WO2012129802A1 - Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof - Google Patents

Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof Download PDF

Info

Publication number
WO2012129802A1
WO2012129802A1 PCT/CN2011/072330 CN2011072330W WO2012129802A1 WO 2012129802 A1 WO2012129802 A1 WO 2012129802A1 CN 2011072330 W CN2011072330 W CN 2011072330W WO 2012129802 A1 WO2012129802 A1 WO 2012129802A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrahydro
methyl
pyrano
compound
thiazole
Prior art date
Application number
PCT/CN2011/072330
Other languages
French (fr)
Inventor
Ramesh Kaul
Ernest J. Mceachern
David J. Vocadlo
Yuanxi Zhou
Kun Liu
Harold G. Selnick
Zhongyong Wei
Changwei Mu
Yaode Wang
Xiaona Wang
Original Assignee
Alectos Therapeutics Inc.
Merck Sharp & Dohme Corp.
Simon Fraser University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alectos Therapeutics Inc., Merck Sharp & Dohme Corp., Simon Fraser University filed Critical Alectos Therapeutics Inc.
Priority to PCT/CN2011/072330 priority Critical patent/WO2012129802A1/en
Priority to US14/008,388 priority patent/US9718854B2/en
Priority to EP12765063.8A priority patent/EP2691407B1/en
Priority to PCT/CA2012/000267 priority patent/WO2012129651A1/en
Publication of WO2012129802A1 publication Critical patent/WO2012129802A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • This application relates to compounds which selectively inhibit glycosidases and thereof.
  • a wide range of cellular proteins, both nuclear and cytoplasmic, are post- translationally modified by the addition of the monosaccharide 2-acetamido-2-deoxy-B-D- glucopyranoside ( ⁇ - ⁇ -acetylglucosamine) which is attached via an O-glycosidic linkage. 1
  • This modification is generally referred to as O-linked N-acetylglucosamine or O-GlcNAc.
  • the enzyme responsible for post-translationally linking ⁇ - ⁇ -acetylglucosamine (GlcNAc) to specific serine and threonine residues of numerous nucleocytoplasmic proteins is O-GlcNAc transferase (OGT).
  • O-GlcNAcase O-glycoprotein 2-acetamido-2-deoxy-P- D-glucopyranosidase
  • 14 O-GlcNAc is also found on many structural proteins. 15"17 For example, it has been found on a number of cytoskeletal proteins, including neurofilament proteins, 18 ' 19 synapsins, 6 ' 20 synapsin-specific clathrin assembly protein AP-3, 7 and ankyrinG. 14 O-GlcNAc modification has been found to be abundant in the brain. 21 ' 22 It has also been found on proteins clearly implicated in the etiology of several diseases including Alzheimer's disease (AD) and cancer.
  • AD Alzheimer's disease
  • AD and a number of related tauopathies including Downs' syndrome, Pick's disease, Niemann-Pick Type C disease, and amyotrophic lateral sclerosis (ALS) are characterized, in part, by the development of neurofibrillary tangles (FTs).
  • FTs neurofibrillary tangles
  • PHFs paired helical filaments
  • tau Normally tau stabilizes a key cellular network of microtubules that is essential for distributing proteins and nutrients within neurons.
  • tau becomes hyperphosphorylated, disrupting its normal functions, forming PHFs and ultimately aggregating to form FTs.
  • O-GlcNAc is a dynamic modification that can be removed and reinstalled several times during the lifespan of a protein. Suggestively, the gene encoding O-GlcNAcase has been mapped to a chromosomal locus that is linked to AD. 7 ' 42 Hyperphosphorylated tau in human AD brains has markedly lower levels of O-GlcNAc than are found in healthy human brains. 21 It has been shown that O-GlcNAc levels of soluble tau protein from human brains affected with AD are markedly lower than those from healthy brain. 21 Furthermore, PHF from diseased brain was suggested to lack completely any O-GlcNAc modification whatsoever. 21 The molecular basis of this hypoglycosylation of tau is not known, although it may stem from increased activity of kinases and/or dysfunction of one of the enzymes involved in processing O-GlcNAc.
  • UDP-GlcNAc uridine diphosphate-N- acetylglucosamine
  • OGT recognizes many of its substrates 54 ' 55 and binding partners 41 ' 56 through its tetratricopeptide repeat (TPR) domains. 57 ' 58 As described above, O-GlcNAcase 6 ' 7 removes this post- translational modification to liberate proteins making the O-GlcNAc-modification a dynamic cycle occurring several times during the lifetime of a protein. 8 O-GlcNAc has been found in several proteins on known phosphorylation sites, 10 ' 37 ' 38 ' 59 including tau and neurofilaments. 60 Additionally, OGT shows unusual kinetic behaviour making it extremelyly sensitive to intracellular UDP-GlcNAc substrate concentrations and therefore glucose supply. 41
  • TPR tetratricopeptide repeat
  • hyperphosphorylation is widely recognized as a valid therapeutic strategy for treating AD and other neurodegenerative disorders.
  • O-GlcNAcase inhibitors to limit tau hyperphosphorylation, have been considered for treatment of AD and related tauopathies 63 .
  • the O- GlcNAcase inhibitor thiamet-G has been implicated in the reduction of tau phosphorylation in cultured PC-12 cells at pathologically relevant sites.
  • oral administration of thiamet-G to healthy Sprague-Dawley rats has been implicated in reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus. 63
  • O- GlcNAcase is a member of family 84 of glycoside hydrolases that includes enzymes from organisms as diverse as prokaryotic pathogens to humans (for the family classification of glycoside hydrolases see Coutinho, P.M. & Henrissat, B. (1999) Carbohydrate-Active
  • O-GlcNAcase acts to hydrolyse O-GlcNAc off of serine and threonine residues of post-translationally modified
  • O-GlcNAcase appears to have a role in the etiology of several diseases including type II diabetes, 14 ' 82 AD, 16 ' 21 ' 83 and cancer. 22 ' 84 Although O-GlcNAcase was likely isolated earlier on, 18 ' 19 about 20 years elapsed before its biochemical role in acting to cleave O- GlcNAc from serine and threonine residues of proteins was understood.
  • O- GlcNAcase has been cloned, 7 partially characterized, 20 and suggested to have additional activity as a histone acetyltransferase. 20 However, little was known about the catalytic mechanism of this enzyme.
  • HEXA and HEXB encode enzymes catalyzing the hydrolytic cleavage of terminal ⁇ - ⁇ -acetylglucosamine residues from glycoconjugates.
  • the gene products of HEXA and HEXB predominantly yield two dimeric isozymes, hexosaminidase A and hexosaminidase B, respectively.
  • Hexosaminidase A ( ⁇ ), a heterodimeric isozyme is composed of an a- and a B-subunit.
  • Hexosaminidase B ( ⁇ ) a homodimeric isozyme, is composed of two B-subunits.
  • the two subunits, a- and B- bear a high level of sequence identity. Both of these enzymes are classified as members of family 20 of glycoside hydrolases and are normally localized within lysosomes. The proper functioning of these lysosomal ⁇ -hexosaminidases is critical for human development, a fact that is underscored by the tragic genetic illnesses, Tay-Sach's and Sandhoff diseases which stem from a dysfunction in, respectively, hexosaminidase A and hexosaminidase B. 85 These enzymatic deficiencies cause an accumulation of glycolipids and glycoconjugates in the lysosomes resulting in neurological impairment and deformation. The deleterious effects of accumulation of gangliosides at the organismal level are still being uncovered. 86
  • STZ has long been used as a diabetogenic compound because it has a particularly detrimental effect on B-islet cells.
  • 96 STZ exerts its cytotoxic effects through both the alkylation of cellular DNA 96 ' 97 as well as the generation of radical species including nitric oxide.
  • PARP poly(ADP-ribose) polymerase
  • STZ toxicity is a consequence of the irreversible inhibition of O-GlcNAcase, which is highly expressed within ⁇ -islet cells.
  • 92 ' 102 This hypothesis has, however, been brought into question by two independent research groups.
  • 103 ' 104 Because cellular O-GlcNAc levels on proteins increase in response to many forms of cellular stress 105 it seems possible that STZ results in increased
  • PUGNAc is another compound that suffers from the same problem of lack of selectivity, yet has enjoyed use as an inhibitor of both human O-GlcNAcase 6 ' 110 and the family 20 human ⁇ -hexosaminidases.
  • 111 This molecule, developed by Vasella and coworkers, was found to be a potent competitive inhibitor of the ⁇ -N-acetyl-glucosaminidases from Canavalia ensiformis, Mucor rouxii, and the ⁇ -hexosaminidase from bovine kidney.
  • PUGNAc can be used in an animal model to reduce myocardial infarct size after left coronary artery occlusions.
  • 114 Of particular significance is the fact that elevation of O-GlcNAc levels by administration of PUGNAc, an inhibitor of O-GlcNAcase, in a rat model of trauma hemorrhage improves cardiac function.
  • 112 ' 115 elevation of O-GlcNAc levels by treatment with PUGNAc in a cellular model of ischemia/reperfusion injury using neonatal rat ventricular myocytes improved cell viability and reduced necrosis and apoptosis compared to untreated cells.
  • the invention provides, in part, compounds for selectively inhibiting glycosidases, prodrugs of the compounds, uses of the compounds and the prodrugs, pharmaceutical compositions including the compounds or prodrugs of the compounds, and methods of treating diseases and disorders related to deficiency or overexpression of O-GlcNAcase, and/or accumulation or deficiency of O-GlcNAc.
  • the invention provides a compound of Formula (I) or a
  • R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0) R 5 2 , NHR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or
  • each R 5 may be independently H or an optionally substituted C 1-6 alkyl; and R 6 may be selected from the group consisting of: acyl, C 1-6 alkyl, C 2- 6 alkenyl, C 3- 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C 1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH 3 , CN, C0 2 H, and C0 2 CH 3 .
  • the optional substitution may include one or more heteroatoms selected from P, O, S, N, F, CI, Br, I, or B.
  • the compound may be a prodrug; the compound may selectively inhibit an O-glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase (O- GlcNAcase); the compound may selectively bind an O-GlcNAcase (e.g., a mammalian O- GlcNAcase); the compound may selectively inhibit the cleavage of a 2-acetamido-2-deoxy-P- D-glucopyranoside (O-GlcNAc); the compound may not substantially inhibit a mammalian ⁇ - hexosaminidase.
  • O- GlcNAcase O-glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase
  • O-GlcNAcase O-glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase
  • O-GlcNAcase O-glycoprotein 2-acetamid
  • the invention provides a pharmaceutical composition including a compound according to the invention, in combination with a pharmaceutically acceptable carrier.
  • the invention provides methods of selectively inhibiting an O- GlcNAcase, or of inhibiting an O-GlcNAcase in a subject in need thereof, or of increasing the level of O-GlcNAc, or of treating a neurodegenerative disease, a tauopathy, cancer or stress, in a subject in need thereof, by administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0) R 5 2 , HR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or
  • each R 5 may be independently H or an optionally substituted Ci_6 alkyl; and R 6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C 2- 6 alkenyl, C 3- 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH 3 , CN, C0 2 H, and C0 2 CH 3 .
  • the condition may be Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis with cognitive impairment (ALSci), Argyrophilic grain dementia, Bluit disease, Corticobasal degeneration (CBD), Dementia pugilistica, Diffuse neurofibrillary tangles with calcification, Down's syndrome, Familial British dementia, Familial Danish dementia, Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17),
  • Gerstmann-Straussler-Scheinker disease Guadeloupean parkinsonism
  • Hallevorden-Spatz disease neurodegeneration with brain iron accumulation type 1
  • Multiple system atrophy Myotonic dystrophy
  • Niemann-Pick disease type C
  • Pallido-ponto-nigral degeneration Parkinsonism-dementia complex of Guam
  • Pick's disease Post's disease
  • Prion diseases including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru
  • Prion diseases including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru
  • Prion diseases including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru
  • Prion diseases including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru
  • Prion diseases including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia
  • Parkinson's disease Schizophrenia, Mild Cognitive Impairment (MCI), Neuropathy
  • the stress may be a cardiac disorder, e.g., ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; or stent placement.
  • ischemia e.g., ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; or stent placement.
  • the invention provides a method of treating an O-GlcNAcase- mediated condition that excludes a neurodegenerative disease, a tauopathy, cancer or stress, in a subject in need thereof, by administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0) R 5 2 , HR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or
  • each R 5 may be independently H or an optionally substituted Ci_6 alkyl; and R 6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C 2- 6 alkenyl, C 3- 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH 3 , CN, C0 2 H, and C0 2 CH 3 .
  • the condition may be inflammatory or allergic diseases such as asthma, allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic
  • ILD interstitial lung disease
  • idiopathic pulmonary fibrosis or ILD associated with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, Sjogren's syndrome, polymyositis or dermatomyositis
  • systemic anaphylaxis or hypersensitivity responses drug allergies, insect sting allergies
  • autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Guillain-Barre syndrome, systemic lupus erythematosus, myastenia gravis, glomerulonephritis, autoimmune thyroiditis, graft rejection, including allograft rejection or graft-versus-host disease
  • inflammatory bowel diseases such as Crohn's disease and ulcerative colitis
  • spondyloarthropathies e.g., idiopathic pulmonary fibrosis, or I
  • each R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0)NR 5 2 , NHR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin- l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one- 1-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or (CH 2 ) 2 CH 3
  • each R 5 may be independently H or an optionally substituted C 1-6 alkyl
  • R 6 may be selected from the group consisting of: acyl, C 1-6 alkyl, C 2- 6 alkenyl, C 3 - 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C 1-6 alkyl optionally substituted with 1 to
  • the invention provides use of a compound of an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
  • R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0)NR 5 2 , NHR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin-l-yl, 3-hydroxyazetidin- l-yl, and pyrrolidin-2-one-l-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or
  • each R 5 may be independently H or an optionally substituted C 1-6 alkyl; and R 6 may be selected from the group consisting of: acyl, C 1-6 alkyl, C 2- 6 alkenyl, C 3- 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C 1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH 3 , CN, C0 2 H, and C0 2 CH 3 , in the preparation of a medicament.
  • the medicament may be for selectively inhibiting an O-GlcNAcase, for increasing the level of O-GlcNAc, for treating a condition modulated by an O-GlcNAcase, for treating a neurodegenerative disease, a tauopathy, a cancer, or stress.
  • the invention provides a method for screening for a selective inhibitor of an O-GlcNAcase, by a) contacting a first sample with a test compound; b) contacting a second sample with a compound of Formula (I)
  • R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0) R 5 2 , NHR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 , CH 2 CH 3 , or
  • each R 5 may be independently H or an optionally substituted C 1-6 alkyl; and R 6 may be selected from the group consisting of: acyl, C 1-6 alkyl, C 2- 6 alkenyl, C 3- 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C 1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH 3 , CN, C0 2 H, and C0 2 CH 3 ; c) determining the level of inhibition of the O-GlcNAcase in the first and second samples, where the test compound is a selective inhibitor of a O-GlcNAcase if the test compound exhibits the same or greater inhibition of the O-GlcNAcase when compared to the compound of Formula (I).
  • the invention provides, in part, novel compounds that are capable of inhibiting an O- glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase (O-GlcNAcase).
  • O-GlcNAcase is a mammalian O-GlcNAcase, such as a rat, mouse or human O-GlcNAcase.
  • compounds according to the invention exhibit an increased selectivity in inhibiting an O-GlcNAcase. In some embodiments, the compounds according to the invention exhibit an increased potency in inhibiting an O-GlcNAcase. In some embodiments, the compounds according to the invention are more selective for an O- GlcNAcase over a ⁇ -hexosaminidase. In some embodiments, the compounds selectively inhibit the activity of a mammalian O-GlcNAcase over a mammalian ⁇ -hexosaminidase. In some embodiments, a selective inhibitor of an O-GlcNAcase does not substantially inhibit a ⁇ -hexosaminidase.
  • the ⁇ -hexosaminidase is a mammalian ⁇ - hexosaminidase, such as a rat, mouse or human ⁇ -hexosaminidase.
  • a compound that "selectively" inhibits an O-GlcNAcase is a compound that inhibits the activity or biological function of an O-GlcNAcase, but does not substantially inhibit the activity or biological function of a ⁇ -hexosaminidase.
  • a selective inhibitor of an O-GlcNAcase selectively inhibits the cleavage of 2-acetamido-2-deoxy-P-D- glucopyranoside (O-GlcNAc) from polypeptides.
  • a selective inhibitor of an O-GlcNAcase selectively binds to an O-GlcNAcase.
  • a selective inhibitor of an O-GlcNAcase inhibits hyperphosphorylation of a tau protein and/or inhibits formations of FTs.
  • inhibits means a decrease by any value between 10% and 90%, or of any integer value between 30% and 60%, or over 100%, or a decrease by 1-fold, 2-fold, 5-fold, 10-fold or more. It is to be understood that the inhibiting does not require full inhibition.
  • a selective inhibitor of an O-GlcNAcase elevates or enhances O-GlcNAc levels e.g., O-GlcNAc-modified polypeptide or protein levels, in cells, tissues, or organs (e.g., in brain, muscle, or heart (cardiac) tissue) and in animals.
  • increasing or enhances or “enhancing” is meant an increase by any value between 10% and 90%, or of any integer value between 30% and 60%, or over 100%, or an increase by 1-fold, 2-fold, 5-fold, 10-fold, 15-fold, 25-fold, 50-fold, 100-fold or more.
  • a selective inhibitor of an O-GlcNAcase exhibits a selectivity ratio, as described herein, in the range 10 to 100000, or in the range 100 to 100000, or in the range 1000 to 100000, or at least 10, 20, 50, 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 10,000, 25,000, 50,000, 75,000, or any value within or about the described range.
  • the compounds of the present invention elevate O-GlcNAc levels on O-GlcNAc- modified polypeptides or proteins in vivo specifically via interaction with an O-GlcNAcase enzyme, and are effective in treating conditions which require or respond to inhibition of O- GlcNAcase activity.
  • the compounds of the present invention are useful as agents that produce a decrease in tau phosphorylation and FT formation. In some embodiments, the compounds are therefore useful to treat Alzheimer's disease and related tauopathies. In some embodiments, the compounds are thus capable of treating Alzheimer's disease and related tauopathies by lowering tau phosphorylation and reducing NFT formation as a result of increasing tau O-GlcNAc levels. In some embodiments, the compounds produce an increase in levels of O-GlcNAc modification on O-GlcNAc-modified polypeptides or proteins, and are therefore useful for treatment of disorders responsive to such increases in O- GlcNAc modification; these disorders include without limitation neurodegenerative, inflammatory, cardiovascular, and immunoregulatory diseases.
  • the compounds are neuroprotective. In some embodiments, the compounds are also useful as a result of other biological activites related to their ability to inhibit the activity of glycosidase enzymes. In alternative embodiments, the compounds of the invention are valuable tools in studying the physiological role of O-GlcNAc at the cellular and organismal level.
  • the invention provides methods of enhancing or elevating levels of protein O-GlcNAc modification in animal subjects, such as, veterinary and human subjects. In alternative embodiments, the invention provides methods of selectively inhibiting an O-GlcNAcase enzyme in animal subjects, such as, veterinary and human subjects. In alternative embodiments, the invention provides methods of inhibiting phosphorylation of tau polypeptides, or inhibiting formation of FTs, in animal subjects, such as, veterinary and human subjects.
  • the invention provides compounds described generally by Formula (I) and the salts, prodrugs, and enantiomeric forms thereof:
  • each R 1 may be independently H or acyl
  • R 2 may be selected from the group consisting of: OCH 3 , OC(0) R 5 2 , HR 6 , 0(S0 2 )N(CH 3 ) 2 , azetidin- 1-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one- 1-yl
  • R 3 may be H or CH 3
  • R 4 may be CH 3 CH 2 CH 3 , or (CH 2 ) 2 CH 3
  • each R 5 may be independently H or an optionally substituted Ci_6 alkyl
  • R 6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C 2- 6 alkenyl, C 3 - 6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2
  • each R 1 as set forth in Formula (I) may be independently H or
  • R 2 as set forth in Formula (I) may be selected from the group consisting of: OCH 3 , OC(0) HCH 3 , OC(0) HCH 2 CH 3 , OC(0)N(CH 3 ) 2 ,
  • R 3 as set forth in Formula (I) may be H, CH 3 , or CH 2 CH 3 .
  • R 4 as set forth in Formula (I) may be CH 3 , CH 2 CH 3 , or (CH 2 ) 2 CH 3 .
  • compounds according to Formula (I) include the compounds described in Table 1.
  • “compounds” refers to the compounds discussed herein and includes precursors and derivatives of the compounds, including acyl-protected derivatives, and pharmaceutically acceptable salts of the compounds, precursors, and derivatives.
  • the invention also includes prodrugs of the compounds, pharmaceutical compositions including the compounds and a pharmaceutically acceptable carrier, and pharmaceutical compositions including prodrugs of the compounds and a pharmaceutically acceptable carrier.
  • all of the compounds of the invention contain at least one chiral center.
  • the formulations, preparation, and compositions including compounds according to the invention include mixtures of enantiomers and individual enantiomers. In general, the compound may be supplied in any desired degree of enantiomeric purity.
  • the substituents may include, in addition to the substituents listed above, halo, OOCR, ROCR, where R is H or a substituent set forth above.
  • Alkyl refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing no unsaturation and including, for example, from one to ten carbon atoms, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, and which is attached to the rest of the molecule by a single bond. Unless stated otherwise specifically in the specification, the alkyl group may be optionally substituted by one or more substituents as described herein. Unless stated otherwise specifically herein, it is understood that the substitution can occur on any carbon of the alkyl group.
  • alkenyl refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing at least one double bond and including, for example, from two to ten carbon atoms, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, and which is attached to the rest of the molecule by a single bond or a double bond.
  • the alkenyl group may be optionally substituted by one or more substituents as described herein. Unless stated otherwise specifically herein, it is understood that the substitution can occur on any carbon of the alkenyl group.
  • alkenyl refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing at least one triple bond and including, for example, from two to ten carbon atoms. Unless stated otherwise specifically in the specification, the alkenyl group may be optionally substituted by one or more substituents as described herein.
  • Aryl refers to a phenyl or naphthyl group and, unless stated otherwise specifically herein, the term “aryl” is meant to include aryl groups optionally substituted by one or more substituents as described herein.
  • Heteroaryl refers to a single or fused aromatic ring group containing one or more heteroatoms in the ring, for example N, O, S, including for example, 5-14 members, such as 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 members.
  • heteroaryl groups include furan, thiophene, pyrrole, oxazole, thiazole, imidazole, pyrazole, isoxazole, isothiazole, 1,2,3- oxadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,3,4-thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, imidazole, benzimidazole, benzoxazole, benzothiazole, indolizine, indole, isoindole, benzofuran, benzothiophene, lH-indazole, purine, 4H- quinolizine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8- naphthyridine, pteridine. Unless stated otherwise specifically
  • Acyl refers to a group of the formula -C(0)R a , where R a is an alkyl or cycloalkyl group as described herein.
  • R a is an alkyl or cycloalkyl group as described herein.
  • the alkyl or cycloalkyl group may be optionally substituted as described herein.
  • Arylacyl refers to a group of the formula -C(0)Rb, where Rb is an aryl or heteroaryl group as described herein.
  • Rb is an aryl or heteroaryl group as described herein.
  • the aryl or heteroaryl group(s) may be optionally substituted as described herein.
  • Cycloalkyl refers to a stable monovalent monocyclic, bicyclic or tricyclic
  • hydrocarbon group consisting solely of carbon and hydrogen atoms, having for example from 3 to 15 carbon atoms, and which is saturated and attached to the rest of the molecule by a single bond.
  • cycloalkyl is meant to include cycloalkyl groups which are optionally substituted as described herein.
  • optionally substituted alkyl means that the alkyl group may or may not be substituted and that the description includes both substituted alkyl groups and alkyl groups having no substitution.
  • optionally substituted alkyl groups include, without limitation, methyl, ethyl, propyl, etc.
  • optionally substituted alkyl and alkenyl groups include allyl, crotyl, 2-pentenyl, 3-hexenyl, 2-cyclopentenyl, 2-cyclohexenyl, 2-cyclopentenylmethyl, 2-cyclohexenylmethyl, etc.
  • optionally substituted alkyl and alkenyl groups include C 1-6 alkyl s or alkenyls.
  • Halo refers to bromo, chloro, fluoro, iodo, etc.
  • suitable halogens include fluorine or chlorine.
  • An amino group may also be substituted once or twice (to form a secondary or tertiary amine) with a group such as an optionally substituted alkyl group including C 1-6 alkyl (e.g., methyl, ethyl propyl etc.); an optionally substituted alkenyl group such as allyl, crotyl, 2-pentenyl, 3-hexenyl, etc., or an optionally substituted cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, etc.
  • C 1-6 alkyl, alkenyl and cycloalkyl are preferred.
  • An amino group may be substituted with an optionally substituted C 2- 4 alkanoyl, e.g., acetyl, propionyl, butyryl, isobutyryl etc., or a C 1-4 alkylsulfonyl (e.g., methanesulfonyl, ethanesulfonyl, etc.).
  • C 2- 4 alkanoyl e.g., acetyl, propionyl, butyryl, isobutyryl etc.
  • a C 1-4 alkylsulfonyl e.g., methanesulfonyl, ethanesulfonyl, etc.
  • optionally substituted carbonyl groups, or sulfonyl groups include optionally substituted forms of such groups formed from various hydrocarbyls such as alkyl, alkenyl and 5- to 6-membered monocyclic aromatic group (e.g., phenyl, pyridyl, etc.), as described herein.
  • the invention provides methods of treating conditions that are modulated, directly or indirectly, by an O-GlcNAcase enzyme or by O-GlcNAc-modified protein levels, for example, a condition that is benefited by inhibition of an O-GlcNAcase enzyme or by an elevation of O-GlcNAc-modified protein levels.
  • Such conditions include, without limitation, Glaucoma, Schizophrenia, tauopathies, such as Alzheimer's disease, neurodegenerative diseases, cardiovascular diseases, diseases associated with inflammation, diseases associated with immunosuppression and cancers.
  • the compounds of the invention are also useful in the treatment of diseases or disorders related to deficiency or over-expression of O-GlcNAcase or accumulation or depletion of O-GlcNAc, or any disease or disorder responsive to glycosidase inhibition therapy.
  • diseases and disorders include, but are not limited to, Glaucoma, Schizophrenia, neurodegenerative disorders, such as Alzheimer's disease (AD), or cancer.
  • AD Alzheimer's disease
  • diseases and disorders may also include diseases or disorders related to the
  • OGT enzyme-mediated oxidative stress reaction
  • a method of protecting or treating target cells expressing proteins that are modified by O-GlcNAc residues, the dysregulation of which modification results in disease or pathology includes treatment, prevention, and amelioration.
  • the invention provides methods of enhancing or elevating levels of protein O-GlcNAc modification in animal subjects, such as, veterinary and human subjects.
  • This elevation of O-GlcNAc levels can be useful for the prevention or treatment of Alzheimer's disease; prevention or treatment of other neurodegenerative diseases (e.g.
  • Parkinson's disease Huntington's disease
  • providing neuroprotective effects preventing damage to cardiac tissue; and treating diseases associated with inflammation or
  • the invention provides methods of selectively inhibiting an O-GlcNAcase enzyme in animal subjects, such as veterinary and human subjects.
  • the invention provides methods of inhibiting
