WO2012129850A1 - Method for reconstructing outer mode field of multiple input multiple output antenna channels - Google Patents

Method for reconstructing outer mode field of multiple input multiple output antenna channels Download PDF

Info

Publication number
WO2012129850A1
WO2012129850A1 PCT/CN2011/075996 CN2011075996W WO2012129850A1 WO 2012129850 A1 WO2012129850 A1 WO 2012129850A1 CN 2011075996 W CN2011075996 W CN 2011075996W WO 2012129850 A1 WO2012129850 A1 WO 2012129850A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode field
excitation point
spherical
wave function
mimo antenna
Prior art date
Application number
PCT/CN2011/075996
Other languages
French (fr)
Chinese (zh)
Inventor
彭宏利
黄旭
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110078871.1A external-priority patent/CN102723973B/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012129850A1 publication Critical patent/WO2012129850A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to a multiple input multiple output (MIMO) antenna technology, and more particularly to a MIMO antenna channel out-of-field mode field reconstruction method and apparatus.
  • MIMO multiple input multiple output
  • the spatial channel models used by the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project) and Winner (Wireless World Initiative New Radio) are SCM ( Spatial Channel Model ) and SCME ( Spatial Channel Model Extenion ), respectively.
  • the parameters are obtained by statistically processing the transmission at both ends of the transceiver and its near-field scattered signal.
  • this statistical processing method can theoretically support antenna elements and arrays of arbitrary topologies, due to the diversity of antenna channels and the complexity of interaction between antennas and near-field environments, transmission based on both ends of transmission and reception and its near field
  • the SCM and SCME channel models obtained by the scatter signal statistics cannot accurately reflect the characteristics of the antenna and its near-field channel.
  • the main object of the present invention is to provide a method and apparatus for OFDM antenna out-of-channel mode field reconstruction, which can accurately and quickly determine the radiated electromagnetic field information of the MIMO antenna out-of-plane space.
  • the present invention provides a method for OFDM antenna out-of-channel mode field reconstruction, the method comprising: determining a spherical surface surrounding a MIMO antenna and a terminal to be tested, acquiring a number of truncated terms of a spherical vector wave function of the determined spherical surface, and in the spherical surface An excitation point source is placed on the mesh point of the segmentation;
  • the spherical vector wave function mode fields of all excitation point sources are superimposed to construct an equivalent mode field of the excitation point source array
  • the equivalent mode field is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
  • the determining a spherical surface surrounding the MIMO antenna and the terminal to be tested is: determining that the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface with a radius of R; wherein, R ⁇ max(D 2 / A, 3D, 10A ), D is the minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and ⁇ is the wavelength at which the MIMO antenna radiates electromagnetic waves.
  • the source of the excitation point is placed on the spherical mesh point of the spherical surface: the spherical surface is divided into a uniform spherical mesh, and three vertical vertical positions are placed at each mesh dot position.
  • the three electrical fundamental oscillators and the three magnetic fundamental oscillators form a source of excitation points.
  • the ball vector wave function mode field of all excitation point sources is superimposed by using the number of truncation items, and an equivalent mode field of the excitation point source array is constructed, which is: combining the spherical vector wave function translation transformation theory, and using the ball
  • the vector wave function expands the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are equivalently transformed from the grid local Cartesian coordinate system to the mode field of the global Cartesian coordinate system, then the ball vector of the i-th excitation point source
  • the wave function mode field is: ( ) + ' y A f + « z + , ' z A , f)F j (F)
  • the electrical fundamental oscillator and the magnetic fundamental oscillator are equivalently transformed from the grid local Cartesian coordinate system to the translation and rotation transformation matrix of the global Cartesian coordinate system;
  • the equivalent mode field is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field, and the radiation field ( ) of the actual MIMO antenna and the equivalent mode field m are : d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; according to the reconstruction mode field expansion coefficient model Q, the amplitude X of all excitation point sources is obtained; and the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ).
  • the invention provides a device for reconstructing a MIMO antenna out-of-channel mode field, the device comprising: a spherical surface determining module, a truncated item number acquiring module, an excitation point source placing module, an equivalent mode field building module, and a reconstructed equivalent mode field module; among them,
  • a spherical determining module configured to determine a spherical surface surrounding the MIMO antenna and the terminal to be tested
  • a truncating item obtaining module configured to obtain a number of truncated items of a spherical vector wave function of the spherical surface determined by the spherical determining module
  • An excitation point source placement module configured to place an excitation point source on a mesh point of the spherical surface determined by the spherical determination module;
  • An equivalent mode field construction module is configured to superimpose a ball vector wave function mode field of all excitation point sources by using a number of truncated items to construct an equivalent mode field of the excitation point source array;
  • the reconstructed equivalent mode field module is used to reconstruct the equivalent mode field by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
  • the spherical determining module is specifically configured to determine that the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface with a radius of R; wherein, R ⁇ max(D 2 1 A, 3D, ⁇ ), D is The minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and ⁇ is the wavelength at which the ⁇ antenna radiates electromagnetic waves.
  • the excitation point source placement module is specifically configured to divide the spherical surface determined by the spherical surface determining module into a uniform hook spherical surface grid, and place three mutually perpendicular electric basic vibrators at each of the obtained mesh dot positions.
  • the equivalent mode field construction module is specifically used to combine the spherical vector wave function translation transformation theory, and uses the spherical vector wave function to expand the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are
  • the net pattern domain Cartesian coordinate system is equivalently transformed to the mode field of the global Cartesian coordinate system, then the spherical vector wave function mode field of the i-th excitation point source is: ( ) + ' y A f + « z + , ' z A , f) F j (F)
  • L is the number of excitation point sources
  • the reconstructed equivalent mode field module is specifically used to compare the radiation field ( ) of the actual MIMO antenna with the equivalent mode field.
  • d ( ) is matched to obtain the reconstruction mode field expansion coefficient model
  • the present invention provides a method and apparatus for OFDM antenna out-of-channel mode field reconstruction, determining a spherical surface surrounding a MIMO antenna and a terminal to be tested (DUT), and acquiring a number of truncated items of a spherical vector wave function of the determined spherical surface, and The excitation point source is placed on the spherical mesh point of the spherical surface; the spherical vector wave function mode field of all the excitation point sources is superimposed by using the number of truncated items, and the equivalent mode field of the excitation point source array is constructed; by using the actual MIMO antenna The radiation field is matched with the equivalent mode field to reconstruct the equivalent mode field; thus, the radiation electromagnetic field information of the outer space of the MIMO antenna can
  • FIG. 1 is a schematic flow chart of a method for implementing a MIMO antenna out-of-channel mode field reconstruction according to the present invention
  • FIG. 2 is a schematic structural diagram of an apparatus for implementing a MIMO antenna out-of-channel mode field reconstruction according to the present invention. detailed description
  • the basic idea of the present invention is: determining a spherical surface surrounding the MIMO antenna and the terminal to be tested, acquiring a number of truncated terms of the spherical vector wave function of the determined spherical surface, and placing the excitation point source on the spherical mesh point of the spherically divided mesh; Using the number of truncated terms, the spherical vector wave function mode fields of all excitation point sources are superimposed to construct the equivalent mode field of the excitation point source array. The equivalent mode is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field. field.
  • the present invention implements a method for OFDM antenna out-of-channel mode field reconstruction. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Determine a spherical surface surrounding the MIMO antenna and the terminal to be tested.
  • R should satisfy the formula (1):
  • the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface having a radius of R.
  • Step 102 Acquire a number N of truncation items required for expansion of a spherical vector wave function of the determined spherical surface. Specifically, determine the number of truncated items N and N required for expansion of the spherical vector wave function according to R in the formula (1). Shown
  • Step 103 placing an excitation point source on the spherical mesh point segmented by the spherical surface
  • the excitation point source is composed of three mutually perpendicular electric fundamental oscillators and three mutually perpendicular
  • the magnetic fundamental oscillator is configured, and the current and the magnetic current direction of the electric basic vibrator and the magnetic basic vibrator are consistent with the coordinate axis direction of the grid local rectangular coordinate system;
  • the spherical surface is divided into a uniform spherical mesh, and three mutually perpendicular electrical fundamental oscillators and three mutually perpendicular magnetic fundamental oscillators are placed at the position of each mesh dot obtained, and the electrical fundamental oscillator and The current and magnetic current directions of the magnetic fundamental oscillator respectively correspond to the x, y, and z coordinate axes of the grid local rectangular coordinate system.
  • the above six basic oscillators constitute an excitation point source, and the amplitude of the first excitation point source can be expressed as ⁇ ' ⁇ , ⁇ ' ⁇ , if ) and ( , i y , /TM' ⁇ ), wherein the superscripts 6 and m represent the electric fundamental oscillator and the magnetic fundamental oscillator, respectively, and the superscript x, y, z represents the basic vibrator
  • the spatial polarization direction that is, the coordinate axis direction of the grid local Cartesian coordinate system.
  • Step 104 Using the number of truncated items, superimposing the spherical vector wave function mode fields of all excitation point sources to construct an equivalent mode field of the excitation point source array;
  • X ( ) represents the electric radiation field generated by the first excitation point source in the x-axis direction
  • ⁇ ( ⁇ ) represents the magnetic radiation field generated by the first excitation point source in the axial direction
  • y( ) represents the first excitation point
  • Source The electric radiation field generated in the y-axis direction
  • m 'y( ) indicates the magnetic radiation field generated by the first excitation point source in the axial direction
  • ' Z ( ) indicates the electric radiation field generated by the first excitation point source in the z-axis direction
  • z ( ) represents the magnetic radiation field generated by the first excitation point source in the z-axis direction
  • >i?, the superscript e and m respectively represent the electric fundamental oscillator and the magnetic fundamental oscillator, and the superscript X and jz represent the basic vibrator
  • the af' x ' y ' z , a '' x a '' y ' z can be expressed as a formula
  • Step 105 the radiation field of the actual MIMO antenna and the equivalent mode field.
  • d ( ) is matched to obtain a reconstruction mode field expansion coefficient model Q;
  • Q dish, the reconstruction mode field expansion coefficient model Q is obtained.
  • Step 106 Obtain the amplitude of all the excitation point sources according to the reconstruction mode field expansion coefficient model Q.
  • equation (6a) the linear equations of equation (6a) can be obtained to obtain the amplitude X of all excitation point sources, as shown in equation (6b).
  • Step 107 reconstruct an equivalent mode field according to the amplitude X of all excitation point sources. d (F);
  • the present invention further provides an apparatus for OFDM antenna out-of-channel mode field reconstruction.
  • the apparatus includes: a spherical surface determining module 21, a truncated item number obtaining module 22, and an excitation point source placing module. 23, an equivalent mode field building module 24, a reconstructed equivalent mode field module 25; wherein
  • a spherical determining module 21 configured to determine a spherical surface surrounding the MIMO antenna and the terminal to be tested;
  • a truncated item number obtaining module 22 configured to obtain a number of truncated items of a spherical vector wave function of the spherical surface determined by the spherical determining module 21;
  • the excitation point source placement module 23 is configured to be split by the spherical surface determined by the spherical surface determining module 21 Place the excitation point source on the grid point;
  • the equivalent mode field construction module 24 is configured to superimpose the spherical wave function mode field of all the excitation point sources by using the number of truncated items, and construct an equivalent mode field of the excitation point source array;
  • the spherical determining module 21 is specifically configured to determine a radius R of a spherical surface surrounding the MIMO antenna and the terminal to be tested according to the formula (1);
  • the truncated item number obtaining module 22 is specifically configured to determine the number of truncated items required for the expansion of the spherical vector wave function according to R, N, as shown in formula (2);
  • the excitation point source placing module 23 is specifically configured to divide the spherical surface determined by the spherical surface determining module 21 into a uniform hook spherical surface grid, and place three mutually perpendicular electric basic vibrators and three at each mesh mesh point position.
  • a mutually perpendicular magnetic fundamental oscillator, and the current and magnetic current directions of the electric basic oscillator and the magnetic fundamental oscillator respectively correspond to the x, y, and z coordinate axes of the mesh station i or the Cartesian coordinate system, and the above six basic oscillators constitute
  • the amplitude of the source of the first excitation point can be expressed as
  • the equivalent mode field construction module 24 is specifically configured to combine the ball vector wave function translation transformation theory, and utilize the spherical vector wave function to expand the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are from the grid local area.
  • the Cartesian coordinate system is equivalently transformed to the mode field of the global Cartesian coordinate system, then the spherical vector wave function mode field of the first excitation point source ( ) is shown in formula (4a); the spherical vector wave function mode field of all excitation point sources is obtained.
  • the equivalent mode field of the excitation point source array is superimposed as shown in equation (4c).
  • the reconstructed equivalent mode field module 25 is specifically configured to use a radiation field of an actual MIMO antenna and an equivalent mode field.
  • d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; According to the reconstruction mode field expansion coefficient model Q, the amplitude ⁇ of all excitation point sources is obtained; the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ).
  • the radiation field and equivalent mode field of the MIMO antenna. d ( ) is matched to solve the amplitude X of all excitation point sources. After the amplitude X of all excitation point sources is substituted into the formula (4d ), the equivalent mode field E mod (r) is reconstructed from the original actual MIMO antenna. Radiation field ⁇ ( ).
  • the radiation field ⁇ ( ) of the actual MIMO antenna is passed through with the equivalent mode field m .
  • the radiant electromagnetic field information of the outer space of the MIMO antenna can be accurately and quickly determined, and the MIMO antenna is regarded as a "black box", and the specific implementation and structure of the MIMO antenna are not involved, for any complex MIMO
  • the antenna has the same equivalent efficiency, small root mean square error, and strong versatility, which can meet the efficiency requirements and standardization requirements of the fine simulation of the communication system.

