WO2012129781A1 - 光伏系统 - Google Patents

光伏系统 Download PDF

Info

Publication number
WO2012129781A1
WO2012129781A1 PCT/CN2011/072277 CN2011072277W WO2012129781A1 WO 2012129781 A1 WO2012129781 A1 WO 2012129781A1 CN 2011072277 W CN2011072277 W CN 2011072277W WO 2012129781 A1 WO2012129781 A1 WO 2012129781A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
photovoltaic
charging voltage
storage device
switches
Prior art date
Application number
PCT/CN2011/072277
Other languages
English (en)
French (fr)
Inventor
闫广川
匡超
黄子健
刘必权
Original Assignee
阿特斯(中国)投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿特斯(中国)投资有限公司 filed Critical 阿特斯(中国)投资有限公司
Priority to PCT/CN2011/072277 priority Critical patent/WO2012129781A1/zh
Priority to CN201180049448.7A priority patent/CN103190071B/zh
Publication of WO2012129781A1 publication Critical patent/WO2012129781A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to photovoltaic power generation technology, and more particularly to a technique for correspondingly controlling output power by tracking the maximum power point of a photovoltaic component.
  • the electrical energy we use is mainly provided by the power generated by a large centralized generator and transmitted over long distance transmission lines.
  • some remote areas are sparsely populated, and the power grid cannot be extended in the short term. Therefore, using nearby energy sources (such as solar energy, wind energy, biomass energy, water power, and thermal energy) that exist near these areas can generate electricity efficiently. Solve power problems in the area.
  • Solar-photovoltaic technology can provide a small "solar home system” (SHS, peak power of 20-200W) for single-family homes, as well as a larger village-level system (about 5kW), so this technology can In the short term, as a major technology option, provide basic electricity needs for homes, small businesses and communities in remote areas, such as lighting, broadcasting radios, and broadcasting television.
  • SHS solar home system
  • peak power of 20-200W peak power of 20-200W
  • village-level system about 5kW
  • Photovoltaic power generation technology uses the photovoltaic effect of a semiconductor interface to convert light energy directly into electrical energy.
  • the key component of this technology is photovoltaic cells, which are typically composed of two or more semiconductor sheets, typically silicon, such as single crystal silicon, polycrystalline silicon, amorphous silicon, and the like.
  • the photovoltaic cells are packaged and protected in series to form a large-area photovoltaic cell module.
  • the photovoltaic system typically includes a photovoltaic cell assembly 91, a controller 92, and a power storage device 93.
  • the power storage device 93 is used as a reserve power source.
  • the photovoltaic module 91 directly supplies power to the load 94 through the controller 92 during the daytime, and at night, the power storage device 93 supplies power to the load 94 through the controller 92.
  • the output characteristics of photovoltaic modules have non-linear characteristics and are subject to light intensity, environment Temperature and other effects.
  • the photovoltaic cell can work at different output voltages, but only at a certain output voltage value, the output power of the photovoltaic cell can reach a maximum value, that is, at this time, the operation of the photovoltaic cell The point reaches the highest point of the output power curve, called the Maximum Power Point (MPP).
  • MPP Maximum Power Point
  • the maximum power of the PV module cannot be effectively converted to the battery.
  • the power storage device has a rated charging voltage, so how to ensure the maximum power before charging the power storage device Matching the output power and output voltage of the point with the rated charging voltage and charging power demand of the power storage device is an urgent problem to be solved in the industry. (MPPT)
  • a photovoltaic system of the present invention includes:
  • a photovoltaic module for absorbing light energy and converting light energy into electrical energy output;
  • a power storage device coupled to the photovoltaic module for storing converted electrical energy having a rated charging voltage;
  • control component connected between the photovoltaic component and the power storage device
  • the output voltage When the output maximum power point voltage is greater than the rated charging voltage, the output voltage is reduced to a rated charging voltage to charge the power storage device; when the output maximum power point voltage is less than the rated charging voltage, the output voltage is Charge the power storage device after increasing it to the rated charging voltage.
  • control component includes a maximum power point tracking controller for tracking the maximum power point at which the photovoltaic module operates.
  • control assembly includes a boost-buck circuit for adjusting the output voltage to a nominal charging voltage.
  • the buck-boost conversion circuit includes first and second switches in series with the photovoltaic module, third and fourth switches in series with the power storage device, and series connection between the first and second switches The inductance between the node and the node between the third and fourth switches.
  • control component further includes a control device, configured to control the on/off of the first, second, third, and fourth switches to increase or decrease the output voltage to the rated charge according to the comparison result. Voltage.
  • the control device controls the first and second switches to be turned on and off synchronously, the third switch remains turned off, and the fourth switch remains turned on; when the comparison result When the output voltage is lower than the rated charging voltage, the control device controls the third and fourth switches to be turned on and off synchronously, the second switch remains turned off, and the first switch remains turned on.
  • the first, second, third, and fourth switches are all electronic switches
  • the electronic switch includes a metal oxide semiconductor field effect transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • control device comprises a Micro Control Unit (MCU).
  • MCU Micro Control Unit
  • control assembly further includes a first resistor divider circuit for detecting the input voltage connected to the PV module input bus, and a second resistor for detecting a voltage for charging the power storage device Pressure circuit.
  • control assembly further includes a third resistor divider circuit coupled between the first and second resistor divider circuits coupled to the bus.
  • the advantages of the invention are: ensuring the photovoltaic module at the maximum power point by matching the maximum output power and output voltage of the photovoltaic module with the rated charging voltage and the charging required power of the power storage device The output is fully and efficiently utilized to maximize the performance of the PV system.