  • the compounds of the invention may be used to study and treat AD and other tauopathies.
  • the methods of the invention are effected by administering a compound according to the invention to a subject in need thereof, or by contacting a cell or a sample with a compound according to the invention, for example, a pharmaceutical composition comprising a therapeutically effective amount of the compound according to Formula (I).
  • the compounds are useful in the treatment of a disorder in which the regulation of O- GlcNAc protein modification is implicated, or any condition as described herein.
  • Disease states of interest include Alzheimer's disease (AD) and related neurodegenerative tauopathies, in which abnormal hyperphosphorylation of the microtubule-associated protein tau is involved in disease pathogenesis.
  • AD Alzheimer's disease
  • the compounds may be used to block hyperphosphorylation of tau by maintaining elevated levels of O-GlcNAc on tau, thereby providing therapeutic benefit.
  • the effectiveness of the compounds in treating pathology associated with the accumulation of toxic tau species may be confirmed by testing the ability of the compounds to block the formation of toxic tau
  • Tauopathies that may be treated with the compounds of the invention include:
  • Alzheimer's disease Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis with cognitive impairment (ALSci), Argyrophilic grain dementia, Bluit disease, Corticobasal degeneration (CBD), Dementia pugilistica, Diffuse neurofibrillary tangles with calcification, Down's syndrome, Familial British dementia, Familial Danish dementia, Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Gerstmann-Straussler- Scheinker disease, Guadeloupean parkinsonism, Hallevorden-Spatz disease
  • neurodegeneration with brain iron accumulation type 1 Neurodegeneration with brain iron accumulation type 1
  • Multiple system atrophy Myotonic dystrophy
  • Niemann-Pick disease type C
  • Pallido-ponto-nigral degeneration Parkinsonism- dementia complex of Guam
  • Pick's disease PiD
  • Post-encephalitic parkinsonism Prion diseases
  • CJD Creutzfeldt- Jakob Disease
  • vCJD Variant Creutzfeldt- Jakob Disease
  • Fatal Familial Insomnia and Kuru
  • Progressive supercortical gliosis Progressive supranuclear palsy (PSP), Richardson's syndrome, Subacute sclerosing panencephalitis, Tangle-only dementia, and Glaucoma.
  • the compounds of this invention are also useful in the treatment of conditions associate with tissue damage or stress, stimulating cells, or promoting differentiation of cells. Accordingly, in some embodiments, the compounds of this invention may be used to provide therapeutic benefit in a variety of conditions or medical procedures involving stress in cardiac tissue, including but not limited to: ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; and stent placement.
  • the effectiveness of the compounds in treating pathology associated with cellular stress may be confirmed by testing the ability of the compounds to prevent cellular damage in established cellular stress assays, 105 ' 116 ' 117 and to prevent tissue damage and promote functional recovery in animal models of ischemia-reperfusion, 70 ' 114 and
  • Compounds that selectively inhibit O-GlcNAcase activity may be used for the treatment of diseases that are associated with inflammation, including but not limited to, inflammatory or allergic diseases such as asthma, allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic pneumonias, delayed-type
  • ILD interstitial lung disease
  • autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Guillain-Barre syndrome, systemic lupus erythematosus, myastenia gravis, glomerulonephritis, autoimmune thyroiditis, graft rejection, including allograft rejection or graft-versus-host disease; inflammatory bowel diseases, such as Crohn' s disease and ulcerative colitis; spondyloarthropathies; scleroderma; psoriasis (including T-cell mediated psoriasis) and inflammatory dermatoses such as dermatitis, eczema, atopic dermatitis, allergic contact dermatitis, urticaria; vasculitis (e.g., necrotizing, cutaneous, and hypersensitivity vasculitis); eos
  • compounds that affects levels of protein O-GlcNAc modification may be used for the treatment of diseases associated with immunosuppression, such as in individuals undergoing chemotherapy, radiation therapy, enhanced wound healing and burn treatment, therapy for autoimmune disease or other drug therapy (e.g., corticosteroid therapy) or combination of conventional drugs used in the treatment of autoimmune diseases and graft/transplantation rejection, which causes immunosuppression; or immunosuppression due to congenital deficiency in receptor function or other causes.
  • diseases associated with immunosuppression such as in individuals undergoing chemotherapy, radiation therapy, enhanced wound healing and burn treatment, therapy for autoimmune disease or other drug therapy (e.g., corticosteroid therapy) or combination of conventional drugs used in the treatment of autoimmune diseases and graft/transplantation rejection, which causes immunosuppression; or immunosuppression due to congenital deficiency in receptor function or other causes.
  • the compounds of the invention may be useful for treatment of neurodegenerative diseases, including Parkinson's disease and Huntington's disease.
  • Other conditions that may be treated are those triggered, affected, or in any other way correlated with levels of O- GlcNAc post-translational protein modification. It is expected that the compounds of this invention may be useful for the treatment of such conditions and in particular, but not limited to, the following for which a association with O-GlcNAc levels on proteins has been established: graft rejection, in particular but not limited to solid organ transplants, such as heart, lung, liver, kidney, and pancreas transplants (e.g.
  • kidney and lung allografts cancer, in particular but not limited to cancer of the breast, lung, prostate, pancreas, colon, rectum, bladder, kidney, ovary; as well as non-Hodgkin's lymphoma and melanoma; epilepsy, pain, fibromyalgia, or stroke, e.g., for neuroprotection following a stroke.
  • compositions including compounds according to the invention, or for use according to the invention are contemplated as being within the scope of the invention.
  • pharmaceutical compositions including an effective amount of a compound of Formula (I) are provided.
  • the compounds of Formula (I) and their pharmaceutically acceptable salts, enantiomers, solvates, and derivatives are useful because they have pharmacological activity in animals, including humans.
  • the compounds according to the invention are stable in plasma, when administered to a subject.
  • compounds according to the invention, or for use according to the invention may be provided in combination with any other active agents or
  • compositions where such combined therapy is useful to modulate O- GlcNAcase activity, for example, to treat neurodegenerative, inflammatory, cardiovascular, or immunoregulatory diseases, or any condition described herein.
  • compounds according to the invention, or for use according to the invention may be provided in combination with one or more agents useful in the prevention or treatment of Alzheimer' s disease. Examples of such agents include, without limitation,
  • acetylcholine esterase inhibitors such as Aricept® (Donepezil), Exelon® (Rivastigmine), Razadyne® (Razadyne ER®, Reminyl®, Nivalin®, Galantamine), Cognex® (Tacrine), Dimebon, Huperzine A, Phenserine, Debio-9902 SR (ZT-1 SR), Zanapezil (TAK0147), ganstigmine, NP7557, etc.;
  • NMDA receptor antagonists such as Namenda® (Axura®, Akatinol®, Ebixa®,
  • gamma-secretase inhibitors and/or modulators such as FlurizanTM (Tarenflurbil,
  • beta-secretase inhibitors such as ATG-Z1, CTS-21166, etc.
  • alpha-secretase activators such as NGX267, etc
  • amyloid- ⁇ aggregation and/or fibrillization inhibitors such as Alzhemed (3 APS, Tramiprosate, 3-amino-l-propanesulfonic acid), AL-108, AL-208, AZD-103, PBT2, Cereact, ONO-2506PO, PPI-558, etc.;
  • tau aggregation inhibitors such as methylene blue, etc.
  • microtubule stabilizers such as AL-108, AL-208, paclitaxel, etc.
  • RAGE inhibitors such as TTP488, etc.
  • 5-HTla receptor antagonists such as Xaliproden, Lecozotan, etc.
  • 5-HT4 receptor antagonists such as PRX-03410, etc.
  • kinase inhibitors such as SRN-003-556, amfurindamide, LiCl, AZD1080, NP031112, SAR-502250, etc.
  • humanized monoclonal anti- ⁇ antibodies such as Bapineuzumab (AAB-001),
  • amyloid vaccines such as AN- 1792, ACC-001
  • neuroprotective agents such as Cerebrolysin, AL-108, AL-208, Huperzine A, etc.;
  • L-type calcium channel antagonists such as MEM- 1003, etc.
  • nicotinic receptor antagonists such as AZD3480, GTS-21, etc.
  • nicotinic receptor agonists such as MEM 3454, Nefiracetam, etc.
  • peroxisome proliferator-activated receptor (PPAR) gamma agonists such as
  • Avandia® (Rosglitazone), etc.
  • PDE4 inhibitors such as MK-0952, etc.
  • hormone replacement therapy such as estrogen (Premarin), etc.
  • MAO monoamine oxidase
  • NS2330 Rasagiline (Azilect®), TVP- 1012, etc.
  • Azilect® Rasagiline
  • TVP- 1012 TVP- 1012, etc.
  • AMP A receptor modulators such as Ampalex (CX 516), etc.
  • nerve growth factors or NGF potentiators such as CERE-110 (AAV-NGF), T-588, T- 817MA, etc.;
  • agents that prevent the release of luteinizing hormone (LH) by the pituitary gland such as leuoprolide (VP-4896), etc.;
  • GABA receptor modulators such as AC-3933, NGD 97-1, CP-457920, etc.;
  • benzodiazepine receptor inverse agonists such as SB-737552 (S-8510), AC-3933, etc.;
  • noradrenaline-releasing agents such as T-588, T-817MA, etc.
  • combination of compounds according to the invention, or for use according to the invention, with Alzheimer's agents is not limited to the examples described herein, but includes combination with any agent useful for the treatment of Alzheimer's disease.
  • Combination of compounds according to the invention, or for use according to the invention, and other Alzheimer's agents may be administered separately or in conjunction.
  • the administration of one agent may be prior to, concurrent to, or subsequent to the administration of other agent(s).
  • the compounds may be supplied as "prodrugs" or protected forms, which release the compound after administration to a subject.
  • the compound may carry a protective group which is split off by hydrolysis in body fluids, e.g., in the bloodstream, thus releasing the active compound or is oxidized or reduced in body fluids to release the compound.
  • a “prodrug” is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention.
  • the term “prodrug” refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable.
  • a prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention.
  • Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood.
  • the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a subject.
  • prodrug is also meant to include any covalently bonded carriers which release the active compound of the invention in vivo when such prodrug is administered to a subject.
  • Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention.
  • Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively.
  • Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and acetamide, formamide, and benzamide derivatives of amine functional groups in the compounds of the invention and the like.
  • prodrugs may be found in "Smith and Williams' Introduction to the Principles of Drug Design,” H.J. Smith, Wright, Second Edition, London (1988); Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam); The Practice of Medicinal Chemistry, Camille G. Wermuth et al, Ch 31, (Academic Press, 1996); A
  • Suitable prodrug forms of the compounds of the invention include embodiments in which each R 1 is acyl.
  • the ester groups may be hydrolyzed in vivo (e.g. in bodily fluids), releasing the active compounds in which each R 1 is H.
  • Preferred prodrug embodiments of the invention include compounds of Formula (I) where each R 1 is COCH 3 .
  • Compounds according to the invention, or for use according to the invention can be provided alone or in combination with other compounds in the presence of a liposome, an adjuvant, or any pharmaceutically acceptable carrier, diluent or excipient, in a form suitable for administration to a subject such as a mammal, for example, humans, cattle, sheep, etc. If desired, treatment with a compound according to the invention may be combined with more traditional and existing therapies for the therapeutic indications described herein.
  • Compounds according to the invention may be provided chronically or intermittently.
  • “Chronic” administration refers to administration of the compound(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent” administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. The terms "administration,”
  • “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier that has been approved, for example, by the United States Food and Drug Administration or other governmental agency as being acceptable for use in humans or domestic animals.
  • compositions in accordance with this invention may comprise a salt of such a compound, preferably a physiologically acceptable salt, which are known in the art.
  • a salt of such a compound preferably a physiologically acceptable salt, which are known in the art.
  • “pharmaceutically acceptable salt” as used herein means an active ingredient comprising compounds of Formula I used in the form of a salt thereof, particularly where the salt form confers on the active ingredient improved pharmacokinetic properties as compared to the free form of the active ingredient or other previously disclosed salt form.
  • a “pharmaceutically acceptable salt” includes both acid and base addition salts.
  • a “pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid,
  • a "pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine,methylglucamine, theobromine, purines, piperazine, piperidine,
  • N-ethylpiperidine polyamine resins and the like.
  • Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.
  • the term "pharmaceutically acceptable salt” encompasses all acceptable salts including but not limited to acetate, lactobionate, benzenesulfonate, laurate, benzoate, malate, bicarbonate, maleate, bisulfate, mandelate, bitartarate, mesylate, borate, methylbromide, bromide, methylnitrite, calcium edetate, methylsulfate, camsylate, mucate, carbonate, napsylate, chloride, nitrate, clavulanate, N-methylglucamine, citrate, ammonium salt, dihydrochloride, oleate, edetate, oxalate, edisylate, pamoate (embonate), estolate, palmitate, esylate, pantothenate, fumarate, phosphate/diphosphate, gluceptate, polygalacturonate, gluconate, salicylate, glut
  • Pharmaceutically acceptable salts of the compounds of the present invention can be used as a dosage for modifying solubility or hydrolysis characteristics, or can be used in sustained release or prodrug formulations.
  • pharmaceutically acceptable salts of the compounds of this invention may include those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc, and from bases such as ammonia, ethylenediamine, N-methyl-glutamine, lysine, arginine, ornithine, choline,
  • compositions will typically include one or more carriers acceptable for the mode of administration of the preparation, be it by injection, inhalation, topical administration, lavage, or other modes suitable for the selected treatment.
  • Suitable carriers are those known in the art for use in such modes of administration.
  • Suitable pharmaceutical compositions may be formulated by means known in the art and their mode of administration and dose determined by the skilled practitioner.
  • a compound may be dissolved in sterile water or saline or a pharmaceutically acceptable vehicle used for administration of non-water soluble compounds such as those used for vitamin K.
  • the compound may be administered in a tablet, capsule or dissolved in liquid form.
  • the table or capsule may be enteric coated, or in a formulation for sustained release.
  • Many suitable formulations are known, including, polymeric or protein microparticles encapsulating a compound to be released, ointments, gels, hydrogels, or solutions which can be used topically or locally to administer a compound.
  • a sustained release patch or implant may be employed to provide release over a prolonged period of time.
  • Many techniques known to skilled practitioners are described in Remington: the Science & Practice of Pharmacy by Alfonso Gennaro, 20 th ed., Williams & Wilkins, (2000).
  • Formulations for parenteral administration may, for example, contain excipients, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated naphthalenes.
  • Biocompatible, biodegradable lactide polymer
  • lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds.
  • Other potentially useful parenteral delivery systems for modulatory compounds include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes.
  • Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
  • the compounds or pharmaceutical compositions according to the present invention may be administered by oral or non-oral, e.g., intramuscular, intraperitoneal, intravenous, intraci sternal injection or infusion, subcutaneous injection, transdermal or transmucosal routes.
  • compounds or pharmaceutical compositions in accordance with this invention or for use in this invention may be administered by means of a medical device or appliance such as an implant, graft, prosthesis, stent, etc.
  • Implants may be devised which are intended to contain and release such compounds or compositions.
  • An example would be an implant made of a polymeric material adapted to release the compound over a period of time.
  • the compounds may be administered alone or as a mixture with a
  • compounds or pharmaceutical compositions in accordance with this invention or for use in this invention may be administered by inhalation spray, nasal, vaginal, rectal, sublingual, or topical routes and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.
  • the compounds of the invention may be used to treat animals, including mice, rats, horses, cattle, sheep, dogs, cats, and monkeys. However, compounds of the invention can also be used in other organisms, such as avian species (e.g., chickens). The compounds of the invention may also be effective for use in humans.
  • the term "subject” or alternatively referred to herein as "patient” is intended to be referred to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment. However, the compounds, methods and pharmaceutical compositions of the present invention may be used in the treatment of animals.
  • a "subject” may be a human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc.
  • the subject may be suspected of having or at risk for having a condition requiring modulation of O-GlcNAcase activity.
  • an "effective amount" of a compound according to the invention includes a therapeutically effective amount or a prophylactically effective amount.
  • a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result, such as inhibition of an O-GlcNAcase, elevation of O-GlcNAc levels, inhibition of tau phosphorylation, or any condition described herein.
  • a therapeutically effective amount of a compound may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the compound are outweighed by the therapeutically beneficial effects.
  • a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result, such as inhibition of an O-GlcNAcase, elevation of O-GlcNAc levels, inhibition of tau phosphorylation, or any condition described herein.
  • a prophylactic dose is used in subjects prior to or at an earlier stage of disease, so that a prophylactically effective amount may be less than a therapeutically effective amount.
  • a suitable range for therapeutically or prophylactically effective amounts of a compound may be any integer from 0.1 nM-0.1 M, 0.1 nM-0.05 M, 0.05 nM-15 ⁇ or 0.01 nM-10 ⁇ .
  • an appropriate dosage level in the treatment or prevention of conditions which require modulation of O-GlcNAcase activity, will generally be about 0.01 to 500 mg per kg subject body weight per day, and can be administered in singe or multiple doses. In some embodiments, the dosage level will be about 0.1 to about 250 mg/kg per day. It will be understood that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound used, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the patient undergoing therapy.
  • dosage values may vary with the severity of the condition to be alleviated.
  • specific dosage regimens may be adjusted over time according to the individual need and the professional judgement of the person administering or supervising the administration of the compositions.
  • Dosage ranges set forth herein are exemplary only and do not limit the dosage ranges that may be selected by medical practitioners.
  • the amount of active compound(s) in the composition may vary according to factors such as the disease state, age, sex, and weight of the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation.
  • parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
  • compounds of the invention should be used without causing substantial toxicity, and as described herein, the compounds exhibit a suitable safety profile for therapeutic use.
  • Toxicity of the compounds of the invention can be determined using standard techniques, for example, by testing in cell cultures or experimental animals and determining the therapeutic index, i.e., the ratio between the LD50 (the dose lethal to 50% of the population) and the LD100 (the dose lethal to 100% of the population). In some circumstances however, such as in severe disease conditions, it may be necessary to administer substantial excesses of the compositions.
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of generic Formula (I).
  • different isotopic forms of hydrogen (H) include protium (3 ⁇ 4), deuterium ( 2 H) and tritium ( 3 H).
  • Protium is the predominant hydrogen isotope found in nature.
  • Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within generic Formula (I) can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • a compound of Formula (I) may be used in screening assays for compounds which modulate the activity of glycosidase enzymes, preferably the O-GlcNAcase enzyme.
  • the ability of a test compound to inhibit O-GlcNAcase-dependent cleavage of O-GlcNAc from a model substrate may be measured using any assays, as described herein or known to one of ordinary skill in the art. For example, a fluoresence or UV-based assay known in the art may be used.
  • a "test compound” is any naturally-occurring or artificially-derived chemical compound. Test compounds may include, without limitation, peptides, polypeptides, synthesised organic molecules, naturally occurring organic molecules, and nucleic acid molecules.
  • a test compound can "compete" with a known compound such as a compound of Formula (I) by, for example, interfering with inhibition of O-GlcNAcase-dependent cleavage of O-GlcNAc or by interfering with any biological response induced by a compound of Formula (I).
  • a test compound can exhibit any value between 10% and 200%, or over 500%), modulation when compared to a compound of Formula (I) or other reference compound.
  • a test compound may exhibit at least any positive or negative integer from 10%> to 200% modulation, or at least any positive or negative integer from 30% to 150%) modulation, or at least any positive or negative integer from 60%> to 100%
  • modulation or any positive or negative integer over 100% modulation.
  • a compound that is a negative modulator will in general decrease modulation relative to a known compound, while a compound that is a positive modulator will in general increase modulation relative to a known compound.
  • test compounds are identified from large libraries of both natural products or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art.
  • test extracts or compounds are not critical to the method(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds.
  • Synthetic compound libraries are commercially available.
  • libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceanographic Institute (Ft. Pierce, FL, USA), and PharmaMar, MA, USA.
  • Biotics Sussex, UK
  • Xenova Slough, UK
  • Harbor Branch Oceanographic Institute Ft. Pierce, FL, USA
  • PharmaMar, MA PharmaMar, USA.
  • natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods.
  • any library or compound is readily modified using standard chemical, physical, or biochemical methods.
  • compounds shown to be useful agents for treatment are chemically modified according to methods known in the art.
  • Compounds identified as being of therapeutic, prophylactic, diagnostic, or other value may be subsequently analyzed using a suitable animal model, as described herein on known in the art.
  • the compounds are useful in the development of animal models for studying diseases or disorders related to deficiencies in O-GlcNAcase, over- expression of O-GlcNAcase, accumulation of O-GlcNAc, depletion of O-GlcNAc, and for studying treatment of diseases and disorders related to deficiency or over-expression of O-
  • GlcNAcase or accumulation or depletion of O-GlcNAc.
  • diseases and disorders include neurodegenerative diseases, including Alzheimer's disease, and cancer.
  • methyl iodide (0.052 mL, 0.84 mmol) was added and the mixture was stirred at room temperature for another 2.5h. MeOH (2 mL) was added to quench the hydride and the reaction mixture was concentrated under reduced pressure.
  • reaction was then quenched by saturated aqueous NH 4 C1 (30 mL), extracted with DCM (3 x 30 ml), dried over sodium sulfate, and concentrated under vacuum to give compound D as a light yellow foam, which was dissolved into DCM (15 mL) and treated with TFA (1.5 mL) overnight at room temperature.
  • the production of fluorescent product is measured every 60 sec for 45 min with a Tecan Infinite M200 plate-reader with excitation at 355 nM and emission detected at 460 nM, with 4-Methylumbelliferone (Sigma M1381) used to produce a standard curve.
  • the slope of product production is determined for each concentration of compound tested and plotted, using standard curve fitting algorithms for sigmoidal dose response curves. The values for a four parameter logistic curve fit of the data are determined.
  • Ki values are determined using the Cheng-Prusoff equation.
  • the compounds described herein exhibit a selectivity ratio in the range of about 10 to 100000.
  • many compounds of the invention exhibit high selectivity for inhibition of O-GlcNAcase over ⁇ -hexosaminidase.
  • O-GlcNAcase which removes O-GlcNAc from cellular proteins, results in an increase in the level of O-GlcNAcylated protein in cells.
  • An increase in O- GlcNAcylated protein can be measured by an antibody, such as RL-2, that binds to O- GlcNAcylated protein.
  • the amount of O-GlcNAcylated protein:RL2 antibody interaction can be measured by enzyme linked immunosorbant assay (ELISA) procedures.
  • tissue culture cell lines expressing endogenous levels of O-GlcNAcase, can be utilized; examples include rat PC-12, and human U-87, or SK-N-SH cells.
  • Cells are plated in 96-well plates with approximately 10,000 cells / well.
  • Compounds to be tested are dissolved in DMSO, either 2 or 10 mM stock solution, and then diluted with DMSO and water in a two-step process using a Tecan workstation. Cells are treated with diluted compounds for 24 hours (5.4 ⁇ . into 200 ⁇ . 1 well volume) to reach a final concentration of inhibitor desired to measure a compound concentration dependent response, typically, ten 3 fold dilution steps, starting at 10 ⁇ are used to determine a concentration response curve.
  • the media from compound treated cells is removed, the cells are washed once with phosphate buffered saline (PBS) and then lysed for 5 minutes at room temperature in 50 ⁇ . of Phosphosafe reagent (Novagen Inc, Madison, WI) with protease inhibitors and PMSF.
  • PBS phosphate buffered saline
  • the cell lysate is collected and transferred to a new plate, which is then either coated to assay plates directly or frozen -80°C until used in the ELISA procedure. If desired, the total protein concentration of samples is determined using 20 ⁇ , of the sample using the BCA method.
  • the ELISA portion of the assay is performed in a black Maxisorp 96-well plate that is coated overnight at 4°C with 100 ⁇ , /well of the cell lysate (1 : 10 dilution of the lysate with PBS containing protease inhibitors, phosphatase inhibitors, and PMSF.
  • the following day the wells are washed 3 times with 300 ⁇ , /well of Wash buffer (Tris-buffered saline with 0.1% Tween 20).
  • the wells are blocked with 100 ⁇ , /well Blocking buffer (Tris buffered saline w/0.05% Tween 20 and 2.5% Bovine serum albumin). Each well is then washed two times with 300 ul/well of wash buffer.
  • the anti O-GlcNAc antibody RL-2 (Abeam,
  • HRP horse-radish peroxidase conjugated goat anti-mouse secondary antibody
  • the detection reagent is added, 100 ⁇ , /well of Amplex Ultra RED reagent (prepared by adding 30 ⁇ of 10 mM Amplex Ultra Red stock solution to 10 ml PBS with 18 ⁇ , 3% hydrogen peroxide, H2O2).
  • the detection reaction is incubated for 15 minutes at room temperature and then read with excitation at 530 nm and emission at 590 nm.
  • the amount of O-GlcNAcylated protein, as detected by the ELISA assay, is plotted for each concentration of test compound using standard using standard curve fitting algorithms for sigmoidal dose response curves.
  • the values for a four parameter logistic curve fit of the data are determined, with the inflection point of the curve being the potency value for the test compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Pyrano[3,2-d]thiazol derivatives of formula (I) for selectively inhibiting glycosidases, prodrugs of the compounds, and pharmaceutical compositions including the compounds or prodrugs of the compounds are provided. Methods of treating diseases and disorders related to deficiency or overexpression of O-GlcNAcase, accumulation or deficiency of O-GlcNAc are also provided.

