of scratching the coating film by about 1 cm with this load applied and measuring the hardness of the pencil on which the coating film was not peeled off, it was 6H.
 <耐熱性試験>
 前記評価塗膜を、200℃の熱風循環式乾燥炉に投入して、3分間加熱した。加熱後取り出して、目視にて溶融の形跡を観察して耐熱性試験を行ったところ、200℃、3分の耐熱性を有していることを確認した。
<Heat resistance test>
The said evaluation coating film was put into a 200 degreeC hot-air circulation type drying furnace, and was heated for 3 minutes. The sample was taken out after heating and visually observed for melting to conduct a heat resistance test. As a result, it was confirmed that the sample had heat resistance at 200 ° C. for 3 minutes.
 上述したように、本発明の方法に従い、非錫系金属触媒を用いることにより、ポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステルポリオールへ変換することが可能となる。 As described above, according to the method of the present invention, by using a non-tin metal catalyst, it is possible to easily convert the polyester into a polyester polyol that can be dissolved in an organic solvent and can be variously modified.
 [実施例15]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにIV値(固有粘度値)0.6~0.7のリサイクルPETフレーク192部、トリメチロールプロパン67部、DBU0.52部を仕込み、フラスコ内を窒素雰囲気とした後、220℃に昇温させた油浴に浸し、フラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
[Example 15]
A 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube was charged with 192 parts of recycled PET flakes having an IV value (intrinsic viscosity value) of 0.6 to 0.7, 67 parts of trimethylolpropane, DBU0 .52 parts was charged and the flask was filled with a nitrogen atmosphere, and then immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
 [実施例16]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにPETフレーク(三菱化社製:ノバベックス(商品名))を192部、トリメチロールプロパン67部、DBU0.52部を仕込み、フラスコ内を窒素雰囲気とした後、220℃に昇温させた油浴に浸し、フラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
[Example 16]
192 parts of PET flakes (Mitsubishi Chemical Corporation: Novavex (trade name)), 67 parts of trimethylolpropane, 0.52 parts of DBU in a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen introduction tube, and cooling tube After making the inside of the flask a nitrogen atmosphere, it was immersed in an oil bath heated to 220 ° C., and the reaction was continued until the inside of the flask became transparent to obtain a polyester oligomer.
 [実施例17]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにIV値0.6~0.7のリサイクルPETフレークを192部、トリメチロールプロパン67部、DBU0.52部、水30部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を徐々に抜いていきながら油浴を220℃まで昇温し、フラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
[Example 17]
192 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 67 parts of trimethylolpropane, 0.52 parts of DBU, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen introduction tube, and cooling tube, After charging 30 parts of water and setting the inside of the flask to a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C., the temperature of the oil bath was raised to 220 ° C. while gradually removing water, and the flask became transparent. The reaction was continued until a polyester oligomer was obtained.
 [実施例18]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにIV値0.6~0.7のリサイクルPETフレーク192部、トリメチロールプロパン67部、ペンタエリスリトール68部、DBU0.52部、水30部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を徐々に抜いていきながら油浴を220℃まで昇温し、フラスコ内が透明になるまで反応を続け、ポリエステルオリゴマーを得た。
[Example 18]
In a 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen inlet tube, and cooling tube, 192 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 67 parts of trimethylolpropane, 68 parts of pentaerythritol, DBU0 .52 parts and 30 parts of water were charged, the inside of the flask was made into a nitrogen atmosphere, then immersed in an oil bath heated to 180 ° C., and the oil bath was heated to 220 ° C. while gradually removing water, and the flask The reaction was continued until the inside became transparent to obtain a polyester oligomer.
 [実施例19]
 実施例17のDBUに代えて同量のDBNを用いポリエステルオリゴマーを得た。
