WO2012132154A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2012132154A1
WO2012132154A1 PCT/JP2011/079987 JP2011079987W WO2012132154A1 WO 2012132154 A1 WO2012132154 A1 WO 2012132154A1 JP 2011079987 W JP2011079987 W JP 2011079987W WO 2012132154 A1 WO2012132154 A1 WO 2012132154A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
resin
metal
Prior art date
Application number
PCT/JP2011/079987
Other languages
French (fr)
Japanese (ja)
Inventor
井上 和彦
竜一 笠原
川崎 大輔
浩雄 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013507077A priority Critical patent/JPWO2012132154A1/en
Publication of WO2012132154A1 publication Critical patent/WO2012132154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • Patent Document 1 describes that a lithium-containing silicon oxide or silicate is used as a negative electrode active material of a nonaqueous electrolyte secondary battery.
  • Patent Document 2 discloses carbon material particles that can occlude and release lithium ions (eg, graphite), metal particles that can be alloyed with lithium (eg, silicon, aluminum, tin, indium, and zinc), and oxidation that can occlude and release lithium ions.
  • a negative electrode for a secondary battery having an active material layer containing physical particles for example, silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid compound, boric acid compound.
  • Patent Document 3 describes a negative electrode material for a non-aqueous electrolyte secondary battery using a conductive silicon composite in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
  • Patent Document 4 describes a negative electrode for a lithium secondary battery including active material particles containing silicon and / or silicon alloy having a specific average particle size and particle size distribution, and polyimide as a binder.
  • Patent Document 5 describes a negative electrode for a non-aqueous electrolyte secondary battery including an active material containing Si, polyimide and polyacrylic acid as a binder, and a carbon material as a conductive material.
  • Patent Document 6 discloses a non-aqueous electrolyte secondary battery including active material particles in which a mixture of simple silicon and silicon oxide is coated with carbon (a mixture of amorphous carbon and graphite) and a thermosetting resin as a binder.
  • a negative electrode is described.
  • the binder include polyimide, polyamide, polyamideimide, and polyacrylic acid resin. Regarding the polyimide and polyacrylic acid resin, a battery using these is prepared and evaluated.
  • Patent Document 7 discloses the ratio of the adhesion area of the coating film to the surface of the metal foil in a negative electrode for a non-aqueous electrolyte secondary battery in which a coating film made of an electrode active material carrier and a binder component is formed on the surface of the metal foil.
  • a polyamide-imide resin is included as a binder component.
  • Patent Document 8 discloses a polyamideimide excellent in adhesiveness, which contains a 4,4′-diaminodiphenyl ether residue and an m-phenylenediamine residue in a specific ratio and has a specific residual carboxyl group amount and gelling activity. It describes that a resin can be used as a binder for a Li-ion secondary battery.
  • Patent Document 9 and Patent Document 10 describe resins containing specific aramid structural units and specific amidoimide structural units. Further, Patent Document 9 has these structural units and further structural units in which carboxyl groups remain without ring closure of imide, and has a specific copolymer composition, so that it has excellent adhesiveness and volume expansion due to charge / discharge. It is described that it is possible to provide a resin for a lithium ion secondary battery electrode binder that is excellent in retention of a negative electrode active material having large shrinkage.
  • Patent Document 11 an oxide in which the surface of a compound containing Si and O is coated with carbon is used as a negative electrode active material, and polyimide, polyamideimide, or polyamide is used as a binder.
  • a lithium secondary battery is described in which at least one of the agent layers is bonded to the separator. Actually, only a battery using polyimide as a binder is manufactured and a charge test is performed.
  • Patent Document 12 has an active material layer containing particles of an active material containing Si or Sn, and the surface of the active material layer is a polymer film having a large number of pores containing polyvinylidene fluoride or polyamideimide. A coated negative electrode for a non-aqueous electrolyte secondary battery is described.
  • the negative electrode for a secondary battery described in Patent Document 2 has an effect of relieving stress and strain associated with volume change associated with insertion and extraction of lithium, the characteristics of a secondary battery using such a negative electrode are sufficient. It was not a thing.
  • the negative electrode material for secondary batteries described in Patent Document 3 has an effect of suppressing volume change associated with insertion and extraction of lithium, the characteristics of a secondary battery using such a negative electrode material are sufficient. It wasn't.
  • Patent Documents 7 to 10 describe the use of polyamideimide as a binder, but further improvements have been demanded for secondary batteries using such a binder.
  • a silicon-based active material is used for the negative electrode, polyimide is used as the binder, and the separator is bonded to at least one of the negative electrode mixture layer and the positive electrode mixture layer.
  • Patent Document 12 covers the surface of an active material layer containing Si-based active material particles with a coating having a large number of pores to prevent the active material from falling off, and there is room for further improvement. there were.
  • the inventors discovered problems that the secondary battery itself swells when charged and discharged in a high temperature environment, and conducted extensive studies to solve these problems.
  • An object of the present invention is to provide a secondary battery having good cycle characteristics.
  • a secondary battery includes a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolytic solution, and an outer package including these.
  • the negative electrode includes a metal (a) that can be alloyed with lithium as a negative electrode active material, and a resin component.
  • the resin component includes an amide imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structural unit derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof.
  • the contact angle of the resin component with water is less than 70 °.
  • a secondary battery having good cycle characteristics can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
  • the secondary battery according to the present embodiment includes a positive electrode, a separator, an electrode stack including a negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolyte, and an exterior body that includes them.
  • the electrode laminate may include one electrode pair of a positive electrode and a negative electrode, or may include two or more electrode pairs.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminate of such a laminated secondary battery.
  • the exterior body is omitted.
  • the positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2.
  • the positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion.
  • a negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion.
  • This electrode laminate is housed in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
  • a laminated laminate type battery using an electrode laminate having such a planar laminate structure has a smaller R portion (for example, a wound type) than a wound battery using an electrode laminate having a wound structure. Since there is no region close to the winding core of the structure or the folded region of the flat wound structure, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charge / discharge. At this time, it is desirable that the separator and the electrode are not fixed to each other by adhesion or the like, and stress due to a change in the volume of the electrode can be relieved as compared with the case where the separator is fixed.
  • the electrode since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode, and in particular, a negative electrode active material having a large volume change due to charge / discharge, such as silicon, is used. It is remarkable in the case. For this reason, it is difficult to prevent a capacity decrease associated with charge / discharge in a wound battery.
  • the laminated laminate type battery is suitable when an active material having a large volume change accompanying charging / discharging is used.
  • “planar laminated structure” means that each laminated electrode is a sheet-like body, and is laminated in a planar form (laminated with the outer peripheral edge of the sheet-like body being the peripheral edge). Is distinguished from a structure in which the electrode stack is bent or a structure in which the electrode stack is wound.
  • the wettability with the negative electrode active material particles is high.
  • a negative electrode in which the resin component is uniformly distributed between the negative electrode active material particles can be formed. This is particularly effective when the negative electrode active material particles have a relatively hydrophilic surface such as silicon or silicon oxide.
  • an amide imide structure unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structure derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof When a resin containing a unit is used, the mechanical characteristics are excellent, and therefore the deterioration of the cycle characteristics due to the volume change of the negative electrode can be effectively suppressed in combination with the adhesion and the uniform distribution.
  • the presence of hydrogen-bonding functional groups on the resin surface reduces the contact angle with water, and thus tends to improve the adhesion to the negative electrode active material particles and the uniformity of distribution.
  • the higher the functional group concentration the smaller the contact angle.
  • the carbonyl moiety of the imide ring of the imide structural unit or the amide imide structural unit can form a hydrogen bond, but the amide group of the amide imide structural unit more easily forms a hydrogen bond. Accordingly, the higher the ratio of trimellitic acid units among the acid component units constituting the resin, the higher the ratio of amide groups, the smaller the contact angle.
  • the ratio of the terminal amino group or the terminal carboxyl group increases as the molecular weight of the resin decreases, the contact angle tends to decrease.
  • the cause of cycle characteristics deterioration is gas generation in the battery in addition to the volume change of the negative electrode.
  • gas generation in laminated laminated batteries, when gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because in the wound battery, the distance between the electrodes is difficult to increase because tension is applied to the electrodes, whereas in the laminated laminate battery, the distance between the electrodes is likely to increase. This problem is particularly noticeable when the outer package is an aluminum laminate film.
  • the electrolytic solution contains a carbonate ester solvent or a carboxylic acid ester solvent, this problem becomes more prominent.
  • the negative electrode in the present embodiment includes a negative electrode active material and a resin component, and the resin component includes a polyamideimide resin or a polyimide resin as a main component.
  • the negative electrode active material is preferably covered with the resin component.
  • the negative electrode can further include a current collector, and a negative electrode active material layer including the negative electrode active material and the resin component can be provided on the current collector.
  • the negative electrode active material can be bound to the current collector by the resin component.
  • this resin component can bind between the particles of the negative electrode active material contained in the negative electrode active material layer.
  • the negative electrode active material in this embodiment includes a metal (a) that can be alloyed with lithium.
  • the negative electrode active material can further include a metal oxide (b) or a carbon material (c) that can occlude and release lithium.
  • the negative electrode active material in the present embodiment preferably contains a metal (a) and a metal oxide (b), and contains a metal (a), a metal oxide (b), and a carbon material (c). More preferred.
  • the metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can.
  • silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
  • the content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more from the viewpoint of charge / discharge capacity, and charge / discharge. 90 mass% or less is preferable from points, such as cycle life, 80 mass% or less is more preferable, It is more preferable to set it as 50 mass% or less.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
  • the content of the metal oxide (b) in the negative electrode active material is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 45% by mass or more from the viewpoint of improving the charge / discharge cycle life.
  • 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is more preferable.
  • the metal oxide (b) preferably has an amorphous structure in whole or in part.
  • the metal oxide (b) having an amorphous structure has a large effect of suppressing the volume expansion of the carbon material (c) and the metal (a) which are other negative electrode active material components. Further, it is considered that the metal oxide (b) having an amorphous structure contributes relatively little to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (b) has an amorphous structure.
  • the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. When it has a structure, a peak specific to the metal oxide (b) is observed as a broad.
  • all or part of the metal (a) is dispersed in the metal oxide (b).
  • the metal (a) can be dispersed in the amorphous metal oxide (b).
  • the volume expansion of the entire negative electrode can be further suppressed.
  • all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is oxidized. It can be confirmed that it is not a thing.
  • the metal oxide (b) is preferably an oxide of the same kind of metal as the metal (a).
  • the metal (a) is a metal containing silicon and the metal oxide (b) contains a silicon oxide is preferable
  • the metal (a) is simple silicon (Si)
  • the metal oxide (b) is In the case of silicon oxide, the metal (a) is an alloy of silicon and tin (Sn), and the metal oxide (b) is silicon oxide or a composite oxide of silicon and tin.
  • the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
  • the mass ratio (a / b) between the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited, but is preferably set in the range of 5/95 to 90/10. More preferably, it is set within the range of / 90 to 80/20, and can be set within the range of 30/70 to 60/40.
  • carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the content of the carbon material (c) in the negative electrode active material is preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of improving conductivity and charge / discharge cycle life, and the charge / discharge capacity. Is preferably 50% by mass or less, and more preferably 30% by mass or less, from the viewpoint of sufficiently ensuring the above.
  • the metal (a), the metal oxide (b), and the carbon material (c) contained in the negative electrode active material are not particularly limited, but can each include particles.
  • the negative electrode active material material an aggregate of particles, the restraining force between different kinds of material particles can be maintained moderately, so the occurrence of residual stress and residual strain due to the difference in volume change associated with charge / discharge is suppressed. be able to.
  • the average particle diameter of the metal (a) is preferably smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b).
  • the metal (a) having a large volume change during charge / discharge has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a relatively small volume change are relatively large. Because of the particle size, dendrite formation and alloy pulverization are more effectively suppressed. In addition, during the charge / discharge process, the large particle size and the small particle size alternately occlude and release lithium, whereby the generation of residual stress and residual strain can be more effectively suppressed.
  • the average particle diameter of the metal (a) can be, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and can also be 5 ⁇ m or less.
  • the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
  • the negative electrode including metal (a) particles, metal oxide (b) particles, and carbon material (c) particles as a negative electrode active material comprises these particles, a polyamide-imide resin (binder resin if necessary), and a solvent. It can be formed by preparing a slurry containing, applying this onto a current collector, drying and compressing.
  • composite particles A can be formed by mechanically milling metal (a) particles, metal oxide (b) particles, and carbon material (c) particles.
  • a slurry containing the composite particles A (negative electrode active material particles), a polyamide-imide resin (binder resin if necessary) and a solvent is prepared, applied to a current collector, dried and compressed to form a negative electrode. Can do.
  • the surface of the composite particle can be coated with a carbon material.
  • the negative electrode active material can include a composite particle B containing a metal (a) and a metal oxide (b), and a carbon material.
  • the negative electrode active material containing the composite particles B and the carbon material can be obtained by mechanical milling the composite particles B and the carbon material particles, or can be obtained by coating the composite particles B with a carbon material. it can.
  • the method of coating the composite particle B with carbon includes a method in which the organic compound and the composite particle B are mixed and fired, or a thermal chemical vapor deposition (CVD) by introducing the composite particle B into a gas atmosphere of an organic compound such as methane.
  • CVD thermal chemical vapor deposition
  • the composite particle B containing the metal (a) and the metal oxide (b) can be obtained, for example, by sintering the metal (a) and the metal oxide (b) under high temperature and reduced pressure. Moreover, it can obtain by carrying out mechanical milling of a metal (a) and a metal oxide (b).
  • the composite particle B containing the metal (a) and the metal oxide (b) all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) is metal oxidized. It can take the form which is disperse
  • the negative electrode active material in which the composite particles B having such a form are coated with a carbon material can be produced by, for example, a method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404). Specifically, for example, the metal oxide (b) is disproportionated at 900 to 1400 ° C. in a gas atmosphere of an organic compound such as methane, and thermal CVD is performed.
  • the metal elements in the metal oxide (b) are nanoclustered in the metal oxide (b) to form composite particles B, and the surface of the composite particles B is covered with the carbon material (c). .
  • the metal (a) and the amorphous metal oxide (b) can be obtained by mechanical milling.
  • the specific surface area of the negative electrode active material as a whole is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, and 2.0 m 2 / g or more. but more preferably, and is preferably 9.0 m 2 / g or less, more preferably 8.0 m 2 / g or less, more preferably 7.0 m 2 / g or less. If the specific surface area of the negative electrode active material is small, the coating with polyamideimide tends to be uniform, but Li ions are not smoothly inserted and removed, resulting in high resistance and low battery characteristics such as output characteristics. There is. Conversely, when the specific surface area of the negative electrode active material is large, Li ions can be easily removed and inserted, and there is a tendency for low resistance and high output. Gas generation increases and battery characteristics such as life characteristics tend to be lowered.
  • the average particle diameter of the negative electrode active material is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, and preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. It is preferable to set in such a range from the viewpoint of handling at the time of manufacture, easiness of film formation, battery characteristics after manufacture, and the like.
  • the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
  • the resin component of the negative electrode is derived from a resin containing an amide-imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof. Includes resins containing imide structural units.
  • a resin containing an amide imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof (hereinafter referred to as “polyamide imide resin”) has excellent electrolytic solution resistance and heat resistance. In addition to having excellent properties as a binder, it can have a function of suppressing gas generation caused by the negative electrode active material and the solvent of the electrolytic solution.
  • Such a polyamideimide resin includes trimellitic acid or a derivative thereof (such as trimellitic anhydride or acid chloride thereof) (hereinafter collectively referred to as “aromatic tricarboxylic acid component”), an aromatic diamine.
  • aromatic tricarboxylic acid component trimellitic acid or a derivative thereof (such as trimellitic anhydride or acid chloride thereof)
  • aromatic diamine component an aromatic diamine.
  • aromatic diamine component aromatic diamine component
  • it can be obtained by reaction of trimellitic anhydride and aromatic diamine, reaction of trimellitic anhydride and aromatic diisocyanate, reaction of trimellitic anhydride chloride and aromatic diamine.
  • the acid component and the diamine component are usually mixed in an equimolar amount, but if necessary, one component may be excessively mixed.
  • a part of the aromatic tricarboxylic acid component unit of this polyamide-imide resin is a part of pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4 ′.
  • -Tetracarboxylic acid diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, diphenylthioether-3,3', 4,4'-tetracarboxylic acid, benzophenone-3,3 ', 4,4'- It may be replaced with a unit of an aromatic polyvalent carboxylic acid component such as tetracarboxylic acid (including derivatives such as acid anhydrides, acid chlorides, and substituents having aromatic substituents). These aromatic polyvalent carboxylic acid components can be used alone or in combination of two or more.
  • the replacement ratio of the aromatic polycarboxylic acid component unit to the aromatic tricarboxylic acid component unit of the polyamideimide resin before replacement is preferably less than 40 mol%, 30 Less than mol% is more preferable, and less than 20 mol% is more preferable. That is, the ratio of the unit of the aromatic tricarboxylic acid component to the unit of the total acid component (the total of the aromatic tricarboxylic acid component and the aromatic polycarboxylic acid component) is preferably 60 mol% or more, more preferably 70 mol% or more. Preferably, 80 mol% or more is more preferable.
  • the polyamideimide resin in the present embodiment is a polyvalent carboxylic acid other than the aromatic polycarboxylic acid component described above, with a part of the unit of the aromatic tricarboxylic acid component within a range that does not impair the desired characteristics. It may be replaced with the unit of the component.
  • polyvalent carboxylic acid components include aliphatic dicarboxylic acids (or acid anhydrides and acid chlorides thereof) such as adipic acid, sebacic acid and azelaic acid; aromatic dicarboxylic acids such as isophthalic acid and terephthalic acid (or acids thereof) Anhydrides, acid chlorides); aliphatic polycarboxylic acids (or acid anhydrides, acid chlorides thereof) such as butane-1,2,3,4-tetracarboxylic acid.
