WO2012128384A1 - Light-emitting device, illumination device, and headlight - Google Patents

Light-emitting device, illumination device, and headlight Download PDF

Info

Publication number
WO2012128384A1
WO2012128384A1 PCT/JP2012/057718 JP2012057718W WO2012128384A1 WO 2012128384 A1 WO2012128384 A1 WO 2012128384A1 JP 2012057718 W JP2012057718 W JP 2012057718W WO 2012128384 A1 WO2012128384 A1 WO 2012128384A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting unit
excitation
excitation light
Prior art date
Application number
PCT/JP2012/057718
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 岸本
洋史 貴島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011066131A external-priority patent/JP2012204071A/en
Priority claimed from JP2011084047A external-priority patent/JP2012221635A/en
Priority claimed from JP2011084045A external-priority patent/JP5172987B2/en
Priority claimed from JP2011084046A external-priority patent/JP2012221634A/en
Priority claimed from JP2011084044A external-priority patent/JP2012221633A/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012128384A1 publication Critical patent/WO2012128384A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/686Blades, i.e. screens moving in a vertical plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source

Definitions

  • the present invention relates to a light-emitting device including a light-emitting body including a phosphor that generates fluorescence when irradiated with excitation light.
  • the present invention also relates to a light-emitting device that functions as a high-intensity light source, a lighting device, and a headlamp that includes the lighting device.
  • the present invention relates to a light emitting device, a lighting device, and a vehicle headlamp (headlamp) that can change the characteristics of illumination light with a simple structure.
  • a semiconductor light emitting device such as a light emitting diode (LED) or a semiconductor laser (LD) is used as an excitation light source, and the excitation light generated from these excitation light sources is converted into a light emitting body including a phosphor (light emission).
  • LED light emitting diode
  • LD semiconductor laser
  • Studies of light-emitting devices that use fluorescence generated by irradiating a part) as illumination light have become active.
  • This light-emitting device includes a base, a semiconductor laser element (hereinafter sometimes simply referred to as “semiconductor laser”), a diffusion member (diffusion portion), and a wavelength conversion member (hereinafter simply referred to as “light emitter” or “light-emitting portion”).
  • semiconductor laser semiconductor laser element
  • diffusion portion diffusion portion
  • wavelength conversion member hereinafter simply referred to as “light emitter” or “light-emitting portion”.
  • said base has a recessed part with a bottom face and an inner wall.
  • the semiconductor laser is arranged so that its optical axis faces the inner wall of the recess in the base.
  • the diffusion member is disposed on the optical axis of the semiconductor laser.
  • the light emitter is disposed not on the optical axis of the semiconductor laser but at a distance from the diffusion member with respect to the opening direction of the recess.
  • Patent Document 2 An example of such an illumination device is disclosed in Patent Document 2.
  • a GaN-based semiconductor laser that emits laser light of 450 nm or less is used as an excitation light source.
  • laser light oscillated from a semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste.
  • Patent Document 2 discloses an illumination device that uses a GaN-based light-emitting diode instead of the GaN-based semiconductor laser as an excitation light source.
  • This light emitting diode includes a laminated body composed of a contact layer, a clad layer, and the like, and the laminated body is provided with a recess. And the fluorescent extraction efficiency is improved by filling the concave portion with a fluorescent material.
  • Patent Documents 3 and 4 there are lamps disclosed in Patent Documents 3 and 4 as examples of techniques relating to such a light emitting device.
  • a semiconductor laser is used as an excitation light source in order to realize a high-intensity light source. Since the laser light oscillated from the semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste.
  • a light-emitting device using such a semiconductor laser as an excitation light source (referred to as an LD light-emitting device) can be suitably applied to a vehicle headlamp.
  • Patent Documents 5 and 6 examples of such an illumination device are disclosed in Patent Documents 5 and 6.
  • the vehicle headlamps described in Patent Documents 5 and 6 include a plurality of LED chips that emit different colors.
  • the amount of white light is reduced according to the situation, and light such as green or orange is emitted.
  • the red light and green light which are easy to distinguish a pedestrian from another target object are radiate
  • the light emitter in order to suppress a decrease in the irradiation efficiency of the excitation light with respect to the light emitter, it is preferable to irradiate the light emitter with the laser light generated from the semiconductor laser as it is.
  • the intensity distribution of laser light generated from a semiconductor laser has a predetermined spread and is almost Gaussian. Therefore, the intensity of the bottom part of the spot of the laser beam decreases rapidly as the distance from the maximum intensity part increases.
  • the spot size when the laser beam generated from the semiconductor laser is irradiated to the light emitter is less than or equal to the size of the light emitter, there is a possibility of large unevenness in the intensity distribution of the laser light on the irradiated surface of the light emitter. There is. If it does so, the intensity
  • the optical system constituting the apparatus has high work accuracy. Required. For this reason, there is a problem that the degree of freedom in designing the apparatus is lowered.
  • Patent Document 2 the above-described semiconductor laser or light-emitting diode is used as an excitation light source to achieve a high-intensity light source or to improve the fluorescence extraction efficiency.
  • the technique for adjusting the color temperature of illumination light is known. No idea is disclosed. This is because Patent Document 2 does not recognize the necessity of the color temperature adjustment.
  • Patent Documents 3 and 4 disclose lamps using a semiconductor laser as an excitation light source, but do not disclose changing the color temperature of illumination light emitted from these lamps. This is because Patent Documents 3 and 4 did not recognize the necessity of changing the color temperature.
  • Patent Documents 5 and 6 needs to prepare a plurality of LED chips, and does not relate to a technique of emitting a plurality of different colors by a single LED chip (excitation light source). For this reason, the techniques of Patent Documents 5 and 6 require the use of a plurality of LED chips, which causes various problems such as manufacturing costs and arrangement of LED chips in a vehicle headlamp.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting device that can increase the degree of freedom in designing the device while suppressing deterioration of the light-emitting body. It is in.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a light emitting device that can change (adjust) the color temperature of illumination light.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a light-emitting device that can change the characteristics of illumination light with a simple structure.
  • a light-emitting device of the present invention includes an excitation light source that emits excitation light and a light-emitting body that emits fluorescence when irradiated with excitation light emitted from the excitation light source.
  • the area of the spot when the excitation light is irradiated is larger than the area of the light emitter when the light emitter is viewed from the side irradiated with the excitation light.
  • the intensity distribution of the excitation light generated from the excitation light source has a predetermined spread and is almost Gaussian. Therefore, the intensity of the bottom part of the spot of the excitation light decreases rapidly as the distance from the maximum intensity part increases.
  • the area of the spot when the excitation light generated from the excitation light source is irradiated toward the illuminant is the area of the illuminant when the illuminant is viewed from the side irradiated with the excitation light (projection area). If it is as follows, there is a possibility that large unevenness occurs in the intensity distribution of the excitation light on the irradiation surface of the light emitter. If it does so, the intensity
  • the area of the spot when the excitation light is irradiated toward the light emitter is the area of the cross section of the light emitter when the light emitter is viewed from the side irradiated with the excitation light. Is bigger than. For this reason, compared with the case where the area of the spot of the laser beam is equal to or less than the area of the cross section of the light emitter, unevenness generated in the intensity distribution of the excitation light on the irradiation surface of the light emitter irradiated with the excitation light can be reduced. .
  • the intensity of the excitation light is not concentrated on a part of the irradiation surface of the illuminator, and the excitation light is radiated mildly over the entire irradiation surface, so that deterioration of the illuminant can be suppressed.
  • the area of the excitation light spot since the area of the excitation light spot only needs to be larger than the area of the cross section of the light emitter, the area of the laser light spot is less than or equal to the area of the light emitter. In comparison, high working accuracy is not required for the optical system constituting the apparatus. This also increases the degree of freedom in device design.
  • the light emitting device of the present invention emits at least one excitation light source that emits excitation light and at least one that emits fluorescence upon receiving the excitation light emitted from the excitation light source. It is characterized by comprising a light emitting section and a characteristic changing mechanism for changing the characteristics of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside.
  • the characteristic changing mechanism changes the characteristic of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside, which is emitted from at least one light emitting unit. Therefore, the characteristics of the emitted light, particularly the color temperature can be changed.
  • the light-emitting device of the present invention includes an excitation light source that emits excitation light and a light emitter that emits fluorescence when irradiated with the excitation light emitted from the excitation light source, and the excitation light is emitted toward the light emitter.
  • the area of the spot when irradiated with light is larger than the area of the light emitter when the light emitter is viewed from the side irradiated with the excitation light.
  • the light-emitting device of the present invention includes at least one excitation light source that emits excitation light, and at least one light-emitting unit that emits fluorescence in response to the excitation light emitted from the excitation light source.
  • the apparatus includes a characteristic changing mechanism that changes a characteristic of the emitted light by changing a ratio of the fluorescence contained in the emitted light emitted to the outside.
  • FIG. 1 is a half sectional view showing a schematic configuration of a headlamp (transmission type) according to an embodiment of the present invention.
  • A is sectional drawing which shows an example of each arrangement method of a board
  • B is a cross section which shows another example of the said arrangement method.
  • C is a cross-sectional view showing still another example of the arrangement method
  • (d) is a cross-sectional view showing still another example of the arrangement method, and (e) It is sectional drawing which shows another example of the arrangement
  • (A) is a figure which shows typically the circuit diagram of an example of an excitation light source (LED) regarding the said headlamp
  • (b) is a front view which shows the external appearance of the said LED
  • (c) is It is a figure which shows typically the circuit diagram of other examples (LD) of the said excitation light source
  • (d) is a perspective view which shows the external appearance (basic structure) of said LD. It is a half sectional view which shows schematic structure of the headlamp (reflection type) which is other embodiment of this invention.
  • (A) is a half sectional view showing a schematic configuration of a headlamp (transmission type) of a comparative example, and (b) shows the distance (r) from the center (O) of the spot of the laser beam and the laser beam It is a distribution map which shows the relationship with an intensity
  • It is the schematic which shows the external appearance of the light emission unit with which the laser downlight which is further another embodiment of this invention is provided, and the conventional LED downlight.
  • (A) shows the case where the size of the laser light irradiation region is substantially the same as the size of the light receiving surface of the light emitting unit, and (b) shows the position of the light emitting unit and the light guide member separated from each other as compared with the case of (a).
  • (C) shows a case where the positions of the light emitting part and the light guide member are closer than in the case of (a). It is a figure which shows a mode that the magnitude
  • (A) shows the case where a light emission part moves to the direction perpendicular
  • (b) shows the case where a light emission part rotates. It is a graph which shows the white chromaticity range requested
  • FIG. 32 It is a half sectional view which shows the outline
  • FIG. 32 An arrangement example in a case is shown. It is a figure which shows the modification of the light emission part shown in FIG. 32, (a) is sectional drawing which shows an example of the light emission part adhere
  • (a) is the state where the distance between a 2nd light emission part and the optical axis of a laser beam is the most separated
  • (B) is a figure which shows a mode that the 2nd light emission part is moving toward the optical axis of a laser beam
  • (c) is a figure which shows a 2nd light emission part and the optical axis of a laser beam. It is a figure which shows the state from which the distance between was closest. It is a chromaticity diagram for demonstrating the effect acquired by the headlamp shown in FIG. In the structure of the headlamp shown in FIG.
  • (a) is a 2nd light emission part and a laser beam.
  • (B) is a figure which shows a mode that the 2nd light emission part is moving toward the optical axis of a laser beam.
  • c) is a diagram showing a state in which the distance between the second light emitting unit and the optical axis of the laser beam is closest. It is a figure for demonstrating the 1st light emission part with which the LED chip was embedded, (a) is sectional drawing of a 1st light emission part, (b) is a perspective view of a 1st light emission part.
  • FIGS. 1 to 5 An embodiment of the present invention will be described with reference to FIGS. 1 to 5 as follows. Descriptions of configurations other than those described in the following specific items may be omitted as necessary. However, in the case where they are described in other items, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each item are given the same reference numerals, and the explanation thereof is omitted as appropriate.
  • a headlamp (light emitting device, lighting device, headlamp) 10 and a headlamp (light emitting device, lighting device, headlamp) 20 will be described as examples.
  • each form of the headlamps 10 and 20 demonstrated below is demonstrated as a light-emitting device part (light-emitting member) of a headlamp, the form which actualized this invention is not restricted to these forms, front The present invention can also be applied to a light emitting member of a lighting device other than a lighting lamp.
  • FIG. 1 is a half sectional view showing a schematic configuration of the headlamp 10.
  • a headlamp 10 includes a translucent substrate (thermally conductive substrate) 1, a light emitting part (light emitting body) 2, a diffusing part (diffusing member) 3, a parabolic reflector (reflecting mirror) 4, A substrate 5, an excitation light source unit (excitation light source) 6, screws 7L and 7R, and an optical member 8 are provided.
  • the translucent substrate 1 of the present embodiment is a flat member that is not bent, and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) that is excitation light.
  • the translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm ⁇ width of 10 mm ⁇ thickness of 0.5 mm. Note that the outer diameter of the translucent substrate 1 shown in FIG. 1 is larger than the outer diameter of the diffusing portion 3, but may be approximately the same as the outer diameter of the diffusing portion 3.
  • the light emitting unit 2 is arranged on the surface SUF2 side facing the surface SUF1 on the side on which the laser light of the translucent substrate 1 is incident, and can be thermally exchanged with the light emitting unit 2 (that is, heat energy can be transferred). Connected).
  • the translucent substrate 1 and the light emitting unit 2 are described as being bonded (adhered) using an adhesive, but the bonding method of the translucent substrate 1 and the light emitting unit 2 is described. Is not limited to adhesion, and may be, for example, fusion.
  • the translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that the light emitting unit 2 is fixed (held) by the surface SUF2 and the translucent substrate 1 is interposed therebetween.
  • the heat generated from the light emitting unit 2 can be radiated to the outside, the cooling efficiency of the light emitting unit 2 is improved.
  • the thermal conductivity of the translucent substrate 1 is preferably 20 W / mK (watts / meter ⁇ Kelvin) or more in order to efficiently release the heat of the light emitting part 2.
  • the translucent substrate 1 has a thermal conductivity about 20 times higher than that of the light emitting unit 2 (about 1 W / mK), and emits light by efficiently absorbing the heat generated in the light emitting unit 2. Part 2 can be cooled.
  • the laser light that excites the light emitting unit 2 is applied to the light emitting unit 2 and the diffusing unit 3 through the translucent substrate 1. That is, the laser light incident on the surface SUF ⁇ b> 1 of the translucent substrate 1 passes through the translucent substrate 1 and reaches the light emitting unit 2. Therefore, the translucent substrate 1 is preferably made of a material having excellent translucency.
  • the material of the light-transmitting substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above.
  • MgO magnesia
  • GaN gallium nitride
  • MgAl 2 O 4 spinel
  • a thermal conductivity of 20 W / mK or more can be realized.
  • the material of the translucent substrate 1 is not limited to the above materials, and may be glass (quartz), for example.
  • magnesia since magnesia has deliquescence, when selecting magnesia as the constituent material of the translucent substrate 1, it is preferable to fill the periphery of the translucent substrate 1 with dry air.
  • the translucent substrate 1 is stored in a housing (not shown) and filled with dry air and sealed, or inside a parabolic reflector 4 and an optical member 8 described later, or a half parabolic reflector (reflector). 4h, housed inside the heat conducting member 4p and the optical member 8, filled with dry air and sealed. Thereby, it can prevent that the translucent board
  • the thickness of the translucent substrate 1 shown in FIG. 1 is more preferably 0.2 mm or more and 5.0 mm or less.
  • the thickness of the translucent substrate 1 is 0.2 mm or more, it is possible to sufficiently dissipate heat from the light emitting unit 2 and to prevent deterioration of the light emitting unit 2.
  • the thickness of the translucent substrate 1 exceeds 5.0 mm, the rate at which the laser light irradiated toward the light emitting unit 2 is absorbed by the translucent substrate 1 increases, and the use of the laser light is increased. Efficiency is reduced.
  • the translucent substrate 1 may have a flat plate shape without bending, but may have a bent portion or a curved portion.
  • the portion to which the light emitting unit 2 is bonded is preferably flat (plate-shaped) from the viewpoint of adhesion stability.
  • a YAG: Ce phosphor (NYAG4454) manufactured by Intematix was used as the phosphor, but the type of the phosphor is not limited to this.
  • the YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -garnet phosphor activated with Ce.
  • the YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
  • the light emitting unit 2 is manufactured by dispersing the YAG: Ce phosphor in a low melting point glass.
  • the compounding ratio of the YAG: Ce phosphor and the low melting point glass is about 30: 100, but is not limited to such a ratio.
  • the light emitting unit 2 may be one obtained by pressing a fluorescent material.
  • the sealing material is not limited to the inorganic glass of the present embodiment, and may be a so-called organic-inorganic hybrid glass or a resin material such as a silicone resin.
  • the refractive index difference ⁇ n between the translucent substrate 1 and the light emitting part 2 is preferably 0.35 or less.
  • the light emitting portion 2 When a resin material such as a silicone resin is selected as the sealing material, the light emitting portion 2 has a refractive index of about 1.5 (lower limit), and the light emitting portion 2 was produced using 100% of the YAG: Ce phosphor. In this case, the refractive index of the light emitting unit 2 is about 2.0.
  • the refractive index is in the range of about 1.5-2. Therefore, assuming that the refractive indexes of the light emitting unit 2 and the light transmitting substrate 1 are both about 1.5 to 2.0, when one of the refractive indexes is 1.5, the refractive index difference ⁇ n. Is 0.35 (that is, the other refractive index is 1.85), the reflectance RE at the interface is 1%.
  • the reflectance RE is 0.92%.
  • the reflectance RE of the interface between the translucent substrate 1 and the light emitting unit 2 is 1% or less. can do.
  • the refractive index of the translucent substrate 1 is preferably 1.65 or more. As described above, assuming that the upper limit of the refractive index of the light emitting unit 2 is 2.0, if the refractive index of the translucent substrate 1 is 1.65 or more, the refractive index is 1.5 to 2.0. The refractive index difference ⁇ n ⁇ 0.35 can be satisfied with respect to the light emitting unit 2.
  • the irradiation efficiency of the laser light with respect to the light emission part 2 further improves.
  • white light or pseudo-white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching or mixing two colors satisfying a complementary color relationship. Based on the principle / relationship of this equal color or complementary color, for example, in the headlamp 10 of the present embodiment, a blue laser beam emitted from an excitation light source unit 6 described later and a YAG: Ce phosphor (yellow light emitting phosphor). (A mixed color of two colors satisfying the complementary color relationship) and a pseudo white color is realized.