[Example 19]
A polyester oligomer was obtained using the same amount of DBN in place of the DBU of Example 17.
 [実施例20]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコに実施例15で得られたポリエステルオリゴマー225部、アクリル酸187部、パラトルエンスルホン酸1.87部、パラメトキシフェノール1.50部を仕込み、攪拌して均一に溶解させた後、118℃に昇温させた油浴に浸して16.5時間反応を続けた。反応終了後、反応液の酸価を測定して酸当量のアルカリ水溶液をフラスコ内に加え、中和した。次いで、食塩水(20wt%)を加え、攪拌した。その後、溶液を分液漏斗に移し、反応液の1.4倍のメチルイソブチルケトンを加え、水相を捨てた。油相を食塩水(5wt%)にて再度洗い、水相を捨てた。その後、油相をヘキサン中に再沈した後、メチルエチルケトンに溶解させ、吸引濾過で不純物を除いた。濾液を水道水で再沈させた後、上澄み液を捨てて再沈物をさらに水道水で攪拌、洗浄し、最後にカルビトールアセテートで固形分が70%になるよう希釈し、アクリレート樹脂ワニスを得た。
[Example 20]
225 parts of the polyester oligomer obtained in Example 15, 187 parts of acrylic acid, 1.87 parts of paratoluenesulfonic acid, paramethoxy, in a 500 ml four-necked round bottom separable flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube After adding 1.50 parts of phenol and stirring to dissolve it uniformly, it was immersed in an oil bath heated to 118 ° C., and the reaction was continued for 16.5 hours. After completion of the reaction, the acid value of the reaction solution was measured, and an acid equivalent alkaline aqueous solution was added to the flask for neutralization. Then, brine (20 wt%) was added and stirred. Thereafter, the solution was transferred to a separatory funnel, 1.4 times as much methyl isobutyl ketone as the reaction solution was added, and the aqueous phase was discarded. The oil phase was washed again with brine (5 wt%) and the aqueous phase was discarded. Thereafter, the oil phase was reprecipitated in hexane, dissolved in methyl ethyl ketone, and impurities were removed by suction filtration. After reprecipitation of the filtrate with tap water, the supernatant is discarded, the reprecipitate is further stirred and washed with tap water, and finally diluted with carbitol acetate to a solid content of 70%. Obtained.
 [比較例3]
 実施例17のDBUに代えて同量のジブチル錫オキサイドを用いポリエステルオリゴマーを得た。
[Comparative Example 3]
A polyester oligomer was obtained using the same amount of dibutyltin oxide instead of the DBU of Example 17.
 [比較例4]
 実施例17のDBUに代えて同量のジブチル錫ジラウレートを用いポリエステルオリゴマーを得た。
[Comparative Example 4]
A polyester oligomer was obtained using the same amount of dibutyltin dilaurate instead of the DBU of Example 17.
 [比較例5]
 攪拌機、窒素導入管、冷却管を取り付けた500ミリリットルの四口丸底セパラブルフラスコにIV値0.6~0.7のリサイクルPETフレーク192部、トリメチロールプロパン67部、水30部を仕込み、フラスコ内を窒素雰囲気とした後、180℃に昇温させた油浴に浸し、水を徐々に抜いていきながら油浴を220℃まで昇温し、反応を行った。
[Comparative Example 5]
A 500 ml four-necked round bottom separable flask equipped with a stirrer, nitrogen introducing tube, and cooling tube was charged with 192 parts of recycled PET flakes having an IV value of 0.6 to 0.7, 67 parts of trimethylolpropane, and 30 parts of water. After making the inside of a flask a nitrogen atmosphere, it was immersed in an oil bath heated to 180 ° C., and the reaction was carried out by heating the oil bath to 220 ° C. while gradually removing water.
 <解重合時間>
 実施例15~19及び比較例3~5の解重合に要した時間を下記表2に示す。10時間以上反応を行っても、原料が残留するものに関しては『×』と表記する。
<Depolymerization time>
The time required for depolymerization in Examples 15 to 19 and Comparative Examples 3 to 5 is shown in Table 2 below. Even if the reaction is carried out for 10 hours or longer, “x” is used for those in which the raw material remains.
 <金属フリー>
 実施例15~19及び比較例3~5の解重合物に含まれる金属の濃度(ppm)を測定した。評価の記載方法は以下の通り。
 ○:金属の濃度が10ppm未満
 △:金属の濃度が10~500ppm
 ×:金属の濃度が500ppm超
<Metal free>
The concentration (ppm) of metal contained in the depolymerized products of Examples 15 to 19 and Comparative Examples 3 to 5 was measured. The description method of evaluation is as follows.
○: Metal concentration is less than 10 ppm △: Metal concentration is 10 to 500 ppm
×: Metal concentration exceeds 500 ppm
 <分子量>
 実施例15~19及び比較例3~5の解重合物の分子量をGPC(ゲル・パーミエーション・クロマトグラフィー)で測定した。測定条件は、カラムに昭和電工(株)製のShodex GPC KF-806L×3を使用し、カラム温度40℃で用いた。基準物質には標準ポリスチレンを用い、溶離液はテトラヒドロフランを1mL/分の流速で使用した。測定結果を表2に示す。
<Molecular weight>