  • the replacement ratio of other polycarboxylic acid component units to the aromatic tricarboxylic acid component units of the polyamideimide resin before replacement is preferably less than 10 mol%. Less than mol% is more preferable.
  • aromatic carboxylic acid components are preferable.
  • the unit of the aromatic tricarboxylic acid component in the unit of the total acid component (total of aromatic tricarboxylic acid component, aromatic polyvalent carboxylic acid component and other polyvalent carboxylic acid component) contained in the polyamideimide resin in the present embodiment The ratio is preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more. That is, the ratio of the amide-imide structural unit of the aromatic tricarboxylic acid component and the aromatic diamine component to the whole condensation structural unit of the acid component and the diamine component is preferably 60 mol% or more, more preferably 70 mol% or more, 80 mol% or more is more preferable.
  • the polyamideimide resin in this embodiment it is especially preferable that all the units of the acid component are units of an aromatic carboxylic acid component.
  • aromatic diamine component used in the polyamideimide resin in the present embodiment examples include 1,3-phenylenediamine, 1,4-phenylenediamine and other phenylenediamine; biphenyl-4,4′-diamine, biphenyl-3,4 ′ -Biphenyldiamine (diaminobiphenyl) such as diamine, biphenyl-3,3'-diamine, biphenyl-2,2'-diamine; 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether such as diaminodiphenyl ether; diaminodiphenylmethane such as 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane; 4,4′-diaminodiphen
  • the aromatic ring of these aromatic diamine components may have a substituent, and examples of the substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group. Moreover, the diisocyanate which substituted the amino group of these aromatic diamine components with the isocyanate group is mentioned.
  • aromatic diamines selected from phenylenediamine, biphenyldiamine (diaminobiphenyl), diaminodiphenylmethane, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylthioether, and bisaminophenoxybenzene are preferable, and phenylenediamine, biphenyldiamine, diaminodiphenylmethane, and diamino
  • An aromatic diamine selected from diphenyl ether, diaminobenzophenone and diaminodiphenyl thioether is more preferable, and an aromatic diamine selected from phenylenediamine, biphenyldiamine, diaminodiphenylmethane, diaminodiphenyl ether and diaminobenzophenone is more preferable, and phenylenediamine, biphenyldiamine and diaminodiphenyl.
  • Aromatic diamines selected from diaminodiphenyl ether is particularly preferable. Aromatic diamines may be used alone or in combination of two or more. In the production of the resin, diisocyanate in which the amino group of these aromatic diamine components is replaced with an isocyanate group can be used.
  • the polyamide-imide resin in the present embodiment may replace a part of the unit of the aromatic diamine component with the unit of another diamine component as long as the desired characteristics are not impaired.
  • the replacement ratio of the units of the other diamine component with respect to the units of the aromatic diamine component of the polyamideimide resin before replacement is preferably less than 10 mol%, and more preferably less than 5 mol%. That is, the ratio of the aromatic diamine component units to the total diamine component units contained in the polyamide resin in the present embodiment is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the polyamideimide resin in this embodiment it is especially preferable that all the units of the diamine component are units of an aromatic diamine component.
  • the content ratio of the aromatic condensation unit derived from the aromatic polyvalent carboxylic acid component and the aromatic diamine component is preferably 90 mol% or more, 95 mol% or more is more preferable, and 100 mol% is further more preferable.
  • Polyamide having no imide group has low solubility in a solvent such as water or N-methylpyrrolidone, and it is difficult to produce a negative electrode.
  • polyamideimide has high solubility in a solvent such as water or N-methylpyrrolidone, and a negative electrode in which polyamideimide is uniformly distributed in the negative electrode can be easily formed.
  • polyamideimide since polyamideimide has high mechanical strength like polyimide, it can also function as a binder. Therefore, the gas generation suppression effect can be obtained without significantly increasing the amount of the resin component in the negative electrode (that is, without significantly reducing the energy density).
  • all or part of the metal oxide (b) is amorphous from the viewpoint of suppressing gas generation. Furthermore, it is preferable from the viewpoint of gas generation suppression that all or part of the metal (a) is dispersed in the metal oxide (b).
  • polyimide resin a resin containing an imide structural unit derived from an aromatic tetracarboxylic acid or derivative thereof and an aromatic diamine or derivative thereof (hereinafter referred to as “polyimide resin”). Can be used.
  • aromatic tetracarboxylic acid examples include pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4′-tetracarboxylic acid, and diphenylether-3,3.
  • aromatic tetracarboxylic acid examples include pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4′-tetracarboxylic acid, and diphenylether-3,3.
  • One or two selected from ', 4,4'-tetracarboxylic acid, diphenylthioether-3,3', 4,4'-tetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid The above can be used.
  • Derivatives of aromatic tetracarboxylic acids include acid anhydrides, acid chlorides, and substituents having substituents on the aromatic ring (the substituents include alkyl groups having 1 to 4 carbon atoms such as methyl and ethyl groups) ).
  • the aromatic diamine component used in the above-mentioned aromatic polyamideimide resin can be used.
  • one or more aromatic diamines selected from phenylenediamine, biphenyldiamine (diaminobiphenyl), diaminodiphenylmethane, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylthioether, and bisaminophenoxybenzene, or derivatives thereof (diisocyanate, aromatic ring) can be used.
  • the mass ratio of the resin component to the negative electrode active material is preferably 7/100 or more, more preferably 8/100 or more. More preferably, 11/100 or more is more preferable, 25/100 or less is preferable, 20/100 or less is more preferable, and 15/100 or less is more preferable. If the resin component is too small, the resin is unevenly distributed, the effect of improving the cycle characteristics cannot be sufficiently obtained, and the gas generation suppressing effect and the binding effect are also lowered. When there are too many resin components, energy density will become low.
  • polyamideimide resin and the polyimide resin in the present embodiment those having a number average molecular weight (Mn) in the range of, for example, 5000 to 100,000 can be used, and those having a number average molecular weight in the range of 5000 to 70000 are preferable. Those within the range are more preferred.
  • This number average molecular weight (standard polystyrene conversion) can be measured by gel permeation chromatography (GPC). If the molecular weight is too low, the film forming property and the binding force are lowered, and if the molecular weight is too large, it becomes difficult to form the active material layer or it is difficult to form a homogeneous active material layer.
  • the ratio of the polyamideimide resin and the polyimide resin to the total resin component in the negative electrode is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the total ratio of these resins to the total resin components in the negative electrode is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the ratio of the polyamideimide resin can be 100% by mass, and even in this case, sufficient binding properties can be ensured.
  • the polyamideimide resin and the polyimide resin are used in combination, it is possible to obtain both a gas generation suppressing effect and a cycle characteristic deterioration preventing effect due to a negative electrode volume change at a high level. From the viewpoint of emphasizing the gas generation suppression effect, it is preferable to increase the amount of the polyamideimide resin, and the mass ratio (PAI / PI) of the polyamideimide resin (PAI) to the polyimide resin (PI) is 60/40 to 90 / A range of 10 can be set.
  • the resin component in the negative electrode can contain other resins than the above polyamideimide resin and polyimide resin as long as the desired effect is not impaired.
  • a normal negative electrode binder can be used, for example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer. Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyamideimide other than the above, polyimide other than the above, and the like can be used.
  • the negative electrode current collector it is preferable to use a material selected from aluminum, nickel, copper, silver, and alloys thereof from the viewpoint of electrochemical stability.
  • a material selected from aluminum, nickel, copper, silver, and alloys thereof from the viewpoint of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • a copper foil is particularly preferable.
  • the negative electrode can be formed, for example, as follows.
  • a negative electrode current material is prepared by preparing a negative electrode slurry containing a negative electrode active material, a polyamide-imide resin, and other resins (binders) and a solvent as required.
  • the negative electrode slurry is applied onto a negative electrode current collector and dried.
  • a negative electrode active material layer can be formed on the body.
  • the obtained electrode can be compressed by a method such as a roll press and adjusted to an appropriate density.
  • polar solvents such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, water, aromatic hydrocarbons such as xylene, ketones such as cyclohexanone, N-methyl-2-pyrrolidone, water, etc. can be used. Is preferred.
  • Examples of the method for applying the negative electrode material include a doctor blade method, a die coater method, and a dip coating method.
  • a metal thin film such as aluminum, nickel, or an alloy thereof may be formed on the negative electrode active material layer by a method such as vapor deposition or sputtering, and the negative electrode current collector may be used.
  • the viscosity of the negative electrode slurry is preferably in the range of 1000 to 20000 mPa ⁇ s (cP) as measured by a rotary viscometer at a rotor rotational speed of 10 rpm. At that time, it is preferable to use a negative electrode active material having a BET specific surface area in the range of 0.2 to 9.0 m 2 / g.
  • a negative electrode active material layer in which the resin component is uniformly distributed with respect to the negative electrode active material particles can be formed, and as a result, gas generation is suppressed and cycle characteristics are improved. An excellent secondary battery can be obtained. If the viscosity of the negative electrode slurry is too low, the formation of the negative electrode active material layer itself becomes difficult.
  • the viscosity of the negative electrode slurry is measured at room temperature using a Brookfield Digital Viscometer III Ultra (LVDV-III Ultra, RVDV-III Ultra, HADV-III Ultra, HBDV-III Ultra) manufactured in the United States. can do.
  • Positive Electrode for example, a positive electrode active material layer including a positive electrode active material and a binder provided on a positive electrode current collector can be used.
  • the positive electrode active material an active material capable of occluding and releasing lithium ions can be used.
  • various lithium metal oxides can be used.
  • lithium manganate having a layered structure or spinel structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2); Lithium metal oxide in which part of Mn of lithium acid is replaced with other metal; LiCoO 2 , LiNiO 2 , lithium metal oxide in which part of these transition metals (Co, Ni) is replaced with other metal; LiNi Lithium transition metal oxides in which specific transition metals such as 1/3 Co 1/3 Mn 1/3 O 2 do not exceed half of the total number of transition metals (atomic ratio); stoichiometric composition in these lithium metal oxides And lithium metal oxide containing Li in excess.
  • ⁇ ⁇ 0.1 can be set, and ⁇ ⁇ 0.01 can be set.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same negative electrode binder as that of a normal negative electrode can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder to be used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of the binding effect and energy density which are in a trade-off relationship.
  • the same one as the negative electrode current collector can be used as long as the potential is stable, but an aluminum foil is particularly preferable.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode can be formed as follows, for example. A positive electrode active material, a binder, a solvent, and, if necessary, a positive electrode slurry containing a conductive auxiliary agent is prepared, and this positive electrode slurry is applied on the positive electrode current collector and dried to obtain a positive electrode active material on the positive electrode current collector A layer can be formed. The obtained electrode can be compressed by a method such as a roll press and adjusted to an appropriate density.
  • the solvent for example, N-methyl-2-pyrrolidone can be used.
  • Electrolytic Solution As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate) or carboxylic acid ester (chain or cyclic carboxylic acid ester) can be used.
  • carbonate solvent examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • PC propylene carbonate
  • EC ethylene carbonate
  • BC butylene carbonate
  • VVC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • propylene carbonate derivatives examples of the carbonate solvent.
  • carboxylic acid ester solvent examples include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as ⁇ -butyrolactone.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the nonaqueous electrolytic solution preferably further contains a fluorinated ether compound.
  • the fluorinated ether compound has a high affinity with the metal (a) (particularly Si), and can improve cycle characteristics (particularly capacity retention rate).
  • the fluorinated ether compound may be a fluorinated chain ether compound obtained by substituting a part of hydrogen of a non-fluorinated chain ether compound with fluorine, or a part of hydrogen of a non-fluorinated cyclic ether compound with fluorine. It may be a substituted fluorinated cyclic ether compound. In particular, a fluorinated chain ether compound having higher stability is preferable.
  • the fluorinated chain ether compound As the fluorinated chain ether compound, the following formula (1): H- (CX 1 X 2 -CX 3 X 4 ) n -CH 2 O-CX 5 X 6 -CX 7 X 8 -H (1) (In the formula, n is 1, 2, 3 or 4, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 4 is a fluorine atom, At least one of X 5 to X 8 is a fluorine atom, the atomic ratio of fluorine atoms to hydrogen atoms bonded to the fluorinated chain ether compound (total number of fluorine atoms / total number of hydrogen atoms) ⁇ 1 .) A compound represented by the following formula (2): H— (CF 2 —CF 2 ) n—CH 2 O—CF 2 —CF 2 —H (2) (In the formula, n is 1 or 2.)
  • the content of such a fluorinated ether compound is preferably 10 vol% or more, more preferably 15 vol% or more with respect to the total amount of the nonaqueous solvent (100 vol%) from the viewpoint of obtaining a sufficient addition effect within a range not impairing the battery characteristics. Is more preferable, 75 vol% or less is preferable, 70 vol% or less is more preferable, and 50 vol% or less is more preferable.
  • Examples of the supporting salt in the present embodiment include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used.
  • the supporting salt can be used alone or in combination of two or more.
  • separator in the present embodiment, a porous film or nonwoven fabric made of polyolefin such as polypropylene or polyethylene, a fluororesin, or the like can be used. Moreover, what laminated
  • Exterior Body As the exterior body in the present embodiment, a laminate film that is stable in an electrolytic solution and has a sufficient water vapor barrier property can be used.
  • a laminate film such as polypropylene or polyethylene coated with aluminum or silica can be used as such an exterior body.
  • aluminum laminate film it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • the distortion of the electrode becomes very large compared to the secondary battery using the metal can as the outer package. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than atmospheric pressure and there is no extra space inside, so when gas is generated in the battery In this case, battery volume changes and electrode deformation are likely to occur immediately. According to the present embodiment, gas generation in the battery can be suppressed, so that such a problem can be solved.
  • Laminated laminate type lithium ion secondary battery is excellent in heat dissipation, can be provided at low cost, has a high degree of freedom in cell capacity design (cell capacity can be changed depending on the number of laminated layers), and is a wound type using a metal can Although it has various advantageous characteristics with respect to the battery, the cycle characteristics of such a laminated laminate type lithium ion secondary battery can be improved.
  • the secondary battery according to the present embodiment can be manufactured according to a normal method.
  • a laminated laminate type lithium ion secondary battery can be manufactured as follows.
  • a positive electrode having a positive electrode active material layer provided on a positive electrode current collector and a negative electrode having a negative electrode active material layer provided on a negative electrode current collector are prepared.
  • the positive electrode and the negative electrode are arranged to face each other via a separator to form an electrode pair, and an electrode stack having the number of layers corresponding to a predetermined capacity is formed.
  • This electrode laminated body has a positive electrode terminal connected to the positive electrode current collector and a negative electrode terminal connected to the negative electrode current collector.
  • this electrode laminate is accommodated in an exterior body (container), a nonaqueous electrolyte is injected, and then sealed.
  • Example 1 90 parts by mass of silicon having an average particle diameter of 5 ⁇ m as the metal (a) and 10 parts by mass of graphite having an average particle diameter of 30 ⁇ m as the carbon material (c) are mixed by mechanical milling for 24 hours to form a negative electrode active material To do.
  • the average particle diameter D 50 of the negative electrode active material is 5 [mu] m
  • BET specific surface area is 5 m 2 / g.
  • a negative electrode slurry containing this negative electrode active material, the following polyamic acid and N-methyl-2-pyrrolidone (NMP) and having a mass ratio of the negative electrode active material and polyimide of 90:10 is formed.
  • the negative electrode slurry is applied to a copper foil having a thickness of 10 ⁇ m, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to form a negative electrode.
  • the polyimide in the negative electrode (BPDA-ODA) is represented by the following formula, and the polyamic acid for forming this polyimide is prepared as follows.
  • the positive electrode slurry is applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to form a positive electrode.
  • the obtained three layers of positive electrode and four layers of negative electrode are alternately laminated through a polypropylene porous film as a separator to form an electrode laminate.
  • the ends of the positive electrode current collector not covered with the positive electrode active material are welded to each other, the positive electrode terminal made of aluminum is welded to the welded portion, and the ends of the negative electrode current collector not covered with the negative electrode active material And a negative electrode terminal made of nickel is welded to the welded portion.
  • the electrode laminate is wrapped with an aluminum laminate film as an outer package, and an electrolyte is poured into the interior, and then sealed while reducing pressure to 0.1 atm to produce a secondary battery.
  • Example 2 A secondary battery is formed in the same manner as in Example 1 except that polyimide (BPDA-PDA) represented by the following formula is used as the resin component of the negative electrode.
  • BPDA-PDA polyimide represented by the following formula.
  • capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table
  • the polyamic acid for forming this polyimide is prepared as follows. 0.3 mol of paraphenylenediamine (1,4-phenylenediamine) is dissolved in 1400 g of N-methyl-2-pyrrolidone (NMP), and then 0.3 mol of powdered biphenyltetracarboxylic dianhydride (BPDA) is added. Add slowly with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 60,000.
  • NMP N-methyl-2-pyrrolidone
  • BPDA powdered biphenyltetracarboxylic dianhydride
  • Example 3 A secondary battery is formed in the same manner as in Example 1 except that, in the negative electrode slurry, instead of polyamic acid, polyamideimide (TMA-MDA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity
  • TMA-MDA polyamideimide
  • This polyamideimide is prepared as follows. A flask is charged with 0.3 mol of 4,4′-diphenylmethane diisocyanate, 0.3 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP), and the temperature is increased to 120 with stirring for about 3 hours. The temperature is raised to 0 ° C. and kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 42,000) with a final polymer concentration of 7% by mass is obtained.
  • TMA trimellitic anhydride
  • NMP N-methyl-2-pyrrolidone
  • Example 4 In the negative electrode slurry, a secondary battery is formed in the same manner as in Example 1 except that instead of polyamic acid, polyamideimide (TMA-ODA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity
  • TMA-ODA polyamideimide
  • This polyamideimide is prepared as follows. A flask was charged with 0.3 mol of 4,4′-oxybis (phenylisocyanate), 0.3 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP) and stirred for about 3 hours. The temperature is raised to 120 ° C. and kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 42,000) with a final polymer concentration of 7% by mass is obtained.