  • the phosphor included in the light emitting unit 2 is not limited to one type of YAG: Ce phosphor (yellow light emitting phosphor) as in this embodiment, and may be a plurality of types.
  • the light emitting unit 2 includes a combination of a green light emitting phosphor and a red light emitting phosphor, which will be described later, white light can be realized by mixing with blue laser light.
  • the yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less.
  • the green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
  • yellow-emitting phosphor (Yellow-emitting phosphor) Specific examples of the yellow light emitting phosphor include the YAG: Ce phosphor of this embodiment and the Ca ⁇ -SiAlON: Eu phosphor doped with Eu 2+ .
  • the Ca ⁇ -SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
  • Green light emitting phosphor Specific examples of the green light emitting phosphor include various nitride-based or oxynitride-based phosphors. Since these nitride-based or oxynitride-based phosphors have excellent heat resistance and are stable materials with high light emission efficiency, the light emitting portion 2 having excellent heat resistance and stable with high light emission efficiency can be realized.
  • Examples of the oxynitride phosphor that emits green light include ⁇ -SiAlON: Eu phosphor doped with Eu 2+ and Ca ⁇ -SiAlON: Ce phosphor doped with Ce 3+ .
  • the ⁇ -SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm.
  • the Ca ⁇ -SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
  • alpha-sialon has the general formula Si 12- (m + n) Al (m + n) O n N 16-n (m + n ⁇ 12,0 ⁇ m, n ⁇ 11; m, n is an integer) from 28 atom represented by There are two voids in the unit structure, and various metals can enter and dissolve therein.
  • a phosphor is obtained by dissolving a rare earth element. When calcium (Ca) and europium (Eu) are dissolved, a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor is obtained.
  • the sialon phosphor can be excited by light from near ultraviolet to blue (350 nm or more and 460 nm or less), and is suitable for a phosphor for a white LED.
  • Red light emitting phosphor Specific examples of the red light-emitting phosphor include various nitride-based phosphors.
  • examples of the nitride-based phosphor include Eu 2+ doped CaAlSiN 3 : phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 phosphor (SCASN: Eu phosphor), and the like. It is done. By combining these nitride-based phosphors with the oxynitride phosphors described above, color rendering can be further improved.
  • CASN Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
  • red light emitting phosphors By using these red light emitting phosphors, white light with very good color rendering can be realized. Moreover, if it is a red light emission fluorescent substance, when the target object which irradiates the white light is red, the visibility of the target object can be improved. Since red, yellow, and blue are used as the background colors of traffic signs, it is effective to use a red light-emitting phosphor for the light emitting unit 2 provided in the headlamp 10 for visually recognizing traffic signs with a red background color. It is.
  • nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 : Examples include Ce-activated nitride phosphors such as Ce.
  • a nanoparticle phosphor will be described as an example of another phosphor.
  • Typical semiconductor materials that constitute the nanoparticle phosphor are II-VI group compounds such as ZnSe, ZnTe, CdSe, and CdTe, 4B group elements such as Si and Ge, and III-V group compounds such as GaAs and InP. is there.
  • a semiconductor nanoparticle refers to a particle having a diameter of about 1 to 10 nm made of a semiconductor material, and the number of atoms contained in one nanoparticle is 10 2 to 10 4 .
  • the quantum size effect absorbs and emits light having a wavelength different from that of a bulk semiconductor. For example, since it is an indirect transition type, Si that does not normally emit light can be emitted by forming nanoparticles.
  • Quantum size effect is a phenomenon in which the state of electrons in a material changes as particles become smaller, and light of shorter wavelengths is absorbed or emitted. In particular, it is often noticeable for particles having a diameter of 10 nm or less.
  • one of the characteristics of the nanoparticle phosphor is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the particle size is changed to a size on the order of nm, so that the emission color can be obtained by the quantum size effect. It is a point that can be changed.
  • InP emits red light when the particle size is about 3 to 4 nm [where the particle size was evaluated with a transmission electron microscope (TEM)].
  • the nanoparticle phosphor since the nanoparticle phosphor is semiconductor-based, it has a short fluorescence lifetime, and can emit the excitation light power quickly as fluorescence, and thus has a feature of high resistance to high-power excitation light. This is because the emission lifetime of the nanoparticle phosphor is about 10 ns (nanoseconds), which is five orders of magnitude shorter than that of a normal rare earth activated phosphor having a rare earth as the emission center.
  • the emission lifetime is short, absorption of excitation light and emission of the phosphor can be repeated quickly. As a result, high efficiency can be maintained even with strong laser light, and heat generation from the phosphor can be reduced.
  • the light emitting unit 2 can be further suppressed from being deteriorated (discolored or deformed) by heat. Thereby, when using the light emitting element with high light output as a light source, it can suppress more that the lifetime of the headlamp 10 of this embodiment and the headlamp 20 mentioned later becomes short.
  • deterioration of the light emission part 2 is mainly due to deterioration of the phosphor sealing material (for example, silicone resin) included in the light emission part 2.
  • the phosphor sealing material for example, silicone resin
  • the above-described sialon phosphor and nitride phosphor generate fluorescence with an efficiency of 60 to 80% when irradiated with laser light, but the rest is emitted as heat. It is considered that the sealing material deteriorates due to this heat.
  • a sealing material with high heat resistance is preferable as the sealing material.
  • a sealing material with high heat resistance glass etc. can be illustrated, for example.
  • Si nanoparticles As an example of the nanoparticle phosphor, semiconductor nanoparticles made of Si (hereinafter referred to as Si nanoparticles) can be listed.
  • Si nanoparticles have a particle size of about 1.9 nm and emit blue-violet to blue (peak wavelength around 420 nm) fluorescence. Further, it emits green fluorescence (peak wavelength is around 500 nm) when the particle diameter is around 2.5 nm. Furthermore, it emits red (peak wavelength is around 720 nm) fluorescence with a particle size of about 3.3 nm.
  • Si nanoparticles can be produced, for example, using chemical etching methods such as the following (1) to (4).
  • a silicon wafer or the like is pulverized to make Si a powder having a particle size of about 50 nm.
  • the powdered Si is put in a solvent (for example, pure water + methanol), and a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is further added.
  • HF hydrofluoric acid
  • HNO 3 nitric acid
  • (3) Apply ultrasonic vibration to the solution of (2). Thereby, Si in a powder state is etched. The etching time is controlled according to the particle size.
  • the solution after the etching in (3) is filtered with a filter (such as a PVDF membrane filter). Thereby, Si nanoparticles of a desired size can be obtained.
  • a filter such as a PVDF membrane filter
  • nanoparticle phosphors can be manufactured in the same manner.
  • the size of the light emitting unit 2 is 1.5 mm (vertical length a) ⁇ 4 mm (horizontal length b) ⁇ 0.5 mm (depth), and in this embodiment, the shape is a rectangular parallelepiped shape. It is.
  • the area of the irradiation surface (cross section) SUF4 of the light emitting unit 2 irradiated with the laser light is 6 mm 2 .
  • the light emission part 2 may not be a rectangular parallelepiped, but may be a cylindrical shape.
  • the light emitting unit 2 has a cylindrical shape whose bottom surface is a circle having a diameter of 1 cm.
  • the required thickness of the light emitting unit 2 varies according to the ratio of the phosphor and the sealing material in the light emitting unit 2. If the phosphor content in the light emitting unit 2 is increased, the efficiency of conversion of laser light to white light increases up to a certain content, so that the thickness of the light emitting unit 2 can be reduced. If the light emitting part 2 is made thin, the heat dissipation effect to the translucent substrate 1 is also increased. However, if the light emitting part 2 is made too thin, the laser light may not be converted into fluorescence but may be emitted to the outside. From the viewpoint of absorption, the thickness of the light emitting portion 2 is preferably at least 10 times the particle size of the phosphor.
  • the thickness of the light-emitting portion 2 when using the nanoparticle phosphor should be 0.01 ⁇ m or more, but considering the ease of the manufacturing process such as dispersion in the sealing material It is preferably 10 ⁇ m or more, that is, 0.01 mm or more.
  • the thickness of the light emitting part 2 when the above oxynitride phosphor is used as the phosphor contained in the light emitting part 2 is preferably 0.2 mm or more and 2 mm or less.
  • the lower limit of the thickness is not limited to this.
  • a diffusion unit (diffusion member) 3 having the same depth is provided without a gap.
  • the diffusing unit 3 preferably diffuses at least the laser beam irradiated to the outside of the irradiation surface SUF4 of the light emitting unit 2.
  • the laser light that has not hit the light emitting unit 2 is diffused and scattered by the diffusing unit 3, so that an eye safe can be realized. Further, the chromaticity variation of the headlamp 10 can be suppressed by the light diffusing action of the diffusing unit 3.
  • the outer diameter of the diffusion portion 3 is at least 5.53 mm in both length and width.
  • the point that the length of the irradiation surface SUF4 is different in length and width is ignored here.
  • the ratio of the diameter of the irradiated surface SUF4 to the diameter of the spot is preferably 1/2 or more and ⁇ (2/3) or less.
  • the shape of the spot of the laser beam and the shape of the irradiation surface SUF4 of the light emitting unit 2 are different from a perfect circle or a square, so that at least two different diameters such as a maximum diameter and a minimum diameter can be defined.
  • a maximum diameter and a minimum diameter can be defined.
  • the diameter in the direction in which the diameter is maximum is referred to as “the maximum diameter of the irradiation surface SUF4”, and the diameter in the direction in which the diameter is minimum is referred to as “the irradiation surface SUF4. This is called “minimum diameter”.
  • the diameter in the direction in which the diameter is maximum is referred to as the “spot maximum diameter”
  • the diameter in the direction in which the diameter is minimum is referred to as the “spot minimum diameter”.
  • the center of the spot of the laser beam substantially coincides with the center of the irradiation surface SUF4, and the longitudinal direction (direction in which the maximum diameter is taken) of the spot of the laser light and the longitudinal direction (direction in which the maximum diameter is taken) of the irradiation surface SUF4. ) And are consistent with each other.
  • the ratio of the maximum diameter of the irradiated surface SUF4 to the maximum diameter of the spot is preferably 1/2 or more and ⁇ (2/3) or less.
  • the ratio of the minimum diameter of the irradiated surface SUF4 to the minimum spot diameter is also preferably 1 ⁇ 2 or more and ⁇ (2/3) or less.
  • the shape of the irradiation surface SUF4 is a rectangle, the maximum diameter is 4 mm, and the minimum diameter is 1.5 mm.
  • the spot of the laser beam is a single circle (its diameter is R1). In this case, the laser beam spot may be considered that the maximum diameter and the minimum diameter coincide with each other.
  • the ratio of the maximum diameter (4 mm) of the irradiation surface SUF4 to the spot diameter R1 is preferably 1 ⁇ 2 or more and ⁇ (2/3) or less, the spot diameter R1 is 4.90 mm or more, It is preferable that it is 8.0 mm or less.
  • the spot diameter R1 is 1.84 mm. As mentioned above, it is preferable that it is 3.0 mm or less. However, it is assumed that the center of the laser beam spot substantially coincides with the center of the irradiation surface SUF4. From the above, it is preferable that the outer diameter of the diffusion portion 3 is 3.0 mm or more in length and 8.0 mm or more in width.
  • the center of the spot of the laser beam is substantially coincident with the center of the irradiation surface SUF4, and the longitudinal direction (direction in which the maximum diameter is taken) of the spot of the laser beam and the short direction (in which the minimum diameter is taken) of the irradiation surface SUF4. Let us consider a case where the (direction) matches each other.
  • the ratio of the minimum diameter of the irradiation surface SUF4 to the maximum diameter of the spot is 1/2 or more and ⁇ (2/3) or less. Further, the ratio of the maximum diameter of the irradiated surface SUF4 to the minimum spot diameter is preferably 1 ⁇ 2 or more and ⁇ (2/3) or less.
  • the center of the rectangle of the laser beam spot substantially coincides with the center of the rectangle on the irradiation surface SUF4 of the present embodiment.
  • the diameter of the laser beam spot in the longitudinal direction is not less than ⁇ (3/2) times and not more than 2 times the maximum diameter (4 mm in this case) of the irradiation surface SUF4, that is, 4.90 mm or more, 8 It is preferable that it is 0.0 mm or less.
  • the diameter of the laser beam spot in the short direction is ⁇ (3/2) times or more and 2 times or less of the minimum diameter (here, 1.5 mm) of the irradiated surface SUF4, that is, 1.84 mm or more, 3 It is preferable that it is 0.0 mm or less. From the above, it can be estimated that the outer diameter of the diffusion part 3 is preferably 3.0 mm or more in length and 8.0 mm or more in width.
  • the laser beam spot shape has a plurality of circles in the lateral direction (irradiation) with respect to the rectangular parallelepiped light emitting section 2 (irradiation surface SUF4 is rectangular).
  • irradiation surface SUF4 is rectangular.
  • at least the diameter of each circle of the laser beam spot is ⁇ (3/2) times or more and 2 times or less of the minimum diameter (1.5 mm here) of the irradiation surface SUF4, that is, 1.84 mm or more, It is preferable that it is 3.0 mm or less.
  • the center of each circle of the spot of the laser beam is located on or near the symmetry axis in the longitudinal direction of the rectangle on the irradiation surface SUF4.
  • diffusion part 3 is 3.0 mm or more.
  • the diffusion part 3 is obtained by mixing about 10 to 30% by weight of fine powder (about 10 nm to 5 ⁇ m) of aerosil and Al 2 O 3 in the low melting point glass.
  • the light emitting unit 2 and the diffusing unit 3 are bonded to the translucent substrate 1.
  • substrate 1 is not restricted to adhesion
  • diffuse at least the laser beam irradiated to the outside of the irradiation surface SUF4 means that the laser beam irradiated to the outside of the irradiation surface SUF is diffused and toward all or part of the irradiation surface SUF4. It means that the case of diffusing irradiated laser light is also included.
  • the translucent substrate 1, the light emitting unit 2 and the diffusing unit satisfying the above-mentioned condition of “at least diffusing the laser beam irradiated to the outside of the irradiation surface SUF4” 3 will be described.
  • 2 (a) to 2 (e) are cross-sectional views showing variations of the arrangement method of the translucent substrate 1, the light emitting part 2, and the diffusing part 3 with respect to the headlamp.
  • the light emitting portion 2 is bonded to the vicinity of the center on the translucent substrate 1.
  • the diffusion part (diffusion member) 3a surrounds the periphery of the light emitting part 2 from the side.
  • the diffusion portion 3 a does not exist near the upper center of the light emitting portion 2. That is, an opening is formed in the vicinity of the center of the diffusion portion 3a above the light emitting portion 2.
  • the diffusing portion 3a does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2.
  • a diffusion part (diffusion member) 3 b is bonded on the light-transmitting substrate 1.
  • the vicinity of the center of the diffusion portion 3b is an opening.
  • the light emission part 2 is arrange
  • the diffusion unit 3b exists on the optical path of the laser light emitted from the light guide member 9.
  • the laser light irradiated to the outside of the irradiation surface SUF4 is not only scattered by the diffusion portion 3b, but also the laser light irradiated toward a part (outer edge) of the irradiation surface SUF4 is diffused by the diffusion portion 3b. It is scattered by hitting.
  • the translucent substrate 1, the diffusion part (diffusion member) 3c, and the light emitting part 2 are laminated in this order.
  • the light emission part 2 is joined to the center vicinity of the upper surface of the spreading
  • the diffusing portion 3c exists on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, not only the laser beam irradiated outside the irradiation surface SUF4 is scattered by the diffusion unit 3, but also the laser beam irradiated toward the entire irradiation surface SUF4 hits the diffusion unit 3c and is scattered. .
  • the heat radiation effect of the heat generated in the light-emitting portion 2 by the light-transmitting substrate 1 is as follows. It becomes difficult to obtain.
  • the form in which the translucent substrate 1 and the light emitting part 2 are not joined like these forms is also included in the category of the present invention.
  • the translucent substrate 1, the light emitting part 2, and the diffusion part (diffusion member) 3d are laminated in this order.
  • the light emission part 2 is joined to the center vicinity of the lower surface of the spreading
  • the diffusing portion 3d does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, the laser light irradiated to the outside of the irradiation surface SUF4 is scattered by the diffusion unit 3d, and the laser light irradiated toward all or part of the irradiation surface SUF4 is irradiated to the light emitting unit 2. . In addition, it is thought that the excitation light which permeate
  • the light emitting unit 2 is bonded on the translucent substrate 1. Moreover, the side and the upper part of the light emitting part 2 are covered with a diffusion part (diffusion member) 3e.
  • the diffusing portion 3e does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, the laser light irradiated to the outside of the irradiation surface SUF4 is scattered by the diffusion unit 3e, and the laser light irradiated toward all or part of the irradiation surface SUF4 is irradiated to the light emitting unit 2. . In addition, it is thought that the excitation light which permeate
  • the parabolic reflector 4 has a light reflecting concave surface SUF3 that reflects the fluorescent light from the light emitting unit 2 or the scattered light scattered by the diffusing unit 3, and is scattered by the fluorescent light or the diffusing unit 3 generated from the light emitting unit 2.
  • the scattered light is reflected by the light reflecting concave surface SUF3 to form a light bundle that travels within a predetermined solid angle.
  • the shape of the light reflecting concave surface SUF3 of the present embodiment employs a so-called rotating paraboloid, as shown in FIG. 1, the cross-sectional shape cut by a plane including the optical axis (rotating axis) is a parabola ( Parabola).
  • a rectangular fitting hole is formed at the bottom of the paraboloid of the light reflecting concave surface SUF3, and the translucent substrate 1 is fitted into the fitting hole.
  • the material of the parabolic reflector 4 is not particularly limited, but considering the reflectance, it is preferable to produce a reflector using copper or SUS (stainless steel) and then apply silver plating and chromate coating.
  • the parabolic reflector 4 may be manufactured using aluminum and an antioxidant film may be provided on the surface, or a metal thin film may be formed on the surface of the resinous parabolic reflector 4 body.
  • the substrate 5 is a plate-like member formed with an insertion port through which the emission end 9 b side of the light guide member 9 in the excitation light source unit 6 is inserted, and the parabolic reflector 4 is attached to the substrate 5. It is fixed by screws 7L and 7R.
  • the center of the emission end portion 9b of the light guide member 9 and the center of the irradiation surface SUF4 of the light emitting unit 2 are substantially coincident. Therefore, the laser light emitted from the light guide member 9 enters the surface SUF1 of the translucent substrate 1, passes through the translucent substrate 1, and is bonded to the surface SUF2 facing the surface SUF1. 2 or the diffusion part 3 is reached.
