WO2012132632A1 - Shrink film and shrink label - Google Patents

Shrink film and shrink label Download PDF

Info

Publication number
WO2012132632A1
WO2012132632A1 PCT/JP2012/054049 JP2012054049W WO2012132632A1 WO 2012132632 A1 WO2012132632 A1 WO 2012132632A1 JP 2012054049 W JP2012054049 W JP 2012054049W WO 2012132632 A1 WO2012132632 A1 WO 2012132632A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
ethylene
shrink
weight
Prior art date
Application number
PCT/JP2012/054049
Other languages
French (fr)
Japanese (ja)
Inventor
那央 上陰
英明 梅田
篤志 新庄
Original Assignee
株式会社フジシールインターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジシールインターナショナル filed Critical 株式会社フジシールインターナショナル
Priority to JP2013507259A priority Critical patent/JPWO2012132632A1/en
Publication of WO2012132632A1 publication Critical patent/WO2012132632A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2519/00Labels, badges

Definitions

  • the present invention relates to a shrink film. More specifically, the present invention relates to a heterogeneous laminated shrink film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin, and is less prone to delamination even during heat shrinkage.
  • plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks.
  • These containers are often equipped with plastic labels to give display, decoration, and functionality.
  • shrink Shrink labels or the like in which a printing layer is provided on a film (heat-shrinkable film) are widely used.
  • the shrink film there is known a heterogeneous laminated film in which different resin materials are laminated for the purpose of imparting various functions to the film.
  • a laminated structure comprising a resin layer composed mainly of an aromatic polyester resin, an intermediate layer composed mainly of an ethylene-vinyl acetate resin, and a resin layer composed mainly of a polypropylene resin.
  • the shrink film which has is known (refer patent document 1). Since the shrink film has a resin layer made of a polypropylene resin, the specific gravity is small and light, and when used as a shrink label, it can be easily separated from a PET bottle or the like by utilizing the difference in specific gravity at the time of recovery.
  • shrinking processing conditions tend to be more severe, such as when high shrinkage is required or when shrinkage is required under high temperature conditions due to workability at the installation factory.
  • the processing temperature tends to be higher and the heating conditions tend to be abrupt (the temperature rising rate is increased).
  • the shrink film described in the above-mentioned patent document is likely to cause delamination particularly in the center seal portion, and the delamination deterrent effect is It was not enough.
  • the present condition is that the shrink film which does not produce delamination easily is calculated
  • an object of the present invention is a dissimilar laminated film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin, and a shrink film that hardly causes delamination even during shrink processing. Is to provide.
  • the present inventors have found that a resin layer (A layer) containing an aromatic polyester resin, a resin layer (B layer) containing a specific amount of a specific structural unit, and a polypropylene resin.
  • a layer containing an aromatic polyester resin
  • B layer containing a specific amount of a specific structural unit
  • a polypropylene resin By having at least a three-layered / three-layered structure of A layer / B layer / C layer consisting of a resin layer (C layer), excellent delamination hardly occurs even when severe shrink processing is performed.
  • the present inventors have found that a shrink film having delamination deterrence can be obtained and completed the present invention.
  • the present invention relates to a resin layer (A layer) containing an aromatic polyester resin, 60 to 78% by weight of structural units derived from ethylene, 18 to 24% by weight of structural units derived from methyl methacrylate, 1-
  • a resin layer (B layer) containing 1 to 3.5% by weight of a structural unit derived from butene and a resin layer (C layer) containing a polypropylene-based resin are added in the order of A layer / B layer / C layer.
  • a shrink film having a laminated structure in which layers are not interposed.
  • the B layer is at least one selected from the group consisting of an ethylene-methyl methacrylate copolymer, an ethylene-1-butene copolymer, and an ethylene-1-butene-methyl methacrylate copolymer.
  • the shrink film is a resin layer containing an ethylene copolymer.
  • the present invention provides the shrink film having a laminated structure in which the layers are laminated in the order of A layer / B layer / C layer / B layer / A layer without any other layers.
  • the present invention provides a shrink label including the shrink film.
  • the shrink film of the present invention Since the shrink film of the present invention has the above-described configuration, it is a heterogeneous laminated film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin. Even when shrink processing is performed under severe conditions such as heating, delamination hardly occurs. For this reason, since shrinkage
  • the shrink film of the present invention comprises a resin layer containing an aromatic polyester resin (hereinafter sometimes referred to as “A layer”), a constitutional unit derived from methyl methacrylate in an amount of 60 to 78% by weight derived from ethylene.
  • the shrink film of the present invention is laminated in the film without any other layers in the laminated structure in which the A layer and the C layer are laminated via the B layer, that is, in the order of A layer / B layer / C layer. And at least a three-layered / three-layered structure. Furthermore, the shrink film of the present invention has a laminated structure (3 types and 5 layers laminated structure) laminated in the order of A layer / B layer / C layer / B layer / A layer without any other layers. It is preferable.
  • the A layers provided on the both sides of the C layer and the B layers have the same resin composition.
  • the layer is preferably a layer having a different resin composition as long as the effects of the present invention are not impaired.
  • the A layers and the B layers provided one by one on both sides of the C layer may be layers having the same thickness or different thicknesses.
  • shrink film of this invention 3 types 3 layer laminated film of A layer / B layer / C layer, A layer (surface layer) / B layer (intermediate layer) / C layer (center) Layer) / B layer (intermediate layer) / A layer (surface layer), and a five-layer laminated film.
  • the shrink film of this invention may have layers other than A layer, B layer, and C layer further. Layers other than the A layer, the B layer, and the C layer are not particularly limited, but a layer that can be provided in-line in the film forming process of the laminated film is preferable.
  • an anchor coat layer, an easy adhesion layer, an antistatic layer examples thereof include a coating layer such as an agent layer.
  • the A layer is a resin layer containing at least an aromatic polyester resin.
  • the aromatic polyester resin is a polyester resin containing an aromatic ring in the molecule.
  • Examples of the aromatic polyester-based resin include various polyesters composed of a dicarboxylic acid component and a diol component as essential components (that is, a structural unit (structural unit) derived from dicarboxylic acid and a structural unit derived from diol). And polyesters containing at least a dicarboxylic acid containing an aromatic dicarboxylic acid and a polymer obtained by a condensation reaction of a diol, a copolymer, or a mixture thereof.
  • the above aromatic polyester resins can be used alone or in combination of two or more.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-t-butylisophthalic acid, 4,4′-biphenyldicarboxylic acid, and trans-3.
  • diol examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol.
  • 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3 -Propanediol, 1,8-octanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2,4-dimethyl-1,3-hexanediol, 1,10-decanediol, Aliphatic diols such as polyethylene glycol and polypropylene glycol; 1,2-cyclohexanedimethanol Alicyclic diols such as 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 2,2-bis (4- ⁇ - Examples thereof include ethylene oxide ad
  • the aromatic polyester-based resin includes oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid; monocarboxylic acids such as benzoic acid and benzoylbenzoic acid; and polyvalent acids such as trimellitic acid. It may contain a structural unit derived from a carboxylic acid; a monohydric alcohol such as polyalkylene glycol monomethyl ether; a polyhydric alcohol such as glycerin, pentaerythritol, or trimethylolpropane.
  • oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid
  • monocarboxylic acids such as benzoic acid and benzoylbenzoic acid
  • polyvalent acids such as trimellitic acid. It may contain a structural unit derived from a carboxylic acid; a monohydric alcohol such as polyalkylene glycol monomethyl ether; a polyhydric alcohol such as glycerin
  • the aromatic polyester-based resin 50 mol% or more (particularly 70 mol% or more) in the total dicarboxylic acid component is 50 mol% or more (particularly 70 mol%) in the aromatic dicarboxylic acid component and / or the total diol component.
  • % Or more) is preferably an aromatic diol component.
  • the content of the aromatic dicarboxylic acid component in the total dicarboxylic acid component is preferably 80 mol% or more (80 to 100 mol%), more preferably 90 mol% or more (90 to 100 mol). %).
  • the aromatic polyester-based resin is made of a single repeating unit from the viewpoint of improving delamination deterrence and improving the shrinkage rate (thermal shrinkage rate) of the entire shrink film by becoming amorphous.
  • a modified aromatic polyester-based resin containing a modifying component is preferable.
  • the modified aromatic polyester resin for example, at least one of a dicarboxylic acid component and a diol component is composed of two or more components, that is, a modified aromatic polyester resin containing a modified component in addition to the main component.
  • the aromatic polyester-based resin is preferably a modified aromatic polyester-based resin including a structural unit derived from at least two kinds of dicarboxylic acids and / or a structural unit derived from at least two kinds of diols.
  • a modified PET in which is replaced with a modified component is preferably exemplified.
  • Examples of the dicarboxylic acid component used as the modifying component (copolymerization component) of the modified aromatic polyester resin (particularly modified PET) include cyclohexanedicarboxylic acid, adipic acid, and isophthalic acid.
  • Examples of the diol component used as the modifying component include 2,2-dialkyl-1,3-propanediol such as 1,4-cyclohexanedimethanol (CHDM) and neopentyl glycol (NPG), and diethylene glycol. Among these, CHDM and 2,2-dialkyl-1,3-propanediol (particularly NPG) are preferable.
  • the alkyl group in the 2,2-dialkyl-1,3-propanediol is preferably an alkyl group having 1 to 6 carbon atoms, and the two alkyl groups may be the same or different. It may be an alkyl group.
  • aromatic polyester-based resin in terms of shrinkage properties, polyethylene terephthalate (PET) using terephthalic acid as a dicarboxylic acid component and ethylene glycol (EG) as a diol component; Modified aromatic polyester-based resin using terephthalic acid, ethylene glycol as the diol component, and 1,4-cyclohexanedimethanol (CHDM) as the copolymer component (sometimes referred to as “CHDM copolymerized PET”)
  • CHDM copolymerized PET A modified aromatic polyester resin using terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component, and 2,2-dialkyl-1,3-propanediol as the copolymer component (“2,2- Dialkyl-1,3-propanedioe Sometimes referred to as copolymerized PET ”) are preferred.
  • terephthalic acid is used as the dicarboxylic acid component
  • ethylene glycol is the main component as the diol component
  • neopentyl glycol (NPG) is the copolymerized component.
  • the modified aromatic polyester-based resin used as (sometimes referred to as “NPG copolymerized PET”) is particularly preferable.
  • diethylene glycol may be copolymerized.
  • the copolymerization ratio of the copolymer component (modified component) [ratio of the copolymerized dicarboxylic acid component to the total dicarboxylic acid component (ratio), or the ratio of the copolymerized diol component to the total diol component ( The ratio)] is preferably 15 mol% or more (for example, 15 to 40 mol%) from the viewpoint of optimizing the thermal deformation behavior of the A layer and reducing delamination.
  • the proportion of CHDM is preferably 20 to 40 mol% (EG is 60 to 80 mol%) in all diol components (that is, relative to 100 mol% of terephthalic acid), More preferably, it is 25 to 35 mol% (EG is 65 to 75 mol%).
  • the ratio of 2,2-dialkyl-1,3-propanediol is In the diol component, 15 to 40 mol% (EG is 60 to 85 mol%) is preferable.
  • a part of the EG component preferably 1 to 10 mol% in the total diol component may be replaced with diethylene glycol.
  • the aromatic polyester resin is preferably a substantially amorphous aromatic polyester resin, and more preferably an aromatic polyester resin that is an amorphous saturated polyester resin.
  • the aromatic polyester-based resin becomes difficult to crystallize by being modified as described above, and can be made substantially amorphous by, for example, modification.
  • the crystallinity of the aromatic polyester resin measured by the differential scanning calorimetry (DSC) method is preferably 15% or less, more preferably 10% or less.
  • the aromatic polyester-based resin is most preferably a resin that hardly shows a melting point (melting peak) when measured by the DSC method (that is, a crystallinity of 0%).
  • the crystallinity can be calculated from the value of heat of crystal fusion obtained by DSC measurement, with a sample having a clear crystallinity measured by the X-ray method or the like as a standard.
  • the heat of crystal melting is, for example, using a DSC (differential scanning calorimetry) device manufactured by Seiko Instruments Inc., performing a nitrogen seal at a sample amount of 10 mg and a heating rate of 10 ° C./min.
  • the temperature can be determined from the area of the melting peak when the temperature is lowered to room temperature and then raised again.
  • the crystallinity is preferably measured from a single resin, but when measured in a mixed state, the melting peak of the target aromatic polyester resin is subtracted from the melting peak of the resin to be mixed. You can ask for.
  • the weight average molecular weight (Mw) of the aromatic polyester resin is preferably 15000 to 90000, more preferably 30000 to 80000, from the viewpoint of melting behavior and shrinkage behavior.
  • Mw weight average molecular weight
  • 50000-70000 is more preferable.
  • the glass transition temperature (Tg) of the aromatic polyester resin is preferably 60 to 80 ° C., more preferably 60 to 75 ° C.
  • the Tg can be controlled by the type of dicarboxylic acid or diol constituting the aromatic polyester resin and the copolymerization ratio of the copolymerization component (modification component) used for modification.
  • the thermal deformation behavior (change in shrinkage stress with respect to temperature) is close to that of the polypropylene resin constituting the C layer. The difference in shrinkage stress generated between them becomes small, and delamination during shrink processing hardly occurs.
  • Tg exceeds 80 ° C. during shrink processing, the A layer shrinks rapidly at a high temperature, and the shrinkage stress difference increases with the C layer that gradually shrinks from a relatively low temperature, resulting in delamination. It may be easier.
  • the glass transition temperature (Tg) can be measured by DSC (differential scanning calorimetry) in accordance with, for example, JIS K7121.
  • the DSC measurement is not particularly limited.
  • the DSC measurement can be performed using a differential scanning calorimeter “DSC6200” manufactured by Seiko Instruments Inc. under a temperature rising rate of 10 ° C./min.
  • the IV value (intrinsic viscosity) of the aromatic polyester resin is preferably 0.70 (dl / g) or more from the viewpoint of interlayer strength, more preferably 0.70 to 0.90 (dl / g), It is preferably 0.75 to 0.85 (dl / g).
  • aromatic polyester-based resin Commercially available products may be used as the aromatic polyester-based resin.
  • EMBRACE 21214 “EMBRACE LV” (above, CHDM copolymerized PET) manufactured by Eastman Chemical (Eastman Chemical), Bell Co., Ltd.
  • Belpet MGG200 manufactured by Polyester Products
  • Belpet E02 manufactured by Bell Polyester Products Co., Ltd. (NPG copolymerized PET, etc.) are available on the market.
  • the content of the aromatic polyester resin in the A layer is not particularly limited, but the total weight of the A layer (100) from the viewpoint of shrinkage characteristics (heat shrinkage rate), heat resistance, strength, chemical resistance, printability, and the like.
  • % By weight is preferably 50% by weight or more (50 to 100% by weight), more preferably 80 to 100% by weight, still more preferably 90 to 100% by weight.
  • the layer A may contain components other than the aromatic polyester-based resin (additive components), for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, if necessary.
  • additive components for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, if necessary.
  • a coloring agent, a pinning agent (alkaline earth metal) and the like may be included.
  • the B layer is a resin containing 60 to 78% by weight of structural units derived from ethylene, 18 to 24% by weight of structural units derived from methyl methacrylate, and 1 to 3.5% by weight of structural units derived from 1-butene. Is a layer.
  • the layer B comprises at least one ethylene copolymer selected from the group consisting of an ethylene-methyl methacrylate copolymer (EMMA), an ethylene-1-butene copolymer, and an ethylene-1-butene-methyl methacrylate copolymer.
  • EMMA ethylene-methyl methacrylate copolymer
  • a resin layer containing a coalescence is preferable.
  • the layer B is preferably a resin layer containing at least an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer or a resin layer containing at least an ethylene-1-butene-methyl methacrylate copolymer. More preferably, the resin layer contains at least an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer.
  • the ethylene-methyl methacrylate copolymer, ethylene-1-butene copolymer, and ethylene-1-butene-methyl methacrylate copolymer may be used singly or in combination of two or more. Also good.
  • the ethylene-methyl methacrylate copolymer is a copolymer composed of ethylene and methyl methacrylate (methyl methacrylate) as essential monomer components (monomer components).
  • (B) a copolymer containing at least a structural unit derived from ethylene and a structural unit derived from methyl methacrylate.
  • a monomer component which comprises the said EMMA if it exists in the range which does not prevent the effect of this invention, you may use copolymerization components other than the said ethylene and methylmethacrylate.
  • Examples of the copolymer component other than ethylene and methyl methacrylate include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like.
  • ⁇ -olefins preferably ⁇ -olefins having 3 to 20 carbon atoms
  • vinyl monomers such as vinyl chloride
  • the content of the structural unit derived from ethylene in the ethylene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer at the time of melting, the total weight of the ethylene-methyl methacrylate copolymer ( 100 to 80% by weight), preferably 50 to 80% by weight, more preferably 60 to 78% by weight.
  • the content of the structural unit derived from methyl methacrylate in the ethylene-methyl methacrylate copolymer is not particularly limited, but the adhesiveness (adhesiveness) with the A layer and the C layer, and the flexibility during stretching or shrinking From the viewpoint of imparting properties, it is preferably 20 to 50% by weight, more preferably 20 to 40% by weight, still more preferably 22 to 30% by weight based on the total weight (100% by weight) of the ethylene-methyl methacrylate copolymer. %.
  • the weight average molecular weight of the ethylene-methyl methacrylate copolymer is preferably 100,000 to 200,000, more preferably 130,000 to 150,000, from the viewpoint of behavior during melting and flexibility.
  • the melt flow rate (MFR) (temperature 190 ° C., load 2.16 kgf) of the ethylene-methyl methacrylate copolymer is preferably 1 to 10 (g / 10 min) from the viewpoint of behavior at the time of melting and flexibility, More preferably, it is 6 to 8 (g / 10 minutes).
  • MFR can be measured based on JIS K7210.
  • ethylene-methyl methacrylate copolymer Commercially available products may be used as the ethylene-methyl methacrylate copolymer, and for example, “ACRlift WK307” manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
  • the ethylene-1-butene copolymer is a copolymer comprising ethylene and 1-butene as essential monomer components, that is, a structural unit derived from ethylene in a molecule (in one molecule) and It is a copolymer containing at least a structural unit derived from 1-butene.
  • a copolymer component other than the ethylene and 1-butene may be used as long as the effects of the present invention are not impaired. .
  • copolymer components other than ethylene and 1-butene examples include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene.
  • ⁇ -olefins preferably ⁇ -olefins having 3 to 20 carbon atoms
  • vinyl monomers such as vinyl chloride
  • the content of the structural unit derived from 1-butene in the ethylene-1-butene copolymer is not particularly limited, but from the viewpoint of improving the heat resistance of the B layer, the total amount of the ethylene-1-butene copolymer is not limited.
  • the amount is preferably 2 to 20% by weight, more preferably 10 to 15% by weight based on the weight (100% by weight).
  • the content of the structural unit derived from ethylene in the ethylene-1-butene copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer during melting, the total amount of the ethylene-1-butene copolymer is not limited. It is preferably 80 to 98% by weight, more preferably 85 to 90% by weight, based on the weight (100% by weight).
  • the weight average molecular weight of the ethylene-1-butene copolymer is preferably from 100,000 to 200,000, more preferably from 130,000 to 150,000, from the viewpoint of behavior during melting and flexibility.
  • the melt flow rate (MFR) (temperature 190 ° C., load 2.16 kgf) of the ethylene-1-butene copolymer is preferably 1 to 15 (g / 10 minutes) from the viewpoint of behavior at the time of melting and flexibility. More preferably, it is 1 to 10 (g / 10 minutes), and further preferably 6 to 8 (g / 10 minutes).
  • ethylene-1-butene copolymer Commercially available products may be used as the ethylene-1-butene copolymer, and for example, “Excellen VL700” manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
  • the ethylene-1-butene-methyl methacrylate copolymer is a copolymer composed of ethylene, 1-butene and methyl methacrylate as essential monomer components, that is, ethylene in the molecule (in one molecule).
  • the monomer component constituting the ethylene-1-butene-methyl methacrylate copolymer is a copolymer other than ethylene, 1-butene and methyl methacrylate as long as it does not interfere with the effects of the present invention. Ingredients may be used.
  • copolymer components other than ethylene, 1-butene, and methyl methacrylate examples include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, ⁇ -olefins such as 1-decene (preferably ⁇ -olefins having 3 to 20 carbon atoms); vinyl monomers such as vinyl chloride; (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citracone Acids, unsaturated carboxylic acids such as 5-norbornene-2,3-dicarboxylic acid; unsaturated carboxylic anhydrides such as maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, tetrahydrophthalic anhydride, etc.
  • Unsaturated carboxylic acids such as 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, monoethyl maleate, diethyl maleate
  • esters unsaturated amides or imides such as acrylamide, methacrylamide, and maleimide
  • unsaturated carboxylates such as sodium (meth) acrylate and zinc (meth) acrylate.
  • the content of the structural unit derived from ethylene in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer during melting, ethylene-1-butene-methyl
  • the amount is preferably 60 to 78% by weight, more preferably 70 to 78% by weight, based on the total weight (100% by weight) of the methacrylate copolymer.
  • the content of the structural unit derived from 1-butene in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of improving the heat resistance of the B layer, ethylene-1-butene-methyl It is preferably 1 to 3.5% by weight, more preferably 1.2 to 3% by weight, based on the total weight (100% by weight) of the methacrylate copolymer.
  • the content of the structural unit derived from methyl methacrylate in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but the adhesiveness with the A layer and the C layer, and the flexibility during stretching and shrinking From the viewpoint of imparting properties, it is preferably 18 to 24% by weight, more preferably 20 to 23% by weight, based on the total weight (100% by weight) of the ethylene-1-butene-methyl methacrylate copolymer.
  • the content of structural units derived from ethylene in the B layer is 60 to 78% by weight, preferably 70 to 78% by weight, based on the total weight (100% by weight) of the B layer. If the content is less than 60% by weight, it is difficult to form a layer, and if it exceeds 78% by weight, the layer is easily peeled off at room temperature and when heated (when contracted or stretched).
  • the content of structural units derived from methyl methacrylate in the B layer is 18 to 24% by weight, preferably 20 to 23% by weight, based on the total weight (100% by weight) of the B layer.
  • the content is less than 18% by weight, the adhesiveness of the B layer is insufficient, delamination is likely to occur at room temperature, and the flexibility during heating is insufficient, so that whitening or peeling during stretching or contraction is not possible. It becomes easy to get up.
  • the content exceeds 24% by weight the layer form cannot be maintained during heating, and peeling tends to occur.
  • the content of the structural unit derived from 1-butene in the B layer is 1 to 3.5% by weight, preferably 1.2 to 3% by weight, based on the total weight (100% by weight) of the B layer. %.
  • the content is less than 1% by weight, the heat resistance of the B layer is lowered, and particularly when shrink processing is performed at a high temperature, delamination easily occurs during shrink processing. Flexibility is insufficient, and whitening during stretching and peeling during shrinkage tend to occur.
  • the contents of the structural unit derived from ethylene, the structural unit derived from methyl methacrylate, and the structural unit derived from 1-butene in the B layer can be controlled mainly by the composition of the resin constituting the B layer.
  • the layer B is a resin layer containing an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer
  • content of structural unit derived from ethylene in ethylene-1-butene copolymer, content of structural unit derived from 1-butene, and ethylene in the B layer It can be controlled mainly by the content of the methyl methacrylate copolymer and the content of the ethylene-1-butene copolymer.
  • ethylene-methyl whose content of structural units derived from ethylene is e 1 (% by weight) and whose content of structural units derived from methyl methacrylate is m (% by weight).
  • W 1 % by weight
  • the content of the ethylene-1-butene copolymer in the B layer is W 2 (% by weight).
  • the contents of the structural unit derived from ethylene, the structural unit derived from methyl methacrylate, and the structural unit derived from 1-butene in the B layer can be generally controlled as follows.
  • Content of structural unit derived from ethylene in layer B (% by weight) (e 1 ⁇ W 1 + e 2 ⁇ W 2 ) / 100
  • Content of structural unit derived from methyl methacrylate in layer B (% by weight) (M ⁇ W 1 ) / 100
  • Content of constituent unit derived from 1-butene in layer B (% by weight) (b ⁇ W 2 ) / 100
  • Analysis / measurement of the structural unit in the B layer (structural unit derived from ethylene, structural unit derived from methyl methacrylate and structural unit derived from 1-butene) and the content of the structural unit is not particularly limited. , Nuclear magnetic resonance (NMR), gas chromatograph mass spectrometer (GCMS) and the like.
  • analysis / measurement of other resin layers (A layer, C layer, etc.) and constituent units in the resin and the content of the constituent units can be performed in the same manner.
  • the content of the ethylene-methyl methacrylate copolymer in the B layer is It is preferably 45 to 95% by weight, more preferably 60 to 92% by weight, based on the total weight (100% by weight). Further, the content of the ethylene-1-butene copolymer in the B layer is preferably 5 to 55% by weight, more preferably 8 to 40% by weight with respect to the total weight (100% by weight) of the B layer. is there.
  • the content of the ethylene-1-butene-methyl methacrylate copolymer in the B layer is determined by the total amount of the B layer. It is preferably 90 to 100% by weight, more preferably 99 to 100% by weight, based on the weight (100% by weight).
  • the resin constituting the B layer is not limited to ethylene-methyl methacrylate copolymer, ethylene-1-butene copolymer, and ethylene-1-butene-methyl methacrylate copolymer.
  • the B layer may be formed using polyethylene, polymethyl methacrylate, and poly-1-butene.
  • the layer B may contain components other than the ethylene copolymer (additive components), such as lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, A polymer plasticizer (petroleum resin, etc.), a coloring agent, a pinning agent (alkaline earth metal) and the like may be contained.
  • additive components such as lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, A polymer plasticizer (petroleum resin, etc.), a coloring agent, a pinning agent (alkaline earth metal) and the like may be contained.
  • Tan ⁇ Temperature dependence of the loss tangent (tan ⁇ ) determined by dynamic viscoelasticity measurement of the B layer (resin composition constituting the B layer) (temperature-tan ⁇ curve.
  • dynamic viscoelastic curve Tan ⁇ is preferably less than 1 to 1 or more in the temperature range of 80 to 97 ° C. (80 ° C. or more and 97 ° C. or less).
  • T (tan ⁇ ⁇ 1) is preferably higher than 85 ° C.
  • the shrink film and the shrink label of the present invention are not particularly limited, but it is desirable that the shrink processing is performed at a temperature at which the film temperature is about 80 to 100 ° C. When shrink processing is performed at a temperature lower than 80 ° C., it may be difficult to shrink a portion that requires high shrinkage. On the other hand, when shrink processing is performed at a temperature exceeding 100 ° C., deformation of a plastic container or This is because the contents may be deteriorated.
  • the B layer has moderate fluidity at the shrinking processing temperature such that the film temperature is about 80 to 97 ° C. Good followability to the shrinkage of the layer and effective adhesion (adhesiveness, interlayer adhesion).
  • T (tan ⁇ ⁇ 1) exceeds 97 ° C., the B layer still does not have sufficient fluidity at the shrinkage processing temperature, so the followability to the deformation of the A layer and the C layer is poor, and delamination tends to occur. There is a case.
  • T (tan ⁇ ⁇ 1) when T (tan ⁇ ⁇ 1) is less than 80 ° C., the fluidity of the B layer becomes too high at the shrinkage processing temperature, and the form of the layer may not be maintained.
  • T (tan ⁇ ⁇ 1) can be easily controlled within the above range by controlling the content of the structural unit derived from methyl methacrylate and the structural unit derived from 1-butene in the B layer.
  • said "resin composition which comprises B layer” is "resin which comprises B layer", when B layer is comprised only from single resin.
  • T (tan ⁇ ⁇ 1) is obtained by dynamic viscoelasticity measurement.
  • the dynamic viscoelasticity measurement is performed under the conditions of frequency: 1 Hz, rate of temperature increase: 2 ° C./min, measurement temperature: room temperature (30 ° C.) to 120 ° C.
  • the evaluation apparatus is, for example, Seiko Instruments Inc. “EXSTAR6000 DMS6100” manufactured by the company can be used.
  • the weight average molecular weight of the B layer is preferably 100,000 to 200,000, more preferably 130,000 to 150,000, from the viewpoint of the flexibility of the layer.
  • said "resin composition which comprises B layer” is “resin which comprises B layer", when B layer is comprised only from single resin.
  • the C layer is a resin layer containing at least a polypropylene resin.
  • the polypropylene resin is a polymer composed of propylene as an essential monomer component, that is, a polymer containing at least a structural unit derived from propylene in a molecule (in one molecule).
  • the polypropylene resin may be, for example, a propylene homopolymer or a copolymer (propylene- ⁇ -olefin copolymer) containing a copolymer component such as ⁇ -olefin.
  • the polypropylene resin is particularly preferably a polypropylene resin obtained by polymerization with a metallocene catalyst (metallocene catalyst polypropylene, metallocene catalyst propylene- ⁇ -olefin copolymer, etc.), propylene- ⁇ -olefin random copolymer. It is a coalescence.
  • metallocene catalyst metallocene catalyst polypropylene, metallocene catalyst propylene- ⁇ -olefin copolymer, etc.
  • propylene- ⁇ -olefin random copolymer propylene- ⁇ -olefin random copolymer. It is a coalescence.
  • These polypropylene resins can be used alone or in combination of two or more.
  • the propylene content in the polypropylene resin (that is, the content of structural units derived from propylene in the polypropylene resin) is the total weight of the polypropylene resin (100 from the viewpoint of shrinkage, strength, and specific gravity of the shrink film). % By weight) is preferably 50 to 100% by weight, more preferably 60 to 100% by weight.
  • the propylene- ⁇ -olefin copolymer is a copolymer composed of propylene and ⁇ -olefin as essential monomer components, that is, a structural unit derived from propylene in a molecule (in one molecule) and A copolymer containing at least a structural unit derived from an ⁇ -olefin.
  • the ⁇ -olefin used as a copolymerization component of the propylene- ⁇ -olefin copolymer is ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Examples thereof include ⁇ -olefins having about 4 to 20 carbon atoms such as octene, 1-nonene and 1-decene. These ⁇ -olefins can be used alone or in admixture of two or more. Among these, an ethylene-propylene random copolymer containing ethylene as a copolymerization component is particularly preferable.
  • propylene- ⁇ -olefin copolymer particularly, ethylene-propylene random copolymer
  • a copolymer obtained by copolymerization using a metallocene catalyst is preferred.
