WO2012131256A1 - Systeme de cogeneration d'energie pour vehicule automobile electrique - Google Patents

Systeme de cogeneration d'energie pour vehicule automobile electrique Download PDF

Info

Publication number
WO2012131256A1
WO2012131256A1 PCT/FR2012/050657 FR2012050657W WO2012131256A1 WO 2012131256 A1 WO2012131256 A1 WO 2012131256A1 FR 2012050657 W FR2012050657 W FR 2012050657W WO 2012131256 A1 WO2012131256 A1 WO 2012131256A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
cooling
fluid
cold source
source
Prior art date
Application number
PCT/FR2012/050657
Other languages
English (en)
Inventor
Fahri Keretli
Osoko SHONDA
Amin EL-BAKKALI
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2012131256A1 publication Critical patent/WO2012131256A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an energy cogeneration system for an electric motor vehicle.
  • the range extender may be for example a heat engine associated with an electric generator or a fuel cell fueled by a gas mixture, said reformate, rich in hydrogen, produced on board the vehicle from a liquid fuel, such as than ethanol.
  • thermo-generators are also known which make it possible to recover a part of the thermal energy of the exhaust gas of the range extender, for example the thermal energy of the exhaust gases constitutes approximately one-third of the energy contained in the fuel in the case of a range extender with thermal engine and current generator.
  • thermo generators produce electricity from a hot thermal source, which is for example the exhaust of the range extender heat engine, and a cold thermal sink (lower temperature than that of the hot source) and which can be a coolant of a vehicle body.
  • thermo-generators use only one cold source, which, because of the transfer of heat from the hot source to the cold source, can be brought to heat and consequently the production of electrical energy of these thermo generators decreases.
  • an energy cogeneration system for an electric vehicle comprising
  • thermo-generator device implementing a hot source and a cold source for producing electrical energy
  • the hot source being constituted by a heat exchanger receiving a hot fluid
  • the cold source being constituted by a heat exchanger receiving a cold fluid
  • the fluid from the cold source feeds at least one of said organ cooling-heating circuits (upstream of said member), and in that the system comprises a tilting device adapted to switch the fluid supply from the cold source of the at least one cooling-heating circuit on at least one other, and a device for controlling the tilting device that can be activated by the driver of the vehicle or by an automatic vehicle control device.
  • cooling-heating circuit of a member of the vehicle means a circuit containing a fluid cooling or heating the member either by direct contact between said circuit and said member, or indirectly via a heat exchanger between said circuit and said member. It may be a cooling-heating circuit of the passenger compartment of the vehicle, a cooling-heating circuit of the vehicle traction battery, a cooling-heating circuit of the electrotechnical components or a cooling-heating circuit of the heat engine of the autonomy extension device.
  • the organ can therefore be a functional element of the vehicle (battery, engine, ...) or an area thereof (cockpit).
  • upstream and downstream are to be understood with respect to the direction of circulation of the fluid in the circuits.
  • Such a system makes it possible to optimize the recovery of the thermal energy of a hot fluid consisting, for example, of the hot combustion gases produced by the autonomy extension device, this recovery being carried out in the form of electrical energy to recharge the battery.
  • Each organ cooling-heating circuit of said vehicle is advantageously connected, downstream of the member, to the cold source so as to supply this cold source with fluid flowing in said circuit.
  • the cooling-heating circuits are then closed, and the system may include a plurality of organ heating-cooling circuits connected in parallel with the cold source, each circuit being provided with a three-way solenoid valve opening or closing the feeding said circuit.
  • the system according to the invention may comprise a tilting device upstream and / or downstream of said circuits.
  • the fluid may be a gaseous coolant.
  • the cold source can then be directly powered by the outside air.
  • the cooling-heating circuits are then opened and the system can comprise a plurality of cooling-heating circuits of a gaseous heat-transfer fluid, and at least one valve element for distributing the heat-transfer fluid leaving the cold source on at least one of the circuits, or even in the external environment.
  • closed circuits may also be considered for a gaseous coolant when the latter can not be released into the air.
  • the control device may be able to control the tilting device in order to switch the supply of fluid leaving the cold source of at least one cooling-heating circuit to at least one other according to a setpoint chosen from a maximum temperature setpoint of said circuit, a setpoint of optimum efficiency of the system or of the optimum difference between the cold source and the hot source, a set temperature in the passenger compartment.
  • the tilting device may comprise at least one valve element or solenoid valve for distributing the fluid coming from the cold source to supply the at least one cooling-heating circuit, for example three-way solenoid valves (opening or closing each circuit) mounted. on the supply ducts of the circuits connected in parallel on the cold source.
  • at least one valve element or solenoid valve for distributing the fluid coming from the cold source to supply the at least one cooling-heating circuit, for example three-way solenoid valves (opening or closing each circuit) mounted. on the supply ducts of the circuits connected in parallel on the cold source.
  • the range extender device may be of the type with a heat engine and an electric current generator, or with a fuel cell producing electric power.
  • the cooling-heating circuits may comprise a heat transfer fluid which may be in liquid form, water for example, or in gaseous form, such as air.
  • the heat exchanger of the Seebeck effect thermo-generator device is of the liquid gas type
  • the heat exchanger is of the gas gas type
  • the control device can be autopilot or manual control.
  • the autopilot can be realized according to an optimal energy efficiency guideline of the Seebeck effect thermo generator, preserving an optimal temperature difference between the hot source and the cold source, or according to a comfort note in the vehicle, preserving the temperature in the passenger compartment of the vehicle, or according to an optimal operating setpoint of the vehicle drive members, preserving, for example, the temperature of the battery traction, or the engine (at the beginning of operation) of the autonomy extender device etc ....