The molecular weights of the depolymerized products of Examples 15 to 19 and Comparative Examples 3 to 5 were measured by GPC (gel permeation chromatography). Measurement conditions were as follows. Shodex GPC KF-806L × 3 manufactured by Showa Denko Co., Ltd. was used for the column, and the column temperature was 40 ° C. Standard polystyrene was used as a reference material, and tetrahydrofuran was used as an eluent at a flow rate of 1 mL / min. The measurement results are shown in Table 2.
 <溶剤溶解性試験>
 実施例15~19及び比較例3~5の解重合物の溶剤溶解性を確認した。
確認方法としては解重合物50部に対して各種溶剤を50部加え、攪拌し解重合物の50wt%溶液を作成しその溶液の透明度を評価した。評価の記載方法は、以下の通り。
完全に透明である:○
やや濁りがある :△
濁りがある   :×
<Solvent solubility test>
The solvent solubility of the depolymerized products of Examples 15 to 19 and Comparative Examples 3 to 5 was confirmed.
As a confirmation method, 50 parts of various solvents were added to 50 parts of the depolymerized product and stirred to prepare a 50 wt% solution of the depolymerized product, and the transparency of the solution was evaluated. The description method of evaluation is as follows.
Fully transparent: ○
Slightly cloudy: △
There is turbidity: ×
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上より、溶剤溶解性において、比較例4、5は各溶剤に対して濁りがあるのに比して、実施例は何れも、金属フリーでない比較例3と同様、各溶剤に対して完全に透明であることが確認された。 From the above, in the solvent solubility, the comparative examples 4 and 5 are completely turbid with respect to each solvent as in the comparative example 3 which is not metal-free compared to the turbidity with respect to each solvent. It was confirmed to be transparent.
 [参考例2]
 前記実施例20で得られたアクリレート樹脂ワニス100部を5部の光重合開始剤(イルガキュアー184;BASFジャパン社製)と混ぜ合わせた後、ガラス板にアプリケーターを用いて20μmの膜厚で塗布した。塗布した後、80℃の熱風循環式乾燥炉で20分間乾燥し、高圧水銀灯搭載の露光装置を用いて、露光量1J/cmで露光し、評価塗膜を得た。
[Reference Example 2]
100 parts of the acrylate resin varnish obtained in Example 20 was mixed with 5 parts of a photopolymerization initiator (Irgacure 184; manufactured by BASF Japan Ltd.), and then applied to a glass plate with a film thickness of 20 μm using an applicator. did. After coating, the film was dried for 20 minutes in a hot air circulation drying oven at 80 ° C., and exposed using an exposure apparatus equipped with a high-pressure mercury lamp at an exposure amount of 1 J / cm 2 to obtain an evaluation coating film.
 <ラビングテスト>
 前記評価塗膜をアセトンを含ませたウエスにて50回こすったところ、表面の溶解が無く、十分に硬化していることが確認された。
<Rubbing test>
When the evaluation coating film was rubbed 50 times with a waste cloth containing acetone, it was confirmed that there was no surface dissolution and the film was sufficiently cured.
 <鉛筆硬度試験>
 前記評価塗膜に鉛筆の芯の先が平らになるように研がれたBから9Hの鉛筆を、塗膜に対して45℃の角度で1kgの荷重をかけて押し付けた。この荷重をかけた状態で約1cm程度塗膜を引っかき、塗膜の剥がれない鉛筆の硬さを測定した結果、6Hであった。
<Pencil hardness test>
A pencil of B to 9H sharpened so that the tip of the pencil core was flattened against the evaluation coating film was pressed against the coating film at an angle of 45 ° C. with a load of 1 kg. As a result of scratching the coating film by about 1 cm with this load applied and measuring the hardness of the pencil on which the coating film was not peeled off, it was 6H.
 <耐熱性試験>
 前記評価塗膜を、200℃の熱風循環式乾燥炉に投入して、3分間加熱した。加熱後取り出して、目視にて溶融の形跡を観察して耐熱性試験を行ったところ、200℃、3分の耐熱性を有していることを確認した。
<Heat resistance test>
The said evaluation coating film was put into a 200 degreeC hot-air circulation type drying furnace, and was heated for 3 minutes. The sample was taken out after heating and visually observed for melting to conduct a heat resistance test. As a result, it was confirmed that the sample had heat resistance at 200 ° C. for 3 minutes.
 上述したように、本発明の方法に従い、非金属塩基性触媒を用いることにより、ポリエステルを簡便に有機溶剤に溶解可能で各種化学変性可能なポリエステルポリオールへ変換することが可能となる。 As described above, according to the method of the present invention, by using a non-metal basic catalyst, it is possible to easily convert the polyester into a polyester polyol that can be dissolved in an organic solvent and that can be chemically modified.