  • those having an isotactic index of 90% or more are preferable.
  • the metallocene catalyst a known or conventional metallocene catalyst for olefin polymerization can be used.
  • the polymerization method is not particularly limited, and a known polymerization method such as a slurry method, a solution polymerization method, or a gas phase method can be employed.
  • Wintech WFX6 metalocene catalyst-based propylene-ethylene random copolymer
  • Zeras # 7000, # manufactured by Mitsubishi Chemical Corporation. 5000
  • Kernel manufactured by Nippon Polyethylene Co., Ltd.
  • the weight-average molecular weight of the polypropylene resin is preferably 100,000 to 500,000, more preferably 200,000 to 400,000 from the viewpoint of controlling the melting behavior of the resin forming the C layer within a preferable range.
  • the melting point of the polypropylene resin is preferably 100 to 150 ° C., more preferably 120 to 140 ° C.
  • the melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is preferably 0.1 to 10 g / 10 minutes, more preferably 1 to 5 g / 10 minutes, from the viewpoint of controlling the melting behavior. If the melting point or MFR is out of the above range, the difference in melting characteristics and thermal characteristics between the resin forming the A layer and the resin forming the C layer becomes large, and sheeting or stretching by coextrusion during shrink film production. May become difficult, and may cause a decrease in productivity such as film breakage and a decrease in shrinkage due to insufficient orientation.
  • the content of the polypropylene-based resin in the C layer is preferably 40% by weight or more (40 to 100% by weight), more preferably 50 to 94% by weight, further based on the total weight (100% by weight) of the C layer. Preferably, it is 55 to 89% by weight.
  • the content of the polyolefin resin in the C layer is less than 40% by weight, the shrink film may not have a low specific gravity or the shrinkage characteristics may be deteriorated.
  • the C layer may contain a polyethylene resin for the purpose of preventing film breakage and improving shrink workability.
  • the polyethylene-based resin is a polymer composed of ethylene as an essential monomer component, that is, a polymer containing at least a structural unit derived from ethylene in a molecule (in one molecule).
  • the polyethylene-based resin is not particularly limited, and publicly known or commonly used polyethylene can be used. For example, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene, medium density Examples include polyethylene and high density polyethylene (HDPE).
  • low density polyethylene including linear low density polyethylene and ultra-low density polyethylene having a density of less than 0.930 (g / cm 3 ) is preferable, and linear low density polyethylene is particularly preferable.
  • linear low density polyethylene metallocene catalyst system LLDPE
  • Commercially available products may be used as the polyethylene resin.
  • Evolue SP2040 manufactured by Prime Polymer Co., Ltd. is available on the market.
  • the content of the polyethylene resin in the C layer is preferably 1 to 10% by weight, more preferably 1 to 5% by weight with respect to the total weight (100% by weight) of the C layer.
  • the C layer may contain a polymer plasticizer from the viewpoint of improving the shrinkability of the shrink film.
  • the polymer plasticizer include rosin resin (rosin, polymerized rosin, hydrogenated rosin and derivatives thereof, resin acid dimer, etc.), terpene resin (terpene resin, aromatic modified terpene resin, hydrogenated terpene resin). Terpene-phenol resins, etc.), petroleum resins (aliphatic petroleum resins, aromatic petroleum resins, alicyclic petroleum resins) and the like. Among these, petroleum resin is preferable.
  • the above polymeric plasticizers can be used alone or in combination of two or more.
  • polymer plasticizer As the polymer plasticizer, “Arcon” manufactured by Arakawa Chemical Industry Co., Ltd., “Clearon” manufactured by Yashara Chemical Co., Ltd., “Imabe” manufactured by Idemitsu Kosan Co., Ltd., etc. are commercially available.
  • the content of the polymer plasticizer (particularly petroleum resin) in the C layer is preferably 5 to 30% by weight with respect to the total weight (100% by weight) of the C layer. More preferably, it is 10 to 25% by weight. If the content exceeds 30% by weight, the shrink film may become brittle. On the other hand, if it is less than 5% by weight, the effect of adding the polymer plasticizer may be small.
  • the C layer may contain other components (additive components) as necessary, for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, colorants, pinning agents. (Alkaline earth metal) and the like may be contained.
  • additive components for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, colorants, pinning agents. (Alkaline earth metal) and the like may be contained.
  • the C layer may contain a recovered raw material as long as the effects of the present invention are not impaired.
  • the content of the recovered material in the C layer is preferably 1 to 75% by weight, more preferably 1% with respect to the total weight (100% by weight) of the C layer from the viewpoint of recyclability and shrinkage. % Or more and less than 50% by weight.
  • the recovered material is a recycled material composed of non-product parts before and after commercialization, film edges, etc., remaining parts when product films are collected from intermediate products, non-standard product film scraps, and polymer scraps.
  • the recovered raw materials are limited to those produced from the manufacture of the shrink film of the present invention (so-called self-collected products).
  • the shrink film of the present invention has a laminated structure in which an A layer, a B layer, and a C layer are laminated in the order of A layer / B layer / C layer without any other layer (3 types, 3 layers). At least).
  • the shrink film of this invention is not specifically limited, 3 types 3 layer lamination shrink films of A layer / B layer / C layer and 3 types 5 layer lamination of A layer / B layer / C layer / B layer / A layer A shrink film is preferred.
  • the above-mentioned “laminated in the order of A layer / B layer / C layer without other layers” means more specifically the order of A layer / B layer / C layer and A layer
  • the B layer is laminated without sandwiching other layers such as an adhesive layer between both layers
  • the B layer and the C layer are laminated without sandwiching other layers such as an adhesive layer between both layers.
  • the above laminated structures (for example, A layer / B layer / C layer, 3 layers, 3 layers, A layer / B layer / C layer / B layer / A layer, 3 layers, 5 layers, etc.) are co-extruded. It is preferably formed by.
  • the shrink film of the present invention is an oriented film (uniaxially oriented film, biaxially oriented film or multiaxially oriented film) from the viewpoint of shrinkage characteristics. It is preferable that all the resin layers of the A layer, the B layer, and the C layer in the shrink film of the present invention are oriented. When all the resin layers are non-oriented, good shrinkage cannot be obtained.
  • the shrink film of the present invention is not particularly limited, a uniaxially oriented film or a biaxially oriented film is preferable, and among these, the uniaxial direction of the film [particularly, the width direction of the film (in the case of a cylindrical shrink label, the circumferential direction of the label).
  • substantially a uniaxially oriented film in the width direction is preferred (substantially a uniaxially oriented film in the width direction). It may be a substantially uniaxially oriented film in the longitudinal direction that is strongly oriented in the longitudinal direction of the film (direction perpendicular to the width direction).
  • the thickness of the A layer (only one layer) is not particularly limited, but is preferably 3 to 15 ⁇ m, more preferably 5 to 10 ⁇ m. If the thickness of the A layer exceeds 15 ⁇ m, the shrinkage stress of the A layer becomes too high, and delamination during shrink processing cannot be suppressed, or the shrinkage may occur rapidly and the finish may be lowered. On the other hand, if the thickness is less than 3 ⁇ m, the shrinkage may be insufficient or the strength of the shrink film may be reduced.
  • the thickness of the A layer is more preferably 3 to 8 ⁇ m, still more preferably 5 to 7.5 ⁇ m.
  • delamination may easily occur when the thickness of the A layer exceeds 8 ⁇ m.
  • the thickness of the B layer is not particularly limited, but is preferably 0.5 to 10 ⁇ m, more preferably 1 to 8 ⁇ m. If the thickness of the B layer exceeds 10 ⁇ m, the shrinkage of the shrink film may be reduced, and if it is less than 0.5 ⁇ m, the adhesive strength may be reduced and delamination may easily occur.
  • the thickness of the C layer is not particularly limited, but is preferably 10 to 70 ⁇ m, more preferably 15 to 50 ⁇ m. If the thickness of the C layer exceeds 70 ⁇ m, the thermal shrinkage rate may decrease. If the thickness of the C layer is less than 10 ⁇ m, the shrinkage stress difference with the A layer becomes too large, and delamination during shrink processing cannot be suppressed, or the shrinkage is rapid. May occur and the finish may be reduced.
  • the ratio of the total A layer thickness (total thickness of all A layers in the shrink film) to the total C layer thickness (total thickness of all C layers in the shrink film) 100% is It is preferably 40 to 150%, more preferably 50 to 100%. If the total A layer thickness is too small relative to the total C layer thickness, the shrinkage of the shrink film may be insufficient (the thermal shrinkage rate will be reduced) or the shrink strength of the shrink film may be reduced and the processability may be reduced. is there. On the other hand, if the total A layer thickness is too large relative to the total C layer thickness, the contraction stress of the A layer increases, the contraction stress difference between the A layer and the C layer becomes too large, and there is a B layer.
  • the shrink film of this invention has B layer, even if it is a case where A layer thickness with respect to C layer thickness is comparatively thick, delamination is suppressed and shrinkage, waist strength, and delamination deterrence are compatible. This is preferable.
  • the ratio of the total B layer thickness (the total thickness of all B layers in the shrink film) to the total C layer thickness of 100% is preferably 5 to 100%, more preferably 10 to 50%. It is. If the total B layer thickness is too thin with respect to the total C layer thickness, the adhesive strength of the B layer may be reduced, and delamination may easily occur. On the other hand, if the total B layer thickness is too large with respect to the total C layer thickness, the strength of the shrinkage of the shrink film may be reduced.
  • the total thickness of the shrink film of the present invention is not particularly limited, but is preferably 20 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, still more preferably 20 to 50 ⁇ m.
  • the interlayer strength of the shrink film of the present invention before shrink processing is preferably 0.7 (N / 15 mm) or more, more preferably 1.5 (N / 15 mm) or more.
  • the resin layers are peeled off at the time of processing (printing process of shrink label) such as printing or processing into a cylindrical shape, resulting in lower productivity. Or a quality problem.
  • the interlaminar strength refers to the interlaminar strength having the lowest interlaminar strength among shrink films in a T-type peel test (according to JIS K 6854-3, tensile speed: 200 mm / min).
  • the shrinkage rate of the shrink film of the present invention (before shrink processing) in the main orientation direction at 90 ° C. for 10 seconds (warm water treatment) (sometimes referred to as “thermal shrinkage rate (90 ° C., 10 seconds)”).
  • thermal shrinkage rate (90 ° C., 10 seconds) is preferably 35% or more, more preferably 35 to 80%, and still more preferably 40 to 80%.
  • the thermal shrinkage rate (90 ° C., 10 seconds) is less than 35%, the shrink label is not sufficiently contracted in the process of heat-adhering the shrink label to the container, making it difficult to follow the shape of the container.
  • the finish may be poor for the container.
  • main orientation direction is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage), and is generally a longitudinal direction or a width direction, for example, substantially in the width direction.
  • a film uniaxially stretched substantially a uniaxially oriented film in the width direction
  • it is the width direction.
  • the shrinkage rate (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction of the shrink film of the present invention (before shrink processing) is not particularly limited, but is preferably ⁇ 5 to 10%.
  • the haze (haze) value [conforms to JIS K 7105, converted to 40 ⁇ m thickness, unit:%] of the shrink film of the present invention is preferably less than 15%, more preferably less than 5.0%, and still more preferably less than 2.0%. It is.
  • the haze value is 15% or more, printing is performed on the inside of the shrink film (the side that becomes the container side when the shrink label is attached to the container), and the shrink label that shows the print through the shrink film is the product. In some cases, the printing may become cloudy and the decorativeness may deteriorate. However, even if the haze value is 15% or more, it can be sufficiently used in applications other than the above-described applications that show printing through a shrink film.
  • the shrink film of the present invention is preferably produced by a melt film forming method.
  • the laminated structure is preferably formed by coextrusion (multilayer extrusion). That is, the shrink film of the present invention is preferably produced by a melt extrusion method (particularly a coextrusion method). More specifically, the shrink film of the present invention is preferably produced by forming an unstretched film (unstretched sheet) by melt extrusion (coextrusion) and then stretching the unstretched film. Further, the surface of the shrink film may be subjected to a conventional surface treatment such as a corona discharge treatment, if necessary.
  • each component is not particularly limited.
  • the mixed raw material is prepared by dry blending.
  • each component may be melt-kneaded using a uniaxial or biaxial kneader to obtain a mixed raw material.
  • you may use a master pellet (For example, what mixed the specific component with comparatively high density
  • raw materials for forming each resin layer (A layer, B layer, C layer, etc.) are respectively formed in a plurality of extruders each set to a predetermined temperature.
  • melt extrusion (coextrusion) from a T die, a circular die or the like.
  • the supply amount may be adjusted using a gear pump, and it is preferable to remove foreign substances using a filter because film tearing can be reduced.
  • the extrusion temperature varies depending on the type of raw material used and is not particularly limited.
  • the molding temperature region of the raw material forming each resin layer is close. That is, it is preferable that the extrusion temperature of each resin layer is close.
  • the extrusion temperature of the raw material forming the A layer is preferably 200 to 240 ° C.
  • the extrusion temperature of the raw material forming the B layer is 180 to 220 ° C.
  • the extrusion temperature of the raw material forming the C layer is 190 to 220 ° C. ° C is preferred.
  • the temperature of the junction or die is preferably 200 to 220 ° C.
  • An unstretched laminated film (sheet) can be obtained by quenching the coextruded polymer using a cooling drum (cooling roll) or the like.
  • Aligned films such as uniaxial orientation and biaxial orientation can be produced by stretching an unstretched laminated film.
  • the stretching can be selected according to the desired orientation, and for example, the longitudinal direction (film production line direction; also referred to as longitudinal direction or MD direction) and the width direction (direction perpendicular to the longitudinal direction; also referred to as lateral direction or TD direction). ) Biaxial stretching, or uniaxial stretching in the longitudinal direction or the width direction.
  • the stretching method may be any method such as a roll method, a tenter method, and a tube method.
  • the stretching conditions in the stretching process vary depending on the type of raw material used and the required characteristics of the shrink film, and are not particularly limited. In general, it is preferably carried out at a stretching temperature of 70 to 110 ° C.
  • the film stretched substantially uniaxially in the width direction is, for example, about 1.01 to 1.5 times (preferably 1.05 to 1.3 times) in the longitudinal direction as necessary. After stretching, it is preferable to stretch about 2 to 7 times (preferably 3 to 6.5 times, more preferably 4 to 6 times) in the width direction.
  • the A layer has an aromatic polyester resin as a main component and is highly shrinkable, so that the shrinkability (high shrinkage rate, high shrinkage stress) of the shrink film is improved, and the wearability to the container is improved. Good finish.
  • the A layer is highly rigid, the waist strength of the shrink film is improved.
  • the wearability when the cylindrical shrink label is attached to the container is improved, and problems such as “bending” occur. Hateful.
  • the C layer has a polypropylene resin as a main component, the shrink film has a low specific gravity.
  • the shrink film of the present invention is formed by laminating the A layer and the C layer, it is excellent in shrinkage and workability, and it is possible to achieve both characteristics such as low specific gravity, waist strength, and printability. .
  • the shrinkage behavior (heat shrinkage behavior) and the shrinkage stress (heat shrinkage stress) differ greatly between the A-layer aromatic polyester resin and the C-layer polypropylene resin (the shrinkage stress of the aromatic polyester resin is large).
  • shrink processing thermal shrinkage processing
  • a difference occurs in the shrinkage behavior between the A layer and the C layer. Delamination easily occurs.
  • the above phenomenon occurs particularly noticeably at the center seal portion when the shrink film is used as a cylindrical shrink label. This is presumably because in the center seal portion, one surface side is fixed by the center seal, so that the influence of the shrinkage of the unfixed surface side resin layer is increased.
  • the present inventors have provided a specific intermediate layer composed mainly of an ethylene-vinyl acetate resin between the A layer and the C layer. Succeeded in improving deterrence (see International Publication No. 2009/084212 pamphlet).
  • the intermediate layer when the shrink processing conditions are increased (for example, 90 to 100 ° C., etc.), the intermediate layer may be softened and the delamination inhibiting effect may be lowered.
  • a constituent unit derived from ethylene, a constituent unit derived from methyl methacrylate, and a constituent unit derived from 1-butene are contained in the layer between the A layer and the C layer.
  • B layers are provided, each of which is limited to a specific range.
  • the structural unit derived from ethylene the behavior of the B layer at the time of melting is preferably controlled, thereby improving the formability of the layer and the delamination deterrence at room temperature and during heating.
  • the structural unit derived from methyl methacrylate improves the flexibility of the B layer and the adhesiveness (tackiness) with the A and C layers, thereby improving the followability to the A and C layers.
  • the shrink film of the present invention is a shrink film in which the A layer and the C layer are laminated, and has excellent delamination deterrence during shrink processing, particularly shrinkage under relatively high temperature conditions and rapid heating conditions. The delamination deterrence at the time of the outstanding shrink process with respect to a process can be exhibited.
  • the shrink film of the present invention can be preferably used as a shrink label.
  • a shrink label including the shrink film of the present invention may be referred to as “shrink label of the present invention”.
  • the shrink label which has a printing layer in the at least one surface side of the shrink film (base material) of this invention is mentioned, for example.
  • the shrink label of the present invention includes a protective layer, an anchor coat layer, a primer coat layer, an adhesive layer (for example, a pressure-sensitive adhesive layer, a heat-sensitive adhesive layer, etc.), a coating layer, and the like. It may have, and may have layers, such as a nonwoven fabric and paper, further.
  • the layer structure of the shrink label of the present invention examples include, for example, printing layer / A layer / B layer / C layer / B layer / A layer, printing layer / A layer / B layer / C layer / B layer / A layer / printing. Layers and the like are preferred.
  • the shrink film of this invention can also be used as a shrink label by itself even when a printing layer is not provided.
  • the shrink label of the present invention may be a shrink label made only of the shrink film of the present invention.
  • the print layer is a layer displaying, for example, a product name, an illustration, and handling precautions.
  • the printing layer is formed, for example, by applying printing ink.
  • the coating method is preferably an off-line coating in which coating is performed using a known and commonly used printing method after forming a shrink film from the viewpoint of productivity, workability, and the like.
  • a printing method a conventional method can be used, and for example, gravure printing or flexographic printing is preferable.
  • the printing ink used for forming the printing layer includes, for example, a pigment, a binder resin, a solvent, and other additives.
  • the binder resin is not particularly limited.
  • acrylic, urethane, polyamide, vinyl chloride-vinyl acetate copolymer, cellulose, and nitrocellulose resins can be used alone or in combination.
  • a white pigment such as titanium oxide (titanium dioxide), an indigo pigment such as copper phthalocyanine blue, carbon black, aluminum flakes, mica (mica), and other colored pigments can be selected and used according to the application.
  • extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used as pigments for the purpose of adjusting gloss.
  • organic solvents such as toluene, xylene, methyl ethyl ketone, ethyl acetate, methyl alcohol, ethyl alcohol, and isopropyl alcohol
  • water can be used, for example.
  • the printing layer is not particularly limited, but may be an active energy ray-curable resin layer such as visible light, ultraviolet light, or electron beam. This is effective for preventing deformation of the film due to excessive heat.
  • the thickness of the printing layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, for example. If the thickness is less than 0.1 ⁇ m, it may be difficult to provide a uniform printing layer, and partial “blur” may occur, resulting in a loss of decorativeness or printing as designed. May be difficult. In addition, when the thickness exceeds 10 ⁇ m, a large amount of printing ink is consumed, which increases the cost, makes it difficult to apply uniformly, makes the printed layer brittle and easily peels off. . Moreover, the rigidity of a printing layer becomes high and a printing layer may become difficult to follow shrinkage
  • the shrink label of the present invention is, for example, a cylindrical shrink label of a type in which both ends of the label are sealed with a solvent or an adhesive and attached to the container, and one end of the label is attached to the container, and the label is wound After that, it can be used as a wrapping type shrink label in which the other end is overlapped with one end to form a cylinder.
  • the shrink film of the present invention is particularly effective for the cylindrical shrink label from the viewpoint that it is most effective in suppressing delamination (attachment delamination) at the center seal portion when the cylindrical shrink label is attached to the container.
  • the shrink label of the present invention is preferably a cylindrical shrink label.
  • the shrink label of the present invention may be processed into a cylindrical shrink label.
  • the shrink label is formed in a cylindrical shape so that the main orientation direction is the circumferential direction.
  • a shrink label having a predetermined width in the main orientation direction is formed into a cylindrical shape by overlapping both ends of the main orientation direction so that the front side of the shrink label is an outer surface (outer side), and one side of the label Apply a solvent or adhesive such as tetrahydrofuran (THF) or an adhesive (hereinafter sometimes referred to as “adhesive etc.”) to the inner surface of the belt with a width of about 2 to 4 mm on the edge. Adhere to the outer surface of the other side edge to obtain a cylindrical shrink label.
  • THF tetrahydrofuran
  • adhesive hereinafter sometimes referred to as “adhesive etc.”
  • the printing layer is not provided in the part which apply
  • the “front side” of the shrink label means the side viewing the design of the label (the side of the surface where the design looks correct).
  • the “outer surface” of the shrink label means the surface on the side that is not in contact with the container (the side opposite to the container, that is, the outside of the cylinder) when the shrink label is attached to the container. "Means the surface on the side in contact with the container (container side).
  • the perforation when providing the perforation for label cutting to a cylindrical shrink label, the perforation of predetermined length and a pitch is formed in the direction orthogonal to the circumferential direction.
  • the perforation can be applied by a conventional method (for example, a method of pressing a disk-shaped blade having a cut portion and a non-cut portion repeatedly formed around it, a method using a laser, or the like).
  • the process stage for perforating can be appropriately selected after the printing process and before and after the cylindrical processing process.
  • the center seal strength of the cylindrical shrink label is preferably 2N / 15 mm or more. If the center seal strength is less than 2 N / 15 mm, the center seal portion may be peeled off after processing or commercialization, thereby reducing productivity and causing label dropout.
  • the shrink label of the present invention is not particularly limited, but is used as a labeled container by being attached to a container such as a beverage container.
  • the shrink label of this invention may be used for adherends other than a container.
  • the shrink label of the present invention (in particular, the cylindrical shrink label) is attached to the container by, for example, placing the front side on the opposite side of the container and heat shrinking, thereby attaching a labeled container (the shrink label of the present invention). A labeled container) is obtained.
  • the container examples include a soft drink bottle such as a PET bottle, a milk bottle for home delivery, a food container such as a seasoning, a bottle for alcoholic beverages, a pharmaceutical container, a detergent container, a chemical container such as a spray, and a cup noodle container. Etc. are included. Although it does not specifically limit as a shape of the said container, For example, various shapes, such as bottle types, such as cylindrical shape and a square shape, and a cup type, are mentioned.
  • the material of the container is not particularly limited, and examples thereof include plastic such as PET, glass, and metal.
  • the above-mentioned container with a label can be produced, for example, by externally fitting a cylindrical shrink label to a predetermined container, and then thermally shrinking the cylindrical shrink label by heat treatment so as to follow and closely adhere to the container (shrink processing).
  • the heat treatment method include a method of passing through a hot air tunnel or a steam tunnel, a method of heating with radiant heat such as infrared rays, and the like.
  • a method of treating with steam at 80 to 100 ° C. passing through a heating tunnel filled with steam and steam
  • the heat treatment is not particularly limited, but is preferably performed in a temperature range in which the temperature of the shrink film is 85 to 97 ° C. (particularly 90 to 95 ° C.).
  • the shrink film of the present invention can be heat-treated particularly at a high temperature (90 to 95 ° C.), so that it can be used for containers that require high shrinkage.
  • the treatment time for the heat treatment is preferably 4 to 20 seconds from the viewpoint of productivity and economy.
  • the shrink label (especially cylindrical shrink label) using the shrink film of the present invention is attached to a container by shrink processing (heat shrink processing), even when subjected to shrink processing under high temperature conditions,
  • the center seal portion is preferable because delamination (mounting delamination) hardly occurs.
  • Table 1 shows the types and contents of the A layer raw material, the B layer raw material, and the C layer raw material in the examples and comparative examples, the structural unit derived from ethylene in the B layer, the structural unit derived from methyl methacrylate, 1- Content of the structural unit derived from butene was described. Moreover, the thickness (all layer thickness) of the obtained shrink film, layer thickness ratio, the weight average molecular weight of B layer, the evaluation result, etc. were shown.
  • Table 2 shows the structural units derived from ethylene in the compounds of ethylene-methyl methacrylate copolymer (Aklift WK307) and ethylene-1-butene copolymer (Excellen VL700) used as the raw material for layer B, methyl methacrylate.
  • Content of structural unit derived from 1 and content of structural unit derived from 1-butene, and other physical properties [weight average molecular weight, melting point, T (tan ⁇ ⁇ 1), MFR (190 ° C., 2.16 kgf), density] showed that.
  • Example 1 As a raw material constituting the A layer (A layer raw material), 100% by weight of CHDM-modified amorphous aromatic polyester resin ("EMBRACE LV” manufactured by Eastman Chemical Co., Ltd., CHDM copolymerized PET) was used.
  • the ethylene-methyl methacrylate copolymer (Aklift WK307) is an ethylene-methyl methacrylate copolymer containing 75% by weight of structural units derived from ethylene and 25% by weight of structural units derived from methyl methacrylate. It is a polymer (EMMA).
  • the ethylene-1-butene copolymer (Excellen VL700) contains 86.9 wt% of structural units derived from ethylene and 13.1 wt% of structural units derived from 1-butene. It is a copolymer.
  • As the raw material constituting the C layer (C layer raw material), 60% by weight of the mixed raw material and 40% by weight of the recovered raw material (recycled material) were used.
  • the above mixed raw materials were 70% by weight of polypropylene resin ("Wintech WFX6” manufactured by Nippon Polypro Co., Ltd., metallocene catalyst propylene-ethylene random copolymer), polyethylene resin ("Kernel KF260T manufactured by Nippon Polyethylene Co., Ltd.)”", LLDPE) 5 wt% and petroleum resin (" Arcon P125 "manufactured by Arakawa Chemical Industries, Ltd.) 25 wt%.
  • recovery raw material arises from manufacture of the shrink film of a present Example (what is called collection
  • the layer A raw material was charged into an extruder a heated to 220 ° C.
  • the layer B raw material was charged into an extruder b heated to 180 ° C.
  • the layer C raw material was charged into an extruder c heated to 200 ° C.
  • Melt extrusion (coextrusion) was performed using the three extruders.
  • the resin extruded from the extruder c becomes the center layer
  • the resin extruded from the extruder b becomes the layers (intermediate layer) on both sides of the center layer
  • the resin extruded from the extruder a becomes the layers on both sides (surface layer).
  • Examples 2 to 5 and Comparative Examples 1 to 3 As shown in Table 1, the contents of ethylene-methyl methacrylate copolymer and ethylene-1-butene copolymer in the raw materials for layer B, the total layer thickness (shrink film thickness), the layer thickness ratio, etc. were changed. In the same manner as in Example 1, a shrink film was obtained.
  • Comparative Example 4 Shrink film was prepared in the same manner as in Example 3 except that the material for layer B was changed to 100% by weight of an ethylene-vinyl acetate copolymer (Evalate K2010 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content: 25% by weight).
  • an ethylene-vinyl acetate copolymer (Evalate K2010 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content: 25% by weight).
  • a container was obtained.
  • 2400 labeled containers were produced and used for evaluation. Observe the center seal part of the above-mentioned container with a label, and if there is “delamination” of 10 mm or more in the longitudinal direction and 1 mm or more in the width direction, it is considered to be a defective product and is attached as follows. Judgment was made. Note that delamination occurred between the A layer and the B layer. Good mounting delamination deterrence ( ⁇ ): Out of 2400, the number of defective products is less than 50. Wearing delamination deterrence defect (x): Out of 2,400, 50 or more defective products.
  • T of layer B (tan ⁇ ⁇ 1) (dynamic viscoelasticity measurement)
  • the dynamic viscoelasticity measurement was performed under the following conditions using the resin used as the B layer material in Examples and Comparative Examples as a sample.
  • Apparatus Seiko Instruments Inc. "EXSTAR6000" DMS6100 " Frequency: 1Hz Measurement temperature: Normal temperature (30 ° C.) to 120 ° C.
  • the shrink film (Example) of the present invention was excellent in delamination resistance and was not easily delaminated even when subjected to high-temperature shrink processing. Furthermore, the stretchability was also excellent.
  • the shrink film containing no structural unit derived from 1-butene in the B layer (Comparative Examples 1, 2, and 4) tends to cause delamination when subjected to high-temperature shrink processing, and suppresses mounting delamination. was inferior.
  • the shrink film (Comparative Example 3) in which the content of the structural unit derived from methyl methacrylate in the layer B is small and the content of the structural unit derived from 1-butene is large is inferior in stretchability, and the shrink film is whitened. did. Furthermore, when shrink processing was performed, delamination was likely to occur, and the delamination prevention property was inferior.
  • “fine wrap NTV” manufactured by DIC Graphics Co., Ltd. was gravure printed on one side of the shrink film obtained in Example 1 to form a printed layer having a thickness of 2 ⁇ m to obtain a shrink label. Furthermore, a labeled container was obtained in the same manner as described in the above-mentioned mounting delamination inhibiting property. The obtained shrink label was excellent in surface printability, and the labeled container had an excellent finish.