  • the fluid supplying the cold source may be a gaseous coolant, such as the outside air of the vehicle, or a liquid heat transfer fluid, such as water, circulating in one of the cooling-heating circuits of a body of the vehicle, taken downstream of this organ.
  • a gaseous coolant such as the outside air of the vehicle
  • a liquid heat transfer fluid such as water
  • the fluid exiting the cold source is directed by the tilting device to at least one cooling-heating circuit as a function of a setpoint chosen from a maximum temperature setpoint of said circuit, an optimal performance setpoint of the system or the optimal distance between the cold source and the hot source, a set temperature in the passenger compartment.
  • the system according to the invention can make it possible to ensure alone the thermal management of several organs of the vehicle.
  • Fig. 1 is a schematic view of an energy vehicle cogeneration system for an electric vehicle according to one embodiment of the invention.
  • FIG. 2 is a view similar to FIG. 1 of an alternative embodiment.
  • the energy cogeneration system 1 for an electric vehicle shown comprises an extension device 3 of the vehicle which is seen only a conduit 5 for output of the combustion gases, for example the thermal drive motor. electric generator.
  • This autonomy extension device 3 is connected to a Seebeck effect thermo generator device 7 comprising a first heat exchanger 9 receiving the combustion gases of the aforementioned gas outlet pipe 5 as a hot source of the thermo-generator device.
  • a second heat exchanger 1 1 as a cold source of the thermocouple device Seebeck effect receives a coolant, for example water 13 or air flowing arrows to various cooling-heating circuits of the vehicle, for example the cooling-heating circuit of the traction battery (maximum T at approximately 50 ° C.), the cooling-heating circuit 17 of the passenger compartment of the vehicle, the cooling circuit of the heat engine of the autonomy-extending device (T maximum at about 100-140 ° C) or alternatively (not shown) a cooling circuit of the electrotechnical components of the vehicle (electric traction motor, generator of the range extender, power electronics components (T max to approximately 60 to 70 ° C.)
  • the fluid circulates in a cooling-heating circuit of a body of the vehicle, it can be a branch of the circuit of the generator. ane and for example at least one heat exchanger circuit portion of a cooling-heating circuit of a vehicle member.
  • thermocouple device Seebeck effect 7 is further connected by electric cables 21 to a set 23 of traction battery and various electrical accessories of the vehicle that can supply electrical energy selectively with an electric power of 10 to 40 kW in the case of an electric vehicle, under the command of a control device 25 of the system operated by the driver (driver) of the vehicle or by an automatic control device (computer).
  • the cooling-heating circuits 15, 17, 19 are connected in parallel to the circuit 26, 27 of the cold source, each being fed selectively by a three-way solenoid valve 29 mounted at the inlet of each circuit.
  • Each of the solenoid valves 29 opens on one circuit and closes on the other or vice versa, under the control of the control device.
  • the electro valve upstream of the circuit can operate in synchronism with a valve element downstream of the circuit (not shown). This valve element can prevent any introduction of fluid downstream of the circuit when the solenoid valve of the circuit is closed.
  • circuit 15 alone is open.
  • circuits each comprise a sensor of the temperature of the fluid in the circuit, connected to the control device 25 of the system.
  • the device 25 controls the opening or closing of each of the three-way solenoid valves 29 of the circuits and likewise manages the complementary power supply by the thermo-generator device of the traction battery or of the electrical accessories 23 of the vehicle in accordance with a system control law, which can be selected manually by the driver of the vehicle or automatically by the vehicle control device.
  • thermo generator device 7 can supply the traction motor and other electrical accessories of the vehicle, thus reducing the electrical consumption of the vehicle by the traction battery alone. It is still possible to control the control device 25 in a cabin comfort setting, by giving priority to feeding the heating circuit 17 of the passenger compartment, in particular in a cold environment, which reduces the consumption of the electric heating resistors of the passenger compartment. the cockpit on the traction battery.
  • the possibility of switching from one cold source to another or several others makes it possible to increase the temperature difference between the hot source 9 and the cold source 1 1 (thus with a better efficiency of the Seebeck thermo-generator) and leaves a lot of freedom for the steering strategies.
  • priority is given to the thermal comfort of the passenger compartment and to the temperature rise of the generator engine, then it is the coolant of the engine that will first be connected first as a cold source, then the cockpit circuit.
  • the priority is given to the temperature rise of the traction battery to increase the performance of the vehicle in a cold environment then it is the coolant of the battery which will be connected in priority as a cold source then, when the priority has disappeared, several heating cooling circuits can be powered simultaneously by the solenoid valves 29 according to the setpoints of the control drive.
  • some of the members may further be cooled or heated by another heating cooling circuit, for example connected in parallel to the corresponding circuit of the system.
  • a heating circuit 37 via an electric heater
  • a similar heating circuit 39 to the battery circuit 15, or even to the heating circuit for heating the electrotechnical components of the vehicle ( electric traction motor, generator of range extender, power electronics components).
  • Thermostats 41 and 43 respectively disposed on these circuits 37, 39 open or close these circuits according to the system control instructions.
  • the hot source 9' is consisting of the exhaust of the range extender and the cold source 1 1 'is air.
  • the air is drawn outside at 31 and can be conveyed by a fan 34 and by the valve 29 ', under the control of the control device 25' and in servocontrol at a sensor temperature setpoint 30 'to the control circuit. heating the passenger compartment 33 after being heated in the exchanger 1 1 '.
  • the air drawn outside 31 can still be conveyed by the fan 34 and the valve 29 'to the heating of the battery 35 after being heated in the exchanger 1 1' (if the battery is cooled by air).
  • the air drawn outside 31 may also be discharged 31 'outside by the valve 34 after passing through the exchanger 11'. In this case, there is no heat recovery.