  • TMA trimellitic anhydride
  • NMP N-methyl-2-pyrrolidone
  • Example 5 In the negative electrode slurry, a secondary battery is formed in the same manner as in Example 1 except that instead of polyamic acid, polyamideimide (TMA-PDA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity
  • TMA-PDA polyamideimide
  • This polyamideimide is prepared as follows. Charge 0.4 mol of 1,4-phenylene diisocyanate, 0.4 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP) to a flask at a temperature of 120 ° C. for about 3 hours with stirring. And kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 41,000) with a final polymer concentration of 7% by mass is obtained.
  • TMA trimellitic anhydride
  • NMP N-methyl-2-pyrrolidone
  • Comparative Example 1 A secondary battery is formed in the same manner as in Example 1 except that polyimide (6FDA-ODA) represented by the following formula is used as the resin component of the negative electrode. About the secondary battery obtained in this way, the capacity
  • 6FDA-ODA polyimide represented by the following formula
  • the polyamic acid for forming this polyimide is prepared as follows. 0.24 mol of 4,4′-oxydiphenylenediamine (4,4′-diaminodiphenyl ether) is dissolved in 1500 g of N-methyl-2-pyrrolidone (NMP), and then powdered 2,2-bis (3,4) -0.2 mol of dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) is slowly added with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 35,000.
  • NMP N-methyl-2-pyrrolidone
  • 6FDA dicarboxyphenyl) hexafluoropropane dianhydride
  • Comparative Example 2 A secondary battery is formed in the same manner as in Example 1 except that polyimide (6FDA-PDA) represented by the following formula is used as the resin component of the negative electrode. About the secondary battery obtained in this way, the capacity
  • 6FDA-PDA polyimide represented by the following formula
  • the polyamic acid for forming this polyimide is prepared as follows. 0.3 mol of paraphenylenediamine (1,4-phenylenediamine) is dissolved in 1400 g of N-methyl-2-pyrrolidone (NMP), and then powdered 2,2-bis (3,4-dicarboxyphenyl) hexafluoro 0.2 mol of propane dianhydride (6FDA) is slowly added with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 50,000.
  • NMP N-methyl-2-pyrrolidone
  • 6FDA propane dianhydride
  • the battery is charged to 0.05 V at a 0.05 C rate, then discharged to 2.5 V at a 1 C rate, and the discharge capacity (initial discharge capacity) at that time is measured.
  • charging up to 4.1 V and discharging up to 2.5 V are repeated 50 times at 1C rate, and the discharge capacity at the 50th cycle is measured.
  • the ratio (%) of the discharge capacity at the 50th cycle to the initial discharge capacity is calculated as the capacity maintenance rate. Further, the ratio of the volume increase amount at the 50th cycle to the volume of the battery before the start of charge / discharge is calculated as the swelling rate (%) (volume change rate). This volume increase is measured by the Archimedes method. The volume can be calculated from the decrease in mass when the battery is suspended on a scale and submerged in deionized water.
  • the resin solution is coated on a glass plate with a doctor blade (thickness: 100 ⁇ m), dried roughly at 150 ° C., and then heat-treated at 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 20 minutes. Form. After sufficiently cooling to room temperature, 10 ⁇ L of pure water is dropped from a height of 5 cm onto this resin film using a syringe, and a photograph is taken from the side. The droplet on the resin film photographed in the photograph is drawn by the ⁇ / 2 method to obtain ⁇ / 2, and ⁇ is the contact angle.
  • the secondary battery according to the present embodiment can be used in all industrial fields that require a power source and industrial fields related to transportation, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and notebook computers
  • power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric trains such as trains, satellites, and submarines
  • a backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
  • UPS uninterruptible power supply

Abstract

A secondary battery which comprises: a positive electrode; a separator; a negative electrode that is arranged so as to face the positive electrode with the separator being interposed therebetween; an electrolyte solution; and a case that contains the aforementioned components. The negative electrode contains, as negative electrode active materials, a resin component and a metal (a) that can be alloyed with lithium. The resin component contains a resin that has an amide-imide structural unit, which is derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structural unit, which is derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof. The resin component has a contact angle with water of less than 70˚.

Description

二次電池Secondary battery
 本発明は、二次電池に関する。 The present invention relates to a secondary battery.
 ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高エネルギー密度の二次電池が求められている。エネルギー密度を高めるため、容量の大きな負極材料を用いたり、サイクル特性を高めるために結着力に優れたバインダーを用いる等、種々の技術が提案されている。 With the rapid market expansion of notebook computers, mobile phones, electric vehicles, etc., secondary batteries with high energy density are required. Various techniques have been proposed, such as using a negative electrode material having a large capacity in order to increase the energy density, and using a binder having an excellent binding force in order to improve cycle characteristics.
 特許文献1には、非水電解質二次電池の負極活物質として、リチウムを含有するケイ素の酸化物またはケイ酸塩を用いることが記載されている。 Patent Document 1 describes that a lithium-containing silicon oxide or silicate is used as a negative electrode active material of a nonaqueous electrolyte secondary battery.
 特許文献2には、リチウムイオンを吸蔵放出し得る炭素材料粒子(例えば黒鉛)、リチウムと合金可能な金属粒子(例えば、シリコン、アルミニウム、錫、インジウム、亜鉛)、リチウムイオンを吸蔵放出し得る酸化物粒子(例えば、酸化シリコン、酸化アルミニウム、酸化錫、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸化合物、ホウ酸化合物)を含む活物質層を備えた二次電池用負極が記載されている。 Patent Document 2 discloses carbon material particles that can occlude and release lithium ions (eg, graphite), metal particles that can be alloyed with lithium (eg, silicon, aluminum, tin, indium, and zinc), and oxidation that can occlude and release lithium ions. A negative electrode for a secondary battery having an active material layer containing physical particles (for example, silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid compound, boric acid compound) is described.
 特許文献3には、ケイ素の微結晶がケイ素化合物に分散した構造を有する粒子の表面を炭素でコーティングした導電性ケイ素複合体を用いた非水電解質二次電池用負極材料が記載されている。 Patent Document 3 describes a negative electrode material for a non-aqueous electrolyte secondary battery using a conductive silicon composite in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
 特許文献4には、特定の平均粒径と粒度分布をもつケイ素及び/又はケイ素合金を含む活物質粒子と、バインダーとしてポリイミドを含むリチウム二次電池用負極が記載されている。 Patent Document 4 describes a negative electrode for a lithium secondary battery including active material particles containing silicon and / or silicon alloy having a specific average particle size and particle size distribution, and polyimide as a binder.
 特許文献5には、Siを含む活物質と、バインダーとしてポリイミド及びポリアクリル酸、並びに導電材として炭素材料を含む非水電解質二次電池用負極が記載されている。 Patent Document 5 describes a negative electrode for a non-aqueous electrolyte secondary battery including an active material containing Si, polyimide and polyacrylic acid as a binder, and a carbon material as a conductive material.
 特許文献6には、単体シリコンとシリコン酸化物の混合物の周囲が炭素(アモルファスカーボンと黒鉛の混合物)で被覆された活物質粒子と、バインダーとして熱硬化性樹脂を含む非水電解質二次電池用負極が記載されている。そして、このバインダーとして、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂が例示され、ポリイミドとポリアクリル酸系樹脂については、これらを用いた電池が作製され、その評価が行われている。 Patent Document 6 discloses a non-aqueous electrolyte secondary battery including active material particles in which a mixture of simple silicon and silicon oxide is coated with carbon (a mixture of amorphous carbon and graphite) and a thermosetting resin as a binder. A negative electrode is described. Examples of the binder include polyimide, polyamide, polyamideimide, and polyacrylic acid resin. Regarding the polyimide and polyacrylic acid resin, a battery using these is prepared and evaluated.
 特許文献7には、金属箔の表面に、電極活物質担体およびバインダー成分からなる塗膜を形成してなる非水電解質二次電池用負極において、金属箔表面に対する塗膜の密着面積の割合を規定するとともに、バインダー成分としてポリアミドイミド樹脂を含むことが記載されている。 Patent Document 7 discloses the ratio of the adhesion area of the coating film to the surface of the metal foil in a negative electrode for a non-aqueous electrolyte secondary battery in which a coating film made of an electrode active material carrier and a binder component is formed on the surface of the metal foil. In addition, it is described that a polyamide-imide resin is included as a binder component.
 特許文献8には、4,4’-ジアミノジフェニルエーテル残基およびm-フェニレンジアミン残基を特定の比率で含み、特定の残存カルボキシル基量とゲル化活性度を持つ、接着性に優れたポリアミドイミド樹脂が記載され、Liイオン二次電池のバインダーとして利用できることが記載されている。 Patent Document 8 discloses a polyamideimide excellent in adhesiveness, which contains a 4,4′-diaminodiphenyl ether residue and an m-phenylenediamine residue in a specific ratio and has a specific residual carboxyl group amount and gelling activity. It describes that a resin can be used as a binder for a Li-ion secondary battery.
 特許文献9及び特許文献10には、特定のアラミド構造単位と特定のアミドイミド構造単位を含む樹脂が記載されている。さらに特許文献9には、これらの構造単位とさらにイミド閉環せずにカルボキシル基が残存する構成単位を有し、特定の共重合組成をもつことにより、接着性に優れ、充放電による体積膨張・収縮の大きい負極活物質の保持性に優れた、リチウムイオン二次電池電極結着剤用樹脂を提供できることが記載されている。 Patent Document 9 and Patent Document 10 describe resins containing specific aramid structural units and specific amidoimide structural units. Further, Patent Document 9 has these structural units and further structural units in which carboxyl groups remain without ring closure of imide, and has a specific copolymer composition, so that it has excellent adhesiveness and volume expansion due to charge / discharge. It is described that it is possible to provide a resin for a lithium ion secondary battery electrode binder that is excellent in retention of a negative electrode active material having large shrinkage.
 特許文献11には、負極活物質として、SiとOを含む化合物の表面が炭素で被覆されている酸化物を用い、バインダーとして、ポリイミド、ポリアミドイミド又はポリアミドを用い、負極合剤層および正極合剤層のすくなくとも一方がセパレータに接着しているリチウム二次電池が記載されている。実際には、バインダーとしてポリイミドを用いた電池のみが作製され、充電試験が行われている。 In Patent Document 11, an oxide in which the surface of a compound containing Si and O is coated with carbon is used as a negative electrode active material, and polyimide, polyamideimide, or polyamide is used as a binder. A lithium secondary battery is described in which at least one of the agent layers is bonded to the separator. Actually, only a battery using polyimide as a binder is manufactured and a charge test is performed.
 特許文献12には、Si又はSnを含む活物質の粒子を含有する活物質層を有し、この活物質層の表面がポリフッ化ビニリデン又はポリアミドイミドを含む多数の孔部をもつ高分子被膜によって被覆された非水電解液二次電池用負極が記載されている。 Patent Document 12 has an active material layer containing particles of an active material containing Si or Sn, and the surface of the active material layer is a polymer film having a large number of pores containing polyvinylidene fluoride or polyamideimide. A coated negative electrode for a non-aqueous electrolyte secondary battery is described.
特開平6-325765号公報JP-A-6-325765 特開2003-123740号公報JP 2003-123740 A 特開2004-47404号公報JP 2004-47404 A 特開2004-22433号公報Japanese Patent Laid-Open No. 2004-22433 特開2007-95670号公報JP 2007-95670 A 特開2008-153117号公報JP 2008-153117 A 特開2000-149921号公報JP 2000-149921 A 特開2007-246680号公報JP 2007-246680 A WO2008/105036号公報WO2008 / 105036 特開2007-84808号公報JP 2007-84808 A 特開2009-152037号公報JP 2009-152037 A 特開2009-176703号公報JP 2009-176703 A
 しかしながら、特許文献1に記載されたケイ素の酸化物を負極活物質に用いた二次電池においては、充放電サイクルに伴う容量低下の問題があった。 However, in the secondary battery using the silicon oxide described in Patent Document 1 as the negative electrode active material, there is a problem of capacity reduction accompanying the charge / discharge cycle.
 特許文献2に記載された二次電池用負極は、リチウムの吸蔵放出に伴う体積変化に伴う応力や歪みを緩和する効果を有するものの、このような負極を用いた二次電池の特性は十分なものではなかった。また、特許文献3に記載された二次電池用負極材料は、リチウムの吸蔵放出に伴う体積変化を抑制する効果を有するものの、このような負極材料を用いた二次電池の特性は十分なものではなかった。 Although the negative electrode for a secondary battery described in Patent Document 2 has an effect of relieving stress and strain associated with volume change associated with insertion and extraction of lithium, the characteristics of a secondary battery using such a negative electrode are sufficient. It was not a thing. Moreover, although the negative electrode material for secondary batteries described in Patent Document 3 has an effect of suppressing volume change associated with insertion and extraction of lithium, the characteristics of a secondary battery using such a negative electrode material are sufficient. It wasn't.
 特許文献4及び特許文献5に記載された二次電池用負極では、ケイ素系活物質を用いるとともに、バインダーとしてポリイミドを用いているが、このような負極を用いた二次電池の特性は十分なものではなかった。 In the secondary battery negative electrode described in Patent Document 4 and Patent Document 5, while using a silicon-based active material and polyimide as a binder, the characteristics of the secondary battery using such a negative electrode are sufficient. It was not a thing.
 特許文献6に記載された二次電池用負極では、ケイ素系活物質を用いるとともに、バインダーとしてポリイミド又はポリアクリル酸系樹脂を用いて、サイクル特性の改善が示されているが、ポリアミドイミドを用いた二次電池については具体的な説明はない。このようなケイ素系負極活物質を用いた二次電池については、さらに改善が求められていた。 In the negative electrode for secondary battery described in Patent Document 6, while using a silicon-based active material and using a polyimide or a polyacrylic acid-based resin as a binder, an improvement in cycle characteristics is shown, but polyamideimide is used. There is no specific description of the secondary battery. For secondary batteries using such silicon-based negative electrode active materials, further improvements have been demanded.
 特許文献7~10には、バインダーとしてポリアミドイミドを用いることが記載されているが、このようなバインダーを用いた二次電池については、さらに改善が求められていた。 Patent Documents 7 to 10 describe the use of polyamideimide as a binder, but further improvements have been demanded for secondary batteries using such a binder.
 特許文献11に記載のリチウム二次電池では、負極にケイ素系活物質を用いるとともに、バインダーとしてポリイミドを用い、さらにセパレータが負極合剤層および正極合剤層の少なくとも一方に接着することにより、充放電に伴う負極の体積変化を抑制できることが示されているが、バインダーとしてポリアミドイミドを用いた二次電池については具体的な説明はない。このようなケイ素系負極活物質を用いた二次電池については、さらに改善が求められていた。 In the lithium secondary battery described in Patent Document 11, a silicon-based active material is used for the negative electrode, polyimide is used as the binder, and the separator is bonded to at least one of the negative electrode mixture layer and the positive electrode mixture layer. Although it has been shown that the volume change of the negative electrode accompanying discharge can be suppressed, there is no specific description of a secondary battery using polyamideimide as a binder. For secondary batteries using such silicon-based negative electrode active materials, further improvements have been demanded.
 特許文献12に記載の負極は、Si系活物質粒子を含む活物質層の表面を、多数の孔部をもつ被膜で被覆し、活物質の脱落を防止するものであり、さらに改善の余地があった。 The negative electrode described in Patent Document 12 covers the surface of an active material layer containing Si-based active material particles with a coating having a large number of pores to prevent the active material from falling off, and there is room for further improvement. there were.
 本発明者らは、負極活物質としてシリコン等のリチウムと合金可能な金属を用いた積層ラミネート型のリチウムイオン二次電池においては、充放電に伴う負極活物質の体積変化による問題に加えて、高温環境下で充放電させると二次電池自体が膨れる問題を見出し、これらの問題を解決するために鋭意検討を行った。 In the laminated laminate type lithium ion secondary battery using a metal that can be alloyed with lithium such as silicon as the negative electrode active material, in addition to the problem due to the volume change of the negative electrode active material due to charge and discharge, The inventors discovered problems that the secondary battery itself swells when charged and discharged in a high temperature environment, and conducted extensive studies to solve these problems.
 本発明の目的は、サイクル特性が良好な二次電池を提供することにある。 An object of the present invention is to provide a secondary battery having good cycle characteristics.
 本発明の一態様による二次電池は、正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、電解液と、これらを内包する外装体を含み、
 前記負極は、負極活物質材料としてリチウムと合金可能な金属(a)と、樹脂成分を含み、
 前記樹脂成分は、トリメリット酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のアミドイミド構造単位、又は芳香族テトラカルボン酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のイミド構造単位を含む樹脂を含み、
 前記樹脂成分の水との接触角が70°未満である。
A secondary battery according to an aspect of the present invention includes a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolytic solution, and an outer package including these.
The negative electrode includes a metal (a) that can be alloyed with lithium as a negative electrode active material, and a resin component.
The resin component includes an amide imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structural unit derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof. Including resin,
The contact angle of the resin component with water is less than 70 °.
 本発明の実施形態によれば、サイクル特性が良好な二次電池を提供できる。 According to the embodiment of the present invention, a secondary battery having good cycle characteristics can be provided.
本発明の実施形態による積層ラミネート型の二次電池の構造を示す模式的断面図である。1 is a schematic cross-sectional view showing a structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本実施形態による二次電池は、正極、セパレータ及びこのセパレータを介して正極と対向配置された負極を含む電極積層体と、電解質と、これらを内包する外装体とを含む。この外装体からなる一つの容器内において、この電極積層体は、正極と負極の電極対を一つ含んでいてもよいし、二つ以上の電極対を含むこともできる。 The secondary battery according to the present embodiment includes a positive electrode, a separator, an electrode stack including a negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolyte, and an exterior body that includes them. In one container made of the outer package, the electrode laminate may include one electrode pair of a positive electrode and a negative electrode, or may include two or more electrode pairs.