Description

PYRANO[3,2-D]THIAZOL DERIVATIVES AND USES AS SELECTIVE G LYCOS I DAS E INHIBITORS THEREOF
FIELD OF THE INVENTION
[0001] This application relates to compounds which selectively inhibit glycosidases and thereof.
BACKGROUND OF THE INVENTION
[0002] A wide range of cellular proteins, both nuclear and cytoplasmic, are post- translationally modified by the addition of the monosaccharide 2-acetamido-2-deoxy-B-D- glucopyranoside (β-Ν-acetylglucosamine) which is attached via an O-glycosidic linkage.1 This modification is generally referred to as O-linked N-acetylglucosamine or O-GlcNAc. The enzyme responsible for post-translationally linking β-Ν-acetylglucosamine (GlcNAc) to specific serine and threonine residues of numerous nucleocytoplasmic proteins is O-GlcNAc transferase (OGT).2"5 A second enzyme, known as O-glycoprotein 2-acetamido-2-deoxy-P- D-glucopyranosidase (O-GlcNAcase),6'7 removes this post-translational modification to liberate proteins, making the O-GlcNAc-modification a dynamic cycle occurring several times during the lifetime of a protein.8
[0003] O-GlcN Ac-modified proteins regulate a wide range of vital cellular functions including, for example, transcription,9"12 proteasomal degradation,13 and cellular signaling.14 O-GlcNAc is also found on many structural proteins.15"17 For example, it has been found on a number of cytoskeletal proteins, including neurofilament proteins,18'19 synapsins,6'20 synapsin-specific clathrin assembly protein AP-3,7 and ankyrinG.14 O-GlcNAc modification has been found to be abundant in the brain.21'22 It has also been found on proteins clearly implicated in the etiology of several diseases including Alzheimer's disease (AD) and cancer.
[0004] For example, it is well established that AD and a number of related tauopathies including Downs' syndrome, Pick's disease, Niemann-Pick Type C disease, and amyotrophic lateral sclerosis (ALS) are characterized, in part, by the development of neurofibrillary tangles ( FTs). These FTs are aggregates of paired helical filaments (PHFs) and are composed of an abnormal form of the cytoskeletal protein "tau". Normally tau stabilizes a key cellular network of microtubules that is essential for distributing proteins and nutrients within neurons. In AD patients, however, tau becomes hyperphosphorylated, disrupting its normal functions, forming PHFs and ultimately aggregating to form FTs. Six isoforms of tau are found in the human brain. In AD patients, all six isoforms of tau are found in NFTs, and all are markedly hyperphosphorylated.23'24 Tau in healthy brain tissue bears only 2 or 3 phosphate groups, whereas those found in the brains of AD patients bear, on average, 8 phosphate groups.25'26 A clear parallel between NFT levels in the brains of AD patients and the severity of dementia strongly supports a key role for tau dysfunction in AD.27'28 The precise causes of this hyperphosphorylation of tau remain elusive. Accordingly, considerable effort has been dedicated toward: a) elucidating the molecular physiological basis of tau hyperphosphorylation;29 and b) identifying strategies that could limit tau
hyperphosphorylation in the hope that these might halt, or even reverse, the progression of Alzheimer's disease30"33 Thus far, several lines of evidence suggest that up-regulation of a number of kinases may be involved in hyperphosphorylation of tau,21'34'35 although very recently, an alternative basis for this hyperphosphorylation has been advanced.21 [0005] In particular, it has emerged that phosphate levels of tau are regulated by the levels of O-GlcNAc on tau. The presence of O-GlcNAc on tau has stimulated studies that correlate O- GlcNAc levels with tau phosphorylation levels. The interest in this field stems from the observation that O-GlcNAc modification has been found to occur on many proteins at amino acid residues that are also known to be phosphorylated.36-38 Consistent with this observation, it has been found that increases in phosphorylation levels result in decreased O-GlcNAc levels and conversely, increased O-GlcNAc levels correlate with decreased phosphorylation levels.39 This reciprocal relationship between O-GlcNAc and phosphorylation has been termed the "Yin- Yang hypothesis"40 and has gained strong biochemical support by the discovery that the enzyme OGT4 forms a functional complex with phosphatases that act to remove phosphate groups from proteins.41 Like phosphorylation, O-GlcNAc is a dynamic modification that can be removed and reinstalled several times during the lifespan of a protein. Suggestively, the gene encoding O-GlcNAcase has been mapped to a chromosomal locus that is linked to AD.7'42 Hyperphosphorylated tau in human AD brains has markedly lower levels of O-GlcNAc than are found in healthy human brains.21 It has been shown that O-GlcNAc levels of soluble tau protein from human brains affected with AD are markedly lower than those from healthy brain.21 Furthermore, PHF from diseased brain was suggested to lack completely any O-GlcNAc modification whatsoever.21 The molecular basis of this hypoglycosylation of tau is not known, although it may stem from increased activity of kinases and/or dysfunction of one of the enzymes involved in processing O-GlcNAc.
Supporting this latter view, in both PC- 12 neuronal cells and in brain tissue sections from mice, a nonselective N-acetylglucosamindase inhibitor was used to increase tau O-GlcNAc levels, whereupon it was observed that phosphorylation levels decreased.21 The implication of these collective results is that by maintaining healthy O-GlcNAc levels in AD patients, such as by inhibiting the action of O-GlcNAcase, one should be able to block
hyperphosphorylation of tau and all of the associated effects of tau hyperphosphorylation, including the formation of NFTs and downstream effects. However, because the proper functioning of the β-hexosaminidases is critical, any potential therapeutic intervention for the treatment of AD that blocks the action of O-GlcNAcase would have to avoid the concomitant inhibition of both hexosaminidases A and B.
[0006] Neurons do not store glucose and therefore the brain relies on glucose supplied by blood to maintain its essential metabolic functions. Notably, it has been shown that within brain, glucose uptake and metabolism decreases with aging.43 Within the brains of AD patients marked decreases in glucose utilization occur and are thought to be a potential cause of neurodegeneration.44 The basis for this decreased glucose supply in AD brain45"47 is thought to stem from any of decreased glucose transport,48'49 impaired insulin signaling,50'51 and decreased blood flow.52
[0007] In light of this impaired glucose metabolism, it is worth noting that of all glucose entering into cells, 2-5% is shunted into the hexosamine biosynthetic pathway, thereby regulating cellular concentrations of the end product of this pathway, uridine diphosphate-N- acetylglucosamine (UDP-GlcNAc).53 UDP-GlcNAc is a substrate of the nucleocytoplasmic enzyme O-GlcNAc transferase (OGT),2"5 which acts to post-translationally add GlcNAc to specific serine and threonine residues of numerous nucleocytoplasmic proteins. OGT recognizes many of its substrates54'55 and binding partners41'56 through its tetratricopeptide repeat (TPR) domains.57'58 As described above, O-GlcNAcase6'7 removes this post- translational modification to liberate proteins making the O-GlcNAc-modification a dynamic cycle occurring several times during the lifetime of a protein.8 O-GlcNAc has been found in several proteins on known phosphorylation sites,10'37'38'59 including tau and neurofilaments.60 Additionally, OGT shows unusual kinetic behaviour making it exquisitely sensitive to intracellular UDP-GlcNAc substrate concentrations and therefore glucose supply.41
[0008] Consistent with the known properties of the hexosamine biosynthetic pathway, the enzymatic properties of OGT, and the reciprocal relationship between O-GlcNAc and phosphorylation, it has been shown that decreased glucose availability in brain leads to tau hyperphosphorylation.44 Therefore the gradual impairment of glucose transport and metabolism, whatever its causes, leads to decreased O-GlcNAc and hyperphosphorylation of tau (and other proteins). Accordingly, the inhibition of O-GlcNAcase should compensate for the age related impairment of glucose metabolism within the brains of health individuals as well as patients suffering from AD or related neurodegenerative diseases.
[0009] These results suggest that a malfunction in the mechanisms regulating tau O-GlcNAc levels may be vitally important in the formation of FTs and associated neurodegeneration. Good support for blocking tau hyperphosphorylation as a therapeutically useful intervention61 comes from recent studies showing that when transgenic mice harbouring human tau are treated with kinase inhibitors, they do not develop typical motor defects33 and, in another case,32 show decreased levels of insoluble tau. These studies provide a clear link between lowering tau phosphorylation levels and alleviating AD-like behavioural symptoms in a murine model of this disease. Indeed, pharmacological modulation of tau
hyperphosphorylation is widely recognized as a valid therapeutic strategy for treating AD and other neurodegenerative disorders.62
[0010] Small-molecule O-GlcNAcase inhibitors, to limit tau hyperphosphorylation, have been considered for treatment of AD and related tauopathies63. Specifically, the O- GlcNAcase inhibitor thiamet-G has been implicated in the reduction of tau phosphorylation in cultured PC-12 cells at pathologically relevant sites.63 Moreover, oral administration of thiamet-G to healthy Sprague-Dawley rats has been implicated in reduced phosphorylation of tau at Thr231, Ser396 and Ser422 in both rat cortex and hippocampus.63
[0011] There is also a large body of evidence indicating that increased levels of O-GlcNAc protein modification provides protection against pathogenic effects of stress in cardiac tissue, including stress caused by ischemia, hemorrhage, hypervolemic shock, and calcium paradox. For example, activation of the hexosamine biosynthetic pathway (HBP) by administration of glucosamine has been demonstrated to exert a protective effect in animals models of
64 70 71 73 74 ischemia/reperfusion, " trauma hemorrhage, " hypervolemic shock, and calcium paradox.64'75 Moreover, strong evidence indicates that these cardioprotective effects are mediated by elevated levels of protein O-GlcNAc modification. 64 > 65> 67> 70> 72> 75- 78 There is also evidence that the O-GlcNAc modification plays a role in a variety of neurodegenerative diseases, including Parkinson's disease and Huntington's disease.79 [0012] Humans have three genes encoding enzymes that cleave terminal β-Ν-acetyl- glucosamine residues from glycoconjugates. The first of these encodes O-GlcNAcase. O- GlcNAcase is a member of family 84 of glycoside hydrolases that includes enzymes from organisms as diverse as prokaryotic pathogens to humans (for the family classification of glycoside hydrolases see Coutinho, P.M. & Henrissat, B. (1999) Carbohydrate-Active
Enzymes server at URL: http://afmb.cnrs-mrs. fr/CAZY/.27'28 O-GlcNAcase acts to hydrolyse O-GlcNAc off of serine and threonine residues of post-translationally modified
proteins.1'6'7'80'81 Consistent with the presence of O-GlcNAc on many intracellular proteins, the enzyme O-GlcNAcase appears to have a role in the etiology of several diseases including type II diabetes,14'82 AD,16'21'83 and cancer.22'84 Although O-GlcNAcase was likely isolated earlier on,18'19 about 20 years elapsed before its biochemical role in acting to cleave O- GlcNAc from serine and threonine residues of proteins was understood.6 Subsequently, O- GlcNAcase has been cloned,7 partially characterized,20 and suggested to have additional activity as a histone acetyltransferase.20 However, little was known about the catalytic mechanism of this enzyme.
[0013] The other two genes, HEXA and HEXB, encode enzymes catalyzing the hydrolytic cleavage of terminal β-Ν-acetylglucosamine residues from glycoconjugates. The gene products of HEXA and HEXB predominantly yield two dimeric isozymes, hexosaminidase A and hexosaminidase B, respectively. Hexosaminidase A (αβ), a heterodimeric isozyme, is composed of an a- and a B-subunit. Hexosaminidase B (ββ), a homodimeric isozyme, is composed of two B-subunits. The two subunits, a- and B-, bear a high level of sequence identity. Both of these enzymes are classified as members of family 20 of glycoside hydrolases and are normally localized within lysosomes. The proper functioning of these lysosomal β-hexosaminidases is critical for human development, a fact that is underscored by the tragic genetic illnesses, Tay-Sach's and Sandhoff diseases which stem from a dysfunction in, respectively, hexosaminidase A and hexosaminidase B.85 These enzymatic deficiencies cause an accumulation of glycolipids and glycoconjugates in the lysosomes resulting in neurological impairment and deformation. The deleterious effects of accumulation of gangliosides at the organismal level are still being uncovered.86
[0014] As a result of the biological importance of these β-N-acetyl-glucosaminidases, small molecule inhibitors of glycosidases87"90 have received a great deal of attention,91 both as tools for elucidating the role of these enzymes in biological processes and in developing potential therapeutic applications. The control of glycosidase function using small molecules offers several advantages over genetic knockout studies including the ability to rapidly vary doses or to entirely withdraw treatment.
[0015] However, a major challenge in developing inhibitors for blocking the function of mammalian glycosidases, including O-GlcNAcase, is the large number of functionally related enzymes present in tissues of higher eukaryotes. Accordingly, the use of non-selective inhibitors in studying the cellular and organismal physiological role of one particular enzyme is complicated because complex phenotypes arise from the concomitant inhibition of such functionally related enzymes. In the case of B-N-acetylglucosaminidases, many compounds that act to block O-GlcNAcase function are non-specific and act potently to inhibit the lysosomal β-hexosaminidases.
[0016] A few of the better characterized inhibitors of β-N-acetyl-glucosaminidases which have been used in studies of O-GlcNAc post-translational modification within both cells and tissues are streptozotocin (STZ), 2'-methyl-a-D-glucopyrano-[2, l-<JJ-A2'-thiazoline (NAG- thiazoline) and O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenylcarbamate (PUGNAc).14'92-95
[0017] STZ has long been used as a diabetogenic compound because it has a particularly detrimental effect on B-islet cells.96 STZ exerts its cytotoxic effects through both the alkylation of cellular DNA96'97 as well as the generation of radical species including nitric oxide.98 The resulting DNA strand breakage promotes the activation of poly(ADP-ribose) polymerase (PARP)99 with the net effect of depleting cellular NAD+ levels and, ultimately, leading to cell death.100'101 Other investigators have proposed instead that STZ toxicity is a consequence of the irreversible inhibition of O-GlcNAcase, which is highly expressed within β-islet cells.92'102 This hypothesis has, however, been brought into question by two independent research groups.103'104 Because cellular O-GlcNAc levels on proteins increase in response to many forms of cellular stress105 it seems possible that STZ results in increased
O-GlcNAc-modification levels on proteins by inducing cellular stress rather than through any specific and direct action on O-GlcNAcase. Indeed, Hanover and coworkers have shown that STZ functions as a poor and somewhat selective inhibitor of O-GlcNAcase106 and although it has been proposed by others that STZ acts to irreversibly inhibit O-GlcNAcase,107 there has been no clear demonstration of this mode of action. More recently, it has been shown that STZ does not irreversibly inhibit O-GlcNAcase.108 [0018] NAG-thiazoline has been found to be a potent inhibitor of family 20
hexosaminidases,90'109 and more recently, the family 84 O-GlcNAcases.108 Despite its potency, a downside to using NAG-thiazoline in a complex biological context is that it lacks selectivity and therefore perturbs multiple cellular processes.
[0019] PUGNAc is another compound that suffers from the same problem of lack of selectivity, yet has enjoyed use as an inhibitor of both human O-GlcNAcase6'110 and the family 20 human β-hexosaminidases.111 This molecule, developed by Vasella and coworkers, was found to be a potent competitive inhibitor of the β-N-acetyl-glucosaminidases from Canavalia ensiformis, Mucor rouxii, and the β-hexosaminidase from bovine kidney.88 It has been demonstrated that administration of PUGNAc in a rat model of trauma hemorrhage decreases circulating levels of the pro-inflammatory cytokines TNF-a and IL-6.112 It has also been shown that administration of PUGNAc in a cell-based model of lymphocyte activation decreases production of the cytokine IL-2.113 Subsequent studies have indicated that
PUGNAc can be used in an animal model to reduce myocardial infarct size after left coronary artery occlusions.114 Of particular significance is the fact that elevation of O-GlcNAc levels by administration of PUGNAc, an inhibitor of O-GlcNAcase, in a rat model of trauma hemorrhage improves cardiac function.112'115 In addition, elevation of O-GlcNAc levels by treatment with PUGNAc in a cellular model of ischemia/reperfusion injury using neonatal rat ventricular myocytes improved cell viability and reduced necrosis and apoptosis compared to untreated cells.116
[0020] More recently, it has been suggested that the selective O-GlcNAcase inhibitor NButGT exhibits protective activity in cell-based models of ischemia/reperfusion and cellular stresses, including oxidative stress.117 This study suggests the use of O-GlcNAcase inhibitors to elevate protein O-GlcNAc levels and thereby prevent the pathogenic effects of stress in cardiac tissue.
[0021] International patent applications PCT/CA2006/000300, filed 1 March 2006, published under No. W0 2006/092049 on 8 September 2006; PCT/CA2007/001554, filed 31 August 2007, published under No. WO 2008/025170 on 6 March 2008; PCT/CA2009/001087, filed 31 July 2009, published under No. WO 2010/012106 on 4 Februrary 2010;
PCT/CA2009/001088, filed 31 July 2009, published under WO 2010/012107 on 4 Februrary 2010; and PCT/CA2009/001302, filed 16 September 2009, published under WO
2010/037207 on 8 April 2010, describe selective inhibitors of O-GlcNAcase. SUMMARY OF THE INVENTION
[0022] The invention provides, in part, compounds for selectively inhibiting glycosidases, prodrugs of the compounds, uses of the compounds and the prodrugs, pharmaceutical compositions including the compounds or prodrugs of the compounds, and methods of treating diseases and disorders related to deficiency or overexpression of O-GlcNAcase, and/or accumulation or deficiency of O-GlcNAc.
[0023] In one aspect, the invention provides a compound of Formula (I) or a
pharmaceutically acceptable salt thereof:
Figure imgf000010_0001
(I)
where each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0) R5 2, NHR6, 0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or
(CH2)2CH3; each R5 may be independently H or an optionally substituted C1-6 alkyl; and R6 may be selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
[0024] In alternative embodiments, the optional substitution may include one or more heteroatoms selected from P, O, S, N, F, CI, Br, I, or B.
[0025] In alternative embodiments, the compound may be a prodrug; the compound may selectively inhibit an O-glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase (O- GlcNAcase); the compound may selectively bind an O-GlcNAcase (e.g., a mammalian O- GlcNAcase); the compound may selectively inhibit the cleavage of a 2-acetamido-2-deoxy-P- D-glucopyranoside (O-GlcNAc); the compound may not substantially inhibit a mammalian β- hexosaminidase.
[0026] In alternative aspects, the invention provides a pharmaceutical composition including a compound according to the invention, in combination with a pharmaceutically acceptable carrier. [0027] In alternative aspects, the invention provides methods of selectively inhibiting an O- GlcNAcase, or of inhibiting an O-GlcNAcase in a subject in need thereof, or of increasing the level of O-GlcNAc, or of treating a neurodegenerative disease, a tauopathy, cancer or stress, in a subject in need thereof, by administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000011_0001
(I)
where each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0) R5 2, HR6, 0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or
(CH2)2CH3; each R5 may be independently H or an optionally substituted Ci_6 alkyl; and R6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3. The condition may be Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis with cognitive impairment (ALSci), Argyrophilic grain dementia, Bluit disease, Corticobasal degeneration (CBD), Dementia pugilistica, Diffuse neurofibrillary tangles with calcification, Down's syndrome, Familial British dementia, Familial Danish dementia, Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17),
Gerstmann-Straussler-Scheinker disease, Guadeloupean parkinsonism, Hallevorden-Spatz disease (neurodegeneration with brain iron accumulation type 1), Multiple system atrophy, Myotonic dystrophy, Niemann-Pick disease (type C), Pallido-ponto-nigral degeneration, Parkinsonism-dementia complex of Guam, Pick's disease (PiD), Post-encephalitic
parkinsonism (PEP), Prion diseases (including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru), Progressive supercortical gliosis, Progressive supranuclear palsy (PSP), Richardson's syndrome,
Subacute sclerosing panencephalitis, Tangle-only dementia, Huntington's disease,
Parkinson's disease, Schizophrenia, Mild Cognitive Impairment (MCI), Neuropathy
(including peripheral neuropathy, autonomic neuropathy, neuritis, and diabetic neuropathy), or Glaucoma. The stress may be a cardiac disorder, e.g., ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; or stent placement.
[0028] In alternative aspects, the invention provides a method of treating an O-GlcNAcase- mediated condition that excludes a neurodegenerative disease, a tauopathy, cancer or stress, in a subject in need thereof, by administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000012_0001
(I)
where each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0) R5 2, HR6, 0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or
