WO2012131134A1 - Use of a non-coding region of the genome of the foot-and-mouth virus for the purpose of producing an antiviral drug - Google Patents

Use of a non-coding region of the genome of the foot-and-mouth virus for the purpose of producing an antiviral drug Download PDF

Info

Publication number
WO2012131134A1
WO2012131134A1 PCT/ES2012/070198 ES2012070198W WO2012131134A1 WO 2012131134 A1 WO2012131134 A1 WO 2012131134A1 ES 2012070198 W ES2012070198 W ES 2012070198W WO 2012131134 A1 WO2012131134 A1 WO 2012131134A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
use according
vfa
rna
ifn
Prior art date
Application number
PCT/ES2012/070198
Other languages
Spanish (es)
French (fr)
Inventor
Margarita SÁIZ ZALABARDO
Francisco SOBRINO CASTELLÓ
Belén BORREGO RIVERO
Miguel Ramón RODRÍGUEZ PULIDO
Juan Carlos SÁIZ CALAHORRA
Miguel Ángel MARTÍN ACEBES
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Fundació Centre De Recerca En Sanitat Animal (Cresa)
Instituto Nacional De Investigación Y Tecnologían Agraria Y Alimentaria (Inia)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Fundació Centre De Recerca En Sanitat Animal (Cresa), Instituto Nacional De Investigación Y Tecnologían Agraria Y Alimentaria (Inia) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012131134A1 publication Critical patent/WO2012131134A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism

Definitions

  • the present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
  • the innate immune response is the first line of defense against pathogen invasion based on various mechanisms and signaling pathways.
  • one of the mechanisms of the innate immune response is the production of type I interferon (IFN) (IFN- ⁇ and IFN- ⁇ , or also called IFN- ⁇ / ⁇ ) that has an antiviral effect. , antiproliferative and has immunomodulatory activity.
  • IFN type I interferon
  • the production of type I IFN occurs after the detection of pathogen-associated molecular patterns (PAMPS) present in viral products that are generated in a viral infection.
  • PAMPS includes both single stranded ribonucleic acid (RNA) and double stranded RNA.
  • Interferon-sensitive viruses include foot-and-mouth disease virus, vesicular stomatitis virus and West Nile virus (Randall RE et al. 2008. J Gen Virol 89: 1-47).
  • Foot and mouth disease virus is a member of the Picornaviridae family that is the cause of foot and mouth disease (glossopeda) that affects artiodactylated ungulate mammals, including ruminants and pigs .
  • VFA is a single-stranded RNA virus approximately 8.5 kilobases (Kb) in length that contains non-coding regions (NCRs) that contain highly structured domains forming a double RNA. chain.
  • NCRs non-coding regions
  • VFA NCRs contain specific structures that participate in the control of replication and translation of the viral genome.
  • the non-coding regions are the so-called S fragment, IRES ("infernal ribosome entry site") and 3'NCR (Witwer CS et al. 2001. Nucleic Acid Res 29: 5079-5089; Escarmis CM et al. 1992. Virus Res 26: 1 13-125; Belsham GJ et al. 2009. Virus Res 139: 183-192).
  • Lpro protease is the first viral protein that translates and blocks the host's innate immune response, including the INF-mediated response. Lpro is able to inhibit the induction of the messenger RNA (mRNA) of IFN- ⁇ and the expression of genes that stimulate IFN- ⁇ / ⁇ . This fact represents a problem for the control of FMD disease.
  • mRNA messenger RNA
  • Foot and mouth disease is a disease that constitutes a serious problem in the livestock sector. It is a highly contagious disease that spreads through infected animals, livestock equipment, clothing or even shoes bearing VFA. It is currently controlled by vaccination and preventive measures, but once the animals are infected, it involves slaughter and therefore results in large economic losses in the sector.
  • VSV vesicular stomatitis virus
  • sand flies Lutzomya sp.
  • Black flies family Simuliidae
  • insects of the Culicoides genus Its genome consists of 1 1 - 12 Kb of single-stranded RNA and negative polarity.
  • VEV is also able to avoid the host's immune response.
  • the infection induces the general blockage of gene expression in the host cell, which affects the production of IFN and other antiviral molecules.
  • disease control is performed using measures to restrict movement of infected animals, quarantine, control of vector insects and vaccination with inactivated virus.
  • An alternative capable of activating an effective innate immune response against the virus would be very useful for the control of this disease.
  • WNV West Nile virus
  • WNV West Ni le Virus
  • WNV West Ni le Virus
  • a virus transmitted mainly by mosquitoes and whose natural host are birds is classified within the Flaviviridae family, along with other important animal pathogens such as classical swine fever, and humans such as hepatitis C virus, dengue virus, yellow fever virus (Blitvich BJ 2008. Anim Health Res Rev 9:71-86).
  • WNV is a virus with a lipid envelope, whose virions have icosahedral symmetry and an approximate diameter of 50 nm.
  • As a genetic material WNV has a single single-stranded and positive polarity RNA molecule of about 1,1000 nucleotides in length.
  • WNV is also able to avoid the host's immune response.
  • WNV is a clear example of re-emerging zoonosis, which is currently a serious problem for human and animal health since it causes fatal meningoencephalitis in humans, equidae and birds, in which it generally produces subclinical infections, but in which occasionally it causes a high mortality (Granburg BP et al. 2004. Lancet Infec ⁇ Dis 4: 547-556).
  • the number and severity of cases in humans and horses have increased considerably.
  • the present invention relates to the use of a non-coding region of the foot-and-mouth disease virus genome for the preparation of a pharmaceutical composition for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
  • non-coding synthetic RNAs analogous to said regions were generated by in vitro transcription, the ncRNAs of the invention.
  • Interferon-sensitive viruses that have been shown to be sensitive to the innate immune response induced by the ncRNAs of the present invention are viruses of the families Picornaviridae, Rhabdoviridae and Flaviviridae.
  • the FMD virus was chosen in the Rhabdoviridae family was chosen vesicular stomatitis virus, while from the family Flaviviridae West Nile virus was chosen as the most representative of said families for the performance of tests demonstrating the activity of the ncRNAs of the invention.
  • ncRNAs used in the invention in vitro and in vivo studies were performed in which the production of messenger RNA (mRNA) of IFN- ⁇ or IFN- ⁇ and antiviral response was detected.
  • survival trials were also conducted against viral challenge in a model of a nursing mouse.
  • the effect was compared with a known interferon stimulator, poly l: C (Richmond JY et al. Proc Nati Acad Sci USA 1969. 64: 81-86) and it was demonstrated that the stimulating activity of the innate immune response of the ncRNAs of the invention is superior to this control.
  • the results obtained with the ncRNAs of the invention show that these ncRNAs stimulate the production of IFN in transfected cells.
  • IFN mRNA induction levels correlate with antiviral activity against vesicular stomatitis virus (VEV).
  • VVE vesicular stomatitis virus
  • the ncRNAs of the invention protect against foot-and-mouth disease virus as well as West Nile virus, with the IRES sequence of VFA being the one that offers the best protection in both cases while the S and 3 'regions NCR of said virus offer less protection.
  • IFN production occurs in the first hours after transfection and antiviral activity against VEV is detectable at 12 hours post infection, which makes the ncRNAs of the invention an effective tool for the treatment of diseases. caused by IFN-sensitive viruses since the ncRNAs of the invention activate the innate immune response rapidly.
  • ncRNAs of the invention show the potential use of the ncRNAs of the invention for the preparation of an antiviral drug against IFN-sensitive viruses.
  • the ncRNAs of the invention can be very useful in combination with vaccines against diseases caused by IFN-sensitive viruses to cover their susceptibility window.
  • a first aspect of the present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition.
  • non-coding region region of the foot and mouth disease virus genome located at its terminal ends (5 'and 3' ) that contains highly structured domains forming a double stranded RNA and that does not code for any protein.
  • non-coding regions are the so-called S fragment, IRES ("internal! Ribosome entry site") at the 5 'end, at the 5'NCR and at the 3' end is the 3'NCR region.
  • RNAs obtained by in vitro transcription of the S and IRES regions of the 5'NCR and the 3'NCR region of FMD virus are used in the present invention.
  • pharmaceutical composition refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases. In the context of the present invention it refers to a composition comprising at least the ncRNAs or NCRs of the invention.
  • the pharmaceutical composition of the invention can be used both alone and in combination with other pharmaceutical compositions, including vaccines and antivirals. The combination of said pharmaceutical composition with vaccines or antivirals could make the immune response they generate more effective, thus acting as an adjuvant.
  • pharmaceutical composition and medicament are used interchangeably in that invention.
  • vaccine refers to an antigen preparation used to elicit an immune system response to disease caused by a virus. It is a preparation of antigens that, once inside the organism, provokes the response of the immune system through the production of antibodies, and generates immunological memory producing permanent or transient immunity.
  • antiviral refers to any substance that does not allow the replication, assembly or release of viruses, such as interferon, ribavirin, etc.
  • ncRNAs of the invention have proven capable of inducing antiviral activity against INF-sensitive viruses, such as VFA, VEV, and WNV.
  • a second aspect of the present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition for the treatment of diseases caused by interferon-sensitive viruses.
  • Treatment refers to both therapeutic and prophylactic treatment or preventive measures. Those necessary for treatment include those already associated with alterations as well as those in which the alteration is prevented.
  • An “alteration” is any condition that would benefit from treatment with the composition of the invention, as described herein.
  • Interferon sensitive virus means a virus whose replication is affected or interrupted by the interferon secreted by the host cells.
  • Interferon is a cytokine secreted by various cells, including cells of the immune system, which has an antiviral effect. Of the groups of interferons, it is the alpha and beta that are generally induced in response to viral infection, for which reason in the present invention "interferon” refers to IFN- ⁇ or IFN- ⁇ .
  • Foot and mouth disease virus (FMDV) is the virus that causes foot and mouth disease. It belongs to the family Picornaviridae (genus Aphthovirus) and its genome is a single stranded RNA. Seven different serotypes with multiple subtypes and variants have been described, serotype O, A, C, Asial, SAT1, SAT2 and SAT3.
  • the isolates used in the present invention are 01 K, belonging to serotype O (the genome of lineage isolates 01, 01 c and 01 K is found in Genbank accession numbers D10138 and X00871) and isolate C-S8c1 from serotype C (genome in Genbank accession number AJ133357).
  • the length of the NCRs regions in the different isolates varies and the homology is 80% for the S region, 85% for the 5'NCR region comprising IRES in addition to fragments from other regions and 82% for the region 3'NCR, so the non-coding regions of the VFA would have at least 80% homology between the different serotypes (Carrillo et al. 2005. J Virol 79: 6487-6504).
  • the ncRNAs used in the invention correspond to the S and IRES regions of the 5 'end and the 3'NCR region.
  • the ncRNAs used in the invention constitute a non-infectious material of easy production and biotechnological manipulation.
  • the results obtained with the ncRNAs used in the present invention demonstrate the potential use of non-coding regions of VFA for the preparation of a pharmaceutical composition for the treatment of diseases caused by interferon-sensitive viruses.
  • the S includes 366 nucleotides 5 S. fragment' -terminal of RNA and its folding is predicted in a fork - like secondary structure ( "hairpin ”) long and stable (included in the access sequence in GenBank X00871).
  • the S fragment is followed by a poly C region ("heteroplolymeric poly C tracf, Cn), several pseudo-nodes (pseudoknots, Pk), the ere-replication element ("cis-acting replication element”) and the internal ribosome entry site (IRES, "internal! ribosome entry site”) (Fig . one ).
  • IRES is a 454 nucleotide region structured in multiple domains that mediates the cap-independent translation of the viral genome (included in the access sequence in GenBank D10138).
  • a non-coding region called 3'NCR is also located at the 3 'end of the viral genome.
  • the 3'NCR includes 90 nucleotides from the termination codon of the open reading phase of the viral RNA and a variable length poly A tail, where said length increases with the course of infection (the 90 nucleotides without the poly A tail are included in the access sequence in GenBank X00871).
  • the 3'NCR of the VFA has been seen to exert an activating effect of IRES-dependent translation and that it is capable of interacting with the IRES and S regions located at the 5 'end by direct RNA-RNA interactions.
  • analogs of VFA NCRs have been generated by in vitro transcription. Due to the strategies known by any person skilled in the art that derive from the biotechnological methods used in said in vitro transcription (such as the use of a complementary DNA inserted in the plasmid used in the transcription, cloning and the use of enzymes restriction), the ncRNAs of the invention contain extra nucleotides at their terminal ends. The ncRNAs of the invention are non-coding regions that are functional analogs of the NCRs of the invention.
  • analog refers to a region of the same function but of a different sequence. In the present invention it refers to the fact that ncRNAs have the same function as NCR regions, they comprise the NCR sequence but contain more nucleotides from the biotechnological strategy used for their synthesis.
  • extra nucleotides referred to in the present invention are ribonucleotides not present in VFA NCRs but which are the result of the biotechnological strategies used in the present invention for the generation of ncRNAs.
  • extra nucleotides can be incorporated into the VFA NCRs by the use, for example, of an RNA polymerase, by being nucleotides present in the plasmid in which the complementary DNA used for in vitro transcription is cloned or by entering the sequence to generate restriction targets to favor biotechnological strategies.
  • restriction target is a sequence recognized by a restriction enzyme, that is, it refers to a site or site that recognizes an endonuclease that is capable of cutting the phosphodiester bonds of the nucleotide chain by generating a cut in the chain of deoxyribonucleic acid (DNA).
  • restriction enzyme refers to a sequence recognized by a restriction enzyme that is capable of cutting the phosphodiester bonds of the complementary DNA used for in vitro transcription.
  • sequences recognized by the restriction enzymes Stu I and EcoRV are sequence recognized by the restriction enzymes Stu I and EcoRV.
  • the ncRNA of the 3'NCR region of the VFA contains 188 ribonucleotides of which the first 15 and the last 16 correspond to nucleotides not present in the 3'NCR of the VFA and which are the result of biotechnological strategies used for its generation. It also contains three additional ribonucleotides that have been introduced to generate restriction sites that allow biotechnological manipulation and that do not affect the secondary structure that is generated in the 3'NCR and therefore its function.
  • the ncRNA of the S region of the VFA contains 404 ribonucleotides of which the first 20 and the last 18 correspond to nucleotides not present in the S sequence of the VFA and which are the result of the biotechnological strategies used for their generation.
  • the S region of the FMD virus referred to in the present invention is the sequence between (and even) nucleotide 21 and 386 described in SEQ ID NO: 2.
  • the IRES region of the FMD virus referred to in the present invention is the sequence between (and even) nucleotide 15 and 468 described in SEQ ID NO: 3.
  • region In the present invention the term "region”, “sequence” or “nucleotide sequence” is used interchangeably in memory.
  • a preferred embodiment of the first and second aspects of the present invention relates to the use of a non-coding region of the VFA genome where said non-coding region is comprised in the nucleotide sequence selected from the list comprising: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or any combination thereof.
  • SEQ ID NO: 1 comprises the 3'NCR region of the VFA
  • SEQ ID NO: 2 comprises the region or fragment S of the VFA
  • SEQ ID NO: 3 comprises the IRES region of the VFA.
  • a more preferred embodiment refers to the use where the sequence is SEQ ID NO: 1.
  • Another more preferred embodiment refers to the use where the sequence is SEQ ID NO: 2.
  • Another more preferred embodiment refers to the use where the sequence is SEQ ID NO: 3.
  • the present invention also relates to the use of other NCRs or ncRNAs of other virus isolates. For this reason and for the foregoing, the present invention also relates to the use of the non-coding regions of the invention and to the ncRNAs of the invention where the non-coding region refers to a region with a homology of at least 80% with that region.
  • the present invention also relates to the NCRs or to the ncRNAs of the invention which, by biotechnological strategies known by any person skilled in the art, have their sequence modified, for example by the generation of restriction targets, but where said modifications do not significantly affect the structure RNA secondary.
  • viruses whose genome is a single stranded RNA are more sensitive to IFN than viruses with DNA.
  • Various viruses that are sensitive to interferon have been described, including members of the Picornaviridae, Flaviviridae and Rhabdoviridae families, for example foot-and-mouth disease virus, West Nile fever virus and vesicular stomatitis virus.
  • many viruses are capable of developing mechanisms to avoid this innate immune response, as in the case of VFA, VEV and WNV (Randall RE ei al. J Gen Virol 2008. 89: 1 - 47).
  • the present invention demonstrates that the use of the ncRNAs of the invention is useful as an antiviral even in viruses that exhibit such evasion mechanisms.
  • the interferon-sensitive virus is a single-stranded RNA virus.
  • the virus is a virus of the Picornaviridae family, more preferably the foot and mouth disease virus.
  • the virus is a virus of the family Rhabdoviridae, more preferably it refers to the vesicular stomatitis virus.
  • the virus is a virus of the Flaviviridae family, where said virus is preferably West Nile virus.
  • Another preferred embodiment of the second aspect of the invention relates to the use where said diseases are diseases in non-human mammalian animals.
  • ungulated animals more preferably of the family Suidae (for example of the genus Sus, for example S. scrofa), of the family Bovidae or of the family Equidae.
  • the present invention relates to the use in birds, preferably of the families of birds that are selected from the list comprising: Phasianidae, Corvidae, Paseridae, Fringillidae and Turdidae (belonging to the Passerine and Galliform orders), as well as families Accipitridae and Strigidae, among others.
  • Another preferred embodiment of the second aspect of the invention relates to the use where said diseases are diseases in humans.
  • Diseases can be zoonotic diseases.
  • a third aspect of the invention relates to a pharmaceutical composition of the first or second aspects of the invention which further comprises at least one pharmaceutically acceptable excipient and / or vehicle.
  • excipient refers to a substance that aids in the absorption of the pharmaceutical composition comprising the NCR or the ncRNA of the invention, stabilizes it or aids in its preparation in the sense of giving it a consistency, form, taste or any Another specific functional feature.
  • the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, coloring function, drug protection function such as to isolate it from air and / or moisture, filling function of a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, not excluding other types of excipients not mentioned in this paragraph.
  • a “pharmacologically acceptable vehicle” refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants.
  • the carrier can be an inert substance or of analogous action to any of the compounds of the present invention and whose function is to facilitate the incorporation of the drug as well as other compounds, allow a better dosage and administration or give consistency and form to the composition Pharmaceutical
  • the presentation form is liquid, the vehicle is the diluent.
  • pharmaceutically acceptable refers to the compound referred to being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
  • a preferred embodiment of the third aspect of the invention relates to a pharmaceutical composition that further comprises at least one other active ingredient.
  • the term "active substance"("activesubstance”,”pharmaceutically active substance”, “active ingredient” or “pharmaceutically active ingredient”) means any component that potentially provides a pharmacological activity or other different diagnostic effect , cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • the pharmaceutical composition or medicament provided by this invention may be provided by any route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen. For this reason, a preferred embodiment for this aspect of the invention relates to the pharmaceutical composition wherein said pharmaceutical composition is presented in a form adapted to oral, parenteral or intradermal administration.