  • FIG. 1 is a block diagram showing the working principle of a photovoltaic system in the prior art
  • FIG. 2 is a circuit block diagram of a photovoltaic module charging a power storage device through a control component in a first embodiment of the photovoltaic system of the present invention
  • FIG. 3 is a circuit block diagram of a photovoltaic module charging a power storage device through a control component in a second embodiment of the photovoltaic system of the present invention
  • FIG. 4 is a circuit block diagram of a photovoltaic module charging a power storage device through a control component in a third embodiment of the photovoltaic system of the present invention.
  • the photovoltaic system includes a photovoltaic module 10, a control assembly 20, and a power storage device 30.
  • the photovoltaic module 10 is configured to absorb light energy and convert the light energy into an electrical energy output, which may be a large-area battery assembly formed by arranging a plurality of photovoltaic cells (or solar cells) in series and arranging them in a square array.
  • the photovoltaic cell absorbs light energy, and the accumulation of different charges on both ends of the battery, that is, the "photogenerated voltage", which is the "photovoltaic effect". Under the action of the photovoltaic effect, the two ends of the photovoltaic cell generate an electromotive force, thereby converting the light energy into electrical energy.
  • Photovoltaic cells are generally composed of two or more semiconductor wafers, typically a silicon material such as single crystal silicon, polycrystalline silicon, amorphous silicon, or the like.
  • the power storage device 30 is used to store the converted electrical energy from the photovoltaic module 10 to provide backup power to the load when the photovoltaic assembly 10 is unable or insufficient to supply power.
  • the power storage device 30 may be a chemical battery, such as a lead-acid battery, a lithium battery, or the like, or may be other forms of energy storage components such as a super capacitor.
  • the power storage device 30 has a rated voltage and a rated charging voltage slightly higher than the rated voltage, wherein the rated charging voltage may be a fixed voltage value or a voltage interval.
  • the power storage device 30 has a rated voltage of 12V, and the charging voltage can be in the range of 13.5V to 14.5V, and the power storage device 30 is quickly charged at a constant voltage of 14.5V, and then slowly charged at a constant voltage of 14V. Finally, the power storage device 30 is trickle charged with a constant voltage of 13.5V.
  • control assembly 201 is coupled between photovoltaic assembly 10 and power storage device 30 for controlling charging of power storage device 30 by photovoltaic assembly 10.
  • Control component 201 includes a control device 21 and an MPPT controller 22.
  • the MPPT controller 22 is used to find the maximum power point at which the photovoltaic module operates and to control the output voltage of the photovoltaic module when operating at the maximum power point.
  • a control circuit for example, real-time collecting the output voltage and working current of the photovoltaic component, thereby calculating the current working power of the photovoltaic component in real time; then comparing the current working power with the operating power of the previous time point; When the working power is decreased for the first time relative to the working power at the previous time point, it indicates that the working power at the last time point is the maximum power point, so that the working voltage corresponding to the previous time point is the maximum power point of the photovoltaic module. Output power Pressure.
  • the MPPT controller 22 can also be an integrated circuit including a Micro Control Unit (MCU), which implements tracking of the maximum power point of the photovoltaic component by a certain algorithm.
  • MCU Micro Control Unit
  • MPPT algorithms include disturbance observation method, conductance increment method, constant voltage tracking, power feedback method, optimal gradient method, hysteresis comparison method, intermittent scanning method, etc., since these algorithms are well known to those skilled in the art, The applicant will not repeat them here.
  • Control device 21 may be an integrated circuit that includes a microcontroller (MCU).
  • the microcontroller may include a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and a timing. Module, digital to analog conversion module (A/D Converter), and several input/output ports.
  • the control device 21 can also use other forms of integrated circuits, such as Application Specific Integrated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field-Programmable Gate Arrays
  • the control component 201 further includes a step-down circuit 24 for making the photovoltaic module.
  • the output voltage is lowered to the rated charging voltage of the power storage device, so that the power storage device can be efficiently charged.
  • the step-down circuit 24 can employ various types of DC step-down circuits.
  • a step-down converter (buck) circuit is preferred.
  • the switch K1 is an electronic switch, which may be a relay, a transistor, a field effect transistor, a thyristor or the like.
  • the switch K1 is preferably a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), and the control component 11 further includes a Pulse Width Modulation (PWM) driving circuit to drive
  • the switch K1 is turned on and off at a high frequency.
  • the inductor L1 is a storage filter inductor. When the switch K1 is turned on, it is used to limit the passage of a large current, preventing the input voltage at this time from being directly applied to the power storage device 30, and converting the current flowing through the inductor into magnetic energy for storage. And when the switch K1 is turned off, it is used to convert the magnetic energy into a current to continue to supply power to the power storage device 30.
  • Capacitor C1 is a storage filter capacitor. When switch K1 is turned on, it is used to convert part of the current flowing through inductor L1 into electric charge for storage; When Kl is turned off, it converts the charge into a current and continues to supply power to the power storage device 30.
  • D1 is a rectifier diode. Its main function is the freewheeling action. When the switch K1 is turned off, it is used to provide a current path for the inductor L1 to release energy. Since the inductor L1 in the step-down conversion circuit is mainly used to divide the input voltage of the circuit, the output voltage of the circuit is made smaller than the input voltage, thereby realizing the effect of the step-down.
  • the MPPT controller 22 continually tracks the maximum power point of the photovoltaic module 10 and ensures that the photovoltaic module operates at the maximum power point.