(CH2)2CH3; each R5 may be independently H or an optionally substituted Ci_6 alkyl; and R6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3. In some embodiments, the condition may be inflammatory or allergic diseases such as asthma, allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic
pneumonias, delayed-type hypersensitivity, atherosclerosis, interstitial lung disease (ILD) (e.g., idiopathic pulmonary fibrosis, or ILD associated with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, Sjogren's syndrome, polymyositis or dermatomyositis); systemic anaphylaxis or hypersensitivity responses, drug allergies, insect sting allergies; autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Guillain-Barre syndrome, systemic lupus erythematosus, myastenia gravis, glomerulonephritis, autoimmune thyroiditis, graft rejection, including allograft rejection or graft-versus-host disease; inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis; spondyloarthropathies; scleroderma; psoriasis (including T-cell mediated psoriasis) and inflammatory dermatoses such as dermatitis, eczema, atopic dermatitis, allergic contact dermatitis, urticaria; vasculitis (e.g., necrotizing, cutaneous, and hypersensitivity vasculitis); eosinphilic myotis, and eosiniphilic fasciitis; graft rejection, in particular but not limited to solid organ transplants, such as heart, lung, liver, kidney, and pancreas transplants (e.g. kidney and lung allografts); epilepsy; pain; fibromyalgia; stroke, e.g., neuroprotection following a stroke.
[0029] In alternative embodiments, each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0)NR5 2, NHR6, 0(S02)N(CH3)2, azetidin- l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one- 1-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or (CH2)2CH3; each R5 may be independently H or an optionally substituted C1-6 alkyl; and R6 may be selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3 -6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3. The administering may increase the level of O-GlcNAc in the subject. The subject may be a human.
[0030] In alternative aspects, the invention provides use of a compound of an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000013_0001
(I)
where each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0)NR5 2, NHR6, 0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin- l-yl, and pyrrolidin-2-one-l-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or
(CH2)2CH3; each R5 may be independently H or an optionally substituted C1-6 alkyl; and R6 may be selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3, in the preparation of a medicament. The medicament may be for selectively inhibiting an O-GlcNAcase, for increasing the level of O-GlcNAc, for treating a condition modulated by an O-GlcNAcase, for treating a neurodegenerative disease, a tauopathy, a cancer, or stress.
[0031] In alternative aspects, the invention provides a method for screening for a selective inhibitor of an O-GlcNAcase, by a) contacting a first sample with a test compound; b) contacting a second sample with a compound of Formula (I)
Figure imgf000014_0001
(I)
where each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0) R5 2, NHR6, 0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin- 1-yl, and pyrrolidin-2-one-l-yl; R3 may be H or CH3; R4 may be CH3, CH2CH3, or
(CH2)2CH3; each R5 may be independently H or an optionally substituted C1-6 alkyl; and R6 may be selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3; c) determining the level of inhibition of the O-GlcNAcase in the first and second samples, where the test compound is a selective inhibitor of a O-GlcNAcase if the test compound exhibits the same or greater inhibition of the O-GlcNAcase when compared to the compound of Formula (I).
[0032] This summary of the invention does not necessarily describe all features of the invention.
DETAILED DESCRIPTION
[0033] The invention provides, in part, novel compounds that are capable of inhibiting an O- glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase (O-GlcNAcase). In some embodiments, the O-GlcNAcase is a mammalian O-GlcNAcase, such as a rat, mouse or human O-GlcNAcase.
[0034] In some embodiments, compounds according to the invention exhibit an increased selectivity in inhibiting an O-GlcNAcase. In some embodiments, the compounds according to the invention exhibit an increased potency in inhibiting an O-GlcNAcase. In some embodiments, the compounds according to the invention are more selective for an O- GlcNAcase over a β-hexosaminidase. In some embodiments, the compounds selectively inhibit the activity of a mammalian O-GlcNAcase over a mammalian β-hexosaminidase. In some embodiments, a selective inhibitor of an O-GlcNAcase does not substantially inhibit a β-hexosaminidase. In some embodiments, the β-hexosaminidase is a mammalian β- hexosaminidase, such as a rat, mouse or human β-hexosaminidase. A compound that "selectively" inhibits an O-GlcNAcase is a compound that inhibits the activity or biological function of an O-GlcNAcase, but does not substantially inhibit the activity or biological function of a β-hexosaminidase. For example, in some embodiments, a selective inhibitor of an O-GlcNAcase selectively inhibits the cleavage of 2-acetamido-2-deoxy-P-D- glucopyranoside (O-GlcNAc) from polypeptides. In some embodiments, a selective inhibitor of an O-GlcNAcase selectively binds to an O-GlcNAcase. In some embodiments, a selective inhibitor of an O-GlcNAcase inhibits hyperphosphorylation of a tau protein and/or inhibits formations of FTs. By "inhibits," "inhibition" or "inhibiting" means a decrease by any value between 10% and 90%, or of any integer value between 30% and 60%, or over 100%, or a decrease by 1-fold, 2-fold, 5-fold, 10-fold or more. It is to be understood that the inhibiting does not require full inhibition. In some embodiments, a selective inhibitor of an O-GlcNAcase elevates or enhances O-GlcNAc levels e.g., O-GlcNAc-modified polypeptide or protein levels, in cells, tissues, or organs (e.g., in brain, muscle, or heart (cardiac) tissue) and in animals. By "increasing" or "elevating" or "enhancing" is meant an increase by any value between 10% and 90%, or of any integer value between 30% and 60%, or over 100%, or an increase by 1-fold, 2-fold, 5-fold, 10-fold, 15-fold, 25-fold, 50-fold, 100-fold or more. In some embodiments, a selective inhibitor of an O-GlcNAcase exhibits a selectivity ratio, as described herein, in the range 10 to 100000, or in the range 100 to 100000, or in the range 1000 to 100000, or at least 10, 20, 50, 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 10,000, 25,000, 50,000, 75,000, or any value within or about the described range.
[0035] The compounds of the present invention elevate O-GlcNAc levels on O-GlcNAc- modified polypeptides or proteins in vivo specifically via interaction with an O-GlcNAcase enzyme, and are effective in treating conditions which require or respond to inhibition of O- GlcNAcase activity.
[0036] In some embodiments, the compounds of the present invention are useful as agents that produce a decrease in tau phosphorylation and FT formation. In some embodiments, the compounds are therefore useful to treat Alzheimer's disease and related tauopathies. In some embodiments, the compounds are thus capable of treating Alzheimer's disease and related tauopathies by lowering tau phosphorylation and reducing NFT formation as a result of increasing tau O-GlcNAc levels. In some embodiments, the compounds produce an increase in levels of O-GlcNAc modification on O-GlcNAc-modified polypeptides or proteins, and are therefore useful for treatment of disorders responsive to such increases in O- GlcNAc modification; these disorders include without limitation neurodegenerative, inflammatory, cardiovascular, and immunoregulatory diseases. In some embodiments, the compounds are neuroprotective. In some embodiments, the compounds are also useful as a result of other biological activites related to their ability to inhibit the activity of glycosidase enzymes. In alternative embodiments, the compounds of the invention are valuable tools in studying the physiological role of O-GlcNAc at the cellular and organismal level.
[0037] In alternative embodiments, the invention provides methods of enhancing or elevating levels of protein O-GlcNAc modification in animal subjects, such as, veterinary and human subjects. In alternative embodiments, the invention provides methods of selectively inhibiting an O-GlcNAcase enzyme in animal subjects, such as, veterinary and human subjects. In alternative embodiments, the invention provides methods of inhibiting phosphorylation of tau polypeptides, or inhibiting formation of FTs, in animal subjects, such as, veterinary and human subjects.
[0038] In specific embodiments, the invention provides compounds described generally by Formula (I) and the salts, prodrugs, and enantiomeric forms thereof:
Figure imgf000016_0001
(I)
[0039] As set forth in Formula (I): each R1 may be independently H or acyl; R2 may be selected from the group consisting of: OCH3, OC(0) R5 2, HR6, 0(S02)N(CH3)2, azetidin- 1-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one- 1-yl; R3 may be H or CH3; R4 may be CH3 CH2CH3, or (CH2)2CH3; each R5 may be independently H or an optionally substituted Ci_6 alkyl; and R6 may be selected from the group consisting of: acyl, Ci_6 alkyl, C2-6 alkenyl, C3 -6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
[0040] In some embodiments, each R1 as set forth in Formula (I) may be independently H or
COCH3.
[0041] In some embodiments, R2 as set forth in Formula (I) may be selected from the group consisting of: OCH3, OC(0) HCH3, OC(0) HCH2CH3, OC(0)N(CH3)2,
OC(0)N(CH2CH3)2, 0(S02)N(CH3)2, HCH3, NHCH2CH3, H(CH2)3CH3, HCH(CH3)2, HCH2CH=CH2, H(CH2)2OCH3, H(benzyl), H(cyclopropyl), H(cyclobutyl),
H(cyclopentyl), H(cyclohexyl), H(tetrahydro-2H-pyran-4-yl), H(CH2)3OH, azetidin-1- yl, 3-hydroxyazetidin-l-yl, H(CH2)2OH, H(CH2)3OH, H(CH2)CH(OH)(CH2OH),
H(CH2CN), H(CH2)C02H, H(CH2)C02CH3, H(lH-pyrazol-3-yl), HC(0)CH3, pyrrolidin-2-one- 1 -yl, and OC(0)CH3.
[0042] In some embodiments, R3 as set forth in Formula (I) may be H, CH3, or CH2CH3.
[0043] In some embodiments, R4 as set forth in Formula (I) may be CH3, CH2CH3, or (CH2)2CH3.
[0044] In specific embodiments of the invention, compounds according to Formula (I) include the compounds described in Table 1.
Table 1
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
6,7-diol OH
Figure imgf000020_0001
6,7-diol
Figure imgf000021_0001
Figure imgf000022_0001
5 -yl)methyl)amino)acetonitrile OH Example Name Structure
2-((((3aR,5R,6S,7R,7aR)-6,7-
55 dihydroxy-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3 aH-pyrano [3 ,2-d]thiazol- ° HOY'"N ^ 5-yl)methyl)amino)acetic acid OH
methyl 2-((((3aR,5R,6S,7R,7aR)-2-
56 (ethylamino)-6, 7-dihydroxy-5 , 6, 7, 7a- Π H T J />-NH
tetrahydro-3 aH-pyrano [3 ,2-d]thiazol- ° ΗΟ*Ύ""Ν
5-yl)methyl)amino)acetate OH
(3aR,5R,6S,7R,7aR)-5-(((lH-pyrazol-
57 3-yl)amino)methyl)-2-(methylamino)- 5 , 6, 7, 7a-tetrahydro-3 aH-pyrano [3 ,2- d]thiazole-6,7-diol l-(((3aR,5R,6S,7R,7aR)-6,7-
58 dihydroxy-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3 aH-pyrano [3 ,2-d]thiazol- 5 -yl)methyl)pyrrolidin-2-one
Figure imgf000023_0001
[0045] As will be appreciated by a person skilled in the art, Formula (I) above may also be represented alternatively as follows:
Figure imgf000023_0002
R4 R3
[0046] As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. For example, "a compound" refers to one or more of such compounds, while "the enzyme" includes a particular enzyme as well as other family members and equivalents thereof as known to those skilled in the art.
[0047] Throughout this application, it is contemplated that the term "compound" or
"compounds" refers to the compounds discussed herein and includes precursors and derivatives of the compounds, including acyl-protected derivatives, and pharmaceutically acceptable salts of the compounds, precursors, and derivatives. The invention also includes prodrugs of the compounds, pharmaceutical compositions including the compounds and a pharmaceutically acceptable carrier, and pharmaceutical compositions including prodrugs of the compounds and a pharmaceutically acceptable carrier.
[0048] In some embodiments, all of the compounds of the invention contain at least one chiral center. In some embodiments, the formulations, preparation, and compositions including compounds according to the invention include mixtures of enantiomers and individual enantiomers. In general, the compound may be supplied in any desired degree of enantiomeric purity.
[0049] Certain group may be optionally substituted as described herein. Suitable substituents include: H, alkyl (C^), alkenyl (C2-6), or alkynyl (C2-6) each of which may optionally contain one or more heteroatoms selected from O, S, P, N, F, CI, Br, I, or B, and each of which may be further substituted, for example, by =0; or optionally substituted forms of acyl, alkyl- alkenyl-, or alkynyl- and forms thereof which contain heteroatoms in the alkyl, alkenyl, or alkynyl moieties. Other suitable substituents include =0, = R, halo, CN, CF3, CHF2, N02, OR, SR, R2, N3, COOR, and CO R2, where R is H or alkyl, cycloalkyl, alkenyl, or alkynyl. Where the substituted atom is C, the substituents may include, in addition to the substituents listed above, halo, OOCR, ROCR, where R is H or a substituent set forth above.
[0050] "Alkyl" refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing no unsaturation and including, for example, from one to ten carbon atoms, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, and which is attached to the rest of the molecule by a single bond. Unless stated otherwise specifically in the specification, the alkyl group may be optionally substituted by one or more substituents as described herein. Unless stated otherwise specifically herein, it is understood that the substitution can occur on any carbon of the alkyl group.
[0051] "Alkenyl" refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing at least one double bond and including, for example, from two to ten carbon atoms, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms, and which is attached to the rest of the molecule by a single bond or a double bond. Unless stated otherwise specifically in the specification, the alkenyl group may be optionally substituted by one or more substituents as described herein. Unless stated otherwise specifically herein, it is understood that the substitution can occur on any carbon of the alkenyl group.
[0052] "Alkynyl" refers to a straight or branched hydrocarbon chain group consisting solely of carbon and hydrogen atoms, containing at least one triple bond and including, for example, from two to ten carbon atoms. Unless stated otherwise specifically in the specification, the alkenyl group may be optionally substituted by one or more substituents as described herein.
[0053] "Aryl" refers to a phenyl or naphthyl group and, unless stated otherwise specifically herein, the term "aryl" is meant to include aryl groups optionally substituted by one or more substituents as described herein.
[0054] "Heteroaryl" refers to a single or fused aromatic ring group containing one or more heteroatoms in the ring, for example N, O, S, including for example, 5-14 members, such as 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 members. Examples of heteroaryl groups include furan, thiophene, pyrrole, oxazole, thiazole, imidazole, pyrazole, isoxazole, isothiazole, 1,2,3- oxadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,3,4-thiadiazole, tetrazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, imidazole, benzimidazole, benzoxazole, benzothiazole, indolizine, indole, isoindole, benzofuran, benzothiophene, lH-indazole, purine, 4H- quinolizine, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, 1,8- naphthyridine, pteridine. Unless stated otherwise specifically herein, the term "heteroaryl" is meant to include heteroaryl groups optionally substituted by one or more substituents as described herein.
[0055] "Acyl" refers to a group of the formula -C(0)Ra, where Ra is an alkyl or cycloalkyl group as described herein. The alkyl or cycloalkyl group may be optionally substituted as described herein.
[0056] "Arylacyl" refers to a group of the formula -C(0)Rb, where Rb is an aryl or heteroaryl group as described herein. The aryl or heteroaryl group(s) may be optionally substituted as described herein.
[0057] "Cycloalkyl" refers to a stable monovalent monocyclic, bicyclic or tricyclic
hydrocarbon group consisting solely of carbon and hydrogen atoms, having for example from 3 to 15 carbon atoms, and which is saturated and attached to the rest of the molecule by a single bond. Unless otherwise stated specifically herein, the term "cycloalkyl" is meant to include cycloalkyl groups which are optionally substituted as described herein.
[0058] "Optional" or "optionally" means that the subsequently described event of
circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, "optionally substituted alkyl" means that the alkyl group may or may not be substituted and that the description includes both substituted alkyl groups and alkyl groups having no substitution. Examples of optionally substituted alkyl groups include, without limitation, methyl, ethyl, propyl, etc. and including cycloalkyls such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, etc.; examples of optionally substituted alkenyl groups include allyl, crotyl, 2-pentenyl, 3-hexenyl, 2-cyclopentenyl, 2-cyclohexenyl, 2-cyclopentenylmethyl, 2-cyclohexenylmethyl, etc. In some embodiments, optionally substituted alkyl and alkenyl groups include C1-6 alkyl s or alkenyls.
[0059] "Halo" refers to bromo, chloro, fluoro, iodo, etc. In some embodiments, suitable halogens include fluorine or chlorine.
[0060] An amino group may also be substituted once or twice (to form a secondary or tertiary amine) with a group such as an optionally substituted alkyl group including C1-6 alkyl (e.g., methyl, ethyl propyl etc.); an optionally substituted alkenyl group such as allyl, crotyl, 2-pentenyl, 3-hexenyl, etc., or an optionally substituted cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, etc. In these cases, C1-6 alkyl, alkenyl and cycloalkyl are preferred. [0061] An amino group may be substituted with an optionally substituted C2-4 alkanoyl, e.g., acetyl, propionyl, butyryl, isobutyryl etc., or a C1-4 alkylsulfonyl (e.g., methanesulfonyl, ethanesulfonyl, etc.).
[0062] Examples of optionally substituted carbonyl groups, or sulfonyl groups include optionally substituted forms of such groups formed from various hydrocarbyls such as alkyl, alkenyl and 5- to 6-membered monocyclic aromatic group (e.g., phenyl, pyridyl, etc.), as described herein.
Therapeutic Indications
[0063] The invention provides methods of treating conditions that are modulated, directly or indirectly, by an O-GlcNAcase enzyme or by O-GlcNAc-modified protein levels, for example, a condition that is benefited by inhibition of an O-GlcNAcase enzyme or by an elevation of O-GlcNAc-modified protein levels. Such conditions include, without limitation, Glaucoma, Schizophrenia, tauopathies, such as Alzheimer's disease, neurodegenerative diseases, cardiovascular diseases, diseases associated with inflammation, diseases associated with immunosuppression and cancers. The compounds of the invention are also useful in the treatment of diseases or disorders related to deficiency or over-expression of O-GlcNAcase or accumulation or depletion of O-GlcNAc, or any disease or disorder responsive to glycosidase inhibition therapy. Such diseases and disorders include, but are not limited to, Glaucoma, Schizophrenia, neurodegenerative disorders, such as Alzheimer's disease (AD), or cancer. Such diseases and disorders may also include diseases or disorders related to the
accumulation or deficiency in the enzyme OGT. Also included is a method of protecting or treating target cells expressing proteins that are modified by O-GlcNAc residues, the dysregulation of which modification results in disease or pathology. The term "treating" as used herein includes treatment, prevention, and amelioration.
[0064] In alternative embodiments, the invention provides methods of enhancing or elevating levels of protein O-GlcNAc modification in animal subjects, such as, veterinary and human subjects. This elevation of O-GlcNAc levels can be useful for the prevention or treatment of Alzheimer's disease; prevention or treatment of other neurodegenerative diseases (e.g.
Parkinson's disease, Huntington's disease); providing neuroprotective effects; preventing damage to cardiac tissue; and treating diseases associated with inflammation or
immunosuppression.
[0065] In alternative embodiments, the invention provides methods of selectively inhibiting an O-GlcNAcase enzyme in animal subjects, such as veterinary and human subjects.
[0066] In alternative embodiments, the invention provides methods of inhibiting
phosphorylation of tau polypeptides, or inhibiting formation of FTs, in animal subjects, such as, veterinary and human subjects. Accordingly, the compounds of the invention may be used to study and treat AD and other tauopathies.
[0067] In general, the methods of the invention are effected by administering a compound according to the invention to a subject in need thereof, or by contacting a cell or a sample with a compound according to the invention, for example, a pharmaceutical composition comprising a therapeutically effective amount of the compound according to Formula (I).
More particularly, they are useful in the treatment of a disorder in which the regulation of O- GlcNAc protein modification is implicated, or any condition as described herein. Disease states of interest include Alzheimer's disease (AD) and related neurodegenerative tauopathies, in which abnormal hyperphosphorylation of the microtubule-associated protein tau is involved in disease pathogenesis. In some embodiments, the compounds may be used to block hyperphosphorylation of tau by maintaining elevated levels of O-GlcNAc on tau, thereby providing therapeutic benefit. [0068] The effectiveness of the compounds in treating pathology associated with the accumulation of toxic tau species (for example, Alzheimer's disease and other tauopathies) may be confirmed by testing the ability of the compounds to block the formation of toxic tau
118 120 32 33 species in established cellular " and/or transgenic animal models of disease. '
[0069] Tauopathies that may be treated with the compounds of the invention include:
Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis with cognitive impairment (ALSci), Argyrophilic grain dementia, Bluit disease, Corticobasal degeneration (CBD), Dementia pugilistica, Diffuse neurofibrillary tangles with calcification, Down's syndrome, Familial British dementia, Familial Danish dementia, Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Gerstmann-Straussler- Scheinker disease, Guadeloupean parkinsonism, Hallevorden-Spatz disease
(neurodegeneration with brain iron accumulation type 1), Multiple system atrophy, Myotonic dystrophy, Niemann-Pick disease (type C), Pallido-ponto-nigral degeneration, Parkinsonism- dementia complex of Guam, Pick's disease (PiD), Post-encephalitic parkinsonism (PEP), Prion diseases (including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru), Progressive supercortical gliosis, Progressive supranuclear palsy (PSP), Richardson's syndrome, Subacute sclerosing panencephalitis, Tangle-only dementia, and Glaucoma.
[0070] The compounds of this invention are also useful in the treatment of conditions associate with tissue damage or stress, stimulating cells, or promoting differentiation of cells. Accordingly, in some embodiments, the compounds of this invention may be used to provide therapeutic benefit in a variety of conditions or medical procedures involving stress in cardiac tissue, including but not limited to: ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; and stent placement.
[0071] The effectiveness of the compounds in treating pathology associated with cellular stress (including ischemia, hemorrhage, hypovolemic shock, myocardial infarction, and other cardiovascular disorders) may be confirmed by testing the ability of the compounds to prevent cellular damage in established cellular stress assays,105'116'117 and to prevent tissue damage and promote functional recovery in animal models of ischemia-reperfusion,70'114 and
72 112 115
trauma-hemorrhage. ' ' [0072] Compounds that selectively inhibit O-GlcNAcase activity may be used for the treatment of diseases that are associated with inflammation, including but not limited to, inflammatory or allergic diseases such as asthma, allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic pneumonias, delayed-type
hypersensitivity, atherosclerosis, interstitial lung disease (ILD) (e.g., idiopathic pulmonary fibrosis, or ILD associated with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, Sjogren's syndrome, polymyositis or
dermatomyositis); systemic anaphylaxis or hypersensitivity responses, drug allergies, insect sting allergies; autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Guillain-Barre syndrome, systemic lupus erythematosus, myastenia gravis, glomerulonephritis, autoimmune thyroiditis, graft rejection, including allograft rejection or graft-versus-host disease; inflammatory bowel diseases, such as Crohn' s disease and ulcerative colitis; spondyloarthropathies; scleroderma; psoriasis (including T-cell mediated psoriasis) and inflammatory dermatoses such as dermatitis, eczema, atopic dermatitis, allergic contact dermatitis, urticaria; vasculitis (e.g., necrotizing, cutaneous, and hypersensitivity vasculitis); eosinphilic myotis, eosiniphilic fasciitis; and cancers.
[0073] In addition, compounds that affects levels of protein O-GlcNAc modification may be used for the treatment of diseases associated with immunosuppression, such as in individuals undergoing chemotherapy, radiation therapy, enhanced wound healing and burn treatment, therapy for autoimmune disease or other drug therapy (e.g., corticosteroid therapy) or combination of conventional drugs used in the treatment of autoimmune diseases and graft/transplantation rejection, which causes immunosuppression; or immunosuppression due to congenital deficiency in receptor function or other causes.
[0074] The compounds of the invention may be useful for treatment of neurodegenerative diseases, including Parkinson's disease and Huntington's disease. Other conditions that may be treated are those triggered, affected, or in any other way correlated with levels of O- GlcNAc post-translational protein modification. It is expected that the compounds of this invention may be useful for the treatment of such conditions and in particular, but not limited to, the following for which a association with O-GlcNAc levels on proteins has been established: graft rejection, in particular but not limited to solid organ transplants, such as heart, lung, liver, kidney, and pancreas transplants (e.g. kidney and lung allografts); cancer, in particular but not limited to cancer of the breast, lung, prostate, pancreas, colon, rectum, bladder, kidney, ovary; as well as non-Hodgkin's lymphoma and melanoma; epilepsy, pain, fibromyalgia, or stroke, e.g., for neuroprotection following a stroke.
Pharmaceutical & Veterinary Compositions. Dosages. And Administration
[0075] Pharmaceutical compositions including compounds according to the invention, or for use according to the invention, are contemplated as being within the scope of the invention. In some embodiments, pharmaceutical compositions including an effective amount of a compound of Formula (I) are provided.
[0076] The compounds of Formula (I) and their pharmaceutically acceptable salts, enantiomers, solvates, and derivatives are useful because they have pharmacological activity in animals, including humans. In some embodiments, the compounds according to the invention are stable in plasma, when administered to a subject.
[0077] In some embodiments, compounds according to the invention, or for use according to the invention, may be provided in combination with any other active agents or
pharmaceutical compositions where such combined therapy is useful to modulate O- GlcNAcase activity, for example, to treat neurodegenerative, inflammatory, cardiovascular, or immunoregulatory diseases, or any condition described herein. In some embodiments, compounds according to the invention, or for use according to the invention, may be provided in combination with one or more agents useful in the prevention or treatment of Alzheimer' s disease. Examples of such agents include, without limitation,
• acetylcholine esterase inhibitors (AChEIs) such as Aricept® (Donepezil), Exelon® (Rivastigmine), Razadyne® (Razadyne ER®, Reminyl®, Nivalin®, Galantamine), Cognex® (Tacrine), Dimebon, Huperzine A, Phenserine, Debio-9902 SR (ZT-1 SR), Zanapezil (TAK0147), ganstigmine, NP7557, etc.;
• NMDA receptor antagonists such as Namenda® (Axura®, Akatinol®, Ebixa®,
Memantine), Dimebon, SGS-742, Neramexane, Debio-9902 SR (ZT-1 SR), etc.;
• gamma-secretase inhibitors and/or modulators such as Flurizan™ (Tarenflurbil,
MPC-7869, R-flurbiprofen), LY450139, MK 0752, E2101, BMS-289948, BMS- 299897, BMS-433796, LY-411575, GSI-136, etc.;
• beta-secretase inhibitors such as ATG-Z1, CTS-21166, etc.;
• alpha-secretase activators, such as NGX267, etc; • amyloid-β aggregation and/or fibrillization inhibitors such as Alzhemed (3 APS, Tramiprosate, 3-amino-l-propanesulfonic acid), AL-108, AL-208, AZD-103, PBT2, Cereact, ONO-2506PO, PPI-558, etc.;
• tau aggregation inhibitors such as methylene blue, etc.;
• microtubule stabilizers such as AL-108, AL-208, paclitaxel, etc.;
• RAGE inhibitors, such as TTP488, etc.;
• 5-HTla receptor antagonists, such as Xaliproden, Lecozotan, etc.;
• 5-HT4 receptor antagonists, such as PRX-03410, etc.;
• kinase inhibitors such as SRN-003-556, amfurindamide, LiCl, AZD1080, NP031112, SAR-502250, etc.
• humanized monoclonal anti-Αβ antibodies such as Bapineuzumab (AAB-001),
LY2062430, RN1219, ACU-5A5, etc.;
• amyloid vaccines such as AN- 1792, ACC-001
• neuroprotective agents such as Cerebrolysin, AL-108, AL-208, Huperzine A, etc.;
• L-type calcium channel antagonists such as MEM- 1003, etc.;
• nicotinic receptor antagonists, such as AZD3480, GTS-21, etc.;
• nicotinic receptor agonists, such as MEM 3454, Nefiracetam, etc.;
• peroxisome proliferator-activated receptor (PPAR) gamma agonists such as
Avandia® (Rosglitazone), etc.;
• phosphodiesterase IV (PDE4) inhibitors, such as MK-0952, etc.;
• hormone replacement therapy such as estrogen (Premarin), etc.;
• monoamine oxidase (MAO) inhibitors such as NS2330, Rasagiline (Azilect®), TVP- 1012, etc.;
• AMP A receptor modulators such as Ampalex (CX 516), etc.;
• nerve growth factors or NGF potentiators, such as CERE-110 (AAV-NGF), T-588, T- 817MA, etc.;
• agents that prevent the release of luteinizing hormone (LH) by the pituitary gland, such as leuoprolide (VP-4896), etc.;
• GABA receptor modulators such as AC-3933, NGD 97-1, CP-457920, etc.;
• benzodiazepine receptor inverse agonists such as SB-737552 (S-8510), AC-3933, etc.;
• noradrenaline-releasing agents such as T-588, T-817MA, etc. [0078] It is to be understood that combination of compounds according to the invention, or for use according to the invention, with Alzheimer's agents is not limited to the examples described herein, but includes combination with any agent useful for the treatment of Alzheimer's disease. Combination of compounds according to the invention, or for use according to the invention, and other Alzheimer's agents may be administered separately or in conjunction. The administration of one agent may be prior to, concurrent to, or subsequent to the administration of other agent(s).
[0079] In alternative embodiments, the compounds may be supplied as "prodrugs" or protected forms, which release the compound after administration to a subject. For example, the compound may carry a protective group which is split off by hydrolysis in body fluids, e.g., in the bloodstream, thus releasing the active compound or is oxidized or reduced in body fluids to release the compound. Accordingly, a "prodrug" is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term "prodrug" refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of the invention. Prodrugs are typically rapidly transformed in vivo to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a subject.
[0080] The term "prodrug" is also meant to include any covalently bonded carriers which release the active compound of the invention in vivo when such prodrug is administered to a subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and acetamide, formamide, and benzamide derivatives of amine functional groups in the compounds of the invention and the like.
[0081] A discussion of prodrugs may be found in "Smith and Williams' Introduction to the Principles of Drug Design," H.J. Smith, Wright, Second Edition, London (1988); Bundgard, H., Design of Prodrugs (1985), pp. 7-9, 21-24 (Elsevier, Amsterdam); The Practice of Medicinal Chemistry, Camille G. Wermuth et al, Ch 31, (Academic Press, 1996); A
Textbook of Drug Design and Development, P. Krogsgaard-Larson and H. Bundgaard, eds. Ch 5, pgs 113 191 (Harwood Academic Publishers, 1991); Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol. 14; or in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, all of which are incorporated in full by reference herein.
[0082] Suitable prodrug forms of the compounds of the invention include embodiments in which each R1 is acyl. In these cases the ester groups may be hydrolyzed in vivo (e.g. in bodily fluids), releasing the active compounds in which each R1 is H. Preferred prodrug embodiments of the invention include compounds of Formula (I) where each R1 is COCH3.
[0083] Compounds according to the invention, or for use according to the invention, can be provided alone or in combination with other compounds in the presence of a liposome, an adjuvant, or any pharmaceutically acceptable carrier, diluent or excipient, in a form suitable for administration to a subject such as a mammal, for example, humans, cattle, sheep, etc. If desired, treatment with a compound according to the invention may be combined with more traditional and existing therapies for the therapeutic indications described herein.
Compounds according to the invention may be provided chronically or intermittently.
"Chronic" administration refers to administration of the compound(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature. The terms "administration,"
"administrable," or "administering" as used herein should be understood to mean providing a compound of the invention to the subject in need of treatment.
[0084] "Pharmaceutically acceptable carrier, diluent or excipient" includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier that has been approved, for example, by the United States Food and Drug Administration or other governmental agency as being acceptable for use in humans or domestic animals.
[0085] The compounds of the present invention may be administered in the form of pharmaceutically acceptable salts. In such cases, pharmaceutical compositions in accordance with this invention may comprise a salt of such a compound, preferably a physiologically acceptable salt, which are known in the art. In some embodiments, the term
"pharmaceutically acceptable salt" as used herein means an active ingredient comprising compounds of Formula I used in the form of a salt thereof, particularly where the salt form confers on the active ingredient improved pharmacokinetic properties as compared to the free form of the active ingredient or other previously disclosed salt form.
[0086] A "pharmaceutically acceptable salt" includes both acid and base addition salts. A "pharmaceutically acceptable acid addition salt" refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, trifluoroacetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid,
p-toluenesulfonic acid, salicylic acid, and the like.
[0087] A "pharmaceutically acceptable base addition salt" refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine,methylglucamine, theobromine, purines, piperazine, piperidine,
N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.
[0088] Thus, the term "pharmaceutically acceptable salt" encompasses all acceptable salts including but not limited to acetate, lactobionate, benzenesulfonate, laurate, benzoate, malate, bicarbonate, maleate, bisulfate, mandelate, bitartarate, mesylate, borate, methylbromide, bromide, methylnitrite, calcium edetate, methylsulfate, camsylate, mucate, carbonate, napsylate, chloride, nitrate, clavulanate, N-methylglucamine, citrate, ammonium salt, dihydrochloride, oleate, edetate, oxalate, edisylate, pamoate (embonate), estolate, palmitate, esylate, pantothenate, fumarate, phosphate/diphosphate, gluceptate, polygalacturonate, gluconate, salicylate, glutame, stearate, glycollylarsanilate, sulfate, hexylresorcinate, subacetate, hydradamine, succinate, hydrobromide, tannate, hydrochloride, tartrate, hydroxynaphthoate, teoclate, iodide, tosylate, isothionate, triethiodide, lactate, panoate, valerate, and the like.
[0089] Pharmaceutically acceptable salts of the compounds of the present invention can be used as a dosage for modifying solubility or hydrolysis characteristics, or can be used in sustained release or prodrug formulations. Also, pharmaceutically acceptable salts of the compounds of this invention may include those formed from cations such as sodium, potassium, aluminum, calcium, lithium, magnesium, zinc, and from bases such as ammonia, ethylenediamine, N-methyl-glutamine, lysine, arginine, ornithine, choline,
Ν,Ν'-dibenzylethylene-diamine, chloroprocaine, diethanolamine, procaine,
N-benzylphenethyl-amine, diethylamine, piperazine, tris(hydroxymethyl)aminomethane, and tetramethylammonium hydroxide.
[0090] Pharmaceutical formulations will typically include one or more carriers acceptable for the mode of administration of the preparation, be it by injection, inhalation, topical administration, lavage, or other modes suitable for the selected treatment. Suitable carriers are those known in the art for use in such modes of administration.
[0091] Suitable pharmaceutical compositions may be formulated by means known in the art and their mode of administration and dose determined by the skilled practitioner. For parenteral administration, a compound may be dissolved in sterile water or saline or a pharmaceutically acceptable vehicle used for administration of non-water soluble compounds such as those used for vitamin K. For enteral administration, the compound may be administered in a tablet, capsule or dissolved in liquid form. The table or capsule may be enteric coated, or in a formulation for sustained release. Many suitable formulations are known, including, polymeric or protein microparticles encapsulating a compound to be released, ointments, gels, hydrogels, or solutions which can be used topically or locally to administer a compound. A sustained release patch or implant may be employed to provide release over a prolonged period of time. Many techniques known to skilled practitioners are described in Remington: the Science & Practice of Pharmacy by Alfonso Gennaro, 20th ed., Williams & Wilkins, (2000). Formulations for parenteral administration may, for example, contain excipients, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated naphthalenes. Biocompatible, biodegradable lactide polymer,
lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for modulatory compounds include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
[0092] The compounds or pharmaceutical compositions according to the present invention may be administered by oral or non-oral, e.g., intramuscular, intraperitoneal, intravenous, intraci sternal injection or infusion, subcutaneous injection, transdermal or transmucosal routes. In some embodiments, compounds or pharmaceutical compositions in accordance with this invention or for use in this invention may be administered by means of a medical device or appliance such as an implant, graft, prosthesis, stent, etc. Implants may be devised which are intended to contain and release such compounds or compositions. An example would be an implant made of a polymeric material adapted to release the compound over a period of time. The compounds may be administered alone or as a mixture with a
pharmaceutically acceptable carrier e.g., as solid formulations such as tablets, capsules, granules, powders, etc.; liquid formulations such as syrups, injections, etc.; injections, drops, suppositories, pessaryies. In some embodiments, compounds or pharmaceutical compositions in accordance with this invention or for use in this invention may be administered by inhalation spray, nasal, vaginal, rectal, sublingual, or topical routes and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.
[0093] The compounds of the invention may be used to treat animals, including mice, rats, horses, cattle, sheep, dogs, cats, and monkeys. However, compounds of the invention can also be used in other organisms, such as avian species (e.g., chickens). The compounds of the invention may also be effective for use in humans. The term "subject" or alternatively referred to herein as "patient" is intended to be referred to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment. However, the compounds, methods and pharmaceutical compositions of the present invention may be used in the treatment of animals. Accordingly, as used herein, a "subject" may be a human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc. The subject may be suspected of having or at risk for having a condition requiring modulation of O-GlcNAcase activity.
[0094] An "effective amount" of a compound according to the invention includes a therapeutically effective amount or a prophylactically effective amount. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result, such as inhibition of an O-GlcNAcase, elevation of O-GlcNAc levels, inhibition of tau phosphorylation, or any condition described herein. A therapeutically effective amount of a compound may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. A therapeutically effective amount is also one in which any toxic or detrimental effects of the compound are outweighed by the therapeutically beneficial effects. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result, such as inhibition of an O-GlcNAcase, elevation of O-GlcNAc levels, inhibition of tau phosphorylation, or any condition described herein. Typically, a prophylactic dose is used in subjects prior to or at an earlier stage of disease, so that a prophylactically effective amount may be less than a therapeutically effective amount. A suitable range for therapeutically or prophylactically effective amounts of a compound may be any integer from 0.1 nM-0.1 M, 0.1 nM-0.05 M, 0.05 nM-15 μΜ or 0.01 nM-10 μΜ.
[0095] In alternative embodiments, in the treatment or prevention of conditions which require modulation of O-GlcNAcase activity, an appropriate dosage level will generally be about 0.01 to 500 mg per kg subject body weight per day, and can be administered in singe or multiple doses. In some embodiments, the dosage level will be about 0.1 to about 250 mg/kg per day. It will be understood that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound used, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the patient undergoing therapy. [0096] It is to be noted that dosage values may vary with the severity of the condition to be alleviated. For any particular subject, specific dosage regimens may be adjusted over time according to the individual need and the professional judgement of the person administering or supervising the administration of the compositions. Dosage ranges set forth herein are exemplary only and do not limit the dosage ranges that may be selected by medical practitioners. The amount of active compound(s) in the composition may vary according to factors such as the disease state, age, sex, and weight of the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It may be advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. In general, compounds of the invention should be used without causing substantial toxicity, and as described herein, the compounds exhibit a suitable safety profile for therapeutic use. Toxicity of the compounds of the invention can be determined using standard techniques, for example, by testing in cell cultures or experimental animals and determining the therapeutic index, i.e., the ratio between the LD50 (the dose lethal to 50% of the population) and the LD100 (the dose lethal to 100% of the population). In some circumstances however, such as in severe disease conditions, it may be necessary to administer substantial excesses of the compositions.
[0097] In the compounds of generic Formula (I), the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of generic Formula (I). For example, different isotopic forms of hydrogen (H) include protium (¾), deuterium (2H) and tritium (3H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds within generic Formula (I) can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates. Other Uses and Assays