Abstract

A method for reconstructing an outer mode field of multiple input multiple output (MIMO) antenna channels is provided in the present invention. In the method, a sphere, which surrounds a terminal to be measured and the MIMO antenna, is determined; the number of truncated terms of a spherical vector wave function of the determined sphere is obtained, and power point-sources are arranged on nodes of grids formed by dividing the sphere; by using the number of the truncated terms, mode fields of the spherical vector wave function of all the power point-sources are superposed, and then an equivalent mode field of the power point-sources array is constructed; and then, a reconstructed equivalent mode field is obtained by matching an actual radiation field of the MIMO antenna with the equivalent mode field. A device for reconstructing an outer mode field of MIMO antenna channels is also provided in the present invention. The invention can accurately and quickly determine the information of an outer space radiation electromagnetic field of the MIMO antenna sphere, and obtain the same equivalence efficiency for any complex MIMO antenna and less root-mean-square error, and thus has high universality.

Description

一种多输入多输出天线信道外模式场重构方法及装置 技术领域  Multi-input multi-output antenna channel out-of-channel mode field reconstruction method and device
本发明涉及多输入多输出( MIMO, Multiple-Input Multiple-Out-put )天 线技术, 尤其涉及一种 MIMO天线信道外模式场重构方法及装置。 背景技术  The present invention relates to a multiple input multiple output (MIMO) antenna technology, and more particularly to a MIMO antenna channel out-of-field mode field reconstruction method and apparatus. Background technique
目前, 第三代合作伙伴计划( 3GPP, 3rd Generation Partnership Project ) 以及 Winner ( Wireless World Initiative New Radio )釆用的空间信道模型分 别为 SCM ( Spatial Channel Model ) 和 SCME ( Spatial Channel Model Extenion ), 其特征参数均是通过对收发两端的传输及其近场的散射信号进 行统计处理而得到。 这种统计处理方式理论上虽然可支持任意拓朴结构的 天线单元和阵列, 但是, 由于天线信道的多样性以及天线与近场环境相互 作用的复杂性, 导致基于收发两端的传输及其近场的散射信号统计得到的 SCM和 SCME信道模型不能准确反映天线及其近场信道特征, 这一现状, 已无法满足长期演进 ( LTE, Long Term Evolution )和超三代( B3G, Beyond Third Generationin )无线链路性能准确仿真和评估的迫切需要。 比如, 在基 站侧, SCM和 SCME只考虑了理想化、 实际情况不使用的均匀直线天线阵 ( ULA, Uniform Linear Array )模型, 而在终端侧, 天线被 SCM和 SCME 简化为理想的点辐射器。 仿真与实测对比结果表明, 釆用 ULA天线和点辐 射器模型来评价实际的多天线系统性能, 会导致较大偏差, 特别是, 用点 辐射器模型而不是用更精细的终端设备天线信道模型描述系统性能时, 难 以有效表征终端空中( OTA, Over the Air )特性、终端电磁波吸收率( SAR, Specific Absorption Rate )。 为了更准确设计、 评估和测试 LTE-MIMO等新 一代系统, 需要在 SCM和 SCME中, 发展精细的天线信道特性模型。 然而, 精细的天线信道特性模型构建, 涉及到复杂的电磁理论。 如何 基于终端天线所固有的小型化和高密度特点, 充分考虑终端天线阵列空间 结构的灵活性、 天线单元极化特性的随机性及其自身特有的强近场耦合效 应和负载牵引效应特性, 研究和开发高效、 通用的天线信道模型, 并实现 与现有 SCM、 SCME模型的有机结合, 以满足通信系统精细仿真的效率要 求和标准化要求, 是当前迫切需要解决的问题。 发明内容 At present, the spatial channel models used by the 3rd Generation Partnership Project (3GPP, 3rd Generation Partnership Project) and Winner (Wireless World Initiative New Radio) are SCM ( Spatial Channel Model ) and SCME ( Spatial Channel Model Extenion ), respectively. The parameters are obtained by statistically processing the transmission at both ends of the transceiver and its near-field scattered signal. Although this statistical processing method can theoretically support antenna elements and arrays of arbitrary topologies, due to the diversity of antenna channels and the complexity of interaction between antennas and near-field environments, transmission based on both ends of transmission and reception and its near field The SCM and SCME channel models obtained by the scatter signal statistics cannot accurately reflect the characteristics of the antenna and its near-field channel. This situation cannot meet the long-term evolution (LTE, Long Term Evolution) and the B3G (Beyond Third Generationin) wireless chain. The urgent need for accurate simulation and evaluation of road performance. For example, on the base station side, SCM and SCME only consider an idealized, unsuitable Uniform Linear Array (ULA) model, while on the terminal side, the antenna is simplified by SCM and SCME as an ideal point radiator. . The simulation and actual measurement results show that the use of ULA antenna and point radiator model to evaluate the performance of the actual multi-antenna system will lead to large deviations, especially with the point radiator model instead of the finer terminal antenna channel model. When describing system performance, it is difficult to effectively characterize the characteristics of the terminal air (OTA, Over the Air) and the terminal SAR (Specific Absorption Rate). In order to more accurately design, evaluate and test a new generation of systems such as LTE-MIMO, it is necessary to develop a sophisticated antenna channel characteristic model in SCM and SCME. However, the construction of a fine antenna channel characteristic model involves complex electromagnetic theory. Based on the inherent miniaturization and high-density characteristics of the terminal antenna, the flexibility of the spatial structure of the terminal antenna array, the randomness of the polarization characteristics of the antenna element, and its unique strong near-field coupling effect and load-pull effect characteristics are considered. It is an urgent problem to be solved to develop an efficient and universal antenna channel model and to integrate it with existing SCM and SCME models to meet the efficiency requirements and standardization requirements of communication system fine simulation. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种 MIMO天线信道外模式场 重建的方法及装置, 能够准确、 快捷地确定出 MIMO天线球面外空间的辐 射电磁场信息。  In view of this, the main object of the present invention is to provide a method and apparatus for OFDM antenna out-of-channel mode field reconstruction, which can accurately and quickly determine the radiated electromagnetic field information of the MIMO antenna out-of-plane space.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
本发明提供的一种 MIMO天线信道外模式场重建的方法,该方法包括: 确定包围 MIMO天线和待测终端的球面 , 获取所确定球面的球矢量波 函数的截断项数, 并在所述球面剖分出的网格网点上放置激励点源;  The present invention provides a method for OFDM antenna out-of-channel mode field reconstruction, the method comprising: determining a spherical surface surrounding a MIMO antenna and a terminal to be tested, acquiring a number of truncated terms of a spherical vector wave function of the determined spherical surface, and in the spherical surface An excitation point source is placed on the mesh point of the segmentation;
利用截断项数, 将所有激励点源的球矢量波函数模式场叠加, 构建激 励点源阵列的等效模式场;  Using the number of truncated terms, the spherical vector wave function mode fields of all excitation point sources are superimposed to construct an equivalent mode field of the excitation point source array;
通过将实际 MIMO天线的辐射场与等效模式场进行匹配, 重建等效模 式场。  The equivalent mode field is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
上述方案中, 所述确定包围 MIMO天线和待测终端的球面为: 确定包 围 MIMO 天线和待测终端的球面为以 R 为半径的球面; 其中, R≥max(D2 / A,3D,10A) , D为包围 MIMO 天线和待测终端的最小球面直 径, λ为 MIMO天线辐射电磁波的波长。 In the above solution, the determining a spherical surface surrounding the MIMO antenna and the terminal to be tested is: determining that the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface with a radius of R; wherein, R≥max(D 2 / A, 3D, 10A ), D is the minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and λ is the wavelength at which the MIMO antenna radiates electromagnetic waves.
上述方案中, 所述获取所确定球面的球矢量波函数的截断项数为: 根 据 R确定球矢量波函数展开需要的截断项数 N; 其中, N = [ ] + 10 , [] 表示取整, k = l7ll λ 。 上述方案中, 所述在所述球面剖分出的网格网点上放置激励点源为: 将球面剖分为均勾球面网格, 在所得每个网格网点位置处放置三个相互垂 直的电基本振子和三个相互垂直的磁基本振子, 并将所述电基本振子、 磁 基本振子的电流、 磁流方向分别对应网格局域直角坐标系的 x、 y、 z 坐标 轴方向, 所述三个电基本振子和三个磁基本振子构成一个激励点源。 In the above solution, the number of truncated items of the spherical vector wave function for obtaining the determined spherical surface is: determining the number of truncated items N required for the expansion of the spherical vector wave function according to R; wherein, N = [ ] + 10 , [] represents rounding , k = l7ll λ . In the above solution, the source of the excitation point is placed on the spherical mesh point of the spherical surface: the spherical surface is divided into a uniform spherical mesh, and three vertical vertical positions are placed at each mesh dot position. An electric fundamental oscillator and three mutually perpendicular magnetic fundamental oscillators, and the current and the magnetic current direction of the electric basic oscillator and the magnetic fundamental oscillator respectively correspond to the x, y, and z coordinate axes of the grid local rectangular coordinate system, The three electrical fundamental oscillators and the three magnetic fundamental oscillators form a source of excitation points.