  • the laser light is transmitted through the inside of the light emitting unit 2, and the transmitted light is scattered by the phosphor particles contained in the light emitting unit 2, so that the transmitted light is diffused in the parabolic reflector 4. Further, part of the laser light transmitted through the translucent substrate 1 is scattered by the diffusion unit 3 and becomes scattered light.
  • substrate 5 is not ask
  • the excitation light source unit 6 includes a total of three LD chips (excitation light sources) 11 and a light guide member 9 housed in a rectangular parallelepiped housing (housing).
  • Each LD chip 11 of this embodiment is mounted on a metal package (stem) having 1.6 W (current value: 1.2 A, voltage value: 4.7 V), oscillation wavelength: 450 nm, and ⁇ 9 mm.
  • the oscillation wavelength of the LD chip 11 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm.
  • the output of the excitation light source unit 6 as a whole is about 4.8 W.
  • the total luminous flux of a total of three LD chips 11 becomes a luminous flux of the entire light source by simple calculation, so that the luminous flux of the entire light source is about four times larger than when only a single LD chip 11 is used. can do.
  • the performance of the LD chip 11 is assumed to be equal.
  • the number of LD chips 11 is three.
  • the number of LD chips 11 is not limited to this, and may be one, two, or four or more.
  • the excitation light source may be a 1-chip 1-strip type semiconductor laser chip having a single light-emitting point, such as the LD chip 11 of the present embodiment, or a single-chip, multi-stripe having a plurality of light-emitting points. It may be a type of semiconductor laser chip.
  • the excitation light source may generate coherent excitation light (laser light) like the LD chip 11 of the present embodiment, or incoherent like the LED chip (excitation light source) 130 described later. It may generate excitation light (EL light; Electro-luminescence light).
  • laser light coherent excitation light
  • EL light Electro-luminescence light
  • the light source may be composed of only LD or LED, or LD and LED may be mixed.
  • the laser light generated from the LD chip 11 is blue light (oscillation wavelength: 450 nm) that protrudes from the irradiation surface SUF4 of the light emitting unit 2 (or does not hit the irradiation surface SUF4) and enters the diffusion unit 3. This is to use the scattered light scattered as illumination light.
  • the light guide member 9 has a surrounding structure surrounded by a light-reflecting side surface that reflects each laser beam incident from an incident end (the one closer to the excitation light source) 9a, and an emission end (light emission). 9b is smaller than the cross-sectional area of the incident end 9a, and each laser beam incident from the incident end 9a is guided to the emission end 9b by the surrounding structure of the light reflecting side surface. Shine.
  • a fitting insertion opening is provided on the side surface of the excitation light source unit 6 close to the light emitting unit 2, and the emission end 9 b side of the light guide member 9 is directed from the inside to the outside of the excitation light source unit 6. It is inserted and the connection part with the said side surface around an insertion opening is fixed with an adhesive agent etc.
  • the light guide member 9 of the present embodiment has a cylindrical shape with a quadrangular pyramid shape as a whole, and the cross section (opening) of the emission end 9b is a rectangle of 1 mm ⁇ 3 mm, and the incident end 9a
  • the cross section (opening) is a 10 mm ⁇ 30 mm rectangle. That is, the cross-sectional area of the exit end 9b is smaller than the cross-sectional area of the entrance end 9a.
  • the shape of the light guide member is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed.
  • the distance from the incident end 9a to the exit end 9b is 25 mm.
  • each laser beam incident from the incident end 9a is guided to the emission end 9b having a smaller cross-sectional area than the incident end 9a by the surrounding structure.
  • Each laser beam can be condensed on the emission end 9b.
  • the light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
  • the light emitting unit 2 to be downsized can be downsized.
  • the surrounding structure is configured to surround all the optical paths of the respective laser beams generated from the respective LD chips 11.
  • each laser beam is reflected only once on the surrounding structure and guided to the emission end portion 9b.
  • 1 laser beam is reflected on the surrounding structure. The light is guided by any one of the optical paths in the case where the light is guided to the emission end portion 9b without being reflected.
  • the light guide member 9 has been described as a configuration (cylindrical configuration) having a surrounding structure in which the entrance end portion 9a and the exit end portion 9b each have an opening.
  • the light guide member 9 may be made of a material having a refractive index higher than 1 and may have a structure without a surrounding structure (a structure that is not cylindrical).
  • refractive index 1
  • the laser light can be guided in the light guide member 9 only by selecting the material of the light guide member 9, so that the light guide member 9 can be easily manufactured.
  • BK (borosilicate crown) 7 can be exemplified, and its refractive index is 1.52.
  • FIG. 5A is a half sectional view showing a schematic configuration of a headlamp 30 (transmission type) of a comparative example.
  • FIG. 5B is a distribution diagram showing the relationship between the distance (r) from the center (O) of the laser beam spot and the intensity of the laser beam.
  • the headlamp 30 shown in FIG. 5A is different from the headlamp 10 in that the light guide member 9 of the headlamp 10 is replaced with a light guide member 9 '.
  • the intensity distribution of the laser light generated from the semiconductor laser has a predetermined spread and is almost Gaussian. That is, the intensity of the bottom part of the laser beam spot decreases rapidly as the distance r from the maximum intensity part (near the center O) increases.
  • Such a situation is also substantially applicable to the excitation light source unit 6 that guides each laser beam emitted from the plurality of LD chips 11 by the light guide member 9 (or the light guide member 9 ').
  • the light emitting unit 2 is arranged on the optical path of the laser light emitted from the excitation light source unit 6, and the laser light generated from the excitation light source unit 6 is emitted from the light emitting unit 2.
  • the area (or spot diameter R1 ′) of the laser light spot when irradiated toward the irradiation surface SUF4 is the area of the light emitting section 2 when the light emitting section 2 is viewed from the side irradiated with the laser light ( If the area of the irradiation surface SUF4 is equal to or less than the vertical length a or the horizontal length b), a large unevenness may occur in the intensity distribution of the laser light on the irradiation surface SUF4 of the light emitting unit 2. If it does so, the intensity
  • the light emitting unit 2 is arranged on the optical path of the excitation light source unit 6, and the spot area (or spot diameter R1 ′) of the laser light is set to the light emitting unit 2 from the side irradiated with the laser light.
  • the area of the light emitting unit 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b) equal to or smaller than the optical system (particularly the light guide) included in the headlamp 30.
  • High work accuracy is required for the shape and size of the emission end 9b ′ of the optical member 9 ′, the distance between the emission end 9b ′ and the irradiation surface SUF4 of the light emitting unit 2, and the like. For this reason, there also exists a problem that the freedom degree of design of the headlamp 30 will become low.
  • the inventor of the present invention has advanced the development of the headlamp 10 of the present embodiment shown in FIG. 1 (or the headlamp 20 shown in FIG. 4 described later). That is, the headlamp 10 (or the headlamp 20) includes the excitation light source unit 6 that emits laser light, and the light emitting unit 2 that emits fluorescence when irradiated with the laser light emitted from the excitation light source unit 6.
  • the area (or the diameter R1) of the spot when the laser beam is irradiated toward the surface is the area of the light emitting unit 2 (the area of the irradiation surface SUF4) when the light emitting unit 2 is viewed from the side irradiated with the laser beam.
  • the headlamp 10 (or the headlamp 20) which is larger than the vertical length a or the horizontal length b).
  • the characteristic configuration according to the embodiment of the present invention is that, in another viewpoint, the region exceeding the size of the light emitting unit 2 (irradiation surface SUF4) is irradiated with laser light.
  • the inventor of the present invention thought that the degree of freedom in designing the headlamp 10 (or the headlamp 20) can be increased while the deterioration of the light emitting unit 2 is suppressed by the configuration as described above.
  • the spot area (or the spot diameter R1) when the laser beam is irradiated toward the light emitting unit 2 is the light emitting unit 2 from the side irradiated with the laser beam. Is larger than the area of the light emitting unit 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b). For this reason, compared with the case where the area (or spot diameter R1) of the laser light spot is set to be equal to or less than the area of the light emitting portion 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b).
  • the area (or spot diameter R1) of the spot of the laser beam is set to the area of the light emitting unit 2 when the light emitting unit 2 is viewed from the side irradiated with the laser beam (the area of the irradiation surface SUF4, Alternatively, since it is only necessary to make it larger than the vertical length a or the horizontal length b), the spot area (or spot diameter R1) of the laser beam is set to the area of the light emitting section 2 (the area of the irradiation surface SUF4, Or, compared with the case where the vertical length a or the horizontal length b) or less, the optical system constituting the headlamps 10 and 20 (particularly the shape and size of the emission end 9b of the light guide member 9, High working accuracy is not required for the distance between the emission end portion 9b and the irradiation surface SUF4 of the light emitting unit 2). This also increases the degree of freedom in designing the headlamp 10 (or the headlamp 20).
  • the headlamp 10 (or the headlamp 20) it is possible to increase the degree of freedom in designing the headlamp 10 (or the headlamp 20) while suppressing the deterioration of the light emitting unit 2.
  • the ratio of the area of the irradiation surface SUF4 of the light emitting unit 2 to the area of the laser beam spot is 1 ⁇ 4 or more and / or less. This is because if the above ratio is smaller than 1 ⁇ 4, the irradiation efficiency of the laser light on the light emitting portion 2 becomes too low.
  • the area of the irradiation surface SUF4 (or irradiation surface SUF4 ′) is 6 mm 2, it is a plane including the irradiation surface SUF4 (or irradiation surface SUF4 ′).
  • the light intensity distribution C as shown in FIG. 5B 50% or less of the integrated intensity is leaked light (light that does not hit the irradiation surface SUF4 of the light emitting part 2 but hits the diffusing part 3). It is preferable to become.
  • the optical member 8 is provided in the opening of the light reflecting concave surface SUF3 of the parabolic reflector 4, and seals the headlamp 10.
  • the fluorescence generated from the light emitting unit 2, the scattered light scattered by the diffusing unit 3, or the fluorescent or scattered light reflected by the parabolic reflector 4 is emitted to the front of the headlamp 10 through the optical member 8. .
  • the optical member 8 has a convex lens shape and a lens function, but may have a concave lens shape as well as a convex lens shape.
  • the optical member 8 does not necessarily have a structure having a lens function.
  • the coherent laser light transmitted through the light emitting unit 2 excites the phosphor contained in the light emitting unit 2 to be converted into fluorescence, or is scattered by the phosphor, and the emission point size is sufficiently expanded.
  • the emission point size is not enlarged for some reason. Even in such a case, by blocking the laser beam by the optical member 8, it is possible to prevent the laser beam having a small emission point size and dangerous to the human eye from leaking to the outside.
  • FIG. 3A is a circuit diagram of an LED lamp (excitation light source) 13 which is an example of an excitation light source
  • FIG. 3B is a front view showing the appearance of the LED lamp 13
  • FIG. 3 is a circuit diagram of an LD chip 11 which is another example of an excitation light source
  • FIG. 3B is a perspective view showing an appearance of the LD chip 11.
  • the LED lamp 13 has a configuration in which an LED chip (excitation light source) 130 connected to the anode 14 and the cathode 15 is sealed with an epoxy resin cap 16.
  • the LED chip 130 has a pn junction between a p-type semiconductor 131 and an n-type semiconductor 132, the anode 14 is connected to the p-type electrode 133, and the cathode 15 is connected to the n-type electrode 134. Is done.
  • the LD chip 11 is connected to the power source E via the resistor R.
  • a circuit is configured, and when power is supplied from the power source E to the LED chip 130, incoherent excitation light is generated near the pn junction.
  • the material of the LED chip 130 is GaP, AlGaAs, GaAsP, etc., whose emission color is red, such as GaAsP, whose emission color is orange, GaAsP, GaP, whose emission color is yellow, GaP, whose emission color is green, and emission color.
  • Compound semiconductors such as SiC and GaN that are blue can be exemplified.
  • the LED chip 130 operates at a low voltage of about 2V to 4V, is small and lightweight, has a fast response speed, has a long life, and is low in cost.
  • the LD chip 11 has a configuration in which a cathode electrode 19, a substrate 18, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 17 are laminated in this order. .
  • the substrate 18 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet excitation light for exciting the phosphor as in the present application.
  • a group IV semiconductor such as Si, Ge, and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN are represented by III.
  • ZnTe ZnTe
  • ZeSe II-VI group compound
  • II-VI group compound such as ZnS and ZnO semiconductor
  • ZnO Al 2 O 3, SiO 2, TiO 2, CrO 2 and CeO 2 or the like oxide insulator
  • SiN Any material of a nitride insulator such as is used.
  • the anode electrode 17 is for injecting current into the active layer 111 through the clad layer 112.
  • the cathode electrode 19 is for injecting current into the active layer 111 from the lower part of the substrate 18 through the clad layer 113.
  • the current is injected by applying a forward bias to the anode electrode 17 and the cathode electrode 19.
  • the active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
  • a mixed crystal semiconductor made of AlInGaN is used as a material for the active layer 111 and the cladding layer to obtain blue to ultraviolet excitation light.
  • a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used.
  • it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
  • the active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
  • the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission, and the front side cleaved surface 114 and the back side cleaved surface 115. Plays the role of a mirror.
  • the active layer 111 may form a multilayer quantum well structure.
  • a reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different.
  • the cladding layer 113 and the cladding layer 112 are made of n-type and p-type GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN, III-V group compound semiconductors, and ZnTe, ZeSe. , ZnS, ZnO, or any other II-VI compound semiconductor, and by applying a forward bias to the anode electrode 17 and the cathode electrode 19, current can be injected into the active layer 111. It has become.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the film can be formed using a general film forming method such as a laser ablation method or a sputtering method.
  • the film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
  • the laser light oscillated from the LD chip 11 is irradiated onto the phosphor included in the light emitting unit 2, whereby the electrons existing in the phosphor are excited from the low energy state to the high energy state (excited state).
  • the phosphors emit light when the electrons excited to the high energy state transition to the low energy state.
  • White light can be composed of a mixture of three colors that satisfy the principle of equal colors, or a mixture of two colors that satisfy the relationship of complementary colors, and based on this principle and relationship, the color and fluorescence of laser light oscillated from a semiconductor laser.
  • White light can be generated by combining the color of light emitted by the body as described above.
  • FIG. 4 is a half sectional view showing a schematic configuration of the headlamp 20.
  • the headlamp 20 includes a reflective member 1 ′ in place of the above-described translucent substrate 1.
  • a reflective member 1 ′ in place of the above-described translucent substrate 1.
  • a half parabolic reflector (reflecting mirror) 4h, a heat conducting member (reflecting member) 4p, and the optical member 8 described above are provided.
  • the reflecting member 1 ′ Since the configuration other than the configuration described in the present embodiment is substantially the same as described above, here, the reflecting member 1 ′, the half parabolic reflector 4h, the heat conducting member 4p, and the excitation light source unit 6 are described. Only explained.
  • the reflecting member 1 ′ is a member that reflects the laser light that passes through the light emitting unit 2, and the constituent material is preferably a metal.
  • the reflecting member 1 ′ is bonded to the side facing the surface SUF 4 ′ irradiated with the laser light of the light emitting unit 2. Thereby, the light emission part 2 is hold
  • the half parabolic reflector 4h is the same as the parabolic reflector 4 described above except that the parabolic reflector 4 is cut in half by a plane including the optical axis (rotation axis). is there.
  • the constituent material of the heat conducting member 4p may be any material as long as it has thermal conductivity that diffuses heat generated in the reflecting member 1 ', but metal or ceramic is preferable.
  • the laser beam emitted from the emission end portion 9b of the light guide member 9 in the excitation light source unit 6 is a window portion (or opening) provided on the outer surface of the half parabolic reflector 4h. ) Is directed toward the irradiation surface SUF4 ′ side of the light emitting section 2 (from the upper left side to the lower right side).
  • the laser downlight 200 is an illumination device installed on the ceiling of a structure such as a house or a vehicle, and uses fluorescence generated by irradiating the light emitting unit 2 with laser light emitted from the LD chip 11 as illumination light. It is.
  • an illumination device having the same configuration as the laser downlight 200 may be installed on the side wall or floor of the structure, and the installation location of the illumination device is not particularly limited.
  • FIG. 6 is a schematic view showing the external appearance of the light emitting unit 210 and the conventional LED downlight 300.
  • FIG. 7 is a cross-sectional view of the ceiling where the laser downlight 200 is installed.
  • FIG. 8 is a cross-sectional view of the laser downlight 200.
  • the laser downlight 200 (light emitting unit 210) has only a small hole 402 through which the optical fiber bundle (light guide member) 215 is passed through the top plate 400, and the light emitting unit 210 is thin and lightweight. Utilizing the features, it is affixed to the top 400 using a strong adhesive tape or the like. In this case, there are advantages that restrictions on installation of the laser downlight 200 are reduced, and that construction costs can be significantly reduced. In addition, if the light emission part 2 is a structure which can move, the light emission unit 210 may be embed
  • the laser downlight 200 includes a light emitting unit 210 that emits illumination light and an excitation light source unit (excitation light source) 6 a that supplies laser light to the light emitting unit 210 via an optical fiber bundle 215.
  • the excitation light source unit 6a is not installed on the ceiling, but is installed at a position where the user can easily touch it (for example, a side wall of a house). The position of the excitation light source unit 6 a can be freely determined in this way because the excitation light source unit 6 a and the light emitting unit 210 are connected by the optical fiber bundle 215.
  • the optical fiber bundle 215 is disposed in a gap between the top plate 400 and the heat insulating material 401.
  • the light emitting unit 210 includes a light transmitting substrate 1, a light emitting unit 2, a diffusing unit 3, a support member 61, a support member driving unit 62, a housing 211, a light transmitting plate 213, an optical fiber bundle 215, and a ferrule. 217.
  • the light emitting unit 2 has a cylindrical shape with a bottom surface having a diameter of 1 cm.
  • the thickness of the light emission part 2 and a constituent material, description is abbreviate
  • the support member 61 supports the translucent substrate 1 including the columnar light emitting unit 2 having a circular bottom surface with a diameter of 1 cm.
  • the translucent substrate 1 is coupled with the driving of the support member driving unit 62. It is movable in the direction of the optical axis of the laser beam. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of each laser beam emitted from the three emission end portions 215a of the optical fiber bundle 215 increases (or decreases) in proportion to the distance from the emission end portion 215a, the spot of each laser beam. The size of can be changed.
  • the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62.
  • the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed.
  • the driving range of the support member 61 is such that the ratio of the minimum diameter (here, 1 cm) of the irradiation surface SUF4 to the spot diameter R1 of each laser beam emitted from the three emission end portions 215a is 1/2.