  • the present invention also relates to the use of the pharmaceutical composition of the third aspect of the invention for the preparation of a medicament for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
  • Fig. 1 Structural reasons in the NCRs of the VFA genome. Schematic representation of the motifs in the 5 ' and 3 ' NCRs of the VFA.
  • NCR non-coding region
  • S fragment S
  • IRES "ribosome entry site”
  • VPg "genome linked viral protein”
  • Cn poly C region
  • Pk region of "pseudoknots”
  • ere the cis-acting replication element
  • Lpro protease "leader”
  • 3Dpol 3D polymerase
  • transcribed 3'NCR to which the poly A tail has been removed.
  • Fig. 2 Induction of IFN- ⁇ in porcine cells. It shows the production of IFN- ⁇ by the ncRNAs of the invention of VFA in porcine cells.
  • SK-6 cells were transfected with 20 ⁇ 9 / ⁇ of the NCR transcripts or with 10 ⁇ 9 / ⁇ of the poly l: C control or the negative tRNA control (transfer RNA).
  • Induction levels of IFN- ⁇ mRNA in cells transfected with respect to cells transfected with phosphate buffered saline (PBS) at the indicated times were determined by RT-qPCR (quantitative RT-PCR) normalized to GAPDH. Error bars show the standard deviation of the average of three independent experiments performed in triplicate.
  • Fig. 3 Analysis of the contribution of the 3 ' NCR sequences of VFA in the induction of IFN- ⁇ . It shows the production of IFN- ⁇ by the 3'NCR region of VFA and fragments thereof in porcine cells.
  • RNAs corresponding to SL1, SL2, 3 ' NCRAA n as well as 3 ' NCR RNAs (20 Mg / ml) treated or not with CIP and poly l: C (10 g / ml) were transfected into SK-6 cells.
  • Induction levels of IFN- ⁇ mRNA in cells transfected with respect to cells transfected with PBS at the indicated times were determined by standardized RT-qPCR with respect to GAPDH. Error bars show the standard deviation of the mean between triplicates.
  • IFN- ⁇ porcine IFN- ⁇ messenger RNA
  • T time; h, hours
  • transcribed 3'NCR in which the poly A tail has been removed
  • 3'NCR + CIP 3'NCR that has been treated with phosphatases.
  • Fig. 4 Induction of an antiviral state in cells transfected with NCR RNAs. It shows the antiviral effect against the virus of vesicular stomatitis in swine cells.
  • MOI multiplicity of infection
  • VFA NCRs induce the innate response in a nursing mouse.
  • mice show the production of IFN- ⁇ by the ncRNAs of the invention in lactating mice.
  • Groups of 4 to 5 Swiss lactating mice were inoculated intraperitonealemnte (ip) with 100 ⁇ g of 3 ' NCR, S, IRES or poly l: C transcripts.
  • the levels of IFN- ⁇ (A) and IFN- ⁇ (B) in pools of serum extracted at different post-inoculation times for each RNA were determined by ELISA.
  • the average values of IFN- ⁇ and IFN- ⁇ for serum pools at 0 h post-inoculation were 25 and 6 pg / ml, respectively.
  • FIG. 6 Effect of inoculation of ncRNAs on the survival of mice inoculated with WNV.
  • FIG. 7 IFN- ⁇ levels in sera of mice inoculated with the ncRNAs. The analysis was carried out by ELISA from "pools" of sera taken at 4, 8 or 24 h after inoculation of the RNAs; t, time; h, hours
  • FIG. 8 Total specific antibody levels against VFA induced following the different vaccination guidelines. The antibody level was determined by ELISA and the means corresponding to each group are shown at the different post-vaccination times indicated. The titer was expressed as the Iog10 of the last dilution whose OD reading was greater than 2 times the value of the pre-immune serum at the minimum dilution tested (1/20); t, time; d, days; week weeks Figure 9. Levels and kinetics of neutralizing antibodies against VFA after the different vaccination guidelines. The number of animals in each group in which significant levels of neutralizing antibodies were detected is shown.
  • the sera of the animals, taken 9 weeks after vaccination, were analyzed individually by ELISA using a panel of mouse immunoglobulin isotyping antibodies. The results of each group are shown: A: groups that received only the vaccine (vaccine only); B: groups that received the vaccine co-inoculated with the IRES (vaccine + RNA t 0); C: corresponding to negative (NEG) and positive (POS) control sera.
  • VCR genome NCRs contain PAMPs (molecular patterns associated with pathogens) that activate innate response signaling.
  • PAMPs molecular patterns associated with pathogens
  • RNAs corresponding to the 5 ' and 3 ' NCRs and the S and IRES fragment of the foot-and-mouth disease virus were synthesized by in vitro transcription (Fig. 1).
  • VFA ncRNAs were used to transfect SK-6 cells (porcine kidney cells) (Fig. 2).
  • IFN- ⁇ mRNA expression induction was analyzed by real-time quantitative RT-PCR at three different times (Fig. 2) using the sense primer shown in SEQ ID NO: 4 and the antisense primer shown in SEQ ID NO: 5. Remarkable differences were observed between the different RNAs.
  • the 3 ' NCR was the most potent IFN- ⁇ transcriptional inducer of all, reaching levels almost 200 times above the transfection control cells at 9 h posttransfection.
  • Activation levels detected did not correlate with the size or molarity of transfected RNAs.
  • Paper induction 5'end triphosphate in the RNA was analyzed by treatment with alkaline phosphatase (CIP). The effect of this treatment significantly reduced induction levels at 9h post-transfection, although 20-fold inductions were still detected with respect to control cells.
  • EXAMPLE 3 The "PAMP" elements of the VFA genome stimulate innate immunity and antiviral response in porcine cells
  • a SK-6 cells were transfected for 24 h with 40 ⁇ 9 / ⁇ of the ncRNAs, or 10 ⁇ 9 / ⁇ of poly l: C or tRNA.
  • the antiviral activity is expressed as the reciprocal of the highest dilution of the supernatants of transfected SK-6 cells necessary to reduce the number of VEV plaques on IBRS-2 cells by 50%.
  • the data is the average of duplicates of three independent transfection experiments. In some cases, the supernatants were previously incubated for 1 h at 37 ° C with 1 ⁇ 9 / ⁇ of neutralizing monoclonal antibodies against IFN- ⁇ , - ⁇ or both, respectively. -, undetermined. NA, not applicable.
  • the antiviral activity induced on the SK-6 cells transfected with the different RNAs was studied, infecting them with VEV at an MOI of 1.
  • supernatants were collected and the viral titer was determined by plating on IBRS-2 cells (in Fig. 4 the results are shown at 12 and 24 hours post infection).
  • the viral yield had been reduced by 3 log compared to that observed in the transfected control cells (with tRNA- or with PBS, "mock").
  • the VEV titers showed differences of 5.5 times (although not significant) between the cells treated with the 3 ' NCR element compared to the others, while at 24 hours the viral titres were more similar.
  • the transcripts corresponding to the S, IRES and 3 ' NCR regions of the VFA were inoculated intraperitoneally to litters of Swiss mice of 5- 7 days old
  • poly l: C was inoculated, a synthetic compound for which an effect on the induction of immune response had already been described.
  • IFN- ⁇ and IFN- ⁇ levels in serum samples collected at 4, 8, 24 and 48 hours post-inoculation for each ncRNA group were analyzed by ELISA (Fig. 5 A and 5 B). All the elements tested proved to be potent inducers of IFN- ⁇ / ⁇ in lactating mice, even those that in pig cells in culture had induced low levels of IFN- ⁇ mRNA expression.
  • Serum IFN- ⁇ peaks were detected at 8 h after inoculation of the 3'NCR and IRES elements, while for S the IFN- ⁇ levels remained high for longer, with a maximum at 24 h post-inoculation (Fig. 5 A). Comparing the IFN- ⁇ levels at 8 h post-inoculation, the RNA elements of the VFA genome induced between 15 and 40 times more than the poly l: C, while at 24 h post-inoculation, the levels induced by S were 90 times higher than those induced by poly l: C. This pattern was repeated in the kinetics of IFN- ⁇ (Fig. 5 B).
  • RNA transcripts corresponding to the structural elements present in the NCRs of the 3 'and 5' ends of the VFA genome can stimulate an innate immune response and induce an antiviral state in vivo.
  • EXAMPLE 5 Survival against the challenge with VFA or with WNV.
  • VFA ncRNAs In order to determine which of the VFA ncRNAs is the one that most induces protection against viral challenge with VFA or with WNV, protection trials were carried out in lactating mice based on intraperitoneal (ip), and intracranial (ic) and ip inoculation in the case of WNV, of the ncRNAs and subsequent infection with different infective doses of the viruses (VFA or WNV) that cause the death of the mice at previously established doses and times.
  • the protective effect of inoculation with ncRNAs is established by comparison with the control group of animals inoculated with buffer saline phosphate (PBS).
  • PBS buffer saline phosphate
  • control groups were also included that were inoculated with PBS and challenged with the same amounts of virus that had been previously incubated (1: 1 dilution) for 1 hour at room temperature with a mixture of sera from mice surviving at infection whose protective capacity against infection with WNV was known (Alonso-Padilla et al. 201 1 Vaccine 29: 1830-1835), and untreated groups that were inoculated ic with PBS as a control of good manipulation.
  • RNA S protected 50% of the animals even against undiluted virus preparation (8 x 10 6 pfu), while the poly l: C stopped protecting the 10 ⁇ 1 dilution .
  • the best protection results were obtained by inoculating the IRES, with total protection (100%) against VFA up to 10 "2 dilution and 90% at higher doses until undiluted virus, indicating that even with doses of virus much higher than physiological levels, the VFA is only able to kill 10% of the animals inoculated with this RNA.No animal of the control group survived from day 1 pi with the 10 ⁇ 2 dilution.
  • the observed "plateau" effect is interesting for RNAs with greater protection capacity (S and IRES) With these RNAs it seems to be an antiviral barrier that the infectivity of the virus is unable to overcome, around 50% for S and 10% for IRES.
  • the LD 50 values (lethal dose-50 / ml) shown in Table 3 correspond to the dilution of the viral preparation used necessary for Kill 50% of the animals inoculated in each case.
  • S and IRES since there is no dilution at which the virus kills a percentage of animals> 50%, it is only indicated that it is ⁇ 10 °.
  • the survivals obtained with the ncRNAs of the invention were similar to those obtained when the virus was neutralized with murine sera, whose protective capacity was known, prior to inoculation (100%, 100% and 77%). Survival rates of the control groups inoculated with PBS were 12.5%, 40% and 0%, respectively. Table 7. Survival of lactating mice inoculated with ncRNAs at 15 days post intracranial (ic) or intraperitoneal (ip) infection with WNV.
  • EXAMPLE 6 Inoculation of ncRNAs in adult mice significantly increases survival against infection with WNV
  • RNA inoculum was emulsified with 40 ⁇ 9 of lipofectin in PBS in a final volume of 200 ⁇ . 24 hours later the mice were infected via ip with 10 5 pfu of WNV. Survival was monitored daily until day 15 post-infection. The results are shown in Figure 6, and in Table 8.
  • RNA RNA
  • S or polyl: C RNA
  • IFN- ⁇ levels were determined in the sera pools of each group at the 3 times analyzed. The results are shown in Figure 7. An increase in IFN- ⁇ levels was observed at 8 h post-inoculation in the case of the groups inoculated with the S or IRES ncRNAs. The RNA that induced higher levels of IFN- ⁇ was IRES.
  • the vaccine consisted of a chemically inactivated virus by treatment with BEI ("binary ethylenimine”), as described in (Bruemann HG. 1975. Arch Virol 47: 47-56), in a dose equivalent to 2x10 5 pfu of VFA (isolated C-S8c1)
  • BEI binary ethylenimine
  • VFA isolated C-S8c1
  • the inactivated virus was emulsified in a 1: 1 ratio with Montanide ISA50, from Seppic. Ip was inoculated as previously described (Borrego B et al. 2006. Vaccine 24: 3889-3899).
  • the specific immune response against VFA of four groups of animals was compared:
  • IRES inoculation increases the total specific antibody titer against VFA induced after vaccination
  • Total antibody titers against VFA in the different animals of each group were determined by ELISA of the corresponding sera taken at days 5 and 12 or 3 and 8 weeks post-vaccination, respectively, obtained by maxillary vein bleeding, inactivated and maintained. at -20 ° C until use.
  • the ELISA used follows a C-S8c1 virus capture protocol without purification with a serotype-C rabbit anti-VFA serum (supplied by the Institute for Animal Health, Pirbright, UK), a commercial anti-mouse-HRP serum ( BioRad) and TMB (Sigma) as a substrate. The reaction was stopped with 3N sulfuric acid after 10 min incubation at room temperature, and absorbance reading was carried out at 450 nm.
  • IRES inoculation increases the titer and duration of neutralizing antibodies against VFA induced after vaccination
  • IRES inoculation increases the diversity of antibody isotypes against VFA induced after vaccination
  • the isotype diversity of the induced antibodies was determined, after 9 weeks after vaccination, in the animals corresponding to the group of only vaccinated and that of co-inoculated with vaccine + RNA.
  • the sera were analyzed in two different dilutions (chosen according to the ELISA results described above) by means of a capture ELISA of unpurified C-S8c1 virus equivalent to that described above, although in this case the capture was performed with a serum from a pig experimentally infected with C-serotype VFA (CISA-INIA).
  • Isotypes were determined using a mouse immunoglobulin isotyping panel (BioRad) as primary antibodies, followed by incubation with commercial HRP-conjugated rabbit anti-rabbit serum from BioRad (Borrego B et al. 2006. Vaccine 24: 3889- 3899).
  • Figure 10 shows the results in the form of OD corresponding to the 1/60 dilution of the serum of two of the three animals that only received vaccine and of the five that were co-inoculated with vaccine and RNA. The comparison with negative and positive sera is shown.
  • the immunoglobulin profile in the animals of the coinoculated group was much more diverse, similar to that observed for a “ ⁇ of sera from experimentally infected mice (positive control). In particular, an increase in lgG1 was observed. lgG2A, appearance of lgG2B and in an animal, also of lgG3.
  • the IBRS-2, SK-6 pig kidney cell lines (monkey kidney epithelial cells) of the Animal Health Research Center (CISA-INIA), Valdeolmos, Spain, and murine L-cells have been used 929, from the laboratory of Dr. Alcam ⁇ , from the Severo Ochoa Molecular Biology Center, Madrid, Spain.
  • the cells were grown in DMEM supplemented with 10% fetal bovine serum, penicillin / streptomycin and glutamine.
  • the viruses used in the infection experiments were: the foot-and-mouth disease virus O1 K, the vesicular stomatitis virus Indiana and the West Nile virus strain NY-99.
  • RNA transcripts corresponding to the S, 3 ' NCR fragment and its derivatives SL1 (3 ' NCRASL2), SL2 (3 ' NCRASL1) and ⁇ (with the poly A tail removed) of the VFA 01 K genome were generated by in vitro transcription with T3 RNA polymerase from plasmids previously described and linearized with Not I (Serrano PM et al. 2006. J Gen Virol 87: 3013-3022).
  • RNA corresponding to the VFA IRES of the C-S8c1 isolate was obtained from a clone derived from pGEM (Ramos R et al. 1999. RNA 5: 1374-1783) assigned by E. Mart ⁇ nez-Salas, after linearizing with Xho ⁇ and transcribing in vitro with T7 RNA polymerase (NEB).
  • the RNA corresponding to the 5 ' NCR, including the S fragment, the IRES and 212 nucleotides of the Lpro coding sequence was synthesized with the SP6 RNA polymerase, using the pO1 K clone as a template (Rodr ⁇ guez-Pulido MF et al. 2009.
  • transcripts Unless otherwise indicated, all transcripts contain a triphosphate group at the 5 'end and the 3'NCR elements of the VFA and their derivatives carry a 58 nucleotide poly A tail.
  • RNAs were treated with DNase RQ1 (1 U ⁇ g, Promega), extracted with phenol / chloroform and precipitated with ethanol. Finally they were resuspended in water and quantified by spectrophotometry. The integrity and size of the RNA were analyzed by electrophoresis in denaturing gels 6% acrylamide, 7 M urea or agarose gels.
  • ncRNAS of the invention were generated SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
  • RNAs Before being transfected, the RNAs were heated for 5 minutes at 92 ° C, allowed to cool to room temperature for 10 minutes and kept on ice.
  • SK-6 cells were transfected using 20 ⁇ g / ml of each of the ncRNAs with Lipofectin (Invitrogen) or with 10 ⁇ g / ml of poly l: C (Sigma) using Lipofectamine (Invitrogen).
  • Retro-transcription was performed using 500 ng of total RNA and the enzyme Transcriptor RT (Roche).
  • PCR quantitative polymerase chain reaction
  • PCR quantitative polymerase chain reaction
  • the oligonucleotides used to amplify the mRNA of porcine IFN- ⁇ were the sequences referred to in SEQ ID NO: 4 (sense primer) and SEQ ID NO: 5 (antisense primer).
  • SEQ ID NO: 4 sense primer
  • SEQ ID NO: 5 antisense primer
  • GAPDH previously described oligonucleotides were used (Garc ⁇ a-Briones MM et al. 2004. Virology 322: 264-75).
  • IFN bioassay The antiviral activity of the supernatants of the transfected SK-6 cells was determined by an inhibition assay of VEV infection on IBRS-2 cells. Briefly, SK-6 cells were transfected for 24 hours with 40 ⁇ 9 / ⁇ of the NCR transcripts, or with 10 ⁇ 9 of poly l: C or tRNA (negative control since the transfer RNA is an endogenous RNA and therefore its Transfection should not induce the innate response or the induction of INF). IBRS-2 cells were incubated for 24 hours with different dilutions of transfection supernatants, washed and infected with 100 pfu of VEV. Plates were counted at 24 hours post-infection.
  • transfection supernatants were previously incubated for 1 hour at 37 ° C with 1 ⁇ g of porcine anti-IFN- ⁇ -specific neutralizing monoclonal antibodies (K9, from PBL InterferonSource) or anti-IFN- ⁇ previously described (Overend CR et al. 2007. J Gen Virol 88: 925-31). No inhibitory effect on VEV infectivity was observed for amounts of monoclonal antibody up to 10 ⁇ g. The antiviral activity was expressed as the highest dilution of supernatant required to reduce the number of plaques by 50%.
  • a cytopathic inhibition assay was performed (Rubinstein SPC et al. 1981. J Virol 37: 755-758). Briefly, monolayers of L-929 cells seeded in M-96 multiwell plates were incubated for 24 hours with serial dilutions of the corresponding sera. Subsequently the medium was removed and replaced by fresh medium containing 100 infective doses-50 (TCID50) of VEV. At 72 hours the cytopathic effect was monitored by observation under a microscope. The antiviral activity was expressed as the reciprocal of the highest dilution of serum that protects against cytotoxicity in 50% of the wells.
  • mice approximately one week old were inoculated intraperitoneally (ip) with each RNA (ncRNA) that were subsequently inoculated with different virus dilutions: VFA (a bait of 8-12 animals per dilution) 24 h after by the same route, or WNV (a bait of 9-17 animals per dilution) 24 hours later either via ip or intracranial route (ic) (both routes of administration were used in different baits).
  • the inoculum had a final volume of 100 ⁇ and contained 100 ⁇ g of the RNA to be tested diluted in PBS and 20 ⁇ g of Lipofectin (Invitrogen).
  • RNAs synthesized by in vitro transcription were heated at 92 ° C for 5 min in water.
  • the PBS was then added and allowed to renaturate at room temperature for 10 min.
  • the lipofectin was then added and after 15 min incubation at room temperature the mixture was injected.
  • Lipofectin is a commercial cationic liposome preparation for routine use in single-stranded RNA transfections.
  • the methodology of inoculation of VFA RNAs in mice and pigs has been previously developed.
  • the preparation of the inoculum of poly l: C is also performed with 100 ⁇ g of the RNA diluted in PBS but without liposomes since its ability to induce IFN in adult mice after intraperitoneal inoculation as naked RNA has been described.
  • Infection with the virus was carried out 24 hours after inoculation with the RNAs for giving the best protection results in previous trials with the 3 ' NCR inoculated at 4, 8 and 24 h pre-infection.
  • the inoculum volume of VFA was 100 ⁇ diluted in PBS. Be tested the dilutions between 10 ° (undiluted) and 10 ⁇ 5 of an infection supernatant in cell culture with a titer of 8x10 7 plaque forming units (pfu) / ml.
  • the inoculation volume was 10 or 100 ⁇ , depending on whether the inoculation was ic or ip, diluted in PBS.
  • the challenge was performed with infection supernatant in WNV cell culture strain NY-99 (10 or 100 pfu / mouse via ic, and with 100 pfu / mouse via ip) 24 h after RNAs inoculation.
  • control groups were also included that were inoculated with PBS and challenged with the same amounts of virus that had previously been incubated (1: 1 dilution) for 1 hour at room temperature with immune sera from mice whose protective capacity against WNV infection was known, and untreated groups that were inoculated ic with PBS as a good handling control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to the use of RNAs that correspond to highly structured domains of the non-coding regions of the genome of the foot-and-mouth virus (FMV) and to the use of sequences that comprise said RNAs for the production of a pharmaceutical composition for the prophylaxis and/or the treatment of diseases caused by interferon-sensitive viruses. The invention also relates to the pharmaceutical composition that comprises the non-coding regions of the invention and that furthermore comprises at least one pharmaceutically acceptable excipient and/or vehicle, and also to the use of said pharmaceutical composition.