Claims (14)

  1.  原料ポリエステル、ポリオール成分、及び、非錫系金属触媒または非金属系塩基性触媒を必須成分として含む混合物を加熱して原料ポリエステルを解重合する工程を備えることを特徴とするポリエステルポリオールの製造方法。 A method for producing a polyester polyol, comprising a step of depolymerizing a raw material polyester by heating a raw material polyester, a polyol component, and a mixture containing a non-tin-based metal catalyst or a non-metallic basic catalyst as essential components.
  2.  前記非錫系金属触媒が、亜鉛化合物、マンガン化合物、リチウム化合物およびカルシウム化合物からなる群から選ばれる化合物である請求項1記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to claim 1, wherein the non-tin-based metal catalyst is a compound selected from the group consisting of a zinc compound, a manganese compound, a lithium compound and a calcium compound.
  3.  前記非錫系金属触媒が、ナフテン酸金属錯体、アセチルアセトン金属錯体およびオクチル酸金属石鹸からなる群から選ばれる化合物である請求項1または2記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to claim 1 or 2, wherein the non-tin metal catalyst is a compound selected from the group consisting of a naphthenic acid metal complex, an acetylacetone metal complex, and an octylic acid metal soap.
  4.  前記非錫系金属触媒が、ナフテン酸亜鉛、アセチルアセトン亜鉛、オクチル酸亜鉛、ナフテン酸カルシウム、アセチルアセトンカルシウム、オクチル酸カルシウム、ナフテン酸リチウム、アセチルアセトンリチウム、オクチル酸リチウム、酢酸リチウム、ナフテン酸マンガン、アセチルアセトンマンガンおよびオクチル酸マンガンからなる群から選ばれる化合物である請求項1から3のいずれか一項記載のポリエステルポリオールの製造方法。 The non-tin metal catalyst is zinc naphthenate, zinc acetylacetone, zinc octylate, calcium naphthenate, calcium acetylacetone, calcium octylate, lithium naphthenate, lithium acetylacetone, lithium octylate, lithium acetate, manganese naphthenate, manganese acetylacetone manganese The method for producing a polyester polyol according to any one of claims 1 to 3, wherein the polyester polyol is a compound selected from the group consisting of manganese and octylate.
  5.  前記非金属系塩基性触媒が、アミジン構造を有する複素環式化合物である請求項1記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to claim 1, wherein the non-metallic basic catalyst is a heterocyclic compound having an amidine structure.
  6.  前記非金属系塩基性触媒が、ジアザビシクロウンデセン、ジアザビシクロノネンおよびこれらの誘導体からなる群から選ばれる1種以上である請求項5記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to claim 5, wherein the non-metallic basic catalyst is at least one selected from the group consisting of diazabicycloundecene, diazabicyclononene and derivatives thereof.
  7.  前記ポリオール成分が、3官能以上のポリオールを含む請求項1~6のいずれか一項記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to any one of claims 1 to 6, wherein the polyol component contains a trifunctional or higher functional polyol.
  8.  前記原料ポリエステルが、再生ポリエステルである請求項1~7のいずれか一項記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to any one of claims 1 to 7, wherein the raw material polyester is a recycled polyester.