  • the control device 21 outputs the A-point gather signal of the bus bar from the photovoltaic module 10, and obtains an output voltage value (such as 17V) at which the photovoltaic module operates at the maximum power point through analog/digital conversion; the control device 21 also collects the signal from the B point.
  • the voltage value for charging the power storage device 30 is obtained by analog/digital conversion.
  • the rated charging voltage of the power storage device 30 is known (for example, a fixed value of 13.5 V, or a range of 13.5 V to 14.5 V), so the control device 21 needs to ensure that the signal collected from the point B corresponds to The charging voltage finally reaches the rated charging voltage, so that the control device 21 adjusts the duty ratio of the output signal through the PWM driving circuit, and then adjusts the charging voltage to the rated charging voltage of the power storage device 30, thereby achieving a higher output voltage of the photovoltaic module 10.
  • the adaptation to the lower rated charging voltage of the electrical storage device 30 maximizes the performance of the photovoltaic module.
  • FIG. 3 Shown in Figure 3 is a second embodiment of the photovoltaic system of the present invention.
  • the control unit 202 replaces the step-down circuit in the first embodiment with the booster circuit 25, thereby outputting the photovoltaic module 10 at the maximum power point.
  • the switch K2 in the present embodiment may also preferably be a MOSFET, the inductor L2 is a storage filter inductor, the capacitor C2 is a storage filter capacitor, and D2 is a rectifier diode.
  • switch K2 When switch K2 is turned on, the switch is short-circuited, current flows into inductor L2 to store energy, and diode D2 prevents capacitor C2 from discharging to ground.
  • switch K2 When switch K2 is turned off, the energy stored in inductor L2 begins to discharge, that is, inductor L2 is capacitor. C2 is charged. At this time, the voltage across the capacitor rises, so that the output voltage of the circuit is higher than the input voltage, thereby achieving the boosting effect.
  • the control device 21 obtains the output voltage of the photovoltaic module 10 and the charging voltage to the power storage device 30 according to the signals collected by the defect point and the B point, and then adjusts the duty ratio of the output signal through the PWM driving circuit.
  • the charging voltage is increased to the rated charging voltage of the power storage device 30.
  • FIG. 4 Shown in Figure 4 is a third embodiment of the photovoltaic system of the present invention.
  • the control component 203 in the present embodiment uses an adaptive voltage matching circuit, that is, the control component 203 can compare the output of the photovoltaic module 10 at the maximum power point by itself.
  • the voltage and the rated charging voltage of the power storage device 30 are selected and the corresponding control circuits are selected to match the two.
  • the control unit 203 includes a control unit 21, an MPPT controller 22, a step-up and step-down circuit 26, and a multi-stage resistor divider circuit.
  • the control device 21 is the same as the MPPT controller 22 and the above embodiment, so the applicant will not repeat them here.
  • the buck-boost circuit 26 is for selectively effecting a boost or a step-down.
  • the circuit is a boost-buck circuit.
  • the structure is similar to that of the H-bridge circuit, including the first and second switches Q1, Q2 of the photovoltaic module 10 connected in series, the third and fourth switches Q3, Q4 connected in series with the power storage device 30, and the first in series The inductance L3 between the node M between the two switches Q1 and Q2 and the node N between the third and fourth switches Q3 and Q4.
  • the first, second, third, and fourth switches Q1, Q2, Q3, and Q4 are all electronic switches, which may be relays, transistors, field effect transistors, thyristors, etc., and are preferably MOSFETs in this embodiment.
  • the control device 21 can respectively control the on/off of the first to fourth switches through the PWM driving circuit (not shown in Fig. 4), thereby realizing the function of boosting or stepping down the circuit 26, which will be described in detail later.
  • the multi-stage resistor divider circuit includes a first resistor divider circuit 27 for detecting an output voltage of the photovoltaic module connected to the input bus of the photovoltaic module 10, and a second resistor divider for detecting a charging voltage to the power storage device 30.
  • Voltage circuit 28 For example, after the control device 21 collects the voltage drop at point E, the output voltage of the photovoltaic module at this time can be converted according to the resistance values of Ral and Ra2; likewise, after the voltage drop of the control device 21 is collected to point F, according to The resistance of Rbl and Rb2 can be converted into the output power of the circuit. The voltage is the charging voltage to the power storage device 30.
  • the multi-stage resistor divider circuit further includes a third resistor divider circuit 29 connected between the first and second resistor divider circuits 27, 28, since the control device 21 only passes through the first and second resistor divider circuits 27, 28
  • the charging voltage cannot be quickly and accurately adjusted to the rated charging voltage of the power storage device 30, so the introduction of the third resistor voltage dividing circuit 29 can be used as a reference for the control device 21 to adjust the charging voltage, continuously adjusting and finally achieving accuracy. Controlling the charging voltage to the power storage device.
  • control component 203 tracks the maximum power point of photovoltaic module 10 through MPPT controller 22 and keeps it operating at the maximum power point.
  • the control device 21 obtains the corresponding output voltage of the photovoltaic module 10 at the maximum power point through the first resistor divider circuit 27 and compares it with the predicted charging voltage of the pre-existing power storage device 30.
  • the control device 21 controls the first and second switches Q1, Q2 to be turned on and off synchronously, the third switch Q3 remains off, and the fourth switch Q4 remains Turn on.
  • the boost-buck circuit is equivalent to the buck circuit, so that the output voltage of the photovoltaic module 10 is lowered to the rated charging voltage of the power storage device 30, thereby ensuring that the photovoltaic module is at the maximum.
  • the output at the power point is fully and effectively utilized.
  • the control device 21 controls the third and fourth switches Q3, Q4 to be turned on synchronously, the second switch Q2 remains turned off, and the first switch Q1 remains turned on.
  • the boost-buck circuit is equivalent to the boost circuit, so that the output voltage of the photovoltaic module 10 is raised to the rated charging voltage of the power storage device 30, thereby ensuring that the photovoltaic module is The output at the maximum power point is fully and effectively utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Description