上述方案中, 所述利用截断项数, 将所有激励点源的球矢量波函数模 式场叠加, 构建激励点源阵列的等效模式场, 为: 结合球矢量波函数平移 变换理论, 并利用球矢量波函数展开需要的截断项数 N, 将激励点源的电、 磁辐射场从网格局域直角坐标系等效变换到全域直角坐标系的模式场, 则 第 i个激励点源的球矢量波函数模式场 为: ( ) + 'yA f +«z + ,'zA,f)Fj(F)In the above solution, the ball vector wave function mode field of all excitation point sources is superimposed by using the number of truncation items, and an equivalent mode field of the excitation point source array is constructed, which is: combining the spherical vector wave function translation transformation theory, and using the ball The vector wave function expands the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are equivalently transformed from the grid local Cartesian coordinate system to the mode field of the global Cartesian coordinate system, then the ball vector of the i-th excitation point source The wave function mode field is: ( ) + ' y A f +« z + , ' z A , f)F j (F)
Figure imgf000005_0001
Figure imgf000005_0001
= ¾( , , , , , )= 3⁄4( , , , , , )
J 。 其中, I F |> ,上标 e、 m分别代表电基本振子和磁基本振子,上标 x、 z 代表基本振子的空间极化方向, /7 = 120τ; 下标 表示第 个激励点源, 为正 整数; a'x、 'y、 'z、 'x、 ' 'z为电基本振子、 磁基本振子复系数展 开值; 、 A , :f、 A]y、 A;;'、 ^^为电基本振子和磁基本振子从网格局域 直角坐标系等效变换到全域直角坐标系的平移与旋转变换矩阵; () J. Where IF |> , the superscript e and m represent the electric fundamental oscillator and the magnetic fundamental oscillator respectively, the superscript x and z represent the spatial polarization direction of the basic vibrator, /7 = 120τ; the subscript indicates the first excitation point source, a positive integer; a' x , ' y , ' z , ' x , '' z are electrical fundamental oscillators, magnetic fundamental oscillator complex coefficient expansion values; , A , :f, A]y, A;; ', ^^ The electrical fundamental oscillator and the magnetic fundamental oscillator are equivalently transformed from the grid local Cartesian coordinate system to the translation and rotation transformation matrix of the global Cartesian coordinate system;
( =1,2,· --6 ) 为 球 矢 量 波 函 数 系 ; 匪 二?^!^ + ) ; ( =1, 2, · --6 ) is the spherical vector function; 匪 2? ^! ^ + ) ;
S, = «, aey, 'z , 'x, 'y , 'z); 设 Ufi=(A^,Aj:f,A;:f,Aj ,A;:;,AJ , 则 = ; S, = «, a ey , ' z , ' x , ' y , ' z ); Let U fi =(A^,Aj:f,A; : f,Aj ,A; : ;,AJ , then = ;
j=l  j=l
将所有激励点源的球矢量波函数模式场叠加构建激励点源阵列的等效 模式场^ (?): 其中 , L 为激励点源的个数; The spherical vector wave function mode field of all excitation point sources is superimposed to construct the equivalent mode field of the excitation point source array ^ (?): Where L is the number of excitation point sources;
¾ ϋ = (^)1≤≤4。 ,1≤^6 , 所有激励点源的幅度 Χ = (1^, ,···,υτ, 则 ¾ ϋ = (^) 1≤≤4. , 1 ≤ ^ 6 , the magnitude of all excitation point sources Χ = (1 ^, ,···, υ τ , then
Emod(r) = UX y( )。E mod (r) = UX y ( ).
Figure imgf000006_0001
Figure imgf000006_0001
上述方案中, 所述通过将实际 MIMO天线的辐射场与等效模式场进行 匹配, 重建等效模式场, 为: 将实际 MIMO天线的辐射场 ( )与等效模式 场 md ( )进行匹配, 得到重建模式场展开系数模型 Q; 根据重建模式场展 开系数模型 Q ,获得所有激励点源的幅度 X;根据所有激励点源的幅度 X重 建等效模式场 。d( )。 In the above solution, the equivalent mode field is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field, and the radiation field ( ) of the actual MIMO antenna and the equivalent mode field m are : d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; according to the reconstruction mode field expansion coefficient model Q, the amplitude X of all excitation point sources is obtained; and the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ).
本发明提供的一种 MIMO天线信道外模式场重建的装置,该装置包括: 球面确定模块、 截断项数获取模块、 激励点源放置模块、 等效模式场构建 模块、 重建等效模式场模块; 其中,  The invention provides a device for reconstructing a MIMO antenna out-of-channel mode field, the device comprising: a spherical surface determining module, a truncated item number acquiring module, an excitation point source placing module, an equivalent mode field building module, and a reconstructed equivalent mode field module; among them,
球面确定模块 , 用于确定包围 MIMO天线和待测终端的球面; 截断项数获取模块, 用于获取球面确定模块所确定球面的球矢量波函 数的截断项数;  a spherical determining module, configured to determine a spherical surface surrounding the MIMO antenna and the terminal to be tested; a truncating item obtaining module, configured to obtain a number of truncated items of a spherical vector wave function of the spherical surface determined by the spherical determining module;
激励点源放置模块, 用于在球面确定模块所确定的球面剖分出的网格 网点上放置激励点源;  An excitation point source placement module, configured to place an excitation point source on a mesh point of the spherical surface determined by the spherical determination module;
等效模式场构建模块, 用于利用截断项数, 将所有激励点源的球矢量 波函数模式场叠加, 构建激励点源阵列的等效模式场;  An equivalent mode field construction module is configured to superimpose a ball vector wave function mode field of all excitation point sources by using a number of truncated items to construct an equivalent mode field of the excitation point source array;
重建等效模式场模块, 用于通过将实际 MIMO天线的辐射场与等效模 式场进行匹配, 重建等效模式场。  The reconstructed equivalent mode field module is used to reconstruct the equivalent mode field by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
上述方案中, 所述球面确定模块, 具体用于确定包围 MIMO天线和待 测终端的球面为以 R为半径的球面; 其中, R≥ max(D21 A,3D,\ λ) , D为 包围 MIMO天线和待测终端的最小球面直径, λ为 ΜΙΜΟ天线辐射电磁波 的波长。 In the above solution, the spherical determining module is specifically configured to determine that the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface with a radius of R; wherein, R≥max(D 2 1 A, 3D, \λ), D is The minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and λ is the wavelength at which the ΜΙΜΟ antenna radiates electromagnetic waves.
上述方案中, 所述截断项数获取模块, 具体用于根据 R确定球矢量波 函数展开需要的截断项数 Ν; 其中, N = [ ] + 10, []表示取整, k二 ΙπΙ λ。 上述方案中, 所述激励点源放置模块, 具体用于将球面确定模块所确 定的球面剖分为均勾球面网格, 在所得每个网格网点位置处放置三个相互 垂直的电基本振子和三个相互垂直的磁基本振子, 并将所述电基本振子和 磁基本振子的电流、 磁流方向分别对应网格局域直角坐标系的 x y z 坐 标轴方向, 所述三个电基本振子和三个磁基本振子构成一个激励点源。  In the above solution, the truncated item number obtaining module is specifically configured to determine the number of truncated items required for the expansion of the spherical vector wave function according to R; wherein, N = [ ] + 10, [] represents rounding, k 2 Ι π Ι λ. In the above solution, the excitation point source placement module is specifically configured to divide the spherical surface determined by the spherical surface determining module into a uniform hook spherical surface grid, and place three mutually perpendicular electric basic vibrators at each of the obtained mesh dot positions. And three mutually perpendicular magnetic fundamental oscillators, and the current and magnetic current directions of the electric basic oscillator and the magnetic fundamental oscillator respectively correspond to the xyz coordinate axis direction of the grid local rectangular coordinate system, the three electric basic oscillators and three A magnetic fundamental oscillator forms a source of excitation points.
上述方案中, 所述等效模式场构建模块, 具体用于结合球矢量波函数 平移变换理论, 并利用球矢量波函数展开需要的截断项数 N, 将激励点源 的电、 磁辐射场从网格局域直角坐标系等效变换到全域直角坐标系的模式 场, 则第 i个激励点源的球矢量波函数模式场 人 )为: ( ) + 'yA f +«z + ,'zA,f)Fj(F)In the above solution, the equivalent mode field construction module is specifically used to combine the spherical vector wave function translation transformation theory, and uses the spherical vector wave function to expand the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are The net pattern domain Cartesian coordinate system is equivalently transformed to the mode field of the global Cartesian coordinate system, then the spherical vector wave function mode field of the i-th excitation point source is: ( ) + ' y A f +« z + , ' z A , f) F j (F)
Figure imgf000007_0001
Figure imgf000007_0001
= ¾( , , , , , )= 3⁄4( , , , , , )