  9.  原料ポリエステル、ポリオール成分、及び非錫系金属触媒を必須成分として含む混合物に、さらに水を加えて原料ポリエステルの解重合を行う請求項1~8のいずれか一項記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to any one of claims 1 to 8, wherein water is further added to a mixture containing the raw material polyester, the polyol component, and the non-tin metal catalyst as essential components to depolymerize the raw material polyester.
  10.  前記解重合が、150~350℃で行われる請求項1~9のいずれか一項記載のポリエステルポリオールの製造方法。 The method for producing a polyester polyol according to any one of claims 1 to 9, wherein the depolymerization is performed at 150 to 350 ° C.
  11.  下記一般式(1)で表される化合物の混合物が得られる請求項1~10のいずれか一項記載のポリエステルポリオールの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは(l+m)価の多価アルコールからOH基を除いた基を表し、Rは炭素原子数1~10のアルキレン基、または、置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、Rは置換もしくは無置換の炭素原子数6~20のアリーレン基を表し、lは0~10の整数であり、mは1~10の整数であり、nは1~10の整数を表す。)
    The method for producing a polyester polyol according to any one of claims 1 to 10, wherein a mixture of compounds represented by the following general formula (1) is obtained.
    Figure JPOXMLDOC01-appb-I000001
    (Wherein R 1 represents a group obtained by removing an OH group from a (l + m) -valent polyhydric alcohol, and R 2 represents an alkylene group having 1 to 10 carbon atoms or a substituted or unsubstituted carbon atom having 6 to 6 carbon atoms. 20 represents an arylene group, R 3 represents a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, l is an integer of 0 to 10, m is an integer of 1 to 10, and n is 1 Represents an integer of ~ 10)
  12.  請求項1~11のいずれか一項記載のポリエステルポリオールの製造方法により得られることを特徴とするポリエステルポリオール。 A polyester polyol obtained by the method for producing a polyester polyol according to any one of claims 1 to 11.
  13.  請求項12記載のポリエステルポリオールに、水酸基と反応可能な基とエチレン性不飽和基を有する化合物を反応させることを特徴とするポリエステル変性物の製造方法。 A method for producing a polyester-modified product, wherein the polyester polyol according to claim 12 is reacted with a compound having a group capable of reacting with a hydroxyl group and an ethylenically unsaturated group.
  14.  請求項13記載のポリエステル変性物の製造方法により得られることを特徴とするポリエステル変性物。 A polyester modified product obtained by the method for producing a polyester modified product according to claim 13.
PCT/JP2012/056019 2011-03-31 2012-03-08 Method for producing polyester polyol, method for producing modified polyester, polyester polyol and modified polyester WO2012132824A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013507330A JP5670552B2 (en) 2011-03-31 2012-03-08 Polyester polyol and method for producing polyester modified product, polyester polyol and polyester modified product
CN201280016654.2A CN103459462B (en) 2011-03-31 2012-03-08 The manufacture method of polyester polyol and polyester modification thing, polyester polyol and polyester modification thing
KR1020137023791A KR101545071B1 (en) 2011-03-31 2012-03-08 Method for producing polyester polyol, method for producing modified polyester, polyester polyol and modified polyester