  • the driving range of the support member 61 is such that the spot diameter R1 (diameter) of each laser beam on the plane including the irradiation surface SUF4 of the light emitting unit 2 takes a value of 1.24 cm or more and 2.00 cm or less. It is preferable to set the range.
  • the material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into a case 211 (recessed portion 212) to be described later due to the movement of the support member 61, the light transmissive property is the same as that of the light transmissive substrate 1. It is preferable that the material has Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
  • the support member 61 is described as moving in the optical axis direction of the laser beam. However, if the spot size of the laser beam can be freely changed, the support member 61 is not necessarily in the optical axis direction. There is no need to move it.
  • the support member drive unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61.
  • the gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61.
  • One gear may be provided for the support member 61 or a plurality of combinations may be included.
  • the stepping motor should just be provided so that the rotation can be propagated to a gear.
  • the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
  • the gear of the support member driving unit 62 is brought into contact with the surface of the translucent substrate 1 perpendicular to the optical axis of the laser beam. You may let them. In this case, a groove is provided on the surface so as to mesh with the gear, and it is not necessary to provide the support member 61.
  • the support member driving unit 62 changes the irradiation light amount of the laser light to the light emitting unit 2 by changing the distance between the light emitting unit 2 and the emission end 215a of the optical fiber bundle 215 via the support member 61.
  • the support member drive unit 62 changes the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the LD chip 11 (hereinafter referred to as conversion ratio).
  • conversion ratio the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the LD chip 11
  • the ratio of fluorescence to illumination light changes, so that the color temperature of the illumination light can be changed.
  • a recess 212 is formed in the housing 211.
  • a metal thin film is formed on the surface of the recess 212, and the recess 212 functions as a reflecting mirror.
  • the position of the light emitting unit 2 is changed by the driving mechanism described above to change the size of each laser beam spot emitted from the three emission end portions 215a of the optical fiber bundle 215.
  • diffusion part 3 is arrange
  • the position of the light emitting unit 2 is changed by the support member driving unit 62 moving the translucent substrate 1 provided with the light emitting unit 2 in the optical axis direction of the laser light via the support member 61.
  • the housing 211 is formed with a storage portion 218 in which the support member 61 can be stored.
  • the position of the light emitting unit 2 is changed and the size of the laser light irradiation region 79 is changed.
  • diffusion part 3 is arrange
  • Embodiment 11 which will be described later, for example, as shown in FIGS. 36A to 36C, the position of the light emitting unit 2 is changed to change the size of the laser light irradiation region 79.
  • substrate 1 provided with the light emission part 2 is arrange
  • a small hole 219 through which the optical fiber bundle 215 is passed is formed in the housing 211, and the optical fiber bundle 215 extends to the vicinity of the light emitting unit 2 through the hole 219.
  • the laser light emitted from the LD chip 11 is applied to the light emitting unit 2 via the optical fiber bundle 215.
  • the exit end 215 a of the optical fiber bundle 215 is held by a ferrule 217.
  • the optical fiber bundle 215 and the ferrule 217 will be described later.
  • the translucent plate 213 is a transparent or translucent plate disposed so as to close the opening of the recess 212, and the fluorescence of the light emitting unit 2 is emitted as illumination light through the translucent plate 213.
  • the translucent plate 213 is preferably formed of a material that blocks the laser light from the LD chip 11 and transmits incoherent light generated by converting the laser light in the light emitting section 2.
  • the coherent laser light is converted into incoherent light by the light emitting unit 2.
  • the light emitting unit 2 there may be a case where a part of the laser light is not converted into incoherent light for some reason. Even in such a case, it is possible to prevent the laser light from leaking to the outside by blocking the laser light by the translucent plate 213.
  • the translucent plate 213 may be removable from the housing 211 or may be omitted.
  • the light emitting unit 210 has a circular outer edge, but the shape of the light emitting unit 210 (more precisely, the shape of the housing 211) is not particularly limited.
  • the excitation light source unit 6 a includes three LD chips 11, an optical fiber bundle 215, and three aspheric lenses 216.
  • An incident end 215 b which is one end of the optical fiber bundle 215, is connected to the excitation light source unit 6 a, and the laser light oscillated from the LD chip 11 is incident on the incident end of the optical fiber bundle 215 via the aspherical lens 216. It is incident on the portion 215b.
  • the aspheric lens 216 is a lens for causing the laser light (excitation light) oscillated from the LD chip 11 to enter the incident end 215 b that is one end of the optical fiber bundle 215.
  • the aspheric lens 216 FLKN1 405 manufactured by Alps Electric can be used.
  • the shape and material of the aspherical lens 216 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 216 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
  • three LD chips 11 and three aspheric lenses 216 are provided inside the excitation light source unit 6 a, and a bundle of optical fibers extending from each aspheric lens 216 is guided to one light emitting unit 210.
  • one set of light sources including three LD chips 11 and three aspherical lenses 216 functions as a light source for one light emitting unit 210.
  • a bundle of optical fibers respectively extending from the light emitting units 210 may be guided to one excitation light source unit 6a.
  • one excitation light source unit 6a stores a plurality of the above-mentioned one set of light sources, and the excitation light source unit 6a functions as a centralized power supply box.
  • the optical fiber bundle 215 is a light guide member that guides the laser light oscillated by the LD chip 11 to the light emitting unit 2 and is a bundle of a plurality of optical fibers.
  • the optical fiber bundle 215 includes an optical fiber having an incident end 215b that receives laser light emitted from the LD chip 11 and an output end 215a that emits laser light incident from these incident ends.
  • FIG. 9 is a diagram illustrating a positional relationship between the light emitting portion 215a and the light emitting portion 2 when the distance between the light emitting portions 2 and the plurality of light emitting end portions 215a of the optical fiber bundle 215 is the shortest.
  • the plurality of emission end portions 215a emit laser beams to different regions on the laser beam irradiation surface (light receiving surface) 201 of the light emitting unit 2.
  • the translucent substrate 1 and the diffusion part 3 are not shown.
  • the optical fiber constituting the optical fiber bundle 215 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core.
  • the core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light
  • the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core.
  • the optical fiber constituting the optical fiber bundle 215 is made of quartz having a core diameter of 200 ⁇ m, a cladding diameter of 240 ⁇ m, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber are the same as those described above.
  • the cross section perpendicular to the major axis direction of the optical fiber may be rectangular.
  • the ferrule 217 has a plurality of emission end portions 215a of the optical fiber bundle 215 with respect to the translucent substrate 1 (the laser light irradiation surface 201 of the light emitting portion 2 and the light receiving surface of the diffusion portion 3). Hold in a predetermined pattern.
  • the ferrule 217 may have holes for inserting the emission end portion 215a formed in a predetermined pattern, and can be separated into an upper portion and a lower portion, and is formed on the upper and lower joint surfaces, respectively.
  • the exit end portion 215a may be sandwiched between grooves.
  • the ferrule 217 only needs to be fixed to the light emitting unit 210 by a rod-like or cylindrical member extending from the casing 211.
  • the material of the ferrule 217 is not particularly limited, and is stainless steel, for example.
  • the conventional LED downlight 300 includes a plurality of light transmitting plates 301, and illumination light is emitted from each light transmitting plate 301. That is, the LED downlight 300 has a plurality of light emitting points.
  • the LED downlight 300 has a plurality of light emitting points because the light flux of light emitted from each light emitting point is relatively small. Therefore, if a plurality of light emitting points are not provided, light having a sufficient light flux as illumination light is provided. This is because it cannot be obtained.
  • the laser downlight 200 is an illumination device with a high luminous flux, it may have one light emitting point. Therefore, it is possible to obtain an effect that the shadow caused by the illumination light is clearly displayed. Moreover, the color rendering property of illumination light can be improved by making the phosphor of the light emitting section 2 a high color rendering phosphor (for example, a combination of several kinds of oxynitride phosphors or nitride phosphors).
  • FIG. 10 is a cross-sectional view of the ceiling where the LED downlight 300 is installed.
  • a casing 302 that houses an LED chip, a power source, and a cooling unit is embedded in the top plate 400.
  • the housing 302 is relatively large, and a recess along the shape of the housing 302 is formed in a portion of the heat insulating material 401 where the housing 302 is disposed.
  • a power line 303 extends from the housing 302, and the power line 303 is connected to an outlet (not shown).
  • Such a configuration causes the following problems. First, since there is a light source (LED chip) and a power source that are heat sources between the top plate 400 and the heat insulating material 401, the use of the LED downlight 300 raises the ceiling temperature, and the cooling efficiency of the room. Problem arises.
  • LED chip light source
  • power source that are heat sources between the top plate 400 and the heat insulating material 401
  • the LED downlight 300 requires a power source and a cooling unit for each light source, resulting in a problem that the total cost increases.
  • the housing 302 is relatively large, there is a problem that it is often difficult to arrange the LED downlight 300 in the gap between the top 400 and the heat insulating material 401.
  • the light emitting unit 210 does not include a large heat source, the cooling efficiency of the room is not reduced. As a result, an increase in room cooling costs can be avoided.
  • the laser downlight 200 can be made small and thin. As a result, the space restriction for installing the laser downlight 200 is reduced, and installation in an existing house is facilitated.
  • the laser downlight 200 is small and thin, as described above, the light emitting unit 210 can be installed on the surface of the top plate 400, and the space on the back side of the top plate is hardly required. It is possible to make the restrictions on installation smaller than 300 and to greatly reduce the construction cost.
  • FIG. 11 is a diagram for comparing the specifications of the laser downlight 200 and the LED downlight 300. As shown in the figure, in the laser downlight 200, in one example, the volume is reduced by 94% and the mass is reduced by 86% compared to the LED downlight 300.
  • the excitation light source unit 6a can be installed at a place (height) that can be easily reached by the user, even if the LD chip 11 breaks down, the LD chip 11 can be easily replaced. Further, by guiding the optical fiber bundle 215 extending from the plurality of light emitting units 210 to one excitation light source unit 6a, the plurality of LD chips 11 can be managed collectively. Therefore, even when a plurality of LD chips 11 are replaced, the replacement can be easily performed.
  • the LED downlight 300 is a type using a high color rendering phosphor
  • a light flux of about 500 lm (lumen) can be emitted with a power consumption of 10 W, but in order to realize the light of the same brightness with the laser downlight 200.
  • the laser downlight 200 includes the excitation light source unit 6a including at least one LD chip 11 that emits laser light, and at least one light emitting unit 210 including the light emitting unit 2 and the recess 212 as a reflecting mirror.
  • the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61, and thereby the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 out of the laser light emitted from the LD chip 11 is set. Change. Thereby, since the ratio of the fluorescence with respect to illumination light changes, the laser downlight 200 which can change the color temperature of illumination light is realizable.
  • the laser light from each of the plurality of emission end portions 215a of the optical fiber bundle 215 is distributed and applied to the light emitting unit 2.
  • the light emitting section 2 is significantly deteriorated by irradiating the laser light to one place of the light emitting section 2, and to reduce the laser life with a longer life without lowering the luminous flux of the emitted light.
  • the light 200 can be realized.
  • it is not necessary to reduce the intensity of the laser light applied to the light emitting unit 2 not only the luminous flux of the laser downlight 200 but also the luminance can be increased. Therefore, a small and high-intensity laser downlight 200 can be realized.
  • the laser illumination light source (light emitting device, illumination device, headlamp) of the present invention relates to a laser illumination light source comprising a phosphor light emitting unit (light emitting unit, light emitting unit) and a semiconductor laser as an excitation light source.
  • a laser illumination light source comprising a phosphor light emitting unit (light emitting unit, light emitting unit) and a semiconductor laser as an excitation light source.
  • the light irradiation area an area exceeding the size of the phosphor light emitting portion may be irradiated with excitation light (area of the excitation light irradiation area> area of the irradiation surface of the phosphor light emitting portion).
  • the laser illumination light source of the present invention uses a blue semiconductor laser as an excitation light source, and as a phosphor, a yellow light emitting phosphor that emits yellow light, or a green light emitting phosphor that emits green light and a red light emitting that emits red light. You may combine with fluorescent substance.
  • the laser illumination light source of the present invention may be a transmission type or a reflection type.
  • a reflection member may be provided under the diffusion member.
  • the excitation light can be irradiated over the entire irradiation surface of the yellow light emitting phosphor (in other words, the excitation light does not concentrate locally on the phosphor light emitting portion). Therefore, since the burden (excitation) does not become strong only for a part of the phosphor, the efficiency of the phosphor light emitting portion can be maximized.
  • the excitation light emitted from the excitation light source necessarily has an intensity distribution (typically said to have a Gaussian distribution shape). If it is the said structure of the laser illumination light source of this invention, it can be made not to hit the part to which intensity
  • the excitation light (laser light) that did not hit the phosphor light emitting part is diffused and scattered by the diffusing member, so that eye-safe can be realized.
  • the laser illumination light source of the present invention there is a margin in the design of the excitation light irradiation optical system, so the cost of the light emitting device can be reduced.
  • the optical system in order to irradiate the entire area of the phosphor light emitting portion with excitation light and to prevent the excitation light from hitting the area where the phosphor light emitting portion does not exist as much as possible, the optical system must be designed precisely and the work accuracy It is necessary to assemble it properly using good parts.
  • the laser illumination light source of the present invention is based on the premise that the excitation light protrudes from the region where the phosphor light emitting portion exists, the degree of freedom of design in each part of the apparatus is increased.
  • Embodiments 2 to 14 will be described. Before specific description thereof, headlamps 40 to 110 (light emitting device, illumination device, headlight) and laser downlight according to Embodiments 2 to 14 will be described. An outline of 200 (light emitting device, lighting device) will be described.
  • the headlamps 40 to 110 and the laser downlight 200 include at least one excitation light source that emits excitation light, at least one light emitting unit that emits fluorescence in response to the excitation light emitted from the excitation light source, and the device itself And a characteristic changing mechanism that changes the characteristics of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted to the outside.
  • the characteristic changing mechanism changes the characteristic of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside, which is emitted from at least one light emitting unit. Therefore, the characteristics of the emitted light, particularly the color temperature can be changed.
  • the excitation light source mainly functions as the main light source 27, the light emitting unit functions as the light emitting unit 2, and the characteristic changing mechanism functions as the sub light source (second light source) 28. The case will be described.
  • the excitation light source mainly functions as the semiconductor laser 63, the semiconductor laser (first excitation light source) 63a, and the semiconductor laser (second excitation light source) 63b, and the light emitting unit is the light emitting unit 2.
  • the characteristic changing mechanism (light quantity changing mechanism) as a supporting member 61, a supporting member driving unit 62, and an output control unit 642. The case of functioning will be described.
  • the excitation light source functions as the semiconductor laser 63
  • the light emitting unit functions as the light emitting unit 2 (first light emitting unit 2a, second light emitting unit 2b).
  • the mechanism irradiation range changing mechanism
  • the excitation light source mainly functions as the semiconductor laser 63
  • the light-emitting portion functions as the first light-emitting portions 93 and 99
  • the second light-emitting portion 94 and the characteristic changing mechanism is positioned.
  • a case of functioning as the control unit 95 will be described.
  • an automotive headlamp (headlamp) 1 will be described as an example.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
  • the headlamp 40 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
  • a phosphor excited by the excitation light (blue-green emission phosphor + red emission phosphor) is used, and the excitation light is all fluorescent in the phosphor.
  • White light is emitted as the illumination light.
  • the blue component contained in the fluorescence emitted from the phosphor is reduced compared to the case where the blue phosphor is used. Therefore, the chromaticity range of the white light, that is, the amount of the blue component is small, that is, The range that can be “white” becomes narrow.
  • the color temperature of the illumination light is set. It was difficult to increase.
  • FIG. 18 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp.
  • a range surrounded by a point 35 is a white chromaticity range required for a vehicle headlamp stipulated by law, and a curve 33 indicates a color temperature (K: Kelvin).
  • an example of the blue-green light emitting phosphor includes a Ca ⁇ -SiAlON: Ce phosphor
  • an example of a red light-emitting phosphor includes a CASN: Eu phosphor.
  • the chromaticity range that the illumination light can take when using the Ca ⁇ -SiAlON: Ce phosphor (chromaticity point 31) and the CASN: Eu phosphor (chromaticity point 32) is shown by a straight line 34. ing.
  • the headlamp 40 emits the fluorescence emitted from the light emitting unit 7 and the blue laser light emitted from the sub light source 28 as illumination light after being diffused in the light emitting unit 7, for example.
  • the configuration and the like will be specifically described.
  • FIG. 12 is a cross-sectional view showing the configuration of the headlamp 40.
  • the headlamp 40 includes a main light source (first light source, laser light source) 27, a sub light source (second light source) 28, an aspheric lens 29, an optical fiber 55, a ferrule 65, a light emitting unit 7, and a reflecting mirror. 81, a cutoff filter 91, a housing 75, an extension 76, and a lens 77.
  • the main light source 27, the sub light source 28, the optical fiber 55, the ferrule 65, and the light emitting unit 7 form a basic structure of the light emitting device.
  • the main light source 27 is a light emitting element that functions as an excitation light source that emits excitation light, and is a semiconductor laser or an LED. In the following description, it is assumed that the main light source 27 is a semiconductor laser. In the case of a semiconductor laser, the light emitting unit 7 can be irradiated with laser light having high output and high coherency, so that the light emitting unit 7 can be made small and a headlamp 40 with high brightness can be realized. Although two main light sources 27 are illustrated in FIG. 12, it is not always necessary to provide a plurality of main light sources 27, and only one main light source 27 may be provided. However, it is easier to use a plurality of main light sources 27 in order to obtain high output excitation light.
  • the main light source 27 has, for example, one light emitting point per chip, oscillates 405 nm (blue-violet) laser light, has an output of 1.0 W, an operating voltage of 5 V, and a current of 0.6 A. It is enclosed in a package with a diameter of 5.6 mm.
  • the package is not limited to one having a diameter of 5.6 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 9 mm, or other, and it is preferable to select a package having a smaller thermal resistance.
  • the main light source 27 may have a plurality of light emitting points on one chip.
  • the laser light oscillated by the main light source 27 is not limited to 405 nm, but is laser light having a peak wavelength in the wavelength range of 350 nm to 420 nm, that is, laser light having an oscillation wavelength in the wavelength range from the ultraviolet region to the blue-violet region. I just need it.
  • the main light source 27 can also emit laser light having a peak wavelength in a wavelength range of 470 nm or less.
  • light (second light) having a blue region oscillation wavelength emitted from the sub light source 28 is used as illumination light.