光伏系统
【技术领域】
本发明涉及光伏发电技术, 尤其涉及一种通过跟踪光伏组件的最大功 率点来相应控制输出电力的技术。
【背景技术】
目前, 我们所使用的电能主要是由集中的大型发电机所产生的电力并 通过远距离的输电线路传输提供。 然而, 有些偏远地区人烟稀少, 短期内 电网还无法延伸到, 所以, 利用存在于这些地区附近的各种能源形式(如 太阳能、 风能、 生物质能、 水力、 和热能等)就近发电, 可以有效地解决 该地区的电力问题。 太阳能-光伏发电技术由于既可以提供小型的 "太阳能 家用系统" (SHS, 峰值功率为 20-200W )供单户家庭使用, 又可以提供 较大型的村级系统(5kW左右), 所以该技术可以在短期内作为一种主要技 术选择为偏远地区的家庭、 小型企业和社区提供基本的用电需求, 如照明、 播放收音机、 播放电视等。
光伏发电技术是利用半导体界面的光生伏特效应而将光能直接转变为 电能。 这种技术的关键元件是光伏电池, 光伏电池通常由两块或多块半导 体薄片组成, 半导体材料通常是硅, 如单晶硅、 多晶硅、 非晶硅等。 当光 线照射时, 可以在电池内部产生电流, 并由金属导体以直流电的形式传导。 光伏电池经过串联后进行封装保护可形成大面积的光伏电池组件。 配合参 照图 1所示的现有技术, 光伏系统通常包括光伏电池组件 91、 控制器 92、 蓄电装置 93。 其中蓄电装置 93 用于作为储备电源, 如白天时由光伏组件 91通过控制器 92直接向负载 94供电, 而到了夜间, 通过控制器 92管理由 蓄电装置 93向负载 94供电。
光伏电池组件的输出特性具有非线性的特征, 并且受光照强度、 环境 温度等影响。 在一定的光照强度和环境温度下, 光伏电池可以工作在不同 的输出电压, 但只有在某一输出电压值时, 光伏电池的输出功率才能达到 最大值, 也就是说, 这时光伏电池的工作点就达到了输出功率曲线的最高 点, 称之为最大功率点 ( Maximum Power Point, MPP )。 当电压小于最大功 率点电压时, 输出功率随输出电压的增加而增加; 当电压大于最大功率点 电压, 输出功率随输出电压的增加而减小。 由此可以看出, 在光伏发电系 统中, 要提高系统的整体效率, 主要的途径就是实时调整光伏组件的工作 点, 使之始终工作在最大功率点附近, 这一过程就称之为最大功率点跟踪 ( Maximum Power Point Tracking, MPPT )。 目前, 业内已经有艮多的方法来 实现最大功率点跟踪, 如扰动观察法、 电导增量法、 定电压跟踪、 功率回 授法等。 然而, 系统在不同工况(光照强度、 环境温度、 遮挡等) 下的最 大功率点所对应的输出电压不同, 而光伏组件的最大功率常常因为不匹配 蓄电装置充电需求而被浪费, 且最大功率点的电压并不等于蓄电池充电的 最佳电压, 光伏组件的最大功率并不能有效转换到蓄电池上, 蓄电装置具 有额定的充电电压, 所以在给蓄电装置充电之前, 如何确保在最大功率点 的输出功率和输出电压和蓄电装置的额定充电电压和充电功率需求所匹 配, 是目前业界所急需解决的问题。 (MPPT )
有鉴于此, 有必要对现有的光伏系统予以改进来解决上述问题。
【发明内容】
本发明的目的在于提供一种解决上述问题的光伏系统, 其能够使系统 在最大功率点下的输出电压适应蓄电装置的额定充电电压, 从而确保系统 发挥最大的效能。
为了实现上述目的, 本发明的一种光伏系统, 其包括:
光伏组件, 用于吸收光能, 并将光能转化为电能输出; 蓄电装置, 与所述光伏组件连接以用于储存被转化的电能, 其具有额 定充电电压;
控制组件, 连接在所述光伏组件和蓄电装置之间, 用于
跟踪光伏组件工作的最大功率点, 并控制光伏组件在所述最大功 率点时工作;
比较光伏组件在最大功率点时的输出电压和蓄电装置的额定充电 电压;
当输出的最大功率点电压大于所述额定充电电压时, 将所述输出 电压降低至额定充电电压后给蓄电装置充电; 当输出的最大功 率点电压小于额定充电电压时, 将所述输出电压提高至额定充 电电压后给蓄电装置充电。
作为本发明的进一步改进, 所述控制组件包括用于跟踪光伏组件工作 的最大功率点的最大功率点跟踪控制器。
作为本发明的进一步改进, 所述控制组件包括用于将输出电压调节到 额定充电电压的升降压变换(boost-buck ) 电路。
作为本发明的进一步改进, 所述升降压变换电路包括与光伏组件串联 的第一和第二开关、 与蓄电装置串联的第三和第四开关、 以及串联在第一、 二开关之间的节点和第三、 四开关之间的节点之间的电感。
作为本发明的进一步改进, 所述控制组件还包括控制装置, 所述控制 装置用于根据比较结果相应地控制第一、 二、 三、 四开关的通断以将输出 电压提升或降低到额定充电电压。
作为本发明的进一步改进, 当比较结果为输出电压高于额定充电电压 时, 控制装置控制第一、 二开关同步地通断, 第三开关保持关断, 第四开 关保持导通; 当比较结果为输出电压低于额定充电电压时, 控制装置控制 第三、 四开关同步地通断, 第二开关保持关断, 第一开关保持导通。
作为本发明的进一步改进, 所述第一、 二、 三、 四开关均为电子开关, 所 述 电 子 开 关 包 括金属 氧化 物 半 导 体 场 效应 晶 体 管
( Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET )。
作为本发明的进一步改进, 所述控制装置包括微控制器 (Micro Control Unit, MCU)。
作为本发明的进一步改进, 控制组件还包括连接在光伏组件输入母线 上的用于检测所述输入电压的第一电阻分压电路, 和用于检测给蓄电装置 充电的电压的第二电阻分压电路。
作为本发明的进一步改进, 控制组件还包括连接于所述母线上的、 位 于第一和第二电阻分压电路间的第三电阻分压电路。
与现有技术相比, 本发明的优势在于: 通过对光伏组件的最大输出功 率和输出电压和蓄电装置的额定充电电压和充电需求功率之间的匹配, 确 保光伏组件在最大功率点时的输出被充分、 有效地利用, 从而使光伏系统 能够发挥出最大的效能。