J 。 其中, | |>i?,上标 e m分别代表电基本振子和磁基本振子,上标 x y, z 代表基本振子的空间极化方向, η = 120π; 下标 表示第 个激励点源, 为正 整数; a'x、 'y、 'z a「'y、 'z为电基本振子、 磁基本振子复系数展 开值; A 、 Af、 ;'、 ^^为电基本振子和磁基本振子从网格局域 直角坐标系等效变换到全域直角坐标系的平移与旋转变换矩阵; () ( _/ = 1,2 ··6 ) 为 球 矢 量 波 函 数 系 ; J =2N(N + 1) ; S, = ( 'x aey 'ζ , 'χ, 'y 'z ); 设 υβ=( :;,Α,ηΑ^,Α;:;,Α; , 则 J^Sfy y, 将所有激励点源的球矢量波函数模式场叠加构建激励点源阵列的等效 模式场 J. Where | |> i?, the superscript em represents the electric fundamental oscillator and the magnetic fundamental oscillator respectively, the superscript xy, z represents the spatial polarization direction of the basic vibrator, η = 120π; the subscript indicates the first excitation point source, which is positive Integer; a' x , ' y , ' z a "' y , ' z is the electrical fundamental oscillator, the magnetic fundamental oscillator complex coefficient expansion value; A, Af, ; ', ^^ is the electrical fundamental oscillator and the magnetic fundamental oscillator The rectangular coordinate system of the pattern domain is equivalently transformed to the translation and rotation transformation matrix of the global Cartesian coordinate system; () ( _ / = 1,2 ··6 ) is the spherical vector wave function system; J = 2N(N + 1) ; S , = ( ' x a ey ' ζ , ' χ , ' y ' z ); Let υ β =( : ;,Α,ηΑ^,Α; : ;,Α; , then J^Sfy y, Superimposing the spherical vector wave function mode field of all excitation point sources to construct the equivalent mode field of the excitation point source array
其中 , L 为激励点源的个数; Where L is the number of excitation point sources;
设 ϋ = (ί/ ·)1≤≤ο ≤6 , 所有激励点源的幅度 χ = ^, ,···,υτ, 则 Let ϋ = (ί/ ·) 1≤≤ ο ≤6 , the amplitude of all excitation point sources χ = ^, ,···, υ τ , then
Emod (r ) =E mod (r ) =
Figure imgf000008_0001
Figure imgf000008_0001
上述方案中, 所述重建等效模式场模块, 具体用于将实际 MIMO天线 的辐射场 ( )与等效模式场 。d( )进行匹配,得到重建模式场展开系数模型In the above solution, the reconstructed equivalent mode field module is specifically used to compare the radiation field ( ) of the actual MIMO antenna with the equivalent mode field. d ( ) is matched to obtain the reconstruction mode field expansion coefficient model
Q; 根据重建模式场展开系数模型 Q , 获得所有激励点源的幅度 X; 根据 所有激励点源的幅度 X重建等效模式场 。d ( )。 本发明提供了一种 MIMO天线信道外模式场重建的方法及装置, 确定 包围 MIMO天线和待测终端 (DUT ) 的球面, 获取所确定球面的球矢量波 函数的截断项数, 并在所述球面剖分出的网格网点上放置激励点源; 利用 截断项数, 将所有激励点源的球矢量波函数模式场叠加, 构建激励点源阵 列的等效模式场;通过将实际 MIMO天线的辐射场与等效模式场进行匹配, 重建等效模式场; 如此, 能够准确、 快捷地确定出 MIMO天线球面外空间 的辐射电磁场信息,本发明的方案将 MIMO天线视做"黑盒",不涉及 MIMO 天线的具体实现和结构, 对于任意复杂的 MIMO天线, 等效效率相同, 均 方根误差较小, 具有较强的通用性, 能够满足通信系统精细仿真的效率要 求和标准化要求。 附图说明 Q; According to the reconstruction mode field expansion coefficient model Q, the amplitude X of all excitation point sources is obtained; the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ). The present invention provides a method and apparatus for OFDM antenna out-of-channel mode field reconstruction, determining a spherical surface surrounding a MIMO antenna and a terminal to be tested (DUT), and acquiring a number of truncated items of a spherical vector wave function of the determined spherical surface, and The excitation point source is placed on the spherical mesh point of the spherical surface; the spherical vector wave function mode field of all the excitation point sources is superimposed by using the number of truncated items, and the equivalent mode field of the excitation point source array is constructed; by using the actual MIMO antenna The radiation field is matched with the equivalent mode field to reconstruct the equivalent mode field; thus, the radiation electromagnetic field information of the outer space of the MIMO antenna can be accurately and quickly determined, and the MIMO antenna of the present invention is regarded as a "black box", The specific implementation and structure of the MIMO antenna, for any complex MIMO antenna, have the same equivalent efficiency, small root mean square error, and strong versatility, which can meet the efficiency requirements and standardization requirements of the fine simulation of the communication system. DRAWINGS
图 1为本发明实现 MIMO天线信道外模式场重建的方法的流程示意图; 图 2为本发明实现 MIMO天线信道外模式场重建的装置的结构示意图。 具体实施方式 1 is a schematic flow chart of a method for implementing a MIMO antenna out-of-channel mode field reconstruction according to the present invention; FIG. 2 is a schematic structural diagram of an apparatus for implementing a MIMO antenna out-of-channel mode field reconstruction according to the present invention. detailed description
本发明的基本思想是: 确定包围 MIMO天线和待测终端的球面, 获取 所确定球面的球矢量波函数的截断项数, 并在所述球面剖分出的网格网点 上放置激励点源; 利用截断项数, 将所有激励点源的球矢量波函数模式场 叠加, 构建激励点源阵列的等效模式场; 通过将实际 MIMO天线的辐射场 与等效模式场进行匹配, 重建等效模式场。  The basic idea of the present invention is: determining a spherical surface surrounding the MIMO antenna and the terminal to be tested, acquiring a number of truncated terms of the spherical vector wave function of the determined spherical surface, and placing the excitation point source on the spherical mesh point of the spherically divided mesh; Using the number of truncated terms, the spherical vector wave function mode fields of all excitation point sources are superimposed to construct the equivalent mode field of the excitation point source array. The equivalent mode is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field. field.
下面通过附图及具体实施例对本发明做进一步的详细说明。  The invention will be further described in detail below with reference to the drawings and specific embodiments.
本发明实现一种 MIMO天线信道外模式场重建的方法, 如图 1所示, 该方法包括以下几个步骤:  The present invention implements a method for OFDM antenna out-of-channel mode field reconstruction. As shown in FIG. 1, the method includes the following steps:
步骤 101 , 确定包围 MIMO天线和待测终端的球面;  Step 101: Determine a spherical surface surrounding the MIMO antenna and the terminal to be tested.
具体的, 设包围 MIMO天线和待测终端的球面的半径为 R, 则 R应满 足公式( 1 ):  Specifically, if the radius of the spherical surface surrounding the MIMO antenna and the terminal to be tested is R, then R should satisfy the formula (1):
R≥ m2ix(D2 / ,3D,lO ) ( 1 ); 其中, D为包围 MIMO天线和待测终端的最小球面直径, λ为 MIMO 天线辐射电磁波的波长; R ≥ m2ix(D 2 / , 3D, lO ) ( 1 ); where D is the minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and λ is the wavelength of the electromagnetic wave radiated by the MIMO antenna;
则包围 MIMO天线和待测终端的球面为以 R为半径的球面。  Then, the spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface having a radius of R.
步骤 102, 获取所确定球面的球矢量波函数展开需要的截断项数 N; 具体的, 根据公式 ( 1 )中的 R确定球矢量波函数展开需要的截断项数 N, N如公式(2 )所示;  Step 102: Acquire a number N of truncation items required for expansion of a spherical vector wave function of the determined spherical surface. Specifically, determine the number of truncated items N and N required for expansion of the spherical vector wave function according to R in the formula (1). Shown
N = [kR] + \0 ( 2 ) 其中, []表示取整, k = 27t l λ 。  N = [kR] + \0 ( 2 ) where [] denotes rounding, k = 27t l λ .
步骤 103 , 在所述球面剖分出的网格网点上放置激励点源;  Step 103: placing an excitation point source on the spherical mesh point segmented by the spherical surface;
这里, 所述激励点源由三个相互垂直的电基本振子和三个相互垂直的 磁基本振子构成, 所述电基本振子、 磁基本振子的电流、 磁流方向与网格 局域直角坐标系的坐标轴方向一致; Here, the excitation point source is composed of three mutually perpendicular electric fundamental oscillators and three mutually perpendicular The magnetic fundamental oscillator is configured, and the current and the magnetic current direction of the electric basic vibrator and the magnetic basic vibrator are consistent with the coordinate axis direction of the grid local rectangular coordinate system;
具体的, 将球面剖分为均勾球面网格, 在所得每个网格网点位置处放 置三个相互垂直的电基本振子和三个相互垂直的磁基本振子, 并将所述电 基本振子和磁基本振子的电流、 磁流方向分别对应网格局域直角坐标系的 x、 y、 z坐标轴方向, 上述 6个基本振子构成一个激励点源, 则第 个激励 点源的幅度 /可表示为 η'χ , η'γ , if ) 和 ( , i y , /™'ζ ), 其中, 上 标6、 m分别代表电基本振子和磁基本振子, 上标 x、 y, z代表基本振子的空 间极化方向, 即网格局域直角坐标系的坐标轴方向。 Specifically, the spherical surface is divided into a uniform spherical mesh, and three mutually perpendicular electrical fundamental oscillators and three mutually perpendicular magnetic fundamental oscillators are placed at the position of each mesh dot obtained, and the electrical fundamental oscillator and The current and magnetic current directions of the magnetic fundamental oscillator respectively correspond to the x, y, and z coordinate axes of the grid local rectangular coordinate system. The above six basic oscillators constitute an excitation point source, and the amplitude of the first excitation point source can be expressed as η' χ , η' γ , if ) and ( , i y , /TM' ζ ), wherein the superscripts 6 and m represent the electric fundamental oscillator and the magnetic fundamental oscillator, respectively, and the superscript x, y, z represents the basic vibrator The spatial polarization direction, that is, the coordinate axis direction of the grid local Cartesian coordinate system.
步骤 104,利用截断项数,将所有激励点源的球矢量波函数模式场叠加, 构建激励点源阵列的等效模式场;  Step 104: Using the number of truncated items, superimposing the spherical vector wave function mode fields of all excitation point sources to construct an equivalent mode field of the excitation point source array;