  • the peak wavelength of the laser light oscillated by the main light source 27 is 420 nm or less. Preferably there is.
  • the peak wavelength is 420 nm or less. Is preferred. This absorption rate will be described later with reference to FIG.
  • the peak wavelength of the laser light oscillated by the main light source 27 may be 350 nm or more and 470 nm or less.
  • the sub light source 28 is a semiconductor laser that emits light having a wavelength region different from that of the laser light emitted from the main light source 27. More specifically, the sub light source 28 irradiates the light emitting unit 7 with light (referred to as blue laser light) having an oscillation wavelength in a blue region (wavelength 440 to 460 nm).
  • the blue laser light irradiated to the light emitting unit 7 is diffused in the light emitting unit 7 and is emitted to the outside of the headlamp 40 as illumination light after coherency is lowered. Therefore, the blue laser light can be used as part of the illumination light after suppressing the influence of the blue laser light on the human body. That is, since the blue laser light is emitted as illumination light together with the fluorescence emitted from the light emitting unit 7, the illumination light that has been difficult to be achieved by the conventional illumination device designed to emit only the fluorescence as illumination light. The color temperature can be adjusted.
  • the sub-light source 28 emits laser light having high coherency, it is not necessary to enlarge the light emitting portion 7 for irradiation with blue laser light, so that the color temperature can be maintained while maintaining high luminance light emission characteristics. Adjustments can be made.
  • the sub light source 28 may be configured to emit light having a peak wavelength in the blue region, and may be, for example, an LED. In the following description, it is assumed that the sub light source 28 is a semiconductor laser.
  • the aspheric lens 29 is a lens for causing the laser light oscillated from the main light source 27 or the sub light source 28 to enter the incident end portions 51 b to 53 b that are one end portions of the optical fiber 55.
  • the aspherical lens 29 FLKN1 405 manufactured by Alps Electric can be used.
  • the shape and material of the aspherical lens 29 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 29 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
  • the optical fiber 55 is a light guide member that guides the laser light oscillated by the main light source 27 and the sub light source 28 to the light emitting unit 7, and is a bundle of a plurality of optical fibers.
  • the optical fiber 55 includes incident end portions 51b and 52b that receive laser light emitted from the main light source 27, and emission end portions 51a and 52a that emit laser light incident from these incident end portions (see FIG. 13). Includes optical fiber.
  • the optical fiber 55 is an optical fiber having an incident end portion 53b that receives the laser light emitted from the sub-light source 28 and an emission end portion 53a (see FIG. 13) that emits the laser light incident from these incident end portions. Contains.
  • FIG. 13 is a diagram showing a positional relationship between the emission end portions 51a to 53a and the light emitting portion 7. As shown in FIG. As shown in FIG. 13, the plurality of emission end portions 51a to 53a emit laser beams to different regions on the laser beam irradiation surface (light receiving surface) 7a of the light emitting unit 7. With this configuration, since the laser beam is not locally applied to the light emitting unit 7, it is possible to prevent a part of the light emitting unit 7 from being significantly deteriorated.
  • the optical fiber 55 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core.
  • the core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light
  • the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core.
  • the optical fiber 55 is made of quartz having a core diameter of 200 ⁇ m, a cladding diameter of 240 ⁇ m, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber 55 are limited to those described above.
  • the cross section perpendicular to the major axis direction of the optical fiber 55 may be rectangular.
  • a member other than the optical fiber may be used as the light guide member, and the type of the light guide member is not limited.
  • the laser light from the main light source 27 and the sub light source 28 may be condensed on the light emitting unit 7 using an optical lens or the like without using the light guide member.
  • the laser light from the main light source 27 may be applied to the laser light irradiation surface 7a
  • the laser light from the sub light source 28 may be applied to the side surface with respect to the laser light irradiation surface 7a.
  • the ferrule 65 holds the plurality of emission end portions 51 a to 53 a of the optical fiber 55 in a predetermined pattern with respect to the laser light irradiation surface 7 a of the light emitting unit 7.
  • the ferrule 65 may have holes for inserting the emission end portions 51a to 53a formed in a predetermined pattern, and can be separated into an upper portion and a lower portion, and the upper and lower joint surfaces are respectively provided.
  • the exit end portions 51a to 53a may be sandwiched between the formed grooves.
  • the ferrule 65 may be fixed to the reflecting mirror 81 with a rod-like or cylindrical member extending from the reflecting mirror 81.
  • the material of the ferrule 65 is not specifically limited, For example, it is stainless steel.
  • a plurality of ferrules 65 may be arranged for one light emitting unit 7.
  • the light emitting unit 7 emits fluorescence by receiving the laser light emitted from the main light source 27, and includes a phosphor that emits light by receiving the laser light.
  • the light emitting unit 7 is, for example, a phosphor dispersed in a sealing material.
  • the ratio (weight ratio) between the sealing material and the phosphor is about 100: 5.
  • As the sealing material for example, an inorganic glass of about 1 W / mK can be used.
  • the sealing material is not limited to inorganic glass, and may be a resin material such as so-called organic-inorganic hybrid glass or silicone resin.
  • inorganic glass when used as the sealing material, the effect of increasing the heat resistance and lowering the thermal resistance of the light emitting portion 7 is obtained, and therefore inorganic glass is preferable.
  • the light emitting unit 7 may be formed by pressing a fluorescent material.
  • the phosphor is an oxynitride or nitride phosphor, and blue, green and red phosphors are dispersed in a silicone resin. Since the main light source 27 oscillates 405 nm (blue-violet) laser light, white light is generated when the light emitting unit 7 is irradiated with the laser light. Therefore, it can be said that the light emitting portion 7 is a wavelength conversion material.
  • the shape and size of the light emitting unit 7 is, for example, a rectangular parallelepiped of 3 mm ⁇ 1 mm ⁇ 1 mm.
  • the light distribution pattern (light distribution) of a vehicle headlamp that is legally regulated in Japan is narrow in the vertical direction and wide in the horizontal direction. By making the cross section substantially rectangular), the light distribution pattern can be easily realized.
  • the light emitting unit 7 may not be a rectangular parallelepiped, and may be a cylindrical shape in which the laser light irradiation surface 7a is an ellipse.
  • the laser light irradiation surface 7a of the light emitting unit 7 is not necessarily a flat surface, and may be a curved surface. However, in order to control the reflected laser light, the laser light irradiation surface 7a preferably has a flat surface. When the laser light irradiation surface 7a is a curved surface, at least the incident angle to the curved surface changes greatly, so that the direction in which the reflected light travels greatly changes depending on the location where the laser light is irradiated. For this reason, it may be difficult to control the reflection direction of the laser light.
  • the laser light irradiation surface 7a is flat, the direction in which the reflected light travels hardly changes even if the irradiation position of the laser light is slightly deviated. Therefore, it is easy to control the direction in which the laser light is reflected. In some cases, it is easy to take measures such as placing a laser beam absorber in a place where the reflected light strikes.
  • the laser light irradiation surface 7a is not necessarily perpendicular to the optical axis of the laser light.
  • the reflected laser light returns in the direction of the laser light source, and in some cases, the laser light source may be damaged.
  • the light emitting unit 7 is fixed to the inner surface of the blocking filter 91 in FIG. 12, but the method for fixing the position of the light emitting unit 7 is not limited to this method, and a bar-like shape extending from the reflecting mirror 81 or You may fix the position of the light emission part 7 with a cylindrical member.
  • the light emitting unit 7 has a function of diffusing laser light. This function can be realized by utilizing the difference in refractive index between the sealing material included in the light emitting unit 7 and the phosphor.
  • the light emitting unit 7 is designed to have a volume (particularly thickness) that can sufficiently diffuse the laser light oscillated by the sub light source 28.
  • the light emitting unit 7 may include diffusion particles. Particles such as zirconium oxide and diamond can be used as the diffusing particles. Although particles other than these may be used, particles that can withstand the heat generation of the light emitting portion 7 are preferable.
  • the headlamp 40 is a blue laser that emits from the sub-light source 28 with high coherence and has a very small emission point size. Light can be converted into light having a large emission point size that has little influence on the human body and can be emitted as illumination light. That is, the headlamp 40 can use the blue laser light emitted from the sub light source 28 as illumination light while ensuring safety. Further, since it is not necessary to provide the diffusing portion 71 (see FIG. 17) as in the third embodiment, the headlamp 40 can be manufactured at a lower cost.
  • the reflecting mirror 81 reflects the light emitted from the light emitting unit 7 to form a light bundle that travels within a predetermined solid angle. That is, the reflecting mirror 81 reflects the light from the light emitting unit 7 to form a light beam that travels forward of the headlamp 40.
  • the reflecting mirror 81 is, for example, a curved (cup-shaped) member having a metal thin film formed on the surface thereof.
  • the reflecting mirror 81 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 81 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface.
  • the shape of the opening in the reflecting mirror 81 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 40 and its surroundings.
  • the blocking filter 91 transmits white light generated by converting the laser light in the light emitting unit 7 and blocks laser light from the main light source 27 and the sub light source 28.
  • the cutoff filter 91 for example, TY418 manufactured by Isuzu Seiko Glass Co., Ltd. can be used.
  • the coherent laser light is absorbed by the phosphor and converted into incoherent light by the light emitting unit 7.
  • the laser beam can be prevented from leaking to the outside by blocking the laser beam by the blocking filter 91.
  • the emission point size of the laser light (excitation light) is very small and the output power is high, or the laser light belongs to a wavelength range other than the visible light region, the laser light leaks to the outside. The influence on the human body can be suppressed.
  • the main light source 27 is an LED, there is a possibility of affecting the human body such as skin and eyes when emitting excitation light in the ultraviolet region (350 nm or more, 380 nm or less or 400 nm or less). Therefore, it is preferable to select a blocking filter 91 that can block light of 400 nm or less.
  • the main light source 27 when the main light source 27 emits light having a wavelength longer than 400 nm, the light need not necessarily be blocked by the blocking filter 91.
  • the laser light in order to enlarge the light emission point size and make the light safe for the human eye, most of the laser light is converted into fluorescence in the light emitting unit 7 or a plurality of light is emitted. Must be scattered or diffused once.
  • laser light emitted from a laser light source may have a spot size smaller than 10 ⁇ m square.
  • laser light emitted from such a light source is directly incident on the eye or is incident on the eye in such a way that a small light emitting point can be seen directly even through an optical member such as a lens or a reflecting mirror, the imaged portion on the retina is It can be damaged.
  • the light emitting spot size In order to avoid this, it is necessary to enlarge the light emitting spot size to a certain size (finite size) (specifically, for example, 1 mm ⁇ 1 mm or more). By enlarging the emission point size, the image size on the retina can be enlarged, so even if light of the same energy is incident on the eye, the energy density on the retina is reduced. It becomes possible.
  • the light emitting unit 2 is provided with a diffusion function, and the light emission point sizes of the main light source 27 and the sub light source 28 are enlarged, so that safety to the human body, particularly for human eyes. Ensures safety (Eye safe).
  • the laser light is more monochromatic than the light emitted from the LED light source, that is, has a uniform wavelength, there is no blurring of the image on the retina (so-called chromatic aberration) due to the difference in wavelength, and it is more dangerous than the light. It is. For this reason, in an illuminating device that uses light emitted from a laser light source as illumination light, it is preferable to more firmly consider the expansion of the emission point size.
  • the housing 75 forms the main body of the headlamp 40 and houses the reflecting mirror 81 and the like.
  • the optical fiber 55 passes through the housing 75, and the main light source 27 and the sub light source 28 are installed outside the housing 75.
  • the semiconductor laser generates heat when the laser beam oscillates, but the main light source 27 and the sub light source 28 can be efficiently cooled by being installed outside the housing 75.
  • main light source 27 and the sub light source 28 may be housed in the housing 75.
  • Extension 76 is provided on the front side of the reflecting mirror 81 to improve the appearance by concealing the internal structure of the headlamp 40 and enhance the sense of unity between the reflecting mirror 81 and the vehicle body.
  • the extension 76 is also a member having a metal thin film formed on the surface thereof, like the reflecting mirror 81.
  • the lens 77 is provided in the opening of the housing 75 and seals the headlamp 40.
  • the light generated by the light emitting unit 7 and reflected by the reflecting mirror 81 is emitted to the front of the headlamp 40 through the lens 77.
  • the main light source 27 emits laser light having an oscillation wavelength from the ultraviolet region to the blue-violet region, and the light emitting unit 7 receives this laser light and emits white light.
  • a mixture of a phosphor or green-emitting phosphor and a red-emitting phosphor is preferable.
  • the main light source 27 may emit laser light having an oscillation wavelength in the above region, and in this case, the material (phosphor material) of the light emitting unit for generating white light can be easily selected and manufactured. it can.
  • the yellow light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm.
  • the green light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
  • the phosphor is preferably a so-called sialon phosphor.
  • Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms.
  • the sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ).
  • a semiconductor nanoparticle phosphor using nanometer-size particles of a III-V compound semiconductor can also be used.
  • One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there.
  • InP indium phosphorus
  • the particle size was evaluated with a transmission electron microscope (TEM).
  • this phosphor since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
  • the main light source 27 emits laser light having an oscillation wavelength near 405 nm.
  • the phosphors of the light emitting unit 7 include Ca ⁇ -SiAlON: Ce phosphor (first phosphor) and CaAlSiN 3 : Eu 2+ phosphor (CASN). : Eu phosphor and second phosphor) are used.
  • the CASN: Eu phosphor emits red fluorescence when the excitation wavelength is 405 nm, and the wavelength of the emission peak is 650 nm. Further, the luminous efficiency of this phosphor is 73%, and the luminous efficiency is high. Furthermore, since this phosphor also has high heat resistance, there is little possibility that the light emitting section 7 will deteriorate even if the light emitting section 7 is irradiated with high output excitation light at a high light density.
  • CASN instead of Eu phosphor, SrCaAlSiN 3: Eu 2+ phosphor (SCASN: Eu phosphor, a second phosphor) may be used.
  • SCASN Eu phosphor, a second phosphor
  • the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
  • the Ca ⁇ -SiAlON: Ce phosphor as the green phosphor and the CASN: Eu phosphor or the SCASN: Eu phosphor as the red phosphor in the light emitting unit 7 a high luminance and high luminous flux white color is obtained.
  • An illumination device (headlight) that emits light can be realized.
  • this red light emitting phosphor that is, a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less, a light emitting portion having high color rendering properties can be realized.
  • the Ca ⁇ -SiAlON: Ce phosphor exhibits a high absorptance (the ratio of the excitation light absorbed by the phosphor to the entire excitation light) particularly for light in the wavelength range of 350 nm to 420 nm.
  • the Ca ⁇ -SiAlON: Ce phosphor has an absorption peak wavelength of light in a wavelength range of 350 nm or more and 420 nm or less.
  • the wavelength range of the laser light emitted from the main light source 27 when the absorption rate is 70% or more is approximately 420 nm or less.
  • the phosphor is different from the Ca ⁇ -SiAlON: Ce phosphor, if the phosphor has a light absorption peak wavelength of 420 nm or less, the oscillation wavelength of the laser light emitted from the main light source 27 is In the case of approximately 420 nm or less, the absorption rate of the laser light in the phosphor shows 70% or more.
  • the external quantum efficiency (luminous efficiency) when the absorption rate is 70% is about 50%, and high luminous efficiency is realized.
  • the absorptance is Less than 70%.
  • the light emitting unit 7 is irradiated with light having a peak wavelength in the wavelength range of 440 nm or more (blue laser light emitted from the sub-light source 28)
  • the blue laser light absorption rate is 50% as illustrated. Lower than. For this reason, the luminous efficiency at this time is further lower than when the absorptance is 70%.
  • the absorptance is about 45%
  • the external quantum efficiency is about 35%.
  • the inventors have confirmed that when a Ca ⁇ -SiAlON: Ce phosphor is irradiated with blue laser light having a wavelength of 445 nm, the phosphor hardly emits fluorescence. Note that the light emission efficiency when irradiated with light having a wavelength of 445 nm is about 30% (see FIG. 14).
  • the phosphor having a light absorption peak wavelength in the wavelength range of 350 nm or more and 420 nm or less on the light emitting unit 7 and an absorption rate of 70% or more when irradiated with the laser light emitted from the main light source 27.
  • the blue laser light emitted from the sub-light source 28 is hardly absorbed by the light emitting unit 7. Therefore, since the attenuation of the blue laser light in the light emitting unit 7 can be suppressed, the headlamp 40 can efficiently adjust the color temperature of the illumination light as described below.
  • the main light source 27 emits laser light having an oscillation wavelength near 405 nm to excite the Ca ⁇ -SiAlON: Ce phosphor and the CASN: Eu phosphor of the light emitting unit 7.
  • the weight ratio of these phosphors is 3: 1, and the light output of the main light source 27 is 5W.
  • the sub light source 28 irradiates the light emitting unit 7 with blue laser light having an oscillation wavelength near 460 nm, and the light output of the sub light source 28 is 0.5 W.
  • the light emitting section 7 emits fluorescence (white light) having a wavelength of about 500 to 700 nm in addition to laser light having an oscillation wavelength near 405 nm.
  • the headlamp 40 can emit the illumination light while blocking the laser light with the blocking filter 91 so as not to cause any damage to the human body such as skin and eyes.
  • the light emitting unit 7 also emits blue laser light having an oscillation wavelength near 460 nm.
  • the Ca ⁇ -SiAlON: Ce phosphor is used for the light emitting unit 7, the blue laser light absorption rate in the light emitting unit 7 is low. That is, as shown in FIG. 16, when the blue laser light is emitted from the sub light source 28, the amount of light in the blue region (near 460 nm) emitted from the light emitting unit 7 is increased compared to the case of FIG. ing.
  • the blue component of the fluorescence obtained from the laser light having an oscillation wavelength of 350 nm or more and 420 nm or less emitted from the main light source 27 is small, the bluish component can be supplemented with the light in the blue region. it can. That is, by diffusing the blue laser light emitted from the sub light source 28 and using it as illumination light, the bluish component can be compensated for and the color temperature of the illumination light can be increased.
  • the blue laser light after diffusion as the illumination light, it is possible to adjust the color temperature of the illumination light, which has been difficult with the conventional illumination device designed to use only fluorescence as the illumination light. it can.
  • the blue laser light is difficult to be converted into fluorescence by the light emitting unit 7, the diffused blue laser light can be efficiently used as illumination light. That is, it can be efficiently used for adjusting the color temperature.
  • the basic structure of the semiconductor laser as the main light source 27 and the sub light source 28 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D described in the first embodiment. Therefore, the explanation is omitted.