【附图说明】
图 1是现有技术中光伏系统的工作原理框图;
图 2是本发明光伏系统的第一实施方式中, 光伏组件通过控制组件 给蓄电装置充电的电路原理框图;
图 3是本发明光伏系统的第二实施方式中, 光伏组件通过控制组件 给蓄电装置充电的电路原理框图;
图 4是本发明光伏系统的第三实施方式中, 光伏组件通过控制组件 给蓄电装置充电的电路原理框图。
【具体实施方式】
以下将结合附图所示的各实施方式对本发明进行详细描述。 但这些实 施方式并不限制本发明, 本领域的普通技术人员根据这些实施方式所做出 的结构、 方法、 或功能上的变换均包含在本发明的保护范围内。 如图 2所示的本发明光伏系统的第一实施方式, 该光伏系统包括光伏 组件 10、 控制组件 20、 以及蓄电装置 30。 其中光伏组件 10用于吸收光能, 并将光能转化为电能输出, 其可以是由若干光伏电池(或称太阳能电池) 串联后进行封装并按方阵排列形成的大面积电池组件。 其中, 光伏电池吸 收光能, 电池两端出现异号电荷的积累, 即产生 "光生电压", 这就是 "光 生伏特效应"。 在光生伏特效应的作用下, 光伏电池的两端产生电动势, 从 而将光能转换成电能。 光伏电池一般由两块或多块半导体薄片组成, 半导 体材料通常是硅, 如单晶硅、 多晶硅、 非晶硅等。 蓄电装置 30用于储存由 光伏组件 10转化输出后的电能, 以在光伏组件 10无法或不足以供电时向 负载提供备用电力。蓄电装置 30可以是化学电池,如铅酸电池、锂电池等, 也可以是其它形式的储能元件, 如超级电容等。 在本实施方式中, 蓄电装 置 30具有额定电压以及略高于额定电压的额定充电电压, 其中额定充电电 压可以是一个固定电压值, 也可以是一个电压区间。 例如, 蓄电装置 30的 额定电压为 12V, 充电电压可以在 13.5V~14.5V区间内, 开始以 14.5V的 恒定电压对蓄电装置 30进行快充, 然后以 14V的恒定电压进行慢充, 最后 以 13.5V的恒定电压对蓄电装置 30涓流充电。
如图 2所示的实施方式中, 控制组件 201连接在光伏组件 10和蓄电装 置 30之间, 用于控制光伏组件 10对蓄电装置 30的充电。 控制组件 201包 括一控制装置 21和一 MPPT控制器 22。 其中 MPPT控制器 22用于寻找光 伏组件工作的最大功率点, 并控制光伏组件在最大功率点工作时的输出电 压。 其可以通过控制电路来实现, 例如实时釆集光伏组件的输出电压和工 作电流, 从而实时地计算出光伏组件的当前工作功率; 然后比较当前的工 作功率与上一时间点的工作功率; 当当前的工作功率相对于上一时间点的 工作功率第一次出现下降时, 表明上一时间点的工作功率为最大功率点, 从而对应上一时间点时的工作电压即为光伏组件最大功率点时的输出电 压。 当然, MPPT控制器 22也可以是包括微控制器(Micro Control Unit, MCU )的集成电路, 其通过一定的算法来实现光伏组件最大功率点的跟踪。 常见的 MPPT算法包括扰动观察法、 电导增量法、 定电压跟踪、 功率回授 法、 最优梯度法、 滞环比较法、 间歇扫描法等, 由于这些算法为本领域技 术人员所熟知, 所以申请人在此不再予以赘述。
控制装置 21可以是包括微控制器(MCU )的集成电路。 本领域技术人 员所熟知的是, 微控制器可以包括中央处理单元(Central Processing Unit, CPU )、 只读存储模块( Read-Only Memory, ROM )、 随机存储模块( Random Access Memory, RAM )、 定时模块、 数字模拟转换模块( A/D Converter )、 以及若干输入 /输出端口。 当然,控制装置 21也可以釆用其它形式的集成电 路, 如特定用途集成电路 ( Application Specific Integrated Circuits, ASIC )或 现场可编程门阵列 ( Field-programmable Gate Array, FPGA )等。
在本实施方式中, 由于已知蓄电装置 30的额定充电电压明显低于光伏 组件 10在最大功率点时的输出电压, 所以控制组件 201还包括一降压电路 24 , 用来使光伏组件的输出电压降低到蓄电装置的额定充电电压, 从而可 以有效地为蓄电装置充电。降压电路 24可以釆用各种形式的直流降压电路, 本实施方式中优选为降压变换(buck ) 电路。 如图 2所示, 开关 K1为电子 开关, 其可以是继电器、 晶体管、 场效应管、 可控硅等。 本实施方式中, 开 关 K1 优 选 为 金 属 氧 化 物 半 导 体 场 效 应 晶 体 管 ( Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET ), 控制组件 11还包括一脉宽调制( Pulse Width Modulation, PWM )驱动电路来驱动开关 K1高频地通断。 电感 L1为储能滤波电感, 当开关 K1导通时, 其用于限制 大电流通过, 防止此时的输入电压直接加到蓄电装置 30上, 同时对流过的 电感的电流转化成磁能进行储存; 而当开关 K1关断时, 其用于将磁能转化 成电流继续向蓄电装置 30提供电能。 电容 C1为储能滤波电容, 当开关 K1 导通时, 其用于将流过电感 L1的部分电流转化成电荷进行储存; 而当开关 Kl关断时, 其把电荷转化成电流继续向蓄电装置 30提供电能。 D1是整流 二极管, 主要功能是续流作用, 当开关 K1关断时, 用于给电感 L1释放能 量提供电流通路。 由于降压变换电路中的电感 L1主要用于对电路的输入电 压起分压作用, 所以使得电路的输出电压小于输入电压, 从而实现降压的 作用。