具体的, 由电磁场理论可知, 第 个激励点源产生的电、 磁辐射场可分 别表示为:  Specifically, it can be known from the electromagnetic field theory that the electric and magnetic radiation fields generated by the first excitation point source can be expressed as:
Figure imgf000010_0001
Figure imgf000010_0001
其中, ,X( )表示第 个激励点源在 x轴方向产生的电辐射场; χ(Ρ)表 示第 个激励点源在 轴方向产生的磁辐射场; ,y( )表示第 个激励点源在 y轴方向产生的电辐射场; m'y( )表示第 个激励点源在 轴方向产生的磁 辐射场; 'Z( )表示第 个激励点源在 z轴方向产生的电辐射场; 'z( )表示 第 个激励点源在 z轴方向产生的磁辐射场; |F|>i?, 上标 e、 m分别代表电 基本振子和磁基本振子, 上标 X、 j z代表基本振子的 S间极 4匕方向 , 即网 格局域直角坐标系的坐标轴方向, 77 = 120/r; 下标表示第 个激励点源, 为 正整数; 式中 / = /^1, 为纯虚数; a'x、 'y、 'z、 a「'y、 'z为电基本振 子、 磁基本振子复系数展开值, 是待求参数; () ( 7=1,2,-6 )为球矢量 波函数系, 是已知函数。 Wherein, X ( ) represents the electric radiation field generated by the first excitation point source in the x-axis direction; χ (Ρ) represents the magnetic radiation field generated by the first excitation point source in the axial direction; and y( ) represents the first excitation point; Source The electric radiation field generated in the y-axis direction; m 'y( ) indicates the magnetic radiation field generated by the first excitation point source in the axial direction; ' Z ( ) indicates the electric radiation field generated by the first excitation point source in the z-axis direction; z ( ) represents the magnetic radiation field generated by the first excitation point source in the z-axis direction; |F|>i?, the superscript e and m respectively represent the electric fundamental oscillator and the magnetic fundamental oscillator, and the superscript X and jz represent the basic vibrator The S-pole 4匕 direction, that is, the coordinate axis direction of the grid local Cartesian coordinate system, 77 = 120/r; the subscript indicates the first excitation point source, which is a positive integer; where /= /^1, is a pure imaginary number; a' x , ' y , ' z , a '' y , ' z are electric fundamental oscillators, magnetic fundamental oscillator complex coefficient expansion values, are parameters to be sought; () ( 7 = 1, 2, -6 ) is the ball vector The wave function system is a known function.
结合球矢量波函数平移变换理论, 并利用球矢量波函数展开需要的截 断项数 N, 将激励点源的电、 磁辐射场从网格局域直角坐标系等效变换到 全域直角坐标系的模式场, 则第 个激励点源的球矢量波函数模式场 ( )如 公式(4a) 所示。  Combining the spherical vector wave function translation transformation theory, and using the spherical vector wave function to expand the required number of truncated items N, the electric and magnetic radiation fields of the excitation point source are equivalently transformed from the grid local rectangular coordinate system to the global rectangular coordinate system. Field, then the ball vector wave function mode field of the first excitation point source ( ) is shown in equation (4a).
E(F)― Y(cf'xAe'x +cT'xAm:x + 'yAe:y +(f'yAm'y + 'zAe:z +(f'z Am'z)F.(7) E(F)― Y(cf' x A e ' x +cT' x A m : x + ' y A e : y +(f' y A m ' y + ' z A e : z +(f' z A m ' z )F.(7)
4¾K,K K)翻  43⁄4K, K K)
1 (4a) 其中, J_ =2N(N + 1); 、 、 、 、 、 ;z为电基本振子和磁 基本振子从网格局域直角坐标系等效变换到全域直角坐标系的平移与旋转 变换矩阵, 是由电基本振子和磁基本振子的空间相对位置以及相对姿态来 决定的; = ("Γ, a!'ya , 'x, a 'y , 'z);: 1 (4a) where, J_ = 2N(N + 1); , , , , , , ; z is the translation and rotation of the electrical fundamental oscillator and the magnetic fundamental oscillator from the grid local Cartesian coordinate system to the global Cartesian coordinate system The transformation matrix is determined by the spatial relative position and relative attitude of the electrical fundamental oscillator and the magnetic fundamental oscillator; = ("Γ, a !' y , a , ' x , a ' y , ' z );
Figure imgf000011_0001
,Af) , 则公式 (4a)可写为公式( 4b )。
Figure imgf000011_0002
Figure imgf000011_0001
, Af), then the formula (4a) can be written as the formula (4b).
Figure imgf000011_0002
将所有激励点源的球矢量波函数模式场叠加构建激励点源阵列的等效 模式场^ ( , 如公式(4c)所示。
Figure imgf000012_0001
其中, 。 为激励点源的个数 tU = ( )i^O 6 , 所有激励点源的幅度 ^ ,…, ^ , 则 可写成公式(4d)。
Figure imgf000012_0002
The spherical vector wave function mode field of all excitation point sources is superimposed to construct an equivalent mode field of the excitation point source array ^ ( as shown in equation (4c).
Figure imgf000012_0001
among them, . For the number t of excitation point sources, U = ( ) i ^ O 6 , and the amplitudes of all excitation point sources ^ , ..., ^ , can be written as formula (4d).
Figure imgf000012_0002
本步骤中 , 所述 af'x 'y 'z、 a「'x a「'y 'z可以表示为公式In this step, the af' x ' y ' z , a '' x a '' y ' z can be expressed as a formula
4.1a~4.1f: 4.1a~4.1f:
Figure imgf000012_0003
Figure imgf000012_0003
I:'zdL (4.1e) I:' z dL (4.1e)
— I dL (4.1f) 其中, 为电基本振子和磁基本振子有效长度; 下标 表示第 个激励 点源, 为正整数; l = C 为纯虚数记。 – I dL (4.1f) where is the effective length of the electrical fundamental oscillator and the magnetic fundamental oscillator; the subscript indicates the source of the first excitation point and is a positive integer; l = C is a pure imaginary number.
所述^ ( ) ( =1,2,···6 )一般表示为:  The ^ ( ) ( =1, 2, . . . 6 ) is generally expressed as:
Fl(7) = ( cos (4.2a)
Figure imgf000012_0004
Figure imgf000013_0001
F l (7) = ( cos (4.2a)
Figure imgf000012_0004
Figure imgf000013_0001
其中, (r,0, 表示空间坐标, 二 ΙπΙ λ, / = V^I  Where (r,0, represents the spatial coordinate, two ΙπΙ λ, / = V^I
步骤 105,将实际 MIMO天线的辐射场 与等效模式场 。d ( )进行匹 配, 得到重建模式场展开系数模型 Q; Step 105, the radiation field of the actual MIMO antenna and the equivalent mode field. d ( ) is matched to obtain a reconstruction mode field expansion coefficient model Q;
具体的, 将实际 MIMO天线的辐射场 与等效模式场 md( )进行匹 配, 如公式(5a) 所示:Specifically, the radiation field of the actual MIMO antenna and the equivalent mode field m are used . d ( ) is matched as shown in equation (5a):
Figure imgf000013_0002
Figure imgf000013_0002
公式(5a) 中 可表示为公式(5b):  In formula (5a), it can be expressed as formula (5b):
(5b)  (5b)
7=1  7=1
设重建模式场展开系数模型0 = (21,¾,...,¾]3 , 由公式(4d)、 (5a) 和(5b)得到公式(5c): Let the reconstruction mode field expansion coefficient model 0 = (2 1 , 3⁄4 ,..., 3⁄4 ]3 , and get the formula (5c) from equations (4d), (5a) and (5b):
E(r)=-∑ QJFJ (r) = - QFj (r) = UX . (F) ( 5c ) E(r)=-∑ QJFJ (r) = - QFj (r) = UX . (F) ( 5c )
j=\ 7/ 在空间球面釆样激励点源, 所述釆样个数大于 Jmax/2个, 根据釆样的激 励点源的实际测量值计算相应激励点源的球矢量波函数 ()的表征参数, 其中 Jmax=2N(N + l) , 将所得表征参数的线性无关组带入公式(5c), 利用高 斯消元法求解线性方程组得到 , 根据 Q = 皿 , 得到重建模 式场展开系数模型 Q。 j=\ 7 / In the spatial spherical excitation point source, the number of the sample is greater than J max /2, and the characterization parameter of the spherical vector wave function () of the corresponding excitation point source is calculated according to the actual measured value of the excitation point source of the sample, wherein J max = 2N(N + l) , the linear irrelevant group of the obtained characterization parameters is brought into the formula (5c), and the Gaussian elimination method is used to solve the linear equations. According to Q = dish, the reconstruction mode field expansion coefficient model Q is obtained.
步骤 106,根据重建模式场展开系数模型 Q ,获得所有激励点源的幅度 Step 106: Obtain the amplitude of all the excitation point sources according to the reconstruction mode field expansion coefficient model Q.
X; X;
具体的, 根据球矢量波函数的正交归一性, 公式(5c) 可表示为公式 (6a),  Specifically, according to the orthogonal normality of the spherical wave function of the sphere, the formula (5c) can be expressed as the formula (6a),
UX = Q ( 6a)  UX = Q ( 6a)
根据重建模式场展开系数模型 Q , 求解式(6a) 的线性方程组即可得 到所有激励点源的幅度 X , 如公式( 6b ) 所示。  According to the reconstruction mode field expansion coefficient model Q, the linear equations of equation (6a) can be obtained to obtain the amplitude X of all excitation point sources, as shown in equation (6b).
X = U Q ( 6b )  X = U Q ( 6b )
步骤 107, 根据所有激励点源的幅度 X重建等效模式场 。d(F); Step 107: reconstruct an equivalent mode field according to the amplitude X of all excitation point sources. d (F);
具体的, 将公式( 6b )所得到的所有激励点源的幅度 X代入公式( 4d ), 重新得到等效模式场 ), 此时, 。d( )即实现了原有实际模式场 ^ )的 重建。 Specifically, the amplitude X of all the excitation point sources obtained by the formula (6b) is substituted into the formula (4d) to regain the equivalent mode field), at this time. d ( ) realizes the reconstruction of the original actual mode field ^ ).
为了实现本发明的方法, 本发明还提供一种 MIMO天线信道外模式场 重建的装置, 如图 2所示, 该装置包括: 球面确定模块 21、 截断项数获取 模块 22、 激励点源放置模块 23、 等效模式场构建模块 24、 重建等效模式场 模块 25; 其中,  In order to implement the method of the present invention, the present invention further provides an apparatus for OFDM antenna out-of-channel mode field reconstruction. As shown in FIG. 2, the apparatus includes: a spherical surface determining module 21, a truncated item number obtaining module 22, and an excitation point source placing module. 23, an equivalent mode field building module 24, a reconstructed equivalent mode field module 25; wherein