  • the light emission principle of the light emitting unit 7 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
  • the headlamp 40 emits the fluorescent light emitted from the light emitting unit 7 and the blue laser light emitted from the sub light source 28 as illumination light after being diffused in the light emitting unit 7, for example.
  • the headlamp 40 excites the light emitting unit 7 with the laser light emitted from the main light source 27 to obtain the fluorescence, thereby maintaining the high-luminance emission characteristics, and the blue laser light after diffusion with the fluorescence. Adjustment of the color temperature of the illumination light can also be realized by using the illumination light.
  • the sub light source 28 is not a semiconductor laser, the light emitted from the sub light source 28 can be used as illumination light without being diffused in the light emitting unit 7.
  • the headlamp 50 of the present embodiment includes a diffusing unit 71 that diffuses the blue laser light emitted from the sub-light source 28.
  • the headlamp 50 includes a light guide 511 as a light guide member that guides the excitation light from the main light source 27 to the light emitting unit 7, and guides the blue laser light from the sub light source 28 to the diffusion unit 71. It has.
  • the diffusion unit 71 is, for example, one in which diffusion particles that diffuse laser light are dispersed in a base material.
  • the diffusing unit 71 is preferably heat resistant. Considering this point, it is preferable to use inorganic glass as the base material.
  • fumed silica, Al 2 O 3 , zirconium oxide, or diamond can be used as the diffusing particles.
  • These fine powders are mixed with inorganic glass at a weight ratio of about 10 to 30%.
  • the refractive index of inorganic glass is about 1.5 to 1.8, for example, while the refractive index of zirconium oxide and diamond is about 2.4. Therefore, the difference in refractive index between the inorganic glass and the diffusing particles becomes large, so that the diffusion effect can be enhanced.
  • the melting point of zirconium oxide is 2715 ° C. and the melting point of diamond is 3550 ° C., it does not melt or change at the melting temperature of ordinary inorganic glass, and is dispersed in the inorganic glass as diffusion particles. Suitable as a material.
  • the material of the diffusion part 71 described above is merely an example, and the material of the diffusion part 71 is not particularly limited as long as it can diffuse blue laser light. Further, the shape and size (thickness) of the diffusing portion 71 may be set to a shape and size that can sufficiently diffuse the blue laser light in consideration of the diffusion efficiency.
  • the shape and size of the diffusion part 71 may be the same as that of the light emitting part 7, but it is preferably formed so as to cover the light emitting part 7.
  • the light emitting unit 7 and the diffusing unit 71 are preferably disposed in the vicinity of the focal position of the reflecting mirror 81.
  • the emission point size of the blue laser light can be expanded.
  • Light can be used as illumination light.
  • the light guides 511 and 512 are frustoconical light guide members, and are optically coupled to the main light source 27 and the sub light source 28 via the aspherical lens 29 (or directly).
  • the light guides 511 and 512 have a light incident surface for receiving the laser light emitted from the main light source 27 or the sub light source 28 and a light emitting surface for emitting the laser light received on the light incident surface.
  • each laser beam incident from the light incident surface is converged by traveling forward while being reflected on the side surfaces of the light guide portions 511 and 512. It is emitted from.
  • the light guides 511 and 512 are made of BK7, quartz glass, acrylic resin, or other transparent material. Further, the light incident surface and the light emitting surface may be planar or curved.
  • the light guides 511 and 512 may have a truncated pyramid shape, and the shape is not limited.
  • Embodiment 4 The following will describe another embodiment of the present invention with reference to FIGS.
  • symbol is attached
  • a schematic diagram showing the appearance of the light emitting unit 210 and the conventional LED downlight 300, a cross-sectional view showing a ceiling where the LED downlight 300 is installed, and specifications of the laser downlight 200 and the LED downlight 300 are shown.
  • the laser downlight 200 is an illumination device installed on the ceiling of a structure such as a house or a vehicle.
  • the laser downlight 200 uses the fluorescence by irradiating the light emitting unit 7 with the laser light emitted from the main light source 27 and the blue laser light emitted from the sub light source 28 and diffused by the light emitting unit 7 as illumination light. Is.
  • an illumination device having the same configuration as the laser downlight 200 may be installed on the side wall or floor of the structure, and the installation location of the illumination device is not particularly limited.
  • FIG. 19 is a cross-sectional view of the ceiling where the laser downlight 200 is installed.
  • FIG. 20 is a cross-sectional view of the laser downlight 200.
  • the laser downlight 200 is embedded in the top plate 400 and supplies laser light to the light emitting unit 210 via the light emitting unit 210 that emits illumination light and the optical fiber 55.
  • An LD light source unit 220 is not installed on the ceiling, but is installed at a position where the user can easily touch it (for example, a side wall of a house). The position of the LD light source unit 220 can be freely determined in this way because the LD light source unit 220 and the light emitting unit 210 are connected by the optical fiber 55.
  • the optical fiber 55 is disposed in a gap between the top plate 400 and the heat insulating material 401.
  • the light emitting unit 210 includes a housing 211, an optical fiber 55, a light emitting unit 7, and a light transmitting plate 213.
  • a recess 212 is formed in the housing 211, and the light emitting unit 7 is disposed on the bottom surface of the recess 212.
  • a metal thin film is formed on the surface of the recess 212, and the recess 212 functions as a reflecting mirror.
  • a passage 214 for passing the optical fiber 55 is formed in the housing 211, and the optical fiber 55 extends to the light emitting unit 7 through the passage 214.
  • the positional relationship between the emission end portions 51a to 53a of the optical fiber 55 and the light emitting portion 7 is the same as described above.
  • the translucent plate 213 is a transparent or translucent plate disposed so as to close the opening of the recess 212.
  • the translucent plate 213 has a function similar to that of the blocking filter 91, and the fluorescence of the light emitting unit 7 is emitted as illumination light through the translucent plate 213.
  • the translucent plate 213 may be removable from the housing 211 or may be omitted.
  • the light emitting unit 210 has a circular outer edge, but the shape of the light emitting unit 210 (more precisely, the shape of the housing 211) is not particularly limited.
  • the LD light source unit 220 includes a main light source 27, a sub light source 28, an aspheric lens 29, and an optical fiber 55.
  • the incident end portion 5 b which is one end portion of the optical fiber 55, is connected to the LD light source unit 220, and the laser beams oscillated from the main light source 27 and the sub light source 28 are respectively connected to the optical fiber 55 via the aspherical lens 29. Is incident on the incident end 5b.
  • a pair of main light source 27 and aspherical lens 29 and a pair of sub-light source 28 and aspherical lens 29 are provided inside LD light source unit 220, and a bundle of optical fibers extending from each aspherical lens 29. It is guided to one light emitting unit 210. That is, in FIG. 20, one set of light sources including a pair of main light sources 27 and aspherical lenses 29 and a pair of sub light sources 28 and aspherical lenses 29 functions as a light source for one light emitting unit 210.
  • the main light source 27 and the sub light source 28 do not need to be provided one by one, and the number of the light sources includes the output amount per light source, the color temperature of illumination light realized by the laser downlight 200, or the adjustment width thereof. It may be determined in consideration.
  • one LD light source unit 220 contains a plurality of the above-mentioned one set of light sources, and the LD light source unit 220 functions as a centralized power supply box.
  • FIG. 21 is a cross-sectional view showing a modified example of the installation method of the laser downlight 200.
  • the laser downlight main body (light emitting unit) is utilized by taking advantage of the thin and light weight. 210) can be attached to the top plate 400 using a strong adhesive tape or the like.
  • the LD light source unit 220 can be installed at a place (height) that can be easily reached by the user, so that even if the main light source 27 and the sub light source 28 break down. You can easily replace these light sources. Further, by guiding the optical fibers 55 extending from the plurality of light emitting units 210 to one LD light source unit 220, the plurality of main light sources 27 and the plurality of sub light sources 28 can be collectively managed. Therefore, even when the plurality of main light sources 27 and the plurality of sub light sources 28 are replaced, the replacement can be easily performed.
  • the laser downlight 200 is irradiated with the LD light source unit 220 including at least one main light source 27 that emits laser light and one sub-light source 28 that emits blue laser light, and the laser light and the blue laser light. And at least one light-emitting unit 210 including the light-emitting unit 7 to be operated. Then, the fluorescent light emitted from the light emitting unit 7 upon receiving the laser light emitted from the main light source 27 and the blue laser light emitted from the sub light source 28 (blue laser light diffused by the light emitting unit 7) are used as illumination light. To be emitted.
  • the laser downlight 200 can use blue laser light different from the fluorescence emitted by the light emitting unit 7 as illumination light, the laser light as excitation light is prevented from leaking to the outside, and only fluorescence is used as illumination light. It is possible to adjust the color temperature, which is difficult in the conventional lighting device designed to be used.
  • an illuminating device (solid-state illumination light source) according to an embodiment of the present invention includes a phosphor light emitting unit and a semiconductor laser or LED having an oscillation wavelength in the blue-violet region near 405 nm, or in the ultraviolet to blue-violet region from 350 nm to 400 nm.
  • the present invention relates to a solid-state illumination light source comprising an excitation light source.
  • the first aspect of the illumination device is that Ca ⁇ -SiAlON: Ce 3+ is used as a phosphor constituting at least a part of the phosphor light emitting portion.
  • a second aspect of the illumination device is to have a blue semiconductor laser (having a laser oscillation peak at 440 nm to 460 nm) for the purpose of increasing the color temperature of the illumination light.
  • the illumination device is made eye-safe by irradiating the phosphor light emitting portion with the laser light emitted from the blue semiconductor laser, and scattering the phosphor light emitting portion to enlarge the emission point size of the laser light.
  • the blue light component of the illumination light emitted from the light emitting unit is compensated.
  • the color temperature can be adjusted to the user's preference. That is, in this case, the user can customize the color temperature.
  • the phosphor used in the light emitting unit 7 is not limited to the composition described in the second embodiment.
  • the phosphor used in the light emitting unit 7 may be composed of only a yellow light emitting phosphor.
  • the output of the main light source 27 can be 3 to 4 W, and the output of the sub light source 28 can be 0.3 to 0.4 W.
  • the output of the main light source 27 can be set to 3.5 to 5 W.
  • the outputs of the main light source 27 and the sub light source 28 can be appropriately changed by changing the composition of the phosphor in the light emitting unit 7. Further, it is sufficient that the color temperature can be adjusted or improved by using the light emitted from the sub light source 28 as the illumination light, and the illumination light is not limited to white light.
  • a headlamp (headlamp) 60 for an automobile will be described as an example.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
  • the headlamp 60 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
  • FIG. 22 is a half sectional view showing a schematic configuration of the headlamp 60.
  • the headlamp 60 includes a translucent substrate 1, a light emitting unit 2, a diffusing unit 3, a reflecting mirror 4, a fixing member 56, an excitation light source unit (excitation light source) 6, screws 78, a lens 82, a light guide.
  • the optical member 9, the support member 61, and the support member drive part 62 are provided.
  • the excitation light source unit 6, the light guide member 9, and the light emitting unit 2 form a basic structure of the light emitting device.
  • the support member 61 and the support member driving unit 62 form a basic structure of the light amount changing mechanism.
  • the translucent substrate 1 is a flat member and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) as excitation light.
  • the translucent substrate 1 may have a curved portion instead of a flat plate shape.
  • the surface is preferably flat (plate-like).
  • the translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm ⁇ width of 10 mm ⁇ thickness of 0.5 mm. Note that the outer diameter of the translucent substrate 1 shown in FIG. 22 is larger than the outer diameter of the diffusing portion 3, but may be approximately the same as the outer diameter of the diffusing portion 3.
  • the light emitting unit 2 is disposed on the surface of the translucent substrate 1 that faces the surface on which the laser beam is incident, and is thermally connected to the light emitting unit 2 (that is, capable of transferring thermal energy). ing.
  • the light-transmitting substrate 1 and the light-emitting portion 2 are described as being bonded (adhered) using an adhesive, but the light-transmitting substrate 1 and the light-emitting portion 2 are bonded.
  • the method is not limited to adhesion, and may be, for example, fusion.
  • the adhesive so-called organic adhesives and glass paste adhesives are suitable, but not limited thereto.
  • the translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that the heat generated in the light emitting unit 2 while fixing (holding) the light emitting unit 2 to the substrate surface. Since heat is radiated to the outside, the cooling efficiency of the light emitting unit 2 can be improved.
  • the material of the translucent substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above. This is because these materials have excellent thermal conductivity (for example, 20 W / mK or more) and translucency. If this point is not taken into consideration, the material is not limited to these materials, and may be glass (quartz), for example.
  • MgO magnesia
  • GaN gallium nitride
  • MgAl 2 O 4 spinel
  • the material is not limited to these materials, and may be glass (quartz), for example.
  • the thickness of the translucent substrate 1 shown in FIG. 22 is preferably 30 ⁇ m or more and 5.0 mm or less, more preferably 0. More preferably, it is 2 mm or more and 5.0 mm or less.
  • the thickness of the translucent substrate 1 exceeds 5.0 mm, the ratio of the laser light irradiated to the light emitting unit 2 absorbed in the translucent substrate 1 is increased, but the heat dissipation effect is not so much. It does not improve, and the cost of the member also increases.
  • the light emitting unit 2 emits fluorescence upon receiving laser light emitted from the semiconductor laser 63.
  • a YAG: Ce phosphor (NYAG4454) manufactured by Intematix is used as a light emitter that realizes the light emission of the fluorescence, but the type of the phosphor is not limited to this.
  • the YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -garnet phosphor activated with Ce.
  • the YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
  • the compounding ratio of the YAG: Ce phosphor and the low melting point inorganic glass (low melting point glass) is, for example, about 30: 100.
  • the present invention is not limited to this, and when the laser light is diffused by the light emitting section 2 and the color component (for example, blue component) of the laser light is used, the above blending ratio is preferably about 10: 100.
  • the light emitting unit 2 may be one obtained by pressing a fluorescent material.
  • the sealing material is not limited to the above inorganic glass, and may be a so-called organic-inorganic hybrid glass or a resin material such as a silicone resin. However, considering heat resistance, the sealing material is preferably made of glass.
  • the translucent substrate 1 and The refractive index difference ⁇ n with respect to the light emitting unit 2 is preferably 0.35 or less.
  • the reflectance RE can be 1% or less.
  • the refractive index difference ⁇ n is set to 0.35 or less, it is preferable to set the refractive index of the translucent substrate 1 to 1.65 or more and the refractive index of the light emitting unit 2 to 2.0 or less.
  • white light or pseudo white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching, or mixing two colors satisfying a complementary color relationship.
  • a pseudo white color is realized by mixing two colors satisfying
  • the semiconductor laser 63 emits light having an oscillation wavelength in the blue region as laser light
  • the light emitting unit 2 generates a yellow light emitting phosphor (first phosphor) that emits fluorescence having a peak wavelength in the yellow region.
  • the composition which includes. In this case, the color temperature of the illumination light can be changed in a wide range.
  • the phosphor included in the light emitting unit 2 is not limited to one type of YAG: Ce phosphor, and may be a plurality of types.
  • the light emitting unit 2 includes a combination of a green light emitting phosphor and a red light emitting phosphor, which will be described later, white light can be realized by mixing with blue laser light.
  • the yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less.
  • the green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
  • yellow light emitting phosphor examples include a YAG: Ce phosphor and a Ca ⁇ -SiAlON: Eu phosphor doped with Eu 2+ .
  • the Ca ⁇ -SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
  • the green light emitting phosphor examples include various nitride-based or oxynitride-based phosphors.
  • the oxynitride phosphor is excellent in heat resistance and stable with high light emission efficiency, the light emitting portion 2 with excellent heat resistance and stable with high light emission efficiency can be realized.
  • Examples of the oxynitride phosphor that emits green light include ⁇ -SiAlON: Eu phosphor doped with Eu 2+ and Ca ⁇ -SiAlON: Ce phosphor doped with Ce 3+ .
  • the ⁇ -SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm.
  • the Ca ⁇ -SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
  • sialon phosphors oxynitride phosphors
  • Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms.
  • the sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ).
  • a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor can be obtained.
  • red light-emitting phosphor examples include various nitride-based phosphors.
  • a nitride-based phosphor Eu 2+ doped CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor) Etc.
  • These nitride-based phosphors can enhance color rendering properties by combining with the above-described oxynitride phosphors.
  • CASN Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%.
  • SCASN Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
  • nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 : Examples include Ce-activated nitride phosphors such as Ce.
  • the light emitting unit 2 includes, for example, a yellow light emitting phosphor and a red light emitting phosphor (second phosphor) that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less in order to improve color rendering. It is preferable to include.
  • a semiconductor nanoparticle phosphor using nanometer-size particles of a III-V compound semiconductor can also be used.
  • One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there.
  • InP indium phosphorus
  • the particle size was evaluated with a transmission electron microscope (TEM).
  • this phosphor since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
  • the light emitting unit 2 is a rectangular 1.5 mm ⁇ 4 mm ⁇ 0.5 mm, the area of the light receiving surface of the light-emitting portion 2 that laser light is irradiated (cross-section) is 6 mm 2.
  • the light emission part 2 may not be a rectangular parallelepiped, but may be a cylindrical shape.
  • the diffusing unit 3 diffuses and scatters laser light emitted outside without passing through the light emitting unit 2.
  • the diffusion unit 3 is provided around the light emitting unit 2 without a gap and has the same thickness as the light emitting unit 2. For this reason, a laser beam with a very small emission point emitted from the excitation light source unit (excitation light source) 6 can be emitted to the outside by expanding the emission point, thereby suppressing the influence on the human body (for example, making it eye-safe). Can do.
  • the size of the diffusing unit 3 may be any size as long as all of the laser light not irradiated on the light emitting unit 2 is irradiated. Moreover, the diffusion part 3 does not need to be provided with the same thickness around the light emitting part as long as the laser light that has not been irradiated onto the light emitting part 2 can be sufficiently diffused to increase the size of the light emitting point.
  • the diffusing unit 3 may have a larger cross section than the light emitting unit 2 and may be laminated on the surface of the light emitting unit 2 facing the laser light incident side.
  • the diffusion part 3 is obtained by mixing low-melting glass with fine powder of aerosil or Al 2 O 3 (about 10 nm to 5 ⁇ m) in a weight ratio of about 10 to 30%. Similar to the light emitting unit 2, the diffusion unit 3 is bonded (or fused) to the translucent substrate 1.
  • the diffusing unit 3 is not necessarily provided.
  • the light emitting unit 2 has a diffusing function, it can be realized by utilizing the difference between the refractive index of the sealing material included in the light emitting unit 2 and the phosphor. Therefore, the light emitting unit 2 is designed so as to have a deposition (particularly thickness) that can sufficiently diffuse the laser beam.