工作时, MPPT控制器 22会不断地跟踪光伏组件 10的最大功率点,并 确保光伏组件在该最大功率点下工作。 控制装置 21从光伏组件 10输出母 线的 A点釆集信号, 经过模 /数转换获得光伏组件工作在该最大功率点下的 输出电压值(如 17V ); 控制装置 21还从 B点釆集信号, 同样地经过模 /数 转换获得为蓄电装置 30充电的电压值。 本实施方式中, 蓄电装置 30的额 定充电电压是已知的 (如固定值 13.5V, 或区间 13.5V~14.5V ), 所以, 控 制装置 21需要确保从 B点釆集的信号所对应的充电电压最后达到额定充电 电压, 从而控制装置 21通过 PWM驱动电路调节输出信号的占空比, 进而 将充电电压调整到蓄电装置 30的额定充电电压, 以此实现光伏组件 10的 较高输出电压与蓄电装置 30的较低额定充电电压的适配, 从而最大地发挥 光伏组件的效能。
图 3所示的是本发明光伏系统的第二实施方式。 与图 2所示的第一实 施方式的主要区别在于, 控制组件 202釆用了升压电路 25替换了第一实施 方式中的降压电路, 从而, 当光伏组件 10在最大功率点时的输出电压小于 蓄电装置 30 的额定充电电压时, 仍可以有效地为蓄电装置充电。 如图 3 所示, 如同第一实施方式, 本实施方式中的开关 K2也可优选为 MOSFET, 电感 L2为储能滤波电感、 电容 C2为储能滤波电容、 D2为整流二极管。 当 开关 K2导通时, 开关处于短路, 电流流入电感 L2使电感储存能量, 二极 管 D2防止电容 C2对地放电; 当开关 K2关断时, 电感 L2中储存的电能开 始放电, 即电感 L2为电容 C2充电, 此时, 电容两端的电压升高, 使得电 路的输出电压高于输入电压, 从而实现升压的作用。 与第一实施方式中类 似的, 控制装置 21才艮据 Α点和 B点釆集到的信号相应获得光伏组件 10的 输出电压和给蓄电装置 30的充电电压, 然后通过 PWM驱动电路调节输出 信号的占空比, 以将充电电压提高到蓄电装置 30的额定充电电压。 从而实 现光伏组件 10的较低输出电压与蓄电装置 30的较高额定充电电压的适配, 进而最大地发挥光伏组件的效能。
图 4所示的是本发明光伏系统的第三实施方式。 与上述第一、 二实施 方式的主要区别在于, 本实施方式中的控制组件 203 釆用了自适应电压匹 配电路, 也就是说, 控制组件 203能够自行比较光伏组件 10在最大功率点 下的输出电压和蓄电装置 30的额定充电电压, 并选择相应的控制电路来使 两者匹配。 如图 4所示, 控制组件 203包括控制装置 21、 MPPT控制器 22、 升降压电路 26、 和多级电阻分压电路。 其中控制装置 21与 MPPT控制器 22和上述实施方式中相同, 所以申请人在此不再予以赘述。
升降压电路 26用于可选择地实现升压或降压的作用,在本实施方式中, 该电路为升降压变换(boost-buck )电路。 其釆用类似于 H桥电路的结构方 式, 包括光伏组件 10串联的第一和第二开关 Ql、 Q2, 与蓄电装置 30串联 的第三和第四开关 Q3、 Q4, 以及串联在第一、 二开关 Ql、 Q2之间的节点 M和第三、 四开关 Q3、 Q4之间的节点 N之间的电感 L3。 第一、 二、 三、 四开关 Ql、 Q2、 Q3、 Q4均为电子开关, 其可以是继电器、 晶体管、 场效 应管、可控硅等,本实施方式中优选为 MOSFET。控制装置 21可通过 PWM 驱动电路(图 4 中未示出)分别控制第一至第四开关的通断, 从而实现电 路 26升压或降压的功能, 后文将会做详细的描述。
多级电阻分压电路包括连接在光伏组件 10输入母线上的用于检测光伏 组件的输出电压的第一电阻分压电路 27 ,和用于检测给蓄电装置 30的充电 电压的第二电阻分压电路 28。 例如, 控制装置 21釆集到 E点的压降后, 根 据 Ral和 Ra2的阻值可换算出此时光伏组件的输出电压; 同样地, 控制装 置 21釆集到 F点的压降后,根据 Rbl和 Rb2的阻值可换算出电路的输出电 压, 即给蓄电装置 30的充电电压。 多级电阻分压电路还包括连接位于第一 和第二电阻分压电路 27、 28间的第三电阻分压电路 29, 由于控制装置 21 仅通过第一和第二电阻分压电路 27、 28无法快速、 精确地将充电电压调整 到蓄电装置 30的额定充电电压, 所以第三电阻分压电路 29的引入, 可以 供控制装置 21在调整充电电压时作为参考, 不断地调整并最终达到精确控 制给蓄电装置的充电电压。
工作时, 控制组件 203通过 MPPT控制器 22跟踪光伏组件 10的最大 功率点, 并使其保持在最大功率点下工作。 控制装置 21通过第一电阻分压 电路 27获得光伏组件 10在最大功率点时相应的输出电压, 并将其与预知 的蓄电装置 30的额定充电电压进行比较。 当光伏组件的输出电压高于蓄电 装置的额定充电电压时, 控制装置 21控制第一、 二开关 Ql、 Q2同步地导 通和关断, 第三开关 Q3保持关断, 第四开关 Q4保持导通。 此时, 升降压 变换(boost-buck ) 电路就等效于降压变换(buck ) 电路, 从而使光伏组件 10的输出电压降低到蓄电装置 30的额定充电电压,进而确保光伏组件在最 大功率点时的输出被充分、 有效地利用。 当光伏组件的输出电压低于蓄电 装置的额定充电电压时, 控制装置 21控制第三、 四开关 Q3、 Q4同步地通 断, 第二开关 Q2保持关断, 第一开关 Q1 保持导通。 此时, 升降压变换 ( boost-buck ) 电路就等效于升压变换(boost ) 电路, 从而使光伏组件 10 的输出电压升高到蓄电装置 30的额定充电电压, 进而确保光伏组件在最大 功率点时的输出被充分、 有效地利用。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细 节, 而且在不背离本发明的精神或基本特征的情况下, 能够以其他的具体 形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性 的, 而且是非限制性的, 本发明的范围由所附权利要求而不是上述说明限 定, 因此旨在将落在权利要求的等同要件的含义和范围内的所有变化嚢括 在本发明内。 不应将权利要求中的任何附图标记视为限制所涉及的权利要
Figure imgf000012_0001