球面确定模块 21, 用于确定包围 MIMO天线和待测终端的球面; 截断项数获取模块 22,用于获取球面确定模块 21所确定球面的球矢量 波函数的截断项数;  a spherical determining module 21, configured to determine a spherical surface surrounding the MIMO antenna and the terminal to be tested; a truncated item number obtaining module 22, configured to obtain a number of truncated items of a spherical vector wave function of the spherical surface determined by the spherical determining module 21;
激励点源放置模块 23,用于在球面确定模块 21所确定的球面剖分出的 网格网点上放置激励点源; The excitation point source placement module 23 is configured to be split by the spherical surface determined by the spherical surface determining module 21 Place the excitation point source on the grid point;
等效模式场构建模块 24, 用于利用截断项数, 将所有激励点源的球矢 量波函数模式场叠加, 构建激励点源阵列的等效模式场;  The equivalent mode field construction module 24 is configured to superimpose the spherical wave function mode field of all the excitation point sources by using the number of truncated items, and construct an equivalent mode field of the excitation point source array;
重建等效模式场模块 25 , 用于通过将实际 MIMO天线的辐射场与等效 模式场进行匹配, 重建等效模式场;  Reconstructing the equivalent mode field module 25 for reconstructing the equivalent mode field by matching the radiation field of the actual MIMO antenna with the equivalent mode field;
所述球面确定模块 21 , 具体用于根据公式( 1 )确定包围 MIMO天线 和待测终端的球面的半径 R;  The spherical determining module 21 is specifically configured to determine a radius R of a spherical surface surrounding the MIMO antenna and the terminal to be tested according to the formula (1);
所述截断项数获取模块 22, 具体用于根据 R确定球矢量波函数展开需 要的截断项数 N, N如公式(2 ) 所示;  The truncated item number obtaining module 22 is specifically configured to determine the number of truncated items required for the expansion of the spherical vector wave function according to R, N, as shown in formula (2);
所述激励点源放置模块 23 ,具体用于将球面确定模块 21所确定的球面 剖分为均勾球面网格, 在所得每个网格网点位置处放置三个相互垂直的电 基本振子和三个相互垂直的磁基本振子, 并将所述电基本振子和磁基本振 子的电流、 磁流方向分别对应网格局 i或直角坐标系的 x、 y、 z坐标轴方向, 上述 6个基本振子构成一个激励点源, 则第 个激励点源的幅度 /可表示为 The excitation point source placing module 23 is specifically configured to divide the spherical surface determined by the spherical surface determining module 21 into a uniform hook spherical surface grid, and place three mutually perpendicular electric basic vibrators and three at each mesh mesh point position. a mutually perpendicular magnetic fundamental oscillator, and the current and magnetic current directions of the electric basic oscillator and the magnetic fundamental oscillator respectively correspond to the x, y, and z coordinate axes of the mesh station i or the Cartesian coordinate system, and the above six basic oscillators constitute For a source of excitation points, the amplitude of the source of the first excitation point can be expressed as
( 7/'x , le y , /;'2 )和 ( Ι「'χ , I y , / 'ζ ), 其中, 上标 e、 m分别代表电基 本振子和磁基本振子, 上标 X、 代表基本振子的 间极 4匕方向, 即网格 局域直角坐标系的坐标轴方向; (7/' x , l ey , /; ' 2 ) and ( Ι "' χ , I y , / ' ζ ), where the superscripts e and m represent the electrical fundamental oscillator and the magnetic fundamental oscillator, respectively, superscript X, Represents the direction of the interpole 4基本 of the basic vibrator, that is, the coordinate axis direction of the grid local Cartesian coordinate system;
所述等效模式场构建模块 24, 具体用于结合球矢量波函数平移变换理 论, 并利用球矢量波函数展开需要的截断项数 N, 将激励点源的电、 磁辐 射场从网格局域直角坐标系等效变换到全域直角坐标系的模式场, 则第 个 激励点源的球矢量波函数模式场 ( )如公式(4a ) 所示; 将所有激励点源 的球矢量波函数模式场叠加构建激励点源阵列的等效模式场 ,如公式 ( 4c )所示。  The equivalent mode field construction module 24 is specifically configured to combine the ball vector wave function translation transformation theory, and utilize the spherical vector wave function to expand the required number of truncated items N, and the electric and magnetic radiation fields of the excitation point source are from the grid local area. The Cartesian coordinate system is equivalently transformed to the mode field of the global Cartesian coordinate system, then the spherical vector wave function mode field of the first excitation point source ( ) is shown in formula (4a); the spherical vector wave function mode field of all excitation point sources is obtained. The equivalent mode field of the excitation point source array is superimposed as shown in equation (4c).
所述重建等效模式场模块 25 , 具体用于将实际 MIMO 天线的辐射场 与等效模式场 。d( )进行匹配, 得到重建模式场展开系数模型 Q; 根 据重建模式场展开系数模型 Q , 获得所有激励点源的幅度 χ ; 根据所有激 励点源的幅度 X重建等效模式场 。d( )。 The reconstructed equivalent mode field module 25 is specifically configured to use a radiation field of an actual MIMO antenna and an equivalent mode field. d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; According to the reconstruction mode field expansion coefficient model Q, the amplitude χ of all excitation point sources is obtained; the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ).
实例一,通过公式( 1 )确定包围天线的球面半径
Figure imgf000016_0001
,通过公式(2 ) 得到球矢量波函数展开中的截断项数 N=390; 在均勾划分球面网格, 并在 网格网点上放置激励点源后, 构建激励点源阵列的等效模式场 。d , 将实际
Example 1, determining the spherical radius of the surrounding antenna by the formula (1)
Figure imgf000016_0001
Through the formula (2), the number of truncated items in the expansion of the spherical vector wave function is obtained as N=390. After the spherical mesh is divided and the excitation point source is placed on the mesh point, the equivalent mode of the excitation point source array is constructed. field. d , will be actual
MIMO天线的辐射场 与等效模式场 。d( )进行匹配,求解出所有激励点 源的幅度 X , 将所有激励点源的幅度 X代入公式(4d )后, 所得等效模式场 Emod(r)即重构原有实际 MIMO天线的辐射场 ^( )。 The radiation field and equivalent mode field of the MIMO antenna. d ( ) is matched to solve the amplitude X of all excitation point sources. After the amplitude X of all excitation point sources is substituted into the formula (4d ), the equivalent mode field E mod (r) is reconstructed from the original actual MIMO antenna. Radiation field ^ ( ).
本实例中,在通过将实际 MIMO天线的辐射场 ^ ( )与等效模式场 md( ) 匹配时, 假设空间球面角度取样间隔为 Δ0 = Δ , 得到重建模式场展开系数 模型 Q之后, 如果用正交性法获得所有激励点源的幅度 X , 根据所述 X重 建的等效模式场与实际 MIMO 天线的辐射场的均方根误差为 Errl , 则当 Δ^ = Δ = 1Ο°时, Errl=22.3%, 当 Δ0 = Δ = 3°时, Erlr=6.1%; In this example, the radiation field ^ ( ) of the actual MIMO antenna is passed through with the equivalent mode field m . When d ( ) matches, assuming that the spatial spherical angle sampling interval is Δ0 = Δ, after obtaining the reconstructed mode field expansion coefficient model Q, if the amplitude X of all excitation point sources is obtained by the orthogonality method, the equivalent of the X reconstruction is obtained. The root mean square error of the radiation field of the mode field and the actual MIMO antenna is Errl, then Errl=22.3% when Δ^ = Δ = 1Ο°, and Erlr=6.1% when Δ0 = Δ = 3°;
如果用矩阵变换法获得所有激励点源的幅度 X,根据所述 X重建的等效 模式场与实际 MIMO天线的辐射场的均方才艮误差为 Err2, 则当 Δ0 = Δ = 1Ο° 时, Err2=0.4%, 当 Δ0 = Δ = 3°时, Err2=0.23%;  If the amplitude X of all excitation point sources is obtained by the matrix transformation method, the mean square error of the radiation field of the X-reconstructed equivalent mode field and the actual MIMO antenna is Err2, then when Δ0 = Δ = 1 Ο °, Err2 =0.4%, when Δ0 = Δ = 3°, Err2 = 0.23%;
可见, 釆用矩阵变换法获得所有激励点源的幅度 X后, 重建的等效模 式场与实际 MIMO天线的辐射场的均方根误差较小。  It can be seen that, after obtaining the amplitude X of all the excitation point sources by the matrix transformation method, the root mean square error of the reconstructed equivalent mode field and the radiation field of the actual MIMO antenna is small.
通过本发明的方案, 能够准确、 快捷地确定出 MIMO天线球面外空间 的辐射电磁场信息, 并且, 将 MIMO天线视做 "黑盒", 不涉及 MIMO天 线的具体实现和结构, 对于任意复杂的 MIMO天线, 等效效率相同, 均方 根误差较小, 具有较强的通用性, 能够满足通信系统精细仿真的效率要求 和标准化要求。  Through the solution of the invention, the radiant electromagnetic field information of the outer space of the MIMO antenna can be accurately and quickly determined, and the MIMO antenna is regarded as a "black box", and the specific implementation and structure of the MIMO antenna are not involved, for any complex MIMO The antenna has the same equivalent efficiency, small root mean square error, and strong versatility, which can meet the efficiency requirements and standardization requirements of the fine simulation of the communication system.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Claims