Abstract

Un système de cogénération d'énergie pour véhicule électrique, comprenant au moins deux circuits de refroidissement-chauffage (15, 17, 19 ) d'organe du véhicule,un dispositif (3) prolongateur d'autonomie du véhicule, un dispositif thermo générateur à effet Seebeck (7) mettant en œuvre une source chaude (9) et une source froide (11) en vue de produire de l'énergie électrique, la source chaude étant constituée par un échangeur thermique recevant un fluide chaud, par exemple les gaz chauds de combustion produits par le dispositif prolongateur d'autonomie (3) et la source froide étant constituée par un échangeur thermique recevant un fluide froid, caractérisé en ce que le fluide issu de la source froide alimente au moins un circuit de refroidissement-chauffage d'organe (15, 17, 19), et en ce que le système comprend un dispositif de basculement apte à basculer l'alimentation en fluide issu de la source froide de l'au moins un circuit de refroidissement-chauffage sur au moins un autre, et un dispositif de commande (25) du dispositif de basculement apte à être activé par le pilote du véhicule ou en pilotage automatique.

Description

Système de cogénération d'énergie pour véhicule automobile électrique.
L'invention concerne un système de cogénération d'énergie pour véhicule automobile électrique.
On sait que certains véhicules automobiles électriques comportent un système de génération électrique embarqué, généralement appelé prolongateur d'autonomie, qui est activé en cas de besoin relativement à l'état de charge de la batterie d'entraînement du véhicule.
Le prolongateur d'autonomie peut être par exemple un moteur thermique associé à une génératrice électrique ou encore une pile à combustible alimentée par un mélange gazeux, dit réformat, riche en hydrogène, produit à bord du véhicule à partir d'un carburant liquide, tel que l'éthanol.
On connaît également les thermo générateurs à effet Seebeck qui permettent de récupérer une partie de l'énergie thermique des gaz d'échappement du prolongateur d'autonomie, par exemple l'énergie thermique des gaz d'échappement constitue environ un tiers de l'énergie contenue dans le carburant dans le cas d'un prolongateur d'autonomie à moteur thermique et génératrice de courant.
Ces thermo générateurs produisent de l'électricité à partir d'une source thermique chaude, qui est par exemple les gaz d'échappement du moteur thermique de prolongateur d'autonomie, et d'un puit thermique froid (de température inférieure à celle de la source chaude) et qui peut être un liquide de refroidissement d'un organe du véhicule.
Néanmoins, les thermo générateurs à effet Seebeck connus n'utilisent qu'une seule source froide, laquelle, en raison du transfert de chaleur de la source chaude à la source froide, peut être amenée à chauffer et par conséquent la production d'énergie électrique de ces thermo générateurs diminue.
Il existe un besoin pour améliorer la production d'énergie électrique de ces thermo générateurs à effet Seebeck sur les véhicules automobiles électriques. Par ailleurs, les dispositifs actuels ne permettent pas de valoriser la chaleur transférée à la source froide (puit thermique froid) du thermo générateur à effet Seebeck.
Il existe donc également un besoin pour valoriser la chaleur transférée à la source froide.
Il est proposé selon l'invention un système de cogénération d'énergie pour véhicule électrique, comprenant
- au moins deux circuits de refroidissement-chauffage d'organe du véhicule,
- un dispositif prolongateur d'autonomie du véhicule,
- un dispositif thermo générateur à effet Seebeck mettant en œuvre une source chaude et une source froide en vue de produire de l'énergie électrique, la source chaude étant constituée par un échangeur thermique recevant un fluide chaud, par exemple les gaz chauds de combustion produits par le dispositif prolongateur d'autonomie et la source froide étant constituée par un échangeur thermique recevant un fluide froid,
caractérisé en ce que le fluide issu de la source froide alimente au moins un desdits circuits de refroidissement-chauffage d'organe (en amont dudit organe), et en ce que le système comprend un dispositif de basculement apte à basculer l'alimentation en fluide issu de la source froide de l'au moins un circuit de refroidissement-chauffage sur au moins un autre, et un dispositif de commande du dispositif de basculement apte à être activé par le pilote du véhicule ou par un dispositif de pilotage automatique du véhicule.
On entend par circuit de refroidissement-chauffage d'un organe du véhicule, un circuit contenant un fluide refroidissant ou chauffant l'organe soit par contact direct entre ledit circuit et ledit organe, soit indirectement via un échangeur thermique entre ledit circuit et ledit organe. Il peut s'agir d'un circuit de refroidissement-chauffage de l'habitacle du véhicule, d'un circuit de refroidissement-chauffage de la batterie de traction du véhicule, d'un circuit de refroidissement- chauffage des composants électrotechniques ou d'un circuit de refroidissement-chauffage du moteur thermique du dispositif prolongateur d'autonomie. Au sens de l'invention, l'organe peut donc être un élément fonctionnel du véhicule (batterie, moteur, ...) ou une zone de ce dernier (habitacle).