Abstract

The purpose of the present invention is to provide a shrink film which is a hybrid laminate film comprising a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin, and which rarely undergoes the interlayer delamination during a shrink processing. This shrink film is characterized by having a laminated structure that is produced by laminating a resin layer (a layer (A)), a resin layer (a layer (B)) and a resin layer (a layer (C)) in the order of "(layer (A))/(layer (B))/(layer (C)" without providing any other layer between them, wherein the layer (A) comprises an aromatic polyester resin, the layer (B) comprises 60-78 wt% of a constituent unit derived from ethylene, 18-24 wt% of a constituent unit derived from methyl methacrylate and 1-3.5 wt% of a constituent unit derived from 1-butene, and the layer (C) comprises a polypropylene resin.

Description

シュリンクフィルムおよびシュリンクラベルShrink film and shrink label
 本発明は、シュリンクフィルムに関する。より詳しくは、ポリプロピレン系樹脂から構成される樹脂層と芳香族ポリエステル系樹脂から構成される樹脂層を有し、なおかつ、熱収縮時にも層間剥離の生じにくい異種積層シュリンクフィルムに関する。 The present invention relates to a shrink film. More specifically, the present invention relates to a heterogeneous laminated shrink film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin, and is less prone to delamination even during heat shrinkage.
 現在、お茶や清涼飲料水等の飲料用容器として、PETボトルなどのプラスチック製ボトルや、ボトル缶等の金属製ボトル等が広く用いられている。これらの容器には、表示や装飾性、機能性の付与のためプラスチックラベルを装着する場合が多く、例えば、装飾性、加工性(容器への追従性)、広い表示面積等のメリットから、シュリンクフィルム(熱収縮性フィルム)に印刷層が設けられたシュリンクラベル等が広く使用されている。 Currently, plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks. These containers are often equipped with plastic labels to give display, decoration, and functionality. For example, because of the merits of decoration, workability (followability to containers), wide display area, etc., shrink Shrink labels or the like in which a printing layer is provided on a film (heat-shrinkable film) are widely used.
 上記シュリンクフィルムとしては、フィルムに様々な機能を付与する目的で、異なる樹脂素材を積層した異種積層フィルムが知られている。例えば、芳香族ポリエステル系樹脂を主成分として構成される樹脂層、エチレン-酢酸ビニル系樹脂を主成分として構成される中間層およびポリプロピレン系樹脂を主成分として構成される樹脂層からなる積層構造を有するシュリンクフィルムが知られている(特許文献1参照)。上記シュリンクフィルムは、ポリプロピレン系樹脂からなる樹脂層を有するため、比重が小さく軽量でシュリンクラベルとして用いたときには回収時に比重の違いを利用してPETボトルなどと容易に分別ができる。また、芳香族ポリエステル系樹脂からなる樹脂層を有することにより、収縮特性、強度特性(腰の強さ)にも優れ、さらに該層を表面層として用いた場合には印刷適性にも優れている。なおかつ、中間層により層間強度(層間接着性)が向上しているため、シュリンク(熱収縮)加工時にも層間剥離が生じにくい。 As the shrink film, there is known a heterogeneous laminated film in which different resin materials are laminated for the purpose of imparting various functions to the film. For example, a laminated structure comprising a resin layer composed mainly of an aromatic polyester resin, an intermediate layer composed mainly of an ethylene-vinyl acetate resin, and a resin layer composed mainly of a polypropylene resin. The shrink film which has is known (refer patent document 1). Since the shrink film has a resin layer made of a polypropylene resin, the specific gravity is small and light, and when used as a shrink label, it can be easily separated from a PET bottle or the like by utilizing the difference in specific gravity at the time of recovery. In addition, by having a resin layer made of an aromatic polyester-based resin, it is excellent in shrinkage characteristics and strength characteristics (waist strength), and when the layer is used as a surface layer, it is excellent in printability. . In addition, since the interlayer strength (interlayer adhesion) is improved by the intermediate layer, delamination hardly occurs even during shrink (heat shrink) processing.
 しかしながら、高収縮が求められる場合や、装着工場での作業性から高温条件でシュリンクすることを求められる場合など、シュリンク加工の加工条件はより厳しくなる傾向にある。例えば、加工温度がより高温化する、加熱条件が急激になる(昇温速度が速くなる)などの傾向にある。このようなより厳しいシュリンク加工条件で加工された場合には、上記特許文献に記載のシュリンクフィルムであっても、特にセンターシール部分において層間剥離(デラミネーション)を生じやすくなり、層間剥離抑止効果は十分とはいえなかった。このため、厳しいシュリンク加工条件で加工された場合であっても、層間剥離の生じにくいシュリンクフィルムが求められているのが現状である。 However, shrinking processing conditions tend to be more severe, such as when high shrinkage is required or when shrinkage is required under high temperature conditions due to workability at the installation factory. For example, the processing temperature tends to be higher and the heating conditions tend to be abrupt (the temperature rising rate is increased). When processed under such severer shrink processing conditions, even the shrink film described in the above-mentioned patent document is likely to cause delamination particularly in the center seal portion, and the delamination deterrent effect is It was not enough. For this reason, even if it is a case where it processes by severe shrink processing conditions, the present condition is that the shrink film which does not produce delamination easily is calculated | required.
国際公開第2009/084212号パンフレットInternational Publication No. 2009/084212 Pamphlet
 即ち、本発明の目的は、ポリプロピレン系樹脂から構成される樹脂層と芳香族ポリエステル系樹脂から構成される樹脂層を有する異種積層フィルムであり、なおかつ、シュリンク加工時にも層間剥離の生じにくいシュリンクフィルムを提供することにある。 That is, an object of the present invention is a dissimilar laminated film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin, and a shrink film that hardly causes delamination even during shrink processing. Is to provide.
 本発明者らは、上記目的を達成するため鋭意検討した結果、芳香族ポリエステル系樹脂を含む樹脂層(A層)、特定の構成単位を特定量含む樹脂層(B層)およびポリプロピレン系樹脂を含む樹脂層(C層)からなる、A層/B層/C層の3種3層の積層構造を少なくとも有することにより、厳しい条件のシュリンク加工を施した場合においても層間剥離が生じにくい優れた層間剥離抑止性を有するシュリンクフィルムが得られることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the present inventors have found that a resin layer (A layer) containing an aromatic polyester resin, a resin layer (B layer) containing a specific amount of a specific structural unit, and a polypropylene resin. By having at least a three-layered / three-layered structure of A layer / B layer / C layer consisting of a resin layer (C layer), excellent delamination hardly occurs even when severe shrink processing is performed. The present inventors have found that a shrink film having delamination deterrence can be obtained and completed the present invention.
 すなわち、本発明は、芳香族ポリエステル系樹脂を含む樹脂層(A層)と、エチレンに由来する構成単位を60~78重量%、メチルメタクリレートに由来する構成単位を18~24重量%、1-ブテンに由来する構成単位を1~3.5重量%含む樹脂層(B層)と、ポリプロピレン系樹脂を含む樹脂層(C層)とが、A層/B層/C層の順に、他の層を介さずに積層された積層構造を有することを特徴とするシュリンクフィルムを提供する。 That is, the present invention relates to a resin layer (A layer) containing an aromatic polyester resin, 60 to 78% by weight of structural units derived from ethylene, 18 to 24% by weight of structural units derived from methyl methacrylate, 1- A resin layer (B layer) containing 1 to 3.5% by weight of a structural unit derived from butene and a resin layer (C layer) containing a polypropylene-based resin are added in the order of A layer / B layer / C layer. There is provided a shrink film having a laminated structure in which layers are not interposed.
 さらに、本発明は、前記B層が、エチレン-メチルメタクリレート共重合体、エチレン-1-ブテン共重合体、及びエチレン-1-ブテン-メチルメタクリレート共重合体からなる群より選ばれた少なくとも1のエチレン系共重合体を含む樹脂層である前記のシュリンクフィルムを提供する。 Further, in the present invention, the B layer is at least one selected from the group consisting of an ethylene-methyl methacrylate copolymer, an ethylene-1-butene copolymer, and an ethylene-1-butene-methyl methacrylate copolymer. The shrink film is a resin layer containing an ethylene copolymer.
 さらに、本発明は、A層/B層/C層/B層/A層の順に、他の層を介さずに積層された積層構造を有する前記のシュリンクフィルムを提供する。 Furthermore, the present invention provides the shrink film having a laminated structure in which the layers are laminated in the order of A layer / B layer / C layer / B layer / A layer without any other layers.
 また、本発明は、前記のシュリンクフィルムを含むシュリンクラベルを提供する。 Also, the present invention provides a shrink label including the shrink film.
 本発明のシュリンクフィルムは、前記構成を有しているため、ポリプロピレン系樹脂から構成される樹脂層と芳香族ポリエステル系樹脂から構成される樹脂層を有する異種積層フィルムでありながら、高温や急激な加熱などの厳しい条件のシュリンク加工を施した場合においても層間剥離が生じにくい。このため、高温での収縮が可能となることから、より高収縮を必要とする容器に対しての装着が可能となる。従って、PETボトルなどの容器に装着されるシュリンクラベル用の基材フィルムとして有用である。 Since the shrink film of the present invention has the above-described configuration, it is a heterogeneous laminated film having a resin layer composed of a polypropylene resin and a resin layer composed of an aromatic polyester resin. Even when shrink processing is performed under severe conditions such as heating, delamination hardly occurs. For this reason, since shrinkage | contraction at high temperature is attained, mounting | wearing with respect to the container which requires higher shrinkage is attained. Therefore, it is useful as a base film for shrink labels attached to containers such as PET bottles.
 本発明のシュリンクフィルムは、芳香族ポリエステル系樹脂を含む樹脂層(以下、「A層」と称する場合がある)と、エチレンに由来する構成単位を60~78重量%、メチルメタクリレートに由来する構成単位を18~24重量%、1-ブテンに由来する構成単位を1~3.5重量%含む樹脂層(以下、「B層」と称する場合がある)と、ポリプロピレン系樹脂を含む樹脂層(以下、「C層」と称する場合がある)とを少なくとも有する。 The shrink film of the present invention comprises a resin layer containing an aromatic polyester resin (hereinafter sometimes referred to as “A layer”), a constitutional unit derived from methyl methacrylate in an amount of 60 to 78% by weight derived from ethylene. A resin layer containing 18 to 24% by weight of units and 1 to 3.5% by weight of a structural unit derived from 1-butene (hereinafter sometimes referred to as “B layer”), and a resin layer containing a polypropylene resin ( Hereinafter, it may be referred to as “C layer”).
 本発明のシュリンクフィルムは、フィルム中に、A層とC層がB層を介して積層された積層構造、即ち、A層/B層/C層の順に、他の層を介さずに積層された積層構造(3種3層の積層構造)を少なくとも有する。さらに、本発明のシュリンクフィルムは、A層/B層/C層/B層/A層の順に、他の層を介さずに積層された積層構造(3種5層の積層構造)を有していることが好ましい。なお、上記のA層/B層/C層/B層/A層の積層構造において、C層の両側に各1層ずつ設けられたA層同士、B層同士は、それぞれ同一の樹脂組成からなる層であることが好ましいが、本発明の効果を損なわない範囲内で、異なる樹脂組成の層であってもよい。また、C層の両側に各1層ずつ設けられたA層同士、B層同士は、同一の厚みの層であってもよいし、異なる厚みの層であってもよい。 The shrink film of the present invention is laminated in the film without any other layers in the laminated structure in which the A layer and the C layer are laminated via the B layer, that is, in the order of A layer / B layer / C layer. And at least a three-layered / three-layered structure. Furthermore, the shrink film of the present invention has a laminated structure (3 types and 5 layers laminated structure) laminated in the order of A layer / B layer / C layer / B layer / A layer without any other layers. It is preferable. In the laminated structure of the above-mentioned A layer / B layer / C layer / B layer / A layer, the A layers provided on the both sides of the C layer and the B layers have the same resin composition. The layer is preferably a layer having a different resin composition as long as the effects of the present invention are not impaired. In addition, the A layers and the B layers provided one by one on both sides of the C layer may be layers having the same thickness or different thicknesses.
 本発明のシュリンクフィルムとしては、特に限定されないが、例えば、A層/B層/C層の3種3層積層フィルムや、A層(表面層)/B層(中間層)/C層(中心層)/B層(中間層)/A層(表面層)の3種5層積層フィルムなどが挙げられる。本発明のシュリンクフィルムは、さらに、A層、B層、C層以外の層を有していてもよい。上記のA層、B層、C層以外の層は、特に限定されないが、上記積層フィルムの製膜工程でインラインで設けることができる層が好ましく、例えば、アンカーコート層、易接着層、帯電防止剤層などのコーティング層が挙げられる。 Although it does not specifically limit as a shrink film of this invention, For example, 3 types 3 layer laminated film of A layer / B layer / C layer, A layer (surface layer) / B layer (intermediate layer) / C layer (center) Layer) / B layer (intermediate layer) / A layer (surface layer), and a five-layer laminated film. The shrink film of this invention may have layers other than A layer, B layer, and C layer further. Layers other than the A layer, the B layer, and the C layer are not particularly limited, but a layer that can be provided in-line in the film forming process of the laminated film is preferable. For example, an anchor coat layer, an easy adhesion layer, an antistatic layer Examples thereof include a coating layer such as an agent layer.
[A層]
 上記A層は、芳香族ポリエステル系樹脂を少なくとも含む樹脂層である。上記芳香族ポリエステル系樹脂は、分子中に芳香環を含むポリエステル系樹脂である。上記芳香族ポリエステル系樹脂としては、例えば、ジカルボン酸成分とジオール成分を必須の構成成分として構成された種々のポリエステル(即ち、ジカルボン酸に由来する構成単位(構造単位)とジオールに由来する構成単位を少なくとも含むポリエステル)が挙げられ、主なものとしては、芳香族ジカルボン酸を含むジカルボン酸とジオールの縮合反応による重合体、共重合体またはこれらの混合物が挙げられる。上記芳香族ポリエステル系樹脂は単独で又は2種以上を組み合わせて使用できる。
[A layer]
The A layer is a resin layer containing at least an aromatic polyester resin. The aromatic polyester resin is a polyester resin containing an aromatic ring in the molecule. Examples of the aromatic polyester-based resin include various polyesters composed of a dicarboxylic acid component and a diol component as essential components (that is, a structural unit (structural unit) derived from dicarboxylic acid and a structural unit derived from diol). And polyesters containing at least a dicarboxylic acid containing an aromatic dicarboxylic acid and a polymer obtained by a condensation reaction of a diol, a copolymer, or a mixture thereof. The above aromatic polyester resins can be used alone or in combination of two or more.
 上記ジカルボン酸(ジカルボン酸成分)としては、例えば、テレフタル酸、イソフタル酸、フタル酸、2,5-ジメチルテレフタル酸、5-t-ブチルイソフタル酸、4,4’-ビフェニルジカルボン酸、トランス-3,3’-スチルベンジカルボン酸、トランス-4,4’-スチルベンジカルボン酸、4,4’-ジベンジルジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,2,6,6-テトラメチルビフェニル-4,4’-ジカルボン酸、1,1,3-トリメチル-3-フェニルインデン-4,5-ジカルボン酸、1,2-ジフェノキシエタン-4,4’-ジカルボン酸、ジフェニルエーテルジカルボン酸、2,5-アントラセンジカルボン酸、2,5-ピリジンジカルボン酸及びこれらの置換体等の芳香族ジカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸、ドコサン二酸、1,12-ドデカンジオン酸及びこれらの置換体等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸及びこれらの置換体等の脂環式ジカルボン酸などが挙げられる。これらのジカルボン酸は、単独で又は2以上を組み合わせて使用できる。 Examples of the dicarboxylic acid (dicarboxylic acid component) include terephthalic acid, isophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-t-butylisophthalic acid, 4,4′-biphenyldicarboxylic acid, and trans-3. , 3′-stilbene dicarboxylic acid, trans-4,4′-stilbene dicarboxylic acid, 4,4′-dibenzyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,3-naphthalene Dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,2,6,6-tetramethylbiphenyl-4,4′-dicarboxylic acid, 1,1,3-trimethyl-3-phenyl Indene-4,5-dicarboxylic acid, 1,2-diphenoxyethane-4,4′-dicarboxylic acid, diphenyl ether Aromatic dicarboxylic acids such as ludicarboxylic acid, 2,5-anthracene dicarboxylic acid, 2,5-pyridinedicarboxylic acid and their substitutes; oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberin Acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid, docosanedioic acid, 1, Aliphatic dicarboxylic acids such as 12-dodecanedioic acid and substituted products thereof; 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphtha Njikarubon acid, and 2,6-decahydronaphthalene dicarboxylic acid and alicyclic dicarboxylic acids such as substituted versions thereof and the like. These dicarboxylic acids can be used alone or in combination of two or more.
 上記ジオール(ジオール成分)としては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-2,4-ジメチル-1,3-ヘキサンジオール、1,10-デカンジオール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族ジオール;1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等の脂環式ジオール;2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン等のビスフェノール系化合物のエチレンオキシド付加物、キシリレングリコール等の芳香族ジオールなどが挙げられる。これらのジオールは単独で又は2以上を組み合わせて使用できる。 Examples of the diol (diol component) include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3 -Propanediol, 1,8-octanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2,4-dimethyl-1,3-hexanediol, 1,10-decanediol, Aliphatic diols such as polyethylene glycol and polypropylene glycol; 1,2-cyclohexanedimethanol Alicyclic diols such as 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 2,2-bis (4-β- Examples thereof include ethylene oxide adducts of bisphenol compounds such as hydroxyethoxyphenyl) propane and bis (4-β-hydroxyethoxyphenyl) sulfone, and aromatic diols such as xylylene glycol. These diols can be used alone or in combination of two or more.
 上記芳香族ポリエステル系樹脂は、上記以外にも、p-オキシ安息香酸、p-オキシエトキシ安息香酸等のオキシカルボン酸;安息香酸、ベンゾイル安息香酸等のモノカルボン酸;トリメリット酸等の多価カルボン酸;ポリアルキレングリコールモノメチルエーテル等の1価アルコール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールなどに由来する構成単位を含んでいてもよい。 In addition to the above, the aromatic polyester-based resin includes oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid; monocarboxylic acids such as benzoic acid and benzoylbenzoic acid; and polyvalent acids such as trimellitic acid. It may contain a structural unit derived from a carboxylic acid; a monohydric alcohol such as polyalkylene glycol monomethyl ether; a polyhydric alcohol such as glycerin, pentaerythritol, or trimethylolpropane.
 上記芳香族ポリエステル系樹脂においては、全ジカルボン酸成分中の50モル%以上(特に70モル%以上)が芳香族ジカルボン酸成分、及び/又は、全ジオール成分中の50モル%以上(特に70モル%以上)が芳香族ジオール成分であることが好ましい。中でも、収縮特性の観点から、全ジカルボン酸成分中の芳香族ジカルボン酸成分の含有量は、80モル%以上(80~100モル%)が好ましく、より好ましくは90モル%以上(90~100モル%)である。 In the aromatic polyester-based resin, 50 mol% or more (particularly 70 mol% or more) in the total dicarboxylic acid component is 50 mol% or more (particularly 70 mol%) in the aromatic dicarboxylic acid component and / or the total diol component. % Or more) is preferably an aromatic diol component. Among these, from the viewpoint of shrinkage characteristics, the content of the aromatic dicarboxylic acid component in the total dicarboxylic acid component is preferably 80 mol% or more (80 to 100 mol%), more preferably 90 mol% or more (90 to 100 mol). %).
 上記芳香族ポリエステル系樹脂は、非晶性となることにより、層間剥離抑止性が向上し、シュリンクフィルム全体の収縮率(熱収縮率)を向上させる観点から、単一の繰り返し単位から構成されているのではなく、変性成分(共重合成分)を含んでいる変性芳香族ポリエステル系樹脂が好ましい。変性芳香族ポリエステル系樹脂としては、例えば、ジカルボン酸成分及びジオール成分のうち少なくとも一方が2以上の成分から構成される、即ち、主成分の他に変性成分を含んでいる変性芳香族ポリエステル系樹脂が好ましい。言い換えると、上記芳香族ポリエステル系樹脂は、少なくとも2種類以上のジカルボン酸に由来する構成単位及び/又は少なくとも2種類以上のジオールに由来する構成単位を含む変性芳香族ポリエステル系樹脂が好ましい。 The aromatic polyester-based resin is made of a single repeating unit from the viewpoint of improving delamination deterrence and improving the shrinkage rate (thermal shrinkage rate) of the entire shrink film by becoming amorphous. Instead, a modified aromatic polyester-based resin containing a modifying component (copolymerization component) is preferable. As the modified aromatic polyester resin, for example, at least one of a dicarboxylic acid component and a diol component is composed of two or more components, that is, a modified aromatic polyester resin containing a modified component in addition to the main component. Is preferred. In other words, the aromatic polyester-based resin is preferably a modified aromatic polyester-based resin including a structural unit derived from at least two kinds of dicarboxylic acids and / or a structural unit derived from at least two kinds of diols.
 上記変性芳香族ポリエステル系樹脂としては、上記の中でも、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール(EG)を用いたポリエチレンテレフタレート(PET)において、ジカルボン酸成分及び/又はジオール成分の一部を変性成分(すなわち、他のジカルボン酸成分及び/又は他のジオール成分)に置き換えた変性PETが好ましく例示される。 Among the above modified aromatic polyester resins, among the above, in polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and ethylene glycol (EG) as the diol component, a part of the dicarboxylic acid component and / or diol component A modified PET in which is replaced with a modified component (that is, another dicarboxylic acid component and / or another diol component) is preferably exemplified.
 上記変性芳香族ポリエステル系樹脂(特に、変性PET)の変性成分(共重合成分)として用いられるジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸、アジピン酸、イソフタル酸などが挙げられる。また、変性成分として用いられるジオール成分としては、1,4-シクロヘキサンジメタノール(CHDM)、ネオペンチルグリコール(NPG)等の2,2-ジアルキル-1,3-プロパンジオール、ジエチレングリコールなどが挙げられる。中でも好ましくは、CHDM、2,2-ジアルキル-1,3-プロパンジオール(特に、NPG)である。なお、上記2,2-ジアルキル-1,3-プロパンジオールにおけるアルキル基は、炭素数1~6のアルキル基が好ましく、また、2つのアルキル基は、同一のアルキル基であってもよいし異なるアルキル基であってもよい。 Examples of the dicarboxylic acid component used as the modifying component (copolymerization component) of the modified aromatic polyester resin (particularly modified PET) include cyclohexanedicarboxylic acid, adipic acid, and isophthalic acid. Examples of the diol component used as the modifying component include 2,2-dialkyl-1,3-propanediol such as 1,4-cyclohexanedimethanol (CHDM) and neopentyl glycol (NPG), and diethylene glycol. Among these, CHDM and 2,2-dialkyl-1,3-propanediol (particularly NPG) are preferable. The alkyl group in the 2,2-dialkyl-1,3-propanediol is preferably an alkyl group having 1 to 6 carbon atoms, and the two alkyl groups may be the same or different. It may be an alkyl group.
 上記芳香族ポリエステル系樹脂としては、具体的には、収縮特性の観点で、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコール(EG)を用いたポリエチレンテレフタレート(PET);ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、1,4-シクロヘキサンジメタノール(CHDM)を共重合成分として用いた変性芳香族ポリエステル系樹脂(「CHDM共重合PET」と称する場合がある);ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、2,2-ジアルキル-1,3-プロパンジオールを共重合成分として用いた変性芳香族ポリエステル系樹脂(「2,2-ジアルキル-1,3-プロパンジオール共重合PET」と称する場合がある)が好ましい。上記2,2-ジアルキル-1,3-プロパンジオール共重合PETの中では、特に、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、ネオペンチルグリコール(NPG)を共重合成分として用いた変性芳香族ポリエステル系樹脂(「NPG共重合PET」と称する場合がある)が特に好ましい。さらに、ジエチレングリコールを共重合していてもよい。 Specifically, as the aromatic polyester-based resin, in terms of shrinkage properties, polyethylene terephthalate (PET) using terephthalic acid as a dicarboxylic acid component and ethylene glycol (EG) as a diol component; Modified aromatic polyester-based resin using terephthalic acid, ethylene glycol as the diol component, and 1,4-cyclohexanedimethanol (CHDM) as the copolymer component (sometimes referred to as “CHDM copolymerized PET”) A modified aromatic polyester resin using terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component, and 2,2-dialkyl-1,3-propanediol as the copolymer component (“2,2- Dialkyl-1,3-propanedioe Sometimes referred to as copolymerized PET ") are preferred. Among the above 2,2-dialkyl-1,3-propanediol copolymerized PET, in particular, terephthalic acid is used as the dicarboxylic acid component, ethylene glycol is the main component as the diol component, and neopentyl glycol (NPG) is the copolymerized component. The modified aromatic polyester-based resin used as (sometimes referred to as “NPG copolymerized PET”) is particularly preferable. Further, diethylene glycol may be copolymerized.
 上記変性芳香族ポリエステル系樹脂において、共重合成分(変性成分)の共重合比率[全ジカルボン酸成分に対する共重合ジカルボン酸成分の比率(割合)、または、全ジオール成分に対する共重合ジオール成分の比率(割合)]は、A層の熱変形挙動を適正化し、層間剥離を低減させる観点から、15モル%以上(例えば、15~40モル%)が好ましい。中でも、例えば、CHDM共重合PETの場合、CHDMの割合は、全ジオール成分中(即ち、テレフタル酸100モル%に対して)、20~40モル%(EGが60~80モル%)が好ましく、さらに好ましくは25~35モル%(EGが65~75モル%)である。また、2,2-ジアルキル-1,3-プロパンジオール共重合PETの場合、2,2-ジアルキル-1,3-プロパンジオールの割合(NPG共重合PETの場合にはNPGの割合)は、全ジオール成分中、15~40モル%(EGが60~85モル%)が好ましい。また、さらにEG成分の一部(好ましくは、全ジオール成分中、1~10モル%)をジエチレングリコールに置き換えてもよい。 In the modified aromatic polyester resin, the copolymerization ratio of the copolymer component (modified component) [ratio of the copolymerized dicarboxylic acid component to the total dicarboxylic acid component (ratio), or the ratio of the copolymerized diol component to the total diol component ( The ratio)] is preferably 15 mol% or more (for example, 15 to 40 mol%) from the viewpoint of optimizing the thermal deformation behavior of the A layer and reducing delamination. Among them, for example, in the case of CHDM copolymerized PET, the proportion of CHDM is preferably 20 to 40 mol% (EG is 60 to 80 mol%) in all diol components (that is, relative to 100 mol% of terephthalic acid), More preferably, it is 25 to 35 mol% (EG is 65 to 75 mol%). In the case of 2,2-dialkyl-1,3-propanediol copolymerized PET, the ratio of 2,2-dialkyl-1,3-propanediol (the ratio of NPG in the case of NPG copolymerized PET) is In the diol component, 15 to 40 mol% (EG is 60 to 85 mol%) is preferable. Furthermore, a part of the EG component (preferably 1 to 10 mol% in the total diol component) may be replaced with diethylene glycol.
 上記芳香族ポリエステル系樹脂は、実質的に非晶性の芳香族ポリエステル系樹脂が好ましく、より好ましくは、非晶性の飽和ポリエステル系樹脂である芳香族ポリエステル系樹脂である。特に限定されないが、芳香族ポリエステル系樹脂は、上述のように変性することによって、結晶化しにくくなるため、例えば、変性によって実質的に非晶性とすることができる。芳香族ポリエステル系樹脂を非晶性とすることにより、比較的低温での押出が可能となり、A層の流動挙動と、B層、C層の流動挙動とを近づけることができる。これにより、押出加工時のA層の層形成性が良好となり、B層との接着性が向上することによりシュリンク加工時の層間剥離が生じにくくなる。 The aromatic polyester resin is preferably a substantially amorphous aromatic polyester resin, and more preferably an aromatic polyester resin that is an amorphous saturated polyester resin. Although not particularly limited, the aromatic polyester-based resin becomes difficult to crystallize by being modified as described above, and can be made substantially amorphous by, for example, modification. By making the aromatic polyester-based resin amorphous, extrusion at a relatively low temperature is possible, and the flow behavior of the A layer can be brought close to the flow behavior of the B layer and the C layer. Thereby, the layer formability of the A layer at the time of extrusion processing is improved, and the delamination at the time of shrink processing is less likely to occur by improving the adhesion with the B layer.