 図1は、このような積層型二次電池の電極積層体の一例を示す模式的断面図である。図1においては外装体を省略している。正極3と負極1は、セパレータ2を介して交互に積み重ねられている。各正極3が有する正極集電体5は、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子6が溶接されている。各負極1が有する負極集電体4は、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子7が溶接されている。この電極積層体は、外装体としてラミネートフィルムで形成した容器内に収容され、電解液が注入され、シールされる。 FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminate of such a laminated secondary battery. In FIG. 1, the exterior body is omitted. The positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2. The positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion. A negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion. This electrode laminate is housed in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
 このような平面的な積層構造をもつ電極積層体を用いた積層ラミネート型電池は、捲回構造をもつ電極積層体を用いた捲回型電池に対して、Rの小さい部分(例えば、捲回構造の巻き芯に近い領域や、扁平型捲回構造の折り返し領域)が存在しないため、充放電に伴う電極の体積変化による悪影響を受けにくいという利点がある。その際、セパレータと電極は相互に接着等により固定されていないことが望ましく、固定されている場合に対して、電極の体積変化による応力を緩和することができる。一方、捲回型電池では電極が湾曲しているため、電極に体積変化が生じた場合にその構造が歪みやすく、特に、シリコンのように充放電に伴う体積変化が大きい負極活物質を用いた場合に顕著である。そのため、捲回型電池では、充放電に伴う容量低下を防ぐことが難しい。これに対して、積層ラミネート型電池は、充放電に伴う体積変化が大きい活物質を用いた場合に適している。なお、「平面的な積層構造」とは、積層された各電極がシート状体であり、平面状のまま積層配置(シート状体の外周縁が周端部であるまま積層)されていることを意味し、電極積層体が折り曲げられた構造や、電極積層体が捲き回された構造と区別される。 A laminated laminate type battery using an electrode laminate having such a planar laminate structure has a smaller R portion (for example, a wound type) than a wound battery using an electrode laminate having a wound structure. Since there is no region close to the winding core of the structure or the folded region of the flat wound structure, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charge / discharge. At this time, it is desirable that the separator and the electrode are not fixed to each other by adhesion or the like, and stress due to a change in the volume of the electrode can be relieved as compared with the case where the separator is fixed. On the other hand, since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode, and in particular, a negative electrode active material having a large volume change due to charge / discharge, such as silicon, is used. It is remarkable in the case. For this reason, it is difficult to prevent a capacity decrease associated with charge / discharge in a wound battery. On the other hand, the laminated laminate type battery is suitable when an active material having a large volume change accompanying charging / discharging is used. In addition, “planar laminated structure” means that each laminated electrode is a sheet-like body, and is laminated in a planar form (laminated with the outer peripheral edge of the sheet-like body being the peripheral edge). Is distinguished from a structure in which the electrode stack is bent or a structure in which the electrode stack is wound.
 このような積層ラミネート型電池であっても、シリコンのように充放電に伴う体積変化が大きい金属(a)を含む負極を用いた場合、負極の体積変化が充放電サイクル特性に悪影響を与える。 Even in such a laminated battery, when a negative electrode containing a metal (a) having a large volume change due to charge / discharge, such as silicon, is used, the negative electrode volume change adversely affects the charge / discharge cycle characteristics.
 水に対する接触角が70°未満、好ましくは65°未満、より好ましくは60°以下の樹脂成分を用いることにより、負極活物質粒子との濡れ性が高いため、負極活物質粒子との密着性が高まるとともに、樹脂成分が負極活物質粒子間に均一に分布した負極を形成することができる。特に、負極活物質粒子が、シリコンやシリコン酸化物のように比較的親水性の高い表面をもつ場合に効果的である。 By using a resin component having a contact angle with water of less than 70 °, preferably less than 65 °, more preferably 60 ° or less, the wettability with the negative electrode active material particles is high. As it increases, a negative electrode in which the resin component is uniformly distributed between the negative electrode active material particles can be formed. This is particularly effective when the negative electrode active material particles have a relatively hydrophilic surface such as silicon or silicon oxide.
 このような樹脂成分として、トリメリット酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のアミドイミド構造単位、又は芳香族テトラカルボン酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のイミド構造単位を含む樹脂を用いると、機械的特性に優れるため、上記の密着性および均一分布と相俟って、負極の体積変化に起因するサイクル特性の劣化を効果的に抑えることができる。 As such a resin component, an amide imide structure unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structure derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof When a resin containing a unit is used, the mechanical characteristics are excellent, and therefore the deterioration of the cycle characteristics due to the volume change of the negative electrode can be effectively suppressed in combination with the adhesion and the uniform distribution.
 樹脂の表面に水素結合性の官能基が存在することにより、水との接触角は小さくなり、したがって負極活物質粒子に対する密着性や分布の均一性が向上する傾向にある。このような官能基濃度が高い樹脂ほど、接触角は小さくなる傾向を示す。イミド構造単位またはアミドイミド構造単位のイミド環のカルボニル部位は、水素結合可能であるが、アミドイミド構造単位のアミド基は水素結合をより形成しやすい。したがって、樹脂を構成する酸成分の単位のうちトリメリット酸の単位の比率が高いものほど、アミド基の比率が高くなるため、接触角は小さくなる傾向にある。また、樹脂の分子量が小さいものほど、末端のアミノ基や末端のカルボキシル基の比率が大きくなるので、接触角が小さくなる傾向にある。 The presence of hydrogen-bonding functional groups on the resin surface reduces the contact angle with water, and thus tends to improve the adhesion to the negative electrode active material particles and the uniformity of distribution. The higher the functional group concentration, the smaller the contact angle. The carbonyl moiety of the imide ring of the imide structural unit or the amide imide structural unit can form a hydrogen bond, but the amide group of the amide imide structural unit more easily forms a hydrogen bond. Accordingly, the higher the ratio of trimellitic acid units among the acid component units constituting the resin, the higher the ratio of amide groups, the smaller the contact angle. Moreover, since the ratio of the terminal amino group or the terminal carboxyl group increases as the molecular weight of the resin decreases, the contact angle tends to decrease.
 サイクル特性劣化の原因には、負極の体積変化に加えて、電池内でのガス発生がある。特に、積層ラミネート型電池は、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい。これは、捲回型電池では電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層ラミネート型電池では電極間の間隔が広がりやすいためである。外装体がアルミラミネートフィルムである場合、この問題は特に顕著となる。 The cause of cycle characteristics deterioration is gas generation in the battery in addition to the volume change of the negative electrode. In particular, in laminated laminated batteries, when gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because in the wound battery, the distance between the electrodes is difficult to increase because tension is applied to the electrodes, whereas in the laminated laminate battery, the distance between the electrodes is likely to increase. This problem is particularly noticeable when the outer package is an aluminum laminate film.
 さらに、電解液が炭酸エステル溶媒やカルボン酸エステル溶媒を含む場合、この問題がより一層顕著となる。 Furthermore, when the electrolytic solution contains a carbonate ester solvent or a carboxylic acid ester solvent, this problem becomes more prominent.
 本実施形態における特定のアミドイミド構造単位またはイミド構造単位を含む樹脂成分を用いることにより、特に特定のポリアミドイミド構造単位を含む樹脂を用いることにより、上記の密着性と均一分布と相俟って、ガス発生を効果的に抑えることができる。すなわち、ガスを発生させやすい高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池においても、長寿命駆動を行うことが可能になる。 By using the resin component containing the specific amideimide structural unit or the imide structural unit in the present embodiment, particularly by using the resin containing the specific polyamideimide structural unit, in combination with the above adhesiveness and uniform distribution, Gas generation can be effectively suppressed. That is, even in a laminated laminate type lithium ion secondary battery using a high energy type negative electrode that easily generates gas, it is possible to perform long-life driving.
 以下、本実施形態による二次電池の構成要素を順に説明する。 Hereinafter, the components of the secondary battery according to the present embodiment will be described in order.
 [1]負極
 本実施形態における負極は、負極活物質材料と樹脂成分を含み、この樹脂成分は主成分としてポリアミドイミド樹脂又はポリイミド樹脂を含む。この負極活物質材料は、この樹脂成分によって被覆されていることが好ましい。
[1] Negative Electrode The negative electrode in the present embodiment includes a negative electrode active material and a resin component, and the resin component includes a polyamideimide resin or a polyimide resin as a main component. The negative electrode active material is preferably covered with the resin component.
 この負極は、集電体をさらに含むことができ、この集電体上に、負極活物質材料とこの樹脂成分を含む負極活物質層を設けることができる。この負極活物質材料は、この樹脂成分によってこの集電体に結着させることができる。また、この樹脂成分は、負極活物質層に含まれる負極活物質材料の粒子間を結着することができる。 The negative electrode can further include a current collector, and a negative electrode active material layer including the negative electrode active material and the resin component can be provided on the current collector. The negative electrode active material can be bound to the current collector by the resin component. Moreover, this resin component can bind between the particles of the negative electrode active material contained in the negative electrode active material layer.
 本実施形態における負極活物質材料は、リチウムと合金可能な金属(a)を含む。この負極活物質材料は、さらに金属酸化物(b)、又はリチウムを吸蔵放出し得る炭素材料(c)を含むことができる。本実施形態における負極活物質材料は、金属(a)及び金属酸化物(b)を含むことが好ましく、金属(a)、金属酸化物(b)及び炭素材料(c)を含んでいることがより好ましい。 The negative electrode active material in this embodiment includes a metal (a) that can be alloyed with lithium. The negative electrode active material can further include a metal oxide (b) or a carbon material (c) that can occlude and release lithium. The negative electrode active material in the present embodiment preferably contains a metal (a) and a metal oxide (b), and contains a metal (a), a metal oxide (b), and a carbon material (c). More preferred.
 金属(a)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上を含む合金を用いることができる。特に、金属(a)としてシリコン(Si)又はシリコン含有金属が好ましく、シリコンがより好ましい。 As the metal (a), Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can. In particular, silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
 負極活物質材料中の金属(a)の含有率は、充放電容量等の点から、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、また、充放電サイクル寿命等の点から、90質量%以下が好ましく、80質量%以下がより好ましく、50質量%以下とすることがさらに好ましい。 The content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more from the viewpoint of charge / discharge capacity, and charge / discharge. 90 mass% or less is preferable from points, such as cycle life, 80 mass% or less is more preferable, It is more preferable to set it as 50 mass% or less.
 金属酸化物(b)としては、シリコン酸化物、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの二種以上を含む複合酸化物を用いることができる。特に、金属酸化物(b)としてシリコン酸化物を含むことが好ましい。これは、シリコン酸化物は、比較的安定で他の化合物との反応を起こしにくいからである。また、金属酸化物(b)に、窒素、ホウ素、イオウから選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(b)の電気伝導性を向上させることができる。 As the metal oxide (b), silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used. In particular, it is preferable to contain silicon oxide as the metal oxide (b). This is because silicon oxide is relatively stable and hardly reacts with other compounds. In addition, one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
 負極活物質材料中の金属酸化物(b)の含有率は、充放電サイクル寿命の改善等の観点から、5質量%以上が好ましく、15質量%以上がより好ましく、45質量%以上がさらに好ましく、また、集電性等の観点から、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the metal oxide (b) in the negative electrode active material is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 45% by mass or more from the viewpoint of improving the charge / discharge cycle life. In addition, from the viewpoint of current collection and the like, 90% by mass or less is preferable, 80% by mass or less is more preferable, and 70% by mass or less is more preferable.
 金属酸化物(b)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造をもつ金属酸化物(b)は、他の負極活物質成分である炭素材料(c)や金属(a)の体積膨張の抑制効果が大きい。また、アモルファス構造をもつ金属酸化物(b)は、結晶粒界や欠陥といった不均一性への寄与が比較的少ないと考えられる。金属酸化物(b)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(b)がアモルファス構造を有しない場合には、金属酸化物(b)に固有のピークが観測されるが、金属酸化物(b)の全部または一部がアモルファス構造を有する場合は、金属酸化物(b)に固有のピークがブロードとなって観測される。 The metal oxide (b) preferably has an amorphous structure in whole or in part. The metal oxide (b) having an amorphous structure has a large effect of suppressing the volume expansion of the carbon material (c) and the metal (a) which are other negative electrode active material components. Further, it is considered that the metal oxide (b) having an amorphous structure contributes relatively little to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. When it has a structure, a peak specific to the metal oxide (b) is observed as a broad.
 金属酸化物(b)中には、金属(a)の全部または一部が分散していることが好ましい。アモルファス金属酸化物(b)中に金属(a)を分散することができる。金属(a)の少なくとも一部を金属酸化物(b)中に分散させることで、負極全体としての体積膨張をより抑制することができる。なお、金属(a)の全部または一部が金属酸化物(b)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(a)を含むサンプルの断面を観察し、金属酸化物(b)中に分散している粒子の酸素濃度を測定し、粒子を構成している金属(a)が酸化物となっていないことを確認することができる。 It is preferable that all or part of the metal (a) is dispersed in the metal oxide (b). The metal (a) can be dispersed in the amorphous metal oxide (b). By dispersing at least a part of the metal (a) in the metal oxide (b), the volume expansion of the entire negative electrode can be further suppressed. Note that all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is oxidized. It can be confirmed that it is not a thing.
 金属酸化物(b)は、金属(a)と同種の金属の酸化物であることが好ましい。例えば、金属(a)がシリコンを含む金属であり、金属酸化物(b)がシリコン酸化物を含む場合が好ましく、金属(a)が単体シリコン(Si)であり、金属酸化物(b)がシリコン酸化物である場合、金属(a)がシリコンとスズ(Sn)の合金であり、金属酸化物(b)が、シリコン酸化物あるいはケイ素とスズの複合酸化物である場合が挙げられる。特に、金属(a)が単体シリコンであり、金属酸化物(b)がシリコン酸化物である場合が好ましい。 The metal oxide (b) is preferably an oxide of the same kind of metal as the metal (a). For example, the case where the metal (a) is a metal containing silicon and the metal oxide (b) contains a silicon oxide is preferable, the metal (a) is simple silicon (Si), and the metal oxide (b) is In the case of silicon oxide, the metal (a) is an alloy of silicon and tin (Sn), and the metal oxide (b) is silicon oxide or a composite oxide of silicon and tin. In particular, it is preferable that the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
 負極活物質材料中の金属(a)と金属酸化物(b)の質量比率(a/b)は、特に制限はないが、5/95~90/10の範囲に設定することが好ましく、10/90~80/20の範囲に設定することがより好ましく、30/70~60/40の範囲に設定することができる。 The mass ratio (a / b) between the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited, but is preferably set in the range of 5/95 to 90/10. More preferably, it is set within the range of / 90 to 80/20, and can be set within the range of 30/70 to 60/40.
 炭素材料(c)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの2種以上を含む複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 As the carbon material (c), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 負極活物質材料中の炭素材料(c)の含有率は、導電性や充放電サイクル寿命等の向上の観点から、1質量%以上が好ましく、2質量%以上がより好ましく、また、充放電容量を十分に確保する等の観点から、50質量%以下が好ましく、30質量%以下がより好ましい。 The content of the carbon material (c) in the negative electrode active material is preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of improving conductivity and charge / discharge cycle life, and the charge / discharge capacity. Is preferably 50% by mass or less, and more preferably 30% by mass or less, from the viewpoint of sufficiently ensuring the above.
 負極活物質材料に含まれる金属(a)、金属酸化物(b)および炭素材料(c)は、特に制限するものではないが、それぞれ粒子状のものを含むことができる。負極活物質材料を粒子の集合体とすることにより、異種材料粒子間の拘束力を適度に保つことができるため、充放電に伴う体積変化の差に起因する残留応力や残留歪みの発生を抑えることができる。さらに、金属(a)の平均粒子径は、炭素材料(c)の平均粒子径および金属酸化物(b)の平均粒子径よりも小さいことが好ましい。このようにすれば、充放電時に伴う体積変化の大きい金属(a)が相対的に小粒径となり、体積変化の比較的小さい金属酸化物(b)及び炭素材料(c)が相対的に大粒径となるため、デンドライトの生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子と小粒径の粒子が交互にリチウムを吸蔵放出し、これにより、残留応力および残留歪みの発生をより効果的に抑制できる。金属(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下が好ましく、10μm以下がより好ましく、5μm以下とすることもできる。ここで平均粒径は、レーザー回折散乱法による粒度分布測定により得られる50%累積径D50(メジアン径)である。 The metal (a), the metal oxide (b), and the carbon material (c) contained in the negative electrode active material are not particularly limited, but can each include particles. By making the negative electrode active material material an aggregate of particles, the restraining force between different kinds of material particles can be maintained moderately, so the occurrence of residual stress and residual strain due to the difference in volume change associated with charge / discharge is suppressed. be able to. Furthermore, the average particle diameter of the metal (a) is preferably smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b). In this way, the metal (a) having a large volume change during charge / discharge has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a relatively small volume change are relatively large. Because of the particle size, dendrite formation and alloy pulverization are more effectively suppressed. In addition, during the charge / discharge process, the large particle size and the small particle size alternately occlude and release lithium, whereby the generation of residual stress and residual strain can be more effectively suppressed. The average particle diameter of the metal (a) can be, for example, 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less, and can also be 5 μm or less. Here, the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
 金属(a)の粒子、金属酸化物(b)の粒子、及び炭素材料(c)の粒子を負極活物質材料として含む負極は、これらの粒子とポリアミドイミド樹脂(必要によりバインダー樹脂)と溶剤を含むスラリーを調製し、これを集電体上に塗布し、乾燥、圧縮することにより形成することができる。 The negative electrode including metal (a) particles, metal oxide (b) particles, and carbon material (c) particles as a negative electrode active material comprises these particles, a polyamide-imide resin (binder resin if necessary), and a solvent. It can be formed by preparing a slurry containing, applying this onto a current collector, drying and compressing.