Dans la présente description, les termes amont et aval sont à comprendre par rapport au sens de circulation du fluide dans les circuits.
Un tel système permet d'optimiser la récupération de l'énergie thermique d'un fluide chaud constitué par exemple des gaz chauds de combustion produits par le dispositif de prolongateur d'autonomie, cette récupération étant réalisée sous forme d'énergie électrique pour recharger la batterie de traction ou alimenter des organes accessoires électriques du véhicule, ou alimenter le moteur de traction du véhicule, ou étant réalisée sous forme d'énergie thermique par l'apport de chaleur de la source chaude à la source froide pour réchauffer le circuit de refroidissement-chauffage de l'organe du véhicule sélectionné, par exemple le circuit de refroidissement-chauffage de l'habitacle, le circuit de refroidissement- chauffage de la batterie de traction pour que cette dernière fonctionne dans sa zone de température optimale, le circuit de refroidissement du moteur thermique par exemple au début de son fonctionnement pour que ce dernier atteigne plus rapidement sa température de fonctionnement optimale ou un autre fluide du véhicule.
Chaque circuit de refroidissement-chauffage d'organe dudit véhicule est avantageusement relié, en aval de l'organe, à la source froide de manière à 'alimenter cette source froide en fluide circulant dans ledit circuit. Les circuits de refroidissement-chauffage sont alors fermés, et le système peut comporter une pluralité de circuits de chauffage-refroidissement d'organe montés en parallèle sur la source froide, chaque circuit étant pourvu d'une électrovanne à trois voies ouvrant ou fermant l'alimentation dudit circuit.
De manière générale, dans le cas de circuits de refroidissement- chauffage fermés, le système selon l'invention pourra comprendre un dispositif de basculement en amont et/ ou en aval desdits circuits.
En variante, le fluide peut être un fluide caloporteur gazeux.
En particulier, la source froide peut alors être directement alimentée par l'air extérieur. Les circuits de refroidissement-chauffage sont alors ouverts et le système peut comporter une pluralité de circuits de refroidissement-chauffage d'un fluide caloporteur gazeux, et au moins un élément clapet de distribution du fluide caloporteur sortant de la source froide sur au moins l'un des circuits, voire dans l'environnement extérieur.
Bien entendu, des circuits fermés peuvent également être envisagés pour un fluide caloporteur gazeux lorsque ce dernier ne peut être rejeté dans l'air.
Le dispositif de commande peut être apte à commander le dispositif de basculement afin de basculer l'alimentation en fluide sortant de la source froide d'au moins un circuit de refroidissement- chauffage vers au moins un autre en fonction d'une consigne choisie parmi une consigne de température maximale dudit circuit, une consigne de rendement optimal du système ou de l'écart optimal entre la source froide et la source chaude, une consigne de température dans l'habitacle.
Le dispositif de basculement peut comporter au moins un élément clapet ou électrovanne de distribution du fluide issu de la source froide pour alimenter l'au moins un circuit de refroidissement- chauffage, par exemple des électrovannes à trois voies (ouvrant ou fermant chaque circuit) montées sur les conduits d'alimentation des circuits montés en parallèle sur la source froide.
Le dispositif prolongateur d'autonomie peut être du type à moteur thermique et génératrice de courant électrique, ou à pile à combustible de production de courant électrique.
Les circuits de refroidissement-chauffage peuvent comporter un fluide caloporteur qui peut être à forme liquide, de l'eau par exemple, ou sous forme gazeuse, telle que l'air.
Dans le cas où le fluide caloporteur est un liquide, l'échangeur thermique du dispositif thermo générateur à effet Seebeck est du type gaz liquide, et dans le cas où le fluide caloporteur est un gaz, l'échangeur thermique est du type gaz gaz.
Le dispositif de commande peut être à pilotage automatique ou à pilotage manuel.
Le pilotage automatique peut être réalisé selon une consigne de rendement énergétique optimal du dispositif de thermo générateur à effet Seebeck, préservant un écart optimal de température entre la source chaude et la source froide, ou selon une consigne de confort dans le véhicule, préservant la température dans l'habitacle du véhicule, ou selon une consigne de fonctionnement optimal des organes d'entraînement du véhicule, préservant par exemple la température de la batterie de traction, ou du moteur thermique (en début de fonctionnement) du dispositif de prolongateur d'autonomie etc....