权利要求书 Claim
1、 一种多输入多输出 (MIM0 )天线信道外模式场重建的方法, 其特 征在于, 该方法包括:  A method for multi-input multiple-output (MIM0) antenna out-of-channel mode field reconstruction, the method comprising:
确定包围 MIMO天线和待测终端的球面 , 获取所确定球面的球矢量波 函数的截断项数, 并在所述球面剖分出的网格网点上放置激励点源;  Determining a spherical surface surrounding the MIMO antenna and the terminal to be tested, obtaining a number of truncated items of the spherical vector wave function of the determined spherical surface, and placing an excitation point source on the spherical mesh point of the spherical surface;
利用截断项数, 将所有激励点源的球矢量波函数模式场叠加, 构建激 励点源阵列的等效模式场;  Using the number of truncated terms, the spherical vector wave function mode fields of all excitation point sources are superimposed to construct an equivalent mode field of the excitation point source array;
通过将实际 MIMO天线的辐射场与等效模式场进行匹配, 重建等效模 式场。  The equivalent mode field is reconstructed by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
2、根据权利要求 1所述的方法, 其特征在于, 所述确定包围 MIMO天 线和待测终端的球面为: 确定包围 MIMO天线和待测终端的球面为以 R为 半径的球面; 其中, W≥ max(D2 / ,3D,10 ) , D为包围 MIMO天线和待测 终端的最小球面直径, λ为 MIMO天线辐射电磁波的波长。 The method according to claim 1, wherein the determining a spherical surface surrounding the MIMO antenna and the terminal to be tested is: determining that a spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface having a radius of R; wherein, W ≥ max(D 2 / , 3D, 10 ) , D is the minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and λ is the wavelength of the electromagnetic wave radiated by the MIMO antenna.
3、 根据权利要求 2所述的方法, 其特征在于, 所述获取所确定球面的 球矢量波函数的截断项数为: 根据 R确定球矢量波函数展开需要的截断项 数 N; 其中, W = [ ] + 10 , []表示取整, k = 27l l λ 。  The method according to claim 2, wherein the number of truncated items of the spherical vector wave function of the determined spherical surface is: determining the number of truncated items N required for the expansion of the spherical vector wave function according to R; wherein, W = [ ] + 10 , [] means rounded, k = 27l l λ .
4、 根据权利要求 3所述的方法, 其特征在于, 所述在所述球面剖分出 的网格网点上放置激励点源为: 将球面剖分为均匀球面网格, 在所得每个 网格网点位置处放置三个相互垂直的电基本振子和三个相互垂直的磁基本 振子, 并将所述电基本振子、 磁基本振子的电流、 磁流方向分别对应网格 局域直角坐标系的 x、 y、 z 坐标轴方向, 所述三个电基本振子和三个磁基 本振子构成一个激励点源。  The method according to claim 3, wherein the source of the excitation point is placed on the spherical mesh point of the spherical surface: the spherical surface is divided into a uniform spherical mesh, and each of the obtained meshes is obtained. Three mutually perpendicular electrical fundamental oscillators and three mutually perpendicular magnetic fundamental oscillators are placed at the grid point position, and the current and magnetic current directions of the electrical basic oscillator and the magnetic fundamental oscillator are respectively corresponding to the x-local rectangular coordinate system. The y, z coordinate axis directions, the three electrical fundamental oscillators and the three magnetic fundamental oscillators constitute an excitation point source.
5、 根据权利要求 4所述的方法, 其特征在于, 所述利用截断项数, 将 所有激励点源的球矢量波函数模式场叠加, 构建激励点源阵列的等效模式 场, 为: 结合球矢量波函数平移变换理论, 并利用球矢量波函数展开需要 的截断项数 N, 将激励点源的电、 磁辐射场从网格局域直角坐标系等效变 换到全域直角坐标系的模式场, 则第 个激励点源的球矢量波函数模式场 ( 为: ( ) + 'yA f +«z + ,'zA,f)Fj(F)5. The method according to claim 4, wherein the using the number of truncation terms, superimposing the spherical vector wave function mode fields of all excitation point sources to construct an equivalent mode field of the excitation point source array is: combining Ball vector wave function translation transformation theory, and the use of spherical vector wave function expansion The number of truncated items N, the electric field and magnetic radiation field of the excitation point source are equivalently transformed from the grid local Cartesian coordinate system to the mode field of the global Cartesian coordinate system, then the ball vector wave function mode field of the first excitation point source ( : ( ) + ' y A f +« z + , ' z A , f)F j (F)
Figure imgf000018_0001
Figure imgf000018_0001
= ¾( , , , , , )= 3⁄4( , , , , , )
J 。 其中, I F |> ,上标 e m分别代表电基本振子和磁基本振子,上标 x j z 代表基本振子的空间极化方向, 77 = 120/r; 下标 表示第 个激励点源, 为正 整数; 'x、 a'y 'z 'x ' 'z为电基本振子、 磁基本振子复系数展 开值; A; A- A; , A]y ;'、 ^^为电基本振子和磁基本振子从网格局域 直角坐标系等效变换到全域直角坐标系的平移与旋转变换矩阵; () ( _ = 1,2 ··6 ) 为 球 矢 量 波 函 数 系 ; J =2N(N + 1) ; S, = (a'x aey 'z , 'x, 'y , 'z); 设^ =( , ; H , , ; , 则J. Where IF |> , the superscript em represents the electric fundamental oscillator and the magnetic fundamental oscillator respectively, the superscript xj z represents the spatial polarization direction of the basic vibrator, 77 = 120/r; the subscript represents the first excitation point source, which is a positive integer ; ' x , a' y ' z ' x '' z is the electrical fundamental oscillator, the magnetic fundamental oscillator complex coefficient expansion value; A; A- A; , A] y ; ', ^ ^ is the electrical fundamental oscillator and the magnetic fundamental oscillator The equivalent transformation from the grid local Cartesian coordinate system to the translation and rotation transformation matrix of the global Cartesian coordinate system; () ( _ = 1,2 ··6 ) is the spherical vector wave function system; J = 2N(N + 1) ; S, = (a' x a ey ' z , ' x , ' y , ' z ); Let ^ =( , ; H , , ; ,
Figure imgf000018_0002
Figure imgf000018_0002
将所有激励点源的球矢量波函数模式场叠加构建激励点源阵列的等效 模式场  Superimposing the spherical vector wave function mode field of all excitation point sources to construct the equivalent mode field of the excitation point source array
其中 为激励点源的个数; Where is the number of excitation point sources;
¾ ϋ = (^)1≤≤4。 ,1≤^6 , 所有激励点源的幅度 X = (S,S2,...,UT, 则 ¾ ϋ = (^) 1≤≤4. , 1 ≤ ^ 6 , the amplitude of all excitation point sources X = ( S, S 2 ,..., U T , then
Emod(r) = UX^.( )。E mod (r) = UX^.( ).
Figure imgf000018_0003
Figure imgf000018_0003
6、 根据权利要求 5所述的方法, 其特征在于, 所述通过将实际 MIMO 天线的辐射场与等效模式场进行匹配, 重建等效模式场, 为: 将实际 MIMO 天线的辐射场 )与等效模式场 。d( )进行匹配,得到重建模式场展开系数 模型 Q; 根据重建模式场展开系数模型 Q , 获得所有激励点源的幅度 X; 根据所有激励点源的幅度 X重建等效模式场 。d( )。 6. The method according to claim 5, wherein the reconstructing the equivalent mode field by matching the radiation field of the actual MIMO antenna with the equivalent mode field is: The radiation field of the antenna) and the equivalent mode field. d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; according to the reconstruction mode field expansion coefficient model Q, the amplitude X of all excitation point sources is obtained; and the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources. d ( ).
7、 一种 MIMO天线信道外模式场重建的装置, 其特征在于, 该装置包 括: 球面确定模块、 截断项数获取模块、 激励点源放置模块、 等效模式场 构建模块、 重建等效模式场模块; 其中,  7. A device for OFDM antenna out-of-channel mode field reconstruction, the device comprising: a spherical surface determining module, a truncated item number acquiring module, an excitation point source placing module, an equivalent mode field building module, and a reconstructed equivalent mode field. Module; among them,
球面确定模块 , 用于确定包围 MIMO天线和待测终端的球面; 截断项数获取模块, 用于获取球面确定模块所确定球面的球矢量波函 数的截断项数;  a spherical determining module, configured to determine a spherical surface surrounding the MIMO antenna and the terminal to be tested; a truncating item obtaining module, configured to obtain a number of truncated items of a spherical vector wave function of the spherical surface determined by the spherical determining module;
激励点源放置模块, 用于在球面确定模块所确定的球面剖分出的网格 网点上放置激励点源;  An excitation point source placement module, configured to place an excitation point source on a mesh point of the spherical surface determined by the spherical determination module;
等效模式场构建模块, 用于利用截断项数, 将所有激励点源的球矢量 波函数模式场叠加, 构建激励点源阵列的等效模式场;  An equivalent mode field construction module is configured to superimpose a ball vector wave function mode field of all excitation point sources by using a number of truncated items to construct an equivalent mode field of the excitation point source array;
重建等效模式场模块, 用于通过将实际 MIMO天线的辐射场与等效模 式场进行匹配, 重建等效模式场。  The reconstructed equivalent mode field module is used to reconstruct the equivalent mode field by matching the radiation field of the actual MIMO antenna with the equivalent mode field.
8、 根据权利要求 7所述的装置, 其特征在于, 所述球面确定模块, 具 体用于确定包围 MIMO天线和待测终端的球面为以 R为半径的球面;其中 , R≥max(D2 / A,3D,10A) , D为包围 MIMO 天线和待测终端的最小球面直 径, λ为 MIMO天线辐射电磁波的波长。 The device according to claim 7, wherein the spherical surface determining module is specifically configured to determine that a spherical surface surrounding the MIMO antenna and the terminal to be tested is a spherical surface with a radius of R; wherein R≥max (D 2 / A, 3D, 10A) , D is the minimum spherical diameter surrounding the MIMO antenna and the terminal to be tested, and λ is the wavelength at which the MIMO antenna radiates electromagnetic waves.
9、根据权利要求 8所述的装置, 其特征在于, 所述截断项数获取模块, 具体用于根据 R 确定球矢量波函数展开需要的截断项数 N ; 其中, N = [kR] + \ , []表示取整, k 二 2π Ι λ 。  The apparatus according to claim 8, wherein the truncated item number obtaining module is specifically configured to determine a number N of truncation items required for the expansion of the spherical vector wave function according to R; wherein, N = [kR] + \ , [] represents rounding, k 2 2π Ι λ .
10、 根据权利要求 9所述的装置, 其特征在于, 所述激励点源放置模 块, 具体用于将球面确定模块所确定的球面剖分为均匀球面网格, 在所得 每个网格网点位置处放置三个相互垂直的电基本振子和三个相互垂直的磁 基本振子, 并将所述电基本振子和磁基本振子的电流、 磁流方向分别对应 网格局域直角坐标系的 x y z 坐标轴方向, 所述三个电基本振子和三个 磁基本振子构成一个激励点源。 The device according to claim 9, wherein the excitation point source placement module is specifically configured to divide the spherical surface determined by the spherical surface determining module into a uniform spherical mesh, and obtain the position of each mesh dot in the obtained mesh point. Place three mutually perpendicular electrical fundamental oscillators and three mutually perpendicular magnets a basic vibrator, and the current and the magnetic current direction of the electric basic vibrator and the magnetic basic vibrator respectively correspond to the xyz coordinate axis direction of the grid local rectangular coordinate system, and the three electric basic vibrators and the three magnetic basic vibrators constitute an excitation Point source.
11、 根据权利要求 10所述的装置, 其特征在于, 所述等效模式场构建 模块, 具体用于结合球矢量波函数平移变换理论, 并利用球矢量波函数展 开需要的截断项数 N, 将激励点源的电、 磁辐射场从网格局域直角坐标系 等效变换到全域直角坐标系的模式场, 则第 个激励点源的球矢量波函数模 式场 ( )为: ( ) + 'yA f +«z + ,'zA,f)Fj(F)The apparatus according to claim 10, wherein the equivalent mode field construction module is specifically configured to combine a ball vector wave function translation transformation theory, and use a spherical vector wave function to expand a required number of truncated items N, The electric and magnetic radiation fields of the excitation point source are equivalently transformed from the grid local Cartesian coordinate system to the mode field of the global Cartesian coordinate system. Then the ball vector wave function mode field of the first excitation point source ( ) is: ( ) + ' y A f +« z + , ' z A , f)F j (F)
Figure imgf000020_0001
Figure imgf000020_0001
= ¾( , , , , , )= 3⁄4( , , , , , )
J 。 其中, |F|>i?,上标 e m分别代表电基本振子和磁基本振子,上标 x y, z 代表基本振子的空间极化方向, 77 = 120/r; 下标 表示第 个激励点源, 为正 整数; 'x、 a'y 'z 'x ' 'z为电基本振子、 磁基本振子复系数展 开值; A; A- A; , A]y ;'、 ^^为电基本振子和磁基本振子从网格局域 直角坐标系等效变换到全域直角坐标系的平移与旋转变换矩阵; () ( _ = 1,2 ··6 ) 为 球 矢 量 波 函 数 系 ; J =2N(N + 1) ; S, = (a'x aey 'z , 'x, 'y , 'z); 设^ =( , ; H , , ; , 则 ( ) ¾f (?); J. Where |F|>i?, the superscript em represents the electric fundamental oscillator and the magnetic fundamental oscillator respectively, the superscript xy, z represents the spatial polarization direction of the basic vibrator, 77 = 120/r; the subscript represents the first excitation point source , is a positive integer; ' x , a ' y ' z ' x '' z is the electric fundamental oscillator, the magnetic fundamental oscillator complex coefficient expansion value; A; A- A; , A] y ; ', ^ ^ is the electric basic oscillator And the magnetic fundamental oscillator is transformed from the grid local Cartesian coordinate system to the translation and rotation transformation matrix of the global Cartesian coordinate system; () ( _ = 1,2 ··6 ) is the spherical vector wave function system; J = 2N (N + 1) ; S, = (a' x a ey ' z , ' x , ' y , ' z ); Let ^ =( , ; H , , ; , then ( ) 3⁄4f ( ? );
V  V
将所有激励点源的球矢量波函数模式场叠加构建激励点源阵列的等效 模式场 ^( =∑^( 其中, L 为激励点源的个数; (^)1≤≤4。 ,1≤^6 , 所有激励点源的幅度 X = (S,S2,...,UT, 则 The spherical vector wave function mode field of all excitation point sources is superposed to construct an equivalent mode field of the excitation point source array ^(=∑^(where L is the number of excitation point sources; (^) 1≤≤4 . , 1 ≤ ^ 6 , the amplitude of all excitation point sources X = ( S, S 2 ,..., U T , then
Emod(r) = UX^.( )。E mod (r) = UX^.( ).
Figure imgf000021_0001
Figure imgf000021_0001
12、 根据权利要求 11所述的装置, 其特征在于, 所述重建等效模式场 模块, 具体用于将实际 MIMO天线的辐射场 与等效模式场 。d( )进行 匹配,得到重建模式场展开系数模型 Q;根据重建模式场展开系数模型 Q , 获得所有激励点源的幅度 X; 根据所有激励点源的幅度 X重建等效模式场 12. The apparatus according to claim 11, wherein the reconstructed equivalent mode field module is specifically configured to use a radiation field of an actual MIMO antenna and an equivalent mode field. d ( ) is matched to obtain the reconstruction mode field expansion coefficient model Q; according to the reconstruction mode field expansion coefficient model Q, the amplitude X of all excitation point sources is obtained; and the equivalent mode field is reconstructed according to the amplitude X of all excitation point sources
PCT/CN2011/075996 2011-03-30 2011-06-20 Method for reconstructing outer mode field of multiple input multiple output antenna channels WO2012129850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110078871.1 2011-03-30
CN201110078871.1A CN102723973B (en) 2011-03-30 A kind of multi-input/output antenna channel external schema field reconstructing method and device