 負極活物質材料として、金属(a)の粒子、金属酸化物(b)の粒子、及び炭素材料(c)の粒子をメカニカルミリングすることにより、複合粒子Aとして形成することができる。この複合粒子A(負極活物質粒子)とポリアミドイミド樹脂(必要によりバインダー樹脂)と溶剤を含むスラリーを調製し、これを集電体上に塗布し、乾燥、圧縮することにより負極を形成することができる。この複合粒子の表面に炭素材料を被覆することもできる。 As the negative electrode active material, composite particles A can be formed by mechanically milling metal (a) particles, metal oxide (b) particles, and carbon material (c) particles. A slurry containing the composite particles A (negative electrode active material particles), a polyamide-imide resin (binder resin if necessary) and a solvent is prepared, applied to a current collector, dried and compressed to form a negative electrode. Can do. The surface of the composite particle can be coated with a carbon material.
 負極活物質材料は、金属(a)と金属酸化物(b)を含む複合粒子Bと、炭素材料を含むことができる。この複合粒子Bと炭素材料を含む負極活物質材料としては、複合粒子Bと炭素材料の粒子をメカニカルミリングすることにより得ることができ、あるいは複合粒子Bを炭素材料で被覆することにより得ることができる。 The negative electrode active material can include a composite particle B containing a metal (a) and a metal oxide (b), and a carbon material. The negative electrode active material containing the composite particles B and the carbon material can be obtained by mechanical milling the composite particles B and the carbon material particles, or can be obtained by coating the composite particles B with a carbon material. it can.
 複合粒子Bを炭素で被覆する方法は、有機化合物と複合粒子Bを混合し焼成する方法や、メタン等の有機化合物の気体雰囲気下に複合粒子Bを導入して熱CVD(thermal chemical vapor deposition)を行う方法が挙げられる。 The method of coating the composite particle B with carbon includes a method in which the organic compound and the composite particle B are mixed and fired, or a thermal chemical vapor deposition (CVD) by introducing the composite particle B into a gas atmosphere of an organic compound such as methane. The method of performing is mentioned.
 金属(a)と金属酸化物(b)を含む複合粒子Bは、例えば、金属(a)と金属酸化物(b)を高温減圧下で焼結させることにより得ることができる。また、金属(a)と金属酸化物(b)をメカニカルミリングすることにより得ることができる。 The composite particle B containing the metal (a) and the metal oxide (b) can be obtained, for example, by sintering the metal (a) and the metal oxide (b) under high temperature and reduced pressure. Moreover, it can obtain by carrying out mechanical milling of a metal (a) and a metal oxide (b).
 また、金属(a)と金属酸化物(b)を含む複合粒子Bは、金属酸化物(b)の全部または一部がアモルファス構造を有し、金属(a)の全部または一部が金属酸化物(b)中に分散している形態をとることができる。このような形態の複合粒子Bが炭素材料で被覆された負極活物質材料は、例えば、特許文献3(特開2004-47404号公報)に記載されている方法で作製することができる。具体的には、例えば、金属酸化物(b)をメタン等の有機化合物のガス雰囲気下、900~1400℃で金属酸化物(b)を不均化するとともに熱CVDを行う。これにより、金属酸化物(b)中の金属元素が金属酸化物(b)中でナノクラスター化して複合粒子Bが形成するとともに、この複合粒子Bの表面が炭素材料(c)で被覆される。他の方法として、金属(a)と、非晶質の金属酸化物(b)をメカニカルミリングすることにより得ることができる。 In addition, in the composite particle B containing the metal (a) and the metal oxide (b), all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) is metal oxidized. It can take the form which is disperse | distributing in the thing (b). The negative electrode active material in which the composite particles B having such a form are coated with a carbon material can be produced by, for example, a method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404). Specifically, for example, the metal oxide (b) is disproportionated at 900 to 1400 ° C. in a gas atmosphere of an organic compound such as methane, and thermal CVD is performed. Thereby, the metal elements in the metal oxide (b) are nanoclustered in the metal oxide (b) to form composite particles B, and the surface of the composite particles B is covered with the carbon material (c). . As another method, the metal (a) and the amorphous metal oxide (b) can be obtained by mechanical milling.
 負極活物質材料の全体としての比表面積(一般的なBET比表面積測定による)は、0.2m/g以上が好ましく、1.0m/g以上がより好ましく、2.0m/g以上がさらに好ましく、また、9.0m/g以下が好ましく、8.0m/g以下がより好ましく、7.0m/g以下がさらに好ましい。負極活物質材料の比表面積が小さいと、ポリアミドイミドによるコーティングが均一になる傾向にあるが、Liイオンの脱挿入がスムーズに行われなくなり、高抵抗となり、出力特性などの電池特性が低くなる傾向がある。逆に、負極活物質材料の比表面積が大きいと、Liイオンの脱挿入が容易になり低抵抗・高出力となる傾向があるが、ポリアミドイミドによるコーティングが不均一になりやすく、高温サイクル時のガス発生が大きくなり、寿命特性などの電池特性が低くなる傾向がある。 The specific surface area of the negative electrode active material as a whole (by general BET specific surface area measurement) is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, and 2.0 m 2 / g or more. but more preferably, and is preferably 9.0 m 2 / g or less, more preferably 8.0 m 2 / g or less, more preferably 7.0 m 2 / g or less. If the specific surface area of the negative electrode active material is small, the coating with polyamideimide tends to be uniform, but Li ions are not smoothly inserted and removed, resulting in high resistance and low battery characteristics such as output characteristics. There is. Conversely, when the specific surface area of the negative electrode active material is large, Li ions can be easily removed and inserted, and there is a tendency for low resistance and high output. Gas generation increases and battery characteristics such as life characteristics tend to be lowered.
 負極活物質材料の平均粒径は、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、また、30μm以下が好ましく、20μm以下がより好ましい。製造時の取り扱い性や、成膜のし易さ、製造後の電池特性等の観点からこのような範囲に設定することが好ましい。ここで平均粒径は、レーザー回折散乱法による粒度分布測定により得られる50%累積径D50(メジアン径)である。 The average particle diameter of the negative electrode active material is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and preferably 30 μm or less, more preferably 20 μm or less. It is preferable to set in such a range from the viewpoint of handling at the time of manufacture, easiness of film formation, battery characteristics after manufacture, and the like. Here, the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
 負極の樹脂成分は、トリメリット酸又はその誘導体と芳香族ジアミン又はその誘導体とに由来のアミドイミド構造単位を含む樹脂、又は芳香族テトラカルボン酸又はその誘導体と芳香族ジアミン又はその誘導体とに由来のイミド構造単位を含む樹脂を含む。 The resin component of the negative electrode is derived from a resin containing an amide-imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof. Includes resins containing imide structural units.
 この樹脂成分の一つとして、トリメリット酸又はその誘導体と芳香族ジアミン又はその誘導体とに由来のアミドイミド構造単位を含む樹脂(以下「ポリアミドイミド樹脂」)は、耐電解液性および耐熱性に優れ、バインダーとして優れた特性を有するとともに、負極活物質と電解液の溶媒に起因するガス発生の抑制機能を有することができる。 As one of the resin components, a resin containing an amide imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof (hereinafter referred to as “polyamide imide resin”) has excellent electrolytic solution resistance and heat resistance. In addition to having excellent properties as a binder, it can have a function of suppressing gas generation caused by the negative electrode active material and the solvent of the electrolytic solution.
 このようなポリアミドイミド樹脂は、トリメリット酸又はその誘導体と(無水トリメリット酸もしくはその酸塩化物等)(以下、これらを総称して「芳香族トリカルボン酸成分」という。)と、芳香族ジアミン又はその誘導体(芳香族ジイソシアネート、芳香環に置換基をもつ置換体等)(以下、これらを総称して「芳香族ジアミン成分」という。)との反応により得ることができる。例えば、無水トリメリット酸と芳香族ジアミンとの反応、無水トリメリット酸と芳香族ジイソシアネートとの反応、無水トリメリット酸クロライドと芳香族ジアミンとの反応により得ることができる。ポリアミドイミド樹脂の製造方法としては、特に限定されないが、通常の溶融重合法や溶液重合法により製造することができる。その際、酸成分とジアミン成分は、通常等モル混合するが、必要に応じて一方の成分を過剰に混合してもよい。 Such a polyamideimide resin includes trimellitic acid or a derivative thereof (such as trimellitic anhydride or acid chloride thereof) (hereinafter collectively referred to as “aromatic tricarboxylic acid component”), an aromatic diamine. Alternatively, it can be obtained by a reaction with a derivative thereof (aromatic diisocyanate, substituted product having a substituent on an aromatic ring, etc.) (hereinafter collectively referred to as “aromatic diamine component”). For example, it can be obtained by reaction of trimellitic anhydride and aromatic diamine, reaction of trimellitic anhydride and aromatic diisocyanate, reaction of trimellitic anhydride chloride and aromatic diamine. Although it does not specifically limit as a manufacturing method of a polyamidoimide resin, It can manufacture by a normal melt polymerization method or solution polymerization method. At that time, the acid component and the diamine component are usually mixed in an equimolar amount, but if necessary, one component may be excessively mixed.
 このポリアミドイミド樹脂の芳香族トリカルボン酸成分の単位は、その一部を、ピロメリット酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ジフェニルチオエーテル-3,3’,4,4’-テトラカルボン酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸等の芳香族多価カルボン酸成分(その酸無水物、酸塩化物、芳香族に置換基をもつ置換体等の誘導体を含む)の単位に置き換えてもよい。これらの芳香族多価カルボン酸成分は、一種または二種以上を併用して用いることができる。この場合、所望の特性を損なわない観点から、置き換え前のポリアミドイミド樹脂の芳香族トリカルボン酸成分の単位に対する、芳香族多価カルボン酸成分の単位の置き換え率は、40モル%未満が好ましく、30モル%未満がより好ましく、20モル%未満がさらに好ましい。すなわち、全酸成分(芳香族トリカルボン酸成分と芳香族多価カルボン酸成分との合計)の単位に対する芳香族トリカルボン酸成分の単位の比率は、60モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。 A part of the aromatic tricarboxylic acid component unit of this polyamide-imide resin is a part of pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4 ′. -Tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, diphenylthioether-3,3', 4,4'-tetracarboxylic acid, benzophenone-3,3 ', 4,4'- It may be replaced with a unit of an aromatic polyvalent carboxylic acid component such as tetracarboxylic acid (including derivatives such as acid anhydrides, acid chlorides, and substituents having aromatic substituents). These aromatic polyvalent carboxylic acid components can be used alone or in combination of two or more. In this case, from the viewpoint of not damaging the desired properties, the replacement ratio of the aromatic polycarboxylic acid component unit to the aromatic tricarboxylic acid component unit of the polyamideimide resin before replacement is preferably less than 40 mol%, 30 Less than mol% is more preferable, and less than 20 mol% is more preferable. That is, the ratio of the unit of the aromatic tricarboxylic acid component to the unit of the total acid component (the total of the aromatic tricarboxylic acid component and the aromatic polycarboxylic acid component) is preferably 60 mol% or more, more preferably 70 mol% or more. Preferably, 80 mol% or more is more preferable.
 また、本実施形態におけるポリアミドイミド樹脂は、その所望の特性を損なわない範囲で、芳香族トリカルボン酸成分の単位の一部を、上記の芳香族多価カルボン酸成分以外の他の多価カルボン酸成分の単位と置き換えてもよい。その他の多価カルボン酸成分として、アジピン酸、セバシン酸、アゼライン酸等の脂肪族ジカルボン酸(又はその酸無水物、酸塩化物);イソフタル酸、テレフタル酸等の芳香族ジカルボン酸(又はその酸無水物、酸塩化物);ブタン-1,2,3,4-テトラカルボン酸等の脂肪族多価カルボン酸(又はその酸無水物、酸塩化物)が挙げられる。この場合、所望の特性を損なわない観点から、置き換え前のポリアミドイミド樹脂の芳香族トリカルボン酸成分の単位に対する、他の多価カルボン酸成分の単位の置き換え率は、10モル%未満が好ましく、5モル%未満がより好ましい。その他の多価カルボン酸成分としては、芳香族カルボン酸成分が好ましい。 In addition, the polyamideimide resin in the present embodiment is a polyvalent carboxylic acid other than the aromatic polycarboxylic acid component described above, with a part of the unit of the aromatic tricarboxylic acid component within a range that does not impair the desired characteristics. It may be replaced with the unit of the component. Other polyvalent carboxylic acid components include aliphatic dicarboxylic acids (or acid anhydrides and acid chlorides thereof) such as adipic acid, sebacic acid and azelaic acid; aromatic dicarboxylic acids such as isophthalic acid and terephthalic acid (or acids thereof) Anhydrides, acid chlorides); aliphatic polycarboxylic acids (or acid anhydrides, acid chlorides thereof) such as butane-1,2,3,4-tetracarboxylic acid. In this case, from the viewpoint of not impairing desired properties, the replacement ratio of other polycarboxylic acid component units to the aromatic tricarboxylic acid component units of the polyamideimide resin before replacement is preferably less than 10 mol%. Less than mol% is more preferable. As other polyvalent carboxylic acid components, aromatic carboxylic acid components are preferable.
 本実施形態におけるポリアミドイミド樹脂に含まれる全酸成分(芳香族トリカルボン酸成分と芳香族多価カルボン酸成分とその他の多価カルボン酸成分の合計)の単位に占める芳香族トリカルボン酸成分の単位の比率は、60モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。すなわち、酸成分とジアミン成分との縮合構造単位の全体に対する、芳香族トリカルボン酸成分と芳香族ジアミン成分とのアミドイミド構造単位の比率は、60モル%以上が好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。本実施形態におけるポリアミドイミド樹脂は、その酸成分の単位の全てが芳香族カルボン酸成分の単位であることが特に好ましい。 The unit of the aromatic tricarboxylic acid component in the unit of the total acid component (total of aromatic tricarboxylic acid component, aromatic polyvalent carboxylic acid component and other polyvalent carboxylic acid component) contained in the polyamideimide resin in the present embodiment The ratio is preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more. That is, the ratio of the amide-imide structural unit of the aromatic tricarboxylic acid component and the aromatic diamine component to the whole condensation structural unit of the acid component and the diamine component is preferably 60 mol% or more, more preferably 70 mol% or more, 80 mol% or more is more preferable. As for the polyamideimide resin in this embodiment, it is especially preferable that all the units of the acid component are units of an aromatic carboxylic acid component.
 本実施形態におけるポリアミドイミド樹脂に用いられる芳香族ジアミン成分としては、1,3-フェニレンジアミン、1,4-フェニレンジアミン等のフェニレンジアミン;ビフェニル-4,4’-ジアミン、ビフェニル-3,4’-ジアミン、ビフェニル-3,3’-ジアミン、ビフェニル-2,2’-ジアミン等のビフェニルジアミン(ジアミノビフェニル);4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル等のジアミノジフェニルエーテル;4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン等のジアミノジフェニルメタン;4,4’-ジアミノジフェニルエタン、3,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン等のジアミノジフェニルエタン;4,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルプロパン等のジアミノジフェニルプロパン;4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン等のジアミノベンゾフェノン;4,4’-ジアミノジフェニルチオエーテル、3,4’-ジアミノジフェニルチオエーテル、3,3’-ジアミノジフェニルチオエーテル等のジアミノジフェニルチオエーテル;1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン等のビスアミノフェノキシベンゼン;4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン等のジアミノジフェニルスルホンが挙げられる。これらの芳香族ジアミン成分の芳香環に置換基を有していてもよく、この置換基としてはメチル基、エチル基等の炭素数1~4のアルキル基が挙げられる。また、これらの芳香族ジアミン成分のアミノ基をイソシアネート基で置き換えたジイソシアネートが挙げられる。これらの中でも、フェニレンジアミン、ビフェニルジアミン(ジアミノビフェニル)、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノベンゾフェノン、ジアミノジフェニルチオエーテル、ビスアミノフェノキシベンゼンから選ばれる芳香族ジアミンが好ましく、フェニレンジアミン、ビフェニルジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノベンゾフェノン、ジアミノジフェニルチオエーテルから選ばれる芳香族ジアミンがより好ましく、フェニレンジアミン、ビフェニルジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノベンゾフェノンから選ばれる芳香族ジアミンがさらに好ましく、フェニレンジアミン、ビフェニルジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテルから選ばれる芳香族ジアミンが特に好ましい。芳香族ジアミンは単独で用いても、二種以上を併用してもよい。樹脂の製造の際は、これらの芳香族ジアミン成分のアミノ基をイソシアネート基で置き換えたジイソシアネートを用いることができる。 Examples of the aromatic diamine component used in the polyamideimide resin in the present embodiment include 1,3-phenylenediamine, 1,4-phenylenediamine and other phenylenediamine; biphenyl-4,4′-diamine, biphenyl-3,4 ′ -Biphenyldiamine (diaminobiphenyl) such as diamine, biphenyl-3,3'-diamine, biphenyl-2,2'-diamine; 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether such as diaminodiphenyl ether; diaminodiphenylmethane such as 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane; 4,4′-diaminodiphenylethane, 3,4′-diaminodi Diaminodiphenylethanes such as phenylethane, 3,3′-diaminodiphenylethane; diaminodiphenylpropanes such as 4,4′-diaminodiphenylpropane, 3,4′-diaminodiphenylpropane, 3,3′-diaminodiphenylpropane; Diaminobenzophenones such as 4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminobenzophenone; 4,4'-diaminodiphenylthioether, 3,4'-diaminodiphenylthioether, 3,3'-diamino Diaminodiphenylthioethers such as diphenylthioether; 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,4 -Screw (3 Aminophenoxy) bis aminophenoxy benzene such as benzene, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, and a diaminodiphenyl sulfone such as 3,4'-diaminodiphenyl sulfone. The aromatic ring of these aromatic diamine components may have a substituent, and examples of the substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group and an ethyl group. Moreover, the diisocyanate which substituted the amino group of these aromatic diamine components with the isocyanate group is mentioned. Among these, aromatic diamines selected from phenylenediamine, biphenyldiamine (diaminobiphenyl), diaminodiphenylmethane, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylthioether, and bisaminophenoxybenzene are preferable, and phenylenediamine, biphenyldiamine, diaminodiphenylmethane, and diamino An aromatic diamine selected from diphenyl ether, diaminobenzophenone and diaminodiphenyl thioether is more preferable, and an aromatic diamine selected from phenylenediamine, biphenyldiamine, diaminodiphenylmethane, diaminodiphenyl ether and diaminobenzophenone is more preferable, and phenylenediamine, biphenyldiamine and diaminodiphenyl. Meta , Aromatic diamines selected from diaminodiphenyl ether is particularly preferable. Aromatic diamines may be used alone or in combination of two or more. In the production of the resin, diisocyanate in which the amino group of these aromatic diamine components is replaced with an isocyanate group can be used.