Il est en outre proposé un procédé de mise en œuvre d'un système tel que décrit précédemment, dans lequel la source froide est alimentée par un fluide, et dans lequel ce fluide réchauffé par son passage dans la source froide, est renvoyé dans au moins un circuit de refroidissement-chauffage d'organe du véhicule, en amont de l'organe.
Le fluide alimentant la source froide peut être un fluide caloporteur gazeux, tel que l'air extérieur du véhicule, ou un fluide caloporteur liquide, tel que l'eau, circulant dans l'un des circuits de refroidissement-réchauffage d'un organe du véhicule, prélevé en aval de cet organe.
Le fluide sortant de la source froide est dirigé par le dispositif de basculement vers au moins un circuit de refroidissement-chauffage en fonction d'une consigne choisie parmi une consigne de température maximale dudit circuit, une consigne de rendement optimal du système ou de l'écart optimal entre la source froide et la source chaude, une consigne de température dans l'habitacle.
Il est encore proposé un véhicule électrique comportant un système de cogénération d'énergie tel que décrit ci-dessus.
Le système selon l'invention peut permettre d'assurer seul la gestion thermique de plusieurs organes du véhicule.
On peut toutefois envisager que le système selon l'invention soit couplé à des circuits de refroidissement-chauffage classiques des organes d'un véhicule électrique. On peut notamment envisager que chaque organe (ou certains des organes) soit en outre refroidi-chauffé par un autre circuit de refroidissement-chauffage, par exemple monté en parallèle sur le circuit correspondant du système selon l'invention. Des modes de réalisation de l'invention sont à présent décrits à titre d'exemple non limitatif et en référence au dessin annexé sur lequel : - La fig. 1 est une vue schématique d'un système de cogénération d'énergie pour véhicule électrique selon un mode de réalisation de l'invention, et
- La fig. 2 est une vue analogue à la fig. 1 d'une variante de réalisation.
Avec référence au dessin, le système de cogénération d'énergie 1 pour véhicule électrique représenté comprend un dispositif prolongateur d'autonomie 3 du véhicule dont on voit seul un conduit 5 de sortie des gaz de combustion, par exemple du moteur thermique d'entraînement de génératrice électrique.
Ce dispositif prolongateur d'autonomie 3 est relié à un dispositif thermo générateur 7 à effet Seebeck comportant un premier échangeur thermique 9 recevant les gaz de combustion du conduit 5 de sortie des gaz précité en tant que source chaude du dispositif thermo-générateur.
Un second échangeur thermique 1 1 en tant que source froide du dispositif thermo générateur à effet Seebeck reçoit un fluide caloporteur, par exemple de l'eau 13 ou de l'air circulant selon flèches vers divers circuits de refroidissement-chauffage du véhicule, par exemple le circuit 15 de refroidissement-chauffage de la batterie de traction (T maximale à environ 50°C), le circuit 17 de refroidissement- chauffage de l'habitacle du véhicule, le circuit 19 de refroidissement du moteur thermique du dispositif prolongateur d'autonomie (T maximale à environ 100- 1 10°C) ou encore (non représenté) un circuit de refroidissement des composants électrotechniques du véhicule (moteur électrique de traction, génératrice du prolongateur d'autonomie, composants d'électronique de puissance (T maximale à environ 60 à 70°C). Quand on indique que le fluide circule dans un circuit de refroidissement-chauffage d'un organe du véhicule, il peut s'agir d'une branche du circuit de l'organe et par exemple au moins une partie de circuit d'échangeur thermique d'un circuit de refroidissement- chauffage d'un organe du véhicule.
Le dispositif thermo générateur à effet Seebeck 7 est relié en outre par des câbles électriques 21 à un ensemble 23 de batterie de traction et divers accessoires électriques du véhicule qu'il peut alimenter en énergie électrique sélectivement suivant une puissance électrique comprise de 10 à 40 kW dans le cas d'un véhicule électrique, sous la consigne d'un dispositif de commande 25 du système manœuvré par le pilote (conducteur) du véhicule ou par un dispositif de pilotage automatique (calculateur).
Les circuits de refroidissement-chauffage 15, 17, 19 sont reliés en parallèle au circuit 26, 27 de la source froide, étant alimentés sélectivement chacun par une électrovanne 29 à trois voies montée à l'entrée de chaque circuit. Chacune des électrovannes 29 ouvre sur un circuit et ferme sur l'autre ou inversement, sous la commande du dispositif de commande. Eventuellement, l'électro vanne en amont du circuit peut fonctionner en synchronisme avec un élément clapet en aval du circuit (non représenté). Cet élément clapet peut empêcher toute introduction de fluide en aval du circuit lorsque l'électro vanne du circuit est fermée.