Claims

权 利 要求
1、 一种光伏系统, 其特征在于, 该系统包括:
光伏组件, 用于吸收光能, 并将光能转化为电能输出;
蓄电装置, 与所述光伏组件连接以用于储存被转化的电能, 其具有额 定充电电压;
控制组件, 连接在所述光伏组件和蓄电装置之间, 用于
跟踪光伏组件工作的最大功率点, 并控制光伏组件在所述最大功 率点时工作;
比较光伏组件在最大功率点时的输出电压和蓄电装置的额定充电 电压;
当输出的最大功率点电压大于所述额定充电电压时, 将所述输出 电压降低至额定充电电压后给蓄电装置充电; 当输出的最大功 率点电压小于额定充电电压时, 将所述输出电压提高至额定充 电电压后给蓄电装置充电。
2. 根据权利要求 1 所述的光伏系统, 其特征在于, 所述控制组 件包括用于跟踪光伏组件工作的最大功率点的最大功率点跟踪控制器。
3. 根据权利要求 1 所述的光伏系统, 其特征在于, 所述控制组件包 括用于将输出电压调节到额定充电电压的升降压变换(boost-buck ) 电路。
4. 根据权利要求 3 所述的光伏系统, 其特征在于, 所述升降压变换 电路包括与光伏组件串联的第一和第二开关、 与蓄电装置串联的第三和第 四开关、 以及串联在第一、 二开关之间的节点和第三、 四开关之间的节点 之间的电感。
5. 根据权利要求 4所述的光伏系统, 其特征在于, 所述控制组件还 包括控制装置, 所述控制装置用于根据比较结果相应地控制第一、 二、 三、 四开关的通断以将输出电压提升或降低到额定充电电压。
6. 根据权利要求 5 所述的光伏系统, 其特征在于, 当比较结果为输 出电压高于额定充电电压时, 控制装置控制第一、 二开关同步地通断, 第 三开关保持关断, 第四开关保持导通; 当比较结果为输出电压低于额定充 电电压时, 控制装置控制第三、 四开关同步地通断, 第二开关保持关断, 第一开关保持导通。
7. 根据权利要求 4所述的光伏系统, 其特征在于, 所述第一、 二、 三、 四开关均为电子开关, 所述电子开关包括金属氧化物半导体场效应晶 体管 ( Metal-Oxide- Semiconductor Field-Effect Transistor, MOSFET )。
8. 根据权利要求 5 所述的光伏系统, 其特征在于, 所述控制装置包 括 ϋ控制器 (Micro Control Unit, MCU)。
9. 根据权利要求 1 所述的光伏系统, 其特征在于, 控制组件还包括 路, 和用于检测给蓄电装置充电的电压的第二电阻分压电路。
10. 根据权利要求 9所述的光伏系统, 其特征在于, 控制组件还包括 连接于所述母线上的、 位于第一和第二电阻分压电路间的第三电阻分压电 路。
PCT/CN2011/072277 2011-03-29 2011-03-29 光伏系统 WO2012129781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/072277 WO2012129781A1 (zh) 2011-03-29 2011-03-29 光伏系统
CN201180049448.7A CN103190071B (zh) 2011-03-29 2011-03-29 光伏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072277 WO2012129781A1 (zh) 2011-03-29 2011-03-29 光伏系统