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-081293 2011-03-31
JP2011081292 2011-03-31
JP2011081293 2011-03-31
JP2011-081292 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132824A1 true WO2012132824A1 (en) 2012-10-04

Family

ID=46930564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056019 WO2012132824A1 (en) 2011-03-31 2012-03-08 Method for producing polyester polyol, method for producing modified polyester, polyester polyol and modified polyester

Country Status (5)

Country Link
JP (1) JP5670552B2 (en)
KR (1) KR101545071B1 (en)
CN (1) CN103459462B (en)
TW (2) TWI455957B (en)
WO (1) WO2012132824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265708A (en) * 2013-04-24 2013-08-28 高松文 Modified polyester polyol and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230312451A1 (en) * 2020-06-26 2023-10-05 Korea Research Institute Of Chemical Technology Efficient depolymerization method of polymers comprising ester functional group, and purification method thereof
CN115594811A (en) * 2022-09-07 2023-01-13 广东大盈新材料科技有限公司(Cn) Polyurethane fabric resin for weather-resistant synthetic leather and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210626A (en) * 1984-02-22 1985-10-23 スロス インダストリーズ コーポレーション Digested product of polyalkyleneterephthalate polymer and polycarboxylic acid-containing polyol and polymeric foam obtained therefrom
JPH03269016A (en) * 1990-03-16 1991-11-29 Unitika Ltd Production of polyester
JPH10251491A (en) * 1997-03-12 1998-09-22 Daiabondo Kogyo Kk Thermosetting polyester resin composition
JP2000191766A (en) * 1998-12-25 2000-07-11 Nippon Polyurethane Ind Co Ltd Production of terephthalic acid-based polyester polyol
JP2000229916A (en) * 1999-02-05 2000-08-22 Mitsui Chemicals Inc Ester group-containing dicarboxylic acid compound and its production
JP2002128880A (en) * 2000-10-30 2002-05-09 Kansai Paint Co Ltd Method for producing alkyd resin
JP2011043564A (en) * 2009-08-19 2011-03-03 Taiyo Holdings Co Ltd Photocurable resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101849A (en) * 1987-03-10 1988-09-21 陕西省化学研究所 The method and the catalyzer that are used for depolymerizing waste and old polyester plastics
KR100765744B1 (en) * 2001-12-15 2007-10-15 김도균 Method for producing polymer for toner, ink and coating agent by recycling waste polyester
TW200906873A (en) * 2007-05-30 2009-02-16 Toagosei Co Ltd Active energy ray curable composition, coating composition, coating member, and optical material
JP5748941B2 (en) * 2009-04-14 2015-07-15 太陽ホールディングス株式会社 Photosensitive compound and photocurable resin composition containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210626A (en) * 1984-02-22 1985-10-23 スロス インダストリーズ コーポレーション Digested product of polyalkyleneterephthalate polymer and polycarboxylic acid-containing polyol and polymeric foam obtained therefrom
JPH03269016A (en) * 1990-03-16 1991-11-29 Unitika Ltd Production of polyester
JPH10251491A (en) * 1997-03-12 1998-09-22 Daiabondo Kogyo Kk Thermosetting polyester resin composition
JP2000191766A (en) * 1998-12-25 2000-07-11 Nippon Polyurethane Ind Co Ltd Production of terephthalic acid-based polyester polyol
JP2000229916A (en) * 1999-02-05 2000-08-22 Mitsui Chemicals Inc Ester group-containing dicarboxylic acid compound and its production
JP2002128880A (en) * 2000-10-30 2002-05-09 Kansai Paint Co Ltd Method for producing alkyd resin
JP2011043564A (en) * 2009-08-19 2011-03-03 Taiyo Holdings Co Ltd Photocurable resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265708A (en) * 2013-04-24 2013-08-28 高松文 Modified polyester polyol and preparation method and application thereof

Also Published As

Publication number Publication date
KR20130117877A (en) 2013-10-28
KR101545071B1 (en) 2015-08-17
CN103459462A (en) 2013-12-18
JP5670552B2 (en) 2015-02-18
TWI455957B (en) 2014-10-11
CN103459462B (en) 2016-04-27
JPWO2012132824A1 (en) 2014-07-28
TWI496812B (en) 2015-08-21
TW201307435A (en) 2013-02-16
TW201422668A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JPH05306323A (en) Polyurethane (meth)acrylate and production thereof
JP4699559B1 (en) Polyester resin
KR20020020203A (en) Method for Preparing Polyester Resins
Zhang et al. Castor-oil-based UV-curable hybrid coatings with self-healing, recyclability, removability, and hydrophobicity
JP5670552B2 (en) Polyester polyol and method for producing polyester modified product, polyester polyol and polyester modified product
JPWO2019221126A1 (en) Photocurable resin composition and adhesive using it
JP2005187659A (en) Active energy ray-curable composition
JP6166898B2 (en) Method for producing polyester and modified product thereof
JPH03181517A (en) Polycarbonate acrylate resin or polycarbonate methacrylate resin
JP2009179806A (en) Resin having hyperbranched structure and resist agent using the same
Cui et al. Facile method to prepared photoinitiated cationic curable plant oil and its enhancement on the impact strength of cycloaliphatic diepoxide
JP2000327724A (en) Active energy ray-curable type composition
JP5711909B2 (en) Phenol group-containing resin and method for producing the same
JP5723654B2 (en) Method for producing polyester polyol and modified polyester
JPH032206A (en) Resin composition of active energetic ray-hardening type
JP2012031227A (en) Epoxy resin and method of manufacturing the same
JP5955940B2 (en) Phenol group-containing resin and method for producing the same
JP3493724B2 (en) Active energy ray-curable resin composition
WO2012014478A1 (en) Epoxy resin and manufacturing method for same
JP4125805B2 (en) Active energy ray-curable powder coating composition
KR101488117B1 (en) Phenol resin and epoxy resin and manufacturing method for same
TWI781508B (en) Resin and ink
JP2011102335A (en) Method for producing urethane resin
JPS62241925A (en) Curable polyene-polythiol resin composition
JP2000204233A (en) (meth)acrylic ester, and resin composition using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280016654.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507330

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137023791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765454

Country of ref document: EP

Kind code of ref document: A1