  • the diffusion function of the light emitting unit 2 may be realized by including diffusing particles (such as zirconium oxide or diamond) in the light emitting unit 2.
  • the reflecting mirror 4 reflects the light emitted from the light emitting unit 2 to form a light beam that travels within a predetermined solid angle. That is, the reflecting mirror 4 reflects the light from the light emitting unit 2 to form a light bundle that travels forward of the headlamp 60.
  • the reflecting mirror 4 is, for example, a curved surface (cup shape) member having a metal thin film formed on the surface thereof.
  • the reflecting mirror 4 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 4 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface.
  • the shape of the opening in the reflecting mirror 4 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 60 and its surroundings.
  • the fixing member 56 is a plate-like member having an insertion port through which the light guide member 9 is inserted, and the center of the light emitting end portion of the light guide member 9 and the center of the light receiving surface of the light emitting portion 2 substantially coincide with each other. As described above, the reflecting mirror 4 is fixed by a screw 78. The excitation light source unit 6 is joined to the fixing member 56 so as to surround the insertion port.
  • the material of the fixing member 56 is not particularly limited, metals such as iron and copper can be exemplified.
  • the fixing member 56 is formed with a storage portion 51 in which the support member 61 can be stored. Due to the presence of the storage portion 51, the support member 61 can be moved in the optical axis direction of the laser beam in accordance with the drive of the support member drive portion 62. By this movement, the laser light irradiation area (laser light irradiation region 79 (see FIG. 24)) in the light emitting section 2 (transparent member 1) can be changed. Details of the relationship between the movement of the light emitting unit 2 and the laser light irradiation region 79 will be described later with reference to FIGS. 24 and 25.
  • the excitation light source unit 6 is a housing that houses, for example, three semiconductor lasers (excitation light sources) 63.
  • the fixing method and wiring method of the semiconductor laser 63 the conventional fixing method and wiring method may be used, and the description thereof is omitted here.
  • the semiconductor laser 63 is a light emitting element that functions as an excitation light source that emits excitation light.
  • a semiconductor laser is used as an excitation light source.
  • an LED may be used.
  • the light emitting unit 2 can be irradiated with laser light having high output and high coherency, so that the light emitting unit 2 can be made small and a high-intensity headlamp 60 can be realized.
  • three semiconductor lasers 63 are illustrated in FIG. 22, it is not always necessary to provide a plurality of semiconductor lasers 63, and only one semiconductor laser 63 may be provided. However, it is easier to use a plurality of semiconductor lasers 63 in order to obtain high output pump light.
  • the semiconductor laser 63 has, for example, one light emitting point per chip, oscillates 450 nm (blue) laser light, has an output of 1.6 W, an operating voltage of 4.7 V, and a current of 1.2 A. , Enclosed in a metal package (stem) having a diameter of 9 mm. Therefore, the output as the whole excitation light source unit 6 is about 4.8W.
  • the metal package is not limited to one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 5.6 mm, or other, and it is preferable to select a package having a smaller thermal resistance.
  • the semiconductor laser 63 may have a plurality of light emitting points on one chip.
  • the oscillation wavelength of the semiconductor laser 63 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm.
  • the lens 82 is provided in the opening of the reflecting mirror 4 and seals the headlamp 60.
  • the fluorescence emitted from the light emitting unit 2, the scattered light scattered by the diffusion unit 3, or the fluorescence or scattered light reflected by the reflecting mirror 4 is emitted through the lens 82 to the front of the headlamp 60.
  • the lens 82 may be a convex lens or a concave lens.
  • the lens 82 does not necessarily have a lens function, and transmits the fluorescence emitted from the light emitting unit 2, the scattered light scattered by the diffusion unit 3, or the fluorescence reflected by the reflecting mirror 4 or the scattered light. What is necessary is just to have at least light property.
  • the light guide member 9 guides the laser beam oscillated by the semiconductor laser 63 to the light emitting unit 2, and includes an incident end (semiconductor laser 63 side) on which the laser beam emitted from the semiconductor laser 63 is incident, and an incident end. A light emitting end (on the light emitting unit 2 side) that emits laser light incident from the light source.
  • the light guide member 9 has a surrounding structure surrounded by a light reflection side surface that reflects the laser light incident on the incident end portion, and the light emitting member 9 has a light emitting end portion (on the light emitting portion 2 side) cut off.
  • the area is smaller than the cross-sectional area of the incident end.
  • the light guide member 9 has a rectangular pyramid-shaped cylindrical shape as a whole, and a cross section (opening) of the exit end is a rectangle of 1 mm ⁇ 3 mm, and a cross section of the incident end (opening). ) Is a rectangle of 15 mm ⁇ 15 mm.
  • the shape of the light guide member 9 is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed.
  • the length from the incident end to the exit end is 25 mm.
  • the light guide member 9 can emit the laser light incident on the incident end portion to the light emitting portion 2 after condensing the laser light on the emission end portion having a smaller cross-sectional area than the incident end portion. For this reason, even if it aims at high output using the some semiconductor laser 63, the light emission part 2 can be designed small. That is, it is possible to realize a headlamp 60 with high output and high brightness.
  • the light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
  • the laser light may be condensed on the light emitting unit 2 using an optical fiber or an optical lens instead of the light guide member 9.
  • the support member 61 supports the translucent substrate 1 including the light emitting unit 2, and can move the translucent substrate 1 in the optical axis direction of the laser light in conjunction with the drive of the support member driving unit 62. It is. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of the laser light emitted from the light guide member 9 increases (or decreases) in proportion to the distance from the light guide member 9, the size of the laser light irradiation region 79 (see FIG. 24) is increased. It can be changed.
  • the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62.
  • the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed.
  • the material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into the reflecting mirror 4 due to its movement, the material of the support member 61 is a material having translucency, similar to the translucent substrate 1. Is preferred. Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
  • the support member 61 is described as moving in the optical axis direction of the laser beam.
  • the optical axis is not necessarily required. There is no need to move in the direction.
  • the storage portion 51 of the support member 61 and the fixing member 56 may be provided so as to be movable in a direction having a predetermined angle from the optical axis of the laser beam.
  • the support member 61 may be provided in a direction perpendicular to the optical axis direction of the laser light, and a storage portion in which the support member 61 can be stored may be provided in the reflecting mirror 4 so that the support member 61 can move in that direction.
  • the light emitting unit 2 can be moved in a direction perpendicular to the optical axis direction of the laser light, and the irradiation region irradiated on the light emitting unit 2 in the laser light irradiation region 79 can be changed (FIG. 25). (See (a)).
  • the support member driving unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61.
  • the gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61.
  • One gear may be provided for the support member 61 or a plurality of combinations may be included.
  • the stepping motor should just be provided so that the rotation can be propagated to a gear.
  • the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
  • the gear of the support member driving unit 62 is brought into contact with the surface of the translucent substrate 1 perpendicular to the optical axis of the laser beam. You may let them. In this case, a groove is provided on the surface so as to mesh with the gear, and it is not necessary to provide the support member 61.
  • the support member drive unit 62 changes the amount of laser light applied to the light emitting unit 2 by changing the distance between the light emitting unit 2 and the light guide member 9 via the support member 61, and also the light emitting unit. It is possible to change the light amount of the laser light that is not irradiated onto 2 but directly becomes illumination light. That is, since the balance between the amount of fluorescent light and the amount of laser light contained in the illumination light can be changed, the color temperature of the illumination light can be changed.
  • the support member driving unit 62 changes the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the semiconductor laser 63 (hereinafter referred to as a conversion ratio).
  • a conversion ratio the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the semiconductor laser 63
  • the ratio of fluorescence to illumination light changes, so that the color temperature of the illumination light can be changed.
  • the relationship between the ratio of fluorescence and the change in color temperature of illumination light will be described later with reference to FIGS.
  • FIG. 23 is a block diagram illustrating an example of a schematic configuration of the headlamp 60.
  • the headlamp 60 includes an input unit 613 (input means), a control unit 614, and a storage unit 615 in addition to the components shown in FIG. Since the support member driving unit 62 and the semiconductor laser 63 have been described above, description thereof will be omitted. In the present embodiment, these members are described as components of the headlamp 60. However, the present invention is not limited to this. For example, an input unit, a control unit, and a storage unit included in a vehicle or the like to which the headlamp 60 is attached. May be realized.
  • the input unit 613 receives user operations such as a drive instruction of the support member drive unit 62 and an output change instruction of the semiconductor laser 63, and is realized by a touch pad or the like.
  • the movable control unit 641 operates the support member driving unit 62 according to the received user operation.
  • the user can give the above-described driving instruction via the input unit 613 while confirming the intensity of the illumination light with his / her eyes, so that the support member 61 can be driven each time the user performs an operation. . Therefore, the color temperature of the illumination light can be changed according to the user preference.
  • the control unit 614 mainly includes a movable control unit 641 and an output control unit 642.
  • the control unit 614 controls members constituting the headlamp 60, for example, by executing a control program.
  • the control unit 614 reads the program stored in the storage unit 615 into a primary storage unit (not shown) configured by, for example, a RAM (Random Access Memory) and executes the program, thereby driving the support member driving unit 62.
  • Various processes such as control and output control of the semiconductor laser 63 are performed.
  • the movable control unit 641 performs drive control of the support member drive unit 62 in accordance with the drive instruction received from the input unit 613. For example, every time a drive instruction is received, the movable control unit 641 performs predetermined drive on the stepping motor of the support member drive unit 62. Apply voltage.
  • the output control unit 642 controls the output of the semiconductor laser 63, and applies, for example, a drive voltage set during manufacture to the semiconductor laser 63. Alternatively, the output control unit 642 applies a predetermined drive voltage to the semiconductor laser 63 every time an output change instruction received from the input unit 613 is received.
  • the storage unit 615 records (1) a control program for each unit, (2) an OS program, (3) an application program, and (4) various data to be read when the program is executed by the control unit 614. It is.
  • the control unit 614 is configured by a nonvolatile storage device such as a ROM (Read Only Memory) flash memory.
  • the primary storage unit described above is configured by a volatile storage device such as a RAM. However, in the present embodiment, the storage unit 615 may be described as having the function of the primary storage unit.
  • the storage unit 615 stores, for example, a driving voltage value for the support member driving unit 62 or the semiconductor laser 63.
  • ⁇ About safety> When light having high energy is emitted from a light source having a small light emitting spot size and the light enters the human eye, the light source image is narrowed down to the small light emitting spot size on the retina.
  • the energy density can be very high.
  • laser light emitted from a laser light source semiconductor laser
  • the emission point size it is necessary to enlarge the emission point size to some extent (finite size) (specifically, for example, 1 mm ⁇ 1 mm or more).
  • the emission point size By enlarging the emission point size, the image size on the retina can be enlarged, so even if light of the same energy is incident on the eye, the energy density on the retina is reduced. It becomes possible.
  • the light emitting unit 2 is provided with a diffusion function, and the light emitting point size of the semiconductor laser 63 is increased, thereby ensuring safety for the human body, particularly for human eyes. (I make it safe).
  • the enlargement of the light emission point size can be considered not only for the laser light source but also for the LED light source.
  • the laser light is more monochromatic than the light emitted from the LED light source, that is, has a uniform wavelength, there is no blurring of the image on the retina (so-called chromatic aberration) due to the difference in wavelength, and it is more dangerous than the light. It is. For this reason, in an illuminating device that uses light emitted from a laser light source as illumination light, it is preferable to firmly consider the expansion of the emission point size.
  • FIG. 24 and FIG. 25 are used to describe how the size of the laser light irradiation region 79 changes or how the size (shape) of the laser light irradiation region 79 included in the light receiving surface of the light emitting unit 2 changes.
  • the shape of the light emitting section 2 is a cylindrical shape in FIG. 24, a rectangular parallelepiped (light receiving surface is square) in FIG. 25A, and a rectangular parallelepiped (light receiving surface in FIG. 25B). Is assumed to be a rectangle). 24 and 25, the diffusion unit 3 is not shown.
  • FIG. 24 is a diagram showing the positional relationship between the light emitting unit 2 and the light guide member 9 and the size of the laser light irradiation region 79 at that time.
  • A of the figure shows a case where the size of the laser beam irradiation region 79 substantially matches the size of the light receiving surface of the light emitting unit 2.
  • (b) in the figure shows a case where the light emitting unit 2 and the light guide member 9 are separated from each other as compared with the case (a), and
  • (c) shows a case where the light emitting unit 2 and the light emitting unit 2 are guided more than the case (a). The case where the position with the optical member 9 becomes close is shown.
  • the size of the light receiving surface of the light emitting unit 2 and the size of the laser light irradiation region 79 are substantially equal. I'm doing it. In this case, the color temperature of the illumination light assumed at the time of manufacture is realized.
  • the light emitting unit 2 is positioned at the focal position of the reflecting mirror 4 when the distance is d. Is provided. However, if the utilization efficiency is not taken into consideration, the light emitting unit 2 is not necessarily provided at the focal position of the reflecting mirror 4.
  • FIG. 24B shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d1 (> d).
  • the support member driving unit 62 moves through the support member 61 until the distance between the light emitting unit 2 and the light guide member 9 becomes d1. I am letting.
  • the size of the laser light irradiation region 79 is larger than the size of the light receiving surface of the light emitting unit 2.
  • FIG. 24C shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d2 ( ⁇ d).
  • the movable control unit 641 drives the support member driving unit 62 to move the light emitting unit 2 and the light guide member 9 until the distance is d2.
  • the size of the laser light irradiation region 79 is smaller than the size of the light receiving surface of the light emitting unit 2.
  • a condensing member such as a convex lens does not exist between the translucent substrate 1 and the light guide member 9, or when the exit end of the light guide member 9 is not in a shape capable of condensing laser light.
  • the optical path width of the laser light emitted from the light guide member 9 increases in proportion to the distance from the light guide member 9. That is, the laser light irradiation region 79 becomes larger as the light emitting unit 2 is separated from the light guide member 9.
  • the shape of the laser beam in this case is a tapered cone shape (more precisely, an elliptical cone shape).
  • the shape of the laser beam may be a perfect circular cone shape.
  • a condensing member may be provided between the translucent substrate 1 and the light guide member 9. Good.
  • the support member driving unit 62 changes the distance d1 within a range larger than d, the size of the laser light irradiation region 79 formed outside the light emitting unit 2 shown in FIG. Can be changed. That is, since the laser light leaking from the light emitting unit 2 can be used as a part of the illumination light, it is possible to realize a change in the color temperature of the illumination light, which is difficult when the illumination light is composed only of fluorescence.
  • the support member driving unit 62 changes the ratio of the laser light that is not irradiated to the light emitting unit 2 in the laser light emitted from the semiconductor laser 63. By changing this ratio, the conversion ratio can be changed, so that the color temperature of the illumination light can be changed.
  • the color temperature of the illumination light (laser light + fluorescence) shifts to the laser light (blue region) side. Further, in this case, the amount of laser light applied to the light emitting unit 2 is reduced, so that the amount of fluorescence is also reduced, and the color temperature of the illumination light is further shifted to the laser light side.
  • the support member driving unit 62 changes the laser beam irradiation region 79 formed on the light receiving surface of the light emitting unit 2 shown in FIG.
  • the size of can be changed.
  • the laser light irradiation region 79 is small on the light receiving surface of the light emitting unit 2 (when the density of the laser light is high)
  • the phosphor contained in the light emitting unit 2 is insufficient compared to the amount of laser light, or
  • the conversion efficiency to fluorescence decreases.
  • the amount of transmitted laser light increases, and the color temperature of illumination light can be increased.
  • the amount of the phosphor contained in the light emitting unit 2 is overwhelmingly larger than the amount of laser light, and the laser light can be transmitted through the light emitting unit 2 to some extent.
  • the amount of laser light transmitted through the light emitting unit 2 becomes smaller than the amount converted to fluorescence. Therefore, in this case, when the size of the laser light irradiation region 79 is reduced, the color temperature of the illumination light is lowered.
  • the support member driving unit 62 changes the size (irradiation area) of the laser light irradiation region 79 in the light emitting unit 2 of the laser light emitted from the semiconductor laser 63.
  • the color temperature of illumination light can be changed.
  • the amount of fluorescence decreases due to a change in the size of the laser light irradiation region 79, the amount of laser light relatively increases, so that the color temperature of the illumination light shifts to the laser light side.
  • the above conversion ratio depends on the distance between the semiconductor laser 63 and the light emitting unit 2. Change. For this reason, since the support member drive unit 62 can change the conversion ratio by moving the light emitting unit 2 via the support member 61 or the translucent substrate 1, the color temperature of the illumination light is changed. Can be made.
  • the illumination light emitted from the headlamp 60 of the present embodiment is the light emitting unit in the case of FIG. 24B (when the size of the laser light irradiation region 79 is larger than the light receiving surface of the light emitting unit 2). 2 and the laser light emitted from the semiconductor laser 63 (excitation light that is not converted into fluorescence). 24A and 24C (when the size of the laser light irradiation region 79 is the same as or smaller than the light receiving surface of the light emitting unit 2), the laser light is transmitted through the light emitting unit 2 to some extent. In the case of a possible configuration, it can be said that the illumination light includes fluorescence and laser light.
  • the support member driving unit 62 is configured to move the light emitting unit 2.
  • the present invention is not limited thereto, and for example, a configuration in which the conversion ratio is changed by moving the light guide member 9 may be used. .
  • the optical path width of the laser light emitted from the light guide member 9 is increased in proportion to the distance from the light guide member 9, but the optical path width is decreased in proportion to the distance. Even in this case, the conversion ratio can be changed by moving the light emitting unit 2 or the light guide member 9.
  • FIG. 25 is a diagram illustrating how the size (shape) of the laser light irradiation region 79 included in the light receiving surface of the light emitting unit 2 changes.
  • FIG. 25A shows a case where the light emitting unit 2 moves in a direction perpendicular to the optical axis direction of the laser light.
  • a part of the laser light leaks to the outside of the light emitting unit 2 due to the movement of the light emitting unit 2 from a state in which the light emitting unit 2 has been irradiated with all the laser light.
  • the color temperature of the illumination light can be increased.
  • the amount of laser light leaking out of the light emitting section 2 can be changed, so that the color temperature of the illumination light can be changed.
  • FIG. 25B shows a case where the light emitting unit 2 rotates. Also in this case, as the light emitting unit 2 rotates, the amount of laser light leaking out of the light emitting unit 2 can be changed, so that the color temperature of the illumination light can be changed.
  • a thin rod-like support member 61 is joined to the central axis of the light emitting unit 2, and a gear of the support member driving unit 62 is provided so as to rotate the support member 61.