Sur la fig. 1 , le circuit 15 seul est ouvert.
Ces circuits comportent chacun un capteur de la température 30 du fluide dans le circuit, relié au dispositif de commande 25 du système. Le dispositif 25 pilote l'ouverture ou la fermeture de chacune des électrovannes 29 à 3 voies des circuits et de même gère l'alimentation électrique de complément par le dispositif thermo- générateur de la batterie de traction ou des accessoires électriques 23 du véhicule selon une loi de pilotage du système, laquelle peut être sélectionnée manuellement par le pilote du véhicule ou de manière automatique par le dispositif de pilotage du véhicule.
Le fonctionnement du système est à présent décrit.
Ainsi selon un pilotage du dispositif privilégiant le rendement énergétique, en ambiance froide, on peut accélérer la montée en température de la batterie de traction en ouvrant la vanne 29 de circuit correspondant 15, ce qui autorisera la circulation du fluide de la source froide dans ce circuit 15 et amènera ce fluide à être réchauffé par la source froide. Ce réchauffage augmentera la puissance et l'énergie disponible de la batterie et donc accroîtra les performances de vitesse et d'accélération du véhicule en ambiance froide.
Parallèlement, l'énergie électrique fournie par le dispositif thermo générateur 7 peut alimenter le moteur de traction et d'autres accessoires électriques du véhicule, avec donc une réduction de la consommation électrique du véhicule par la batterie de traction seule. On peut encore commander le dispositif de commande 25 dans une consigne de confort de l'habitacle, en privilégiant l'alimentation du circuit de chauffage 17 de l'habitacle, notamment en ambiance froide, ce qui diminue la consommation des résistances électriques de chauffage de l'habitacle sur la batterie de traction.
De plus, la possibilité de basculer d'une source froide à une autre ou plusieurs autres permet d'augmenter l'écart de température entre la source chaude 9 et la source froide 1 1 (donc avec un meilleur rendement du thermo-générateur Seebeck) et laisse une large liberté pour les stratégies de pilotage. Ainsi, si la priorité est donnée au confort thermique de l'habitacle et à la montée en température du moteur thermique de générateur, alors c'est le liquide de refroidissement du moteur thermique qui sera connecté d'abord en priorité comme source froide, puis le circuit d'habitacle. Si la priorité est donnée à la montée en température de la batterie de traction afin d'augmenter les performances du véhicule en ambiance froide alors c'est le liquide de refroidissement de la batterie qui sera connecté en priorité comme source froide puis, lorsque la priorité a disparu, plusieurs circuits de refroidissement chauffage peuvent être alimentés simultanément par les électrovannes 29 en fonction des consigne de la commande de pilotage.
Il est à noter que certains des organes peuvent en outre être refroidis ou réchauffés par un autre circuit de refroidissement chauffage, par exemple monté en parallèle sur le circuit correspondant du système. Ainsi, on peut relier un circuit de chauffage 37 (par un radiateur électrique) sur le circuit 19 de moteur thermique et un circuit de chauffage analogue 39 sur le circuit 15 de batterie, voire sur le circuit de refroidissement chauffage des composants électrotechniques du véhicule (moteur électrique de traction, génératrice du prolongateur d'autonomie, composants d'électronique de puissance). Des thermostats 41 et 43 respectivement disposés sur ces circuits 37, 39 ouvrent ou ferment ces circuits en fonction des consignes de pilotage du système.
Naturellement, selon le système 1 ' de la fig. 2 dans le cas de la variante de réalisation avec un système à dispositif thermo-générateur 7' à effet Seebeck avec un échangeur gaz-air, la source chaude 9' est constituée des gaz d'échappement du prolongateur d'autonomie et la source froide 1 1 ' est de l'air.
L'air est puisé à l'extérieur en 31 et peut être acheminé par un ventilateur 34 et par le clapet 29', sous la commande du dispositif de commande 25' et en asservissement à une consigne de température de capteur 30' au circuit de chauffage de l'habitacle 33 après être réchauffé dans l'échangeur 1 1 '.
L'air puisé à l'extérieur 31 peut encore être acheminé par le ventilateur 34 et le clapet 29' au chauffage de la batterie 35 après être réchauffé dans l'échangeur 1 1 ' (si la batterie est refroidie par air).
L'air puisé à l'extérieur 31 peut également être évacué en 31 ' à l'extérieur par le clapet 34 après avoir traversé l'échangeur 1 1 '. Dans ce cas, il n'y a pas de récupération thermique.
Les avantages du système restent les mêmes que dans le mode de réalisation de la fig. 1 en ce qui concerne la génération de courant électrique et la récupération de chaleur, notamment pour le chauffage de la batterie en ambiance froide et le chauffage de l'habitacle en ambiance froide.