 上記芳香族ポリエステル系樹脂の、示差走査熱量測定(DSC)法(10℃/分の昇温速度で測定)により測定した結晶化度は、15%以下が好ましく、より好ましくは10%以下である。さらに、上記芳香族ポリエステル系樹脂は、上記DSC法により測定した場合に、融点(融解ピーク)がほとんど見られないもの(すなわち、結晶化度0%のもの)が最も好ましい。上記、結晶化度は、DSC測定より得られる結晶融解熱の値から、X線法等により測定した結晶化度の明確なサンプルを標準として、算出することができる。なお、結晶融解熱は、例えば、セイコーインスツルメンツ社製DSC(示差走査熱量測定)装置を用い、試料量10mg、昇温速度10℃/分で、窒素シールを行い、一度融点以上まで昇温し、常温まで降温した後、再度昇温したときの融解ピークの面積から求めることができる。結晶化度は、単一の樹脂から測定されることが好ましいが、混合状態で測定される場合には、混合される樹脂の融解ピークを差し引いて、対象となる芳香族ポリエステル系樹脂の融解ピークを求めればよい。 The crystallinity of the aromatic polyester resin measured by the differential scanning calorimetry (DSC) method (measured at a heating rate of 10 ° C./min) is preferably 15% or less, more preferably 10% or less. . Further, the aromatic polyester-based resin is most preferably a resin that hardly shows a melting point (melting peak) when measured by the DSC method (that is, a crystallinity of 0%). The crystallinity can be calculated from the value of heat of crystal fusion obtained by DSC measurement, with a sample having a clear crystallinity measured by the X-ray method or the like as a standard. The heat of crystal melting is, for example, using a DSC (differential scanning calorimetry) device manufactured by Seiko Instruments Inc., performing a nitrogen seal at a sample amount of 10 mg and a heating rate of 10 ° C./min. The temperature can be determined from the area of the melting peak when the temperature is lowered to room temperature and then raised again. The crystallinity is preferably measured from a single resin, but when measured in a mixed state, the melting peak of the target aromatic polyester resin is subtracted from the melting peak of the resin to be mixed. You can ask for.
 上記芳香族ポリエステル系樹脂の重量平均分子量(Mw)は、溶融挙動や収縮挙動の観点から、15000~90000が好ましく、より好ましくは30000~80000である。2,2-ジアルキル-1,3-プロパンジオール共重合PETの場合、50000~70000がさらに好ましい。 The weight average molecular weight (Mw) of the aromatic polyester resin is preferably 15000 to 90000, more preferably 30000 to 80000, from the viewpoint of melting behavior and shrinkage behavior. In the case of 2,2-dialkyl-1,3-propanediol copolymerized PET, 50000-70000 is more preferable.
 上記芳香族ポリエステル系樹脂のガラス転移温度(Tg)は、60~80℃が好ましく、より好ましくは60~75℃である。上記Tgは、芳香族ポリエステル系樹脂を構成するジカルボン酸やジオールなどの種類や変性に用いる共重合成分(変性成分)の共重合比率により制御できる。芳香族ポリエステル系樹脂のTgが上記範囲にある場合には、C層を構成するポリプロピレン系樹脂と熱変形挙動(温度に対する収縮応力の変化)が近くなるため、シュリンク加工時にA層とC層の間に生じる収縮応力差が小さくなり、シュリンク加工の際の層間剥離が生じにくくなる。Tgが80℃を超えると、シュリンク加工の際に、A層が高温で急激に収縮し、比較的低温から緩やかに収縮するC層との間で収縮応力差が大きくなるため、層間剥離が生じやすくなる場合がある。 The glass transition temperature (Tg) of the aromatic polyester resin is preferably 60 to 80 ° C., more preferably 60 to 75 ° C. The Tg can be controlled by the type of dicarboxylic acid or diol constituting the aromatic polyester resin and the copolymerization ratio of the copolymerization component (modification component) used for modification. When the Tg of the aromatic polyester resin is in the above range, the thermal deformation behavior (change in shrinkage stress with respect to temperature) is close to that of the polypropylene resin constituting the C layer. The difference in shrinkage stress generated between them becomes small, and delamination during shrink processing hardly occurs. When Tg exceeds 80 ° C., during shrink processing, the A layer shrinks rapidly at a high temperature, and the shrinkage stress difference increases with the C layer that gradually shrinks from a relatively low temperature, resulting in delamination. It may be easier.
 ガラス転移温度(Tg)は、例えば、JIS K 7121に準拠して、DSC(示差走査熱量測定)により測定することができる。DSC測定は、特に限定されないが、例えば、セイコーインスツルメンツ(株)製、示差走査熱量計「DSC6200」を用いて、昇温速度10℃/分の条件で行うことができる。 The glass transition temperature (Tg) can be measured by DSC (differential scanning calorimetry) in accordance with, for example, JIS K7121. The DSC measurement is not particularly limited. For example, the DSC measurement can be performed using a differential scanning calorimeter “DSC6200” manufactured by Seiko Instruments Inc. under a temperature rising rate of 10 ° C./min.
 上記芳香族ポリエステル系樹脂のIV値(固有粘度)は、層間強度の観点から、0.70(dl/g)以上が好ましく、より好ましくは0.70~0.90(dl/g)、さらに好ましくは0.75~0.85(dl/g)である。 The IV value (intrinsic viscosity) of the aromatic polyester resin is preferably 0.70 (dl / g) or more from the viewpoint of interlayer strength, more preferably 0.70 to 0.90 (dl / g), It is preferably 0.75 to 0.85 (dl / g).
 上記芳香族ポリエステル系樹脂は、市販品を用いてもよく、例えば、Eastman Chemical(イーストマンケミカル)社製「EMBRACE 21214」、「EMBRACE LV」(以上、CHDM共重合PET)や、(株)ベルポリエステルプロダクツ製「ベルペット MGG200」、(株)ベルポリエステルプロダクツ製「ベルペット E02」(NPG共重合PETなど)等が市場で入手できる。 Commercially available products may be used as the aromatic polyester-based resin. For example, “EMBRACE 21214”, “EMBRACE LV” (above, CHDM copolymerized PET) manufactured by Eastman Chemical (Eastman Chemical), Bell Co., Ltd. “Belpet MGG200” manufactured by Polyester Products, “Belpet E02” manufactured by Bell Polyester Products Co., Ltd. (NPG copolymerized PET, etc.), etc. are available on the market.
 A層中の芳香族ポリエステル系樹脂の含有量は、特に限定されないが、収縮特性(熱収縮率)、耐熱性、強度、耐薬品性、印刷適性等の観点から、A層の総重量(100重量%)に対して、50重量%以上(50~100重量%)が好ましく、より好ましくは80~100重量%、さらに好ましくは90~100重量%である。 The content of the aromatic polyester resin in the A layer is not particularly limited, but the total weight of the A layer (100) from the viewpoint of shrinkage characteristics (heat shrinkage rate), heat resistance, strength, chemical resistance, printability, and the like. % By weight) is preferably 50% by weight or more (50 to 100% by weight), more preferably 80 to 100% by weight, still more preferably 90 to 100% by weight.
 上記A層は、必要に応じて、上記芳香族ポリエステル系樹脂以外の成分(添加成分)、例えば、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、ピニング剤(アルカリ土類金属)等を含んでいてもよい。 The layer A may contain components other than the aromatic polyester-based resin (additive components), for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, if necessary. A coloring agent, a pinning agent (alkaline earth metal) and the like may be included.
[B層]
 上記B層は、エチレンに由来する構成単位を60~78重量%、メチルメタクリレートに由来する構成単位を18~24重量%、1-ブテンに由来する構成単位を1~3.5重量%含む樹脂層である。B層は、エチレン-メチルメタクリレート共重合体(EMMA)、エチレン-1-ブテン共重合体、及びエチレン-1-ブテン-メチルメタクリレート共重合体からなる群より選ばれた少なくとも1のエチレン系共重合体を含む樹脂層であることが好ましい。さらに、B層は、エチレン-メチルメタクリレート共重合体及びエチレン-1-ブテン共重合体を少なくとも含む樹脂層又はエチレン-1-ブテン-メチルメタクリレート共重合体を少なくとも含む樹脂層であることが好ましく、より好ましくは、エチレン-メチルメタクリレート共重合体及びエチレン-1-ブテン共重合体を少なくとも含む樹脂層である。上記のエチレン-メチルメタクリレート共重合体、エチレン-1-ブテン共重合体、エチレン-1-ブテン-メチルメタクリレート共重合体は、それぞれ1種ずつを用いてもよいし、それぞれ2種以上を用いてもよい。
[B layer]
The B layer is a resin containing 60 to 78% by weight of structural units derived from ethylene, 18 to 24% by weight of structural units derived from methyl methacrylate, and 1 to 3.5% by weight of structural units derived from 1-butene. Is a layer. The layer B comprises at least one ethylene copolymer selected from the group consisting of an ethylene-methyl methacrylate copolymer (EMMA), an ethylene-1-butene copolymer, and an ethylene-1-butene-methyl methacrylate copolymer. A resin layer containing a coalescence is preferable. Further, the layer B is preferably a resin layer containing at least an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer or a resin layer containing at least an ethylene-1-butene-methyl methacrylate copolymer. More preferably, the resin layer contains at least an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer. The ethylene-methyl methacrylate copolymer, ethylene-1-butene copolymer, and ethylene-1-butene-methyl methacrylate copolymer may be used singly or in combination of two or more. Also good.
 上記エチレン-メチルメタクリレート共重合体(EMMA)は、エチレン及びメチルメタクリレート(メタクリル酸メチル)を必須の単量体成分(モノマー成分)として構成される共重合体であり、即ち、分子中(1分子中)にエチレンに由来する構成単位及びメチルメタクリレートに由来する構成単位を少なくとも含む共重合体である。なお、上記EMMAを構成する単量体成分としては、本発明の効果を妨げない範囲内であれば、上記エチレン、メチルメタクリレート以外の共重合成分を用いてもよい。上記のエチレン、メチルメタクリレート以外の共重合成分としては、例えば、プロピレン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等のα-オレフィン(好ましくは、炭素数3~20のα-オレフィン);塩化ビニルなどのビニル系モノマー;(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸などの不飽和カルボン酸;無水マレイン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、テトラヒドロ無水フタル酸などの不飽和無水カルボン酸;アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸グリシジル、マレイン酸モノエチル、マレイン酸ジエチルなどの不飽和カルボン酸エステル;アクリルアミド、メタクリルアミド、マレイミドなどの不飽和アミド又はイミド;(メタ)アクリル酸ナトリウム、(メタ)アクリル酸亜鉛などの不飽和カルボン酸塩などが挙げられる。これらの共重合成分は1種又は2種以上を組み合わせて使用できる。 The ethylene-methyl methacrylate copolymer (EMMA) is a copolymer composed of ethylene and methyl methacrylate (methyl methacrylate) as essential monomer components (monomer components). (B) a copolymer containing at least a structural unit derived from ethylene and a structural unit derived from methyl methacrylate. In addition, as a monomer component which comprises the said EMMA, if it exists in the range which does not prevent the effect of this invention, you may use copolymerization components other than the said ethylene and methylmethacrylate. Examples of the copolymer component other than ethylene and methyl methacrylate include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. Α-olefins (preferably α-olefins having 3 to 20 carbon atoms); vinyl monomers such as vinyl chloride; (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, 5- Unsaturated carboxylic acids such as norbornene-2,3-dicarboxylic acid; unsaturated carboxylic anhydrides such as maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, tetrahydrophthalic anhydride; acrylic acid Methyl, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) a Unsaturated carboxylic esters such as 2-ethylhexyl crylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, monoethyl maleate, diethyl maleate; acrylamide, Examples thereof include unsaturated amides or imides such as methacrylamide and maleimide; unsaturated carboxylates such as sodium (meth) acrylate and zinc (meth) acrylate. These copolymerization components can be used alone or in combination of two or more.
 上記エチレン-メチルメタクリレート共重合体中のエチレンに由来する構成単位の含有量は、特に限定されないが、B層の溶融時の挙動を制御する観点から、エチレン-メチルメタクリレート共重合体の総重量(100重量%)に対して、50~80重量%が好ましく、より好ましくは60~78重量%である。 The content of the structural unit derived from ethylene in the ethylene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer at the time of melting, the total weight of the ethylene-methyl methacrylate copolymer ( 100 to 80% by weight), preferably 50 to 80% by weight, more preferably 60 to 78% by weight.
 上記エチレン-メチルメタクリレート共重合体中のメチルメタクリレートに由来する構成単位の含有量は、特に限定されないが、A層及びC層との接着性(粘着性)、並びに、延伸時や収縮時の柔軟性を付与する観点から、エチレン-メチルメタクリレート共重合体の総重量(100重量%)に対して、20~50重量%が好ましく、より好ましくは20~40重量%、さらに好ましくは22~30重量%である。 The content of the structural unit derived from methyl methacrylate in the ethylene-methyl methacrylate copolymer is not particularly limited, but the adhesiveness (adhesiveness) with the A layer and the C layer, and the flexibility during stretching or shrinking From the viewpoint of imparting properties, it is preferably 20 to 50% by weight, more preferably 20 to 40% by weight, still more preferably 22 to 30% by weight based on the total weight (100% by weight) of the ethylene-methyl methacrylate copolymer. %.
 上記エチレン-メチルメタクリレート共重合体の重量平均分子量は、溶融時の挙動、柔軟性の観点から、10万~20万が好ましく、より好ましくは13万~15万である。 The weight average molecular weight of the ethylene-methyl methacrylate copolymer is preferably 100,000 to 200,000, more preferably 130,000 to 150,000, from the viewpoint of behavior during melting and flexibility.
 上記エチレン-メチルメタクリレート共重合体のメルトフローレート(MFR)(温度190℃、荷重2.16kgf)は、溶融時の挙動、柔軟性の観点から、1~10(g/10分)が好ましく、より好ましくは6~8(g/10分)である。本明細書において、MFRは、JIS K7210に準拠して測定することができる。 The melt flow rate (MFR) (temperature 190 ° C., load 2.16 kgf) of the ethylene-methyl methacrylate copolymer is preferably 1 to 10 (g / 10 min) from the viewpoint of behavior at the time of melting and flexibility, More preferably, it is 6 to 8 (g / 10 minutes). In this specification, MFR can be measured based on JIS K7210.
 上記エチレン-メチルメタクリレート共重合体は、市販品を用いてもよく、例えば、住友化学(株)製「アクリフト WK307」等が市場で入手できる。 Commercially available products may be used as the ethylene-methyl methacrylate copolymer, and for example, “ACRlift WK307” manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
 上記エチレン-1-ブテン共重合体は、エチレン及び1-ブテンを必須の単量体成分として構成される共重合体であり、即ち、分子中(1分子中)にエチレンに由来する構成単位及び1-ブテンに由来する構成単位を少なくとも含む共重合体である。なお、上記エチレン-1-ブテン共重合体を構成する単量体成分としては、本発明の効果を妨げない範囲内であれば、上記エチレン、1-ブテン以外の共重合成分を用いてもよい。上記のエチレン、1-ブテン以外の共重合成分としては、例えば、プロピレン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等のα-オレフィン(好ましくは、炭素数3~20のα-オレフィン);塩化ビニルなどのビニル系モノマー;(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸などの不飽和カルボン酸;無水マレイン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、テトラヒドロ無水フタル酸などの不飽和無水カルボン酸;アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸グリシジル、マレイン酸モノエチル、マレイン酸ジエチルなどの不飽和カルボン酸エステル;アクリルアミド、メタクリルアミド、マレイミドなどの不飽和アミド又はイミド;(メタ)アクリル酸ナトリウム、(メタ)アクリル酸亜鉛などの不飽和カルボン酸塩などが挙げられる。これらの共重合成分は1種又は2種以上を組み合わせて使用できる。 The ethylene-1-butene copolymer is a copolymer comprising ethylene and 1-butene as essential monomer components, that is, a structural unit derived from ethylene in a molecule (in one molecule) and It is a copolymer containing at least a structural unit derived from 1-butene. As the monomer component constituting the ethylene-1-butene copolymer, a copolymer component other than the ethylene and 1-butene may be used as long as the effects of the present invention are not impaired. . Examples of copolymer components other than ethylene and 1-butene include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene. Α-olefins (preferably α-olefins having 3 to 20 carbon atoms); vinyl monomers such as vinyl chloride; (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, 5 -Unsaturated carboxylic acids such as norbornene-2,3-dicarboxylic acid; unsaturated carboxylic anhydrides such as maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, tetrahydrophthalic anhydride; acrylic Methyl methacrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid 2 -Unsaturated carboxylic esters such as ethylhexyl, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, monoethyl maleate, diethyl maleate; acrylamide, methacrylamide, Examples thereof include unsaturated amides or imides such as maleimide; unsaturated carboxylates such as sodium (meth) acrylate and zinc (meth) acrylate. These copolymerization components can be used alone or in combination of two or more.
 上記エチレン-1-ブテン共重合体中の1-ブテンに由来する構成単位の含有量は、特に限定されないが、B層の耐熱性を向上させる観点から、エチレン-1-ブテン共重合体の総重量(100重量%)に対して、2~20重量%が好ましく、より好ましくは10~15重量%である。 The content of the structural unit derived from 1-butene in the ethylene-1-butene copolymer is not particularly limited, but from the viewpoint of improving the heat resistance of the B layer, the total amount of the ethylene-1-butene copolymer is not limited. The amount is preferably 2 to 20% by weight, more preferably 10 to 15% by weight based on the weight (100% by weight).
 上記エチレン-1-ブテン共重合体中のエチレンに由来する構成単位の含有量は、特に限定されないが、B層の溶融時の挙動を制御する観点から、エチレン-1-ブテン共重合体の総重量(100重量%)に対して、80~98重量%が好ましく、より好ましくは85~90重量%である。 The content of the structural unit derived from ethylene in the ethylene-1-butene copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer during melting, the total amount of the ethylene-1-butene copolymer is not limited. It is preferably 80 to 98% by weight, more preferably 85 to 90% by weight, based on the weight (100% by weight).
 上記エチレン-1-ブテン共重合体の重量平均分子量は、溶融時の挙動、柔軟性の観点から、10万~20万が好ましく、より好ましくは13万~15万である。 The weight average molecular weight of the ethylene-1-butene copolymer is preferably from 100,000 to 200,000, more preferably from 130,000 to 150,000, from the viewpoint of behavior during melting and flexibility.
 上記エチレン-1-ブテン共重合体のメルトフローレート(MFR)(温度190℃、荷重2.16kgf)は、溶融時の挙動、柔軟性の観点から、1~15(g/10分)が好ましく、より好ましくは1~10(g/10分)、さらに好ましくは6~8(g/10分)である。 The melt flow rate (MFR) (temperature 190 ° C., load 2.16 kgf) of the ethylene-1-butene copolymer is preferably 1 to 15 (g / 10 minutes) from the viewpoint of behavior at the time of melting and flexibility. More preferably, it is 1 to 10 (g / 10 minutes), and further preferably 6 to 8 (g / 10 minutes).
 上記エチレン-1-ブテン共重合体は、市販品を用いてもよく、例えば、住友化学(株)製「エクセレン VL700」等が市場で入手できる。 Commercially available products may be used as the ethylene-1-butene copolymer, and for example, “Excellen VL700” manufactured by Sumitomo Chemical Co., Ltd. is commercially available.
 上記エチレン-1-ブテン-メチルメタクリレート共重合体は、エチレン、1-ブテン及びメチルメタクリレートを必須の単量体成分として構成される共重合体であり、即ち、分子中(1分子中)にエチレンに由来する構成単位、1-ブテンに由来する構成単位、メチルメタクリレートに由来する構成単位を少なくとも含む共重合体である。なお、上記エチレン-1-ブテン-メチルメタクリレート共重合体を構成する単量体成分としては、本発明の効果を妨げない範囲内であれば、上記エチレン、1-ブテン、メチルメタクリレート以外の共重合成分を用いてもよい。上記のエチレン、1-ブテン、メチルメタクリレート以外の共重合成分としては、例えば、プロピレン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン等のα-オレフィン(好ましくは、炭素数3~20のα-オレフィン);塩化ビニルなどのビニル系モノマー;(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸などの不飽和カルボン酸;無水マレイン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、テトラヒドロ無水フタル酸などの不飽和無水カルボン酸;アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸グリシジル、マレイン酸モノエチル、マレイン酸ジエチルなどの不飽和カルボン酸エステル;アクリルアミド、メタクリルアミド、マレイミドなどの不飽和アミド又はイミド;(メタ)アクリル酸ナトリウム、(メタ)アクリル酸亜鉛などの不飽和カルボン酸塩などが挙げられる。これらの共重合成分は1種又は2種以上を組み合わせて使用できる。 The ethylene-1-butene-methyl methacrylate copolymer is a copolymer composed of ethylene, 1-butene and methyl methacrylate as essential monomer components, that is, ethylene in the molecule (in one molecule). A copolymer containing at least a structural unit derived from 1-butene, a structural unit derived from methyl methacrylate. The monomer component constituting the ethylene-1-butene-methyl methacrylate copolymer is a copolymer other than ethylene, 1-butene and methyl methacrylate as long as it does not interfere with the effects of the present invention. Ingredients may be used. Examples of copolymer components other than ethylene, 1-butene, and methyl methacrylate include propylene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, Α-olefins such as 1-decene (preferably α-olefins having 3 to 20 carbon atoms); vinyl monomers such as vinyl chloride; (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citracone Acids, unsaturated carboxylic acids such as 5-norbornene-2,3-dicarboxylic acid; unsaturated carboxylic anhydrides such as maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, tetrahydrophthalic anhydride, etc. Acid; methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate , Unsaturated carboxylic acids such as 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, monoethyl maleate, diethyl maleate Examples include esters; unsaturated amides or imides such as acrylamide, methacrylamide, and maleimide; and unsaturated carboxylates such as sodium (meth) acrylate and zinc (meth) acrylate. These copolymerization components can be used alone or in combination of two or more.
 上記エチレン-1-ブテン-メチルメタクリレート共重合体中のエチレンに由来する構成単位の含有量は、特に限定されないが、B層の溶融時の挙動を制御する観点から、エチレン-1-ブテン-メチルメタクリレート共重合体の総重量(100重量%)に対して、60~78重量%が好ましく、より好ましくは70~78重量%である。 The content of the structural unit derived from ethylene in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of controlling the behavior of the B layer during melting, ethylene-1-butene-methyl The amount is preferably 60 to 78% by weight, more preferably 70 to 78% by weight, based on the total weight (100% by weight) of the methacrylate copolymer.
 上記エチレン-1-ブテン-メチルメタクリレート共重合体中の1-ブテンに由来する構成単位の含有量は、特に限定されないが、B層の耐熱性を向上させる観点から、エチレン-1-ブテン-メチルメタクリレート共重合体の総重量(100重量%)に対して、1~3.5重量%が好ましく、より好ましくは1.2~3重量%である。 The content of the structural unit derived from 1-butene in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but from the viewpoint of improving the heat resistance of the B layer, ethylene-1-butene-methyl It is preferably 1 to 3.5% by weight, more preferably 1.2 to 3% by weight, based on the total weight (100% by weight) of the methacrylate copolymer.
 上記エチレン-1-ブテン-メチルメタクリレート共重合体中のメチルメタクリレートに由来する構成単位の含有量は、特に限定されないが、A層及びC層との接着性、並びに、延伸時や収縮時の柔軟性を付与する観点から、エチレン-1-ブテン-メチルメタクリレート共重合体の総重量(100重量%)に対して、18~24重量%が好ましく、より好ましくは20~23重量%である。 The content of the structural unit derived from methyl methacrylate in the ethylene-1-butene-methyl methacrylate copolymer is not particularly limited, but the adhesiveness with the A layer and the C layer, and the flexibility during stretching and shrinking From the viewpoint of imparting properties, it is preferably 18 to 24% by weight, more preferably 20 to 23% by weight, based on the total weight (100% by weight) of the ethylene-1-butene-methyl methacrylate copolymer.
 上記B層中のエチレンに由来する構成単位の含有量は、B層の総重量(100重量%)に対して、60~78重量%であり、好ましくは70~78重量%である。上記含有量が60重量%未満では層形成が困難となり、78重量%を超えると常温時及び加温時(収縮時や延伸時)に層が剥がれやすくなる。 The content of structural units derived from ethylene in the B layer is 60 to 78% by weight, preferably 70 to 78% by weight, based on the total weight (100% by weight) of the B layer. If the content is less than 60% by weight, it is difficult to form a layer, and if it exceeds 78% by weight, the layer is easily peeled off at room temperature and when heated (when contracted or stretched).
 上記B層中のメチルメタクリレートに由来する構成単位の含有量は、B層の総重量(100重量%)に対して、18~24重量%であり、好ましくは20~23重量%である。上記含有量が18重量%未満ではB層の接着性が不足し、常温での層間剥離が発生しやすく、また、加温時の柔軟性が不足するため、延伸時や収縮時に白化や剥離が起きやすくなる。一方、上記含有量が24重量%を超えると加温時に層の形態を維持できず、剥離が生じやすくなる。 The content of structural units derived from methyl methacrylate in the B layer is 18 to 24% by weight, preferably 20 to 23% by weight, based on the total weight (100% by weight) of the B layer. When the content is less than 18% by weight, the adhesiveness of the B layer is insufficient, delamination is likely to occur at room temperature, and the flexibility during heating is insufficient, so that whitening or peeling during stretching or contraction is not possible. It becomes easy to get up. On the other hand, when the content exceeds 24% by weight, the layer form cannot be maintained during heating, and peeling tends to occur.
 上記B層中の1-ブテンに由来する構成単位の含有量は、B層の総重量(100重量%)に対して、1~3.5重量%であり、好ましくは1.2~3重量%である。上記含有量が1重量%未満ではB層の耐熱性が低下し、特に高温でシュリンク加工を施す場合に、シュリンク加工時の層間剥離が生じやすくなり、3.5重量%を超えると加温時に柔軟性が不足し、延伸時の白化や収縮時の剥離が発生しやすくなる。 The content of the structural unit derived from 1-butene in the B layer is 1 to 3.5% by weight, preferably 1.2 to 3% by weight, based on the total weight (100% by weight) of the B layer. %. When the content is less than 1% by weight, the heat resistance of the B layer is lowered, and particularly when shrink processing is performed at a high temperature, delamination easily occurs during shrink processing. Flexibility is insufficient, and whitening during stretching and peeling during shrinkage tend to occur.
 B層中のエチレンに由来する構成単位、メチルメタクリレートに由来する構成単位および1-ブテンに由来する構成単位の含有量は、B層を構成する樹脂の組成により主に制御することができる。例えば、B層がエチレン-メチルメタクリレート共重合体及びエチレン-1-ブテン共重合体を含む樹脂層の場合には、エチレン-メチルメタクリレート共重合体中のエチレンに由来する構成単位の含有量及びメチルメタクリレートに由来する構成単位の含有量、エチレン-1-ブテン共重合体中のエチレンに由来する構成単位の含有量及び1-ブテンに由来する構成単位の含有量、並びに、B層中のエチレン-メチルメタクリレート共重合体の含有量及びエチレン-1-ブテン共重合体の含有量により主に制御することができる。 The contents of the structural unit derived from ethylene, the structural unit derived from methyl methacrylate, and the structural unit derived from 1-butene in the B layer can be controlled mainly by the composition of the resin constituting the B layer. For example, when the layer B is a resin layer containing an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer, the content of structural units derived from ethylene in the ethylene-methyl methacrylate copolymer and methyl Content of structural unit derived from methacrylate, content of structural unit derived from ethylene in ethylene-1-butene copolymer, content of structural unit derived from 1-butene, and ethylene in the B layer It can be controlled mainly by the content of the methyl methacrylate copolymer and the content of the ethylene-1-butene copolymer.