Publications (1)

Publication Number Publication Date
WO2012129781A1 true WO2012129781A1 (zh) 2012-10-04

Family

ID=46929326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072277 WO2012129781A1 (zh) 2011-03-29 2011-03-29 光伏系统

Country Status (2)

Country Link
CN (1) CN103190071B (zh)
WO (1) WO2012129781A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956789A (zh) * 2014-04-25 2014-07-30 桂林市啄木鸟医疗器械有限公司 光固化机led灯的稳压供电电路
CN113985956A (zh) * 2021-10-20 2022-01-28 大连工业大学 一种用于提升太阳能发电的玻璃窗及其光电转换效率的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700887B (zh) * 2018-12-28 2020-08-01 映興電子股份有限公司 具低照度喚醒充電功能之太陽能發電系統
KR20240044631A (ko) * 2022-09-29 2024-04-05 김동완 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201393185Y (zh) * 2009-04-15 2010-01-27 深圳市领驭高科太阳能有限公司 太阳能光伏新型控制器
CN201766523U (zh) * 2009-12-03 2011-03-16 天津理工大学 一种基于直流变换器的光伏发电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042199A1 (de) * 2008-09-18 2010-04-01 Robert Bosch Gmbh Photovoltaik-Vorrichtung
CN101630171B (zh) * 2009-08-05 2011-09-21 华南理工大学 应用于光伏电池最大功率跟踪的分段自适应爬山法及系统
CN101795101B (zh) * 2010-04-08 2012-09-05 北京交通大学 光伏发电系统最大功率点跟踪控制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201393185Y (zh) * 2009-04-15 2010-01-27 深圳市领驭高科太阳能有限公司 太阳能光伏新型控制器
CN201766523U (zh) * 2009-12-03 2011-03-16 天津理工大学 一种基于直流变换器的光伏发电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956789A (zh) * 2014-04-25 2014-07-30 桂林市啄木鸟医疗器械有限公司 光固化机led灯的稳压供电电路
CN113985956A (zh) * 2021-10-20 2022-01-28 大连工业大学 一种用于提升太阳能发电的玻璃窗及其光电转换效率的方法

Also Published As

Publication number Publication date
CN103190071B (zh) 2015-10-21
CN103190071A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
Park et al. Design and application for PV generation system using a soft-switching boost converter with SARC
Swiegers et al. An integrated maximum power point tracker for photovoltaic panels
CN203377785U (zh) 一种充放电式dc-dc转换电路及新能源发电系统
Abd Rahim et al. Hysteresis current control and sensorless MPPT for grid-connected photovoltaic systems
US20110089886A1 (en) Maximum Power Point Tracking Bidirectional Charge Controllers for Photovoltaic Systems
WO2007084196A2 (en) Dynamic switch power converter
TW201020712A (en) Frequency-varied incremental conductance maximum power point tracking controller and algorithm for PV converter
Ravindran et al. Simulated design and implementation of solar based water pumping system
Liu et al. Design of a solar powered battery charger
WO2012129781A1 (zh) 光伏系统
WO2018222858A1 (en) Energy storage system having a multi-port dc/dc power converter
TW201532365A (zh) 用於混合式儲存系統之拓撲及控制策略
Smith et al. Investigation of a multiple input converter for grid connected thermoelectric-photovoltaic hybrid system
WO2012129779A1 (zh) 光伏系统
Karuppiah et al. Design a electric vehicle charger based sepic topology with PI controller
Nakayama et al. Stand-alone photovoltaic generation system with combined storage using lead battery and EDLC
CN107069924B (zh) 一种共用铝电极的太阳能电池-超级电容器件的充放电电路及其控制方法
TWI460979B (zh) 直流/直流轉換器的控制方法與電壓轉換系統
Raveendhra et al. Design and small signal analysis of solar PV fed FPGA based Closed Loop control Bi-Directional DC-DC converter
Yao et al. An improved hill-climbing method for the maximum power point tracking in photovoltaic system
Narendra et al. An Experimental Validation of single-phase AC power Generation from PV using H-bridge Inverter
Lin et al. MPPT photovoltaic wide load-range ZVS phase-shift full-bridge charger with DC-link current regulation
Chung et al. A maximum power point tracking and voltage regulated dual-chip system for single-cell photovoltaic energy harvesting
Chy et al. Comparative Experimental Analysis with and without Proposed Algorithm for MPPT using a DC-DC Converter for PV Array
Ali Design of Maximum Power Point Tracking Solar Charge Controller using Incremental Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862738

Country of ref document: EP

Kind code of ref document: A1