[0098] A compound of Formula (I) may be used in screening assays for compounds which modulate the activity of glycosidase enzymes, preferably the O-GlcNAcase enzyme. The ability of a test compound to inhibit O-GlcNAcase-dependent cleavage of O-GlcNAc from a model substrate may be measured using any assays, as described herein or known to one of ordinary skill in the art. For example, a fluoresence or UV-based assay known in the art may be used. A "test compound" is any naturally-occurring or artificially-derived chemical compound. Test compounds may include, without limitation, peptides, polypeptides, synthesised organic molecules, naturally occurring organic molecules, and nucleic acid molecules. A test compound can "compete" with a known compound such as a compound of Formula (I) by, for example, interfering with inhibition of O-GlcNAcase-dependent cleavage of O-GlcNAc or by interfering with any biological response induced by a compound of Formula (I).
[0099] Generally, a test compound can exhibit any value between 10% and 200%, or over 500%), modulation when compared to a compound of Formula (I) or other reference compound. For example, a test compound may exhibit at least any positive or negative integer from 10%> to 200% modulation, or at least any positive or negative integer from 30% to 150%) modulation, or at least any positive or negative integer from 60%> to 100%
modulation, or any positive or negative integer over 100%) modulation. A compound that is a negative modulator will in general decrease modulation relative to a known compound, while a compound that is a positive modulator will in general increase modulation relative to a known compound.
[00100] In general, test compounds are identified from large libraries of both natural products or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the method(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceanographic Institute (Ft. Pierce, FL, USA), and PharmaMar, MA, USA. In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods.
Furthermore, if desired, any library or compound is readily modified using standard chemical, physical, or biochemical methods.
[00101] When a crude extract is found to modulate inhibition of O-GlcNAcase-dependent cleavage of O-GlcNAc, or any biological response induced by a compound of Formula (I), further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having O-GlcNAcase- inhibitory activities. The same assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogeneous extracts are known in the art. If desired, compounds shown to be useful agents for treatment are chemically modified according to methods known in the art. Compounds identified as being of therapeutic, prophylactic, diagnostic, or other value may be subsequently analyzed using a suitable animal model, as described herein on known in the art.
[00102] In some embodiments, the compounds are useful in the development of animal models for studying diseases or disorders related to deficiencies in O-GlcNAcase, over- expression of O-GlcNAcase, accumulation of O-GlcNAc, depletion of O-GlcNAc, and for studying treatment of diseases and disorders related to deficiency or over-expression of O-
GlcNAcase, or accumulation or depletion of O-GlcNAc. Such diseases and disorders include neurodegenerative diseases, including Alzheimer's disease, and cancer.
[00103] Various alternative embodiments and examples of the invention are described herein. These embodiments and examples are illustrative and should not be construed as limiting the scope of the invention.
EXAMPLES [00104] The following examples are intended to illustrate embodiments of the invention and are not intended to be construed in a limiting manner.
Example 1
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-(methoxymethyl)-5,6,7,7a-tetrahyd
pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000041_0001
[00105] To a solution of tert-butyl ethyl((3aR,5R,6S,7R,7aR)-5-(hydroxymethyl)-6,7-bis((4- methoxybenzyl)oxy)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl)carbamate (0.16 g, 0.28 mmol) in dry THF (5 mL) at 0°C was added NaH (60%, 13.5 mg, 0.33 mmol) in small portions. After stirring at 0°C for 20 mins, methyl iodide (0.052 mL, 0.84 mmol) was added and the mixture was stirred at room temperature for another 2.5h. MeOH (2 mL) was added to quench the hydride and the reaction mixture was concentrated under reduced pressure. The residue was purified on silica gel by flash column chromatography (EtOAc/hexanes, 3 : 7), affording tert-butyl ((3 aR, 5R, 6 S, 7R, 7aR)-6, 7-bis((4-methoxybenzyl)oxy)-5 - (methoxymethyl)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl)(ethyl)carbamate as a white solid (0.175 g, quant.). 1H MR (400 MHz, CDC13) δ 7.34 (d, J= 8.5 Hz, 2H), 7.20 (d, J= 8.5 Hz, 2H), 6.90-6.84 (m, 4H), 6.09 (d, J= 7.0 Hz, 1H), 4.69 (d, J= 11.7 Hz, 1H), 4.63 (d, J= 11.7 Hz, 1H), 4.54 (d, J= 11 Hz, 1H), 4.39-4.37 (m, 1H), 4.31-4.25 (m, 2H), 3.89-3.87 (m, 2H), 3.807 (s, 3H), 3.803 (s, 3H), 3.60 (m, 1H), 3.55-3.51 (m, 1H), 3.46-3.44 (m, 2H), 3.32 (s, 3H), 1.53 (s, 9H), 1.13 (t, J= 6.9 Hz, 3H).
[00106] The above material (0.120 g, 0.2 mmol) was dissolved in 10% TFA/ DCM solution (10 mL) and stirred at room temperature for 2.5 h. The reaction mixture was concentrated and co-evaporated with diethyl ether (20 mL). To the residue was added 2M H3/MeOH solution (5 mL) and concentrated under reduced pressure. The product obtained was purified on silica gel by flash column chromatography eluted with 5% MeOH in DCM and 94:4:2 DCM- MeOH- H4OH (28% aqueous) to give (3aR,5R,6S,7R,7aR)-2-(ethylamino)-5- (methoxymethyl)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol as a white solid (31.4 mg, 60%). 1H NMR (400 MHz, CD3OD) δ 6.42 (d, J= 5.9 Hz, 1H), 4.10 (t, J= 6.36 Hz, 1H), 3.89 (t. J= 6.08 Hz, 1H), 3.73 (ddd, J= 8.6, 6.0, 2.0 Hz, 1H), 3.66 (dd, J= 8.9, 2.08 Hz, 1H), 3.61-3.56 (dd, J= 6.04, 4.8 Hz, 1H), 3.51- 3.47 (dd, J= 5.9, 3.3 Hz, 1H), 3.37 (s, 3H), 3.35- 3.33 (m, 2H), 1.22 (t, J= 7.2 Hz, 3H); "C NMR (100 MHz, CD3OD) δ 164. 03, 89.03, 81.35, 76.00, 71.19, 71.11, 64.05, 59.74, 41.79, 14.99; MS, m/z = 263 (M +
1).
Example 2
((3aR,5R,6S,7R,7aR)-6,7-Dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano [3,2-d] thiazol-5-yl)methyl ethylcarbamate
Figure imgf000042_0001
Scheme I
Figure imgf000042_0002
A B
[00107] A solution of tert-butyl (3aR,5R,6S,7R,7aR)-6,7-bis(4-methoxybenzyloxy)-5- (hydroxymethyl)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate (200 mg, 0.35 mmol) in DCM (10 mL) was added isocyanatoethane (37 mg, 0.52 mmol) and triethylamine (70 mg, lmmol). After stirred overnight at room temperature, the reaction mixture was quenched by water (20 mL), extracted with DCM (3 x 20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum to give compound B as a light yellow foam, which was dissolved into DCM (10 mL) and treated with TFA (1 mL) overnight at room temperature. Removal of volatiles provided a residue, which was purified by Prep-HPLC with the following conditions [(Agilent 1200 Prep HPLC): Column, C18, 19*50mm,5um; mobile phase, water with 0.03% H4OH and CH3CN (10%CH3CN up to 45%) in 10 min); Detector, UV 220nm.] to give the title compound as a white solid (33.6 mg, 28 %). (ES, m/z) [M+H]+ 305.9; 1H NMR (300 MHz, D20) δ 6.37 - 6.39 (d, J= 6.6 Hz, 1H), 4.11 - 4.47 (m, 3H), 3.80 - 3.93 (m, 2H), 3.53 - 3.58 (m, 1H), 2.98 - 3.05 (m, 2H), 2.87 (s, 3H), 1.79 (s, 2H), 0.95 - 1.00 (m, 3H).
Example 3
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano [3,2-d] thiazol-5-yl)methyl methylcarbamate
Scheme II
Figure imgf000043_0002
[00108] To a solution of tert-butyl (3aR,5R,6S,7R,7aR)-5-(hydroxymethyl)-6,7-bis(4- methoxybenzyloxy)-5 , 6, 7, 7a-tetrahydro-3 aH-pyrano [3 ,2-d]thiazol-2-yl(methyl)carbamate (575 mg, 1.00 mmol) in THF (15 mL) was added Ν,Ν'-disuccinimidyl carbonate (384 mg, 1.50 mmol) and triethylamine (303 mg, 3 mmol). After stirring for 6 hours at room
temperature, potassium carbonate (829 mg, 6.00 mmol) and methylamine (124 mg, 4 mmol) were added to the mixture. After 16 hours at room temperature, the resulting mixture was diluted with H20 (20 mL), extracted with ethyl acetate (3 x 20 mL), concentrated under reduced pressure to give crude compound C as a light yellow foam, which was dissolved into DCM (15 mL) and treated with TFA (1.5 mL) overnight at room temperature. Removal of volatiles provided a residue, which was purified by Prep-HPLC with the following conditions [(Agilent 1200 prep HPLC): Column, SunFire Prep C 18, 19 * 50 mm 5 urn; mobile phase, H20 with 0.03 % H4OH and CH3CN (10 % CH3CN up to 45 % in 10 min); Detector, UV 220 nm] to give the title compound as a light yellow solid (90 mg, 48 %); (ES, m/z):
[M+H]+ 292.0; 1H MR (300 MHz, CD3OD) δ 6.26 - 6.28 (d, J= 6.3 Hz, 1H), 4.15 - 4.85 (m, 2H), 4.03 - 4.08 (m, 1H), 3.90 - 3.94 (m, 1H), 3.73 - 3.79 (m, 1H), 3.47 - 3.52 (m, 1H), 2.85 (s, 3H), 2.71 (s, 3H).
[00109] The following examples were synthesized according to procedures analogous to the schemes and examples outlined above.
Table 2
Figure imgf000043_0003
Figure imgf000044_0001
Example 9
((3aR,5R,6S,7R,7aR)-6,7-Dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano [3,2-d] thiazol-5-yl)methyl dimethylcarbamate
Figure imgf000044_0002
D
[00110] A solution of tert-butyl (3aR,5R,6S,7R,7aR)-6,7-bis(4-methoxybenzyloxy)-5- (hydroxymethyl)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate (300 mg, 0.52 mmol) and Ν,Ν-dimethylcarbamoyl chloride (112 mg, 1.05 mmol) in THF (15 mL) was treated with NaHMDS (0.63 ml, 2M in THF) for 30 min at 0 °C. The reaction was then quenched by saturated aqueous NH4C1 (30 mL), extracted with DCM (3 x 30 ml), dried over sodium sulfate, and concentrated under vacuum to give compound D as a light yellow foam, which was dissolved into DCM (15 mL) and treated with TFA (1.5 mL) overnight at room temperature. The mixture was condensed to give a residue, which was purified by Prep- HPLC with the following conditions [(Agilent 1200 Prep HPLC): Column, C18, 19*50mm,5um; mobile phase, water with 0.03% H4OH and CH3CN (10%CH3CN up to 45% in 10 min); Detector, UV 220nm.] to give the title compound as a white solid (30.5 mg, 22 %). (ES, m/z)[M+H]+ 305.9; 1H NMR (300 MHz, D20) δ 6.12 - 6.15 (d, J= 6.3 Hz, 1H), 4.06 - 4.21 (m, 3H), 3.93 - 3.96 (m, 1H), 3.58 - 3.67 (m, 1H), 3.54 - 3.57 (m, 1H), 2.79 (s, 3H), 2.76 (s, 3H), 2.70 (s, 3H).
[00111] The following examples were synthesized according to procedures analogous to the schemes and examples outlined above.
Table 3
Figure imgf000045_0001
Example 17
(3aR,5R,6S,7R,7aR)-5-((butylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000046_0001
[00112] ((3aR,6S,7R,7aS)-2-(N-Boc-ethylamino)-5,6,7,7a-tetrahydro-6,7- dihydroxypyrano[3,2-d]thiazol-5-yl)methyl 4-methylbenzene sulfonate (O. lg, 0.2 mmol) and an excess of «-butylamine (3 mL) were heated in a sealed tube at 65° C for 24h. The contents were evaporated and residue further diluted with DCM (15 mL), washed with satd. NaHC03, dried (Na2S04) and concentrated. The resulting crude residue was purified by flash chromatography on silica gel (20% MeOH/ DCM) to give fert-butyl (3aR,5R,6S,7R,7aR)-5- ((butylamino)methyl)-5 , 6, 7, 7a-tetrahydro-6, 7-dihy droxy-3 aH-pyrano [3 ,2-d]thiazol-2- ylethylcarbamate as a gummy solid (0.048g, 60% yield). 1H MR (600 MHz, MeOD) δ 5.68 (d, 7= 6.9, 1H), 3.80 (dd, 7= 6.6, 4.8, 1H), 3.77 - 3.72 (m, 1H), 3.53 (m, 2H), 3.11 (td, 7 = 8.9, 2.7, 1H), 3.05 (dd, 7= 9.0, 3.1, 1H), 2.51 (dd, 7= 12.7, 2.7, 1H), 2.31 - 2.14 (m, 3H), 1.13 - 1.07 (m, 2H), 0.96 (d, 7= 7.6, 2H), 0.79 (t, 7= 7.0, 3H), 0.55 (t, 7= 7.4, 3H).
[00113] The above material (0.048g, 0.12 mmol) was taken in methanolic HC1 (2 mL) and stirred at room temperature for 1 hr. After the removal of excess reagent under reduced pressure, the gummy residue was triturated with diethyl ether several times and dried on high vacuum to yield (3aR,5R,6S,7R,7aR)-5-((butylamino)methyl)-2-(ethylamino)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol dihydrochloride as a white solid (0.024g, 66% yield). 1H NMR (600 MHz, MeOD) 56.28 (d, 7= 6.4, 1H), 3.88 (t, 7= 6.5, 1H), 3.66 (t, 7 = 8.4, 1H), 3.54 (t, 7= 6.5, 1H), 3.17 - 3.02 (m, 4H), 2.89 (dd, 7= 13.3, 9.6, 1H), 2.68 (dd, 7 = 9.3, 6.7, 2H), 1.39-1.30 (m, 2H), 1.07 (dd, 7= 14.8, 7.4, 2H), 0.93 (t, 7= 7.3, 3H), 0.62 (t, 7 = 7.4, 3H). 13C NMR (151 MHz, MeOD) δ 168.24, 85.87, 72.54, 71.41, 69.77, 63.75, 48.41, 48.02, 39.69, 27.61, 19.43, 12.49, 12.17. HRMS calcd. for Ci3H26N303S [M+H]+ 304.1694, found 304.1682.
Example 18
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-((isopropylamino)methyl)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000046_0002
[00114] ((3aR,6S,7R,7aS)-2-(N-Boc-ethylamino)-5,6,7,7a-tetrahydro-6,7- dihydroxypyrano[3,2-d]thiazol-5-yl)methyl 4-methylbenzene sulfonate (O. lg, 0.2 mmol) and an excess of isopropylamine (3 mL) were heated in a sealed tube at 60° C for 24h. The contents were evaporated and residue further diluted with DCM (15 mL), washed with satd. NaHC03, dried (Na2S04) and concentrated. The resulting crude residue was purified by flash chromatography on silica gel (20% MeOH/ DCM) to give tert-butyl
ethyl(3aR,5R,6S,7R,7aR)-5,6,7,7a-tetrahydro-6,7-dihydroxy-5-((isopropylamino)methyl)- 3aH-pyrano[3,2-d]thiazol-2-ylcarbamate as a gummy solid (0.033g, 42.5% yield). 1H MR (600 MHz, MeOD) δ 5.70 (d, J= 6.8, 1H), 3.82 (ddd, J= 6.8, 4.7, 0.8, 1H), 3.76 (dd, J= 4.7, 3.1, 1H), 3.56 (m, 2H), 3.13 - 3.06 (m, 2H), 2.96 - 2.92 (m, 2H), 2.58 (dd, J= 12.3, 2.5, 1H), 2.48 - 2.41 (m, 1H), 2.23 (dd, J= 12.3, 8.3, 1H), 1.17 (s, 9H), 0.81 (t, J= 7.0, 3H), 0.70 (dd, J= 6.3, 4.7, 6H).
[00115] The above material (0.033g, 0.085 mmol) was taken up in methanolic HC1 (2 mL) and stirred at room temperature for 1 hr. After the removal of excess reagent under reduced pressure, the gummy residue was triturated with diethyl ether several times and dried on high vacuum to yield (3aR,5R,6S,7R,7aR)-2-(ethylamino)-5,6,7,7a-tetrahydro-5-((isopropylamino) methyl)-3aH-pyrano[3,2-d]thiazole-6,7-diol dihydrochloride as a white solid (0.021g, 88%). 1H MR (600 MHz, MeOD) 56.25 (d, J= 6.5, 1H), 3.83 (t, J= 5.0, 1H), 3.67 - 3.58 (m, 1H), 3.52 - 3.47 (m, 1H), 3.13 - 2.99 (m, 5H), 2.85 (dd, J= 13.2, 9.6, 1H), 0.96 (t, J= 7.1, 6H), 0.88 (t, J= 7.3, 3H). 13C NMR (151 MHz, MeOD) δ 168.28, 85.96, 72.6, 71.64, 69.69, 63.72, 51.20, 45.71, 39.68, 17.90, 17.44, 12.19. HRMS calcd. for Ci2H24N303S [M+H]+ 290.1538, found 290.1534.
Example 19
(3aR,5R,6S,7R,7aR)-5-((benzylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahyd pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000047_0001
[00116] A solution of fert-butyl (3aR,5R,6S,7R,7aR)-5-(aminomethyl)-5,6,7,7a-tetrahydro- 6,7-dihydroxy-3aH-pyrano[3,2-d]thiazol-2-ylethylcarbamate (O. lg, 0.3mmol) in DMF (5 mL) was treated with benzaldehyde (0.030 mL, 0.27 mmol). After stirring at room temperature for 10 mins, sodium cyanoborohydride (0.063g, 0.9 mmol) was then added and reaction continued to stir at RT overnight. DMF was evaporated and crude residue was dissolved in DCM (25 mL), washed with satd. NaHC03, dried (Na2S04) and concentrated. The resulting crude compound was purified by flash chromatography on silica gel (50% methanol/ DCM) to give tert-butyl (3aR,5R,6S,7R,7aR)-5-((benzylamino)methyl)-5,6,7,7a-tetrahydro-6,7- dihydroxy-3aH-pyrano[3,2-d]thiazol-2-ylethylcarbamate as a gummy solid (0.1 g, 83%yield). 1H MR (600 MHz, MeOD) δ 7.21 - 6.90 (m, 5H), 5.70 (d, J= 6.9, 1H), 3.84 (ddd, J= 6.9, 4.5, 0.9, 1H), 3.80 - 3.71 (m, 3H), 3.53 (m, 2H), 3.25 - 3.15 (m, 1H), 3.07 (dd, J= 8.8, 2.3, 1H), 2.88 - 2.78 (m, 1H), 2.60 (dd, J= 12.8, 10.0, 1H), 1.13 (s, 9H), 0.79 (t, J= 7.0, 3H).
[00117] The above material (0.065g, 0.15 mmol) was taken in methanolic HC1 (2 mL) and stirred at room temperature for 1 hr. After the removal of excess reagent under reduced pressure, the gummy residue was triturated with diethyl ether several times and dried on high vacuum to yield (3aR,5R,6S,7R,7aR)-5-((benzylamino)methyl)-2-(ethylamino)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol dihydrochloride as a white solid (0.033g, 66% yield). 1H MR (600 MHz, MeOD) δ 7.12-7.02 (m, 5H), 6.22 (d, J= 6.6, 1H), 3.91 - 3.85 (m, 2H), 3.85 - 3.80 (m, 1H), 3.65-3.62 (m, 1H), 3.50-3.48 (m, 1H), 3.14 - 3.09 (m, 1H), 3.08 - 2.97 (m, 3H), 2.83 (dt, J= 15.3, 7.7, 1H), 0.87 (t, J= 7.3, 3H). 13C MR (151 MHz, MeOD) δ 168.26, 130.69, 129.90, 129.41, 128.97, 128.92, 85.81, 71.32, 69.83, 69.76, 63.71, 51.24, 51.21, 39.68, 12.16. HRMS calcd. for Ci6H24N303S [M + H] + 338.1538, found 338.1533.
Example 20
N-(((3aR,5R,6S,7R,7aR)-2-(ethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahyd
pyrano [3,2-d] thiazol-5-yl)methyl)acetamide
Figure imgf000048_0001
[00118] A solution of fert-butyl (3aR,5R,6S,7R,7aR)-5-(aminomethyl)-5,6,7,7a-tetrahydro- 6,7-dihydroxy-3aH-pyrano[3,2-d]thiazol-2-ylethylcarbamate (0.104g, 0.3 mmol) in 1 :2 mixture of Ac20: pyridine (6 mL) was stirred at room temperature for 2 days. Concentrated and purified the crude residue by flash chromatography on silica gel (100% EtOAc) to give (3aR,5R,6R,7R,7aR)-5-(acetamidomethyl)-2-((tert-butoxycarbonyl)(ethyl)amino)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diyl diacetate as a white solid (0.130 g, 90% yield). 1H MR (600 MHz, MeOD) δ 5.58 (d, J= 7.0, 1H), 4.94 (dd, J= 3.3, 1.3, 1H), 4.27 (d, J = 9.2, 1H), 3.86(ddd, J= 7.0, 3.2, 0.9, 1H), 3.55-3.37 (m, 2H), 3.08 - 2.97 (m, 1H), 2.94 (dd, J = 14.2, 3.2, 1H), 2.73 (dd, J= 14.2, 7.3, 1H), 1.64 (s, 3H), 1.58 (s, 3H), 1.45 (s, 3H), 1.07 (s, 9H), 0.73 (t, J= 7.0, 3H).
[00119] To a solution of the above material (0.130 g, 0.27 mmol) in methanol (3 mL) was added K2C03 and the mixture was stirred at room temperature for 4 h till no more starting material was seen by TLC. Concentrated the reaction mixture to about 1 mL and purified the crude material by flash chromatography on silica gel (10% MeOH/ DCM) to yield the title compound tert-butyl ((3aR,5R,6S,7R,7aR)-5-(acetamidomethyl)-6,7-dihydroxy-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl)(ethyl)carbamate as a white solid (O. lOlg, 96% yield). 1H NMR (600 MHz, MeOD) δ 5.67 (d, J= 6.9, 1H), 3.75-3.69 (m, 1H), 3.61 (t, J= 4.7, 1H), 3.56-3.45 (m, 2H), 3.12 (dd, J= 13.9, 2.6, 1H), 3.08 - 2.99 (m, 2H), 2.97 (m, lH), 1.56 (s, 3H), 1.13 (s, 9H), 0.76 (t, J= 7.0, 3H).
[00120] The above material (0.073 g, 0.19 mmol) was taken in methanolic HC1 (2 mL) and stirred at room temperature for 1 hr. After the removal of excess reagent under reduced pressure, the gummy residue was triturated with diethyl ether several times and dried on high vacuum to yield N-(((3aR,6S,7R,7aS)-2-(ethylamino)-5,6,7,7a-tetrahydro-6,7-dihydroxy- 3aH-pyrano[3,2-d]thiazol-5-yl)methyl)acetamide hydrochloride as a white solid (0.034g, 63% yield). 1H NMR (600 MHz, MeOD) δ 6.20 (d, J= 6.6, 1H), 3.74 (t, J= 6.8, 1H), 3.45 (t, J= 7.0, 1H), 3.35-3.29 (m, 1H), 3.25 (dd, J= 14.4, 2.7, 1H), 3.08 - 2.97 (m, 4H), 1.61 (s, 3H), 0.85 (t, J= 7.2, 3H). 13C NMR (151 MHz, MeOD) δ 173.19, 168.39, 86.82, 74.22, 72.76, 69.47, 63.83, 40.58, 39.57, 20.59, 12.15. HRMS calcd. for CiiH20N3O4S [M+H]+ 290.1174, found 290.1164.
Example 21
(3aR,5R,6S,7R,7aR)-2-(Methylamino)-5-((methylamino)methyl)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0003
Figure imgf000050_0004
[00121] tert-Butyl (3aR,5R,6S,7R,7aR)-6,7-dihydroxy-5-(hydroxymethyl)-5,6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate: A solution of
(3aR,5R,6S,7R,7aR)-5-(hydroxymethyl)-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol (85 g, 363 mmol) and (Boc)20 (118 g, 540 mmol) in methanol (600 mL) was treated with triethylamine (73.3 g, 725 mmol) overnight at 45 °C. The reaction mixture was condensed to give a residue, which was purified by a silica gel column, eluting with 2.5 % methanol in DCM to give compound F as a light yellow solid (90 g, 74 %). (ES, m/z)[M+H]+ 335.0; 1H MR (300 MHz, D20) δ 6.06 - 6.08 (d, J= 6.9 Hz, 1H), 4.16 - 4.20 (dd, J= 5.4 Hz, 6.6 Hz, 1H), 4.04 - 4.07 (dd, J= 4.5 Hz, 4.8 Hz, 1H), 3.70 - 3.75 (dd, J= 2.4 Hz, 12.3 Hz, 1H), 3.52 - 3.63 (m, 3H), 3.42 - 3.47 (m, 1H), 3.22 (s, 3H), 1.45 (s, 9H). Step 2
Figure imgf000051_0001
[00122] ((3aR,5R,6S,7R,7aR)-2-(tert-Butoxycarbonyl(methyl)amino)-6,7-dihydroxy- 5,6,7,7a-tetrahydro-3aH-pyrano [3,2-d]thiazol-5-yl)methyl 4-methylbenzenesulfonate: A solution of tert-butyl (3aR,5R,6S,7R,7aR)-6,7-dihydroxy-5-(hydroxymethyl)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate (20 g, 60 mmol) and
triethylamine (18 g, 180 mmol) in DCM (200 mL) was treated with p-TsCl (13.7 g, 71.5 mmol) overnight at room temperature. The resulting mixture was quenched by water (50 mL). The aqueous layer was extracted with DCM (3 x 50 mL). The combined organic layers were dried over magnesium sulfate, and concentrated under vacuum to afford a crude product as a light yellow solid (20 g). (ES, m/z)[M+H]+ 489.0; 1H MR (300 MHz, D20) δ: 7.75 - 7.78 (d, J= 8.4 Hz, 2H), 7.46 - 7.48(d, J= 8.4 Hz, 2H), 5.91 - 5.93 (d, J= 6.6 Hz, 1H), 5.25 - 5.26 (d, J= 4.8 Hz, 1H), 5.19 - 5.21 (d, J= 5.4 Hz, 1H), 4.04 - 4.15 (m, 2H), 3.95 - 3.99 (t, J= 5.4 Hz, 1H), 3.78 - 3.82 (m, 1H), 3.29 - 3.38 (m, 2H), 3.20 (s, 3H), 2.40 (s, 3H), 1.49 (s, 9H).
Step 3
Figure imgf000051_0002
[00123] tert-Butyl (3aR,5R,6S,7R,7aR)-6,7-dihydroxy-5-((methylamino)methyl)-
5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate: To a solution of methylamine in THF (2M, 10 mL) was added ((3aR,5R,6S,7R,7aR)-2-(tert-butoxycarbonyl)- 6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-5-yl)methyl 4- methylbenzenesulfonate (1.1 g, 2.25 mmol) at r.t. After stirred for 16 hours at 70 °C in a sealed tube, the reaction mixture was condensed to give a residue, which was dissolved into DCM (100 mL), washed with saturated aqueous NaC03 (2 x 20 mL), dried over magnesium sulfate, and concentrated under vacuum to give residue, which was purified by a silica gel column with 1 % methanol in DCM to give compound H as a white solid (120 mg, 15 %). (ES, m/z)[M+H]+ 348.1; 1H NMR (300 MHz, CDC13) δ 6.12 - 6.14 (d, J= 6.9 Hz, 1H), 4.16 - 4.20 (t, J= 6.6 Hz, 1H), 4.02 - 4.06 (1H, J= 6.0 Hz, 1H), 3.71 - 3.77 (m, 1H), 3.63 - 3.67 (m, 1H), 3.33 (s, 3H), 2.88 - 2.99 (m, 6H), 2.50 (s, 3H), 1.55 (s, 9H).
Step 4
Figure imgf000052_0001
[00124] (3aR,5R,6S,7R,7aR)-2-(Methylamino)-5-((methylamino)methyl)-5,6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol: A solution of tert-butyl
(3aR,5R,6S,7R,7aR)-6,7-dihydroxy-5-((methylamino)methyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-2-yl(methyl)carbamate (90 mg, 0.26 mmol) in methanol (10 mL) was treated with hydrogen chloride gas for 3 h at room temperature. The reaction mixture was condensed to give the title compound as its 2 x HC1 salt as a light yellow solid (65 mg, 75 %). (ES, m/z) [M+H]+ 248.1; 1H MR (300 MHz, D20) δ 6.50 - 6.53 (d, J= 6.6 Hz, 1H), 4.20 - 4.25 (m, 1H), 3.90 - 3.95 (m, 2H), 3.39 - 3.53 (m, 2H), 3.21 - 3.25 (m, 1H), 2.93 (s, 3H), 2.65 (s, 3H).