Claims

REVENDICATIONS
1. Système (Ι , Ι ') de cogénération d'énergie pour véhicule électrique, comprenant
- au moins deux circuits de refroidissement-chauffage (15, 17,
19 ; 33, 35) d'organe du véhicule,
- un dispositif (3) prolongateur d'autonomie du véhicule,
- un dispositif thermo générateur à effet Seebeck (7, 7') mettant en œuvre une source chaude (9, 9') et une source froide (1 1 , 1 1 ') en vue de produire de l'énergie électrique, la source chaude (9, 9') étant constituée par un échangeur thermique recevant un fluide chaud, par exemple les gaz chauds de combustion produits par le dispositif prolongateur d'autonomie (3) et la source froide (1 1 , 1 1 ') étant constituée par un échangeur thermique recevant un fluide froid,
caractérisé en ce que le fluide issu de la source froide alimente au moins un desdits circuits de refroidissement-chauffage d'organe (15, 17, 19 ; 33, 35), et en ce que le système comprend un dispositif de basculement apte à basculer l'alimentation en fluide issu de la source froide de l'au moins un circuit de refroidissement-chauffage (15, 17, 19 ; 33, 35) sur au moins un autre, et un dispositif de commande (25, 25') du dispositif de basculement apte à être activé par le pilote du véhicule ou par un dispositif de pilotage automatique du véhicule.
2. Système (1) selon la revendication 1 , caractérisé en ce que chaque circuit de refroidissement-chauffage (15, 17, 19) d'organe dudit véhicule est relié, en aval de l'organe, à la source froide (1 1).
3. Système (1 , 1 ') selon la revendication 1 ou 2, caractérisé en ce que les circuits de refroidissement-chauffage (15, 17, 19 ; 33, 35) d'organe sont choisis parmi les circuits de refroidissement-chauffage de la batterie, des composants électrotechniques, de l'habitable et/ou du moteur thermique.
4. Système (1 , 1 ') selon l'une des revendications 1 à 3, caractérisé en ce que le dispositif de commande (25, 25') est apte à commander le dispositif de basculement (29, 29') afin de basculer d'au moins un circuit de refroidissement-chauffage (15, 17, 19 ; 33, 35) sur au moins un autre en fonction d'une consigne choisie parmi une consigne de température maximale dudit circuit, une consigne de rendement optimal du système ou de l'écart optimal entre la source froide (1 1 , 1 1 ') et la source chaude (9, 9'), une consigne de température dans l'habitacle.
5. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de basculement (29, 29') comporte au moins un élément clapet ou électro vanne (29, 29') de distribution du fluide issu de la source froide pour alimenter l'au moins un circuit de refroidissement-chauffage (15, 17, 19 ; 33, 35).
6. Procédé de mise en œuvre d'un système selon l'une des revendications précédentes, dans lequel la source froide (1 1 , 1 1 ') est alimentée par un fluide, et dans lequel ce fluide réchauffé par son passage dans la source froide, est renvoyé dans au moins un circuit de refroidissement-chauffage (15, 17, 19 ; 33, 35) d'organe du véhicule, en amont de l'organe.
7. Procédé selon la revendication 6, dans lequel le fluide alimentant la source froide (1 1 ') est l'air extérieur du véhicule.
8. Procédé selon la revendication 6, dans lequel le fluide alimentant la source froide (1 1) est un fluide caloporteur circulant dans au moins un circuit de refroidissement-réchauffage (15, 17, 19) d' organe du véhicule, prélevé en aval du ou des organe(s).
9. Procédé selon la revendication 6, 7 ou 8, dans lequel le fluide sortant de la source froide (1 1, 1 1 ') est dirigé par le dispositif de basculement vers au moins un circuit de refroidissement-chauffage (15, 17, 19 ; 33, 35) en fonction d'une consigne choisie parmi une consigne de température maximale dudit circuit, une consigne de rendement optimal du système ou de l'écart optimal entre la source froide (1 1 , 1 1 ') et la source chaude (9, 9'), une consigne de température dans l'habitacle.
10. Véhicule électrique comportant un système de cogénération d'énergie selon l'une quelconque des revendications 1 à 5.
PCT/FR2012/050657 2011-03-29 2012-03-28 Systeme de cogeneration d'energie pour vehicule automobile electrique WO2012131256A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152561 2011-03-29
FR1152561A FR2973301B1 (fr) 2011-03-29 2011-03-29 Systeme de cogeneration d'energie pour vehicule automobile electrique

Publications (1)

Publication Number Publication Date
WO2012131256A1 true WO2012131256A1 (fr) 2012-10-04

Family

ID=46017964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050657 WO2012131256A1 (fr) 2011-03-29 2012-03-28 Systeme de cogeneration d'energie pour vehicule automobile electrique

Country Status (2)