 より具体的には、例えば、B層が、エチレンに由来する構成単位の含有量がe1(重量%)、メチルメタクリレートに由来する構成単位の含有量がm(重量%)であるエチレン-メチルメタクリレート共重合体と、エチレンに由来する構成単位の含有量がe2(重量%)、1-ブテンに由来する構成単位の含有量がb(重量%)であるエチレン-1-ブテン共重合体のみから構成され、B層中の上記エチレン-メチルメタクリレート共重合体の含有量がW1(重量%)、B層中の上記エチレン-1-ブテン共重合体の含有量がW2(重量%)である場合には、B層中のエチレンに由来する構成単位、メチルメタクリレートに由来する構成単位および1-ブテンに由来する構成単位の含有量は、一般的に、以下のように制御できる。B層中のエチレンに由来する構成単位の含有量(重量%)=(e1×W1+e2×W2)/100B層中のメチルメタクリレートに由来する構成単位の含有量(重量%)=(m×W1)/100B層中の1-ブテンに由来する構成単位の含有量(重量%)=(b×W2)/100 More specifically, for example, in the B layer, ethylene-methyl whose content of structural units derived from ethylene is e 1 (% by weight) and whose content of structural units derived from methyl methacrylate is m (% by weight). A methacrylate copolymer, an ethylene-1-butene copolymer in which the content of structural units derived from ethylene is e 2 (wt%) and the content of structural units derived from 1-butene is b (wt%) And the content of the ethylene-methyl methacrylate copolymer in the B layer is W 1 (% by weight), and the content of the ethylene-1-butene copolymer in the B layer is W 2 (% by weight). ), The contents of the structural unit derived from ethylene, the structural unit derived from methyl methacrylate, and the structural unit derived from 1-butene in the B layer can be generally controlled as follows. Content of structural unit derived from ethylene in layer B (% by weight) = (e 1 × W 1 + e 2 × W 2 ) / 100 Content of structural unit derived from methyl methacrylate in layer B (% by weight) = (M × W 1 ) / 100 Content of constituent unit derived from 1-butene in layer B (% by weight) = (b × W 2 ) / 100
 B層中の構成単位(エチレンに由来する構成単位、メチルメタクリレートに由来する構成単位および1-ブテンに由来する構成単位)や該構成単位の含有量の分析・測定は、特に限定されないが、例えば、核磁気共鳴(NMR)、ガスクロマトグラフ質量分析計(GCMS)などにより行うことができる。なお、他の樹脂層(A層、C層など)や樹脂における構成単位や構成単位の含有量の分析・測定も同様にして行うことができる。 Analysis / measurement of the structural unit in the B layer (structural unit derived from ethylene, structural unit derived from methyl methacrylate and structural unit derived from 1-butene) and the content of the structural unit is not particularly limited. , Nuclear magnetic resonance (NMR), gas chromatograph mass spectrometer (GCMS) and the like. In addition, analysis / measurement of other resin layers (A layer, C layer, etc.) and constituent units in the resin and the content of the constituent units can be performed in the same manner.
 上記B層が、エチレン-メチルメタクリレート共重合体及びエチレン-1-ブテン共重合体を少なくとも含む樹脂層の場合には、B層中のエチレン-メチルメタクリレート共重合体の含有量は、B層の総重量(100重量%)に対して、45~95重量%が好ましく、より好ましくは60~92重量%である。また、B層中のエチレン-1-ブテン共重合体の含有量は、B層の総重量(100重量%)に対して、5~55重量%が好ましく、より好ましくは8~40重量%である。 When the B layer is a resin layer containing at least an ethylene-methyl methacrylate copolymer and an ethylene-1-butene copolymer, the content of the ethylene-methyl methacrylate copolymer in the B layer is It is preferably 45 to 95% by weight, more preferably 60 to 92% by weight, based on the total weight (100% by weight). Further, the content of the ethylene-1-butene copolymer in the B layer is preferably 5 to 55% by weight, more preferably 8 to 40% by weight with respect to the total weight (100% by weight) of the B layer. is there.
 上記B層が、エチレン-1-ブテン-メチルメタクリレート共重合体を少なくとも含む樹脂層の場合には、B層中のエチレン-1-ブテン-メチルメタクリレート共重合体の含有量は、B層の総重量(100重量%)に対して、90~100重量%が好ましく、より好ましくは99~100重量%である。 When the B layer is a resin layer containing at least an ethylene-1-butene-methyl methacrylate copolymer, the content of the ethylene-1-butene-methyl methacrylate copolymer in the B layer is determined by the total amount of the B layer. It is preferably 90 to 100% by weight, more preferably 99 to 100% by weight, based on the weight (100% by weight).
 なお、B層を構成する樹脂は、エチレン-メチルメタクリレート共重合体及びエチレン-1-ブテン共重合体や、エチレン-1-ブテン-メチルメタクリレート共重合体には限定されない。例えば、ポリエチレン、ポリメチルメタクリレート及びポリ-1-ブテンを用いてB層を構成してもよい。 The resin constituting the B layer is not limited to ethylene-methyl methacrylate copolymer, ethylene-1-butene copolymer, and ethylene-1-butene-methyl methacrylate copolymer. For example, the B layer may be formed using polyethylene, polymethyl methacrylate, and poly-1-butene.
 上記B層は、必要に応じて、上記エチレン系共重合体以外の成分(添加成分)、例えば、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、高分子可塑剤(石油樹脂など)、着色剤、ピニング剤(アルカリ土類金属)等を含んでいてもよい。 If necessary, the layer B may contain components other than the ethylene copolymer (additive components), such as lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, A polymer plasticizer (petroleum resin, etc.), a coloring agent, a pinning agent (alkaline earth metal) and the like may be contained.
 上記B層(B層を構成する樹脂組成物)の、動的粘弾性測定により求められる損失正接(tanδ)の温度依存性(温度-tanδの曲線。以下、「動的粘弾性曲線」と称する場合がある)は、80~97℃(80℃以上、97℃以下)の温度範囲でtanδが1未満から1以上となることが好ましい。なお、以下、常温(30℃)~120℃の測定温度域でtanδが1未満から1以上となる温度を「T(tanδ≧1)」と称する。T(tanδ≧1)は、85℃を超え、96℃以下であることが好ましく、より好ましくは90℃を超え、95℃以下である。上記T(tanδ≧1)は、B層が収縮に十分追従可能な程度に軟化する温度の指標である。本発明のシュリンクフィルムおよびシュリンクラベルは、特に限定されないが、フィルム温度が80~100℃程度となるような温度でシュリンク加工が施されることが望ましい。80℃未満でシュリンク加工する場合には、高収縮を必要とする部分の収縮が困難となる場合があり、一方、100℃を超える温度でシュリンク加工する場合には、プラスチック製の容器の変形や内容物の劣化が生じるおそれがあるためである。T(tanδ≧1)が、上記範囲にある場合には、フィルム温度が80~97℃程度となるような収縮加工温度においてB層は適度に流動性を有しているため、A層やC層の収縮に対して良好な追従性を示し、有効な接着性(粘着性、層間密着性)を示す。T(tanδ≧1)が97℃を超える場合には、収縮加工温度においてB層が未だ十分に流動性を有しないため、A層やC層の変形に対する追従性が悪く、層間剥離が生じやすくなる場合がある。一方、T(tanδ≧1)が80℃未満の場合には、収縮加工温度でB層の流動性が高くなりすぎて、層の形態を維持できない場合がある。T(tanδ≧1)は、B層中のメチルメタクリレートに由来する構成単位および1-ブテンに由来する構成単位の含有量を制御することにより上記範囲に制御しやすくなる。なお、上記の「B層を構成する樹脂組成物」はB層が単一の樹脂のみから構成される場合には、「B層を構成する樹脂」である。 Temperature dependence of the loss tangent (tan δ) determined by dynamic viscoelasticity measurement of the B layer (resin composition constituting the B layer) (temperature-tan δ curve. Hereinafter, referred to as “dynamic viscoelastic curve”) Tan δ is preferably less than 1 to 1 or more in the temperature range of 80 to 97 ° C. (80 ° C. or more and 97 ° C. or less). Hereinafter, the temperature at which tan δ is less than 1 to 1 or more in the measurement temperature range from room temperature (30 ° C.) to 120 ° C. is referred to as “T (tan δ ≧ 1)”. T (tan δ ≧ 1) is preferably higher than 85 ° C. and lower than or equal to 96 ° C., more preferably higher than 90 ° C. and lower than or equal to 95 ° C. The T (tan δ ≧ 1) is an index of the temperature at which the B layer softens to such an extent that it can sufficiently follow the shrinkage. The shrink film and the shrink label of the present invention are not particularly limited, but it is desirable that the shrink processing is performed at a temperature at which the film temperature is about 80 to 100 ° C. When shrink processing is performed at a temperature lower than 80 ° C., it may be difficult to shrink a portion that requires high shrinkage. On the other hand, when shrink processing is performed at a temperature exceeding 100 ° C., deformation of a plastic container or This is because the contents may be deteriorated. When T (tan δ ≧ 1) is in the above range, the B layer has moderate fluidity at the shrinking processing temperature such that the film temperature is about 80 to 97 ° C. Good followability to the shrinkage of the layer and effective adhesion (adhesiveness, interlayer adhesion). When T (tan δ ≧ 1) exceeds 97 ° C., the B layer still does not have sufficient fluidity at the shrinkage processing temperature, so the followability to the deformation of the A layer and the C layer is poor, and delamination tends to occur. There is a case. On the other hand, when T (tan δ ≧ 1) is less than 80 ° C., the fluidity of the B layer becomes too high at the shrinkage processing temperature, and the form of the layer may not be maintained. T (tan δ ≧ 1) can be easily controlled within the above range by controlling the content of the structural unit derived from methyl methacrylate and the structural unit derived from 1-butene in the B layer. In addition, said "resin composition which comprises B layer" is "resin which comprises B layer", when B layer is comprised only from single resin.
 上記T(tanδ≧1)は、動的粘弾性測定により求められる。具体的には、動的粘弾性測定により、tanδの温度依存性(動的粘弾性曲線)を求め、動的粘弾性曲線においいて、tanδが1未満から1以上となる温度(tanδ=1となる温度)をT(tanδ≧1)とする。上記動的粘弾性測定は、周波数:1Hz、昇温速度:2℃/分、測定温度:常温(30℃)~120℃の条件で行う。評価装置は、例えば、Seiko Instruments Inc.製「EXSTAR6000 DMS6100」を用いることができる。 The above T (tan δ ≧ 1) is obtained by dynamic viscoelasticity measurement. Specifically, the temperature dependence (dynamic viscoelastic curve) of tan δ is obtained by dynamic viscoelasticity measurement, and the temperature at which tan δ is less than 1 to 1 or more (tan δ = 1) in the dynamic viscoelastic curve. Is defined as T (tan δ ≧ 1). The dynamic viscoelasticity measurement is performed under the conditions of frequency: 1 Hz, rate of temperature increase: 2 ° C./min, measurement temperature: room temperature (30 ° C.) to 120 ° C. The evaluation apparatus is, for example, Seiko Instruments Inc. “EXSTAR6000 DMS6100” manufactured by the company can be used.
 上記B層(B層を構成する樹脂組成物)の重量平均分子量は、層の柔軟性の観点から、10万~20万が好ましく、より好ましくは13万~15万である。なお、上記の「B層を構成する樹脂組成物」はB層が単一の樹脂のみから構成される場合には、「B層を構成する樹脂」である。 The weight average molecular weight of the B layer (resin composition constituting the B layer) is preferably 100,000 to 200,000, more preferably 130,000 to 150,000, from the viewpoint of the flexibility of the layer. In addition, said "resin composition which comprises B layer" is "resin which comprises B layer", when B layer is comprised only from single resin.
[C層]
 上記C層は、ポリプロピレン系樹脂を少なくとも含む樹脂層である。上記ポリプロピレン系樹脂は、プロピレンを必須の単量体成分として構成される重合体であり、即ち、分子中(1分子中)にプロピレンに由来する構成単位を少なくとも含む重合体である。上記ポリプロピレン系樹脂は、例えば、プロピレンの単独重合体であってもよいし、α-オレフィン等の共重合成分を含む共重合体(プロピレン-α-オレフィン共重合体)であってもよい。上記ポリプロピレン系樹脂は、特に好ましくは、メタロセン触媒により重合して得られたポリプロピレン系樹脂(メタロセン触媒系ポリプロピレン、メタロセン触媒系プロピレン-α-オレフィン共重合体等)、プロピレン-α-オレフィンランダム共重合体である。また、これらのポリプロピレン系樹脂は単独で又は2種以上混合して使用できる。
[C layer]
The C layer is a resin layer containing at least a polypropylene resin. The polypropylene resin is a polymer composed of propylene as an essential monomer component, that is, a polymer containing at least a structural unit derived from propylene in a molecule (in one molecule). The polypropylene resin may be, for example, a propylene homopolymer or a copolymer (propylene-α-olefin copolymer) containing a copolymer component such as α-olefin. The polypropylene resin is particularly preferably a polypropylene resin obtained by polymerization with a metallocene catalyst (metallocene catalyst polypropylene, metallocene catalyst propylene-α-olefin copolymer, etc.), propylene-α-olefin random copolymer. It is a coalescence. These polypropylene resins can be used alone or in combination of two or more.
 上記ポリプロピレン系樹脂中のプロピレン含有量(即ち、ポリプロピレン系樹脂中のプロピレンに由来する構成単位の含有量)は、シュリンクフィルムの収縮性、強度、比重の観点から、ポリプロピレン系樹脂の総重量(100重量%)に対して、50~100重量%が好ましく、より好ましくは60~100重量%である。 The propylene content in the polypropylene resin (that is, the content of structural units derived from propylene in the polypropylene resin) is the total weight of the polypropylene resin (100 from the viewpoint of shrinkage, strength, and specific gravity of the shrink film). % By weight) is preferably 50 to 100% by weight, more preferably 60 to 100% by weight.
 上記プロピレン-α-オレフィン共重合体は、プロピレンとα-オレフィンを必須の単量体成分として構成される共重合体であり、即ち、分子中(1分子中)にプロピレンに由来する構成単位およびα-オレフィンに由来する構成単位を少なくとも含む共重合体である。上記プロピレン-α-オレフィン共重合体の共重合成分として用いられるα-オレフィンは、エチレンや、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどの炭素数4~20程度のα-オレフィンが挙げられる。これらのα-オレフィンは単独で又は2種以上混合して使用できる。上記の中でも、エチレンを共重合成分とするエチレン-プロピレンランダム共重合体が特に好ましい。上記エチレン-プロピレンランダム共重合体において、エチレンとプロピレンの比率は、例えば、前者/後者(重量比)=2/98~5/95(好ましくは3/97~4.5/95.5)程度の範囲から選択することができる。 The propylene-α-olefin copolymer is a copolymer composed of propylene and α-olefin as essential monomer components, that is, a structural unit derived from propylene in a molecule (in one molecule) and A copolymer containing at least a structural unit derived from an α-olefin. The α-olefin used as a copolymerization component of the propylene-α-olefin copolymer is ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Examples thereof include α-olefins having about 4 to 20 carbon atoms such as octene, 1-nonene and 1-decene. These α-olefins can be used alone or in admixture of two or more. Among these, an ethylene-propylene random copolymer containing ethylene as a copolymerization component is particularly preferable. In the ethylene-propylene random copolymer, the ratio of ethylene to propylene is, for example, the former / the latter (weight ratio) = 2/98 to 5/95 (preferably 3/97 to 4.5 / 95.5). You can choose from a range of
 さらに、上記プロピレン-α-オレフィン共重合体(特に、エチレン-プロピレンランダム共重合体)としては、60~80℃程度の低温収縮性及び熱収縮時の容器へのフィット性を向上する観点から、メタロセン触媒を用いて共重合して得られる共重合体が好ましい。また、低温収縮性やシュリンクフィルムの腰の強さの観点から、アイソタクチックインデックスが90%以上のものが好ましい。 Furthermore, as the propylene-α-olefin copolymer (particularly, ethylene-propylene random copolymer), from the viewpoint of improving the low temperature shrinkage at about 60 to 80 ° C. and the fit to the container during heat shrinkage, A copolymer obtained by copolymerization using a metallocene catalyst is preferred. Further, from the viewpoint of low-temperature shrinkage and the strength of the shrink film, those having an isotactic index of 90% or more are preferable.
 上記メタロセン触媒としては、公知乃至慣用のオレフィン重合用メタロセン触媒を用いることができる。重合方法(共重合方法)としては、特に限定されず、スラリー法、溶液重合法、気相法などの公知の重合方法を採用することができる。 As the metallocene catalyst, a known or conventional metallocene catalyst for olefin polymerization can be used. The polymerization method (copolymerization method) is not particularly limited, and a known polymerization method such as a slurry method, a solution polymerization method, or a gas phase method can be employed.
 上記ポリプロピレン系樹脂は、市販品を用いてもよく、日本ポリプロ(株)製「ウィンテック WFX6」(メタロセン触媒系プロピレン-エチレンランダム共重合体)、三菱化学(株)製「ゼラス #7000、#5000」、日本ポリエチレン(株)製「カーネル」などが市場で入手できる。 Commercially available products may be used as the polypropylene resin, “Wintech WFX6” (metallocene catalyst-based propylene-ethylene random copolymer) manufactured by Nippon Polypro Co., Ltd., “Zeras # 7000, #” manufactured by Mitsubishi Chemical Corporation. 5000 ”,“ Kernel ”manufactured by Nippon Polyethylene Co., Ltd. are available on the market.
 上記ポリプロピレン系樹脂の重量平均分子量は、C層を形成する樹脂の溶融挙動を好ましい範囲に制御する観点から、10万~50万が好ましく、より好ましくは20万~40万である。 The weight-average molecular weight of the polypropylene resin is preferably 100,000 to 500,000, more preferably 200,000 to 400,000 from the viewpoint of controlling the melting behavior of the resin forming the C layer within a preferable range.
 上記ポリプロピレン系樹脂の融点は100~150℃が好ましく、より好ましくは120~140℃である。また、メルトフローレート(MFR)(温度230℃、荷重2.16kg)は、溶融挙動制御の観点から、0.1~10g/10分が好ましく、より好ましくは1~5g/10分である。融点やMFRが上記範囲を外れる場合には、A層を形成する樹脂とC層を形成する樹脂の溶融特性や熱特性の違いが大きくなり、シュリンクフィルム製造時の、共押出によるシート化や延伸が困難となり、フィルム破れなどの生産性低下や、配向が不十分となることによる収縮性の低下を招く場合がある。 The melting point of the polypropylene resin is preferably 100 to 150 ° C., more preferably 120 to 140 ° C. The melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is preferably 0.1 to 10 g / 10 minutes, more preferably 1 to 5 g / 10 minutes, from the viewpoint of controlling the melting behavior. If the melting point or MFR is out of the above range, the difference in melting characteristics and thermal characteristics between the resin forming the A layer and the resin forming the C layer becomes large, and sheeting or stretching by coextrusion during shrink film production. May become difficult, and may cause a decrease in productivity such as film breakage and a decrease in shrinkage due to insufficient orientation.
 C層中のポリプロピレン系樹脂の含有量は、C層の総重量(100重量%)に対して、40重量%以上(40~100重量%)が好ましく、より好ましくは50~94重量%、さらに好ましくは55~89重量%である。C層中のポリオレフィン系樹脂の含有量が40重量%未満では、シュリンクフィルムが低比重とならない場合や収縮特性が低下する場合がある。 The content of the polypropylene-based resin in the C layer is preferably 40% by weight or more (40 to 100% by weight), more preferably 50 to 94% by weight, further based on the total weight (100% by weight) of the C layer. Preferably, it is 55 to 89% by weight. When the content of the polyolefin resin in the C layer is less than 40% by weight, the shrink film may not have a low specific gravity or the shrinkage characteristics may be deteriorated.
 上記C層は、フィルム切れを防止し、シュリンク加工性を向上する目的で、ポリエチレン系樹脂を含んでいてもよい。上記ポリエチレン系樹脂は、エチレンを必須の単量体成分として構成される重合体であり、即ち、分子中(1分子中)にエチレンに由来する構成単位を少なくとも含む重合体である。上記ポリエチレン系樹脂としては、特に限定されず、公知乃至慣用のポリエチレンを用いることが可能で、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン(HDPE)などが挙げられる。中でも、密度が0.930(g/cm3)未満の低密度ポリエチレン(直鎖状低密度ポリエチレン、超低密度ポリエチレンを含む)が好ましく、特に好ましくは直鎖状低密度ポリエチレンである。さらに、メタロセン触媒を用いて重合した直鎖状低密度ポリエチレン(メタロセン触媒系LLDPE)が最も好ましい。上記ポリエチレン系樹脂としては、市販品を用いることも可能であり、例えば、宇部丸善ポリエチレン(株)製LLDPE「2040FC」、日本ポリエチレン(株)製「カーネル KF380」、「カーネル KF260T」、「カーネルKS340T」や(株)プライムポリマー製「エボリュー SP2040」などが市場で入手可能である。 The C layer may contain a polyethylene resin for the purpose of preventing film breakage and improving shrink workability. The polyethylene-based resin is a polymer composed of ethylene as an essential monomer component, that is, a polymer containing at least a structural unit derived from ethylene in a molecule (in one molecule). The polyethylene-based resin is not particularly limited, and publicly known or commonly used polyethylene can be used. For example, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene, medium density Examples include polyethylene and high density polyethylene (HDPE). Among these, low density polyethylene (including linear low density polyethylene and ultra-low density polyethylene) having a density of less than 0.930 (g / cm 3 ) is preferable, and linear low density polyethylene is particularly preferable. Furthermore, linear low density polyethylene (metallocene catalyst system LLDPE) polymerized using a metallocene catalyst is most preferred. Commercially available products may be used as the polyethylene resin. For example, LLDPE “2040FC” manufactured by Ube Maruzen Polyethylene Co., Ltd., “Kernel KF380”, “Kernel KF260T”, “Kernel KS340T” manufactured by Nippon Polyethylene Co., Ltd. "Evolue SP2040" manufactured by Prime Polymer Co., Ltd. is available on the market.
 C層中のポリエチレン系樹脂の含有量は、C層の総重量(100重量%)に対して、1~10重量%が好ましく、より好ましくは1~5重量%である。 The content of the polyethylene resin in the C layer is preferably 1 to 10% by weight, more preferably 1 to 5% by weight with respect to the total weight (100% by weight) of the C layer.
 上記C層は、シュリンクフィルムの収縮性向上の観点で、高分子可塑剤を含んでいてもよい。上記高分子可塑剤としては、例えば、ロジン系樹脂(ロジン、重合ロジン、水添ロジン及びそれらの誘導体、樹脂酸ダイマーなど)、テルペン系樹脂(テルペン樹脂、芳香族変性テルペン樹脂、水添テルペン樹脂、テルペン-フェノール樹脂など)、石油樹脂(脂肪族系石油樹脂、芳香族系石油樹脂、脂環族系石油樹脂)などが挙げられる。中でも、石油樹脂が好ましい。上記高分子可塑剤は単独で又は2種以上を組み合わせて使用できる。上記高分子可塑剤としては、荒川化学工業(株)製「アルコン」、ヤスハラケミカル(株)製「クリアロン」、出光興産(株)製「アイマーブ」などが市販品として入手できる。 The C layer may contain a polymer plasticizer from the viewpoint of improving the shrinkability of the shrink film. Examples of the polymer plasticizer include rosin resin (rosin, polymerized rosin, hydrogenated rosin and derivatives thereof, resin acid dimer, etc.), terpene resin (terpene resin, aromatic modified terpene resin, hydrogenated terpene resin). Terpene-phenol resins, etc.), petroleum resins (aliphatic petroleum resins, aromatic petroleum resins, alicyclic petroleum resins) and the like. Among these, petroleum resin is preferable. The above polymeric plasticizers can be used alone or in combination of two or more. As the polymer plasticizer, “Arcon” manufactured by Arakawa Chemical Industry Co., Ltd., “Clearon” manufactured by Yashara Chemical Co., Ltd., “Imabe” manufactured by Idemitsu Kosan Co., Ltd., etc. are commercially available.
 高分子可塑剤を添加する場合の、C層中の高分子可塑剤(特に、石油樹脂)の含有量は、C層の総重量(100重量%)に対して、5~30重量%が好ましく、より好ましくは10~25重量%である。含有量が30重量%を超えると、シュリンクフィルムが脆くなる場合がある。また、5重量%未満では高分子可塑剤の添加の効果が小さい場合がある。 When the polymer plasticizer is added, the content of the polymer plasticizer (particularly petroleum resin) in the C layer is preferably 5 to 30% by weight with respect to the total weight (100% by weight) of the C layer. More preferably, it is 10 to 25% by weight. If the content exceeds 30% by weight, the shrink film may become brittle. On the other hand, if it is less than 5% by weight, the effect of adding the polymer plasticizer may be small.
 上記C層は、必要に応じて、上記以外の成分(添加成分)、例えば、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、ピニング剤(アルカリ土類金属)等を含んでいてもよい。 The C layer may contain other components (additive components) as necessary, for example, lubricants, fillers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, colorants, pinning agents. (Alkaline earth metal) and the like may be contained.
 上記C層は、本願発明の効果を損なわない範囲内で、回収原料を含んでいてもよい。その場合のC層中の回収原料の含有量は、リサイクル性、収縮性の観点から、C層の総重量(100重量%)に対して、1~75重量%が好ましく、より好ましくは1重量%以上、50重量%未満である。なお、回収原料とは、製品化の前後やフィルムエッジなどの非製品部分、中間製品から製品フィルムを採取した際の残余部分や規格外品などのフィルム屑、ポリマー屑からなるリサイクル原料である。ただし、回収原料は本発明のシュリンクフィルムの製造より生じたもの(いわゆる自己回収品)に限る。 The C layer may contain a recovered raw material as long as the effects of the present invention are not impaired. In this case, the content of the recovered material in the C layer is preferably 1 to 75% by weight, more preferably 1% with respect to the total weight (100% by weight) of the C layer from the viewpoint of recyclability and shrinkage. % Or more and less than 50% by weight. The recovered material is a recycled material composed of non-product parts before and after commercialization, film edges, etc., remaining parts when product films are collected from intermediate products, non-standard product film scraps, and polymer scraps. However, the recovered raw materials are limited to those produced from the manufacture of the shrink film of the present invention (so-called self-collected products).
[シュリンクフィルム]
 本発明のシュリンクフィルムは、前述のとおり、A層とB層とC層とが、A層/B層/C層の順に、他の層を介さずに積層された積層構造(3種3層の積層構造)を少なくとも含む。本発明のシュリンクフィルムは、特に限定されないが、A層/B層/C層の3種3層積層シュリンクフィルムや、A層/B層/C層/B層/A層の3種5層積層シュリンクフィルムであることが好ましい。なお、上記の「A層/B層/C層の順に、他の層を介さずに積層された」とは、より具体的には、A層/B層/C層の順に、A層とB層とが両層間に接着剤層などの他の層を挟まずに積層されており、さらに、B層とC層とが両層間に接着剤層などの他の層を挟まずに積層されていることを示す。
[Shrink film]
As described above, the shrink film of the present invention has a laminated structure in which an A layer, a B layer, and a C layer are laminated in the order of A layer / B layer / C layer without any other layer (3 types, 3 layers). At least). Although the shrink film of this invention is not specifically limited, 3 types 3 layer lamination shrink films of A layer / B layer / C layer and 3 types 5 layer lamination of A layer / B layer / C layer / B layer / A layer A shrink film is preferred. In addition, the above-mentioned “laminated in the order of A layer / B layer / C layer without other layers” means more specifically the order of A layer / B layer / C layer and A layer The B layer is laminated without sandwiching other layers such as an adhesive layer between both layers, and the B layer and the C layer are laminated without sandwiching other layers such as an adhesive layer between both layers. Indicates that
 上記積層構造(例えば、A層/B層/C層の3種3層の積層構造やA層/B層/C層/B層/A層の3種5層の積層構造など)は共押出により形成されることが好ましい。 The above laminated structures (for example, A layer / B layer / C layer, 3 layers, 3 layers, A layer / B layer / C layer / B layer / A layer, 3 layers, 5 layers, etc.) are co-extruded. It is preferably formed by.
 本発明のシュリンクフィルムは、収縮特性の観点から、配向したフィルム(1軸配向フィルム、2軸配向フィルムまたは多軸配向フィルム)である。本発明のシュリンクフィルム中のA層、B層、C層の全ての樹脂層が配向していることが好ましい。全ての樹脂層が無配向の場合には、良好な収縮性を得ることができない。本発明のシュリンクフィルムは、特に限定されないが、1軸配向フィルム又は2軸配向フィルムが好ましく、中でも、フィルムの1軸方向[特に、フィルムの幅方向(筒状シュリンクラベルではラベルの周方向となる方向)]に強く配向しているフィルム(実質的に幅方向の1軸配向フィルム)が好ましい。フィルムの長手方向(幅方向と直交する方向)に強く配向した実質的に長手方向の1軸配向フィルムであってもよい。 The shrink film of the present invention is an oriented film (uniaxially oriented film, biaxially oriented film or multiaxially oriented film) from the viewpoint of shrinkage characteristics. It is preferable that all the resin layers of the A layer, the B layer, and the C layer in the shrink film of the present invention are oriented. When all the resin layers are non-oriented, good shrinkage cannot be obtained. Although the shrink film of the present invention is not particularly limited, a uniaxially oriented film or a biaxially oriented film is preferable, and among these, the uniaxial direction of the film [particularly, the width direction of the film (in the case of a cylindrical shrink label, the circumferential direction of the label). Direction)] is preferred (substantially a uniaxially oriented film in the width direction). It may be a substantially uniaxially oriented film in the longitudinal direction that is strongly oriented in the longitudinal direction of the film (direction perpendicular to the width direction).