[00125] The following examples were synthesized according to procedures analogous to the schemes and examples outlined above.
Table 4
Figure imgf000052_0002
Figure imgf000053_0001
Figure imgf000054_0001
chloride
Example 45 (3aR,5R,6S,7R,7aR)-5-((3-Hydroxypropylamino)methyl)-2-(methylamino)-5,6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol
Figure imgf000055_0001
[00126] A solution of tert-butyl (3aR,5S,6S,7R,7aR)-6,7-bis(4-methoxybenzyloxy)-5- formyl-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2-yl(methyl)carbamate (300 mg, 0.52 mmol) and 3-aminopropan-l-ol (78. 7 mg, 1.05 mmol) in THF (20 mL) was treated with NaBH3CN (66 mg, 1.05 mmol) overnight at room temperature. The reaction mixture was quenched by water (20 mL), extracted with DCM (3 x 20 mL), washed with brine (3 x 10 mL), dried over anhydrous MgS04, and concentrated under vacuum to give a crude product, which was dissolved into DCM (10 mL) and treated with TFA (lmL) overnight at room temperature. After condensation, the residue was purified by Prep-HPLC with the following conditions [(Prep-HPLC): Column, 19* 150mm; mobile phase, water with 0.03% H3H2O and CH3CN (10% CH3CN up to 45% in 10 min); Detector, 254nm 220nm.] to give the title compound as a white solid (32.8 mg, 47 %). (ES, m/z) [M+H]+ 292.1 ; 1H MR (300 MHz, D20) δ 6.49 - 6.51 (d, J = 6.6 Hz, 1H), 4.17 - 4.19 (t, J= 6.3 Hz, 1H), 3.90 - 3.97 (m, 2H), 3.50 - 3.58 (t, J= 6.0 Hz, 2H), 3.41 - 3.51 (m, 2H), 3.18 - 3.26 (m, 1H), 3.08 - 3.10 (t, J= 7.5 Hz, 2H), 2.92 (s, 3H), 1.77 - 1.86 (m, 2H).
[00127] The following examples were synthesized according to procedures analogous to the schemes and examples outlined above.
Table 5
Figure imgf000055_0002
Figure imgf000056_0001
Example 58 l-(((3aR,5R,6S,7R,7aR)-6,7-Dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano [3,2-d] thiazol-5-yl)methyl)py rrolidin-2-one
Figure imgf000057_0001
Scheme VI
Figure imgf000057_0002
1 ,4-dioxane
reflux
Figure imgf000057_0003
L [00128] Methyl 4-(((3aR,5R,6R,7R,7aR)-2-(tert-butoxycarbonyl(methyl)amino)-6,7- bis(4-methoxybenzyloxy)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-5- yl)methylamino)butanoate: To a solution of tert-butyl (3aR,5S,6S,7R,7aR)-6,7-bis(4- methoxybenzyloxy)-5 -formyl-5 , 6, 7, 7a-tetrahydro-3 aH-pyrano [3 ,2-d]thiazol-2- yl(methyl)carbamate (200 mg, 0.35 mmol), methyl 4-aminobutanoate hydrochloride (266 mg, 1.74 mmol) and triethylamine (0.3 mL) in methanol (25 mL) was added NaBH3CN (110 mg, 1.75 mmol). After stirred overnight at room temperature, the reaction mixture was quenched by water (30 mL), extracted with DCM (3 x 30 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum to give crude compound K as a yellow oil (200mg). (ES, /// r): [M+H] + 674.0. [00129] tert-Butyl (3aR,5R,6R,7R,7aR)-6,7-bis(4-methoxybenzyloxy)-5-((2- oxopyrrolidin-l-yl)methyl)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]thiazol-2- yl(methyl)carbamate: A solution of crude compound K in 1,4-dioxane (20 mL) was heated to reflux overnight, and then concentrated under vacuum to give a residue, which was purified by a silica gel column with 50 % ethyl acetate in petroleum ether to give compound L as a colorless syrup (120 mg, two steps 63%). (ES, m/z): [M+H] + 641.9.
[00130] l-(((3aR,5R,6S,7R,7aR)-6,7-Dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazol-5-yl)methyl)pyrrolidin-2-one: Compound L (120 mg, 0.19 mmol) was treated with TFA (1.0 mL) in DCM (8.0 mL) overnight at room temperature. The reaction mixture was concentrated under vacuum to give a residue, which was purified by Prep-HPLC with the following conditions [(Agilent 1200 prep HPLC): Column, SunFire Prep C18, 19*50mm 5um; mobile phase, WATER with 0.03 "/o LOH and CH3CN(10 %CH3CN up to 45 % in 10 min; Detector, UV 220nm) to give the title compound as a white solid (17.9 mg, 32 %). (ES, m/z): [M+H] + 301.9. 1H MR (300 MHz, D20) δ 6.12 - 6.15 (d, J = 6.3 Hz, 1H), 4.10 - 4.14 (m, 1H), 3.94 - 3.97 (m, 1H), 3.59 - 3.64 (m, 1H), 3.32 - 3.59 (m, 5H), 2.72 (s, 3H), 2.28 - 2.33 (m, 2H), 1.86 - 1.94 (m, 2H).
Biological Activity
Assay for determination of Κτ values for inhibition of O-GlcNAcase activity
[00131] Experimental procedure for kinetic analyses: Enzymatic reactions are carried out in a reaction containing 50 mM NaH2P04, 100 mM NaCl and 0.1% BSA (pH 7.0) using 2 mM 4-Methylumbelliferyl N-acetyl-P-D-glucosaminide dihydrate (Sigma M2133) dissolved in ddH20, as a substrate. The amount of purified human O-GlcNAcase enzyme used in the reaction is 0.7 nM. Test compound of varying concentrations is added to the enzyme prior to initiation of the reaction. The reaction is performed at room temperature in a 96-well plate and is initiated with the addition of substrate. The production of fluorescent product is measured every 60 sec for 45 min with a Tecan Infinite M200 plate-reader with excitation at 355 nM and emission detected at 460 nM, with 4-Methylumbelliferone (Sigma M1381) used to produce a standard curve. The slope of product production is determined for each concentration of compound tested and plotted, using standard curve fitting algorithms for sigmoidal dose response curves. The values for a four parameter logistic curve fit of the data are determined. [00132] Ki values are determined using the Cheng-Prusoff equation; the Km of O-GlcNAcase for substrate is 0.2 mM. [00133] When tested in the above described assay, many of the compounds described herein exhibited ¾ values for inhibition of O-GlcNAcase in the range 0.1 nM - 10 μΜ.
Assay for determination of Κτ values for inhibition of β-hexosaminidase activity
[00134] Experimental procedure for kinetic analyses: Enzymatic reactions are carried out in a reaction containing 50 mM NaH2P04, 100 mM NaCl and 0.1% BSA (pH 7.0) using 2 mM 4-Methylumbelliferyl N-acetyl-P-D-glucosaminide dihydrate (Sigma M2133) dissolved in ddH20, as a substrate. The amount of purified human β-hexosaminidase enzyme used in the reaction is 24 nM. Test compound of varying concentrations is added to the enzyme prior to initiation of the reaction. The reaction is performed at room temperature in a 96-well plate and is initiated with the addition of substrate. The production of fluorescent product is measured every 60 sec for 45 min with a Tecan Infinite M200 plate-reader with excitation at 355 nM and emission detected at 460 nM, with 4-Methylumbelliferone (Sigma M1381) used to produce a standard curve. The slope of product production is determined for each concentration of compound tested and plotted, using standard curve fitting algorithms for sigmoidal dose response curves. The values for a four parameter logistic curve fit of the data are determined.
[00135] Ki values are determined using the Cheng-Prusoff equation.
[00136] When tested in this assay, many of the compounds described herein exhibit ¾ values for inhibition of β-hexosaminidase in the range 10 nM to greater than 100 uM.
[00137] The selectivity ratio for inhibition of O-GlcNAcase over β-hexosaminidase is defined here as:
Ki
Figure imgf000059_0001
(O-GlcNAcase)
[00138] In general, the compounds described herein exhibit a selectivity ratio in the range of about 10 to 100000. Thus, many compounds of the invention exhibit high selectivity for inhibition of O-GlcNAcase over β-hexosaminidase.
Assay for determination of cellular activity for compounds that inhibit O-GlcNAcase activity
[00139] Inhibition of O-GlcNAcase, which removes O-GlcNAc from cellular proteins, results in an increase in the level of O-GlcNAcylated protein in cells. An increase in O- GlcNAcylated protein can be measured by an antibody, such as RL-2, that binds to O- GlcNAcylated protein. The amount of O-GlcNAcylated protein:RL2 antibody interaction can be measured by enzyme linked immunosorbant assay (ELISA) procedures.
[00140] A variety of tissue culture cell lines, expressing endogenous levels of O-GlcNAcase, can be utilized; examples include rat PC-12, and human U-87, or SK-N-SH cells. Cells are plated in 96-well plates with approximately 10,000 cells / well. Compounds to be tested are dissolved in DMSO, either 2 or 10 mM stock solution, and then diluted with DMSO and water in a two-step process using a Tecan workstation. Cells are treated with diluted compounds for 24 hours (5.4 μΐ. into 200 μΐ. 1 well volume) to reach a final concentration of inhibitor desired to measure a compound concentration dependent response, typically, ten 3 fold dilution steps, starting at 10 μΜ are used to determine a concentration response curve. To prepare a cell lysate, the media from compound treated cells is removed, the cells are washed once with phosphate buffered saline (PBS) and then lysed for 5 minutes at room temperature in 50 μΐ. of Phosphosafe reagent (Novagen Inc, Madison, WI) with protease inhibitors and PMSF. The cell lysate is collected and transferred to a new plate, which is then either coated to assay plates directly or frozen -80°C until used in the ELISA procedure. If desired, the total protein concentration of samples is determined using 20 μΐ, of the sample using the BCA method.
[00141] The ELISA portion of the assay is performed in a black Maxisorp 96-well plate that is coated overnight at 4°C with 100 μΐ, /well of the cell lysate (1 : 10 dilution of the lysate with PBS containing protease inhibitors, phosphatase inhibitors, and PMSF. The following day the wells are washed 3 times with 300 μΐ, /well of Wash buffer (Tris-buffered saline with 0.1% Tween 20). The wells are blocked with 100 μΐ, /well Blocking buffer (Tris buffered saline w/0.05% Tween 20 and 2.5% Bovine serum albumin). Each well is then washed two times with 300 ul/well of wash buffer. The anti O-GlcNAc antibody RL-2 (Abeam,
Cambridge, MA), diluted 1 : 1000 in blocking buffer, is added at 100 ul/well. The plate is sealed and incubated at 37°C for 2 hr with gentle shaking. The wells are then washed 3 -times with 300 ul/well wash buffer. To detect the amount of RL-2 bound horse-radish peroxidase (HRP) conjugated goat anti-mouse secondary antibody (diluted 1 :3000 in blocking buffer) is added at 100 μί /well. The plate is incubated for 60 min at 37°C with gentle shaking. Each wells is then washed 3 -times with 300 ul/well wash buffer. The detection reagent is added, 100 μΐ, /well of Amplex Ultra RED reagent (prepared by adding 30 μί of 10 mM Amplex Ultra Red stock solution to 10 ml PBS with 18 μΐ, 3% hydrogen peroxide, H2O2). The detection reaction is incubated for 15 minutes at room temperature and then read with excitation at 530 nm and emission at 590 nm.
[00142] The amount of O-GlcNAcylated protein, as detected by the ELISA assay, is plotted for each concentration of test compound using standard using standard curve fitting algorithms for sigmoidal dose response curves. The values for a four parameter logistic curve fit of the data are determined, with the inflection point of the curve being the potency value for the test compound.
[00143] Representative data from the binding and cell-based assays described above are shown in the following table. Certain compounds of the invention exhibited superior potency in one or more of these assays.
Figure imgf000061_0001
Fluorescence-based
Ce!!-based EL!SA
hOGA
Example # EC50 (nM)
Ki (nM)
29 ND 3.3
31 ND 1 .3
33 ND 6.0
35 ND 1 .4
37 3.7 0.60
41 ND 9.3
43 ND 6.5
45 ND 6.0
48 ND 3.0
53 ND 5.4
57 ND 6.8 [00144] The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.
REFERENCES
1. C. R. Torres, G. W. Hart, J Biol Chem 1984, 259, 3308.
2. R. S. Haltiwanger, G. D. Holt, G. W. Hart, J Biol Chem 1990, 265, 2563.
3. L. K. Kreppel, M. A. Blomberg, G. W. Hart, J Biol Chem 1997, 272, 9308.
4. W. A. Lubas, D. W. Frank, M. Krause, J. A. Hanover, J Biol Chem 1997, 272, 9316.
5. W. A. Lubas, J. A. Hanover, J Biol Chem 2000, 275, 10983.
6. D. L. Dong, G. W. Hart, J Biol Chem 1994, 269, 19321.
7. Y. Gao, L. Wells, F. I. Comer, G. J. Parker, G. W. Hart, J Biol Chem 2001, 276, 9838. 8. E. P. Roquemore, M. R. Chevrier, R. J. Cotter, G. W. Hart, Biochemistry 1996, 35,
3578.
9. S. P. Jackson, R. Tjian, Cell 1988, 55, 125.
10. W. G. Kelly, M. E. Dahmus, G. W. Hart, J Biol Chem 1993, 268, 10416.
11. M. D. Roos, K. Su, J. R. Baker, J. E. Kudlow, Mol Cell Biol 1997, 17, 6472.
12. N. Lamarre- Vincent, L. C. Hsieh- Wilson, J Am Chem Soc 2003, 125, 6612.
13. F. Zhang, K. Su, X. Yang, D. B. Bowe, A. J. Paterson, J. E. Kudlow, Cell 2003, 115, 715.
14. K. Vosseller, L. Wells, M. D. Lane, G. W. Hart, Proc Natl Acad Sci USA 2002, 99, 5313.
15. W. A. Lubas, M. Smith, C. M. Starr, J. A. Hanover, Biochemistry 1995, 34, 1686.
16. L. S. Griffith, B. Schmitz, Biochem Biophys Res Commun 1995, 213, 424.
17. R. N. Cole, G. W. Hart, J Neurochem 1999, 73, 418.
18. I. Braidman, M. Carroll, N. Dance, D. Robinson, Biochem J 1974, 143, 295.
19. R. Ueno, C. S. Yuan, Biochim Biophys Acta 1991, 1074, 79.
20. C. Toleman, A. J. Paterson, T. R. Whisenhunt, J. E. Kudlow, J Biol Chem 2004.
21. F. Liu, K. Iqbal, I. Grundke-Iqbal, G. W. Hart, C. X. Gong, Proc Natl Acad Sci USA
2004, 101, 10804.
22. T. Y. Chou, G. W. Hart, Adv Exp Med Biol 2001, 491, 413.
23. M. Goedert, M. G. SpiUantini, N. J. Cairns, R. A. Crowther, Neuron 1992, 8, 159. 24. M. Goedert, M. G. SpiUantini, R. Jakes, D. Rutherford, R. A. Crowther, Neuron 1989,
3, 519.
25. E. Kopke, Y. C. Tung, S. Shaikh, A. C. Alonso, K. Iqbal, I. Grundke-Iqbal, J Biol Chem 1993, 268, 24374.
26. H. Ksiezak-Reding, W. K. Liu, S. H. Yen, Brain Res 1992, 597, 209.
27. B. Henrissat, A. Bairoch, Biochem J 1996, 316 ( Pt 2), 695.
28. B. Henrissat, A. Bairoch, Biochem J 1993, 293 (Pt 3), 781.
29. C. X. Gong, F. Liu, I. Grundke-Iqbal, K. Iqbal, J Neural Transm 2005, 112, 813.
30. K. Iqbal, C. Alonso Adel, E. El-Akkad, C. X. Gong, N. Haque, S. Khatoon, I. Tsujio, I. Grundke-Iqbal, J Neural Transm Suppl 2002, 309.
31. K. Iqbal, C. Alonso Adel, E. El-Akkad, C. X. Gong, N. Haque, S. Khatoon, J. J. Pei, H. Tanimukai, I. Tsujio, et al., JMolNeurosci 2003, 20, 425.
32. W. Noble, E. Planel, C. Zehr, V. Olm, J. Meyerson, F. Suleman, K. Gaynor, L. Wang, J. LaFrancois, et al, Proc Natl Acad Sci USA 2005, 102, 6990.
33. S. Le Corre, H. W. Klafki, N. Plesnila, G. Hubinger, A. Obermeier, H. Sahagun, B.
Monse, P. Seneci, J. Lewis, et al, Proc Natl Acad Sci USA 2006, 103, 9673.
34. S. J. Liu, J. Y. Zhang, H. L. Li, Z. Y. Fang, Q. Wang, H. M. Deng, C. X. Gong, I.
Grundke-Iqbal, K. Iqbal, et al., J Biol Chem 2004, 279, 50078.
35. G. Li, H. Yin, J. Kuret, J Biol Chem 2004, 279, 15938. 36. T. Y. Chou, G. W. Hart, C. V. Dang, J Biol Chem 1995, 270, 18961.
37. X. Cheng, G. W. Hart, J Biol Chem 2001, 276, 10570.
38. X. Cheng, R. N. Cole, J. Zaia, G. W. Hart, Biochemistry 2000, 39, 11609.
39. L. S. Griffith, B. Schmitz, Eur J Biochem 1999, 262, 824.
40. K. Kamemura, G. W. Hart, Prog Nucleic Acid Res Mol Biol 2003, 73, 107.
41. L. Wells, L. K. Kreppel, F. I. Comer, B. E. Wadzinski, G. W. Hart, J Biol Chem 2004,
279, 38466.
42. L. Bertram, D. Blacker, K. Mullin, D. Keeney, J. Jones, S. Basu, S. Yhu, M. G.
Mclnnis, R. C. Go, et al, Science 2000, 290, 2302.
43. S. Hoyer, D. Blum-Degen, H. G. Bernstein, S. Engelsberger, J. Humrich, S. Laufer, D.
Muschner, A. Thalheimer, A. Turk, et al, Journal of Neural Transmission 1998, 105, 423.
44. C. X. Gong, F. Liu, I. Grundke-Iqbal, K. Iqbal, Journal of Alzheimers Disease 2006, 9, 1.
45. W. J. Jagust, J. P. Seab, R. H. Huesman, P. E. Valk, C. A. Mathis, B. R. Reed, P. G.
Coxson, T. F. Budinger, Journal of Cerebral Blood Flow and Metabolism 1991, 11, 323.
46. S. Hoyer, Experimental Gerontology 2000, 35, 1363.
47. S. Hoyer, in Frontiers in Clinical Neuroscience: Neurodegeneration and
Neuroprotection, Vol. 541, 2004, pp. 135.
48. R. N. Kalaria, S. I. Harik, Journal of Neurochemistry 1989, 53, 1083.
49. I. A. Simpson, K. R. Chundu, T. Davieshill, W. G. Honer, P. Davies, Annals of
Neurology 1994, 35, 546.
50. S. M. de la Monte, J. R. Wands, Journal of Alzheimers Disease 2005, 7, 45.
51. X. W. Zhu, G. Perry, M. A. Smith, Journal of Alzheimers Disease 2005, 7, 81.
52. J. C. de la Torre, Neurological Research 2004, 26, 517.
53. S. Marshall, W. T. Garvey, R. R. Traxinger, Faseb J 1991, 5, 3031.
54. S. P. Iyer, Y. Akimoto, G. W. Hart, J Biol Chem 2003, 278, 5399.
55. K. Brickley, M. J. Smith, M. Beck, F. A. Stephenson, J Biol Chem 2005, 280, 14723. 56. S. Knapp, C. H. Yang, T. Haimowitz, Tetrahedron Letters 2002, 43, 7101.
57. S. P. Iyer, G. W. Hart, J Biol Chem 2003, 278, 24608.
58. M. Jinek, J. Rehwinkel, B. D. Lazarus, E. Izaurralde, J. A. Hanover, E. Conti, Nat Struct Mol Biol 2004, 11, 1001.
59. K. Kamemura, B. K. Hayes, F. I. Comer, G. W. Hart, J Biol Chem 2002, 277, 19229. 60. Y. Deng, B. Li, F. Liu, K. Iqbal, I. Grundke-Iqbal, R. Brandt, C.-X. Gong, FASEB J
2007, fj.07.
61. L. F. Lau, J. B. Schachter, P. A. Seymour, M. A. Sanner, Curr Top Med Chem 2002, 2, 395.
62. M. P. Mazanetz, P. M. Fischer, Nature Reviews Drug Discovery 2007, 6, 464.
63. S. A. Yuzwa, M. S. Macauley, J. E. Heinonen, X. Shan, R. J. Dennis, Y. He, G. E.
Whitworth, K. A. Stubbs, E. J. McEachern, et al, Nat Chem Biol 2008, 4, 483.
64. P. Bounelis, J. Liu, Y. Pang, J. C. Chatham, R. B. Marchase, Shock 2004, 21 170
Suppl. 2, 58.
65. N. Fulop, V. Champattanachal, R. B. Marchase, J. C. Chatham, Circulation Research
2005, 97, E28.
66. J. Liu, R. B. Marchase, J. C. Chatham, Faseb Journal 2006, 20, A317.
67. R. Marchase, P. Bounelis, J. Chatham, I. Chaudry, Y. Pang, PCTInt. Appl. WO
20060169042006.
68. N. Fulop, P. P. Wang, R. B. Marchase, J. C. Chatham, Journal of Molecular and
Cellular Cardiology 2004, 37, 286. 69. N. Fulop, P. P. Wang, R. B. Marchase, J. C. Chatham, Faseb Journal 2005, 19, A689.
70. J. Liu, R. B. Marchase, J. C. Chatham, Journal of Molecular and Cellular Cardiology
2007, 42, 111.
71. L. G. Not, C. A. Brocks, N. Fulop, R. B. Marchase, J. C. Chatham, Faseb Journal
2006, 20, A1471.
72. S. L. Yang, L. Y. Zou, P. Bounelis, I. Chaudry, J. C. Chatham, R. B. Marchase, Shock
2006, 25, 600.
73. L. Y. Zou, S. L. Yang, P. Bounelis, I. H. Chaudry, J. C. Chatham, R. B. Marchase, Faseb Journal 2005, 19, A1224.
74. R. B. Marchase, J. Liu, L. Y. Zou, V. Champattanachai, Y. Pang, N. Fulop, P. P.
Wang, S. L. Yang, P. Bounelis, et al, Circulation 2004, 110, 1099.
75. J. Liu, Y. Pang, T. Chang, P. Bounelis, J. C. Chatham, R. B. Marchase, Journal of Molecular and Cellular Cardiology 2006, 40, 303.
76. J. Liu, J. C. Chatham, R. B. Marchase, Faseb Journal 2005, 19, A691.
77. T. Nagy, V. Champattanachai, R. B. Marchase, J. C. Chatham, American Journal of Physiology-Cell Physiology 2006, 290, C57.
78. N. Fulop, R. B. Marchase, J. C. Chatham, Cardiovascular Research 2007, 73, 288.
79. T. Lefebvre, C. Guinez, V. Dehennaut, O. Beseme-Dekeyser, W. Morelle, J. C.
Michalski, Expert Review of Proteomics 2005, 2, 265.
80. L. Wells, K. Vosseller, G. W. Hart, Science 2001, 291, 2376.
81. J. A. Hanover, FASEB J 2001, 15, 1865.
82. D. A. McClain, W. A. Lubas, R. C. Cooksey, M. Hazel, G. J. Parker, D. C. Love, J. A.
Hanover, Proc Natl Acad Sci USA 2002, 99, 10695.
83. P. J. Yao, P. D. Coleman, JNeurosci 1998, 18, 2399.
84. W. H. Yang, J. E. Kim, H. W. Nam, J. W. Ju, H. S. Kim, Y. S. Kim, J. W. Cho,
Nature Cell Biology 2006, 8, 1074.
85. B. Triggs-Raine, D. J. Mahuran, R. A. Gravel, Adv Genet 2001, 44, 199.
86. D. Zhou, J. Mattner, C. Cantu Iii, N. Schrantz, N. Yin, Y. Gao, Y. Sagiv, K. Hudspeth, Y. Wu, et al, Science 2004.
87. G. Legler, E. Lullau, E. Kappes, F. Kastenholz, Biochim Biophys Acta 1991, 1080, 89.
88. M. Horsch, L. Hoesch, A. Vasella, D. M. Rast, Eur J Biochem 1991, 197, 815.
89. J. Liu, A. R. Shikhman, M. K. Lotz, C. H. Wong, Chem Biol 2001, 8, 701.
90. S. Knapp, D. J. Vocadlo, Z. N. Gao, B. Kirk, J. P. Lou, S. G. Withers, J. Am. Chem.
Soc. 1996, 118, 6804.
91. V. H. Lillelund, H. H. Jensen, X. Liang, M. Bols, Chem Rev 2002, 102, 515.
92. R. J. Konrad, I. Mikolaenko, J. F. Tolar, K. Liu, J. E. Kudlow, Biochem J 2001, 356, 31.
93. K. Liu, A. J. Paterson, F. Zhang, J. McAndrew, K. Fukuchi, J. M. Wyss, L. Peng, Y.
Hu, J. E. Kudlow, JNeurochem 2004, 89, 1044.
94. G. Parker, R. Taylor, D. Jones, D. McClain, J Biol Chem 2004, 279, 20636.
95. E. B. Arias, J. Kim, G. D. Cartee, Diabetes 2004, 53, 921.
96. A. Junod, A. E. Lambert, L. Orci, R. Pictet, A. E. Gonet, A. E. Renold, Proc Soc Exp Biol Med 1961, 126, 201.
97. R. A. Bennett, A. E. Pegg, Cancer Res 1981, 41, 2786.
98. K. D. Kroncke, K. Fehsel, A. Sommer, M. L. Rodriguez, V. Kolb-Bachofen, Biol Chem Hoppe Seyler 1995, 376, 179.
99. H. Yamamoto, Y. Uchigata, H. Okamoto, Nature 1981, 294, 284.
100. K. Yamada, K. Nonaka, T. Hanafusa, A. Miyazaki, H. Toyoshima, S. Tarui, Diabetes
1982, 31, 749. 101. V. Burkart, Z. Q. Wang, J. Radons, B. Heller, Z. Herceg, L. Stingl, E. F. Wagner, H. Kolb, Nat Med 1999, 5, 314.
102. M. D. Roos, W. Xie, K. Su, J. A. Clark, X. Yang, E. Chin, A. J. Paterson, J. E.
Kudlow, Proc Assoc Am Physicians 1998, 110, 422.
103. Y. Gao, G. J. Parker, G. W. Hart, Arch Biochem Biophys 2000, 383, 296.
104. R. Okuyama, M. Yachi, Biochem Biophys Res Commun 2001, 287, 366.
105. N. E. Zachara, N. O'Donnell, W. D. Cheung, J. J. Mercer, J. D. Marth, G. W. Hart, J Biol Chem 2004, 279, 30133.
106. J. A. Hanover, Z. Lai, G. Lee, W. A. Lubas, S. M. Sato, Arch Biochem Biophys 1999,
362, 38.
107. K. Liu, A. J. Paterson, R. J. Konrad, A. F. Parlow, S. Jimi, M. Roh, E. Chin, Jr., J. E.
Kudlow, Mol Cell Endocrinol 2002, 194, 135.
108. M. S. Macauley, G. E. Whitworth, A. W. Debowski, D. Chin, D. J. Vocadlo, J Biol Chem 2005, 280, 25313.
109. B. L. Mark, D. J. Vocadlo, S. Knapp, B. L. Triggs-Raine, S. G. Withers, M. N. James, J Biol Chem 2001, 276, 10330.
110. R. S. Haltiwanger, K. Grove, G. A. Philipsberg, J Biol Chem 1998, 273, 3611.
111. D. J. Miller, X. Gong, B. D. Shur, Development 1993, 118, 1279.
112. L. Y. Zou, S. L. Yang, S. H. Hu, I. H. Chaudry, R. B. Marchase, J. C. Chatham, Shock
2007, 27, 402.
113. J. B. Huang, A. J. Clark, H. R. Petty, Cellular Immunology 2007, 245, 1.
114. U. J. G. Conference, in US/Japan Glyco 2004 Conference, Honolulu, Hawaii, 2004.
115. L. Y. Zou, S. L. Yang, S. H. Hu, I. H. Chaudry, R. B. Marchase, J. C. Chatham, Faseb Journal 2006, 20, A1471.
116. V. Champattanachai, R. B. Marchase, J. C. Chatham, American Journal of
Physiology-Cell Physiology 2007, 292, CI 78.
117. V. Champattanachai, R. B. Marchase, J. C. Chatham, American Journal of
Physiology-Cell Physiology 2008, 294, CI 509.
118. I. Khlistunova, M. Pickhardt, J. Biernat, Y. P. Wang, E. M. Mandelkow, E.
Mandelkow, Current Alzheimer Research 2007, 4, 544.
119. P. Friedhoff, A. Schneider, E. M. Mandelkow, E. Mandelkow, Biochemistry 1998, 37, 10223.
120. M. Pickhardt, Z. Gazova, M. von Bergen, I. Khlistunova, Y. P. Wang, A. Hascher, E.
M. Mandelkow, J. Biernat, E. Mandelkow, Journal of Biological Chemistry 2005, 280, 3628.