Description

Uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de un medicamento antiviral  Use of a non-coding region of the foot and mouth disease virus genome for the development of an antiviral drug
La presente invención se refiere al uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de una composición farmacéutica para la profilaxis y/o tratamiento de enfermedades causadas por virus sensibles a interferón. The present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
La respuesta inmune innata es la primera línea de defensa frente a la invasión de patógenos basada en diversos mecanismos y rutas de señalización. En el caso de una infección viral, uno de los mecanismos de la respuesta inmune innata es la producción de interferón (IFN) de tipo I (IFN-α e IFN-β, o también denominado IFN-α/β) que tiene efecto antiviral, antiproliferativo y presenta actividad inmunomoduladora. La producción de IFN de tipo I se produce tras la detección de patrones moleculares asociados a patógenos (PAMPS, "pathogen associated molecular patterns") presentes en los productos virales que se generan en una infección vírica. Entre los PAMPS se incluyen tanto ácido ribonucléico (RNA) de cadena simple como RNA de doble cadena. Sin embargo, se han descrito virus sensibles a interferón que consiguen evadir este sistema de defensa. Entre los virus sensibles a interferón se encuentran el virus de la fiebre aftosa, el virus de la estomatitis vesicular y el virus del Nilo Occidental (Randall RE et al. 2008. J Gen Virol 89:1 -47). The innate immune response is the first line of defense against pathogen invasion based on various mechanisms and signaling pathways. In the case of a viral infection, one of the mechanisms of the innate immune response is the production of type I interferon (IFN) (IFN-α and IFN-β, or also called IFN-α / β) that has an antiviral effect. , antiproliferative and has immunomodulatory activity. The production of type I IFN occurs after the detection of pathogen-associated molecular patterns (PAMPS) present in viral products that are generated in a viral infection. PAMPS includes both single stranded ribonucleic acid (RNA) and double stranded RNA. However, interferon-sensitive viruses that evade this defense system have been described. Interferon-sensitive viruses include foot-and-mouth disease virus, vesicular stomatitis virus and West Nile virus (Randall RE et al. 2008. J Gen Virol 89: 1-47).
El virus de la fiebre aftosa (VFA, "foot and mouth disease virus", FMDV,) es un miembro de la familia Picornaviridae que es el causante de la fiebre aftosa (glosopeda) que afecta a mamíferos ungulados artiodáctilos, entre ellos rumiantes y cerdos. El VFA es un virus de RNA de cadena simple de aproximadamente 8,5 kilobases (Kb) de longitud que en sus extremos terminales contiene regiones no codificantes (NCR, "non-coding regions") que contienen dominios altamente estructurados formando un RNA de doble cadena. Las NCRs del VFA contienen estructuras específicas que participan en el control de la replicación y la traducción del genoma viral. Entre las regiones no codificantes se sitúan los denominados fragmento S, IRES (" infernal ribosome entry site") y 3'NCR (Witwer CS et al. 2001 . Nucleic Acid Res 29:5079-5089; Escarmis CM et al. 1992. Virus Res 26: 1 13-125; Belsham GJ et al. 2009. Virus Res 139: 183-192). Foot and mouth disease virus (FMDV) is a member of the Picornaviridae family that is the cause of foot and mouth disease (glossopeda) that affects artiodactylated ungulate mammals, including ruminants and pigs . VFA is a single-stranded RNA virus approximately 8.5 kilobases (Kb) in length that contains non-coding regions (NCRs) that contain highly structured domains forming a double RNA. chain. VFA NCRs contain specific structures that participate in the control of replication and translation of the viral genome. Among the non-coding regions are the so-called S fragment, IRES ("infernal ribosome entry site") and 3'NCR (Witwer CS et al. 2001. Nucleic Acid Res 29: 5079-5089; Escarmis CM et al. 1992. Virus Res 26: 1 13-125; Belsham GJ et al. 2009. Virus Res 139: 183-192).
Se ha demostrado que VFA es sensible a IFN-a, IFN-β e IFN-γ pero es capaz de desarrollar mecanismos para evadir la respuesta inmune. La proteasa Lpro es la primera proteína viral que se traduce y bloquea la respuesta innata inmune del hospedador, entre las que se incluye la respuesta mediada por INF. Lpro es capaz de inhibir la inducción del RNA mensajero (RNAm) de IFN-β y la expresión de los genes que estimulan IFN-α/β. Este hecho representa un problema para el control de la enfermedad de la fiebre aftosa. It has been shown that VFA is sensitive to IFN-a, IFN-β and IFN-γ but is capable of developing mechanisms to evade the immune response. The Lpro protease is the first viral protein that translates and blocks the host's innate immune response, including the INF-mediated response. Lpro is able to inhibit the induction of the messenger RNA (mRNA) of IFN-β and the expression of genes that stimulate IFN-α / β. This fact represents a problem for the control of FMD disease.
La fiebre aftosa es una enfermedad que constituye un grave problema en el sector de la ganadería. Es una enfermedad altamente contagiosa que se propaga a través de animales infectados, equipos ganaderos, ropa o incluso calzado portador del VFA. Se controla en la actualidad mediante vacunación y medidas preventivas pero una vez contagiados los animales implica su sacrificio y por lo tanto deriva en grandes pérdidas económicas en el sector. Foot and mouth disease is a disease that constitutes a serious problem in the livestock sector. It is a highly contagious disease that spreads through infected animals, livestock equipment, clothing or even shoes bearing VFA. It is currently controlled by vaccination and preventive measures, but once the animals are infected, it involves slaughter and therefore results in large economic losses in the sector.
En relación a la vacunación frente al VFA, la inmunidad adaptativa aparece varios días después de la vacunación de los animales, siendo de aproximadamente una semana en el caso de la vacunación tradicional. Esto supone un problema al poder quedar expuestos dichos animales al virus durante el período ventana y ser susceptibles de infección durante ese tiempo. Se han realizado esfuerzos para cubrir esa ventana de susceptibilidad mediante el uso de adenovirus recombinantes defectivos en replicación que expresan IFN-α pero dicha estrategia, además de implicar el uso de un vector viral, no llega a cubrir la ventana de susceptibilidad al VFA en su totalidad ya que se protege de esta manera a cerdos inoculados desde 24 horas postinfección y la protección dura entre 3 y 5 días. Se hace necesaria por lo tanto, una herramienta que cubra la ventana de susceptibilidad frente al virus de la fiebre aftosa previa al desarrollo de una inmunidad adaptativa efectiva en la que los animales infectados son susceptibles a la infección. In relation to vaccination against VFA, adaptive immunity appears several days after vaccination of animals, being approximately one week in the case of traditional vaccination. This is a problem because these animals can be exposed to the virus during the window period and be susceptible to infection during that time. Efforts have been made to cover that susceptibility window by using recombinant replication-defective adenoviruses expressing IFN-α but said strategy, in addition to involving the use of a viral vector, does not cover the VFA susceptibility window in its totality since inoculated pigs are protected in this way from 24 hours Post-infection and protection lasts between 3 and 5 days. Therefore, a tool that covers the susceptibility window against the FMD virus is necessary prior to the development of an effective adaptive immunity in which infected animals are susceptible to infection.
El virus de la estomatitis vesicular (VEV, "vesicular stomatitis virus", VSV) es un virus perteneciente a la familia Rhabdoviridae que produce una enfermedad vesicular aguda en bovinos, caballos, ciervos y cerdos. Se ha encontrado evidencia serológica de que infecta otros muchos animales y ocasionalmente infecta también humanos. Hay dos especies principales, denominadas New Jersey e Indiana. Se transmite por picadura de insectos vectores, principalmente las moscas de la arena (Lutzomya sp.), moscas negras (familia Simuliidae) e insectos del género Culicoides. Su genoma está formado por 1 1 - 12 Kb de RNA de cadena sencilla y polaridad negativa. El VEV también es capaz de evitar la respuesta inmune del hospedador. En el caso de VEV la infección induce el bloqueo general de la expresión génica en la célula hospedadora, que afecta a la producción de IFN y otras moléculas antivirales. Actualmente el control de la enfermedad se realiza utilizando medidas de restricción de movimiento de animales infectados, cuarentena, control de los insectos vectores y vacunación con virus inactivado. Una alternativa capaz de activar una respuesta inmune innata eficaz frente al virus sería de gran utilidad para el control de esta enfermedad. The vesicular stomatitis virus (VEV, "vesicular stomatitis virus", VSV) is a virus belonging to the family Rhabdoviridae that produces an acute vesicular disease in cattle, horses, deer and pigs. Serological evidence has been found that infects many other animals and occasionally infects humans as well. There are two main species, called New Jersey and Indiana. It is transmitted by insect bite vectors, mainly sand flies (Lutzomya sp.), Black flies (family Simuliidae) and insects of the Culicoides genus. Its genome consists of 1 1 - 12 Kb of single-stranded RNA and negative polarity. VEV is also able to avoid the host's immune response. In the case of VEV, the infection induces the general blockage of gene expression in the host cell, which affects the production of IFN and other antiviral molecules. Currently, disease control is performed using measures to restrict movement of infected animals, quarantine, control of vector insects and vaccination with inactivated virus. An alternative capable of activating an effective innate immune response against the virus would be very useful for the control of this disease.
El virus del Nilo Occidental (VNO, "West Ni le Virus", WNV), un virus transmitido principalmente por mosquitos y cuyo hospedador natural son las aves, está clasificado dentro de la familia Flaviviridae, junto a otros importantes patógenos animales como el virus de la peste porcina clásica, y humanos como el virus de la hepatitis C, el virus dengue, el virus de la fiebre amarilla (Blitvich BJ 2008. Anim Health Res Rev 9:71 -86). El VNO es un virus con envoltura lipídica, cuyos viriones poseen simetría icosaédrica y un diámetro aproximado de 50 nm. Como material genético, el VNO cuenta con una única molécula de ARN de cadena sencilla y polaridad positiva de unos 1 1 .000 nucleótidos de longitud. El VNO también es capaz de evitar la respuesta inmune del hospedador. El VNO es un claro ejemplo de zoonosis re-emergente, que actualmente constituye un grave problema para la sanidad humana y animal dado que origina meningoencefalitis mortales en humanos, équidos y aves, en las que en general produce infecciones subclínicas, pero en las que ocasionalmente llega a causar una elevada mortalidad (Granwehr BP et al. 2004. Lancet Infecí Dis 4:547-556). En los últimos años, el número y la gravedad de los casos en humanos y caballos han aumentado considerablemente. En la actualidad como herramientas para el control de la misma únicamente se dispone de una vacuna comercial para équidos basada en el uso de virus inactivado y en el caso de humanos, terapias basadas en la administración de interferón (IFN) o de anticuerpos de forma compasiva (Ng et al. 2003. Dev Biol 114:221 -227; Davis et al. 2006. Ann Neurol 60:286-300) que no son suficientes para el control de la enfermedad, por lo que se hace necesario una alternativa eficaz para la profilaxis y/o el tratamiento de la enfermedad del Nilo Occidental. The West Nile virus (WNV, "West Ni le Virus", WNV), a virus transmitted mainly by mosquitoes and whose natural host are birds, is classified within the Flaviviridae family, along with other important animal pathogens such as classical swine fever, and humans such as hepatitis C virus, dengue virus, yellow fever virus (Blitvich BJ 2008. Anim Health Res Rev 9:71-86). WNV is a virus with a lipid envelope, whose virions have icosahedral symmetry and an approximate diameter of 50 nm. As a genetic material, WNV has a single single-stranded and positive polarity RNA molecule of about 1,1000 nucleotides in length. He WNV is also able to avoid the host's immune response. WNV is a clear example of re-emerging zoonosis, which is currently a serious problem for human and animal health since it causes fatal meningoencephalitis in humans, equidae and birds, in which it generally produces subclinical infections, but in which occasionally it causes a high mortality (Granwehr BP et al. 2004. Lancet Infecí Dis 4: 547-556). In recent years, the number and severity of cases in humans and horses have increased considerably. At present, as tools for its control, only a commercial vaccine for equidae is available based on the use of inactivated virus and in the case of humans, therapies based on the administration of interferon (IFN) or compassionate antibodies (Ng et al. 2003. Dev Biol 114: 221-227; Davis et al. 2006. Ann Neurol 60: 286-300) that are not sufficient for disease control, so an effective alternative to the prophylaxis and / or treatment of West Nile disease.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención se refiere al uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de una composición farmacéutica para la profilaxis y/o el tratamiento de enfermedades causadas por virus sensibles a interferón. The present invention relates to the use of a non-coding region of the foot-and-mouth disease virus genome for the preparation of a pharmaceutical composition for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
Con el fin de evaluar el potencial antiviral de las regiones no codificantes del genoma del virus de la fiebre aftosa (VFA), en la presente invención se procedió a generar mediante transcripción in vitro RNAs sintéticos no codificantes análogos de dichas regiones, los ncRNAs de la invención. In order to evaluate the antiviral potential of the non-coding regions of the foot-and-mouth disease virus (VFA) genome, in the present invention, non-coding synthetic RNAs analogous to said regions were generated by in vitro transcription, the ncRNAs of the invention.
Los virus sensibles a interferón para los que se ha demostrado que son sensibles a la respuesta inmune innata inducida por los ncRNAs de la presente invención son virus de las familias Picornaviridae, Rhabdoviridae y Flaviviridae. Dentro de la familia Picornaviridae se eligió al virus de la fiebre aftosa, en la familia Rhabdoviridae se eligió el virus de la estomatitis vesicular, mientras que de la familia Flaviviridae se eligió el virus del Nilo Occidental como los más representativos de dichas familias para la realización de los ensayos que demuestran la actividad de los ncRNAs de la invención. Interferon-sensitive viruses that have been shown to be sensitive to the innate immune response induced by the ncRNAs of the present invention are viruses of the families Picornaviridae, Rhabdoviridae and Flaviviridae. Within the family Picornaviridae, the FMD virus was chosen in the Rhabdoviridae family was chosen vesicular stomatitis virus, while from the family Flaviviridae West Nile virus was chosen as the most representative of said families for the performance of tests demonstrating the activity of the ncRNAs of the invention.
Con los ncRNAs utilizados en la invención, se realizaron estudios in vitro e in vivo en los que se detectó la producción de RNA mensajero (RNAm) de IFN-α o IFN-β y respuesta antiviral. Además también se realizaron ensayos de supervivencia frente a desafío viral en un modelo de ratón lactante. En los ensayos se comparó el efecto con un conocido estimulador de interferón, el poly l:C (Richmond JY et al. Proc Nati Acad Sci USA 1969. 64: 81 -86) y se demostró que la actividad estimulante de la respuesta inmune innata de los ncRNAs de la invención es superior a este control. Los resultados obtenidos con los ncRNAs de la invención muestran que estos ncRNAs estimulan la producción de IFN en células transfectadas. Además, los niveles de inducción del RNAm de IFN correlacionan con actividad antiviral frente al virus de la estomatitis vesicular (VEV). En estudios de desafío viral, los ncRNAs de la invención protegen frente al virus de la fiebre aftosa así como frente al virus del Nilo Occidental, siendo la secuencia IRES del VFA la que mejor protección ofrece en ambos casos mientras que las regiones S y 3'NCR de dicho virus ofrecen una menor protección. Por otra parte, la producción de IFN ocurre en las primeras horas tras la transfección y la actividad antiviral frente al VEV es detectable a las 12 horas post infección, lo que convierte a los ncRNAs de la invención en una herramienta eficaz para el tratamiento de enfermedades causadas por los virus sensibles a IFN ya que los ncRNAs de la invención activan la respuesta inmune innata de manera rápida. Los resultados obtenidos en la presente invención muestran el potencial uso de los ncRNAs de la invención para la elaboración de un medicamento antiviral frente a virus sensibles a IFN. Los ncRNAs de la invención pueden ser de gran utilidad en combinación con vacunas frente a las enfermedades causadas por virus sensibles a IFN para cubrir su ventana de susceptibilidad. Por todo lo aquí descrito, un primer aspecto de la presente invención se refiere al uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de una composición farmacéutica. With the ncRNAs used in the invention, in vitro and in vivo studies were performed in which the production of messenger RNA (mRNA) of IFN-α or IFN-β and antiviral response was detected. In addition, survival trials were also conducted against viral challenge in a model of a nursing mouse. In the trials, the effect was compared with a known interferon stimulator, poly l: C (Richmond JY et al. Proc Nati Acad Sci USA 1969. 64: 81-86) and it was demonstrated that the stimulating activity of the innate immune response of the ncRNAs of the invention is superior to this control. The results obtained with the ncRNAs of the invention show that these ncRNAs stimulate the production of IFN in transfected cells. In addition, IFN mRNA induction levels correlate with antiviral activity against vesicular stomatitis virus (VEV). In viral challenge studies, the ncRNAs of the invention protect against foot-and-mouth disease virus as well as West Nile virus, with the IRES sequence of VFA being the one that offers the best protection in both cases while the S and 3 'regions NCR of said virus offer less protection. On the other hand, IFN production occurs in the first hours after transfection and antiviral activity against VEV is detectable at 12 hours post infection, which makes the ncRNAs of the invention an effective tool for the treatment of diseases. caused by IFN-sensitive viruses since the ncRNAs of the invention activate the innate immune response rapidly. The results obtained in the present invention show the potential use of the ncRNAs of the invention for the preparation of an antiviral drug against IFN-sensitive viruses. The ncRNAs of the invention can be very useful in combination with vaccines against diseases caused by IFN-sensitive viruses to cover their susceptibility window. For all that is described herein, a first aspect of the present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition.
En la presente invención se entiende como "región no codificante" (NCR, "non- coding región", "untranslated región" o UTR) aquella región del genoma del virus de la fiebre aftosa situada en sus extremos terminales (5' y 3') que contiene dominios altamente estructurados formando un RNA de doble cadena y que no codifica para ninguna proteína. Entre las regiones no codificantes se sitúan los denominados fragmento S, IRES (" interna! ribosome entry site") en el extremo 5', en la denominada 5'NCR y en el extremo 3' se sitúa la región 3'NCR. En la presente invención se utilizan RNAs obtenidos mediante transcripción in vitro de las regiones S e IRES de la 5'NCR y a la región 3'NCR de virus de la fiebre aftosa. En adelante nos referiremos a las regiones S e IRES del extremo 5' y a la región 3'NCR del VFA como a las "NCRs de la invención" o "regiones no codificantes de la invención", mientras que nos referiremos a los RNAs obtenidos mediante transcripción in vitro de dichas regiones como a los "ncRNAs de la invención" (RNAs no codificantes de la invención). In the present invention it is understood as "non-coding region" (NCR, "non-coding region", "untranslated region" or UTR) that region of the foot and mouth disease virus genome located at its terminal ends (5 'and 3' ) that contains highly structured domains forming a double stranded RNA and that does not code for any protein. Among the non-coding regions are the so-called S fragment, IRES ("internal! Ribosome entry site") at the 5 'end, at the 5'NCR and at the 3' end is the 3'NCR region. RNAs obtained by in vitro transcription of the S and IRES regions of the 5'NCR and the 3'NCR region of FMD virus are used in the present invention. Hereinafter we will refer to the S and IRES regions of the 5 'end and the 3'NCR region of the VFA as the "NCRs of the invention" or "non-coding regions of the invention", while we will refer to the RNAs obtained by in vitro transcription of said regions as to the "ncRNAs of the invention" (non-coding RNAs of the invention).
El término "composición farmacéutica" en esta memoria hace referencia a cualquier sustancia usada para prevención, diagnóstico, alivio, tratamiento o curación de enfermedades. En el contexto de la presente invención se refiere a una composición que comprenda al menos los ncRNAs o las NCRs de la invención. La composición farmacéutica de la invención puede utilizarse tanto sola como en combinación con otras composiciones farmacéuticas, entre ellas vacunas y antivirales. La combinación de dicha composición farmacéutica con vacunas o antivirales podría hacer más efectiva la respuesta inmune que generan, actuando así como adyuvante. El término composición farmacéutica y medicamento se utilizan en esa invención de manera indistinta. En el contexto de la presente invención el término "vacuna" se refiere a una preparación antigénica empleada para provocar una respuesta del sistema inmune a la enfermedad causada por un virus. Es un preparado de antígenos que, una vez dentro del organismo, provoca la respuesta del sistema inmunitario mediante la producción de anticuerpos, y genera memoria inmunológica produciendo inmunidad permanente o transitoria. The term "pharmaceutical composition" herein refers to any substance used for prevention, diagnosis, relief, treatment or cure of diseases. In the context of the present invention it refers to a composition comprising at least the ncRNAs or NCRs of the invention. The pharmaceutical composition of the invention can be used both alone and in combination with other pharmaceutical compositions, including vaccines and antivirals. The combination of said pharmaceutical composition with vaccines or antivirals could make the immune response they generate more effective, thus acting as an adjuvant. The term pharmaceutical composition and medicament are used interchangeably in that invention. In the context of the present invention the term "vaccine" refers to an antigen preparation used to elicit an immune system response to disease caused by a virus. It is a preparation of antigens that, once inside the organism, provokes the response of the immune system through the production of antibodies, and generates immunological memory producing permanent or transient immunity.
En la presente invención el término "antiviral" se refiere a cualquier sustancia que no permita la replicación, ensamblaje o liberación de virus, como por ejemplo interferón, ribavirina, etc. In the present invention the term "antiviral" refers to any substance that does not allow the replication, assembly or release of viruses, such as interferon, ribavirin, etc.
Los ncRNAs de la invención han demostrado ser capaces de inducir actividad antiviral frente a virus sensibles a INF, como son el VFA, el VEV, y el VNO. Por dicho motivo, un segundo aspecto de la presente invención se refiere al uso de una región no codificante del genoma del virus del virus de la fiebre aftosa para la elaboración de una composición farmacéutica para el tratamiento de enfermedades causadas por virus sensibles a interferón. "Tratamiento" se refiere tanto al tratamiento terapéutico como al profiláctico o medidas preventivas. Aquellas necesarias de tratamiento incluyen las ya asociadas con alteraciones así como en aquellas en las que se previene la alteración. Una "alteración" es cualquier condición que se beneficiaría del tratamiento con la composición de la invención, tal y como se describe en el presente documento. The ncRNAs of the invention have proven capable of inducing antiviral activity against INF-sensitive viruses, such as VFA, VEV, and WNV. For this reason, a second aspect of the present invention relates to the use of a non-coding region of the FMD virus genome for the preparation of a pharmaceutical composition for the treatment of diseases caused by interferon-sensitive viruses. "Treatment" refers to both therapeutic and prophylactic treatment or preventive measures. Those necessary for treatment include those already associated with alterations as well as those in which the alteration is prevented. An "alteration" is any condition that would benefit from treatment with the composition of the invention, as described herein.
Se entiende por "virus sensible a interferón" aquél virus cuya replicación se ve afectada o interrumpida por el interferón secretado por las células del hospedador. "Interferon sensitive virus" means a virus whose replication is affected or interrupted by the interferon secreted by the host cells.