 本実施形態におけるポリアミドイミド樹脂は、その所望の特性を損なわない範囲で、芳香族ジアミン成分の単位の一部を他のジアミン成分の単位と置き換えてもよい。この場合、置き換え前のポリアミドイミド樹脂の芳香族ジアミン成分の単位に対する、他のジアミン成分の単位の置き換え率は、10モル%未満が好ましく、5モル%未満がより好ましい。すなわち、本実施形態におけるポリアミド樹脂に含まれる全ジアミン成分の単位に占める芳香族ジアミン成分の単位の比率は、90モル%以上が好ましく、95モル%以上がより好ましい。本実施形態におけるポリアミドイミド樹脂は、そのジアミン成分の単位の全てが芳香族ジアミン成分の単位であることが特に好ましい。すなわち、本実施形態におけるポリアミドイミド樹脂において、芳香族多価カルボン酸成分および芳香族ジアミン成分に由来の芳香族縮合単位(前記アミドイミド構造単位を含む)の含有比率は、90モル%以上が好ましく、95モル%以上がより好ましく、100モル%がさらに好ましい。 The polyamide-imide resin in the present embodiment may replace a part of the unit of the aromatic diamine component with the unit of another diamine component as long as the desired characteristics are not impaired. In this case, the replacement ratio of the units of the other diamine component with respect to the units of the aromatic diamine component of the polyamideimide resin before replacement is preferably less than 10 mol%, and more preferably less than 5 mol%. That is, the ratio of the aromatic diamine component units to the total diamine component units contained in the polyamide resin in the present embodiment is preferably 90 mol% or more, more preferably 95 mol% or more. As for the polyamideimide resin in this embodiment, it is especially preferable that all the units of the diamine component are units of an aromatic diamine component. That is, in the polyamideimide resin in the present embodiment, the content ratio of the aromatic condensation unit derived from the aromatic polyvalent carboxylic acid component and the aromatic diamine component (including the amideimide structural unit) is preferably 90 mol% or more, 95 mol% or more is more preferable, and 100 mol% is further more preferable.
 シリコン等の金属(a)を負極活物質として用いた場合、充放電サイクルにより負極からガスが発生し、特に積層ラミネート型の二次電池においては電極間にガスが溜まって電池全体が膨れ、結果、接触不良等により容量が低下するという問題がある。このような問題を起こす負極活物質を、ポリアミドイミドで被覆するように負極中に均一に分布させることにより、電解液の還元分解によるCOなどのガス発生を抑制することができる。このようなガス発生抑制効果は、通常のポリイミドや、ポリイミドの前駆体であるポリアミド酸を用いた場合では見られない。イミド基を有しないポリアミドは、水やN-メチルピロリドン等の溶媒への溶解性が低く、負極の作製が困難である。これに対して、ポリアミドイミドは、水やN-メチルピロリドン等の溶媒への溶解性が高く、ポリアミドイミドが負極中に均一に分布する負極を容易に形成できる。さらに、ポリアミドイミドは、ポリイミドと同様に機械的強度が高いため、バインダーとしても機能することができる。そのため、負極中の樹脂成分の量を大幅に増やすことなく(すなわちエネルギー密度を大幅に低減させることなく)、ガス発生抑制効果を得ることができる。 When metal (a) such as silicon is used as the negative electrode active material, gas is generated from the negative electrode due to the charge / discharge cycle, and particularly in a laminated laminate type secondary battery, gas accumulates between the electrodes and the entire battery expands. There is a problem that the capacity decreases due to poor contact or the like. By uniformly distributing the negative electrode active material causing such a problem in the negative electrode so as to be coated with polyamideimide, generation of gas such as CO 2 due to reductive decomposition of the electrolytic solution can be suppressed. Such a gas generation suppression effect is not seen when using normal polyimide or polyamic acid which is a precursor of polyimide. Polyamide having no imide group has low solubility in a solvent such as water or N-methylpyrrolidone, and it is difficult to produce a negative electrode. On the other hand, polyamideimide has high solubility in a solvent such as water or N-methylpyrrolidone, and a negative electrode in which polyamideimide is uniformly distributed in the negative electrode can be easily formed. Furthermore, since polyamideimide has high mechanical strength like polyimide, it can also function as a binder. Therefore, the gas generation suppression effect can be obtained without significantly increasing the amount of the resin component in the negative electrode (that is, without significantly reducing the energy density).
 ポリアミドイミドによるガス発生抑制効果のメカニズムは明らかではないが、アミド結合に存在する水素原子が、電解液の還元分解時における負の触媒として機能すると推測される。金属(a)として特にシリコンを含む負極活物質を用いた場合、酸化還元反応によりシリコン表面に発生した活性なダングリングボンドを不活性化すると推測される。なお、負極活物質として、金属(a)であるシリコン又はシリコン含有金属を単独で用いるよりも、金属(a)のシリコン(又はシリコン含有金属)、金属酸化物(b)のシリコン酸化物、および炭素材料(c)を用いた方が、ガス発生抑制の点から好ましい。また、金属酸化物(b)の全部または一部をアモルファスとした方が、ガス発生抑制の点から好ましい。さらに、金属(a)の全部または一部が前記金属酸化物(b)中に分散している方が、ガス発生抑制の点から好ましい。 Although the mechanism of the gas generation suppression effect by polyamideimide is not clear, it is presumed that the hydrogen atom present in the amide bond functions as a negative catalyst during the reductive decomposition of the electrolytic solution. In particular, when a negative electrode active material containing silicon is used as the metal (a), it is presumed that active dangling bonds generated on the silicon surface by the oxidation-reduction reaction are inactivated. In addition, as the negative electrode active material, silicon (or silicon-containing metal) of metal (a), silicon oxide of metal oxide (b), and silicon (silicon-containing metal) that is metal (a), and The use of the carbon material (c) is preferable from the viewpoint of suppressing gas generation. Further, it is preferable that all or part of the metal oxide (b) is amorphous from the viewpoint of suppressing gas generation. Furthermore, it is preferable from the viewpoint of gas generation suppression that all or part of the metal (a) is dispersed in the metal oxide (b).
 一方、負極の樹脂成分として、前記のポリアミドイミド樹脂に代えて、芳香族テトラカルボン酸又はその誘導体と芳香族ジアミン又はその誘導体とに由来のイミド構造単位を含む樹脂(以下「ポリイミド樹脂」)を用いることができる。 On the other hand, as a resin component of the negative electrode, instead of the polyamide-imide resin, a resin containing an imide structural unit derived from an aromatic tetracarboxylic acid or derivative thereof and an aromatic diamine or derivative thereof (hereinafter referred to as “polyimide resin”). Can be used.
 この芳香族テトラカルボン酸としては、ピロメリット酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ジフェニルチオエーテル-3,3’,4,4’-テトラカルボン酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸から選ばれる一種または二種以上を用いることができる。 Examples of the aromatic tetracarboxylic acid include pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4′-tetracarboxylic acid, and diphenylether-3,3. One or two selected from ', 4,4'-tetracarboxylic acid, diphenylthioether-3,3', 4,4'-tetracarboxylic acid, benzophenone-3,3 ', 4,4'-tetracarboxylic acid The above can be used.
 芳香族テトラカルボン酸の誘導体としては、その酸無水物や酸塩化物、芳香環に置換基を有する置換体(この置換基としてはメチル基、エチル基等の炭素数1~4のアルキル基等)が挙げられる。 Derivatives of aromatic tetracarboxylic acids include acid anhydrides, acid chlorides, and substituents having substituents on the aromatic ring (the substituents include alkyl groups having 1 to 4 carbon atoms such as methyl and ethyl groups) ).
 この芳香族ジアミン又はその誘導体としては、前述の芳香族ポリアミドイミド樹脂に用いられる芳香族ジアミン成分を用いることができる。特に、フェニレンジアミン、ビフェニルジアミン(ジアミノビフェニル)、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノベンゾフェノン、ジアミノジフェニルチオエーテル、ビスアミノフェノキシベンゼンから選ばれる一種又は二種以上の芳香族ジアミン又はそれらの誘導体(ジイソシアネート、芳香環に置換基をもつ置換体等)を用いることができる。 As the aromatic diamine or derivative thereof, the aromatic diamine component used in the above-mentioned aromatic polyamideimide resin can be used. In particular, one or more aromatic diamines selected from phenylenediamine, biphenyldiamine (diaminobiphenyl), diaminodiphenylmethane, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylthioether, and bisaminophenoxybenzene, or derivatives thereof (diisocyanate, aromatic ring) Can be used.
 樹脂成分の負極活物質材料に対する質量比(樹脂成分の量Mbの負極活物質材料の量Mc(100質量部)に対する質量比Mb/Mc)は、7/100以上が好ましく、8/100以上がより好ましく、11/100以上がさらに好ましく、また、25/100以下が好ましく、20/100以下がより好ましく、15/100以下がさらに好ましい。樹脂成分が少なすぎると、樹脂が不均一に分布し、サイクル特性の改善効果が十分に得られず、ガス発生抑制効果や結着効果も低くなる。樹脂成分が多すぎるとエネルギー密度が低くなる。 The mass ratio of the resin component to the negative electrode active material (mass ratio Mb / Mc of the amount Mb of the resin component to the amount Mc (100 parts by mass) of the negative electrode active material) is preferably 7/100 or more, more preferably 8/100 or more. More preferably, 11/100 or more is more preferable, 25/100 or less is preferable, 20/100 or less is more preferable, and 15/100 or less is more preferable. If the resin component is too small, the resin is unevenly distributed, the effect of improving the cycle characteristics cannot be sufficiently obtained, and the gas generation suppressing effect and the binding effect are also lowered. When there are too many resin components, energy density will become low.
 本実施形態におけるポリアミドイミド樹脂およびポリイミド樹脂は、数平均分子量(Mn)が例えば5000~10万の範囲にあるものを用いることができ、5000~70000の範囲にあるものが好ましく、10000~70000の範囲にあるものがより好ましい。この数平均分子量(標準ポリスチレン換算)は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定することができる。分子量が低すぎると造膜性や結着力が低くなり、分子量が大きすぎると活物質層の成膜処理が困難になったり、均質な活物質層を形成しにくくなったりする。 As the polyamideimide resin and the polyimide resin in the present embodiment, those having a number average molecular weight (Mn) in the range of, for example, 5000 to 100,000 can be used, and those having a number average molecular weight in the range of 5000 to 70000 are preferable. Those within the range are more preferred. This number average molecular weight (standard polystyrene conversion) can be measured by gel permeation chromatography (GPC). If the molecular weight is too low, the film forming property and the binding force are lowered, and if the molecular weight is too large, it becomes difficult to form the active material layer or it is difficult to form a homogeneous active material layer.
 負極中の全樹脂成分に対するポリアミドイミド樹脂およびポリイミド樹脂の比率は、それぞれ、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。ポリアミドイミド樹脂とポリイミド樹脂を併用する場合は、負極中の全樹脂成分に対する、これらの樹脂の合計の比率が60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましい。ポリアミドイミド樹脂によるガス発生抑制効果を特に重視する場合は、ポリアミドイミド樹脂の比率を100質量%とすることができ、この場合でも十分な結着性を確保することができる。 The ratio of the polyamideimide resin and the polyimide resin to the total resin component in the negative electrode is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. When the polyamideimide resin and the polyimide resin are used in combination, the total ratio of these resins to the total resin components in the negative electrode is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. . In the case where the gas generation suppression effect by the polyamideimide resin is particularly emphasized, the ratio of the polyamideimide resin can be 100% by mass, and even in this case, sufficient binding properties can be ensured.
 ポリアミドイミド樹脂とポリイミド樹脂を併用する場合は、ガス発生抑制効果と、負極の体積変化に起因するサイクル特性低下の防止効果の両方を高いレベルで得ることができる。ガス発生抑制効果を重視する観点からは、ポリアミドイミド樹脂の量を多くすることが好ましく、ポリアミドイミド樹脂(PAI)のポリイミド樹脂(PI)に対する質量比率(PAI/PI)を60/40~90/10の範囲に設定することができる。 When the polyamideimide resin and the polyimide resin are used in combination, it is possible to obtain both a gas generation suppressing effect and a cycle characteristic deterioration preventing effect due to a negative electrode volume change at a high level. From the viewpoint of emphasizing the gas generation suppression effect, it is preferable to increase the amount of the polyamideimide resin, and the mass ratio (PAI / PI) of the polyamideimide resin (PAI) to the polyimide resin (PI) is 60/40 to 90 / A range of 10 can be set.
 負極中の樹脂成分は、所望の効果を損なわない範囲内で、上記のポリアミドイミド樹脂およびポリイミド樹脂以外の他の樹脂を含むことができる。他の樹脂としては、通常の負極用バインダーを用いることができ、例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、上記以外のポリアミドイミド、上記以外のポリイミド等を用いることができる。 The resin component in the negative electrode can contain other resins than the above polyamideimide resin and polyimide resin as long as the desired effect is not impaired. As the other resin, a normal negative electrode binder can be used, for example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer. Rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyamideimide other than the above, polyimide other than the above, and the like can be used.
 負極集電体としては、電気化学的な安定性の観点から、アルミニウム、ニッケル、銅、銀、およびそれらの合金から選ばれる材料を用いることが好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。負極集電体としては、特に、銅箔が好ましい。 As the negative electrode current collector, it is preferable to use a material selected from aluminum, nickel, copper, silver, and alloys thereof from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh. As the negative electrode current collector, a copper foil is particularly preferable.
 負極は、例えば次のようにして形成することができる。負極活物質材料、ポリアミドイミド樹脂、必要に応じて他の樹脂(バインダー)、溶媒を含む負極スラリーを調製し、この負極スラリーを負極集電体上に塗布し、乾燥することにより、負極集電体上に負極活物質層を形成することができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度に調整することができる。 The negative electrode can be formed, for example, as follows. A negative electrode current material is prepared by preparing a negative electrode slurry containing a negative electrode active material, a polyamide-imide resin, and other resins (binders) and a solvent as required. The negative electrode slurry is applied onto a negative electrode current collector and dried. A negative electrode active material layer can be formed on the body. The obtained electrode can be compressed by a method such as a roll press and adjusted to an appropriate density.
 溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、水等の極性溶媒、キシレン等の芳香族炭化水素、シクロヘキサノン等のケトン類を用いることができ、N-メチル-2-ピロリドン、水が好ましい。 As the solvent, polar solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, water, aromatic hydrocarbons such as xylene, ketones such as cyclohexanone, N-methyl-2-pyrrolidone, water, etc. can be used. Is preferred.
 負極材料の塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法などが挙げられる。予め負極活物質層を形成した後に、蒸着やスパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金等の金属薄膜を負極活物質層上に形成して、負極集電体としてもよい。 Examples of the method for applying the negative electrode material include a doctor blade method, a die coater method, and a dip coating method. After forming the negative electrode active material layer in advance, a metal thin film such as aluminum, nickel, or an alloy thereof may be formed on the negative electrode active material layer by a method such as vapor deposition or sputtering, and the negative electrode current collector may be used.
 負極スラリーの粘度は、回転式粘度計によるローター回転数10rpmにおける測定値として、1000~20000mPa・s(cP)の範囲にあることが好ましい。その際、負極活物質材料としては、BET比表面積が0.2~9.0m/gの範囲にあるものを用いることが好ましい。このような粘度範囲にある負極スラリーを用いることにより、負極活物質粒子に対して樹脂成分が均一に分布した負極活物質層を形成することができ、結果、ガス発生が抑えられ、サイクル特性に優れた二次電池を得ることができる。負極スラリーの粘度が低すぎると負極活物質層の形成自体が困難になる。 The viscosity of the negative electrode slurry is preferably in the range of 1000 to 20000 mPa · s (cP) as measured by a rotary viscometer at a rotor rotational speed of 10 rpm. At that time, it is preferable to use a negative electrode active material having a BET specific surface area in the range of 0.2 to 9.0 m 2 / g. By using a negative electrode slurry in such a viscosity range, a negative electrode active material layer in which the resin component is uniformly distributed with respect to the negative electrode active material particles can be formed, and as a result, gas generation is suppressed and cycle characteristics are improved. An excellent secondary battery can be obtained. If the viscosity of the negative electrode slurry is too low, the formation of the negative electrode active material layer itself becomes difficult.
 負極スラリーの粘度は、室温下で、米国製ブルックフィールドデジタル粘度計III Ultra(LVDV-III Ultra, RVDV-III Ultra, HADV-III Ultra, HBDV-III Ultra)を用い、ULアダプターを装着して測定することができる。 The viscosity of the negative electrode slurry is measured at room temperature using a Brookfield Digital Viscometer III Ultra (LVDV-III Ultra, RVDV-III Ultra, HADV-III Ultra, HBDV-III Ultra) manufactured in the United States. can do.
 [2]正極
 正極は、例えば、正極活物質とバインダーを含む正極活物質層が正極集電体上に設けられたものを用いることができる。
[2] Positive Electrode As the positive electrode, for example, a positive electrode active material layer including a positive electrode active material and a binder provided on a positive electrode current collector can be used.