Claims

1. A compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000068_0001
(I)
wherein
each R is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0)NR5 2, NHR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3; each R5 is independently H or an optionally substituted Ci_6 alkyl; and
R6 is selected from the group consisting of: acyl, Ci_6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
2. The compound of claim 1 wherein:
R2 is NHR6, azetidin-l-yl, or 3-hydroxyazetidin-l-yl; and
selected from the group consisting of: acyl, Ci_6 alkyl, C2-6 alkenyl, C3.
cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci_6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
3. The compound of claim 1 wherein:
each R1 is independently H or COCH3; and
R2 is selected from the group consisting of: OCH3, OC(0)NHCH3,
OC(0)NHCH2CH3, OC(0)N(CH3)2, OC(0)N(CH2CH3)2, 0(S02)N(CH3)2, NHCH3,
NHCH2CH3, NH(CH2)3CH3, NHCH(CH3)2, NHCH2CH=CH2, NH(CH2)2OCH3, NH(benzyl), NH(cyclopropyl), NH(cyclobutyl), NH(cyclopentyl), NH(cyclohexyl), NH(tetrahydro-2H- pyran-4-yl), NH(CH2)3OH, azetidin-l-yl, 3-hydroxyazetidin-l-yl, NH(CH2)2OH, H(CH2)3OH, H(CH2)CH(OH)(CH2OH), H(CH2CN), H(CH2)C02H, H(CH2)C02CH H(lH-pyrazol-3-yl), HC(0)CH3, pyrrolidin-2-one-l-yl, and OC(0)CH3.
4. The compound of claim 1 wherein the compound is a compound described in Table 1.
5. The compound of claim 1 wherein the compound is selected from the following group:
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-(methoxymethyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl ethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl methylcarbamate;
((3aR,5R,6S,7R,7aR)-2-(dimethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl methylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(propylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl ethylcarbamate;
((3aR,5R,6S,7R,7aR)-2-(dimethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl ethylcarbamate;
((3aR,5R,6S,7R,7aR)-2-(ethyl(methyl)amino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl ethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methyl(propyl)amino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl ethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl dimethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(propylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl dimethylcarbamate;
((3aR,5R,6S,7R,7aR)-2-(dimethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl dimethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl diethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(propylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl diethylcarbamate;
((3aR,5R,6S,7R,7aR)-2-(dimethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl diethylcarbamate; ((3aR,5R,6S,7R,7aR)-2-(ethyl(methyl)amino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl diethylcarbamate;
((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl dimethylsulfamate;
(3aR,5R,6S,7R,7aR)-5-((butylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-((isopropylamino)methyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((benzylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
N-(((3aR,5R,6S,7R,7aR)-2-(ethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2- d]thiazol-5-yl)methyl)acetamide;
(3aR,5R,6S,7R,7aR)-2-(methylamino)-5-((methylamm^
pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-((methylamino)methyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((ethylamino)methyl)-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-((ethylamino)methyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(dimethylamino)-5-((ethylamino)methyl)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethyl(methyl)amino)-5-((ethylamino)methyl)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((allylamino)methyl)-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((allylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-(((2-methoxyethyl)amino)methyl)-2-(methylamino)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-2-(ethylamino)-5 -(((2-methoxyethyl)amino)methyl)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol; (3 aR, 5R, 6 S, 7R, 7aR)-5 -((cyclopropylamino)methyl)-2-(methylamino)-5 , 6, 7, 7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclopropylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -((cyclopropylamino)methyl)-2-(dimethylamino)-5 , 6, 7, 7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -((cyclopropylamino)methyl)-2-(ethyl(methyl)amino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -((cyclobutylamino)methyl)-2-(methylamino)-5 , 6, 7, 7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclobutylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclopentylamino)methyl)-2-(methylamino)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclopentylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclopentylamino)methyl)-2-(dimethylamino)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -((cyclopentylamino)methyl)-2-(ethyl(methyl)amino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclohexylamino)methyl)-2-(methylamino)-5,6,7,7a-tetrahydro- 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-((cyclohexylamino)methyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(methylamino)-5-(((tetrahydro-2H-pyran-4-yl)amino)methyl)- 5 , 6, 7, 7a-tetrahydro-3 aH-pyrano [3 ,2-d]thiazole-6, 7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-(((tetrahydro-2H-pyran-4-yl)amino)methyl)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -(((3 -hydroxypropyl)amino)methyl)-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-(azetidin-l-ylmethyl)-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazole-6,7-diol; (3 aR, 5R, 6 S, 7R, 7aR)-5 -((3 -hydroxyazetidin- 1 -yl)methyl)-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-5-(((2-hydroxyethyl)amino)methyl)-2-(methylamino)-5, 6,7,7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3aR,5R,6S,7R,7aR)-2-(ethylamino)-5-(((2-hydroxyethyl)amino)methyl)-5,6,7,7a-tetrahydro 3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-2-(ethylamino)-5 -(((3 -hydroxypropyl)amino)methyl)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -(((2, 3 -dihydroxypropyl)amino)methyl)-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -(((2, 3 -dihydroxypropyl)amino)methyl)-2-(ethylamino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
2-((((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl)amino)acetonitrile;
2-((((3aR,5R,6S,7R,7aR)-2-(ethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH-pyrano[3,2 d]thiazol-5-yl)methyl)amino)acetonitrile;
2-((((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl)amino)acetic acid;
methyl 2-((((3aR,5R,6S,7R,7aR)-2-(ethylamino)-6,7-dihydroxy-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl)amino)acetate;
(3 aR, 5R, 6 S, 7R, 7aR)-5 -((( 1 H-pyrazol-3 -yl)amino)methyl)-2-(methylamino)-5 , 6, 7, 7a- tetrahydro-3aH-pyrano[3,2-d]thiazole-6,7-diol;
l-(((3aR,5R,6S,7R,7aR)-6,7-dihydroxy-2-(methylamino)-5,6,7,7a-tetrahydro-3aH- pyrano[3,2-d]thiazol-5-yl)methyl)pyrrolidin-2-one;
or a pharmaceutically acceptable salt of any of the foregoing compounds.
6. The compound of claim 1 wherein the compound is a prodrug.
7. The compound of any one of claims 1 to 6 wherein the compound selectively inhibits an O-glycoprotein 2-acetamido-2-deoxy-P-D-glucopyranosidase (O-GlcNAcase).
8. The compound of any one of claims 1 to 7 wherein the compound selectively binds an O- GlcNAcase.
9. The compound of any one of claims 1 to 8 wherein the compound selectively inhibits the cleavage of 2-acetamido-2-deoxy-P-D-glucopyranoside (O-GlcNAc). WO 2012/129802 * 't'CT/C^O 11/072330 " v
71 04. MAY. 2011 (0 4.05.2011)
10. The compound of claim 8 wherein the O-GlcNAcase is a mammalian O-GlcNAcase.
11. The compound of any one of claims 1 to 10 wherein the compound does not
substantially inhibit a mammalian β-hexosaminidase.
12. A pharmaceutical composition comprising the compound of any one of claims 1 to 11
in combination with a pharmaceutically acceptable carrier.
13. A method of selectively inhibiting an O-GlcNAcase in a subject in need thereof, the
method comprising administering to the subject an effective amount of a compound of
Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000073_0001
(I)
wherein
each R1 is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0)NR 2, NHR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3;
each R5 is independently H or an optionally substituted alkyl; and
R6 is selected from the group consisting of: acyl, Ci-6 alkyl, C2^ alkenyl, C3-e
cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said Ci-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
14. A method of elevating the level of O-GlcNAc in a subject in need thereof, the method
comprising administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000073_0002
RECTIFIED Sr71 ~ET(RULE91)
3 / (I)
wherein
each R1 is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0)NR5 2, NHR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3;
each R5 is independently H or an optionally substituted C1-6 alkyl; and
R6 is selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
15. A method of treating a condition that is modulated by an O-GlcNAcase, in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000074_0001
(I)
wherein
each R1 is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0)NR5 2, NHR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3;
each R5 is independently H or an optionally substituted C1-6 alkyl; and
R6 is selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
16. The method of claim 15 wherein the condition is selected from one or more of the group consisting of an inflammatory disease, an allergy, asthma, allergic rhinitis,
hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic pneumonias, delayed-type hypersensitivity, atherosclerosis, interstitial lung disease (ILD), idiopathic pulmonary fibrosis, ILD associated with rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, systemic sclerosis, Sjogren's syndrome, polymyositis or
dermatomyositis, systemic anaphylaxis or hypersensitivity response, drug allergy, insect sting allergy, autoimmune disease, rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Guillain-Barre syndrome, systemic lupus erythematosus, myastenia gravis,
glomerulonephritis, autoimmune thyroiditis, graft rejection, allograft rejection, graft- versus- host disease, inflammatory bowel disease, Crohn's disease, ulcerative colitis,
spondyloarthropathy, scleroderma, psoriasis, T-cell mediated psoriasis, inflammatory dermatosis, dermatitis, eczema, atopic dermatitis, allergic contact dermatitis, urticaria, vasculitis, necrotizing, cutaneous, and hypersensitivity vasculitis, eosinphilic myotis, eosiniphilic fasciitis, solid organ transplant rejection, heart transplant rejection, lung transplant rejection, liver transplant rejection, kidney transplant rejection, pancreas transplant rejection, kidney allograft, lung allograft, epilepsy, pain, fibromyalgia, stroke,
neuroprotection.
17. A method of treating a condition selected from the group consisting of a
neurodegenerative disease, a tauopathy, cancer and stress, in a subject in need thereof, the method comprising administering to the subject an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000075_0001
(I)
wherein
each R is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0) R5 2, HR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3; R4 is CH3, CH2CH3, or (CH2)2CH3;
each R5 is independently H or an optionally substituted C1-6 alkyl; and
R6 is selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3.
18. The method of claim 17 wherein the condition is selected from one or more of the group consisting of Alzheimer's disease, Amyotrophic lateral sclerosis (ALS), Amyotrophic lateral sclerosis with cognitive impairment (ALSci), Argyrophilic grain dementia, Bluit disease, Corticobasal degeneration (CBD), Dementia pugilistica, Diffuse neurofibrillary tangles with calcification, Down's syndrome, Familial British dementia, Familial Danish dementia, Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), Gerstmann-Straussler-Scheinker disease, Guadeloupean parkinsonism, Hallevorden-Spatz disease (neurodegeneration with brain iron accumulation type 1), Multiple system atrophy, Myotonic dystrophy, Niemann-Pick disease (type C), Pallido-ponto-nigral degeneration, Parkinsonism-dementia complex of Guam, Pick's disease (PiD), Post-encephalitic
parkinsonism (PEP), Prion diseases (including Creutzfeldt- Jakob Disease (CJD), Variant Creutzfeldt- Jakob Disease (vCJD), Fatal Familial Insomnia, and Kuru), Progressive supercortical gliosis, Progressive supranuclear palsy (PSP), Richardson's syndrome,
Subacute sclerosing panencephalitis, Tangle-only dementia, Huntington's disease,
Parkinson's disease, Schizophrenia, Mild Cognitive Impairment (MCI), Neuropathy
(including peripheral neuropathy, autonomic neuropathy, neuritis, and diabetic neuropathy), or Glaucoma.
19. The method of claim 17 wherein the stress is a cardiac disorder.
20. The method of claim 19 wherein the cardiac disorder is selected from one or more of the group consisting of ischemia; hemorrhage; hypovolemic shock; myocardial infarction; an interventional cardiology procedure; cardiac bypass surgery; fibrinolytic therapy; angioplasty; and stent placement.
21. The method of any one of claims 13 to 20 wherein the compound is selected from the group consisting of one or more of the compounds described in Table 1.
22. The method of any one of claims 13 to 20 wherein said administering increases the level of O-GlcNAc in the subject.
23. The method of any one of claims 13 to 22 wherein the subject is a human.
24. Use of a compound of an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof:
Figure imgf000077_0001
(I)
wherein
each R1 is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0) R5 2, HR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3; each R5 is independently H or an optionally substituted C1-6 alkyl; and
R6 is selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3, in the preparation of a medicament.
25. The use of claim 24 wherein said medicament is for selectively inhibiting an O- GlcNAcase, for increasing the level of O-GlcNAc, for treating a condition modulated by an O-GlcNAcase, or for treating a neurodegenerative disease, a tauopathy, a cancer, or stress.
26. A method for screening for a selective inhibitor of an O-GlcNAcase, the method comprising:
a) contacting a first sample with a test compound;
b) contacting a second sample with a com ound of Formula (I)
Figure imgf000077_0002
(I)
wherein
each R1 is independently H or acyl;
R2 is selected from the group consisting of: OCH3, OC(0) R5 2, HR6,
0(S02)N(CH3)2, azetidin-l-yl, 3-hydroxyazetidin-l-yl, and pyrrolidin-2-one-l-yl;
R3 is H or CH3;
R4 is CH3, CH2CH3, or (CH2)2CH3;
each R5 is independently H or an optionally substituted C1-6 alkyl; and
R6 is selected from the group consisting of: acyl, C1-6 alkyl, C2-6 alkenyl, C3-6 cycloalkyl, tetrahydro-2H-pyran-4-yl, benzyl, and lH-pyrazol-3-yl, said C1-6 alkyl optionally substituted with 1 to 2 substituents selected from OH, OCH3, CN, C02H, and C02CH3;
c) determining the level of inhibition of the O-GlcNAcase in the first and second samples, wherein the test compound is a selective inhibitor of a O-GlcNAcase if the test compound exhibits the same or greater inhibition of the O-GlcNAcase when compared to the compound of Formula (I).
PCT/CN2011/072330 2011-03-31 2011-03-31 Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof WO2012129802A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/072330 WO2012129802A1 (en) 2011-03-31 2011-03-31 Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof
US14/008,388 US9718854B2 (en) 2011-03-31 2012-03-20 Selective glycosidase inhibitors and uses thereof
EP12765063.8A EP2691407B1 (en) 2011-03-31 2012-03-20 Selective glycosidase inhibitors and uses thereof
PCT/CA2012/000267 WO2012129651A1 (en) 2011-03-31 2012-03-20 Selective glycosidase inhibitors and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072330 WO2012129802A1 (en) 2011-03-31 2011-03-31 Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/008,388 Continuation-In-Part US9718854B2 (en) 2011-03-31 2012-03-20 Selective glycosidase inhibitors and uses thereof

Publications (1)

Publication Number Publication Date
WO2012129802A1 true WO2012129802A1 (en) 2012-10-04

Family

ID=46929345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072330 WO2012129802A1 (en) 2011-03-31 2011-03-31 Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof

Country Status (1)

Country Link
WO (1) WO2012129802A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104837845A (en) * 2012-10-31 2015-08-12 阿勒克图治疗公司 Glycosidase inhibitors and uses thereof
US9120781B2 (en) 2010-05-11 2015-09-01 Simon Fraser University Selective glycosidase inhibitors and uses thereof
US9199949B2 (en) 2011-06-27 2015-12-01 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9243020B2 (en) 2010-12-23 2016-01-26 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9409924B2 (en) 2011-06-27 2016-08-09 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9670195B2 (en) 2012-08-31 2017-06-06 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof
US9701693B2 (en) 2011-06-27 2017-07-11 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9718854B2 (en) 2011-03-31 2017-08-01 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9809537B2 (en) 2012-08-31 2017-11-07 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092049A1 (en) * 2005-03-01 2006-09-08 Simon Fraser University Selective glycosidase inhibitors, methods of making inhibitors, and uses thereof
WO2008025170A1 (en) * 2006-08-31 2008-03-06 Simon Fraser University Selective glycosidase inhibitors and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092049A1 (en) * 2005-03-01 2006-09-08 Simon Fraser University Selective glycosidase inhibitors, methods of making inhibitors, and uses thereof
WO2008025170A1 (en) * 2006-08-31 2008-03-06 Simon Fraser University Selective glycosidase inhibitors and uses thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120781B2 (en) 2010-05-11 2015-09-01 Simon Fraser University Selective glycosidase inhibitors and uses thereof
US9243020B2 (en) 2010-12-23 2016-01-26 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9815861B2 (en) 2010-12-23 2017-11-14 Alectos Therapeutics, Inc. Selective glycosidase inhibitors and uses thereof
US9718854B2 (en) 2011-03-31 2017-08-01 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9199949B2 (en) 2011-06-27 2015-12-01 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9409924B2 (en) 2011-06-27 2016-08-09 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9701693B2 (en) 2011-06-27 2017-07-11 Alectos Therapeutics Inc. Selective glycosidase inhibitors and uses thereof
US9670195B2 (en) 2012-08-31 2017-06-06 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof
US9809537B2 (en) 2012-08-31 2017-11-07 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof
CN104837845A (en) * 2012-10-31 2015-08-12 阿勒克图治疗公司 Glycosidase inhibitors and uses thereof
US9695197B2 (en) 2012-10-31 2017-07-04 Alectos Therapeutics Inc. Glycosidase inhibitors and uses thereof

Similar Documents

Publication Publication Date Title
EP2638052B1 (en) Selective glycosidase inhibitors and uses thereof
US9079868B2 (en) Selective glycosidase inhibitors and uses thereof
EP2691407B1 (en) Selective glycosidase inhibitors and uses thereof
AU2009276222B2 (en) Selective glycosidase inhibitors and uses thereof
EP2688899B1 (en) Selective glycosidase inhibitors and uses thereof
AU2009299073B2 (en) Selective glycosidase inhibitors and uses thereof
US9126957B2 (en) Selective glycosidase inhibitors and uses thereof
EP2890678A1 (en) Glycosidase inhibitors and uses thereof
WO2012061972A1 (en) Selective glycosidase inhibitors and uses thereof
WO2012129802A1 (en) Pyrano[3,2-d]thiazol derivatives and uses as selective glycosidase inhibitors thereof
WO2014032188A1 (en) Glycosidase inhibitors and uses thereof
WO2014032185A1 (en) Glycosidase inhibitors and uses thereof
CA2890115A1 (en) Glycosidase inhibitors and uses thereof
WO2012061971A1 (en) Selective glycosidase inhibitors and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862479

Country of ref document: EP

Kind code of ref document: A1