El interferón es una citoquina secretada por diversas células, entre ellas las células del sistema inmune, que tiene efecto antiviral. De los grupos de interferones, son el alfa y el beta los que se inducen generalmente en respuesta a infección viral, por dicho motivo en la presente invención "interferón" se refiere a IFN-α o IFN-β. El virus de la fiebre aftosa (VFA, "foot and mouth disease virus", FMDV) es el virus causante de la fiebre aftosa. Pertenece a la familia Picornaviridae (género Aphthovirus) y su genoma es un RNA de cadena simple. Se han descrito siete serotipos distintos con múltiples subtipos y variantes, el serotipo O, A, C, Asial , SAT1 , SAT2 y SAT3. Los aislados utilizados en la presente invención son el 01 K, perteneciente al serotipo O (el genoma de aislados de linaje 01 , 01 c y 01 K se encuentra recogido en los números de acceso de Genbank D10138 y X00871 ) y el aislado C-S8c1 de serotipo C (genoma en número de acceso de Genbank AJ133357). La longitud de las regiones NCRs en los distintos aislados varía y la homología es de un 80% para la región S, un 85% para la región 5'NCR que comprende IRES además de fragmentos de otras regiones y de un 82% para la región 3'NCR, por lo que las regiones no codificantes del VFA presentarían al menos un 80% de homología entre los diferentes serotipos (Carrillo et al. 2005. J Virol 79:6487-6504). Los ncRNAs utilizados en la invención corresponden a las regiones S e IRES del extremo 5' y a la región 3'NCR. Los ncRNAs utilizados en la invención constituyen un material no infeccioso de fácil producción y manipulación biotecnológica. Los resultados obtenidos con los ncRNAs utilizados en la presente invención demuestran el potencial uso de regiones no codificantes del VFA para la elaboración de una composición farmacéutica para el tratamiento de enfermedades causadas por virus sensibles a interferón. Interferon is a cytokine secreted by various cells, including cells of the immune system, which has an antiviral effect. Of the groups of interferons, it is the alpha and beta that are generally induced in response to viral infection, for which reason in the present invention "interferon" refers to IFN-α or IFN-β. Foot and mouth disease virus (FMDV) is the virus that causes foot and mouth disease. It belongs to the family Picornaviridae (genus Aphthovirus) and its genome is a single stranded RNA. Seven different serotypes with multiple subtypes and variants have been described, serotype O, A, C, Asial, SAT1, SAT2 and SAT3. The isolates used in the present invention are 01 K, belonging to serotype O (the genome of lineage isolates 01, 01 c and 01 K is found in Genbank accession numbers D10138 and X00871) and isolate C-S8c1 from serotype C (genome in Genbank accession number AJ133357). The length of the NCRs regions in the different isolates varies and the homology is 80% for the S region, 85% for the 5'NCR region comprising IRES in addition to fragments from other regions and 82% for the region 3'NCR, so the non-coding regions of the VFA would have at least 80% homology between the different serotypes (Carrillo et al. 2005. J Virol 79: 6487-6504). The ncRNAs used in the invention correspond to the S and IRES regions of the 5 'end and the 3'NCR region. The ncRNAs used in the invention constitute a non-infectious material of easy production and biotechnological manipulation. The results obtained with the ncRNAs used in the present invention demonstrate the potential use of non-coding regions of VFA for the preparation of a pharmaceutical composition for the treatment of diseases caused by interferon-sensitive viruses.
En la región no codificante del extremo 5' (5'NCR) del genoma del VFA se encuentra el fragmento S. El fragmento S abarca 366 nucleótidos 5'-terminales del RNA y se predice su plegamiento en una estructura secundaria tipo horquilla ("hairpin") largo y estable (comprendido en la secuencia de acceso en GenBank X00871 ). Al fragmento S le sigue una región poli C ("heteroplolymeric poli C tracf, Cn), varios pseudonudos (pseudoknots, Pk), el elemento de replicación ere ("cis-acting replication element") y el sitio de entrada interna de ribosomas (IRES, "interna! ribosome entry site") (Fig. 1 ). El IRES es una región de 454 nucleótidos estructurada en múltiples dominios que media la traducción cap-independiente del genoma viral (comprendida en la secuencia de acceso en GenBank D10138). Por otra parte, en el extremo 3' del genoma viral también se sitúa una región no codificante denominada 3'NCR. La 3'NCR incluye 90 nucleótidos desde el codón de terminación de la fase de lectura abierta del RNA viral y una cola de poli A de longitud variable, donde dicha longitud aumenta con el curso de la infección (los 90 nucleótidos sin la cola poli A están comprendidos en la secuencia de acceso en GenBank X00871 ). El 3'NCR del VFA se ha visto que ejerce efecto activador de la traducción dependiente de IRES y que es capaz de interaccionar con las regiones IRES y S localizadas en el extremo 5' mediante interacciones directas RNA-RNA. In the non - coding region 5 'end (5'NCR) of the FMDV genome is the fragment The S includes 366 nucleotides 5 S. fragment' -terminal of RNA and its folding is predicted in a fork - like secondary structure ( "hairpin ") long and stable (included in the access sequence in GenBank X00871). The S fragment is followed by a poly C region ("heteroplolymeric poly C tracf, Cn), several pseudo-nodes (pseudoknots, Pk), the ere-replication element ("cis-acting replication element") and the internal ribosome entry site (IRES, "internal! ribosome entry site") (Fig . one ). IRES is a 454 nucleotide region structured in multiple domains that mediates the cap-independent translation of the viral genome (included in the access sequence in GenBank D10138). On the other hand, a non-coding region called 3'NCR is also located at the 3 'end of the viral genome. The 3'NCR includes 90 nucleotides from the termination codon of the open reading phase of the viral RNA and a variable length poly A tail, where said length increases with the course of infection (the 90 nucleotides without the poly A tail are included in the access sequence in GenBank X00871). The 3'NCR of the VFA has been seen to exert an activating effect of IRES-dependent translation and that it is capable of interacting with the IRES and S regions located at the 5 'end by direct RNA-RNA interactions.
En la presente invención se han generado mediante transcripción in vitro análogos de las NCRs del VFA. Debido a las estrategias conocidas por cualquier experto en la materia que se derivan de los métodos biotecnológicos utilizados en dicha transcripción in vitro (como por ejemplo el uso de un DNA complementario insertado en el plásmido utilizado en la transcripción, el clonaje y el uso de enzimas de restricción), los ncRNAs de la invención contienen en sus extremos terminales nucleótidos extra. Los ncRNAs de la invención son regiones no codificantes que son análogos funcionales de las NCRs de la invención. In the present invention analogs of VFA NCRs have been generated by in vitro transcription. Due to the strategies known by any person skilled in the art that derive from the biotechnological methods used in said in vitro transcription (such as the use of a complementary DNA inserted in the plasmid used in the transcription, cloning and the use of enzymes restriction), the ncRNAs of the invention contain extra nucleotides at their terminal ends. The ncRNAs of the invention are non-coding regions that are functional analogs of the NCRs of the invention.
El término "análogo" se refiere a una región de igual función pero de diferente secuencia. En la presente invención se refiere a que los ncRNAs tienen la misma función que las regiones NCRs, comprenden la secuencia del NCR pero contienen más nucleótidos provenientes de la estrategia biotecnológica utilizada para su síntesis. Los nucleótidos "extra" a los que se refiere la presente invención son los ribonucleótidos no presentes en las NCRs del VFA pero que son fruto de las estrategias biotecnológicas utilizadas en la presente invención para la generación de los ncRNAs. Estos nucleótidos extra se pueden incorporan a las NCRs del VFA por el uso, por ejemplo, de una RNA polimerasa, por ser nucleótidos presentes en el plásmido en el que está clonado el DNA complementario utilizado para la transcripción in vitro o por introducirse en la secuencia para generar dianas de restricción para favorecer las estrategias biotecnológicas. The term "analog" refers to a region of the same function but of a different sequence. In the present invention it refers to the fact that ncRNAs have the same function as NCR regions, they comprise the NCR sequence but contain more nucleotides from the biotechnological strategy used for their synthesis. The "extra" nucleotides referred to in the present invention are ribonucleotides not present in VFA NCRs but which are the result of the biotechnological strategies used in the present invention for the generation of ncRNAs. These extra nucleotides can be incorporated into the VFA NCRs by the use, for example, of an RNA polymerase, by being nucleotides present in the plasmid in which the complementary DNA used for in vitro transcription is cloned or by entering the sequence to generate restriction targets to favor biotechnological strategies.
Una "diana de restricción" (o sitio de restricción) es una secuencia reconocida por una enzima de restricción, es decir, se refiere a un sitio o lugar que reconoce una endonucleasa que es capaz de cortar los enlaces fosfodiéster de la cadena de nucleótidos generando un corte en la cadena del ácido desoxirribonucléico (ADN). En la presente invención se refiere a una secuencia reconocida por una enzima de restricción que es capaz de cortar los enlaces fosfodiéster del DNA complementario utilizado para la transcripción in vitro. Por ejemplo secuencias reconocidas por las enzimas de restricción Stu I y EcoRV. El ncRNA de la región 3'NCR del VFA (SEQ ID NO: 1 ) contiene 188 ribonucleótidos de los cuales los 15 primeros y los 16 últimos corresponden a nucleótidos no presentes en la 3'NCR del VFA y que son fruto de las estrategias biotecnológicas utilizadas para su generación. Además contiene tres ribonucleótidos adicionales que se han introducido para generar sitios de restricción que permiten su manipulación biotecnológica y que no afectan a la estructura secundaria que se genera en el 3'NCR y por lo tanto a su función. Es el caso del uracilo de la posición 36 que deriva de una timina en el clon de DNA molde que genera una diana de restricción para la enzima Stu I (AGGCCT) y el caso de la guanina de la posición 108 y del uracilo de la posición 1 10, derivados de una guanina y una timina en el clon molde que generan una diana de restricción para EcoRV (GATATC). De modo que la región 3'NCR del VFA a la que se refiere la presente invención se considera como la región comprendida entre el nucleótido 23 y el 1 14 descritos en la SEQ ID NO: 1 (donde dichos nucleótidos están también incluidos) en la que no están presentes los nucleótidos 36, 108 y 1 10. Por otra parte, el ncRNA de la región S del VFA (SEQ ID NO: 2) contiene 404 ribonucleótidos de los cuales los 20 primeros y los 18 últimos corresponden a nucleótidos no presentes en la secuencia S del VFA y que son fruto de las estrategias biotecnológicas utilizadas para su generación. De modo que la región S del virus de la fiebre aftosa a la que se refiere la presente invención es la secuencia comprendida entre (e inclusive) el nucleótido 21 y el 386 descritos en la SEQ ID NO: 2. En el caso del ncRNA de la región IRES del VFA (SEQ ID NO: 3), éste contiene 476 ribonucleótidos de los cuales los 14 primeros y los 8 últimos corresponden a nucleótidos no presentes en el IRES del VFA y que son fruto de las estrategias biotecnológicas utilizadas para su generación. De modo que la región IRES del virus de la fiebre aftosa a la que se refiere la presente invención es la secuencia comprendida entre (e inclusive) el nucleótido 15 y el 468 descritos en la SEQ ID NO: 3. A "restriction target" (or restriction site) is a sequence recognized by a restriction enzyme, that is, it refers to a site or site that recognizes an endonuclease that is capable of cutting the phosphodiester bonds of the nucleotide chain by generating a cut in the chain of deoxyribonucleic acid (DNA). In the present invention it refers to a sequence recognized by a restriction enzyme that is capable of cutting the phosphodiester bonds of the complementary DNA used for in vitro transcription. For example sequences recognized by the restriction enzymes Stu I and EcoRV. The ncRNA of the 3'NCR region of the VFA (SEQ ID NO: 1) contains 188 ribonucleotides of which the first 15 and the last 16 correspond to nucleotides not present in the 3'NCR of the VFA and which are the result of biotechnological strategies used for its generation. It also contains three additional ribonucleotides that have been introduced to generate restriction sites that allow biotechnological manipulation and that do not affect the secondary structure that is generated in the 3'NCR and therefore its function. This is the case of position 36 uracil that derives from a thymine in the template DNA clone that generates a restriction target for the enzyme Stu I (AGGCCT) and the case of position 108 guanine and position uracil 10, derived from a guanine and thymine in the template clone that generate a restriction target for EcoRV (GATATC). So the 3'NCR region of the VFA referred to in the present invention is considered as the region comprised between nucleotide 23 and 11 described in SEQ ID NO: 1 (where said nucleotides are also included) in which nucleotides 36, 108 and 1 are not present 10. On the other hand, the ncRNA of the S region of the VFA (SEQ ID NO: 2) contains 404 ribonucleotides of which the first 20 and the last 18 correspond to nucleotides not present in the S sequence of the VFA and which are the result of the biotechnological strategies used for their generation. Thus, the S region of the FMD virus referred to in the present invention is the sequence between (and even) nucleotide 21 and 386 described in SEQ ID NO: 2. In the case of the ncRNA of the IRES region of the VFA (SEQ ID NO: 3), this contains 476 ribonucleotides of which the first 14 and the last 8 correspond to nucleotides not present in the IRES of the VFA and which are the result of the biotechnological strategies used for their generation. Thus, the IRES region of the FMD virus referred to in the present invention is the sequence between (and even) nucleotide 15 and 468 described in SEQ ID NO: 3.
En la presente invención el término "región", "secuencia" o "secuencia nucleotídica" se utilizan indistintamente en la memoria. In the present invention the term "region", "sequence" or "nucleotide sequence" is used interchangeably in memory.
Por lo expuesto anteriormente, una realización preferida del primer y segundo aspecto de la presente invención se refiere al uso de una región no codificante del genoma del VFA donde dicha región no codificante está comprendida en la secuencia nucleotídica que se selecciona de la lista que comprende: SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 o cualquiera de sus combinaciones. Donde la SEQ ID NO: 1 comprende la región 3'NCR del VFA, la SEQ ID NO: 2 comprende la región o fragmento S del VFA, la SEQ ID NO: 3 comprende la región IRES del VFA. Una realización más preferida se refiere al uso donde la secuencia es SEQ ID NO: 1 . Otra realización más preferida se refiere al uso donde la secuencia es SEQ ID NO: 2. From the foregoing, a preferred embodiment of the first and second aspects of the present invention relates to the use of a non-coding region of the VFA genome where said non-coding region is comprised in the nucleotide sequence selected from the list comprising: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or any combination thereof. Where SEQ ID NO: 1 comprises the 3'NCR region of the VFA, SEQ ID NO: 2 comprises the region or fragment S of the VFA, SEQ ID NO: 3 comprises the IRES region of the VFA. A more preferred embodiment refers to the use where the sequence is SEQ ID NO: 1. Another more preferred embodiment refers to the use where the sequence is SEQ ID NO: 2.
Otra realización más preferida se refiere al uso donde la secuencia es SEQ ID NO: 3. Another more preferred embodiment refers to the use where the sequence is SEQ ID NO: 3.
La presente invención también se refiere al uso de otras NCRs o ncRNAs de otros aislados de virus. Por este motivo y por lo expuesto anteriormente, la presente invención también se refiere al uso de las regiones no codificantes de la invención y a los ncRNAs de la invención donde la región no codificante se refiere a una región con una homología de al menos un 80% con dicha región. The present invention also relates to the use of other NCRs or ncRNAs of other virus isolates. For this reason and for the foregoing, the present invention also relates to the use of the non-coding regions of the invention and to the ncRNAs of the invention where the non-coding region refers to a region with a homology of at least 80% with that region.
La presente invención también se refiere a las NCR o a las ncRNAs de la invención que por estrategias biotecnológicas conocidas por cualquier experto en la materia tienen modificada su secuencia, por ejemplo por la generación dianas de restricción, pero donde dichas modificaciones no afectan significativamente a la estructura secundaria del RNA. The present invention also relates to the NCRs or to the ncRNAs of the invention which, by biotechnological strategies known by any person skilled in the art, have their sequence modified, for example by the generation of restriction targets, but where said modifications do not significantly affect the structure RNA secondary.
Es conocido por cualquier experto en la materia que los virus cuyo genoma es un RNA de cadena simple son más sensibles a IFN que los virus con DNA. Se han descrito diversos virus que son sensibles a interferón, entre ellos se incluyen miembros de las familias Picornaviridae, Flaviviridae y Rhabdoviridae, por ejemplo el virus de la fiebre aftosa, el virus de la fiebre del Nilo Occidental y el virus de la estomatitis vesicular. A pesar de presentar sensibilidad a INF, muchos virus son capaces de desarrollar mecanismos para evitar esta respuesta inmune innata, como sucede en el caso del VFA, del VEV y del VNO (Randall R E eí al. J Gen Virol 2008. 89:1 -47). La presente invención demuestra que el uso de los ncRNAs de la invención es útil como antiviral incluso en virus que presentan dichos mecanismos de evasión. It is known to any person skilled in the art that viruses whose genome is a single stranded RNA are more sensitive to IFN than viruses with DNA. Various viruses that are sensitive to interferon have been described, including members of the Picornaviridae, Flaviviridae and Rhabdoviridae families, for example foot-and-mouth disease virus, West Nile fever virus and vesicular stomatitis virus. Despite presenting sensitivity to INF, many viruses are capable of developing mechanisms to avoid this innate immune response, as in the case of VFA, VEV and WNV (Randall RE ei al. J Gen Virol 2008. 89: 1 - 47). The present invention demonstrates that the use of the ncRNAs of the invention is useful as an antiviral even in viruses that exhibit such evasion mechanisms.
Por lo aquí descrito, una realización aún más preferida se refiere al uso donde el virus sensible a interferón es un virus RNA de cadena simple. Preferiblemente, el virus es un virus de la familia Picornaviridae, más preferiblemente el virus de la fiebre aftosa. Preferiblemente también el virus es un virus de la familia Rhabdoviridae, más preferiblemente se refiere al virus de la estomatitis vesicular. Y también preferiblemente el virus es un virus de la familia Flaviviridae, donde dicho virus es preferiblemente el virus del Nilo Occidental. As described herein, an even more preferred embodiment refers to the use where the interferon-sensitive virus is a single-stranded RNA virus. Preferably, the virus is a virus of the Picornaviridae family, more preferably the foot and mouth disease virus. Preferably also the virus is a virus of the family Rhabdoviridae, more preferably it refers to the vesicular stomatitis virus. And also preferably the virus is a virus of the Flaviviridae family, where said virus is preferably West Nile virus.
Otra realización preferida del segundo aspecto de la invención se refiere al uso donde dichas enfermedades son enfermedades en animales mamíferos no humanos. Preferiblemente animales ungulados, más preferiblemente de la familia Suidae (por ejemplo del género Sus, por ejemplo S. scrofa), de la familia Bovidae o de la familia Equidae. También la presente invención se refiere al uso en aves, preferentemente de las familias de aves que se seleccionan de la lista que comprende: Phasianidae, Corvidae, Paseridae, Fringillidae y Turdidae (pertenecientes a los ordenes Paseriformes y Galliformes), así como de las familias Accipitridae y Strigidae, entre otras. Another preferred embodiment of the second aspect of the invention relates to the use where said diseases are diseases in non-human mammalian animals. Preferably ungulated animals, more preferably of the family Suidae (for example of the genus Sus, for example S. scrofa), of the family Bovidae or of the family Equidae. Also the present invention relates to the use in birds, preferably of the families of birds that are selected from the list comprising: Phasianidae, Corvidae, Paseridae, Fringillidae and Turdidae (belonging to the Passerine and Galliform orders), as well as families Accipitridae and Strigidae, among others.
Otra realización preferida del segundo aspecto de la invención se refiere al uso donde dichas enfermedades son enfermedades en humanos. Las enfermedades pueden ser enfermedades zoonóticas. Another preferred embodiment of the second aspect of the invention relates to the use where said diseases are diseases in humans. Diseases can be zoonotic diseases.
Un tercer aspecto de la invención se refiere a una composición farmacéutica del primer o segundo aspectos de la invención que además comprende al menos un excipiente y/o un vehículo farmacéuticamente aceptables. A third aspect of the invention relates to a pharmaceutical composition of the first or second aspects of the invention which further comprises at least one pharmaceutically acceptable excipient and / or vehicle.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de la composición farmacéutica que comprende la NCR o el ncRNA de la invención, la estabiliza o ayuda en su preparación en el sentido de darle una consistencia, forma, sabor o cualquier otra característica funcional específica. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos como por ejemplo almidones, azúcares o celulosas, función de endulzar, función de colorante, función de protección del medicamento como por ejemplo para aislarlo del aire y/o la humedad, función de relleno de una pastilla, cápsula o cualquier otra forma de presentación como por ejemplo el fosfato de calcio dibásico, función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo. The term "excipient" refers to a substance that aids in the absorption of the pharmaceutical composition comprising the NCR or the ncRNA of the invention, stabilizes it or aids in its preparation in the sense of giving it a consistency, form, taste or any Another specific functional feature. Thus, the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, coloring function, drug protection function such as to isolate it from air and / or moisture, filling function of a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, not excluding other types of excipients not mentioned in this paragraph.
Un "vehículo farmacológicamente aceptable" se refiere a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico, utilizadas en la elaboración de formas farmacéuticas de administración e incluye, pero sin limitarse, sólidos, líquidos, disolventes o tensioactivos. El vehículo puede ser una sustancia inerte o de acción análoga a cualquiera de los compuestos de la presente invención y cuya función es facilitar la incorporación del fármaco así como también de otros compuestos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición farmacéutica. Cuando la forma de presentación es líquida, el vehículo es el diluyente. El término "farmacológicamente aceptable" se refiere a que el compuesto al que hace referencia esté permitido y evaluado de modo que no cause daño a los organismos a los que se administra. Por lo aquí descrito, una realización preferida del tercer aspecto de la invención se refiere a una composición farmacéutica que además comprende al menos otro principio activo. A "pharmacologically acceptable vehicle" refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants. The carrier can be an inert substance or of analogous action to any of the compounds of the present invention and whose function is to facilitate the incorporation of the drug as well as other compounds, allow a better dosage and administration or give consistency and form to the composition Pharmaceutical When the presentation form is liquid, the vehicle is the diluent. The term "pharmacologically acceptable" refers to the compound referred to being allowed and evaluated so as not to cause damage to the organisms to which it is administered. As described herein, a preferred embodiment of the third aspect of the invention relates to a pharmaceutical composition that further comprises at least one other active ingredient.
Como se emplea aquí, el término "principio activo" ("sustancia activa", "sustancia farmacéuticamente activa", "ingrediente activo" ó "ingrediente farmacéuticamente activo") significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto. La composición farmacéutica o medicamento proporcionado por esta invención puede ser facilitada por cualquier vía de administración, para lo cual dicha composición se formulará en la forma farmacéutica adecuada a la vía de administración elegida. Por dicho motivo, una realización preferida por este aspecto de la invención se refiere a la composición farmacéutica donde dicha composición farmacéutica se presenta en una forma adaptada a la administración por vía oral, parenteral o intradérmica. As used herein, the term "active substance"("activesubstance","pharmaceutically active substance", "active ingredient" or "pharmaceutically active ingredient") means any component that potentially provides a pharmacological activity or other different diagnostic effect , cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals. The term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect. The pharmaceutical composition or medicament provided by this invention may be provided by any route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen. For this reason, a preferred embodiment for this aspect of the invention relates to the pharmaceutical composition wherein said pharmaceutical composition is presented in a form adapted to oral, parenteral or intradermal administration.