 正極活物質としては、リチウムイオンを吸蔵放出可能な活物質を用いることができる。正極活物質としては、種々のリチウム金属酸化物を用いることができ、例えば、LiMnO、LiMn(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;マンガン酸リチウムのMnの一部を他の金属で置き換えたリチウム金属酸化物;LiCoO、LiNiO、これらの遷移金属(Co、Ni)の一部を他の金属で置き換えたリチウム金属酸化物;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が遷移金属全体の半数(原子数比)を超えないリチウム遷移金属酸化物;これらのリチウム金属酸化物において化学量論組成よりもLiを過剰に含むリチウム金属酸化物が挙げられる。これらの中でも、本実施形態に好適な正極活物質として、LiαNiβCoγAlδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)、又はLiαNiβCoγMnδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)を用いることができ、これらのリチウム金属酸化物においてγ≧0.1に設定でき、またδ≧0.01に設定できる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 As the positive electrode active material, an active material capable of occluding and releasing lithium ions can be used. As the positive electrode active material, various lithium metal oxides can be used. For example, lithium manganate having a layered structure or spinel structure such as LiMnO 2 , Li x Mn 2 O 4 (0 <x <2); Lithium metal oxide in which part of Mn of lithium acid is replaced with other metal; LiCoO 2 , LiNiO 2 , lithium metal oxide in which part of these transition metals (Co, Ni) is replaced with other metal; LiNi Lithium transition metal oxides in which specific transition metals such as 1/3 Co 1/3 Mn 1/3 O 2 do not exceed half of the total number of transition metals (atomic ratio); stoichiometric composition in these lithium metal oxides And lithium metal oxide containing Li in excess. Among these, as a positive electrode active material suitable for the present embodiment, Li α Ni β Co γ Al δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ), or Li α Ni β Co γ Mn δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ) can be used. In these lithium metal oxides, γ ≧ 0.1 can be set, and δ ≧ 0.01 can be set. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), or Li α Ni β Co γ Mn δ O 2 ( 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2) are preferable. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 正極用バインダーとしては、通常の負極用バインダーと同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用バインダーの量は、トレードオフの関係にある結着効果とエネルギー密度の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。 As the positive electrode binder, the same negative electrode binder as that of a normal negative electrode can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder to be used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoint of the binding effect and energy density which are in a trade-off relationship.
 正極集電体としては、電位的に安定ならば、負極集電体と同様のものを用いることができるが、特にアルミニウム箔が好ましい。 As the positive electrode current collector, the same one as the negative electrode current collector can be used as long as the potential is stable, but an aluminum foil is particularly preferable.
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 正極は、例えば次のようにして形成することができる。正極活物質、バインダー、溶媒、必要に応じて導電補助剤を含む正極スラリーを調製し、この正極スラリーを正極集電体上に塗布し、乾燥することにより、正極集電体上に正極活物質層を形成することができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度に調整することができる。溶媒としては、例えば、N-メチル-2-ピロリドンを用いることができる。 The positive electrode can be formed as follows, for example. A positive electrode active material, a binder, a solvent, and, if necessary, a positive electrode slurry containing a conductive auxiliary agent is prepared, and this positive electrode slurry is applied on the positive electrode current collector and dried to obtain a positive electrode active material on the positive electrode current collector A layer can be formed. The obtained electrode can be compressed by a method such as a roll press and adjusted to an appropriate density. As the solvent, for example, N-methyl-2-pyrrolidone can be used.
 [3]電解液
 本実施形態で用いる電解液は、リチウム塩(支持塩)と、この支持塩を溶解する非水溶媒を含む非水電解液を用いることができる。
[3] Electrolytic Solution As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution containing a lithium salt (supporting salt) and a nonaqueous solvent that dissolves the supporting salt can be used.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)等の非プロトン性有機溶媒を用いることができる。 As the non-aqueous solvent, an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate) or carboxylic acid ester (chain or cyclic carboxylic acid ester) can be used.
 炭酸エステル溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。 Examples of the carbonate solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. (EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
 カルボン酸エステル溶媒としては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;γ-ブチロラクトン等のラクトン類が挙げられる。 Examples of the carboxylic acid ester solvent include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate; and lactones such as γ-butyrolactone.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonic acid esters (cyclic or chain carbonates) such as (DPC) are preferred.
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。 Non-aqueous solvents can be used alone or in combination of two or more.
 非水電解液は、さらに、フッ素化エーテル化合物を含むことが好ましい。フッ素化エーテル化合物は、金属(a)(特にSi)と親和性が高く、サイクル特性(特に容量維持率)を向上させることができる。フッ素化エーテル化合物は、非フッ素化鎖状エーテル化合物の水素の一部をフッ素で置換したフッ素化鎖状エーテル化合物であってもよいし、非フッ素化環状エーテル化合物の水素の一部をフッ素で置換したフッ素化環状エーテル化合物であってもよい。特に、より安定性が高いフッ素化鎖状エーテル化合物が好ましい。フッ素化鎖状エーテル化合物としては、下記式(1):
 H-(CX-CX-CHO-CX-CX-H   (1)
(式中、nは1、2、3または4であり、X~Xはそれぞれ独立にフッ素原子または水素原子である。ただし、X~Xの少なくとも1つはフッ素原子であり、X~Xの少なくとも1つはフッ素原子である。本フッ素化鎖状エーテル化合物に結合しているフッ素原子と水素原子の原子比(フッ素原子の総数/水素原子の総数)≧1である。)
で表される化合物が好ましく、下記式(2):
 H-(CF-CF)n-CHO-CF-CF-H   (2)
(式中、nは1または2である。)
で表される化合物がより好ましい。
The nonaqueous electrolytic solution preferably further contains a fluorinated ether compound. The fluorinated ether compound has a high affinity with the metal (a) (particularly Si), and can improve cycle characteristics (particularly capacity retention rate). The fluorinated ether compound may be a fluorinated chain ether compound obtained by substituting a part of hydrogen of a non-fluorinated chain ether compound with fluorine, or a part of hydrogen of a non-fluorinated cyclic ether compound with fluorine. It may be a substituted fluorinated cyclic ether compound. In particular, a fluorinated chain ether compound having higher stability is preferable. As the fluorinated chain ether compound, the following formula (1):
H- (CX 1 X 2 -CX 3 X 4 ) n -CH 2 O-CX 5 X 6 -CX 7 X 8 -H (1)
(In the formula, n is 1, 2, 3 or 4, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 4 is a fluorine atom, At least one of X 5 to X 8 is a fluorine atom, the atomic ratio of fluorine atoms to hydrogen atoms bonded to the fluorinated chain ether compound (total number of fluorine atoms / total number of hydrogen atoms) ≧ 1 .)
A compound represented by the following formula (2):
H— (CF 2 —CF 2 ) n—CH 2 O—CF 2 —CF 2 —H (2)
(In the formula, n is 1 or 2.)
The compound represented by these is more preferable.
 このようなフッ素化エーテル化合物の含有量は、電池特性を損なわない範囲で十分な添加効果を得る点から、非水溶媒の全体(100vol%)に対して、10vol%以上が好ましく、15vol%以上がより好ましく、また75vol%以下が好ましく、70vol%以下がより好ましく、50vol%以下がさらに好ましい。 The content of such a fluorinated ether compound is preferably 10 vol% or more, more preferably 15 vol% or more with respect to the total amount of the nonaqueous solvent (100 vol%) from the viewpoint of obtaining a sufficient addition effect within a range not impairing the battery characteristics. Is more preferable, 75 vol% or less is preferable, 70 vol% or less is more preferable, and 50 vol% or less is more preferable.
 本実施形態における支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等の通常のリチウムイオン電池に使用可能なリチウム塩を用いることができる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 Examples of the supporting salt in the present embodiment include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN ( CF 3 SO 2) 2 normal lithium salt which can be used in lithium ion batteries or the like can be used. The supporting salt can be used alone or in combination of two or more.
 [4]セパレータ
 本実施形態におけるセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、フッ素樹脂等からなる多孔質フィルムや不織布を用いることができる。また、セパレータとして、それらを積層したものを用いることもできる。
[4] Separator As the separator in the present embodiment, a porous film or nonwoven fabric made of polyolefin such as polypropylene or polyethylene, a fluororesin, or the like can be used. Moreover, what laminated | stacked them can also be used as a separator.
 [5]外装体
 本実施形態における外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つラミネートフィルムを用いることができる。例えば、このような外装体として、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
[5] Exterior Body As the exterior body in the present embodiment, a laminate film that is stable in an electrolytic solution and has a sufficient water vapor barrier property can be used. For example, a laminate film such as polypropylene or polyethylene coated with aluminum or silica can be used as such an exterior body. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
 電池内でガスが発生した際、外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、電極の歪みが非常に大きくなる。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くし、内部に余分な空間がないため、電池内でガスが発生した際には直ちに電池の体積変化や電極の変形が起きやすい。本実施形態によれば、電池内のガス発生が抑えられるため、このような問題を解決することができる。積層ラミネート型のリチウムイオン二次電池は、放熱性に優れ、安価に提供でき、セル容量の設計の自由度が高く(積層数によりセル容量を変更でき)、金属缶を用いた巻回型の電池に対して種々の有利な特徴をもつが、このような積層ラミネート型のリチウムイオン二次電池のサイクル特性を向上できる。 When the gas is generated in the battery, in the case of the secondary battery using the laminate film as the outer package, the distortion of the electrode becomes very large compared to the secondary battery using the metal can as the outer package. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. Furthermore, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than atmospheric pressure and there is no extra space inside, so when gas is generated in the battery In this case, battery volume changes and electrode deformation are likely to occur immediately. According to the present embodiment, gas generation in the battery can be suppressed, so that such a problem can be solved. Laminated laminate type lithium ion secondary battery is excellent in heat dissipation, can be provided at low cost, has a high degree of freedom in cell capacity design (cell capacity can be changed depending on the number of laminated layers), and is a wound type using a metal can Although it has various advantageous characteristics with respect to the battery, the cycle characteristics of such a laminated laminate type lithium ion secondary battery can be improved.
 [6]二次電池の製造方法
 本実施形態による二次電池は、通常の方法に従って作製することができる。例えば、次のようにして積層ラミネート型のリチウムイオン二次電池を作製することができる。
[6] Method for Manufacturing Secondary Battery The secondary battery according to the present embodiment can be manufactured according to a normal method. For example, a laminated laminate type lithium ion secondary battery can be manufactured as follows.
 まず、前述に従って、正極集電体上に正極活物質層が設けられた正極と、負極集電体上に負極活物質層が設けられた負極を作製する。 First, as described above, a positive electrode having a positive electrode active material layer provided on a positive electrode current collector and a negative electrode having a negative electrode active material layer provided on a negative electrode current collector are prepared.
 次に、乾燥空気または不活性雰囲気において、正極および負極をセパレータを介して対向配置して電極対を形成し、所定の容量に応じた積層数の電極積層体を形成する。この電極積層体は、正極集電体に接続する正極端子と、負極集電体に接続する負極端子を有する。 Next, in dry air or an inert atmosphere, the positive electrode and the negative electrode are arranged to face each other via a separator to form an electrode pair, and an electrode stack having the number of layers corresponding to a predetermined capacity is formed. This electrode laminated body has a positive electrode terminal connected to the positive electrode current collector and a negative electrode terminal connected to the negative electrode current collector.
 次に、この電極積層体を、外装体(容器)に収容し、非水電解液を注入し、その後、封止する。 Next, this electrode laminate is accommodated in an exterior body (container), a nonaqueous electrolyte is injected, and then sealed.
 以下、本実施形態を実施例により具体的に説明する。 Hereinafter, the present embodiment will be specifically described by way of examples.
 実施例1
 金属(a)としての平均粒径5μmのシリコン90質量部と、炭素材料(c)としての平均粒径30μmの黒鉛10質量部とを、メカニカルミリングで24時間混合して、負極活物質を形成する。この負極活物質の平均粒径D50は5μmであり、BET比表面積は、5m/gである。
Example 1
90 parts by mass of silicon having an average particle diameter of 5 μm as the metal (a) and 10 parts by mass of graphite having an average particle diameter of 30 μm as the carbon material (c) are mixed by mechanical milling for 24 hours to form a negative electrode active material To do. The average particle diameter D 50 of the negative electrode active material is 5 [mu] m, BET specific surface area is 5 m 2 / g.
 この負極活物質と下記のポリアミック酸とN-メチル-2-ピロリドン(NMP)を含み、負極活物質とポリイミドとの質量比が90:10となる負極スラリーを形成する。この負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気300℃の熱処理を行うことで、負極を形成する。 A negative electrode slurry containing this negative electrode active material, the following polyamic acid and N-methyl-2-pyrrolidone (NMP) and having a mass ratio of the negative electrode active material and polyimide of 90:10 is formed. The negative electrode slurry is applied to a copper foil having a thickness of 10 μm, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to form a negative electrode.
 負極中のポリイミド(BPDA-ODA)は下記式で示され、このポリイミドを形成するためのポリアミック酸は次のようにして調製する。 The polyimide in the negative electrode (BPDA-ODA) is represented by the following formula, and the polyamic acid for forming this polyimide is prepared as follows.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 4,4’-オキシジフェニレンジアミン(4,4’-ジアミノジフェニルエーテル)0.3モルをN-メチル-2-ピロリドン(NMP)1700gに溶解し、次いで粉末状ビフェニルテトラカルボン酸二無水物(BPDA)0.3モルを、激しく攪拌しながらゆっくりと加える。この重合混合物を24~48時間攪拌する。最終ポリマー濃度7質量%の混合物が得られ、ポリアミック酸の数平均分子量は40,000である。 0.3 mol of 4,4′-oxydiphenylenediamine (4,4′-diaminodiphenyl ether) is dissolved in 1700 g of N-methyl-2-pyrrolidone (NMP), and then powdered biphenyltetracarboxylic dianhydride (BPDA) ) Add 0.3 mole slowly with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 40,000.
 正極活物質としての複合ニッケル酸リチウム(LiNi0.80Co0.15Al0.05)90質量部と、導電補助材としてのカーボンブラック5質量部と、正極用バインダーとしてのポリフッ化ビニリデン5質量部とを、N-メチルピロリドンと混合して、正極スラリーを形成する。 90 parts by mass of composite lithium nickelate (LiNi 0.80 Co 0.15 Al 0.05 O 2 ) as a positive electrode active material, 5 parts by mass of carbon black as a conductive auxiliary, and polyvinylidene fluoride as a positive electrode binder 5 parts by weight are mixed with N-methylpyrrolidone to form a positive electrode slurry.
 この正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を形成する。 The positive electrode slurry is applied to an aluminum foil having a thickness of 20 μm, dried, and further pressed to form a positive electrode.
 得られた正極の3層と負極の4層を、セパレータとしてのポリプロピレン多孔質フィルムを介して交互に積層して電極積層体を形成する。正極活物質に覆われていない正極集電体の端部同士を溶接し、その溶接箇所にアルミニウム製の正極端子を溶接し、負極活物質材料に覆われていない負極集電体の端部同士を溶接し、その溶接箇所にニッケル製の負極端子を溶接する。 The obtained three layers of positive electrode and four layers of negative electrode are alternately laminated through a polypropylene porous film as a separator to form an electrode laminate. The ends of the positive electrode current collector not covered with the positive electrode active material are welded to each other, the positive electrode terminal made of aluminum is welded to the welded portion, and the ends of the negative electrode current collector not covered with the negative electrode active material And a negative electrode terminal made of nickel is welded to the welded portion.
 一方、EC/PC/DMC/EMC/DEC=20/20/20/20/20(体積比)からなるカーボネート系非水電解液を調製し、さらに、支持塩としてのLiPFを1モル/lの濃度で溶解して、電解液を形成する。 On the other hand, a carbonate-based non-aqueous electrolyte consisting of EC / PC / DMC / EMC / DEC = 20/20/20/20/20 (volume ratio) was prepared, and LiPF 6 as a supporting salt was further added at 1 mol / l. To form an electrolyte solution.
 上記の電極積層体を、外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、0.1気圧まで減圧しつつ封止することで、二次電池を作製する。 The electrode laminate is wrapped with an aluminum laminate film as an outer package, and an electrolyte is poured into the interior, and then sealed while reducing pressure to 0.1 atm to produce a secondary battery.
 このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。 For the secondary battery thus obtained, the capacity retention rate and the swelling rate after the charge / discharge cycle obtained by the measurement method described later are shown in the table.
 実施例2
 負極の樹脂成分として下記式で示されるポリイミド(BPDA-PDA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Example 2
A secondary battery is formed in the same manner as in Example 1 except that polyimide (BPDA-PDA) represented by the following formula is used as the resin component of the negative electrode. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 このポリイミドを形成するためのポリアミック酸は次のようにして調製する。パラフェニレンジアミン(1,4-フェニレンジアミン)0.3モルをN-メチル-2-ピロリドン(NMP)1400gに溶解し、次いで粉末状ビフェニルテトラカルボン酸二無水物(BPDA)0.3モルを、激しく攪拌しながらゆっくりと加える。この重合混合物を24~48時間攪拌する。最終ポリマー濃度7重量%の混合物が得られ、ポリアミック酸の数平均分子量は60,000である。 The polyamic acid for forming this polyimide is prepared as follows. 0.3 mol of paraphenylenediamine (1,4-phenylenediamine) is dissolved in 1400 g of N-methyl-2-pyrrolidone (NMP), and then 0.3 mol of powdered biphenyltetracarboxylic dianhydride (BPDA) is added. Add slowly with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 60,000.
 実施例3
 負極スラリーにおいて、ポリアミック酸に代えて、下記式で示されるポリアミドイミド(TMA-MDA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Example 3
A secondary battery is formed in the same manner as in Example 1 except that, in the negative electrode slurry, instead of polyamic acid, polyamideimide (TMA-MDA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このポリアミドイミドは次のようにして調製する。4,4’-ジフェニルメタンジイソシアネート0.3モル、無水トリメリット酸(TMA)0.3モル及びN-メチル-2-ピロリドン(NMP)1400gをフラスコに仕込み、攪拌しながら約3時間で温度を120℃に上昇させ、この温度で5時間保温する。最終ポリマー濃度7質量%のポリアミドイミド樹脂(数平均分子量42,000)の溶液が得られる。 This polyamideimide is prepared as follows. A flask is charged with 0.3 mol of 4,4′-diphenylmethane diisocyanate, 0.3 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP), and the temperature is increased to 120 with stirring for about 3 hours. The temperature is raised to 0 ° C. and kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 42,000) with a final polymer concentration of 7% by mass is obtained.