 本発明のシュリンクフィルムにおいて、A層の厚み(1層のみの厚み)は、特に限定されないが、3~15μmが好ましく、より好ましくは5~10μmである。A層厚みが15μmを超えると、A層の収縮応力が高くなりすぎてシュリンク加工時の層間剥離を抑制できなくなる場合や収縮が急激に起こり仕上がり性が低下する場合がある。一方、3μm未満では、収縮が不足する場合やシュリンクフィルムの腰の強さが低下する場合がある。特に、本発明のシュリンクフィルムがA層/B層/C層/B層/A層の3種5層の積層構造を有する場合には、本発明の効果を得る観点から、A層の厚み(1層のみの厚み)は、3~8μmがより好ましく、さらに好ましくは5~7.5μmである。上記の3種5層の積層構造を有する場合には、A層厚みが8μmを超えると層間剥離が生じやすくなる場合がある。 In the shrink film of the present invention, the thickness of the A layer (only one layer) is not particularly limited, but is preferably 3 to 15 μm, more preferably 5 to 10 μm. If the thickness of the A layer exceeds 15 μm, the shrinkage stress of the A layer becomes too high, and delamination during shrink processing cannot be suppressed, or the shrinkage may occur rapidly and the finish may be lowered. On the other hand, if the thickness is less than 3 μm, the shrinkage may be insufficient or the strength of the shrink film may be reduced. In particular, when the shrink film of the present invention has a layered structure of 3 types, 5 layers of A layer / B layer / C layer / B layer / A layer, from the viewpoint of obtaining the effects of the present invention, the thickness of the A layer ( The thickness of only one layer) is more preferably 3 to 8 μm, still more preferably 5 to 7.5 μm. In the case of having a laminated structure of the above three types and five layers, delamination may easily occur when the thickness of the A layer exceeds 8 μm.
 本発明のシュリンクフィルムにおいて、B層の厚み(1層のみの厚み)は、特に限定されないが、0.5~10μmが好ましく、より好ましくは1~8μmである。B層厚みが10μmを超えるとシュリンクフィルムの腰が低下する場合があり、0.5μm未満では接着力が低下し層間剥離が生じやすくなる場合がある。 In the shrink film of the present invention, the thickness of the B layer (thickness of only one layer) is not particularly limited, but is preferably 0.5 to 10 μm, more preferably 1 to 8 μm. If the thickness of the B layer exceeds 10 μm, the shrinkage of the shrink film may be reduced, and if it is less than 0.5 μm, the adhesive strength may be reduced and delamination may easily occur.
 本発明のシュリンクフィルムにおいて、C層の厚み(1層のみの厚み)は、特に限定されないが、10~70μmが好ましく、より好ましくは15~50μmである。C層厚みが70μmを超えると熱収縮率が低下する場合があり、10μm未満ではA層との間の収縮応力差が大きくなりすぎてシュリンク加工時の層間剥離を抑制できなくなる場合や収縮が急激に起こり仕上がり性が低下する場合がある。 In the shrink film of the present invention, the thickness of the C layer (thickness of only one layer) is not particularly limited, but is preferably 10 to 70 μm, more preferably 15 to 50 μm. If the thickness of the C layer exceeds 70 μm, the thermal shrinkage rate may decrease. If the thickness of the C layer is less than 10 μm, the shrinkage stress difference with the A layer becomes too large, and delamination during shrink processing cannot be suppressed, or the shrinkage is rapid. May occur and the finish may be reduced.
 本発明のシュリンクフィルムにおいて、全C層厚み(シュリンクフィルム中の全てのC層の厚みの合計)100%に対する、全A層厚み(シュリンクフィルム中の全てのA層の厚みの合計)の割合は40~150%が好ましく、より好ましくは50~100%である。全C層厚みに対して全A層厚みが薄すぎると、シュリンクフィルムの収縮が不足(熱収縮率が低下)する場合やシュリンクフィルムの腰の強さが低下して加工性が低下する場合がある。一方、全C層厚みに対して全A層厚みが厚すぎると、A層の収縮応力が増大し、A層とC層間の収縮応力差が大きくなりすぎて、B層を有する場合であっても層間剥離を抑制できない場合がある。なお、本発明のシュリンクフィルムはB層を有するため、C層厚みに対するA層厚みを比較的厚くした場合であっても層間剥離を抑制し、収縮性、腰の強さと層間剥離抑止性を両立しうるため好ましい。 In the shrink film of the present invention, the ratio of the total A layer thickness (total thickness of all A layers in the shrink film) to the total C layer thickness (total thickness of all C layers in the shrink film) 100% is It is preferably 40 to 150%, more preferably 50 to 100%. If the total A layer thickness is too small relative to the total C layer thickness, the shrinkage of the shrink film may be insufficient (the thermal shrinkage rate will be reduced) or the shrink strength of the shrink film may be reduced and the processability may be reduced. is there. On the other hand, if the total A layer thickness is too large relative to the total C layer thickness, the contraction stress of the A layer increases, the contraction stress difference between the A layer and the C layer becomes too large, and there is a B layer. In some cases, delamination cannot be suppressed. In addition, since the shrink film of this invention has B layer, even if it is a case where A layer thickness with respect to C layer thickness is comparatively thick, delamination is suppressed and shrinkage, waist strength, and delamination deterrence are compatible. This is preferable.
 本発明のシュリンクフィルムにおいて、全C層厚み100%に対する、全B層厚み(シュリンクフィルム中の全てのB層の厚みの合計)の割合は5~100%が好ましく、より好ましくは10~50%である。全C層厚みに対して全B層厚みが薄すぎると、B層の接着力が低下し層間剥離が生じやすくなる場合がある。一方、全C層厚みに対して全B層厚みが厚すぎると、シュリンクフィルムの腰の強さが低下する場合がある。 In the shrink film of the present invention, the ratio of the total B layer thickness (the total thickness of all B layers in the shrink film) to the total C layer thickness of 100% is preferably 5 to 100%, more preferably 10 to 50%. It is. If the total B layer thickness is too thin with respect to the total C layer thickness, the adhesive strength of the B layer may be reduced, and delamination may easily occur. On the other hand, if the total B layer thickness is too large with respect to the total C layer thickness, the strength of the shrinkage of the shrink film may be reduced.
 本発明のシュリンクフィルムの総厚みは、特に限定されないが、20~100μmが好ましく、より好ましくは20~80μm、さらに好ましくは20~50μmである。 The total thickness of the shrink film of the present invention is not particularly limited, but is preferably 20 to 100 μm, more preferably 20 to 80 μm, still more preferably 20 to 50 μm.
 本発明のシュリンクフィルムのシュリンク加工前における層間強度は、0.7(N/15mm)以上が好ましく、より好ましくは1.5(N/15mm)以上である。層間強度が0.7(N/15mm)未満の場合には、印刷や筒状に成形する加工等の加工工程(シュリンクラベルの製造工程)時に、樹脂層同士がはがれて、生産性が低下したり、品質上の問題となる場合がある。なお、上記層間強度は、T型剥離試験(JIS K 6854-3に準拠、引張速度:200mm/分)における、シュリンクフィルム中で最も層間強度の低い層間の強度をいう。 The interlayer strength of the shrink film of the present invention before shrink processing is preferably 0.7 (N / 15 mm) or more, more preferably 1.5 (N / 15 mm) or more. When the interlayer strength is less than 0.7 (N / 15 mm), the resin layers are peeled off at the time of processing (printing process of shrink label) such as printing or processing into a cylindrical shape, resulting in lower productivity. Or a quality problem. The interlaminar strength refers to the interlaminar strength having the lowest interlaminar strength among shrink films in a T-type peel test (according to JIS K 6854-3, tensile speed: 200 mm / min).
 本発明のシュリンクフィルム(シュリンク加工前)の、主配向方向の、90℃、10秒(温水処理)における熱収縮率(「熱収縮率(90℃、10秒)」と称する場合がある)は、特に限定されないが、35%以上が好ましく、より好ましくは35~80%、さらに好ましくは40~80%である。熱収縮率(90℃、10秒)が35%未満の場合には、シュリンクラベルを容器に熱で密着させる工程において、収縮が十分でないため、容器の形に追従困難となり、特に複雑な形状の容器に対して仕上がりが悪くなることがある。なお、上記「主配向方向」とは主に延伸処理が施された方向(最も熱収縮率が大きい方向)であり、一般的には長手方向又は幅方向であり、例えば、幅方向に実質的に1軸延伸されたフィルム(実質的に幅方向の1軸配向フィルム)の場合には幅方向である。 The shrinkage rate of the shrink film of the present invention (before shrink processing) in the main orientation direction at 90 ° C. for 10 seconds (warm water treatment) (sometimes referred to as “thermal shrinkage rate (90 ° C., 10 seconds)”). Although not particularly limited, it is preferably 35% or more, more preferably 35 to 80%, and still more preferably 40 to 80%. When the thermal shrinkage rate (90 ° C., 10 seconds) is less than 35%, the shrink label is not sufficiently contracted in the process of heat-adhering the shrink label to the container, making it difficult to follow the shape of the container. The finish may be poor for the container. The above-mentioned “main orientation direction” is a direction mainly subjected to a stretching process (a direction having the largest thermal shrinkage), and is generally a longitudinal direction or a width direction, for example, substantially in the width direction. In the case of a film uniaxially stretched (substantially a uniaxially oriented film in the width direction), it is the width direction.
 なお、本発明のシュリンクフィルム(シュリンク加工前)の、主配向方向と直交する方向の熱収縮率(90℃、10秒)は、特に限定されないが、-5~10%が好ましい。 The shrinkage rate (90 ° C., 10 seconds) in the direction perpendicular to the main orientation direction of the shrink film of the present invention (before shrink processing) is not particularly limited, but is preferably −5 to 10%.
 本発明のシュリンクフィルムのヘイズ(ヘーズ)値[JIS K 7105準拠、厚み40μm換算、単位:%]は、15%未満が好ましく、より好ましくは5.0%未満、さらに好ましくは2.0%未満である。ヘイズ値が15%以上の場合には、シュリンクフィルムの内側(シュリンクラベルを容器に装着した時に容器側になる面側)に印刷を施し、シュリンクフィルムを通して印刷を見せるシュリンクラベルの場合、製品とした際に、印刷が曇り、装飾性が低下することがある。ただし、ヘイズ値が15%以上の場合であっても、シュリンクフィルムを通して印刷を見せる上記用途以外の用途においては十分に使用可能である。 The haze (haze) value [conforms to JIS K 7105, converted to 40 μm thickness, unit:%] of the shrink film of the present invention is preferably less than 15%, more preferably less than 5.0%, and still more preferably less than 2.0%. It is. When the haze value is 15% or more, printing is performed on the inside of the shrink film (the side that becomes the container side when the shrink label is attached to the container), and the shrink label that shows the print through the shrink film is the product. In some cases, the printing may become cloudy and the decorativeness may deteriorate. However, even if the haze value is 15% or more, it can be sufficiently used in applications other than the above-described applications that show printing through a shrink film.
 本発明のシュリンクフィルムは、溶融製膜法によって作製することが好ましい。また、上記積層構造は共押出(多層押出)により形成されることが好ましい。即ち、本発明のシュリンクフィルムは、溶融押出法(特に、共押出法)により製造されることが好ましい。より具体的には、本発明のシュリンクフィルムは、溶融押出(共押出)により未延伸フィルム(未延伸シート)を形成した後、該未延伸フィルムを延伸することにより製造されることが好ましい。さらに、上記シュリンクフィルムの表面には、必要に応じて、コロナ放電処理等の慣用の表面処理が施されてもよい。 The shrink film of the present invention is preferably produced by a melt film forming method. The laminated structure is preferably formed by coextrusion (multilayer extrusion). That is, the shrink film of the present invention is preferably produced by a melt extrusion method (particularly a coextrusion method). More specifically, the shrink film of the present invention is preferably produced by forming an unstretched film (unstretched sheet) by melt extrusion (coextrusion) and then stretching the unstretched film. Further, the surface of the shrink film may be subjected to a conventional surface treatment such as a corona discharge treatment, if necessary.
 上記シュリンクフィルムの各樹脂層(例えば、A層、B層、C層)を形成する原料として、混合原料を用いる場合、各成分の混合方法は特に限定されず、例えば、ドライブレンドにより混合原料を得てもよいし、1軸又は2軸混練機を用いて各成分を溶融混練して混合原料を得てもよい。また、マスターペレット(例えば、特定の成分を比較的高濃度に混合したもの)を用いてもよい。 When a mixed raw material is used as a raw material for forming each resin layer (for example, A layer, B layer, C layer) of the shrink film, the mixing method of each component is not particularly limited. For example, the mixed raw material is prepared by dry blending. Alternatively, each component may be melt-kneaded using a uniaxial or biaxial kneader to obtain a mixed raw material. Moreover, you may use a master pellet (For example, what mixed the specific component with comparatively high density | concentration).
 上記溶融押出(共押出)においては、それぞれ所定の温度に設定した複数の押出機に、各樹脂層(A層、B層、C層など)を形成する原料(樹脂又は樹脂組成物)をそれぞれ投入し、Tダイ、サーキュラーダイなどから溶融押出(共押出)する。この際、マニホールドやフィードブロックを用いて、所定の層構成とすることが好ましい。また必要に応じて、ギアポンプを用いて供給量を調節してもよく、さらにフィルターを用いて、異物を除去するとフィルム破れが低減できるため好ましい。なお、押出温度は、用いる原料の種類によっても異なり、特に限定されないが、各樹脂層を形成する原料の成型温度領域が近接していることが好ましい。即ち、各樹脂層の押出温度は近接していることが好ましい。具体的には、A層を形成する原料の押出温度は200~240℃が好ましく、B層を形成する原料の押出温度は180~220℃、C層を形成する原料の押出温度は190~220℃が好ましい。また、合流部やダイの温度は200~220℃とすることが好ましい。上記共押出したポリマーを、冷却ドラム(冷却ロール)などを用いて急冷することにより、未延伸積層フィルム(シート)を得ることができる。 In the melt extrusion (coextrusion), raw materials (resin or resin composition) for forming each resin layer (A layer, B layer, C layer, etc.) are respectively formed in a plurality of extruders each set to a predetermined temperature. And melt extrusion (coextrusion) from a T die, a circular die or the like. At this time, it is preferable to use a manifold or a feed block to form a predetermined layer structure. Further, if necessary, the supply amount may be adjusted using a gear pump, and it is preferable to remove foreign substances using a filter because film tearing can be reduced. The extrusion temperature varies depending on the type of raw material used and is not particularly limited. However, it is preferable that the molding temperature region of the raw material forming each resin layer is close. That is, it is preferable that the extrusion temperature of each resin layer is close. Specifically, the extrusion temperature of the raw material forming the A layer is preferably 200 to 240 ° C., the extrusion temperature of the raw material forming the B layer is 180 to 220 ° C., and the extrusion temperature of the raw material forming the C layer is 190 to 220 ° C. ° C is preferred. Further, the temperature of the junction or die is preferably 200 to 220 ° C. An unstretched laminated film (sheet) can be obtained by quenching the coextruded polymer using a cooling drum (cooling roll) or the like.
 1軸配向、2軸配向などの配向フィルムは、未延伸積層フィルムを延伸することにより作製できる。上記延伸は、所望の配向に応じて選択でき、例えば、長手方向(フィルムの製造ライン方向。縦方向又はMD方向とも称する)および幅方向(長手方向と直交する方向。横方向又はTD方向とも称する)の2軸延伸でもよいし、長手方向または幅方向の1軸延伸でもよい。また、延伸方式は、ロール方式、テンター方式、チューブ方式等の何れの方式を用いてもよい。上記延伸処理における延伸条件は、用いる原料の種類やシュリンクフィルムの要求特性等によって異なり、特に限定されない。一般的には70~110℃(好ましくは、80~95℃)の延伸温度で、少なくとも長手方向、幅方向のうちいずれか一方に2~8倍程度の延伸倍率で行うことが好ましい。例えば、幅方向に実質的に1軸延伸されたフィルムの延伸処理は、例えば、必要に応じて長手方向に1.01~1.5倍(好ましくは1.05~1.3倍)程度に延伸した後、幅方向に2~7倍(好ましくは3~6.5倍、さらに好ましくは4~6倍)程度延伸することが好ましい。 Aligned films such as uniaxial orientation and biaxial orientation can be produced by stretching an unstretched laminated film. The stretching can be selected according to the desired orientation, and for example, the longitudinal direction (film production line direction; also referred to as longitudinal direction or MD direction) and the width direction (direction perpendicular to the longitudinal direction; also referred to as lateral direction or TD direction). ) Biaxial stretching, or uniaxial stretching in the longitudinal direction or the width direction. The stretching method may be any method such as a roll method, a tenter method, and a tube method. The stretching conditions in the stretching process vary depending on the type of raw material used and the required characteristics of the shrink film, and are not particularly limited. In general, it is preferably carried out at a stretching temperature of 70 to 110 ° C. (preferably 80 to 95 ° C.) at a stretching ratio of about 2 to 8 times in at least one of the longitudinal direction and the width direction. For example, the film stretched substantially uniaxially in the width direction is, for example, about 1.01 to 1.5 times (preferably 1.05 to 1.3 times) in the longitudinal direction as necessary. After stretching, it is preferable to stretch about 2 to 7 times (preferably 3 to 6.5 times, more preferably 4 to 6 times) in the width direction.
 本発明のシュリンクフィルムにおいて、A層は、芳香族ポリエステル系樹脂を主成分とし高収縮性であるため、シュリンクフィルムの収縮性(高収縮率、高収縮応力)が向上し、容器に対する装着性、仕上がり性が良好となる。また、A層が高剛性であるため、シュリンクフィルムの腰の強さが向上し、例えば、筒状シュリンクラベルを容器に装着する際の装着性が良好となり、「挫屈」などのトラブルが生じにくい。また、A層を表面層として用いる場合には、シュリンクフィルム表面の印刷適性、耐摩耗性、耐薬品性が向上する。C層は、ポリプロピレン系樹脂を主成分とするため、シュリンクフィルムが低比重となる。加えて、シュリンクフィルムの急激な収縮を抑え収縮挙動を緩やかにすることができ、シュリンク加工時の取扱い性が向上する。本発明のシュリンクフィルムは、A層およびC層を積層していることにより、収縮性と加工性に優れ、さらに低比重、腰の強さ、印刷適性などの特性を両立することが可能となる。 In the shrink film of the present invention, the A layer has an aromatic polyester resin as a main component and is highly shrinkable, so that the shrinkability (high shrinkage rate, high shrinkage stress) of the shrink film is improved, and the wearability to the container is improved. Good finish. In addition, since the A layer is highly rigid, the waist strength of the shrink film is improved. For example, the wearability when the cylindrical shrink label is attached to the container is improved, and problems such as “bending” occur. Hateful. Moreover, when A layer is used as a surface layer, the printability, abrasion resistance, and chemical resistance of the shrink film surface are improved. Since the C layer has a polypropylene resin as a main component, the shrink film has a low specific gravity. In addition, rapid shrinkage of the shrink film can be suppressed and the shrinkage behavior can be moderated, and the handleability during shrink processing is improved. Since the shrink film of the present invention is formed by laminating the A layer and the C layer, it is excellent in shrinkage and workability, and it is possible to achieve both characteristics such as low specific gravity, waist strength, and printability. .
 しかしながら、A層の芳香族ポリエステル系樹脂とC層のポリプロピレン系樹脂では、収縮挙動(熱収縮挙動)、収縮応力(熱収縮応力)が大きく異なる(芳香族ポリエステル系樹脂の収縮応力が大きい)。このため、A層とC層とを有する積層シュリンクフィルムにシュリンク加工(熱収縮加工)を施した場合には、A層とC層との収縮挙動に違いが生じ、これに起因して両層間に層間剥離が生じやすくなる。上記現象は、シュリンクフィルムを筒状シュリンクラベルとして使用する際のセンターシール部分で特に顕著に生じる。これはセンターシール部分では、一方の表面側がセンターシールにより固定されていることにより、固定されていない表面側の樹脂層の収縮の影響が大きくなるためと考えられる。これに対して、本発明者らは、A層とC層の間に、エチレン-酢酸ビニル系樹脂を主成分として構成される特定の中間層を設けたシュリンクフィルムにより、シュリンク加工時の層間剥離抑止性を向上させることに成功した(国際公開第2009/084212号パンフレット参照)。しかしながら、該シュリンクフィルムも、シュリンク加工条件が高温化した場合(例えば、90~100℃など)には、中間層が軟化して層間剥離抑止効果が低下する場合があった。 However, the shrinkage behavior (heat shrinkage behavior) and the shrinkage stress (heat shrinkage stress) differ greatly between the A-layer aromatic polyester resin and the C-layer polypropylene resin (the shrinkage stress of the aromatic polyester resin is large). For this reason, when shrink processing (thermal shrinkage processing) is applied to a laminated shrink film having an A layer and a C layer, a difference occurs in the shrinkage behavior between the A layer and the C layer. Delamination easily occurs. The above phenomenon occurs particularly noticeably at the center seal portion when the shrink film is used as a cylindrical shrink label. This is presumably because in the center seal portion, one surface side is fixed by the center seal, so that the influence of the shrinkage of the unfixed surface side resin layer is increased. On the other hand, the present inventors have provided a specific intermediate layer composed mainly of an ethylene-vinyl acetate resin between the A layer and the C layer. Succeeded in improving deterrence (see International Publication No. 2009/084212 pamphlet). However, in the shrink film, when the shrink processing conditions are increased (for example, 90 to 100 ° C., etc.), the intermediate layer may be softened and the delamination inhibiting effect may be lowered.
 これに対して、本発明のシュリンクフィルムにおいては、A層とC層の間に、エチレンに由来する構成単位、メチルメタクリレートに由来する構成単位および1-ブテンに由来する構成単位の層中の含有量をそれぞれ特定範囲に限定したB層を設けている。エチレンに由来する構成単位によって、B層の溶融時の挙動が好ましく制御され、これにより層の形成性や常温時及び加温時の層間剥離抑止性が向上する。また、メチルメタクリレートに由来する構成単位によって、B層の柔軟性、A層及びC層との接着性(粘着性)が向上し、これによりA層及びC層に対する追従性が向上する。さらに、1-ブテンに由来する構成単位によって、B層の耐熱性が向上する。このため、本発明のシュリンクフィルムは、A層とC層とを積層したシュリンクフィルムでありながら、優れたシュリンク加工時の層間剥離抑止性、特に、比較的高い温度条件や急激な加熱条件のシュリンク加工に対する、優れたシュリンク加工時の層間剥離抑止性を発揮することができる。 On the other hand, in the shrink film of the present invention, a constituent unit derived from ethylene, a constituent unit derived from methyl methacrylate, and a constituent unit derived from 1-butene are contained in the layer between the A layer and the C layer. B layers are provided, each of which is limited to a specific range. By the structural unit derived from ethylene, the behavior of the B layer at the time of melting is preferably controlled, thereby improving the formability of the layer and the delamination deterrence at room temperature and during heating. Further, the structural unit derived from methyl methacrylate improves the flexibility of the B layer and the adhesiveness (tackiness) with the A and C layers, thereby improving the followability to the A and C layers. Further, the heat resistance of the B layer is improved by the structural unit derived from 1-butene. For this reason, the shrink film of the present invention is a shrink film in which the A layer and the C layer are laminated, and has excellent delamination deterrence during shrink processing, particularly shrinkage under relatively high temperature conditions and rapid heating conditions. The delamination deterrence at the time of the outstanding shrink process with respect to a process can be exhibited.
[シュリンクラベル]
 本発明のシュリンクフィルムはシュリンクラベルとして好ましく用いることができる。なお、本明細書において、本発明のシュリンクフィルムを含むシュリンクラベルを「本発明のシュリンクラベル」と称する場合がある。本発明のシュリンクラベルとしては、例えば、本発明のシュリンクフィルム(基材)の少なくとも一方の面側に印刷層を有するシュリンクラベルが挙げられる。また、本発明のシュリンクラベルは、印刷層の他にも、保護層、アンカーコート層、プライマーコート層、接着剤層(例えば、感圧性接着剤層、感熱性接着剤層等)、コーティング層などを有していてもよく、さらに、不織布、紙等の層を有していてもよい。本発明のシュリンクラベルの層構成としては、例えば、印刷層/A層/B層/C層/B層/A層、印刷層/A層/B層/C層/B層/A層/印刷層などが好ましい。なお、本発明のシュリンクフィルムは、印刷層を設けない場合にも、それ自体でシュリンクラベルとして用いることも可能である。即ち、本発明のシュリンクラベルは、本発明のシュリンクフィルムのみからなるシュリンクラベルであってもよい。
[Shrink label]
The shrink film of the present invention can be preferably used as a shrink label. In the present specification, a shrink label including the shrink film of the present invention may be referred to as “shrink label of the present invention”. As a shrink label of this invention, the shrink label which has a printing layer in the at least one surface side of the shrink film (base material) of this invention is mentioned, for example. In addition to the printed layer, the shrink label of the present invention includes a protective layer, an anchor coat layer, a primer coat layer, an adhesive layer (for example, a pressure-sensitive adhesive layer, a heat-sensitive adhesive layer, etc.), a coating layer, and the like. It may have, and may have layers, such as a nonwoven fabric and paper, further. Examples of the layer structure of the shrink label of the present invention include, for example, printing layer / A layer / B layer / C layer / B layer / A layer, printing layer / A layer / B layer / C layer / B layer / A layer / printing. Layers and the like are preferred. In addition, the shrink film of this invention can also be used as a shrink label by itself even when a printing layer is not provided. In other words, the shrink label of the present invention may be a shrink label made only of the shrink film of the present invention.
 上記印刷層は、例えば、商品名やイラスト、取り扱い注意事項等を表示した層である。上記印刷層は、例えば、印刷インキを塗布することにより形成する。塗布の方法は、生産性、加工性などの観点から、シュリンクフィルム製膜後に公知慣用の印刷手法を用いて塗布を行うオフラインコートが好ましい。印刷手法としては、慣用の方法を用いることができ、例えば、グラビア印刷またはフレキソ印刷が好ましい。上記印刷層の形成に用いられる印刷インキは、例えば、顔料、バインダー樹脂、溶剤、その他の添加剤等からなる。上記バインダー樹脂としては、特に限定されないが、例えば、アクリル系、ウレタン系、ポリアミド系、塩化ビニル-酢酸ビニル共重合系、セルロース系、ニトロセルロース系などの樹脂を単独あるいは併用して使用できる。上記顔料としては、酸化チタン(二酸化チタン)等の白顔料、銅フタロシアニンブルー等の藍顔料、カーボンブラック、アルミフレーク、雲母(マイカ)、その他着色顔料等が用途に合わせて選択、使用できる。また、顔料として、その他にも、光沢調整などの目的で、アルミナ、炭酸カルシウム、硫酸バリウム、シリカ、アクリルビーズ等の体質顔料も使用できる。上記溶剤としては、例えば、トルエン、キシレン、メチルエチルケトン、酢酸エチル、メチルアルコール、エチルアルコール、イソプロピルアルコールなどの有機溶媒や水など印刷インキに通常用いられるものを使用できる。 The print layer is a layer displaying, for example, a product name, an illustration, and handling precautions. The printing layer is formed, for example, by applying printing ink. The coating method is preferably an off-line coating in which coating is performed using a known and commonly used printing method after forming a shrink film from the viewpoint of productivity, workability, and the like. As a printing method, a conventional method can be used, and for example, gravure printing or flexographic printing is preferable. The printing ink used for forming the printing layer includes, for example, a pigment, a binder resin, a solvent, and other additives. The binder resin is not particularly limited. For example, acrylic, urethane, polyamide, vinyl chloride-vinyl acetate copolymer, cellulose, and nitrocellulose resins can be used alone or in combination. As the pigment, a white pigment such as titanium oxide (titanium dioxide), an indigo pigment such as copper phthalocyanine blue, carbon black, aluminum flakes, mica (mica), and other colored pigments can be selected and used according to the application. In addition, extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used as pigments for the purpose of adjusting gloss. As said solvent, what is normally used for printing inks, such as organic solvents, such as toluene, xylene, methyl ethyl ketone, ethyl acetate, methyl alcohol, ethyl alcohol, and isopropyl alcohol, and water can be used, for example.