La presente invención también se refiere al uso de la composición farmacéutica del tercer aspecto de la invención para la elaboración de un medicamento para la profilaxis y/o el tratamiento de enfermedades causadas por virus sensibles a interferón. The present invention also relates to the use of the pharmaceutical composition of the third aspect of the invention for the preparation of a medicament for the prophylaxis and / or treatment of diseases caused by interferon-sensitive viruses.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCION DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. Motivos estructurales en las NCRs del genoma de VFA. Representación esquemática de los motivos en las 5'y 3'NCRs del VFA. NCR, región no codificante; S, fragmento S; IRES, "ribosome entry site"; VPg, "genome linked viral protein"; Cn, región poli C; Pk, región de "pseudoknots"; ere, el elemento de replicación en cis ("cis-acting replication element"); Lpro, proteasa "leader"; 3Dpol, polimerasa 3D; SL1 , "stem-loop 1 "; SL2, "stem-loop 2"; 3'NCR, 3' "non coding región"; ΔΑη, transcrito 3'NCR al que se ha eliminado la cola poli A. Fig. 2. Inducción de IFN-β en células porcinas. Muestra la producción de IFN-β por los ncRNAs de la invención del VFA en células porcinas. Células SK- 6 se transfectaron con 20 μ9/ηιΙ de los transcritos NCR o con 10 μ9/ηιΙ del control poly l:C o el control negativo tRNA (RNA transferente). Los niveles de inducción del RNAm de IFN-β en células transfectadas respecto a las células transfectadas con tampón fosfato salino (PBS) a los tiempos indicados se determinaron mediante RT-qPCR (RT-PCR cuantitativa) normalizada respecto a GAPDH . Las barras de error muestran la desviación estándar de la media de tres experimentos independientes realizados en triplicado. IFN-β, RNA mensajero del IFN-β porcino; T, tiempo; h, horas. Fig. 1. Structural reasons in the NCRs of the VFA genome. Schematic representation of the motifs in the 5 ' and 3 ' NCRs of the VFA. NCR, non-coding region; S, fragment S; IRES, "ribosome entry site"; VPg, "genome linked viral protein"; Cn, poly C region; Pk, region of "pseudoknots"; ere, the cis-acting replication element; Lpro, protease "leader"; 3Dpol, 3D polymerase; SL1, "stem-loop 1"; SL2, "stem-loop 2";3'NCR, 3 '"non coding region"; ΔΑη, transcribed 3'NCR to which the poly A tail has been removed. Fig. 2. Induction of IFN-β in porcine cells. It shows the production of IFN-β by the ncRNAs of the invention of VFA in porcine cells. SK-6 cells were transfected with 20 μ9 / ηιΙ of the NCR transcripts or with 10 μ9 / ηιΙ of the poly l: C control or the negative tRNA control (transfer RNA). Induction levels of IFN-β mRNA in cells transfected with respect to cells transfected with phosphate buffered saline (PBS) at the indicated times were determined by RT-qPCR (quantitative RT-PCR) normalized to GAPDH. Error bars show the standard deviation of the average of three independent experiments performed in triplicate. IFN-β, porcine IFN-β messenger RNA; T, time; h, hours
Fig. 3. Análisis de la contribución de las secuencias de la 3'NCR de VFA en la inducción de IFN-β. Muestra la producción de IFN-β por la región 3'NCR de VFA y fragmentos de la misma en células porcinas. RNAs correspondientes al SL1 , SL2, 3'NCRAAn así como 3'NCR RNAs (20 Mg/ml) tratados o no con CIP y poly l:C (10 g/ml) se transfectaron en células SK-6. Los niveles de inducción del RNAm de IFN-β en células transfectadas respecto a las células transfectadas con PBS a los tiempos indicados se determinaron mediante RT- qPCR normalizada respecto a GAPDH. Las barras de error muestran la desviación estándar de la media entre triplicados. IFN-β, RNA mensajero del IFN-β porcino; T, tiempo; h, horas; SL1 , "stem-loop 1 "; SL2, "stem-loop 2"; 3'NCR, 3' "non coding región"; ΔΑη, transcrito 3'NCR en el que se ha eliminado la cola poli A; 3'NCR+CIP, 3'NCR que ha sido tratado con fosfatasas. Fig. 4. Inducción de un estado antiviral en células transfectadas con los NCR RNAs. Muestra el efecto antiviral frente al virus de la estomatitis vesicular en células porcinas. Tras 24 h de transfección con 40 μg/ml de los transcritos correspondientes a las NCRs de VFA, o 10 μg/ml de tRNA, células SK-6 fueron infectadas con VEV (multiplicidad de infección (MOI)= 1 ). Los sobrenadantes de las células infectadas se recogieron a 12 y 24 h postinfección y los títulos virales se determinaron en células IBRS-2. Las barras indican los valores medios de dos experimentos independientes realizados por triplicado más las desviaciones estándar. El análisis estadístico se realizó mediante ANOVA y test de Bonferroni (* p<0.05, ** p<0.01 ). T, tiempo post infección; h, horas; Iog10pfu/ml, titulación viral medida en Iog10 de las unidades formadoras de placas (ufp, "plaque forming unit", pfu) por mililitro; mock, control de transfección. Fig. 3. Analysis of the contribution of the 3 ' NCR sequences of VFA in the induction of IFN-β. It shows the production of IFN-β by the 3'NCR region of VFA and fragments thereof in porcine cells. RNAs corresponding to SL1, SL2, 3 ' NCRAA n as well as 3 ' NCR RNAs (20 Mg / ml) treated or not with CIP and poly l: C (10 g / ml) were transfected into SK-6 cells. Induction levels of IFN-β mRNA in cells transfected with respect to cells transfected with PBS at the indicated times were determined by standardized RT-qPCR with respect to GAPDH. Error bars show the standard deviation of the mean between triplicates. IFN-β, porcine IFN-β messenger RNA; T, time; h, hours; SL1, "stem-loop 1"; SL2, "stem-loop 2";3'NCR, 3 '"non coding region"; ΔΑη, transcribed 3'NCR in which the poly A tail has been removed; 3'NCR + CIP, 3'NCR that has been treated with phosphatases. Fig. 4. Induction of an antiviral state in cells transfected with NCR RNAs. It shows the antiviral effect against the virus of vesicular stomatitis in swine cells. After 24 h of transfection with 40 μg / ml of the transcripts corresponding to the NCRs of VFA, or 10 μg / ml of tRNA, SK-6 cells were infected with VEV (multiplicity of infection (MOI) = 1). Supernatants from infected cells were collected at 12 and 24 h post-infection and viral titers were determined in IBRS-2 cells. The bars indicate the average values of two independent experiments performed in triplicate plus the standard deviations Statistical analysis was performed using ANOVA and Bonferroni test (* p <0.05, ** p <0.01). T, post infection time; h, hours; Iog10pfu / ml, viral titration measured in Iog10 of the plaque forming units (pfu) per milliliter; mock, transfection control.
Fig. 5. Las NCRs de VFA inducen la respuesta innata en ratón lactante.Fig. 5. VFA NCRs induce the innate response in a nursing mouse.
Muestra la producción de IFN-β por los ncRNAs de la invención en ratones lactantes. Grupos de 4 a 5 ratones lactantes Swiss fueron inoculados intraperitonealemnte (i.p.) con 100 μg de transcritos 3'NCR, S, IRES o poly l:C. Los niveles de IFN-α (A) e IFN-β (B) en "pools" de suero extraído a distintos tiempos postinoculación para cada RNA fueron determinados por ELISA. Los valores promedio de IFN-α e IFN-β para "pools" de suero a 0 h postinoculación fueron de 25 y 6 pg/ml, respectivamente. It shows the production of IFN-β by the ncRNAs of the invention in lactating mice. Groups of 4 to 5 Swiss lactating mice were inoculated intraperitonealemnte (ip) with 100 μg of 3 ' NCR, S, IRES or poly l: C transcripts. The levels of IFN-α (A) and IFN-β (B) in pools of serum extracted at different post-inoculation times for each RNA were determined by ELISA. The average values of IFN-α and IFN-β for serum pools at 0 h post-inoculation were 25 and 6 pg / ml, respectively.
Figura 6. Efecto de la inoculación de los ncRNAs en la supervivencia de los ratones inoculados con el VNO. Se muestran los datos correspondientes a cada grupo y las curvas de Kaplan-Meier de supervivencia analizadas mediante el log rank test usando GraphPad Prism 5.01 (GraphPad software, San Diego, CA, USA). Figure 6. Effect of inoculation of ncRNAs on the survival of mice inoculated with WNV. The data corresponding to each group and the Kaplan-Meier survival curves analyzed by the log rank test using GraphPad Prism 5.01 (GraphPad software, San Diego, CA, USA) are shown.
Figura 7. Niveles de IFN-α en sueros de ratones inoculados con los ncRNAs. El análisis se realizó mediante ELISA a partir de "pools" de sueros tomados a 4, 8 o 24 h tras la inoculación de los RNAs; t, tiempo; h, horas. Figure 7. IFN-α levels in sera of mice inoculated with the ncRNAs. The analysis was carried out by ELISA from "pools" of sera taken at 4, 8 or 24 h after inoculation of the RNAs; t, time; h, hours
Figura 8. Niveles de anticuerpos específicos totales frente al VFA inducidos tras las distintas pautas de vacunación. Se determinó el nivel de anticuerpos por ELISA y se muestran las medias correspondientes a cada grupo a los distintos tiempos post-vacunación indicados. El título se expresó como el Iog10 de la última dilución cuya lectura de DO fue superior a 2 veces el valor del suero pre-inmune a la mínima dilución ensayada (1/20); t, tiempo; d, días; sem, semanas. Figura 9. Niveles y cinética de anticuerpos neutralizantes frente al VFA tras las distintas pautas de vacunación. Se muestra el número de animales de cada grupo en los que se detectaron niveles significativos de anticuerpos neutralizantes. La gráfica representa los niveles promedio en cada grupo a distintos tiempos post-vacunación expresados como PRN70; t, tiempo; d, días; sem, semanas. +RNA pre: Inoculados con 200 μg de RNA IRES + lipofectina y 24 h más tarde inoculados con la vacuna; +RNA t=0: Co-inoculados con la vacuna y con 200 μg de RNA IRES + lipofectina; +RNA post: Inoculados con la vacuna y 24 h más tarde inoculados con 200 μg de RNA IRES + lipofectina. Figure 8. Total specific antibody levels against VFA induced following the different vaccination guidelines. The antibody level was determined by ELISA and the means corresponding to each group are shown at the different post-vaccination times indicated. The titer was expressed as the Iog10 of the last dilution whose OD reading was greater than 2 times the value of the pre-immune serum at the minimum dilution tested (1/20); t, time; d, days; week weeks Figure 9. Levels and kinetics of neutralizing antibodies against VFA after the different vaccination guidelines. The number of animals in each group in which significant levels of neutralizing antibodies were detected is shown. The graph represents the average levels in each group at different post-vaccination times expressed as PRN70; t, time; d, days; week weeks + Pre RNA: Inoculated with 200 μg of IRES RNA + lipofectin and 24 h later inoculated with the vaccine; + RNA t = 0: Co-inoculated with the vaccine and with 200 μg of IRES RNA + lipofectin; + RNA post: Inoculated with the vaccine and 24 h later inoculated with 200 μg of IRES RNA + lipofectin.
Figura 10. Perfil y niveles de isotipos de anticuerpos frente al VFA inducidos tras la vacunación, en los grupos que recibieron sólo la vacuna (sólo vacuna) o vacuna co-inoculada con el IRES (vacuna + RNA t=0). Los sueros de los animales, tomados 9 semanas tras la vacunación, se analizaron individualmente mediante ELISA usando un panel de anticuerpos de isotipado de inmunoglobulinas de ratón. Se muestran los resultados de cada grupo: A: grupos que recibieron sólo la vacuna (sólo vacuna); B: grupos que recibieron la vacuna co-inoculada con el IRES (vacuna + RNA t=0); C: correspondientes a sueros de controles negativo (NEG) y positivo (POS). M, G1 , G2A, G2B, G3, A y K+L, se corresponden con diferentes isotipos de anticuerpos frente a VFA. Figure 10. Profile and levels of isotypes of antibodies against VFA induced after vaccination, in the groups that received only the vaccine (vaccine only) or vaccine co-inoculated with the IRES (vaccine + RNA t = 0). The sera of the animals, taken 9 weeks after vaccination, were analyzed individually by ELISA using a panel of mouse immunoglobulin isotyping antibodies. The results of each group are shown: A: groups that received only the vaccine (vaccine only); B: groups that received the vaccine co-inoculated with the IRES (vaccine + RNA t = 0); C: corresponding to negative (NEG) and positive (POS) control sera. M, G1, G2A, G2B, G3, A and K + L, correspond to different isotypes of antibodies against VFA.
EJEMPLOS ILUSTRATIVOS DE LA INVENCIÓN Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma. EJEMPLO 1 : Las NCRs del genoma de VFA contienen PAMPs (patrones moleculares asociados a patógenos) que activan la señalización de la respuesta innata. Se analizó inicialmente la capacidad de inducir la expresión de IFN-β en células porcinas de elementos altamente estructurados de las regiones 5' y 3'NCRs del RNA de VFA. Se sintetizaron mediante transcripción in vitro RNAs correspondientes a las 5'y 3'NCRs y al fragmento S e IRES del virus de la fiebre aftosa (Fig. 1 ). Los ncRNAs del VFA se utilizaron para transfectar células SK-6 (células porcinas de riñon) (Fig. 2). La inducción de expresión del RNAm de IFN-β se analizó por RT-PCR cuantitativa en tiempo real a tres tiempos distintos (Fig. 2) utilizando el cebador sentido que se muestra en la SEQ ID NO: 4 y el cebador antisentido que se muestra en la SEQ ID NO: 5. Se observaron diferencias destacables entre los distintos RNAs. A los tres tiempos el 3'NCR fue el inductor transcripcional de IFN-β más potente de todos, alcanzando niveles de casi 200 veces por encima de las células control de transfección a 9 h postransfección. El fragmento S indujo niveles 10 veces superiores al control seguido de la 5'NCR completa. Para el transcrito correspondiente al IRES se detectaron inducciones de 4.5 veces, ligeramente superiores al poly l:C. Estos resultados sugieren que las estructuras presentes en la 3'NCR son reconocidas más eficientemente que las de la 5'NCR por los sensores virales presentes en células porcinas y que el fragmento S es el principal elemento inductor en la 5'NCR en estas células. EJEMPLO 2: Análisis de las características del 3'NCR del VFA relevantes para la inducción de IFN-β. ILLUSTRATIVE EXAMPLES OF THE INVENTION The following specific examples provided in this patent document serve to illustrate the nature of the present invention. These examples are included for illustrative purposes only and should not be construed as limitations on the invention claimed herein. Therefore, the examples described below illustrate the invention without limiting its scope of application. EXAMPLE 1: VCR genome NCRs contain PAMPs (molecular patterns associated with pathogens) that activate innate response signaling. The ability to induce the expression of IFN-β in porcine cells of highly structured elements of the 5 ' and 3 ' NCR regions of VFA RNA was initially analyzed. RNAs corresponding to the 5 ' and 3 ' NCRs and the S and IRES fragment of the foot-and-mouth disease virus were synthesized by in vitro transcription (Fig. 1). VFA ncRNAs were used to transfect SK-6 cells (porcine kidney cells) (Fig. 2). IFN-β mRNA expression induction was analyzed by real-time quantitative RT-PCR at three different times (Fig. 2) using the sense primer shown in SEQ ID NO: 4 and the antisense primer shown in SEQ ID NO: 5. Remarkable differences were observed between the different RNAs. At three times the 3 ' NCR was the most potent IFN-β transcriptional inducer of all, reaching levels almost 200 times above the transfection control cells at 9 h posttransfection. The S fragment induced levels 10 times higher than the control followed by the full 5 ' NCR. For the transcript corresponding to the IRES, inductions of 4.5 times were detected, slightly higher than poly l: C. These results suggest that the structures present in the 3 ' NCR are recognized more efficiently than those of the 5 ' NCR by viral sensors present in porcine cells and that the S fragment is the main inducing element in the 5 ' NCR in these cells. EXAMPLE 2: Analysis of the characteristics of the 3 ' NCR of the VFA relevant for the induction of IFN-β.
La contribución de las distintas estructuras presentes en la 3'NCR y del poli A del VFA a la inducción del RNAm de IFN-β se analizó mediante transfección en células SK-6 de los transcritos correspondientes (Fig. 1 y 3). Ninguno de los dos "stem-loops" presentes en la 3'NCR, SL1 (SEQ ID NO: 6) y SL2 (SEQ ID NO: 7) fueron capaces de inducir niveles detectables de IFN-β, siendo mínimamente activos (Fig. 3). Sin embargo, la 3'NCR con la cola de poli A eliminada (3'NCR ΔΑη, SEQ ID NO: 8) todavía fue un potente activador, reduciéndose sólo entre 2-10 veces según el tiempo post-transfección analizado (Fig. 3). Los niveles de activación detectados no correlacionaron con el tamaño o la molaridad de los RNAs transfectados. El papel en inducción del extremo 5'-trifosfato en el RNA se analizó mediante tratamiento con fosfatasa alcalina (CIP). El efecto de este tratamiento redujo considerablemente los niveles de inducción a 9h postransfección, aunque todavía se detectaron inducciones de 20 veces respecto a células control. The contribution of the different structures present in the 3 ' NCR and of the VFA poly A to the induction of the IFN-β mRNA was analyzed by transfection in SK-6 cells of the corresponding transcripts (Fig. 1 and 3). None of the two "stem-loops" present in the 3 ' NCR, SL1 (SEQ ID NO: 6) and SL2 (SEQ ID NO: 7) were able to induce detectable levels of IFN-β, being minimally active (Fig. 3). However, the 3 ' NCR with the poly A tail removed (3'NCR ΔΑη, SEQ ID NO: 8) was still a potent activator, reducing only between 2-10 times according to the post-transfection time analyzed (Fig. 3 ). Activation levels detected did not correlate with the size or molarity of transfected RNAs. Paper induction 5'end triphosphate in the RNA was analyzed by treatment with alkaline phosphatase (CIP). The effect of this treatment significantly reduced induction levels at 9h post-transfection, although 20-fold inductions were still detected with respect to control cells.
EJEMPLO 3: Los elementos "PAMP" del genoma de VFA estimulan la inmunidad innata y respuesta antiviral en células porcinas EXAMPLE 3: The "PAMP" elements of the VFA genome stimulate innate immunity and antiviral response in porcine cells
Para determinar si la inducción de RNAm de IFN-β observada en células SK-6 transfectadas con los elementos S, IRES y 3'NCR del VFA se correspondía con la activación de un estado anti-viral en las células, se analizó la actividad antiviral en los sobrenadantes de transfección, incubando con ellos células IBRS-2 (células porcinas de riñon) (Tabla 1 ). Tras 24 horas, las células se infectaron con el VEV. En todos los casos se detectó actividad antiviral (Tabla 1 ), excepto en los controles (células transfectadas con poly l:C o tRNA, donde el resultado fue el mismo para ambos casos), y los niveles de inhibición de infección de VEV correlacionaban bien con los niveles de RNAm de IFN-β inducidos por cada RNA. El tratamiento de los sobrenadantes de transfección con anticuerpos monoclonales específicos bloqueantes de IFN-α, -β confirmó que la actividad antiviral observada está mediada principalmente por IFNs. Tabla 1 . Actividad antiviral en células porcinas transfectadas3 To determine whether the induction of IFN-β mRNA observed in SK-6 cells transfected with the S, IRES and 3 ' NCR elements of the VFA corresponded to the activation of an anti-viral state in the cells, the antiviral activity was analyzed. in transfection supernatants, incubating with them IBRS-2 cells (swine kidney cells) (Table 1). After 24 hours, the cells were infected with VEV. In all cases antiviral activity was detected (Table 1), except in the controls (cells transfected with poly l: C or tRNA, where the result was the same for both cases), and the levels of inhibition of VEV infection correlated well with IFN-β mRNA levels induced by each RNA. Treatment of transfection supernatants with specific monoclonal antibodies blocking IFN-α, -β confirmed that the observed antiviral activity is mainly mediated by IFNs. Table 1 . Antiviral activity in transfected porcine cells 3
Actividad antiviral  Antiviral activity
. . . Anticuerpo Anticuerpo Anticuerpo Sobrenadante monoclona, mon0clonal monoclonal sin tratar . . . Antibody Antibody Antibody Monoclonal Supernatant , untreated monoclonal clonal mon0
anti-IFN-a anti-IFN-β anti-IFN-α+β anti-IFN-a anti-IFN-β anti-IFN-α + β
VFA 3'NCR 27 <2 6 <2 VFA 3 ' NCR 27 <2 6 <2
VFA S 13 3.8  VFA S 13 3.8
VFA IRES 9  VFA IRES 9
Poly l:C o tRNA <2 NA NA NA  Poly l: C or tRNA <2 NA NA NA
a Las células SK-6 se transfectaron durante 24 h con 40 μ9/ηιΙ de los ncRNAs, o 10 μ9/ηιΙ de poly l:C o tRNA. La actividad antiviral se expresa como el recíproco de la dilución más alta de los sobrenadante de células SK-6 transfectadas necesaria para reducir el número de placas de VEV sobre células IBRS-2 en un 50%. Los datos son la media de duplicados de tres experimentos de transfección independientes. En algunos casos, los sobrenadantes fueron incubados previamente durante 1 h a 37 °C con 1 μ9/ηπΙ de anticuerpos monoclonales neutralizantes frente a IFN-α, -β o ambos, respectivamente. -, no determinado. NA, no aplicable. Por otro lado se estudió la actividad antiviral inducida sobre las propias células SK-6 transfectadas con los distintos RNAs, infectándolas con VEV a una MOI de 1 . A 12 y 24 h post infección, se recogieron sobrenadantes y se determinó el título viral mediante un plaqueo sobre células IBRS-2 (en la Fig. 4 se muestran los resultados a las 12 y 24 horas post infección). En las células tratadas con los RNAs el rendimiento viral se había reducido en 3 log respecto al observado en las células transfectadas control (con tRNA- o con PBS, "mock"). A 12 h post infección los títulos de VEV mostraban diferencias de 5.5 veces (aunque no significativas) entre las células tratadas con el elemento 3'NCR respecto a las demás, mientras que a las 24 horas los títulos virales fueron más similares. a SK-6 cells were transfected for 24 h with 40 μ9 / ηιΙ of the ncRNAs, or 10 μ9 / ηιΙ of poly l: C or tRNA. The antiviral activity is expressed as the reciprocal of the highest dilution of the supernatants of transfected SK-6 cells necessary to reduce the number of VEV plaques on IBRS-2 cells by 50%. The data is the average of duplicates of three independent transfection experiments. In some cases, the supernatants were previously incubated for 1 h at 37 ° C with 1 μ9 / ηπΙ of neutralizing monoclonal antibodies against IFN-α, -β or both, respectively. -, undetermined. NA, not applicable. On the other hand, the antiviral activity induced on the SK-6 cells transfected with the different RNAs was studied, infecting them with VEV at an MOI of 1. At 12 and 24 h post infection, supernatants were collected and the viral titer was determined by plating on IBRS-2 cells (in Fig. 4 the results are shown at 12 and 24 hours post infection). In the cells treated with the RNAs the viral yield had been reduced by 3 log compared to that observed in the transfected control cells (with tRNA- or with PBS, "mock"). At 12 h post infection the VEV titers showed differences of 5.5 times (although not significant) between the cells treated with the 3 ' NCR element compared to the others, while at 24 hours the viral titres were more similar.
Estos resultados sugieren que todos los elementos NCR RNAs utilizados, aún induciendo la transcripción de IFN-β a distintos niveles, son capaces de alcanzar el nivel umbral de inducción necesario para desencadenar en las células porcinas transfectadas una respuesta anti-viral efectiva, tanto autocrina como paracrina. EJEMPLO 4: La inoculación de los elementos "PA P" del genoma de VFA induce una respuesta inmune innata en ratones lactantes These results suggest that all the NCR RNAs elements used, even inducing the transcription of IFN-β at different levels, are capable of to reach the threshold level of induction necessary to trigger an effective anti-viral response, both autocrine and paracrine, in transfected porcine cells. EXAMPLE 4: Inoculation of the "PA P" elements of the VFA genome induces an innate immune response in lactating mice
Para determinar si los elementos "PAMP" del genoma de VFA eran capaces de inducir una respuesta antiviral in vivo, los transcritos correspondientes a las regiones S, IRES y 3'NCR del VFA se inocularon por vía intraperitoneal a camadas de ratones Swiss de 5-7 días de edad. Como control se inoculó poly l:C, un compuesto sintético para el que ya se había descrito un efecto en la inducción de respuesta inmune. Los niveles de IFN-α e IFN-β en muestras de suero recogidas a 4, 8, 24 y 48 horas post-inoculación para cada grupo de ncRNA se analizaron por ELISA (Fig. 5 A y 5 B). Todos los elementos ensayados resultaron ser potentes inductores de IFN-α/β en ratón lactante, incluso aquellos que en células porcinas en cultivo habían inducido unos niveles bajos de expresión de RNAm de IFN-β. To determine whether the "PAMP" elements of the VFA genome were capable of inducing an antiviral response in vivo, the transcripts corresponding to the S, IRES and 3 ' NCR regions of the VFA were inoculated intraperitoneally to litters of Swiss mice of 5- 7 days old As a control, poly l: C was inoculated, a synthetic compound for which an effect on the induction of immune response had already been described. IFN-α and IFN-β levels in serum samples collected at 4, 8, 24 and 48 hours post-inoculation for each ncRNA group were analyzed by ELISA (Fig. 5 A and 5 B). All the elements tested proved to be potent inducers of IFN-α / β in lactating mice, even those that in pig cells in culture had induced low levels of IFN-β mRNA expression.