 実施例4
 負極スラリーにおいて、ポリアミック酸に代えて、下記式で示されるポリアミドイミド(TMA-ODA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Example 4
In the negative electrode slurry, a secondary battery is formed in the same manner as in Example 1 except that instead of polyamic acid, polyamideimide (TMA-ODA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 このポリアミドイミドは次のようにして調製する。4,4’-オキシビス(フェニルイソシアネート)0.3モル、無水トリメリット酸(TMA)0.3モル及びN-メチル-2-ピロリドン(NMP)1400gをフラスコに仕込み、攪拌しながら約3時間で温度を120℃に上昇させ、この温度で5時間保温する。最終ポリマー濃度7質量%のポリアミドイミド樹脂(数平均分子量42,000)の溶液が得られる。 This polyamideimide is prepared as follows. A flask was charged with 0.3 mol of 4,4′-oxybis (phenylisocyanate), 0.3 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP) and stirred for about 3 hours. The temperature is raised to 120 ° C. and kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 42,000) with a final polymer concentration of 7% by mass is obtained.
 実施例5
 負極スラリーにおいて、ポリアミック酸に代えて、下記式で示されるポリアミドイミド(TMA-PDA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Example 5
In the negative electrode slurry, a secondary battery is formed in the same manner as in Example 1 except that instead of polyamic acid, polyamideimide (TMA-PDA) represented by the following formula is used. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 このポリアミドイミドは次のようにして調製する。1,4-フェニレンジイソシアネート0.4モル、無水トリメリット酸(TMA)0.4モル及びN-メチル-2-ピロリドン(NMP)1400gをフラスコに仕込み、攪拌しながら約3時間で温度を120℃に上昇させ、この温度で5時間保温する。最終ポリマー濃度7質量%のポリアミドイミド樹脂(数平均分子量41,000)の溶液が得られる。 This polyamideimide is prepared as follows. Charge 0.4 mol of 1,4-phenylene diisocyanate, 0.4 mol of trimellitic anhydride (TMA) and 1400 g of N-methyl-2-pyrrolidone (NMP) to a flask at a temperature of 120 ° C. for about 3 hours with stirring. And kept at this temperature for 5 hours. A solution of polyamideimide resin (number average molecular weight 41,000) with a final polymer concentration of 7% by mass is obtained.
 比較例1
 負極の樹脂成分として下記式で示されるポリイミド(6FDA-ODA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Comparative Example 1
A secondary battery is formed in the same manner as in Example 1 except that polyimide (6FDA-ODA) represented by the following formula is used as the resin component of the negative electrode. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 このポリイミドを形成するためのポリアミック酸は次のようにして調製する。4,4’-オキシジフェニレンジアミン(4,4’-ジアミノジフェニルエーテル)0.2モルをN-メチル-2-ピロリドン(NMP)1500gに溶解し、次いで粉末状2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)0.2モルを、激しく攪拌しながらゆっくりと加える。この重合混合物を24~48時間攪拌する。最終ポリマー濃度7質量%の混合物が得られ、ポリアミック酸の数平均分子量は35,000である。 The polyamic acid for forming this polyimide is prepared as follows. 0.24 mol of 4,4′-oxydiphenylenediamine (4,4′-diaminodiphenyl ether) is dissolved in 1500 g of N-methyl-2-pyrrolidone (NMP), and then powdered 2,2-bis (3,4) -0.2 mol of dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) is slowly added with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 35,000.
 比較例2
 負極の樹脂成分として下記式で示されるポリイミド(6FDA-PDA)を用いる以外は、実施例1と同様にして二次電池を形成する。このようにして得られる二次電池について、後述の測定方法により得られる、充放電サイクル後の容量維持率と膨れ率を表に示す。
Comparative Example 2
A secondary battery is formed in the same manner as in Example 1 except that polyimide (6FDA-PDA) represented by the following formula is used as the resin component of the negative electrode. About the secondary battery obtained in this way, the capacity | capacitance maintenance factor and swelling rate after a charging / discharging cycle obtained by the below-mentioned measuring method are shown in a table | surface.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 このポリイミドを形成するためのポリアミック酸は次のようにして調製する。パラフェニレンジアミン(1,4-フェニレンジアミン)0.3モルをN-メチル-2-ピロリドン(NMP)1400gに溶解し、次いで粉末状2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)0.2モルを、激しく攪拌しながらゆっくりと加える。この重合混合物を24~48時間攪拌する。最終ポリマー濃度7質量%の混合物が得られ、ポリアミック酸の数平均分子量は50,000である。 The polyamic acid for forming this polyimide is prepared as follows. 0.3 mol of paraphenylenediamine (1,4-phenylenediamine) is dissolved in 1400 g of N-methyl-2-pyrrolidone (NMP), and then powdered 2,2-bis (3,4-dicarboxyphenyl) hexafluoro 0.2 mol of propane dianhydride (6FDA) is slowly added with vigorous stirring. The polymerization mixture is stirred for 24-48 hours. A mixture with a final polymer concentration of 7% by weight is obtained, and the number average molecular weight of the polyamic acid is 50,000.
 (サイクル特性の評価方法)
 実施例および比較例の二次電池について、以下の通り、高温サイクル特性を評価する。
(Evaluation method of cycle characteristics)
About the secondary battery of an Example and a comparative example, a high temperature cycling characteristic is evaluated as follows.
 まず、20℃の定温雰囲気において、0.05Cレートで4.1Vまでの充電を行い、次いで1Cレートで2.5Vまでの放電を行い、その時の放電容量(初回放電容量)を測定する。次いで、60℃の定温雰囲気において、4.1Vまでの充電と2.5Vまでの放電を1Cレート50回充放電を繰り返し、50サイクル目の放電容量を測定する。 First, in a constant temperature atmosphere of 20 ° C., the battery is charged to 0.05 V at a 0.05 C rate, then discharged to 2.5 V at a 1 C rate, and the discharge capacity (initial discharge capacity) at that time is measured. Next, in a constant temperature atmosphere of 60 ° C., charging up to 4.1 V and discharging up to 2.5 V are repeated 50 times at 1C rate, and the discharge capacity at the 50th cycle is measured.
 初回放電容量に対する50サイクル目の放電容量の比率(%)を容量維持率として算出する。また、充放電開始前の電池の体積に対する50サイクル目の体積増加量の比率を膨れ率(%)(体積変化率)として算出する。この体積増加量は、アルキメデス法によって測定する。電池を秤に吊し、脱イオン水に沈めた時の質量減少から体積を算出することができる。 The ratio (%) of the discharge capacity at the 50th cycle to the initial discharge capacity is calculated as the capacity maintenance rate. Further, the ratio of the volume increase amount at the 50th cycle to the volume of the battery before the start of charge / discharge is calculated as the swelling rate (%) (volume change rate). This volume increase is measured by the Archimedes method. The volume can be calculated from the decrease in mass when the battery is suspended on a scale and submerged in deionized water.
 (接触角の測定方法)
 ガラス板の上に、樹脂溶液をドクターブレードでコートし(厚み100μm)、150℃で荒乾燥した後、200℃で10分、250℃で10分、300℃で20分熱処理し、樹脂膜を形成する。常温まで十分冷却した後、この樹脂膜上に、シリンジを用いて10μLの純水を5cmの高さから滴下し、側面から写真を撮影する。写真に撮影された樹脂膜上の液滴に対してθ/2法により作図を行い、θ/2を求め、θを接触角とする。
(Measurement method of contact angle)
The resin solution is coated on a glass plate with a doctor blade (thickness: 100 μm), dried roughly at 150 ° C., and then heat-treated at 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, and 300 ° C. for 20 minutes. Form. After sufficiently cooling to room temperature, 10 μL of pure water is dropped from a height of 5 cm onto this resin film using a syringe, and a photograph is taken from the side. The droplet on the resin film photographed in the photograph is drawn by the θ / 2 method to obtain θ / 2, and θ is the contact angle.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2011年3月28日に出願された日本出願特願2011-070903を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-070903 filed on Mar. 28, 2011, the entire disclosure of which is incorporated herein.
 本実施形態による二次電池は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、例えば、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車、電車などの電動車両、衛星、潜水艦などの移動・輸送用媒体の電源;UPS(無停電電源装置)などのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに利用することができる。 The secondary battery according to the present embodiment can be used in all industrial fields that require a power source and industrial fields related to transportation, storage, and supply of electrical energy. Specifically, for example, power sources for mobile devices such as mobile phones and notebook computers; power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric trains such as trains, satellites, and submarines A backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
 1 負極
 2 セパレータ
 3 正極
 4 負極集電体
 5 正極集電体
 6 正極端子
 7 負極端子
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Separator 3 Positive electrode 4 Negative electrode collector 5 Positive electrode collector 6 Positive electrode terminal 7 Negative electrode terminal

Claims (16)

  1.  正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、電解液と、これらを内包する外装体を含む二次電池であって、
     前記負極は、負極活物質材料としてリチウムと合金可能な金属(a)と、樹脂成分を含み、
     前記樹脂成分は、トリメリット酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のアミドイミド構造単位、又は芳香族テトラカルボン酸若しくはその誘導体と芳香族ジアミン若しくはその誘導体とに由来のイミド構造単位を含む樹脂を含み、
     前記樹脂成分の水との接触角が70°未満である、二次電池。
    A secondary battery including a positive electrode, a separator, a negative electrode disposed opposite to the positive electrode with the separator interposed therebetween, an electrolyte, and an outer package containing these,
    The negative electrode includes a metal (a) that can be alloyed with lithium as a negative electrode active material, and a resin component.
    The resin component includes an amide imide structural unit derived from trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof, or an imide structural unit derived from an aromatic tetracarboxylic acid or a derivative thereof and an aromatic diamine or a derivative thereof. Including resin,
    The secondary battery whose contact angle with the water of the said resin component is less than 70 degrees.
  2.  前記樹脂成分は、前記樹脂として、前記イミド構造単位から構成されるポリイミドを含む、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the resin component includes polyimide composed of the imide structural unit as the resin.
  3.  前記芳香族テトラカルボン酸は、ピロメリット酸、ビフェニル-3,3’,4,4’-テトラカルボン酸、ジフェニルメタン-3,3’,4,4’-テトラカルボン酸、ジフェニルエーテル-3,3’,4,4’-テトラカルボン酸、ジフェニルチオエーテル-3,3’,4,4’-テトラカルボン酸、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸からなる群から選ばれる少なくとも一種である、請求項2に記載の二次電池。 The aromatic tetracarboxylic acid includes pyromellitic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylmethane-3,3 ′, 4,4′-tetracarboxylic acid, diphenylether-3,3 ′. , 4,4′-tetracarboxylic acid, diphenylthioether-3,3 ′, 4,4′-tetracarboxylic acid, benzophenone-3,3 ′, 4,4′-tetracarboxylic acid The secondary battery according to claim 2, wherein
  4.  前記樹脂成分は、前記樹脂として、少なくともトリメリット酸を含む芳香族多価カルボン酸又はその誘導体と芳香族ジアミン又はその誘導体とに由来の縮合単位から構成されるポリアミドイミドを含む、請求項1に記載の二次電池。 The resin component includes, as the resin, a polyamideimide composed of a condensation unit derived from an aromatic polyvalent carboxylic acid containing at least trimellitic acid or a derivative thereof and an aromatic diamine or a derivative thereof. The secondary battery as described.
  5.  前記樹脂成分は、前記樹脂として、前記アミドイミド構造単位から構成されるポリアミドイミドを含む、請求項1に記載の二次電池。 2. The secondary battery according to claim 1, wherein the resin component includes a polyamideimide composed of the amideimide structural unit as the resin.
  6.  前記芳香族ジアミンは、フェニレンジアミン、ビフェニルジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、ジアミノベンゾフェノン、ジアミノジフェニルチオエーテル、ビスアミノフェノキシベンゼンからなる群から選ばれる少なくとも一種である、請求項1から5のいずれか一項に記載の二次電池。 The said aromatic diamine is at least one selected from the group consisting of phenylenediamine, biphenyldiamine, diaminodiphenylmethane, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylthioether, and bisaminophenoxybenzene. Secondary battery described in 1.
  7.  前記樹脂成分の量Mbの前記負極活物質材料の量Mcに対する質量比Mb/Mcが7/100~25/100の範囲にある、請求項1から6のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein a mass ratio Mb / Mc of the amount Mb of the resin component to the amount Mc of the negative electrode active material is in a range of 7/100 to 25/100. .
  8.  前記負極は、集電体をさらに含み、該集電体に、前記負極活物質材料が前記樹脂成分により結着されている、請求項1から7のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 7, wherein the negative electrode further includes a current collector, and the negative electrode active material is bound to the current collector by the resin component.
  9.  前記金属(a)としてシリコン又はシリコン含有金属を含む、請求項1から8のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 8, comprising silicon or a silicon-containing metal as the metal (a).
  10.  前記負極は、負極活物質材料として、さらに金属酸化物(b)を含む、請求項1から9のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 9, wherein the negative electrode further includes a metal oxide (b) as a negative electrode active material.
  11.  前記金属(a)としてシリコン又はシリコン含有金属を含み、前記金属酸化物(b)としてシリコン酸化物を含む、請求項10に記載の二次電池。 The secondary battery according to claim 10, wherein the metal (a) includes silicon or a silicon-containing metal, and the metal oxide (b) includes silicon oxide.
  12.  前記負極は、負極活物質材料として、さらにリチウムイオンを吸蔵放出し得る炭素材料(c)を含む、請求項1から11のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 11, wherein the negative electrode further includes a carbon material (c) capable of occluding and releasing lithium ions as a negative electrode active material.
  13.  前記負極活物質材料のBET比表面積は、0.2~9.0m/gの範囲にある、請求項1から12のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 12, wherein the negative electrode active material has a BET specific surface area in the range of 0.2 to 9.0 m 2 / g.
  14.  前記電解液は、炭酸エステル溶媒又はカルボン酸エステル溶媒を含む、請求項1から13のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 13, wherein the electrolytic solution includes a carbonate ester solvent or a carboxylic acid ester solvent.
  15.  前記正極と前記負極の電極対の複数が積層配置された積層型構造を有する、請求項1から14のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 14, which has a stacked structure in which a plurality of electrode pairs of the positive electrode and the negative electrode are stacked.
  16.  前記外装体は、ラミネートフィルムからなる、請求項1から15のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 15, wherein the exterior body is made of a laminate film.
PCT/JP2011/079987 2011-03-28 2011-12-26 Secondary battery WO2012132154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507077A JPWO2012132154A1 (en) 2011-03-28 2011-12-26 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070903 2011-03-28
JP2011-070903 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012132154A1 true WO2012132154A1 (en) 2012-10-04

Family

ID=46929951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079987 WO2012132154A1 (en) 2011-03-28 2011-12-26 Secondary battery

Country Status (2)

Country Link
JP (1) JPWO2012132154A1 (en)
WO (1) WO2012132154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078416A (en) * 2012-10-11 2014-05-01 Ube Ind Ltd Electrode binder resin composition, electrode mixture paste, and electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283303A (en) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd Resistor paste
JP2004001386A (en) * 2002-04-01 2004-01-08 Fuji Photo Film Co Ltd Multi-color imaging material and multi-color imaging method
JP2006084721A (en) * 2004-09-15 2006-03-30 Fuji Xerox Co Ltd Endless belt and method of manufacturing the same, belt-like photoreceptor and method for manufacturing the same, and image forming apparatus
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
WO2009022619A1 (en) * 2007-08-14 2009-02-19 Unitika Ltd. Polyimide resin composition, polyimide precursor resin composition for providing the polyimide resin composition, their production methods, polyimide film and method for producing the polyimide film
JP2009037842A (en) * 2007-08-01 2009-02-19 Sony Corp Negative electrode and battery, and these manufacturing method
JP2011060676A (en) * 2009-09-14 2011-03-24 Shin-Etsu Chemical Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283303A (en) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd Resistor paste
JP2004001386A (en) * 2002-04-01 2004-01-08 Fuji Photo Film Co Ltd Multi-color imaging material and multi-color imaging method
JP2006084721A (en) * 2004-09-15 2006-03-30 Fuji Xerox Co Ltd Endless belt and method of manufacturing the same, belt-like photoreceptor and method for manufacturing the same, and image forming apparatus
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
JP2009037842A (en) * 2007-08-01 2009-02-19 Sony Corp Negative electrode and battery, and these manufacturing method
WO2009022619A1 (en) * 2007-08-14 2009-02-19 Unitika Ltd. Polyimide resin composition, polyimide precursor resin composition for providing the polyimide resin composition, their production methods, polyimide film and method for producing the polyimide film
JP2011060676A (en) * 2009-09-14 2011-03-24 Shin-Etsu Chemical Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014078416A (en) * 2012-10-11 2014-05-01 Ube Ind Ltd Electrode binder resin composition, electrode mixture paste, and electrode

Also Published As

Publication number Publication date
JPWO2012132154A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6060896B2 (en) Secondary battery and manufacturing method thereof
US9413010B2 (en) Lithium secondary battery and method for manufacturing the same
JP6060897B2 (en) Secondary battery
US10381648B2 (en) Polyimide coated lithium titanate particles and use thereof in a lithium ion battery
CN110637389B (en) Lithium ion secondary battery
EP3605668A1 (en) Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery using same
JP6806068B2 (en) Resin composition
JP6414058B2 (en) Electrode binder composition and electrode
CN110546806B (en) Lithium ion secondary battery
WO2012132154A1 (en) Secondary battery
JP6314751B2 (en) Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN109804488B (en) Electrode with heat-resistant insulating layer
US10903488B2 (en) Non-aqueous electrolyte secondary battery negative electrode material, and negative electrode and non-aqueous electrolyte secondary battery using the same
JP7059931B2 (en) Lithium ion secondary battery
JP2019140034A (en) Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7047836B2 (en) Binder composition for secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862352

Country of ref document: EP

Kind code of ref document: A1