Country Link
FR (1) FR2973301B1 (fr)
WO (1) WO2012131256A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031413A (zh) * 2015-12-16 2017-08-11 红色汽车技术企业有限公司 住宅和车辆能量系统
CN110481308A (zh) * 2019-08-22 2019-11-22 重庆长安汽车股份有限公司 一种新能源车驱动电机的综合冷却控制方法
EP3770010A1 (fr) * 2019-07-22 2021-01-27 FCA Italy S.p.A. Système de régulation thermique doté d'une cellule peltier pour véhicules à commande électrique
DE102013206651B4 (de) 2012-04-18 2023-02-16 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System und Verfahren zum Heizen einer Batterie in einem Hybridfahrzeug unter Verwendung von Abgas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109774422A (zh) * 2019-03-07 2019-05-21 威马智慧出行科技(上海)有限公司 电动车热管理系统及电动车
CN112060977B (zh) * 2020-09-28 2022-02-11 恒大恒驰新能源汽车研究院(上海)有限公司 车载电池加热方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000651A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented hybrid electric propulsion system
US20070193617A1 (en) * 2004-04-07 2007-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery power generation device and automobile equipped therewith
DE102008006705A1 (de) * 2008-01-30 2009-08-06 Robert Bosch Gmbh Energieversorgungseinrichtung
DE102009038834A1 (de) * 2009-08-25 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193617A1 (en) * 2004-04-07 2007-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery power generation device and automobile equipped therewith
US20060000651A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented hybrid electric propulsion system
DE102008006705A1 (de) * 2008-01-30 2009-08-06 Robert Bosch Gmbh Energieversorgungseinrichtung
DE102009038834A1 (de) * 2009-08-25 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206651B4 (de) 2012-04-18 2023-02-16 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System und Verfahren zum Heizen einer Batterie in einem Hybridfahrzeug unter Verwendung von Abgas
CN107031413A (zh) * 2015-12-16 2017-08-11 红色汽车技术企业有限公司 住宅和车辆能量系统
EP3770010A1 (fr) * 2019-07-22 2021-01-27 FCA Italy S.p.A. Système de régulation thermique doté d'une cellule peltier pour véhicules à commande électrique
US11203247B2 (en) 2019-07-22 2021-12-21 Fca Italy S.P.A. Thermal regulation system provided with Peltier cell for electric drive vehicles
CN110481308A (zh) * 2019-08-22 2019-11-22 重庆长安汽车股份有限公司 一种新能源车驱动电机的综合冷却控制方法
CN110481308B (zh) * 2019-08-22 2022-06-07 重庆长安汽车股份有限公司 一种新能源车驱动电机的综合冷却控制方法

Also Published As

Publication number Publication date
FR2973301A1 (fr) 2012-10-05
FR2973301B1 (fr) 2013-05-10

Similar Documents

Publication Publication Date Title
WO2012131256A1 (fr) Systeme de cogeneration d'energie pour vehicule automobile electrique
US6513328B2 (en) Internal combustion engine with cooling circuit and heating heat exchanger connected to it
FR2697211A1 (fr) Dispositif de refroidissement et de climatisation pour véhicule électrique.
FR2724875A1 (fr) Dispositif pour chauffer l'habitacle d'un vehicule electrique
EP0733504B1 (fr) Circuit de fluide de climatisation pour véhicule permettant un chauffage à puissance réglable
EP1615791A1 (fr) Procede et dispositif de chauffage d'un habitacle de vehicule automobile
FR2699124A1 (fr) Dispositif de ventilation pour voiture.
FR2690112A1 (fr) Dispositif de chauffage-ventilation de l'habitacle d'un véhicule automobile propulsé par un moteur à faibles rejets thermiques.
FR2697209A1 (fr) Dispositif et procédé de climatisation d'un véhicule, notamment d'un véhicule électrique.
FR2973742A1 (fr) Vehicule hybride muni d'un systeme de regulation thermique d'une boite de vitesses automatique
FR2914233A1 (fr) Dispositif et procede de recuperation d'energie pour moteur a combustion interne de vehicule automobile.
EP2039906B1 (fr) Procédé de régulation de la température d'un moteur thermique à turbocompresseur et refroidisseur d'air de suralimentation
FR2973743A1 (fr) Vehicule hybride muni d'un systeme de regulation thermique des chaines de traction
FR2934201A3 (fr) Dispositif pour le chauffage de l'air d'un habitacle d'un vehicule automobile a moteur electrique et dispositif pour sa mise en oeuvre
EP2108210B1 (fr) Dispositif et procede de chauffage d'une batterie de vehicule hybride
WO2019043304A1 (fr) Ensemble d'un circuit de refroidissement pour un moteur thermique et une boite de vitesses
EP1926168B1 (fr) Unité de production d'énergie intégrant un brûleur et une pile à combustible
EP2057026A1 (fr) Systeme de climatisation pour vehicule automobile
FR3107209A1 (fr) Dispositif de gestion thermique du moteur a combustion et de l’habitacle de vehicules automobiles et procede de mise en œuvre dudit dispositif
WO2021156034A1 (fr) Dispositif de recuperation et de regulation d'energie thermique d'un vehicule electrique a generateur electrochimique avec un systeme hvac
EP2057025A1 (fr) Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie
EP3575118A1 (fr) Systeme de regulation thermique destine a un vehicule electrique ou hybride
FR2962072A1 (fr) Vehicule hybride comprenant un chargeur embarque
EP0985807A1 (fr) Procédé et dispositif de dépollution des gaz d'échappement et de chauffage pour véhicule automobile à moteur à combustion interne
FR3057298A1 (fr) Ensemble de motorisation a boucle de rankine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12717403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12717403

Country of ref document: EP

Kind code of ref document: A1