Los picos de IFN-α en suero se detectaron a las 8 h tras la inoculación de los elementos 3'NCR e IRES, mientras que para el S los niveles de IFN-α se mantenían altos durante más tiempo, con un máximo a las 24 h post- inoculación (Fig. 5 A). Comparando los niveles de IFN-α a 8 h post-inoculación, los elementos RNA del genoma de VFA indujeron entre 15 y 40 veces más que el poly l:C, mientras que a las 24 h post-inoculación, los niveles inducidos por S fueron 90 veces superiores a los inducidos por el poly l:C. Este patrón se repitió en la cinética de IFN-β (Fig. 5 B). Serum IFN-α peaks were detected at 8 h after inoculation of the 3'NCR and IRES elements, while for S the IFN-α levels remained high for longer, with a maximum at 24 h post-inoculation (Fig. 5 A). Comparing the IFN-α levels at 8 h post-inoculation, the RNA elements of the VFA genome induced between 15 and 40 times more than the poly l: C, while at 24 h post-inoculation, the levels induced by S were 90 times higher than those induced by poly l: C. This pattern was repeated in the kinetics of IFN-β (Fig. 5 B).
La relevancia biológica de estos niveles de IFN-α/β detectados por ELISA en suero se comprobó mediante un ensayo de inhibición de la infectividad de VEV en células L-929 (Tabla 2), observándose una buena correlación entre los dos ensayos, tanto en los niveles como la cinética. The biological relevance of these IFN-α / β levels detected by serum ELISA was checked by a VEV infectivity inhibition assay. in L-929 cells (Table 2), observing a good correlation between the two trials, both in levels and kinetics.
Tabla 2. Actividad antiviral en el suero de los ratones lactantes Table 2. Antiviral activity in the serum of lactating mice.
transfectados9 transfected 9
h postinoculación  h post-inoculation
RNA 4 8 24 48  RNA 4 8 24 48
S 2 128 162 < 2  S 2 128 162 <2
IRES 64 128 8 < 2  IRES 64 128 8 <2
3'NCR < 2 32 < 2 NR 3 ' NCR <2 32 <2 NR
Poly l:C 8 8 < 2 < 2 a Grupos de 4-5 ratones fueron inoculados con 100 μ9 de ncRNAs de VFA o poly l:C. Los sueros se recogieron y mezclaron, a los tiempos postinoculación indicados, para cada RNA. La actividad antiviral se expresa como el recíproco de la dilución más alta de suero capaz de suprimir el efecto citopático inducido por VEV en células L-929 en el 50% de los pocilios. No se detectó actividad antiviral en los pooles de suero recogidos a 0 h postinoculación (< 2). NR, no realizado. En conjunto estos resultados indican que los transcritos de RNA correspondientes a los elementos estructurales presentes en las NCRs de los extremos 3' y 5' del genoma de VFA pueden estimular una respuesta inmune innata e inducir un estado antiviral in vivo. EJEMPLO 5: Supervivencia frente al desafío con VFA o con VNO.  Poly l: C 8 8 <2 <2 a Groups of 4-5 mice were inoculated with 100 μ9 of VFA ncRNAs or poly l: C. The sera were collected and mixed, at the indicated post-inoculation times, for each RNA. Antiviral activity is expressed as the reciprocal of the highest dilution of serum capable of suppressing the cytopathic effect induced by VEV in L-929 cells in 50% of the wells. No antiviral activity was detected in serum pools collected at 0 h post-inoculation (<2). NR, not done. Together these results indicate that RNA transcripts corresponding to the structural elements present in the NCRs of the 3 'and 5' ends of the VFA genome can stimulate an innate immune response and induce an antiviral state in vivo. EXAMPLE 5: Survival against the challenge with VFA or with WNV.
Para determinar cuál de los ncRNAs del VFA es el que mayor protección induce frente a desafío viral con VFA o con VNO, se procedió a realizar ensayos de protección en ratón lactante basados en la inoculación intraperitoneal (i.p.), e intracraneal (i.c.) e i.p. en el caso del VNO, de los ncRNAs y posterior infección con distintas dosis infectivas de los virus (VFA o VNO) que originan la muerte de los ratones a dosis y tiempos establecidos previamente. El efecto protector de la inoculación con los ncRNAs se establece por comparación con el grupo control de animales inoculados con tampón fosfato salino (PBS). En el caso del VNO también se incluyeron grupos control que fueron inoculados con PBS y desafiados con las mismas cantidades de virus que habían sido previamente incubadas (dilución 1 : 1 ) durante 1 hora a temperatura ambiente con una mezcla de sueros de ratones supervivientes a la infección cuya capacidad protectora frente a la infección con el VNO era conocida (Alonso-Padilla et al. 201 1 Vaccine 29: 1830-1835), y grupos sin tratar que fueron inoculados i.c. con PBS como control de buena manipulación. In order to determine which of the VFA ncRNAs is the one that most induces protection against viral challenge with VFA or with WNV, protection trials were carried out in lactating mice based on intraperitoneal (ip), and intracranial (ic) and ip inoculation in the case of WNV, of the ncRNAs and subsequent infection with different infective doses of the viruses (VFA or WNV) that cause the death of the mice at previously established doses and times. The protective effect of inoculation with ncRNAs is established by comparison with the control group of animals inoculated with buffer saline phosphate (PBS). In the case of WNV, control groups were also included that were inoculated with PBS and challenged with the same amounts of virus that had been previously incubated (1: 1 dilution) for 1 hour at room temperature with a mixture of sera from mice surviving at infection whose protective capacity against infection with WNV was known (Alonso-Padilla et al. 201 1 Vaccine 29: 1830-1835), and untreated groups that were inoculated ic with PBS as a control of good manipulation.
5.1. Efecto protector de los ncRNAs de VFA frente a infección con VFA Los resultados de supervivencia frente a las distintas diluciones ensayadas se muestran en la Tabla 3. Brevemente, el efecto protector de los distintos ncRNAs en comparación con el del poly l:C fue gradual. El efecto del 3'NCR y el poly l:C fue similar. De 8 x 103pfu (dilución 10~3) en adelante el poly l:C fue mejor; por debajo de esa dosis (10"4 en adelante) fueron equivalentes en protección. La inoculación del RNA S indujo un mayor efecto protector, con el 50% de los animales vivos hasta el día 1 1 post infección (p.i). de la dilución 10" 2, igual que el poly l:C. Sin embargo, a dosis superiores de virus el RNA S protegió al 50% de los animales incluso frente a preparación de virus sin diluir (8 x 106 pfu), mientras que el poly l:C dejó de proteger a la dilución 10~1. Los mejores resultados de protección se obtuvieron al inocular el IRES, con protección total (100%) frente a VFA hasta la dilución 10"2 y del 90% a dosis superiores hasta virus sin diluir, indicando que incluso con dosis de virus muy superiores a los niveles fisiológicos, el VFA sólo es capaz de matar a un 10% de los animales inoculados con este RNA. Ningún animal del grupo control sobrevivió a partir del día 1 p.i. con la dilución 10~2. Es interesante el efecto "meseta" observado para los RNAs con mayor capacidad de protección (S e IRES). Con estos RNAs parece establecerse una barrera antiviral que la infectividad del virus es incapaz de superar, alrededor del 50% para el S y del 10% para el IRES. 5.1. Protective effect of VFA ncRNAs against infection with VFA Survival results against the different dilutions tested are shown in Table 3. Briefly, the protective effect of different ncRNAs compared to that of poly l: C was gradual. The effect of 3 ' NCR and poly l: C was similar. From 8 x 10 3 pfu (dilution 10 ~ 3 ) onwards the poly l: C was better; below that dose (10 "4 onwards) were equivalent in protection. Inoculation of RNA S induced a greater protective effect, with 50% of the animals alive until day 1 1 post infection (pi). of dilution 10 " 2 , same as poly l: C. However, at higher doses of the virus, RNA S protected 50% of the animals even against undiluted virus preparation (8 x 10 6 pfu), while the poly l: C stopped protecting the 10 ~ 1 dilution . The best protection results were obtained by inoculating the IRES, with total protection (100%) against VFA up to 10 "2 dilution and 90% at higher doses until undiluted virus, indicating that even with doses of virus much higher than physiological levels, the VFA is only able to kill 10% of the animals inoculated with this RNA.No animal of the control group survived from day 1 pi with the 10 ~ 2 dilution. The observed "plateau" effect is interesting for RNAs with greater protection capacity (S and IRES) With these RNAs it seems to be an antiviral barrier that the infectivity of the virus is unable to overcome, around 50% for S and 10% for IRES.
Los valores de LD50 (dosis letal-50/ml) que se muestran en la Tabla 3 corresponden a la dilución de la preparación viral utilizada necesaria para matar al 50% de los animales inoculados en cada caso. Para el S e IRES, al no existir una dilución a la que el virus mate un porcentaje de animales > 50% sólo se indica que es < 10°. The LD 50 values (lethal dose-50 / ml) shown in Table 3 correspond to the dilution of the viral preparation used necessary for Kill 50% of the animals inoculated in each case. For S and IRES, since there is no dilution at which the virus kills a percentage of animals> 50%, it is only indicated that it is <10 °.
Tabla 3. Supervivencia de ratones lactantes inoculados con los ncRNAs a 11 días postinfección con el VFA. Table 3. Survival of lactating mice inoculated with the ncRNAs at 11 days post-infection with the VFA.
RNA Dilución Porcentaje de  RNA Dilution Percentage of
inoculado de virus supervivientes/inoculados supervivencia LD50/ml virus inoculated survivors / inoculated survival LD 50 / ml
0 (5/10) 500 (5/10) 50
-1 (4/8) 50-1 (4/8) 50
-2 (7/12) 58 -2 (7/12) 58
< 10L <10 L
-3 (10/1 1 ) 90-3 (10/1 1) 90
-4 (12/12) 100-4 (12/12) 100
-5 (1 1/1 1 ) 100 -5 (1 1/1 1) 100
0 (9/10) 900 (9/10) 90
-1 (7/8) 87,5-1 (7/8) 87.5
-2 (10/10) 100 -2 (10/10) 100
IRES < 10°  IRES <10 °
-3 (10/10) 100 -3 (10/10) 100
-4 (10/10) 100-4 (10/10) 100
-5 (9/9) 100 -5 (9/9) 100
-1 (0/8) 0 -1 (0/8) 0
-2 (1/10) 10  -2 (1/10) 10
3'NCR -3 (6/1 1 ) 54 9 x 10" 3'NCR -3 (6/1 1) 54 9x10 "
-4 (5/5) 100 -4 (5/5) 100
-5 (4/4) 100 -5 (4/4) 100
0 (1/10) 100 (1/10) 10
-1 (0/10) 0 -1 (0/10) 0
-2 (7/1 1 ) 64 -2 -2 (7/1 1) 64 -2
Poly l:C 7 x 10 Poly l: C 7x10
-3 (7/8) 87,5 -3 (7/8) 87.5
-4 (12/12) 100-4 (12/12) 100
-5 (8/8) 100 -5 (8/8) 100
-2 (0/9) 0 -2 (0/9) 0
-3 (1/24) 4  -3 (1/24) 4
PBS 5 x 10" PBS 5x10 "
-4 (7/25) 28 -4 (7/25) 28
-5 (18/27) 67 I -6 (9/9) 100 -5 (18/27) 67 I -6 (9/9) 100
PBS+LP* | -4 (0/6) 0 PBS + LP * | -4 (0/6) 0
* Lipofectina; LD, dosis letal. -1 , dilución 10~1. -2, dilución 10~2. -3, dilución 10~3. - 4, dilución 10"4. -5, dilución 10"5. * Lipofectin; LD, lethal dose. -1, dilution 10 ~ 1 . -2, dilution 10 ~ 2 . -3, dilution 10 ~ 3 . - 4, dilution 10 "4. -5, dilution 10 " 5 .
5.2. Efecto dosis 5.2. Dose effect
Se realizó un experimento de inoculación con dosis inferiores a la utilizada habitualmente (100 μ9) con el ncRNA que mostró una mayor capacidad de protección, el IRES utilizando una dosis elevada de virus. Los animales se inocularon intraperitonealmente, como se describe anteriormente, con el RNA y 24 h después con la dilución 10"2, equivalente a 8 x 104 ufp (unidades formadoras de placa) de VFA. Los resultados se muestran en la Tabla 4. Efectivamente, se observó un efecto dosis en la protección, con un descenso muy leve (90%) con 50 μ9 de RNA y mayor, un 10% con 1 μ9. Este resultado confirma la especificidad de la protección observada con los ncRNAs y la idoneidad de la dosis de 100 μ9 utilizada en los ensayos. An inoculation experiment was carried out with doses lower than the one commonly used (100 μ9) with the ncRNA that showed a greater protective capacity, the IRES using a high dose of virus. The animals were inoculated intraperitoneally, as described above, with the RNA and 24 h later with the 10 "2 dilution, equivalent to 8 x 10 4 pfu (plaque forming units) of VFA. The results are shown in Table 4. Indeed, a dose effect on protection was observed, with a very slight decrease (90%) with 50 μ9 of RNA and greater, 10% with 1 μ9. This result confirms the specificity of the protection observed with ncRNAs and the suitability of the dose of 100 μ9 used in the trials.
Tabla 4. Supervivencia de ratones lactantes inoculados con distintas dosis deTable 4. Survival of inoculated lactating mice with different doses of
IRES del VFA a día 1 1 postinfección con VFA IRES of VFA on day 1 1 post-infection with VFA
Figure imgf000027_0001
Figure imgf000027_0001
5.3. Cinética de protección 5.3. Protection kinetics
Para valorar la ventana de tiempo que abarca la protección mediada por los ncRNAs con respecto al momento de infección, se inocularon las diluciones 10" 2 y 10~4 de VFA en carnadas de lactantes que habían sido inoculados previamente con el IRES (intraperitonealmente, 100 μ9) a distintos tiempos tras la inoculación del RNA. Los resultados se muestran en la Tabla 5. La protección total frente a la infección con la dilución 10~4 de virus de la fiebre aftosa se mantuvo en todos los tiempos ensayados desde minutos tras la inoculación hasta 72 h después. Para la dilución 10~2 la protección fue completa tras 8 h de la inoculación con el IRES y del 60% tras 4h. Sin embargo, de manera casi inmediata a la inoculación (5-10 min, correspondientes al tiempo 0) los niveles de protección fueron del 100%. Por otra parte, 48 h tras la inoculación del RNA la protección frente a la dilución 10"2 fue del 50% y a 72 h los animales fueron totalmente susceptibles a la infección. To assess the time window that covers the protection mediated by ncRNAs with respect to the time of infection, 10 " 2 and 10 ~ 4 dilutions of VFA were inoculated in infant baits that had previously been inoculated with the IRES (intraperitoneally, 100 μ9) at different times after RNA inoculation The results are shown in Table 5. Total protection against infection with 10 ~ 4 dilution of foot-and-mouth disease virus was maintained at all times tested from minutes after inoculation until 72 h later. For the 10 ~ 2 dilution the protection was complete after 8 hours of inoculation with the IRES and 60% after 4 hours. However, almost immediately to inoculation (5-10 min, corresponding to time 0) the protection levels were 100%. On the other hand, 48 hours after RNA inoculation, protection against 10 "2 dilution was 50% and at 72 hours the animals were totally susceptible to infection.
Tabla 5. Número de supervivientes a día 10 postinfección / número de inoculados Table 5. Number of survivors per day 10 post-infection / number of inoculated
Figure imgf000028_0001
Figure imgf000028_0001
5.4. Efecto de la lipofectina 5.4. Lipofectin Effect
El efecto de la lipofectina como agente vehiculante sobre la capacidad protectora de los ncRNAs fue analizado. Se estudió el nivel de protección inducido por el IRES con y sin lipofectina frente a las diluciones 10~2 y 10~4 del VFA (Tabla 6). El efecto protector del IRES se redujo en un 30% al ser inoculado sin lipofectina frente a la dilución 10"2 y en un 10% frente a la 10~4 (Tablas 1 y 4). Ningún animal inoculado con PBS + lipofectina sobrevivió a la infección con la dilución 10~2 del VFA. Estos resultados indican que la lipofectina per se no induce protección aunque sí potencia el efecto protector de los ncRNAs probablemente aumentando su estabilidad y/o acceso a las células diana. Tabla 6. Supervivencia tras infección con el VFA a las 24 h postinoculación del IRES del VFA con/sin lipofectina (LP) The effect of lipofectin as a carrier agent on the protective capacity of ncRNAs was analyzed. The level of protection induced by the IRES with and without lipofectin against the 10 ~ 2 and 10 ~ 4 dilutions of the VFA was studied (Table 6). The protective effect of IRES was reduced by 30% when inoculated without lipofectin against 10 "2 dilution and 10% against 10 ~ 4 (Tables 1 and 4). No animal inoculated with PBS + lipofectin survived infection with 10 ~ 2 dilution of the VFA These results indicate that lipofectin per se does not induce protection although it does enhance the protective effect of ncRNAs probably increasing its stability and / or access to target cells. Table 6. Survival after infection with VFA at 24 h post-inoculation of IRES of VFA with / without lipofectin (LP)
Figure imgf000029_0001
Figure imgf000029_0001
5.5. Efecto protector frente a la infección con el virus del Nilo Occidental5.5. Protective effect against infection with West Nile virus
Los ensayos de supervivencia frente al VNO confirman los obtenidos frente al VFA, de modo que se obtuvo una mayor protección con la región IRES del VFA que con la región S del VFA, la cual también fue mayor que la obtenida con el RNA control (poly l:C). Survival tests against WNV confirm those obtained against VFA, so that greater protection was obtained with the IRES region of VFA than with the S region of VFA, which was also greater than that obtained with control RNA (poly l: C).
Los resultados de supervivencia 15 días post infección frente a las distintas diluciones ensayadas se muestran en la Tabla 7. Brevemente, el efecto protector de los distintos ncRNAs (IRES y S) inoculados 24 horas antes de la infección vírica fue igual o mejor que el del control (poly l:C).en todas las condiciones de infección ensayadas (10 ufp/ratón por vía i.c, y 100 ufp/ratón tanto por vía i.c. como i.p.). El IRES confirió una protección muy elevada, que llegó a ser completa (100%, 100% y 46.2%). Por su parte, los porcentajes de supervivencia de la región S fueron también muy notables (100%, 96% y 12.5%) en comparación con los obtenidos con poly l:C (100%, 33.3% y 0%). Las supervivencias obtenidas con los ncRNAs de la invención fueron similares a los obtenidos cuando el virus fue neutralizado con sueros murinos, cuya capacidad protectora era conocida, previamente a su inoculación (100%, 100% y 77%). Los porcentajes de supervivencia de los grupos control inoculados con PBS fueron del 12.5%, 40% y 0%, respectivamente. Tabla 7. Supervivencia de ratones lactantes inoculados con los ncRNAs a 15 días postinfección intracraneal (i.c.) o intraperitoneal (i.p.) con el VNO. Survival results 15 days post infection against the different dilutions tested are shown in Table 7. Briefly, the protective effect of the different ncRNAs (IRES and S) inoculated 24 hours before viral infection was equal to or better than that of the virus. control (poly l: C) .in all the infection conditions tested (10 pfu / mouse via ic, and 100 pfu / mouse both via ic and ip). The IRES conferred a very high protection, which became complete (100%, 100% and 46.2%). On the other hand, the survival percentages of the S region were also very notable (100%, 96% and 12.5%) compared to those obtained with poly l: C (100%, 33.3% and 0%). The survivals obtained with the ncRNAs of the invention were similar to those obtained when the virus was neutralized with murine sera, whose protective capacity was known, prior to inoculation (100%, 100% and 77%). Survival rates of the control groups inoculated with PBS were 12.5%, 40% and 0%, respectively. Table 7. Survival of lactating mice inoculated with ncRNAs at 15 days post intracranial (ic) or intraperitoneal (ip) infection with WNV.
Figure imgf000030_0001
Figure imgf000030_0001
Ns, no sginificativo  Ns, not meaningful
EJEMPLO 6: La inoculación de los ncRNAs en ratón adulto incrementa significativamente la supervivencia frente a la infección con el VNO EXAMPLE 6: Inoculation of ncRNAs in adult mice significantly increases survival against infection with WNV
Grupos de ratones Swiss fueron inoculados vía intraperitoneal (i.p.) con PBS (n=48), polyl:C (n=12), o 200 \ig de RNA S (n=24) o IRES (n=24). El inoculo de RNA fue emulsionado con 40 μ9 de lipofectina en PBS en un volumen final de 200 μΙ. 24h después los ratones fueron infectados vía i.p. con 105ufp de VNO. La supervivencia se monitorizó diariamente hasta el día 15 postinfección. Los resultados se muestran en la figura 6, y en la tabla 8. Groups of Swiss mice were inoculated intraperitoneally (ip) with PBS (n = 48), polyl: C (n = 12), or 200? Of RNA S (n = 24) or IRES (n = 24). The RNA inoculum was emulsified with 40 μ9 of lipofectin in PBS in a final volume of 200 μΙ. 24 hours later the mice were infected via ip with 10 5 pfu of WNV. Survival was monitored daily until day 15 post-infection. The results are shown in Figure 6, and in Table 8.
Tabla 8. Supervivencia de ratones frente a la infección con el VNO tras la inoculación con ncRNAs. Table 8. Survival of mice against infection with WNV after inoculation with ncRNAs.
Figure imgf000031_0001
Figure imgf000031_0001
Mientras que la supervivencia final en el grupo de animales inoculados con PBS fue del 27%, los porcentajes fueron significativamente superiores en los grupos de ratones inoculados con RNA. El mayor nivel de supervivencia (83,4%) se observó en el grupo de animales inoculados con el RNA S. Estos resultados apoyan la capacidad antiviral de los ncRNAs frente al VNO en ratón adulto, como se observó anteriormente con ratones lactantes. While the final survival in the group of animals inoculated with PBS was 27%, the percentages were significantly higher in the groups of mice inoculated with RNA. The highest level of survival (83.4%) was observed in the group of animals inoculated with RNA S. These results support the antiviral ability of ncRNAs against WNV in adult mice, as previously observed with lactating mice.
EJEMPLO 7. Detección de IFN-α en sueros de ratones adultos inoculados con los ncRNAs EXAMPLE 7. Detection of IFN-α in sera of adult mice inoculated with ncRNAs
Se inocularon grupos de 4 ratones adultos Swiss con200 μg de RNA (IRES, S o polyl:C) con lipofectina vía i.p., como se describe anteriormente. Tras 4, 8 o 24 h después de la inoculación se tomaron muestras de suero, agrupándose en "pools" las correspondientes a los 4 animales de cada grupo. Mediante ELISA (kit de PBL InterferonSource) se determinaron los niveles de IFN-α en los "pools" de sueros de cada grupo a los 3 tiempos analizados. Los resultados se muestran en la figura 7. Se observó un aumento en los niveles de IFN-α a las 8 h post-inoculación en el caso de los grupos inoculados con los ncRNAs S o IRES. El RNA que indujo mayores niveles de IFN-α fue el IRES. Groups of 4 Swiss adult mice with 200 μg of RNA (IRES, S or polyl: C) were inoculated with lipofectin via ip, as described above. After 4, 8 or 24 h after inoculation, serum samples were taken, grouping the pools corresponding to the 4 animals in each group. Using ELISA (PBL InterferonSource kit), IFN-α levels were determined in the sera pools of each group at the 3 times analyzed. The results are shown in Figure 7. An increase in IFN-α levels was observed at 8 h post-inoculation in the case of the groups inoculated with the S or IRES ncRNAs. The RNA that induced higher levels of IFN-α was IRES.
EJEMPLO 8. Ensayo de los ncRNAs como adyuvantes vacunales frente a VFA EXAMPLE 8. Testing of ncRNAs as vaccine adjuvants against VFA
La vacuna consistió en un virus inactivado químicamente por tratamiento con BEI ("binary ethylenimine"), según se describe en (Bahnemann HG. 1975. Arch Virol 47: 47-56), en una dosis equivalente a 2x105 pfu de VFA (aislado C-S8c1 ) El virus inactivado se emulsionó en proporción 1 : 1 con Montanide ISA50, de Seppic. Se inoculó i.p. como se ha descrito previamente (Borrego B et al. 2006. Vaccine 24:3889-3899). Se comparó la respuesta inmunológica específica frente a VFA de cuatro grupos de animales: The vaccine consisted of a chemically inactivated virus by treatment with BEI ("binary ethylenimine"), as described in (Bahnemann HG. 1975. Arch Virol 47: 47-56), in a dose equivalent to 2x10 5 pfu of VFA (isolated C-S8c1) The inactivated virus was emulsified in a 1: 1 ratio with Montanide ISA50, from Seppic. Ip was inoculated as previously described (Borrego B et al. 2006. Vaccine 24: 3889-3899). The specific immune response against VFA of four groups of animals was compared:
a) Inoculados sólo con la vacuna (n=3)  a) Inoculated only with the vaccine (n = 3)
b) Co-inoculados con la vacuna y con 200 μg de RNA IRES + lipofectina.  b) Co-inoculated with the vaccine and with 200 μg of IRES RNA + lipofectin.
Las inoculaciones se realizaron i.p. en distintos puntos de la cavidad abdominal, derecha o izquierda según se inoculara RNA o "virus vacuna", separadas aproximadamente 2 cm (n=5).  The inoculations were performed i.p. at different points of the abdominal cavity, right or left as RNA or "vaccine virus" is inoculated, approximately 2 cm apart (n = 5).
c) Inoculados con 200 μg de RNA IRES + lipofectina y 24 h más tarde inoculados con la vacuna (n=5).  c) Inoculated with 200 μg of IRES RNA + lipofectin and 24 h later inoculated with the vaccine (n = 5).
d) Inoculados con la vacuna y 24 h más tarde inoculados con 200 μg de RNA IRES + lipofectina (n=5).  d) Inoculated with the vaccine and 24 h later inoculated with 200 μg of IRES RNA + lipofectin (n = 5).
8.1. La inoculación del IRES aumenta el título de anticuerpos específicos totales frente al VFA inducidos tras la vacunación 8.1. IRES inoculation increases the total specific antibody titer against VFA induced after vaccination
Los títulos de anticuerpos totales frente al VFA en los distintos animales de cada grupo se determinaron mediante ELISA de los sueros correspondientes tomados a días 5 y 12 o 3 y 8 semanas post-vacunación, respectivamente, obtenidos mediante sangrías de vena maxilar, inactivados y mantenidos a -20° C hasta su uso. El ELISA utilizado sigue un protocolo de captura de virus C- S8c1 sin purificar con un suero de conejo anti-VFA de serotipo-C (suministrado por el Institute for Animal Health, Pirbright, UK), un suero comercial anti-ratón- HRP (BioRad) y TMB (Sigma) como sustrato. La reacción se detuvo con sulfúrico 3N tras 10 min de incubación a temperatura ambiente, y lectura de absorbancia se realizó a 450nm. Todas las incubaciones se realizaron a 37° C durante 1 h, y entre cada paso tres lavados con PBS-Tween 20 0,05%. Los sueros se ensayaron (individualmente) en diluciones seriadas y se definió el título como el Iog10 de la ultima dilución cuya lectura de densidad óptica (DO) fue superior a 2 veces el valor de un suero negativo (pre-inmune) a la mínima dilución ensayada (1/20). En la figura se representan las medias por grupo. Total antibody titers against VFA in the different animals of each group were determined by ELISA of the corresponding sera taken at days 5 and 12 or 3 and 8 weeks post-vaccination, respectively, obtained by maxillary vein bleeding, inactivated and maintained. at -20 ° C until use. The ELISA used follows a C-S8c1 virus capture protocol without purification with a serotype-C rabbit anti-VFA serum (supplied by the Institute for Animal Health, Pirbright, UK), a commercial anti-mouse-HRP serum ( BioRad) and TMB (Sigma) as a substrate. The reaction was stopped with 3N sulfuric acid after 10 min incubation at room temperature, and absorbance reading was carried out at 450 nm. All incubations were performed at 37 ° C for 1 h, and between each step three washes with 0.05% PBS-Tween 20. The sera were tested (individually) in serial dilutions and the titer was defined as the Iog10 of the last dilution whose optical density reading (OD) was greater than 2 times the value of a negative (pre-immune) serum at the minimum dilution rehearsed (1/20). The figure represents the means by group.