 上記印刷層は、特に限定されないが、可視光、紫外線、電子線などの活性エネルギー線硬化性の樹脂層であってもよい。過剰の熱によるフィルムの変形を防ぐ場合などに有効である。 The printing layer is not particularly limited, but may be an active energy ray-curable resin layer such as visible light, ultraviolet light, or electron beam. This is effective for preventing deformation of the film due to excessive heat.
 上記印刷層の厚みは、特に限定されないが、例えば、0.1~10μmが好ましい。厚みが0.1μm未満である場合には、印刷層を均一に設けることが困難である場合があり、部分的な「かすれ」が起こったりして、装飾性が損なわれたり、デザイン通りの印刷が困難となる場合がある。また、厚みが10μmを超える場合には、印刷インキを多量に消費するため、コストが高くなったり、均一に塗布することが困難となったり、印刷層がもろくなって、剥離しやすくなったりする。また、印刷層の剛性が高くなり、シュリンク加工時にシュリンクフィルムの収縮に印刷層が追従しにくくなる場合がある。 The thickness of the printing layer is not particularly limited, but is preferably 0.1 to 10 μm, for example. If the thickness is less than 0.1 μm, it may be difficult to provide a uniform printing layer, and partial “blur” may occur, resulting in a loss of decorativeness or printing as designed. May be difficult. In addition, when the thickness exceeds 10 μm, a large amount of printing ink is consumed, which increases the cost, makes it difficult to apply uniformly, makes the printed layer brittle and easily peels off. . Moreover, the rigidity of a printing layer becomes high and a printing layer may become difficult to follow shrinkage | contraction of a shrink film at the time of shrink processing.
 本発明のシュリンクラベルは、例えば、ラベル両端を溶剤や接着剤でシールし筒状にして容器に装着されるタイプの筒状シュリンクラベルや、ラベルの一端を容器に貼り付け、ラベルを巻き回した後、他端を一端に重ね合わせて筒状にする巻き付け方式のシュリンクラベルとして用いることができる。本発明のシュリンクフィルムは、筒状シュリンクラベルを容器に装着する際のセンターシール部分での層間剥離(装着デラミ)の抑制に最も効果的である観点から、上記の中でも、筒状シュリンクラベルに特に好ましく用いられる。即ち、本発明のシュリンクラベルは、筒状シュリンクラベルであることが好ましい。 The shrink label of the present invention is, for example, a cylindrical shrink label of a type in which both ends of the label are sealed with a solvent or an adhesive and attached to the container, and one end of the label is attached to the container, and the label is wound After that, it can be used as a wrapping type shrink label in which the other end is overlapped with one end to form a cylinder. Among the above, the shrink film of the present invention is particularly effective for the cylindrical shrink label from the viewpoint that it is most effective in suppressing delamination (attachment delamination) at the center seal portion when the cylindrical shrink label is attached to the container. Preferably used. That is, the shrink label of the present invention is preferably a cylindrical shrink label.
 本発明のシュリンクラベルは筒状シュリンクラベルに加工してもよい。例えば、シュリンクラベルの主配向方向が周方向となるように円筒状に成形する。具体的には、主配向方向に所定幅を有するシュリンクラベルを、シュリンクラベルの表側が外面(外側)となるように主配向方向の両端を重ね合わせて筒状に形成し、ラベルの一方の側縁部に、帯状に約2~4mm幅で、テトラヒドロフラン(THF)などの溶剤や接着剤(以下、「接着剤等」と称する場合がある)を内面に塗布し、該接着剤等塗布部を、他方の側縁部の外面に接着し、筒状のシュリンクラベルを得る。なお、上記の接着剤等を塗工する部分及び接着する部分には、印刷層が設けられていないことが好ましい。上記において、シュリンクラベルの「表側」とは、ラベルのデザインを見る側(デザインが正しく見える方の面側)を意味する。また、シュリンクラベルの「外面」とは、シュリンクラベルを容器に装着する場合に、容器とは接しない側(容器とは反対側、即ち円筒の外側)の表面を意味し、シュリンクラベルの「内面」とは、容器と接する側(容器側)の表面を意味する。 The shrink label of the present invention may be processed into a cylindrical shrink label. For example, the shrink label is formed in a cylindrical shape so that the main orientation direction is the circumferential direction. Specifically, a shrink label having a predetermined width in the main orientation direction is formed into a cylindrical shape by overlapping both ends of the main orientation direction so that the front side of the shrink label is an outer surface (outer side), and one side of the label Apply a solvent or adhesive such as tetrahydrofuran (THF) or an adhesive (hereinafter sometimes referred to as “adhesive etc.”) to the inner surface of the belt with a width of about 2 to 4 mm on the edge. Adhere to the outer surface of the other side edge to obtain a cylindrical shrink label. In addition, it is preferable that the printing layer is not provided in the part which apply | coats said adhesive agent etc., and the part to adhere | attach. In the above description, the “front side” of the shrink label means the side viewing the design of the label (the side of the surface where the design looks correct). In addition, the “outer surface” of the shrink label means the surface on the side that is not in contact with the container (the side opposite to the container, that is, the outside of the cylinder) when the shrink label is attached to the container. "Means the surface on the side in contact with the container (container side).
 なお、筒状シュリンクラベルにラベル切除用のミシン目を設ける場合は、所定の長さ及びピッチのミシン目を周方向と直交する方向に形成する。ミシン目は慣用の方法(例えば、周囲に切断部と非切断部とが繰り返し形成された円板状の刃物を押し当てる方法やレーザーを用いる方法等)により施すことができる。ミシン目を施す工程段階は、印刷工程の後や、筒状加工工程の前後など、適宜選択することができる。 In addition, when providing the perforation for label cutting to a cylindrical shrink label, the perforation of predetermined length and a pitch is formed in the direction orthogonal to the circumferential direction. The perforation can be applied by a conventional method (for example, a method of pressing a disk-shaped blade having a cut portion and a non-cut portion repeatedly formed around it, a method using a laser, or the like). The process stage for perforating can be appropriately selected after the printing process and before and after the cylindrical processing process.
 上記筒状シュリンクラベルのセンターシール強度は、2N/15mm以上が好ましい。センターシール強度が2N/15mm未満の場合には、加工工程や製品化した後に、センターシール部分がはがれて、生産性を低下させたり、ラベル脱落の原因となる場合がある。 The center seal strength of the cylindrical shrink label is preferably 2N / 15 mm or more. If the center seal strength is less than 2 N / 15 mm, the center seal portion may be peeled off after processing or commercialization, thereby reducing productivity and causing label dropout.
 本発明のシュリンクラベルは、特に限定されないが、飲料用容器などの容器に装着して、ラベル付き容器として用いられる。なお、本発明のシュリンクラベルは、容器以外の被着体に用いられてもよい。本発明のシュリンクラベル(特に、筒状シュリンクラベル)を、例えば、表側が容器と反対側にくるように配置させ熱収縮させることによって容器に装着することにより、ラベル付き容器(本発明のシュリンクラベルを有するラベル付き容器)が得られる。上記容器には、例えば、PETボトルなどのソフトドリンク用ボトル、宅配用牛乳瓶、調味料などの食品用容器、アルコール飲料用ボトル、医薬品容器、洗剤、スプレーなどの化学製品の容器、カップ麺容器などが含まれる。上記容器の形状としては、特に限定されないが、例えば、円筒状、角形等のボトルタイプや、カップタイプなどの様々な形状が挙げられる。また、上記容器の材質としては、特に限定されないが、例えば、PETなどのプラスチック、ガラス、金属などが挙げられる。 The shrink label of the present invention is not particularly limited, but is used as a labeled container by being attached to a container such as a beverage container. In addition, the shrink label of this invention may be used for adherends other than a container. The shrink label of the present invention (in particular, the cylindrical shrink label) is attached to the container by, for example, placing the front side on the opposite side of the container and heat shrinking, thereby attaching a labeled container (the shrink label of the present invention). A labeled container) is obtained. Examples of the container include a soft drink bottle such as a PET bottle, a milk bottle for home delivery, a food container such as a seasoning, a bottle for alcoholic beverages, a pharmaceutical container, a detergent container, a chemical container such as a spray, and a cup noodle container. Etc. are included. Although it does not specifically limit as a shape of the said container, For example, various shapes, such as bottle types, such as cylindrical shape and a square shape, and a cup type, are mentioned. The material of the container is not particularly limited, and examples thereof include plastic such as PET, glass, and metal.
 上記ラベル付き容器は、例えば、筒状シュリンクラベルを、所定の容器に外嵌した後、加熱処理によって筒状シュリンクラベルを熱収縮させ、容器に追従密着させること(シュリンク加工)によって作製できる。上記加熱処理の方法としては、例えば、熱風トンネルやスチームトンネルを通過させる方法、赤外線などの輻射熱で加熱する方法等が挙げられる。特に、80~100℃のスチームで処理する(スチームおよび湯気が充満した加熱トンネルを通過させる)方法が好ましい。上記加熱処理は、特に限定されないが、シュリンクフィルムの温度が85~97℃(特に、90~95℃)となる温度範囲で実施することが好ましい。本発明のシュリンクフィルムは、特に高温(90~95℃)で加熱処理を行うことができるため、高収縮を要する容器に対する使用が可能となる。また、加熱処理の処理時間は、生産性、経済性の観点から、4~20秒が好ましい。 The above-mentioned container with a label can be produced, for example, by externally fitting a cylindrical shrink label to a predetermined container, and then thermally shrinking the cylindrical shrink label by heat treatment so as to follow and closely adhere to the container (shrink processing). Examples of the heat treatment method include a method of passing through a hot air tunnel or a steam tunnel, a method of heating with radiant heat such as infrared rays, and the like. In particular, a method of treating with steam at 80 to 100 ° C. (passing through a heating tunnel filled with steam and steam) is preferable. The heat treatment is not particularly limited, but is preferably performed in a temperature range in which the temperature of the shrink film is 85 to 97 ° C. (particularly 90 to 95 ° C.). The shrink film of the present invention can be heat-treated particularly at a high temperature (90 to 95 ° C.), so that it can be used for containers that require high shrinkage. The treatment time for the heat treatment is preferably 4 to 20 seconds from the viewpoint of productivity and economy.
 本発明のシュリンクフィルムを用いたシュリンクラベル(特に、筒状シュリンクラベル)は、シュリンク加工(熱収縮加工)により容器に装着した場合に、高温条件のシュリンク加工を施した場合であっても、また、特にセンターシール部分においても、層間剥離(装着デラミ)が生じにくいため好ましい。 Even if the shrink label (especially cylindrical shrink label) using the shrink film of the present invention is attached to a container by shrink processing (heat shrink processing), even when subjected to shrink processing under high temperature conditions, In particular, the center seal portion is preferable because delamination (mounting delamination) hardly occurs.
 以下に、実施例に基づいて、本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 表1には、実施例、比較例における、A層原料、B層原料、C層原料の種類と含有量、B層中のエチレンに由来する構成単位、メチルメタクリレートに由来する構成単位、1-ブテンに由来する構成単位の含有量を記載した。また、得られたシュリンクフィルムの厚み(全層厚み)、層厚み比、B層の重量平均分子量、評価結果等を示した。 Table 1 shows the types and contents of the A layer raw material, the B layer raw material, and the C layer raw material in the examples and comparative examples, the structural unit derived from ethylene in the B layer, the structural unit derived from methyl methacrylate, 1- Content of the structural unit derived from butene was described. Moreover, the thickness (all layer thickness) of the obtained shrink film, layer thickness ratio, the weight average molecular weight of B layer, the evaluation result, etc. were shown.
 表2には、B層原料として用いた、エチレン-メチルメタクリレート共重合体(アクリフト WK307)およびエチレン-1-ブテン共重合体(エクセレン VL700)の、化合物中のエチレンに由来する構成単位、メチルメタクリレートに由来する構成単位、及び1-ブテンに由来する構成単位の含有量、並びに他の物性値[重量平均分子量、融点、T(tanδ≧1)、MFR(190℃、2.16kgf)、密度]を示した。 Table 2 shows the structural units derived from ethylene in the compounds of ethylene-methyl methacrylate copolymer (Aklift WK307) and ethylene-1-butene copolymer (Excellen VL700) used as the raw material for layer B, methyl methacrylate. Content of structural unit derived from 1 and content of structural unit derived from 1-butene, and other physical properties [weight average molecular weight, melting point, T (tan δ ≧ 1), MFR (190 ° C., 2.16 kgf), density] showed that.
 実施例1
 A層を構成する原料(A層原料)として、CHDM変性非晶性芳香族ポリエステル系樹脂(イーストマンケミカル社製「EMBRACE LV」、CHDM共重合PET)100重量%を用いた。
 B層を構成する原料(B層原料)として、エチレン-メチルメタクリレート共重合体(住友化学(株)製「アクリフト WK307」)80重量%、およびエチレン-1-ブテン共重合体(住友化学(株)製「エクセレン VL700」)20重量%を用いた。なお、上記エチレン-メチルメタクリレート共重合体(アクリフト WK307)は、表2に示すとおり、エチレンに由来する構成単位を75重量%、メチルメタクリレートに由来する構成単位を25重量%含むエチレン-メチルメタクリレート共重合体(EMMA)である。また、上記エチレン-1-ブテン共重合体(エクセレン VL700)は、エチレンに由来する構成単位を86.9重量%、1-ブテンに由来する構成単位を13.1重量%含むエチレン-1-ブテン共重合体である。
 C層を構成する原料(C層原料)として、混合原料60重量%、および回収原料(再生材)40重量%を用いた。上記混合原料は、ポリプロピレン系樹脂(日本ポリプロ(株)製「ウィンテック WFX6」、メタロセン系触媒系プロピレン-エチレンランダム共重合体)70重量%、ポリエチレン系樹脂(日本ポリエチレン(株)製「カーネル KF260T」、LLDPE)5重量%および石油樹脂(荒川化学工業(株)製「アルコン P125」)25重量%の混合原料である。また、上記回収原料は、本実施例のシュリンクフィルムの製造より生じたもの(いわゆる自己回収による回収原料)である。
Example 1
As a raw material constituting the A layer (A layer raw material), 100% by weight of CHDM-modified amorphous aromatic polyester resin ("EMBRACE LV" manufactured by Eastman Chemical Co., Ltd., CHDM copolymerized PET) was used.
As raw materials constituting the B layer (B layer raw material), ethylene-methyl methacrylate copolymer (“Aclift WK307” manufactured by Sumitomo Chemical Co., Ltd.) 80% by weight, and ethylene-1-butene copolymer (Sumitomo Chemical Co., Ltd.) ) “Excellen VL700”)) 20% by weight was used. As shown in Table 2, the ethylene-methyl methacrylate copolymer (Aklift WK307) is an ethylene-methyl methacrylate copolymer containing 75% by weight of structural units derived from ethylene and 25% by weight of structural units derived from methyl methacrylate. It is a polymer (EMMA). The ethylene-1-butene copolymer (Excellen VL700) contains 86.9 wt% of structural units derived from ethylene and 13.1 wt% of structural units derived from 1-butene. It is a copolymer.
As the raw material constituting the C layer (C layer raw material), 60% by weight of the mixed raw material and 40% by weight of the recovered raw material (recycled material) were used. The above mixed raw materials were 70% by weight of polypropylene resin ("Wintech WFX6" manufactured by Nippon Polypro Co., Ltd., metallocene catalyst propylene-ethylene random copolymer), polyethylene resin ("Kernel KF260T manufactured by Nippon Polyethylene Co., Ltd.)"", LLDPE) 5 wt% and petroleum resin (" Arcon P125 "manufactured by Arakawa Chemical Industries, Ltd.) 25 wt%. Moreover, the said collection | recovery raw material arises from manufacture of the shrink film of a present Example (what is called collection | recovery raw material by self-collection).
 220℃に加熱した押出機aに上記A層原料、180℃に加熱した押出機bに上記B層原料、200℃に加熱した押出機cに上記C層原料を投入した。上記3台の押出機を用いて、溶融押出(共押出)を行った。押出機cから押し出される樹脂が中心層、押出機bから押し出される樹脂が中心層の両側の層(中間層)となり、押出機aから押し出される樹脂がさらにその両側の層(表面層)となるように合流ブロックを用いて合流させ、Tダイ(スリット間隔:1mm)より押し出した後、25℃に冷却したキャスティングドラム上で急冷して、3種5層積層未延伸フィルムを得た。
 次に、厚みを調整した未延伸フィルムを、幅方向に88℃で5.7倍延伸することにより、シュリンクフィルム(実質的に幅方向の1軸配向フィルム)を得た。得られたシュリンクフィルムの総厚み(全層厚み)は35μm、層厚み比(A層:B層:C層:B層:A層)は7:2:17:2:7であった。
The layer A raw material was charged into an extruder a heated to 220 ° C., the layer B raw material was charged into an extruder b heated to 180 ° C., and the layer C raw material was charged into an extruder c heated to 200 ° C. Melt extrusion (coextrusion) was performed using the three extruders. The resin extruded from the extruder c becomes the center layer, the resin extruded from the extruder b becomes the layers (intermediate layer) on both sides of the center layer, and the resin extruded from the extruder a becomes the layers on both sides (surface layer). Thus, after merging using a merging block and extruding from a T die (slit interval: 1 mm), it was rapidly cooled on a casting drum cooled to 25 ° C. to obtain a three-kind five-layer laminated unstretched film.
Next, the unstretched film whose thickness was adjusted was stretched 5.7 times at 88 ° C. in the width direction to obtain a shrink film (substantially a uniaxially oriented film in the width direction). The total thickness (total layer thickness) of the obtained shrink film was 35 μm, and the layer thickness ratio (A layer: B layer: C layer: B layer: A layer) was 7: 2: 17: 2: 7.
 実施例2~5、比較例1~3
 表1に示すとおり、B層原料中のエチレン-メチルメタクリレート共重合体の含有量およびエチレン-1-ブテン共重合体の含有量、全層厚み(シュリンクフィルムの厚み)、層厚み比等を変更して、実施例1と同様にして、シュリンクフィルムを得た。
Examples 2 to 5 and Comparative Examples 1 to 3
As shown in Table 1, the contents of ethylene-methyl methacrylate copolymer and ethylene-1-butene copolymer in the raw materials for layer B, the total layer thickness (shrink film thickness), the layer thickness ratio, etc. were changed. In the same manner as in Example 1, a shrink film was obtained.
 比較例4
 B層原料をエチレン-酢酸ビニル共重合体(住友化学(株)製「エバテート K2010」、酢酸ビニル含有量:25重量%)100重量%に変更して、実施例3と同様にして、シュリンクフィルムを得た。
Comparative Example 4
Shrink film was prepared in the same manner as in Example 3 except that the material for layer B was changed to 100% by weight of an ethylene-vinyl acetate copolymer (Evalate K2010 manufactured by Sumitomo Chemical Co., Ltd., vinyl acetate content: 25% by weight). Got.
(評価)
 実施例、比較例で得られたシュリンクフィルムおよび実施例、比較例で用いた原料について、以下の方法で評価を行った。
 なお、評価には、40時間以上回収(自己回収)を続けながら製膜を行った後のシュリンクフィルムを用いた。
(Evaluation)
The shrink films obtained in Examples and Comparative Examples and the raw materials used in Examples and Comparative Examples were evaluated by the following methods.
In addition, the shrink film after forming into a film, continuing collection | recovery (self-collection) for 40 hours or more was used for evaluation.
(1)装着デラミ抑止性(シュリンク加工時のセンターシール部での層間剥離抑止性)
 実施例、比較例で得られたシュリンクフィルム(サイズ:長手方向104mm×幅方向235mm)を、シュリンクフィルムの幅方向が円周方向となるように筒状に丸めて(筒の円周:228mm)、テトラヒドロフラン(THF)でセンターシール(センターシール幅:4mm)し、筒状シュリンクラベルを得た。次いで、上記筒状シュリンクラベルを、容器(胴部の円周219mmの円筒状PETボトル)に手で装着し、94℃のスチームトンネルで5秒間加熱収縮させて(シュリンク加工して)、ラベル付き容器を得た。
 各実施例、比較例で得られたシュリンクフィルムにつき、それぞれ2400本ずつのラベル付き容器を作製し、評価に用いた。
 上記のラベル付き容器のセンターシール部分を観察し、長手方向に10mm以上且つ幅方向に1mm以上の大きさの「層間剥離(デラミ)」がある場合には不良品として、以下の基準で装着デラミ抑止性を判定した。なお、層間剥離はA層とB層の間で発生していた。
装着デラミ抑止性良好(○) : 2400本中、不良品が50本未満である。
装着デラミ抑止性不良(×) : 2400本中、不良品が50本以上である。
(1) Delamination deterrence (delamination deterrence at the center seal during shrink processing)
The shrink film (size: longitudinal direction 104 mm × width direction 235 mm) obtained in Examples and Comparative Examples was rolled into a cylindrical shape so that the width direction of the shrink film was the circumferential direction (cylinder circumference: 228 mm). And center seal (center seal width: 4 mm) with tetrahydrofuran (THF) to obtain a cylindrical shrink label. Next, the above-mentioned cylindrical shrink label is manually attached to a container (cylindrical PET bottle with a circumference of 219 mm on the trunk), and is heat-shrinked (shrink processed) for 5 seconds in a 94 ° C. steam tunnel, with a label. A container was obtained.
For each shrink film obtained in each example and comparative example, 2400 labeled containers were produced and used for evaluation.
Observe the center seal part of the above-mentioned container with a label, and if there is “delamination” of 10 mm or more in the longitudinal direction and 1 mm or more in the width direction, it is considered to be a defective product and is attached as follows. Judgment was made. Note that delamination occurred between the A layer and the B layer.
Good mounting delamination deterrence (◯): Out of 2400, the number of defective products is less than 50.
Wearing delamination deterrence defect (x): Out of 2,400, 50 or more defective products.
(2)延伸適性
 実施例、比較例で得られたシュリンクフィルム(サイズ:長手方向300mm×幅方向100mm)を目視で観察し、白化がみられない場合を延伸適性良好(○)、白化がみられた場合を延伸適性不良(×)と判定した。
(2) Stretchability The shrink films (size: longitudinal direction 300 mm × width direction 100 mm) obtained in Examples and Comparative Examples were visually observed, and in the case where no whitening was observed, good stretchability (◯), whitening was observed. The case where it was made was determined to be poor stretchability (x).
(3)B層のT(tanδ≧1)(動的粘弾性測定)
 実施例、比較例でB層原料として用いた樹脂をサンプルとして、以下の条件で動的粘弾性測定を行った。
 動的粘弾性測定より得られた動的粘弾性曲線(損失正接曲線、温度-tanδ曲線)において、曲線がtanδが1未満から1以上に立ち上がる際にtanδ=1となる温度を、「T(tanδ≧1)」とした。
(測定装置、測定条件)
 装置: Seiko Instruments Inc.製、「EXSTAR6000
 DMS6100」
 周波数: 1Hz
 測定温度: 常温(30℃)~120℃(なお、120℃まで測定できない場合には、測定可能な温度まで測定した。)
 昇温速度: 2℃/分
 測定サンプル: 樹脂ペレットを200℃で溶融し形成した厚さ250~350μmのシート
 なお、エチレン-メチルメタクリレート共重合体(アクリフト WK307)およびエチレン-1-ブテン共重合体(エクセレン VL700)のそれぞれについても、上記と同様の評価を行った(評価結果は表2に記載した)。
(3) T of layer B (tan δ ≧ 1) (dynamic viscoelasticity measurement)
The dynamic viscoelasticity measurement was performed under the following conditions using the resin used as the B layer material in Examples and Comparative Examples as a sample.
In the dynamic viscoelastic curve (loss tangent curve, temperature-tan δ curve) obtained by dynamic viscoelasticity measurement, the temperature at which tan δ = 1 when the curve rises from less than 1 to 1 or more is expressed as “T ( tan δ ≧ 1) ”.
(Measurement equipment, measurement conditions)
Apparatus: Seiko Instruments Inc. "EXSTAR6000"
DMS6100 "
Frequency: 1Hz
Measurement temperature: Normal temperature (30 ° C.) to 120 ° C. (If measurement was not possible up to 120 ° C., measurement was performed up to a measurable temperature.)
Temperature increase rate: 2 ° C./min Measurement sample: Sheet of 250 to 350 μm thickness formed by melting resin pellets at 200 ° C. Ethylene-methyl methacrylate copolymer (Aklift WK307) and ethylene-1-butene copolymer Each of (Excellen VL700) was also evaluated in the same manner as described above (the evaluation results are shown in Table 2).
(4)主配向方向の熱収縮率(90℃、10秒)
 実施例、比較例で得られたシュリンクフィルム(収縮加工前)から、測定方向(主配向方向:実施例、比較例ではシュリンクフィルムの幅方向)に長さ120mm(標線間隔100mm)、サンプル片の幅5mmの長方形のサンプル片を作製した。
 上記サンプル片を90℃の温水中で、10秒熱処理(無荷重下)し、熱処理前後の標線間隔の差を読み取り、以下の計算式で熱収縮率(90℃、10秒)を算出した。
 熱収縮率(90℃、10秒)(%) = (L0-L1)/L0×100
 L0 : 熱処理前の標線間隔(主配向方向)
 L1 : 熱処理後の標線間隔(主配向方向)
(4) Thermal shrinkage in main orientation direction (90 ° C., 10 seconds)
120 mm in length in the measurement direction (main orientation direction: width direction of the shrink film in the examples and comparative examples) from the shrink film (before shrinkage processing) obtained in the examples and comparative examples, sample piece A rectangular sample piece having a width of 5 mm was prepared.
The sample piece was heat-treated in warm water at 90 ° C. for 10 seconds (under no load), the difference between the marked line intervals before and after the heat treatment was read, and the thermal shrinkage rate (90 ° C., 10 seconds) was calculated by the following formula. .
Thermal shrinkage (90 ° C., 10 seconds) (%) = (L 0 −L 1 ) / L 0 × 100
L 0 : Mark interval before heat treatment (main orientation direction)
L 1 : Marking interval after heat treatment (main orientation direction)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1からもわかるとおり、本発明のシュリンクフィルム(実施例)は、装着デラミ抑止性に優れ、高温のシュリンク加工を施した場合であっても、層間剥離が生じにくいものであった。さらに、延伸適性にも優れていた。一方、B層中に1-ブテンに由来する構成単位を含まないシュリンクフィルム(比較例1、2、4)は、高温のシュリンク加工を施した場合に、層間剥離が生じやすく、装着デラミ抑止性が劣っていた。また、B層中のメチルメタクリレートに由来する構成単位の含有量が少なく、1-ブテンに由来する構成単位の含有量が多いシュリンクフィルム(比較例3)は、延伸適性に劣り、シュリンクフィルムが白化した。さらに、シュリンク加工を施した場合に、層間剥離が生じやすく、装着デラミ抑止性が劣っていた。 As can be seen from Table 1, the shrink film (Example) of the present invention was excellent in delamination resistance and was not easily delaminated even when subjected to high-temperature shrink processing. Furthermore, the stretchability was also excellent. On the other hand, the shrink film containing no structural unit derived from 1-butene in the B layer (Comparative Examples 1, 2, and 4) tends to cause delamination when subjected to high-temperature shrink processing, and suppresses mounting delamination. Was inferior. In addition, the shrink film (Comparative Example 3) in which the content of the structural unit derived from methyl methacrylate in the layer B is small and the content of the structural unit derived from 1-butene is large is inferior in stretchability, and the shrink film is whitened. did. Furthermore, when shrink processing was performed, delamination was likely to occur, and the delamination prevention property was inferior.
 また、実施例1で得られたシュリンクフィルムの片面に、DICグラフィックス(株)製「ファインラップNTV」をグラビア印刷し、厚み2μmの印刷層を形成し、シュリンクラベルを得た。
 さらに、前述の装着デラミ抑止性に記載の方法と同様にして、ラベル付き容器を得た。
 得られたシュリンクラベルは表面印刷性に優れており、ラベル付き容器は優れた仕上がりであった。
Further, “fine wrap NTV” manufactured by DIC Graphics Co., Ltd. was gravure printed on one side of the shrink film obtained in Example 1 to form a printed layer having a thickness of 2 μm to obtain a shrink label.
Furthermore, a labeled container was obtained in the same manner as described in the above-mentioned mounting delamination inhibiting property.
The obtained shrink label was excellent in surface printability, and the labeled container had an excellent finish.