Publications (1)

Publication Number Publication Date
WO2012129850A1 true WO2012129850A1 (en) 2012-10-04

Family

ID=46929369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075996 WO2012129850A1 (en) 2011-03-30 2011-06-20 Method for reconstructing outer mode field of multiple input multiple output antenna channels

Country Status (1)

Country Link
WO (1) WO2012129850A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319777A (en) * 2018-01-31 2018-07-24 北京卫星环境工程研究所 Reduce the method that radiation environment model uncertainty influences material property evaluation
CN109861776A (en) * 2019-01-23 2019-06-07 河海大学 A method of the simulation multiple antennas exterior space couples fading propagation characteristic
CN112737653A (en) * 2020-12-28 2021-04-30 重庆邮电大学 Non-uniform antenna array system design method using spherical wave model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405675A (en) * 2002-10-31 2003-03-26 西安海天天线科技股份有限公司 Base-station antenna analysing method
US20070061123A1 (en) * 2005-09-09 2007-03-15 Fujitsu Limited Electromagnetic field simulator and electromagnetic field simulation program storage medium
US20090299717A1 (en) * 2008-05-30 2009-12-03 Xueyuan Zhao Enhanced channel simulator for efficient antenna evaluation
CN101789812A (en) * 2010-01-15 2010-07-28 重庆邮电大学 LTE MIMO communication transmission channel modeling method based on dual polarized antenna
US20100312539A1 (en) * 2009-06-05 2010-12-09 Fujitsu Limited Electromagnetic field simulation apparatus and near-field measurement device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405675A (en) * 2002-10-31 2003-03-26 西安海天天线科技股份有限公司 Base-station antenna analysing method
US20070061123A1 (en) * 2005-09-09 2007-03-15 Fujitsu Limited Electromagnetic field simulator and electromagnetic field simulation program storage medium
US20090299717A1 (en) * 2008-05-30 2009-12-03 Xueyuan Zhao Enhanced channel simulator for efficient antenna evaluation
US20100312539A1 (en) * 2009-06-05 2010-12-09 Fujitsu Limited Electromagnetic field simulation apparatus and near-field measurement device
CN101789812A (en) * 2010-01-15 2010-07-28 重庆邮电大学 LTE MIMO communication transmission channel modeling method based on dual polarized antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319777A (en) * 2018-01-31 2018-07-24 北京卫星环境工程研究所 Reduce the method that radiation environment model uncertainty influences material property evaluation
CN108319777B (en) * 2018-01-31 2021-04-23 北京卫星环境工程研究所 Method for reducing influence of radiation environment model uncertainty on material performance evaluation
CN109861776A (en) * 2019-01-23 2019-06-07 河海大学 A method of the simulation multiple antennas exterior space couples fading propagation characteristic
CN112737653A (en) * 2020-12-28 2021-04-30 重庆邮电大学 Non-uniform antenna array system design method using spherical wave model

Also Published As

Publication number Publication date
CN102723973A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
Pei et al. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials
Wang et al. Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions
Wallace et al. Termination-dependent diversity performance of coupled antennas: Network theory analysis
Zheng et al. Massive MIMO channel models: A survey
Qian et al. Tensor-based channel estimation for dual-polarized massive MIMO systems
Fan et al. Probe selection in multiprobe OTA setups
An et al. A tutorial on holographic MIMO communications—part I: Channel modeling and channel estimation
Sarkar et al. Engineering the eigenspace structure of massive MIMO links through frequency-selective surfaces
Kwon et al. Geometrically based statistical model for polarized body-area-network channels
Fan et al. 3D channel model emulation in a MIMO OTA setup
WO2012129850A1 (en) Method for reconstructing outer mode field of multiple input multiple output antenna channels
Ding et al. Compressed downlink channel estimation based on dictionary learning in FDD massive MIMO systems
Naganawa et al. Antenna deembedding in WBAN channel modeling using spherical wave functions
Gong et al. Holographic MIMO communications with arbitrary surface placements: Near-field LoS channel model and capacity limit
Naganawa et al. Antenna de-embedding in FDTD-based radio propagation prediction by using spherical wave function
CN110289480A (en) A kind of beam scanning array antenna of dipoles applied to smartwatch
CN101808337B (en) Channel modeling method of user equipment double-antenna
Zhao et al. A hybrid-equivalent surface-edge current model for simulation of V2X communication antennas with arbitrarily shaped contour
Thamae et al. Dielectric resonator-based multiple-input multiple-output antennas and channel characteristic analysis
Zhang et al. A low-cost and efficient single probe based mimo ota measurement method
Tang et al. Modeling and simulation of A2G channel based on UAV array
CN104717024B (en) The appraisal procedure and device of a kind of antenna pair mimo system performance impact
WO2011157238A1 (en) Method and device for reconstructing outer mode field of antenna channel
Ximenes et al. Capacity evaluation of MIMO antenna systems using spherical harmonics expansion
Miao et al. Measurement-based analysis and modeling of multimode channel behaviors in spherical vector wave domain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862333

Country of ref document: EP

Kind code of ref document: A1