Los resultados se muestran en la figura 8. En los tres grupos inoculados con RNA el nivel de anticuerpos fue superior al del grupo al que se le administró exclusivamente la vacuna. A tiempos largos post-inmunización, el grupo al que se co-administró simultáneamente vacuna y RNA fue el que indujo mayor título de anticuerpos específicos contra el virus. The results are shown in Figure 8. In the three groups inoculated with RNA the antibody level was higher than the group to which the vaccine was administered exclusively. At long post-immunization times, the group that simultaneously co-administered vaccine and RNA was the one that induced the highest titer of specific antibodies against the virus.
8.2. La inoculación del IRES aumenta el título y la duración de los anticuerpos neutralizantes frente al VFA inducidos tras la vacunación 8.2. IRES inoculation increases the titer and duration of neutralizing antibodies against VFA induced after vaccination
Muestras de suero de los animales de los distintos grupos, tomadas a distintos días y semanas post-vacunación y procesadas de igual forma que en el apartado anterior, fueron analizadas en un ensayo de reducción de número de placas que revela la presencia de anticuerpos neutralizantes frente al virus y permite titularlos (Mateu MG et al. 1987. Virus Res 8:261 -274). Se utilizaron células IBRS-2 y los títulos de neutralización se expresaron como PRN70, el recíproco de la máxima dilución de suero (log 10) que causó un 70% de reducción de número de placas. Los resultados se muestran en la figura 9. En la gráfica se representan los valores medios de cada grupo, excluyendo a los animales negativos. El mayor nivel de anticuerpos neutralizantes se observó, en todos los tiempos analizados, en el grupo al que se co-inoculó vacuna y RNA. Merece la pena destacar que tras 8 semanas después de la vacunación, ninguno de los animales inoculados sólo con la vacuna mantenía niveles detectables de anticuerpos neutralizantes de la infectividad, mientras que los otros tres grupos, en los que se había administrado el RNA IRES, un alto porcentaje de animales (ver tabla 9) mantenían todavía niveles elevados. Tabla 9. Número de animales que presentan niveles detectables de anticuerpos neutralizantes frente a VFA, tras la inoculación con RNA IRES a diferentes tiempos con respecto a la vacuna. Serum samples from animals of the different groups, taken at different days and weeks post-vaccination and processed in the same way as in the previous section, were analyzed in a plaque number reduction test that reveals the presence of neutralizing antibodies against to the virus and allows to title them (Mateu MG et al. 1987. Virus Res 8: 261-274). IBRS-2 cells were used and neutralization titers were expressed as PRN70, the reciprocal of the maximum serum dilution (log 10) that caused a 70% reduction in plaque number. The results are shown in Figure 9. The graph represents the average values of each group, excluding negative animals. The highest level of neutralizing antibodies was observed, at all times analyzed, in the group to which the vaccine and RNA were co-inoculated. It is worth noting that after 8 weeks after vaccination, none of the animals inoculated only with the vaccine maintained levels detectable antibodies neutralizing infectivity, while the other three groups, in which the IRES RNA had been administered, a high percentage of animals (see table 9) still maintained high levels. Table 9. Number of animals that have detectable levels of neutralizing antibodies against VFA, after inoculation with IRES RNA at different times with respect to the vaccine.
Figure imgf000034_0001
Figure imgf000034_0001
8.3. La inoculación del IRES aumenta la diversidad de los isotipos de anticuerpos frente al VFA inducidos tras la vacunación 8.3. IRES inoculation increases the diversity of antibody isotypes against VFA induced after vaccination
Se determinó la diversidad de isotipos de los anticuerpos inducidos, transcurridas 9 semanas tras la vacunación, en los animales correspondientes al grupo de sólo vacunados y al de co-inoculados con vacuna + RNA. Para ello, los sueros se analizaron en dos diluciones distintas (escogidas en función de los resultados del ELISA descrito anteriormente) mediante un ELISA de captura de virus C-S8c1 sin purificar equivalente al descrito anteriormente, aunque en este caso la captura se realizó con un suero de un cerdo infectado experimentalmente con VFA de serotipo-C (CISA-INIA). La determinación de isotipos se realizó utilizando como anticuerpos primarios un panel de isotipado de inmunoglobulinas de ratón (BioRad), seguido de incubación con suero comercial anti-conejo conjugado con HRP, de BioRad (Borrego B et al. 2006. Vaccine 24:3889-3899). La figura 10 muestra los resultados en forma de DO correspondientes a la dilución 1/60 del suero de dos de los tres animales que sólo recibieron vacuna y de los cinco que fueron co-inoculados con vacuna y RNA. Se muestra la comparación con sueros negativos y positivos. Como se observa en la figura, el perfil de inmunoglobulinas en los animales del grupo coinoculado fue mucho más diverso, similar al observado para un "ροο de sueros de ratones infectados experimentalmente (control positivo). En particular, se observó un aumento de lgG1 e lgG2A, aparición de lgG2B y en un animal, también de lgG3. The isotype diversity of the induced antibodies was determined, after 9 weeks after vaccination, in the animals corresponding to the group of only vaccinated and that of co-inoculated with vaccine + RNA. For this, the sera were analyzed in two different dilutions (chosen according to the ELISA results described above) by means of a capture ELISA of unpurified C-S8c1 virus equivalent to that described above, although in this case the capture was performed with a serum from a pig experimentally infected with C-serotype VFA (CISA-INIA). Isotypes were determined using a mouse immunoglobulin isotyping panel (BioRad) as primary antibodies, followed by incubation with commercial HRP-conjugated rabbit anti-rabbit serum from BioRad (Borrego B et al. 2006. Vaccine 24: 3889- 3899). Figure 10 shows the results in the form of OD corresponding to the 1/60 dilution of the serum of two of the three animals that only received vaccine and of the five that were co-inoculated with vaccine and RNA. The comparison with negative and positive sera is shown. As can be seen in the figure, the immunoglobulin profile in the animals of the coinoculated group was much more diverse, similar to that observed for a “ροο of sera from experimentally infected mice (positive control). In particular, an increase in lgG1 was observed. lgG2A, appearance of lgG2B and in an animal, also of lgG3.
MATERIAL Y MÉTODOS EMPLEADOS Células y virus. MATERIAL AND METHODS USED Cells and viruses.
Se han empleado las líneas celulares de riñon de cerdo IBRS-2, SK-6 y células Vero (epiteliales de riñon de mono) del Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, España, y las células murinas L-929, del laboratorio del Dr. Alcamí, del Centro de Biología Molecular Severo Ochoa, Madrid, España. Las células se crecieron en DMEM suplementado con suero bovino fetal al 10%, penicilina/estreptomicina y glutamina. The IBRS-2, SK-6 pig kidney cell lines (monkey kidney epithelial cells) of the Animal Health Research Center (CISA-INIA), Valdeolmos, Spain, and murine L-cells have been used 929, from the laboratory of Dr. Alcamí, from the Severo Ochoa Molecular Biology Center, Madrid, Spain. The cells were grown in DMEM supplemented with 10% fetal bovine serum, penicillin / streptomycin and glutamine.
Los virus empleados en los experimentos de infección fueron: el virus de la fiebre aftosa O1 K, el virus de la estomatitis vesicular Indiana y el virus del Nilo Occidental cepa NY-99. The viruses used in the infection experiments were: the foot-and-mouth disease virus O1 K, the vesicular stomatitis virus Indiana and the West Nile virus strain NY-99.
Preparación de los RNAs y transfecciones. Los transcritos de RNA correspondientes al fragmento S, 3'NCR y sus derivados SL1 (3'NCRASL2), SL2 (3'NCRASL1 ) y ΔΑη (con la cola poli A eliminada) del genoma del VFA 01 K (la secuencia del genoma del aislado 01 K se considera recogida en los números de acceso de Genbank D10138 y X00871 ) se generaron por transcripción in vitro con la RNA polimerasa de T3 a partir de plásmidos descritos previamente y linearizados con Not I (Serrano PM et al. 2006. J Gen Virol 87:3013-3022). El RNA correspondiente al IRES de VFA del aislado C-S8c1 se obtuvo de un clon derivado de pGEM (Ramos R et al. 1999. RNA 5: 1374-1783) cedido por E. Martínez-Salas, tras linearizar con Xho\ y transcribir in vitro con la RNA polimerasa de T7 (NEB). El RNA correspondiente al 5'NCR, incluyendo el fragmento S, el IRES y 212 nucleótidos de la secuencia codificante de Lpro se sintetizó con la RNA polimerasa de SP6, usando como molde el clon pO1 K (Rodríguez-Pulido MF et al. 2009. 83(8):3475-3485) linearizado con Acc\ . Salvo que se indique lo contrario, todos los transcritos contienen un grupo trifosfato en el extremo 5' y los elementos 3'NCR del VFA y sus derivados llevan una cola de poli A de 58 nucleótidos. Preparation of RNAs and transfections. The RNA transcripts corresponding to the S, 3 ' NCR fragment and its derivatives SL1 (3 ' NCRASL2), SL2 (3 ' NCRASL1) and ΔΑη (with the poly A tail removed) of the VFA 01 K genome (the genome sequence of the Isolated 01 K is considered collected in Genbank accession numbers D10138 and X00871) were generated by in vitro transcription with T3 RNA polymerase from plasmids previously described and linearized with Not I (Serrano PM et al. 2006. J Gen Virol 87: 3013-3022). The RNA corresponding to the VFA IRES of the C-S8c1 isolate was obtained from a clone derived from pGEM (Ramos R et al. 1999. RNA 5: 1374-1783) assigned by E. Martínez-Salas, after linearizing with Xho \ and transcribing in vitro with T7 RNA polymerase (NEB). The RNA corresponding to the 5 ' NCR, including the S fragment, the IRES and 212 nucleotides of the Lpro coding sequence was synthesized with the SP6 RNA polymerase, using the pO1 K clone as a template (Rodríguez-Pulido MF et al. 2009. 83 (8): 3475-3485) linearized with Acc \. Unless otherwise indicated, all transcripts contain a triphosphate group at the 5 'end and the 3'NCR elements of the VFA and their derivatives carry a 58 nucleotide poly A tail.
Tras la transcripción, los RNAs se trataron con la DNasa RQ1 (1 U^g, Promega), se extrajeron con fenol/cloroformo y se precipitaron con etanol. Finalmente se resuspendieron en agua y se cuantificaron por espectrofotometría. La integridad y el tamaño del RNA se analizaron por electroforesis en geles desnaturalizantes 6% acrilamida, 7 M urea o geles de agarosa. After transcription, the RNAs were treated with DNase RQ1 (1 U ^ g, Promega), extracted with phenol / chloroform and precipitated with ethanol. Finally they were resuspended in water and quantified by spectrophotometry. The integrity and size of the RNA were analyzed by electrophoresis in denaturing gels 6% acrylamide, 7 M urea or agarose gels.
La eliminación de los grupos fosfato del extremo 5' en los transcritos del VFA 3'NCR se realizó incubando durante 90 minutos con 0.5 U^g de fosfatasa alcalina (CIP, New England Biolabs). Después de este tratamiento, el RNA se extrajo 2 veces con fenol/cloroformo, se precipitó con etanol y se trató como se indica anteriormente. La integridad de estos transcritos de analizó por electroforesis en geles desnaturalizantes 6% acrilamida, 7 M urea. De esta manera se generaron los ncRNAS de la invención SEQ ID NO: 1 , SEQ ID NO: 2 y SEQ ID NO: 3. The removal of the 5 'end phosphate groups in the 3 ' NCR VFA transcripts was performed by incubating for 90 minutes with 0.5 U ^ g alkaline phosphatase (CIP, New England Biolabs). After this treatment, the RNA was extracted twice with phenol / chloroform, precipitated with ethanol and treated as indicated above. The integrity of these transcripts was analyzed by electrophoresis in denaturing gels 6% acrylamide, 7 M urea. This In this manner, the ncRNAS of the invention were generated SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
Antes de ser transfectados, los RNAs se calentaron durante 5 minutos a 92°C, se dejaron enfriar a temperatura ambiente durante 10 minutos y se mantuvieron en hielo. Before being transfected, the RNAs were heated for 5 minutes at 92 ° C, allowed to cool to room temperature for 10 minutes and kept on ice.
Las células SK-6 se transfectaron usando 20 μg/ml de cada uno de los ncRNAs con Lipofectina (Invitrogen) o con 10 μg/ml de poly l:C (Sigma) usando Lipofectamina (Invitrogen). SK-6 cells were transfected using 20 μg / ml of each of the ncRNAs with Lipofectin (Invitrogen) or with 10 μg / ml of poly l: C (Sigma) using Lipofectamine (Invitrogen).
Análisis de la expresión de IFN-β. Analysis of IFN-β expression.
A distintos tiempos post-transfección, las células se lisaron y el RNA total se extrajo y se cuantificó con los métodos conocidos por cualquier experto en la materia. La retro-transcripción (RT) se realizó empleando 500 ng de RNA total y la enzima Transcriptor RT (Roche). La reacción en cadena de la polimerasa (PCR) cuantitativa se realizó a partir de alícuotas de las reacciones de retrotranscripción (RT) (1/10) y los reactivos del kit "LightCycler FastStart DNA Master SYBR green I" (Roche).Todas las reacciones se realizaron en triplicado. Los datos se analizaron mediante el método AACt conocido por cualquier experto en la materia. En todos los ensayos la expresión del gen de IFN-β se normalizó respecto al gen de expresión constitutiva GADPH, y se expresó como incremento respecto a las células transfectadas control. At different post-transfection times, the cells were lysed and the total RNA was extracted and quantified using methods known to any person skilled in the art. Retro-transcription (RT) was performed using 500 ng of total RNA and the enzyme Transcriptor RT (Roche). The quantitative polymerase chain reaction (PCR) was performed from aliquots of the back transcription reactions (RT) (1/10) and the reagents of the "LightCycler FastStart DNA Master SYBR green I" kit (Roche). reactions were performed in triplicate. The data were analyzed using the AACt method known to any person skilled in the art. In all assays the expression of the IFN-β gene was normalized with respect to the constitutive expression gene GADPH, and was expressed as an increase with respect to the transfected control cells.
Los oligonucleótidos usados para amplificar el RNAm del IFN-β porcino fueron las secuencias a las que se refieren SEQ ID NO: 4 (cebador sentido) y SEQ ID NO: 5 (cebador antisentido). Para GAPDH se usaron oligonucleótidos descritos previamente (García-Briones MM et al. 2004. Virology 322:264-75). The oligonucleotides used to amplify the mRNA of porcine IFN-β were the sequences referred to in SEQ ID NO: 4 (sense primer) and SEQ ID NO: 5 (antisense primer). For GAPDH, previously described oligonucleotides were used (García-Briones MM et al. 2004. Virology 322: 264-75).
Bioensayo de IFN. La actividad antiviral de los sobrenadantes de las células SK-6 transfectadas se determinó mediante un ensayo de inhibición de la infección de VEV sobre células IBRS-2. Brevemente, las células SK-6 se transfectaron durante 24 horas con 40 μ9/ίηΙ de los transcritos NCR, o con 10 μ9 de poly l:C o tRNA (control negativo ya que el RNA tranferente es un RNA endógeno y por lo tanto su tranfección no debe inducir la respuesta innata ni la inducción de INF). Las células IBRS-2 se incubaron durante 24 horas con distintas diluciones de los sobrenadantes de transfección, se lavaron y se infectaron con 100 ufp de VEV. A 24 horas post-infección se contaron las placas. En algunos casos, los sobrenadantes de transfección se incubaron previamente durante 1 hora a 37°C con 1 μg de anticuerpos monoclonales neutralizantes específicos anti- IFN-α porcino (K9, de PBL InterferonSource) o anti- IFN-β descrito previamente (Overend C R et al. 2007. J Gen Virol 88:925-31 ). No se observó efecto inhibitorio sobre la infectividad de VEV para cantidades de anticuerpo monoclonal de hasta 10 μg. La actividad antiviral se expresó como la mayor dilución de sobrenadante requerida para reducir un 50% el número de placas. IFN bioassay. The antiviral activity of the supernatants of the transfected SK-6 cells was determined by an inhibition assay of VEV infection on IBRS-2 cells. Briefly, SK-6 cells were transfected for 24 hours with 40 μ9 / ίηΙ of the NCR transcripts, or with 10 μ9 of poly l: C or tRNA (negative control since the transfer RNA is an endogenous RNA and therefore its Transfection should not induce the innate response or the induction of INF). IBRS-2 cells were incubated for 24 hours with different dilutions of transfection supernatants, washed and infected with 100 pfu of VEV. Plates were counted at 24 hours post-infection. In some cases, transfection supernatants were previously incubated for 1 hour at 37 ° C with 1 μg of porcine anti-IFN-α-specific neutralizing monoclonal antibodies (K9, from PBL InterferonSource) or anti-IFN-β previously described (Overend CR et al. 2007. J Gen Virol 88: 925-31). No inhibitory effect on VEV infectivity was observed for amounts of monoclonal antibody up to 10 μg. The antiviral activity was expressed as the highest dilution of supernatant required to reduce the number of plaques by 50%.
Experimentos en ratón. Carnadas de ratones Swiss (de 3-7 días de edad) se inocularon intraperitonealmente con 100 μΙ conteniendo 100 μg de los transcritos del VFA 3'NCR (SEQ ID NO: 1 ), S (SEQ ID NO: 2), IRES (SEQ ID NO: 3) o poly l:C, en tampón PBS. Para los transcritos RNA, se añadieron 20 μg de lipofectina (Invitrogen). A 0, 4, 8, 24 y 48 horas postinoculación se recogieron muestras de suero, y las muestras de 4-5 animales para cada RNA se juntaron y se mantuvieron a -80°C hasta su uso. La cantidad de IFN-α e IFN-β en suero se determinó empleando kits de ELISA (PBL InterferonSource). Para analizar la actividad antiviral en estas muestras de suero, se realizó un ensayo de inhibición de efecto citopático (Rubinstein SPC et al. 1981 . J Virol 37:755-758). Brevemente, monocapas de células L-929 sembradas en placas multipocillo M- 96 se incubaron durante 24 horas con diluciones seriadas de los correspondientes sueros. Posteriormente se retiró el medio y se sustituyó por medio fresco conteniendo 100 dosis infectivas-50 (TCID50) de VEV. A las 72 horas se controló el efecto citopático por observación al microscopio. La actividad antiviral se expresó como la recíproca de la mayor dilución de suero que protege de citotoxicidad en el 50% de los pocilios. Mouse experiments. Baits of Swiss mice (3-7 days old) were inoculated intraperitoneally with 100 μΙ containing 100 μg of the 3 ' NCR VFA transcripts (SEQ ID NO: 1), S (SEQ ID NO: 2), IRES (SEQ ID NO: 3) or poly l: C, in PBS buffer. For RNA transcripts, 20 μg of lipofectin (Invitrogen) was added. At 0, 4, 8, 24 and 48 hours post-inoculation serum samples were collected, and samples of 4-5 animals for each RNA were pooled and kept at -80 ° C until use. The amount of IFN-α and IFN-β in serum was determined using ELISA kits (PBL InterferonSource). In order to analyze the antiviral activity in these serum samples, a cytopathic inhibition assay was performed (Rubinstein SPC et al. 1981. J Virol 37: 755-758). Briefly, monolayers of L-929 cells seeded in M-96 multiwell plates were incubated for 24 hours with serial dilutions of the corresponding sera. Subsequently the medium was removed and replaced by fresh medium containing 100 infective doses-50 (TCID50) of VEV. At 72 hours the cytopathic effect was monitored by observation under a microscope. The antiviral activity was expressed as the reciprocal of the highest dilution of serum that protects against cytotoxicity in 50% of the wells.
El manejo de animales en este estudio ha seguido en todo momento las pautas de la Comunidad Europea 86/609/CEE. Los protocolos fueron aprobados por el Comité de Ética de Experimentación Animal de INIA (Permisos Número CBS 2008/016 para el VFA Y 201 1/023 para el VNO). The management of animals in this study has always followed the guidelines of the European Community 86/609 / EEC. The protocols were approved by the INIA Animal Experimentation Ethics Committee (Permits Number CBS 2008/016 for the VFA and 201 1/023 for the WNV).
Ensayos de supervivencia. Se inocularon grupos de ratones lactantes Swiss de aproximadamente una semana de edad por vía intraperitoneal (i.p) con cada RNA (ncRNA) que fueron posteriormente inoculados con distintas diluciones de virus: VFA (una carnada de 8-12 animales por dilución) 24 h después por la misma vía, o VNO (una carnada de 9-17 animales por dilución) 24 h después bien por vía i.p. o bien por vía intracraneal (i.c.) (se utilizaron ambas vías de administración en carnadas distintas). El inoculo tenía un volumen final de 100 μΙ y contenía 100 μg del RNA a ensayar diluido en PBS y 20 μg de Lipofectina (Invitrogen). Brevemente, los RNAs sintetizados mediante transcripción in vitro fueron calentados a 92°C durante 5 min en agua. A continuación se añadió el PBS y se dejó renaturalizar a temperatura ambiente durante 10 min. Después se añadió la lipofectina y tras 15 min de incubación a temperatura ambiente la mezcla fue inyectada. La Lipofectina es un preparado de liposomas catiónicos comercial de uso rutinario en transfecciones de RNA de cadena sencilla. La metodología de inoculación de RNAs de VFA en ratones y cerdos ha sido desarrollada previamente. La preparación del inoculo de poly l:C se realiza igualmente con 100 μg del RNA diluido en PBS pero sin liposomas ya que se ha descrito su capacidad de inducir IFN en ratón adulto tras inoculación intraperitoneal como RNA desnudo. La infección con el virus se realizó 24 h después de la inoculación con los RNAs por dar los mejores resultados de protección en ensayos previos con el 3'NCR inoculado a 4, 8 y 24 h pre- infección. El volumen de inoculo de VFA fue de 100 μΙ diluido en PBS. Se ensayaron las diluciones comprendidas entre 10° (sin diluir) y 10~5 de un sobrenadante de infección en cultivo celular con un título de 8 x 107 unidades formadoras de placa (pfu)/ml. En el caso del desafío con el VNO el volumen de inoculación fue de 10 o 100 μΙ, dependiendo de si la inoculación fue i.c. o i.p., diluidos en PBS. El desafío se realizó con sobrenadante de infección en cultivo celular del VNO cepa NY-99 (10 o 100 ufp/ratón por vía i.c, y con 100 ufp/ratón por vía i.p) 24 h tras la inoculación de los RNAs. Survival trials Groups of Swiss lactating mice approximately one week old were inoculated intraperitoneally (ip) with each RNA (ncRNA) that were subsequently inoculated with different virus dilutions: VFA (a bait of 8-12 animals per dilution) 24 h after by the same route, or WNV (a bait of 9-17 animals per dilution) 24 hours later either via ip or intracranial route (ic) (both routes of administration were used in different baits). The inoculum had a final volume of 100 μΙ and contained 100 μg of the RNA to be tested diluted in PBS and 20 μg of Lipofectin (Invitrogen). Briefly, RNAs synthesized by in vitro transcription were heated at 92 ° C for 5 min in water. The PBS was then added and allowed to renaturate at room temperature for 10 min. The lipofectin was then added and after 15 min incubation at room temperature the mixture was injected. Lipofectin is a commercial cationic liposome preparation for routine use in single-stranded RNA transfections. The methodology of inoculation of VFA RNAs in mice and pigs has been previously developed. The preparation of the inoculum of poly l: C is also performed with 100 μg of the RNA diluted in PBS but without liposomes since its ability to induce IFN in adult mice after intraperitoneal inoculation as naked RNA has been described. Infection with the virus was carried out 24 hours after inoculation with the RNAs for giving the best protection results in previous trials with the 3 ' NCR inoculated at 4, 8 and 24 h pre-infection. The inoculum volume of VFA was 100 μΙ diluted in PBS. Be tested the dilutions between 10 ° (undiluted) and 10 ~ 5 of an infection supernatant in cell culture with a titer of 8x10 7 plaque forming units (pfu) / ml. In the case of the challenge with WNV, the inoculation volume was 10 or 100 μΙ, depending on whether the inoculation was ic or ip, diluted in PBS. The challenge was performed with infection supernatant in WNV cell culture strain NY-99 (10 or 100 pfu / mouse via ic, and with 100 pfu / mouse via ip) 24 h after RNAs inoculation.
En el ensayo de desafío frente al VNO, además del grupo control inoculado con PBS y desafiado con virus (como es el caso del VFA) también se incluyeron grupos control que fueron inoculados con PBS y desafiados con las mismas cantidades de virus que habían sido previamente incubadas (dilución 1 :1 ) durante 1 hora a temperatura ambiente con sueros inmunes de ratones cuya capacidad protectora frente a la infección con el VNO era conocida, y grupos sin tratar que fueron inoculados i.c. con PBS como control de buena manipulación. In the challenge test against WNV, in addition to the control group inoculated with PBS and challenged with virus (as is the case with VFA), control groups were also included that were inoculated with PBS and challenged with the same amounts of virus that had previously been incubated (1: 1 dilution) for 1 hour at room temperature with immune sera from mice whose protective capacity against WNV infection was known, and untreated groups that were inoculated ic with PBS as a good handling control.