Claims (4)

  1.  芳香族ポリエステル系樹脂を含む樹脂層(A層)と、
     エチレンに由来する構成単位を60~78重量%、メチルメタクリレートに由来する構成単位を18~24重量%、1-ブテンに由来する構成単位を1~3.5重量%含む樹脂層(B層)と、
     ポリプロピレン系樹脂を含む樹脂層(C層)とが、
     A層/B層/C層の順に、他の層を介さずに積層された積層構造を有することを特徴とするシュリンクフィルム。
    A resin layer (A layer) containing an aromatic polyester resin;
    Resin layer (B layer) containing 60 to 78 wt% of structural units derived from ethylene, 18 to 24 wt% of structural units derived from methyl methacrylate, and 1 to 3.5 wt% of structural units derived from 1-butene When,
    A resin layer (C layer) containing a polypropylene resin,
    A shrink film characterized by having a laminated structure in which the layers are laminated in the order of A layer / B layer / C layer without interposing other layers.
  2.  前記B層が、エチレン-メチルメタクリレート共重合体、エチレン-1-ブテン共重合体、及びエチレン-1-ブテン-メチルメタクリレート共重合体からなる群より選ばれた少なくとも1のエチレン系共重合体を含む樹脂層である請求項1に記載のシュリンクフィルム。 The layer B comprises at least one ethylene copolymer selected from the group consisting of an ethylene-methyl methacrylate copolymer, an ethylene-1-butene copolymer, and an ethylene-1-butene-methyl methacrylate copolymer. The shrink film according to claim 1, wherein the shrink film is a resin layer.
  3.  A層/B層/C層/B層/A層の順に、他の層を介さずに積層された積層構造を有する請求項1または2に記載のシュリンクフィルム。 The shrink film according to claim 1 or 2, having a laminated structure in which the layers are laminated in the order of A layer / B layer / C layer / B layer / A layer without any other layers.
  4.  請求項1~3のいずれか1項に記載のシュリンクフィルムを含むシュリンクラベル。 A shrink label including the shrink film according to any one of claims 1 to 3.
PCT/JP2012/054049 2011-03-30 2012-02-21 Shrink film and shrink label WO2012132632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507259A JPWO2012132632A1 (en) 2011-03-30 2012-02-21 Shrink film and shrink label

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-074019 2011-03-30
JP2011074019 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132632A1 true WO2012132632A1 (en) 2012-10-04

Family

ID=46930393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054049 WO2012132632A1 (en) 2011-03-30 2012-02-21 Shrink film and shrink label

Country Status (2)

Country Link
JP (1) JPWO2012132632A1 (en)
WO (1) WO2012132632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032008A (en) * 2014-07-28 2016-03-07 大日本印刷株式会社 Seal-material sheet for solar battery module and method for manufacturing the same
US10232594B2 (en) * 2013-07-12 2019-03-19 Upm Raflatac Oy Multilayer film for label and a method for providing such

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364948A (en) * 1991-06-13 1992-12-17 Asahi Chem Ind Co Ltd Heat-shrinkable multi layered barrier film
JPH05177784A (en) * 1991-12-27 1993-07-20 Asahi Chem Ind Co Ltd Heat-shrinkable multilayered film
JP2003306587A (en) * 2002-02-14 2003-10-31 Mitsui Chemicals Inc Polyolefin resin composition and shrink film using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364948A (en) * 1991-06-13 1992-12-17 Asahi Chem Ind Co Ltd Heat-shrinkable multi layered barrier film
JPH05177784A (en) * 1991-12-27 1993-07-20 Asahi Chem Ind Co Ltd Heat-shrinkable multilayered film
JP2003306587A (en) * 2002-02-14 2003-10-31 Mitsui Chemicals Inc Polyolefin resin composition and shrink film using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232594B2 (en) * 2013-07-12 2019-03-19 Upm Raflatac Oy Multilayer film for label and a method for providing such
JP2016032008A (en) * 2014-07-28 2016-03-07 大日本印刷株式会社 Seal-material sheet for solar battery module and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2012132632A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5560042B2 (en) Shrink film and cylindrical shrink label
EP2008811B1 (en) Shrink film
WO2008001916A1 (en) Heat-shrinkable laminated film, and moldings, heat shrinkable labels and containers, made by using the film
JP2009012465A (en) Laminated film, stretched film using the laminated film, heat shrinkable film, molded article, heat shrinkable label, and container attached with the label
JP5760160B2 (en) Heat shrinkable film
JP5049150B2 (en) Shrink film and shrink label
WO2014148554A1 (en) Shrink label and method for producing same
JP2019025919A (en) Peelable polyester film, and manufacturing method therefor and use thereof
JP4980802B2 (en) Shrink film and shrink label
WO2012132632A1 (en) Shrink film and shrink label
JP5037249B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP6513919B2 (en) Shrink label
JP6345422B2 (en) Shrink label
JP5865171B2 (en) Shrink film and shrink label
JP2008030476A (en) Heat shrinkable laminated film, formed article using the film and heat shrinkable label and container
JP4658780B2 (en) Shrink film, shrink label and labeled container
JP2006341568A (en) Shrink label and container having label
JP5540315B2 (en) Plastic label
JP6345456B2 (en) Shrink label and manufacturing method thereof
JP6151694B2 (en) Shrink film and shrink label
JP2016061990A (en) Shrink label
JP2008284757A (en) Shrink film and shrink label
JP6345454B2 (en) Shrink label
JP6345453B2 (en) Shrink label
JP2017121774A (en) Biaxially oriented polyester film for metal sheet lamination molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765522

Country of ref document: EP

Kind code of ref document: A1