Claims

REIVINDICACIONES
1 . Uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de una composición farmacéutica one . Use of a non-coding region of the foot-and-mouth disease virus genome for the preparation of a pharmaceutical composition
2. Uso de una región no codificante del genoma del virus de la fiebre aftosa para la elaboración de una composición farmacéutica para el tratamiento de enfermedades causadas por virus sensibles a interferón. 2. Use of a non-coding region of the foot-and-mouth disease virus genome for the development of a pharmaceutical composition for the treatment of diseases caused by interferon-sensitive viruses.
3. Uso según cualquiera de las reivindicaciones 1 ó 2 donde dicha región no codificante está comprendida en la secuencia nucleotídica que se selecciona de la lista que comprende: SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 o cualquiera de sus combinaciones. 3. Use according to any of claims 1 or 2 wherein said non-coding region is comprised in the nucleotide sequence selected from the list comprising: SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or any of their combinations.
4. Uso según la reivindicación 3 donde la secuencia es SEQ ID NO: 1 . 4. Use according to claim 3 wherein the sequence is SEQ ID NO: 1.
5. Uso según la reivindicación 3 donde la secuencia es SEQ ID NO: 2. 5. Use according to claim 3 wherein the sequence is SEQ ID NO: 2.
6. Uso según la reivindicación 3 donde la secuencia es SEQ ID NO: 3. 6. Use according to claim 3 wherein the sequence is SEQ ID NO: 3.
7. Uso según cualquiera de las reivindicaciones 3 a 6 donde la región no codificante se refiere a un región con una homología de al menos un 80% con dicha región. 7. Use according to any of claims 3 to 6 wherein the non-coding region refers to a region with a homology of at least 80% with said region.
8. Uso según cualquiera de las reivindicaciones 2 a 7 donde el virus sensible a interferón es un virus RNA de cadena simple. 8. Use according to any of claims 2 to 7 wherein the interferon sensitive virus is a single stranded RNA virus.
9. Uso según la reivindicación 8 donde el virus es un virus de la familia Picornaviridae. 9. Use according to claim 8 wherein the virus is a virus of the Picornaviridae family.
10. Uso según la reivindicación 9 donde el virus es el virus de la fiebre aftosa. 10. Use according to claim 9 wherein the virus is the foot and mouth disease virus.
1 1 . Uso según la reivindicación 8 donde el virus es un virus de la familia Rhabdoviridae. eleven . Use according to claim 8 wherein the virus is a virus of the family Rhabdoviridae.
12. Uso según la reivindicación 1 1 donde el virus es el virus de la estomatitis vesicular. 12. Use according to claim 1, wherein the virus is vesicular stomatitis virus.
13. Uso según la reivindicación 8 donde el virus es un virus de la familia Flaviviridae. 13. Use according to claim 8 wherein the virus is a virus of the Flaviviridae family.
14. Uso según la reivindicación 13 donde el virus es el virus del Nilo Occidental. 14. Use according to claim 13 wherein the virus is West Nile virus.
15. Uso según cualquiera de las reivindicaciones 2 a 14 donde dichas enfermedades son enfermedades en animales mamíferos no humanos. 15. Use according to any of claims 2 to 14 wherein said diseases are diseases in non-human mammalian animals.
16. Uso según la reivindicación 15 donde los animales pertenecen a la familia Suidae. 16. Use according to claim 15 wherein the animals belong to the Suidae family.
17. Uso según la reivindicación 15 donde los animales pertenecen a la familia Bovidae. 17. Use according to claim 15 wherein the animals belong to the Bovidae family.
18. Uso según la reivindicación 15 donde los animales pertenecen a la familia Equidae. 18. Use according to claim 15 wherein the animals belong to the Equidae family.
19. Uso según cualquiera de las reivindicaciones 13 a 14 donde dichas enfermedades son enfermedades en aves. 19. Use according to any of claims 13 to 14 wherein said diseases are diseases in birds.
20. Uso según la reivindicación 19 donde las aves se seleccionan de las familias de la lista que comprende: Phasianidae, Corvidae, Paseridae, Fringillidae, Turdidae, Accipitridae y Strigidae. 20. Use according to claim 19 wherein the birds are selected from the families of the list comprising: Phasianidae, Corvidae, Paseridae, Fringillidae, Turdidae, Accipitridae and Strigidae.
21 . Uso según cualquiera de las reivindicaciones 2 a 14 donde dichas enfermedades son enfermedades en humanos. twenty-one . Use according to any of claims 2 to 14 wherein said diseases are diseases in humans.
22. Composición farmacéutica que comprende la región no codificante según cualquiera de las reivindicaciones 1 a 21 que además comprende al menos un excipiente y/o un vehículo farmacéuticamente aceptables. 22. Pharmaceutical composition comprising the non-coding region according to any one of claims 1 to 21 which further comprises at least one pharmaceutically acceptable excipient and / or carrier.
23. Composición farmacéutica según la reivindicación 22 que además comprende al menos otro principio activo. 23. Pharmaceutical composition according to claim 22 further comprising at least one other active ingredient.
24. Composición farmacéutica según cualquiera de las reivindicaciones 22 ó 23, donde dicha composición farmacéutica se presenta en una forma adaptada a la administración por vía oral, parenteral o intradérmica. 24. Pharmaceutical composition according to any of claims 22 or 23, wherein said pharmaceutical composition is presented in a form adapted to oral, parenteral or intradermal administration.
25. Uso de la composición farmacéutica según cualquiera de las reivindicaciones 22 a 24 para la elaboración de un medicamento para el tratamiento de enfermedades causadas por virus sensibles a interferón. 25. Use of the pharmaceutical composition according to any of claims 22 to 24 for the preparation of a medicament for the treatment of diseases caused by interferon-sensitive viruses.
PCT/ES2012/070198 2011-03-25 2012-03-23 Use of a non-coding region of the genome of the foot-and-mouth virus for the purpose of producing an antiviral drug WO2012131134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130445A ES2401899B1 (en) 2011-03-25 2011-03-25 USE OF A NON-CODING REGION OF THE VIRUS FEATHER GENOME FOR THE PREPARATION OF AN ANTI-VIRAL MEDICINAL PRODUCT.
ESP201130445 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012131134A1 true WO2012131134A1 (en) 2012-10-04

Family

ID=46929533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070198 WO2012131134A1 (en) 2011-03-25 2012-03-23 Use of a non-coding region of the genome of the foot-and-mouth virus for the purpose of producing an antiviral drug

Country Status (3)

Country Link
AR (1) AR085564A1 (en)
ES (1) ES2401899B1 (en)
WO (1) WO2012131134A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIGERIEGO, P. ROSAS ET AL.: "Heterotypic inhibition of foot-and-mouth disease virus infection by combinations of RNA transcripts corresponding to the 5' and 3' regions.", ANTIVIRAL RESEARCH., vol. 44, no. 2, December 1999 (1999-12-01), pages 133 - 141 *
GUTIERREZ, A. ET AL.: "Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5' and the 3' noncoding regions.", JOURNAL OF VIROLOGY., vol. 68, no. 11, November 1994 (1994-11-01), pages 7426 - 7432 *
MEIER, A. ET AL.: "MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded toll-like receptor ligands.", JOURNAL OF VIROLOGY., vol. 81, no. 15, August 2007 (2007-08-01), pages 8180 - 8191 *
RODRIGUEZ-PULIDO, M. ET AL.: "Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection.", ANTIVIRAL RESEARCH., vol. 92, no. 3, December 2011 (2011-12-01), pages 500 - 504. *
RODRIGUEZ-PULIDO, M. ET AL.: "structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice.", JOURNAL OF VIROLOGY., vol. 85, no. 13, July 2011 (2011-07-01), pages 6492 - 6501. *
ZHANG, Y. ET AL.: "Molecular cloning and functional characterization of porcine toll-like receptor 7 involved in recognition of single-stranded RNA virus/ssRNA.", MOLECULAR IMMUNOLOGY., vol. 45, no. 4, February 2008 (2008-02-01), pages 1184 - 1190, XP022322747, DOI: doi:10.1016/j.molimm.2007.07.014 *
ZHANG, Y.-L. ET AL.: "Hepatitis C virus single-stranded RNA induces innate immunity via Toll-like receptor 7.", JOURNAL OF HEPATOLOGY., vol. 51, no. 1, July 2009 (2009-07-01), pages 29 - 38, XP026209776, DOI: doi:10.1016/j.jhep.2009.03.012 *

Also Published As

Publication number Publication date
ES2401899B1 (en) 2014-03-04
AR085564A1 (en) 2013-10-09
ES2401899A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
Schultz-Cherry et al. Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses
Tang et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice
Zhang et al. Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs-DNA vaccine encoding matrix protein
Ma et al. mRNA cap methylation influences pathogenesis of vesicular stomatitis virus in vivo
Rodríguez-Pulido et al. RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice
WO2004085659A2 (en) Mutant vesicular stomatitis viruses and uses thereof
Ho et al. Double-stranded RNA confers both preventive and therapeutic effects against Penaeus stylirostris densovirus (PstDNV) in Litopenaeus vannamei
Kim et al. A recombinant adenovirus bicistronically expressing porcine interferon-α and interferon-γ enhances antiviral effects against foot-and-mouth disease virus
Oberemok et al. SARS-CoV-2 will constantly sweep its tracks: a vaccine containing CpG motifs in ‘lasso’for the multi-faced virus
Kwak et al. Generation of a recombinant viral hemorrhagic septicemia virus (VHSV) expressing olive flounder (Paralichthys olivaceus) interferon-γ and its effects on type I interferon response and virulence
Alvarez-Torres et al. Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis)
Li et al. Development of a live vector vaccine against infectious hematopoietic necrosis virus in rainbow trout
Caipang et al. Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream, Pagrus major
JP7412353B2 (en) Diltiazem for use in the treatment of microbial infections
Lee et al. Antiviral effect of vesatolimod (GS-9620) against foot-and-mouth disease virus both in vitro and in vivo
ES2423193T3 (en) Antiviral protection with viruses that contain defective genome segments
Naz et al. Newcastle disease virus in poultry with an interface as a human vector
Kim et al. Stability and efficacy of the 3′-UTR A4G-G5A variant of viral hemorrhagic septicemia virus (VHSV) as a live attenuated immersion VHSV vaccine in olive flounder (Paralichthys olivaceus)
EP1490105B1 (en) Multiple and multivalent dna vaccines in ovo
ES2401899B1 (en) USE OF A NON-CODING REGION OF THE VIRUS FEATHER GENOME FOR THE PREPARATION OF AN ANTI-VIRAL MEDICINAL PRODUCT.
Morris-Downes et al. A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model
KR101857705B1 (en) Use of the PACAP as a molecular adjuvant for vaccines
Wu et al. Protection of a CpG-adjuvanted DNA vaccine against infectious hematopoietic necrosis virus (IHNV) nature infection in rainbow trout (Oncorhynchus mykiss)
Kim et al. Intranasal treatment with CpG-B oligodeoxynucleotides protects CBA mice from lethal equine herpesvirus 1 challenge by an innate immune response
KR101329348B1 (en) Recombinant adenovirus simultaneously expressing porcine interferon alpha and porcine interferon gamma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764122

Country of ref document: EP

Kind code of ref document: A1