  • FIG. 26 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp. As shown in the figure, the white chromaticity range required for vehicle headlamps is regulated by law. The chromaticity range is inside a polygon having six points 35 as vertices. A curve 33 indicates the color temperature (K: Kelvin).
  • the support member driving unit 62 is By changing the conversion ratio, the color temperature of the illumination light can be changed in the chromaticity range on the straight line 39. In this case, the color temperature can be changed over a wide range from about 4500K to 8500K.
  • the support member driving unit 62 can change the conversion ratio, thereby changing the illumination light in the chromaticity range on the straight line 43. In this case, the color temperature can be changed over a very wide range of about 3000K to 20000K.
  • the basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted. Further, the light emission principle of the light emitting unit 2 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
  • FIG. 27 is a view showing a modification of the headlamp 60.
  • the headlamp 60 includes a convex lens 161 (optical member) that bends the laser light emitted from the semiconductor laser 63 and emits the light to the light emitting unit 2 between the translucent substrate 1 and the light guide member 9.
  • the support member 61 is provided on a part of the outer periphery of the convex lens 161. That is, in the headlamp 60, the support member driving unit 62 moves the convex lens 161 instead of the light emitting unit 2, thereby realizing a change in the color temperature of the illumination light.
  • the optical path width of the laser light after passing through the convex lens 161 is different from the optical path width of the laser light before entering the convex lens 161, as shown in FIG. It can be emitted so as to change according to the distance. That is, the laser light is transmitted through the convex lens 161, and the optical path width is newly changed with the convex lens 161 as a base point. For this reason, since said conversion ratio changes according to the distance of the convex lens 161 and the light emission part 2, when the support member drive part 62 changes the distance, the color temperature of illumination light can be changed as a result. it can.
  • the convex lens 161 a biconvex lens, a plano-convex lens or the like having a sufficiently long focal length can be used.
  • a concave lens such as a biconcave lens or a plano-concave lens can be used instead of the convex lens 161. That is, the convex lens 161 may be any lens that can change the emission angle of the incident laser light, and may be an aspherical lens as long as it has the function.
  • the convex lens 161 is preferably coated with an optical film (reflection film) that prevents reflection of laser light.
  • an optical film reflection film
  • the shape and material of the convex lens 161 are not particularly limited as long as the lens has the above function, but it is preferable that the transmittance of 440 to 480 nm is high.
  • FIG. 28 is a view showing another modification of the headlamp 60.
  • the case where the optical axis of the laser light coincides with the straight line l passing through the center of the light emitting unit 2 and the optical path width of the laser light is increased in proportion to the distance from the light guide member 9 is described above. did.
  • the support member driving unit 62 (not shown) is connected to the excitation light source unit 6 (semiconductor laser 63) and the light guide.
  • the optical member 9 is rotated about the light emitting unit 2 to change the incident angle of the laser light with respect to the light emitting unit 2.
  • the headlamp 60 in FIG. 28 includes a lens 25.
  • the lens 25 is a lens that emits laser light emitted from the light guide member 9 as parallel light. If it is a lens which has the function, the shape and material of the lens 25 will not be specifically limited, However, It is preferable that it is a material with the high transmittance
  • FIG. 28A shows the laser beam when the incident angle of the laser beam emitted from the light guide member 9 with respect to the light receiving surface of the light emitting section 2 is 90 degrees (the optical axis of the laser beam coincides with the straight line l). The size of the irradiation area 79 is shown.
  • FIG. 28B shows the case where the incident angle of the laser light emitted from the light guide member 9 with respect to the light receiving surface of the light emitting portion 2 is 60 degrees (the optical axis of the laser light does not coincide with the straight line l). The size of the laser beam irradiation region 79 is shown.
  • the support member driving unit 62 changes the incident angle of the laser light incident on the light emitting unit 2 to change the laser light not irradiated on the light emitting unit 2 with respect to the total amount of laser light emitted from the light guide member 9.
  • the ratio of can be changed. That is, even when the optical path width of the laser light emitted from the light guide member 9 is constant (parallel light), the color temperature of the illumination light can be changed by changing the incident angle. .
  • FIG. 28 the case where the laser light irradiation region 79 is larger than the light receiving surface of the light emitting unit 2 has been described. However, even when the laser light irradiation region 79 is entirely included in the light receiving surface, the incident angle is changed. Thus, the color temperature of the illumination light can be changed. 28, the case of parallel light has been described. However, as described above, the lens 25 is not provided, and the optical path width of the laser light increases (or decreases) in proportion to the distance from the light guide member 9. Even if it exists, the effect similar to the case of FIG. 28 is acquired.
  • the headlamp 60 includes the support member driving unit 62 that changes the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the semiconductor laser 63. Thereby, since the ratio of the fluorescence with respect to illumination light changes, the color temperature of illumination light can be changed.
  • the headlamp 60 that uses laser light as illumination light is shown.
  • the total amount of light (total luminous flux) of the laser light is constant, if the amount of laser light that is not converted to fluorescence changes, the amount of fluorescence changes, so the laser light that has not been converted to fluorescence itself The effect on the illumination light changes.
  • the support member driving unit 62 has the size of the laser light irradiation region 79 and the light receiving surface of the light emitting unit 2.
  • the ratio of the laser beam irradiation region 79 to the laser beam By changing the ratio of the laser beam irradiation region 79 to the laser beam, the amount of laser beam that is not converted into fluorescence is changed. Then, for example, in the case of FIG. 24B and FIG. 24C, the ratio increases due to phosphor shortage relative to the amount of laser light or temperature rise of the light emitting unit 2 due to laser light irradiation.
  • FIG. 24B and FIG. 24C the ratio increases due to phosphor shortage relative to the amount of laser light or temperature rise of the light emitting unit 2 due to laser light irradiation.
  • the laser beam when the laser beam can be transmitted through the light emitting unit 2 to some extent, the light amount of the laser beam is reduced and the above ratio is reduced.
  • the size (ratio) of the laser light irradiation region 79 when the size (ratio) of the laser light irradiation region 79 is changed, the influence of the laser light itself that has not been converted into fluorescence on the illumination light is changed.
  • the headlamp 60 changes the ratio of the fluorescence to the illumination light (the amount of fluorescence finally used as the illumination light), so that the color temperature of the illumination light can be changed.
  • FIG. 29 is a diagram showing a schematic configuration of the headlamp 70 (illumination device, headlamp).
  • symbol is attached
  • the headlamp 70 includes a semiconductor laser 63 and a light emitting diode 64 (second light source).
  • the headlamp 70 includes a light guide 513 that guides the excitation light emitted from the semiconductor laser 63 to the light emitting unit 2, and a light guide 514 that guides the blue light from the light emitting diode 64 to the reflection member 26. Yes.
  • the light emitting diode 64 emits light (second light) different from the laser light emitted from the semiconductor laser 63.
  • the different light refers to incoherent light emitted from the light emitting diode 64, for example.
  • the light emitted from the light emitting diode 64 has the same wavelength as the oscillation wavelength of the semiconductor laser 63. That is, the light emitted from the light emitting diode 64 is blue light.
  • the light guides 513 and 514 are truncated cone-shaped light guide members, which are optically coupled to the semiconductor laser 63 and the light emitting diode 64 and have the same functions as the light guide member 9.
  • the light guides 513 and 514 may have a truncated pyramid shape, and the shape is not limited.
  • a support member 61 is joined to the light guide 513 in order to move the light guide 513 in the optical axis direction of the laser light. For this reason, the light guide part 513 can be moved by the support member drive part 62 moving the support member 61.
  • the entire laser light irradiation region 79 is designed to be within the light receiving surface of the light emitting unit 2.
  • the reflecting mirror 4 is provided with a storage portion 46 so that the support member 61 can be moved.
  • the storage unit 46 has the same function as the storage unit 51.
  • the reflecting member 26 reflects the light emitted from the light emitting diode 64 to the reflecting mirror 4.
  • the shape and material of the reflection member 26 may be any as long as it has the reflection function. Further, the light emitting unit 2 and the reflecting member 26 are provided at the focal position of the reflecting mirror 4 in order to increase the use efficiency of the fluorescence emitted from the light emitting unit 2 and the light emitted from the light emitting diode 64 as illumination light. preferable.
  • the diffusing unit 3 may be provided to diffuse the light emitted from the light emitting diode 64.
  • the structure which makes the said light directly as illumination light, without providing the reflection member 26 may be sufficient.
  • the headlamp 70 includes a light emitting diode 64 that is a light source different from the semiconductor laser 63, so that the light emitted from the light emitting diode 64 can be used as part of the illumination light.
  • the support member driving unit 62 changes the conversion ratio and changes the amount of fluorescence, thereby changing the ratio of the fluorescence to the illumination light (the amount of fluorescence finally used as the illumination light). be able to.
  • the color temperature of illumination light can be changed. That is, in the headlamp 70, the color temperature change of the illumination light can be realized without using the laser light emitted from the semiconductor laser 63.
  • FIG. 30 is a diagram illustrating a schematic configuration of a headlamp 80 (illumination device, headlamp).
  • symbol is attached
  • the headlamp 80 according to the present embodiment is different from the above-described headlamp 70 in that the semiconductor lasers 63a and 63b (first excitation light source and second excitation light source) and the light emission units 24a and 24b (first light emission unit and second light emission). Part).
  • the semiconductor lasers 63a and 63b have the same function as the semiconductor laser 63, but their oscillation wavelengths are different.
  • the oscillation wavelength of the semiconductor laser 63a is the same as that of the semiconductor laser 63 (wavelength of 450 nm or more and 480 nm or less) in order to mainly excite the yellow light emitting phosphor efficiently.
  • the oscillation wavelength of the semiconductor laser 63b is an oscillation wavelength in the vicinity of 405 nm in order to mainly excite the green light emitting phosphor efficiently.
  • the semiconductor laser 63b emits a second laser beam (second excitation beam) having an oscillation wavelength different from that of the laser beam (first excitation beam) emitted from the semiconductor laser 63a.
  • the light emitting unit 24a includes a yellow light emitting phosphor, and receives the laser light emitted from the semiconductor laser 63a to emit fluorescence (first fluorescence).
  • the light emitting unit 24b includes a green light emitting phosphor, and receives the second laser light emitted from the semiconductor laser 63b to emit fluorescence (second fluorescence).
  • the light emitting units 24a and 24b may include a red light emitting phosphor in order to improve color rendering.
  • the support members 61 are joined to the light guides 513 and 514, respectively. Also in the present embodiment, as in the sixth embodiment, it is not necessary to use the laser light leaking from the light emitting portions 24a and 24b. Therefore, in principle, all of the laser light irradiation regions 79 are light receiving surfaces of the light emitting portions 24a and 24b. Designed to fit within.
  • the reflecting mirror 4 is provided with storage portions 46 at two locations.
  • the headlamp 80 includes a plurality of excitation light sources and light emitting units, and when using fluorescence emitted from each light emitting unit (including at least fluorescent light of different colors) as illumination light, the amount of the fluorescence changes. The ratio of each fluorescence to the illumination light changes.
  • the support member driving unit 62 moves the two support members 61 separately, so that the laser beams emitted from the light guide units 513 and 514 are formed on the light receiving surfaces of the light emitting units 24a and 24b.
  • Each size of the light irradiation region 79 can be changed separately.
  • the support member driving unit 62 has a ratio of the laser light that is not converted into fluorescence by the light emitting unit 24a in the laser light emitted from the semiconductor laser 63a, and the light emission of the laser light emitted from the semiconductor laser 63b. At least one of the proportions of the second laser light that is not converted into fluorescence by the unit 24b is changed.
  • the amount of fluorescence emitted from each of the semiconductor lasers 63a and 63b changes, and the ratio of each fluorescence to the illumination light changes. Therefore, the amount of fluorescence finally used as illumination light changes, and the illumination light
  • the color temperature can be changed. That is, also in the headlamp 80, the color temperature change of the illumination light can be realized without using the laser light emitted from the semiconductor lasers 63a and 63b.
  • the support member driving unit 62 moves only the light guide unit 513 or the light guide units 513 and 514 via the support member 61, thereby realizing a change in the color temperature of the illumination light. It was. However, the color temperature change of the illumination light may be realized by changing the outputs of the semiconductor lasers 63, 63a and 63b and the light emitting diode 64.
  • the input unit 613 acquires an output change instruction
  • the output control unit 642 controls the output of the semiconductor lasers 63, 63a and 63b or the light emitting diode 64 according to the instruction.
  • the output control unit 642 functions as a light amount changing mechanism that changes at least one of the output of the laser light emitted from the semiconductor laser 63 and the output of the second light emitted from the light emitting diode 64.
  • the output control unit 642 functions as a light amount changing mechanism that changes at least one of the output of the laser light emitted from the semiconductor laser 63a and the output of the second laser light emitted from the semiconductor laser 63b.
  • a laser downlight 200 includes an excitation light source unit 6a including at least one semiconductor laser 63 that emits laser light, and at least one light emitting unit 210 including a light emitting unit 2 and a recess 212 as a reflecting mirror. Is provided. Then, the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61, and thereby the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 out of the laser light emitted from the semiconductor laser 63 is set. Change. Thereby, since the ratio of the fluorescence with respect to illumination light changes like Embodiment 2, the laser downlight 200 which can change the color temperature of illumination light is realizable.
  • the LD chip 11 shown in FIG. 8 of the first embodiment is replaced with the semiconductor laser 63, and the translucent plate 213 has the same function as the lens 82. Since the configuration is the same as that of the laser downlight 200 described in the first embodiment, the description thereof is omitted.
  • an illumination device (laser illumination light source) according to an embodiment of the present invention relates to a laser illumination light source including a phosphor light emitting unit and a semiconductor laser that is an excitation light source.
  • Excitation light is irradiated from a region smaller than the size of the phosphor light emitting part to an area exceeding it (that is, excitation light irradiation area ⁇ phosphor light emitting part area ⁇ excitation light irradiation area), and the excitation light irradiation area is changed.
  • the color temperature is changed by changing the ratio of fluorescence.
  • the laser illumination light source uses a blue semiconductor laser as an excitation light source, and as a phosphor, a yellow phosphor that emits yellow light, or a green phosphor that emits green light and a red phosphor that emits red light. Is preferred.
  • the visibility of an object when the object is irradiated with illumination light varies depending on the color temperature of the illumination light.
  • the lighting device of the present invention can change the color temperature by providing the light quantity changing mechanism, for example, a measuring instrument (tester) capable of measuring the visibility is manufactured and installed in the lighting device store.
  • a measuring instrument tester capable of measuring the visibility
  • the illuminating device of the present invention is realized as a vehicle headlamp, the above-mentioned measuring instrument is installed in an automobile dealer so that the above selection can be made when an individual purchases an automobile.
  • the storage unit 615 selects information that identifies the owner of the lighting device of the present invention (or an object (such as a vehicle) including the lighting device) or a user who frequently uses the lighting device, and the owner or the user selects it.
  • Information indicating the color temperature may be stored in association with each other.
  • the input unit 613 acquires information specifying the owner or the user
  • the movable control unit 641 reads out information indicating the color temperature corresponding to the information from the storage unit 615, and the support member driving unit 62 is moved. Driven to move the support member 61.
  • the lighting device of the present invention can automatically switch to the color temperature suitable for the preference.
  • a headlamp (headlight) 90 for an automobile will be described as an example as an example of the illumination device of the present invention.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
  • the headlamp 90 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
  • FIG. 32 is a half sectional view showing a schematic configuration of the headlamp 90.
  • the headlamp 90 includes a translucent substrate 1, a light emitting unit 2, a reflecting mirror 4, a fixing member 56, an excitation light source unit (excitation light source) 6, screws 78, a lens 82, a light guide member 9, A support member 61 and a support member driving unit 62 are provided.
  • the excitation light source unit 6, the light guide member 9, and the light emitting unit 2 form a basic structure of the light emitting device.
  • the support member 61 and the support member drive unit 62 form a basic structure of the irradiation range changing mechanism.
  • the light emitting unit 2 includes a plurality of light emitting units (for example, the first light emitting unit 2a and the second light emitting unit 2b), but it is not particularly necessary to explain each individual light emitting unit. May be collectively referred to as “light emitting unit 2”.
  • the translucent substrate 1 is a flat member and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) as excitation light.
  • the translucent substrate 1 may have a curved portion instead of a flat plate.
  • at least the portion to which the light emitting unit 2 is bonded is From the viewpoint of adhesion stability, a flat surface (plate shape) is preferable.
  • the translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm ⁇ width of 10 mm ⁇ thickness of 0.5 mm. Note that the outer diameter of the light-transmitting substrate 1 illustrated in FIG.
  • the light emitting unit 2 is disposed on the surface of the translucent substrate 1 that faces the surface on which the laser beam is incident, and is thermally connected to the light emitting unit 2 (that is, capable of transferring thermal energy). ing.
  • the light-transmitting substrate 1 and the light-emitting portion 2 are described as being bonded (adhered) using an adhesive, but the light-transmitting substrate 1 and the light-emitting portion 2 are bonded.
  • the method is not limited to adhesion, and may be, for example, fusion.
  • the adhesive so-called organic adhesives and glass paste adhesives are suitable, but not limited thereto.
  • the translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that heat generated from the light emitting unit 2 while fixing (holding) the light emitting unit 2 to the substrate surface. Since heat is radiated to the outside, the cooling efficiency of the light emitting unit 2 can be improved.
  • the material of the translucent substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above. This is because these materials have excellent thermal conductivity (for example, 20 W / mK or more) and translucency. If this point is not taken into consideration, the material is not limited to these materials, and may be glass (quartz), for example.
  • MgO magnesia
  • GaN gallium nitride
  • MgAl 2 O 4 spinel
  • the material is not limited to these materials, and may be glass (quartz), for example.
  • the thickness of the translucent substrate 1 shown in FIG. 32 is preferably 30 ⁇ m or more and 5.0 mm or less, more preferably 0. More preferably, it is 2 mm or more and 5.0 mm or less. If the thickness of the translucent substrate 1 exceeds 5.0 mm, the rate at which the laser light applied to the light emitting unit 2 is absorbed in the translucent substrate 1 increases, but the heat dissipation effect is greatly improved. In addition, the cost of the member also increases.
  • the light emitting unit 2 emits fluorescence upon receiving laser light emitted from the semiconductor laser 63, and includes a first light emitting unit 2a and a second light emitting unit 2b.
  • the second light emitting unit 2b is provided so as to be in contact with the outer periphery of the first light emitting unit 2a.
  • the first light emitting unit 2a and the second light emitting unit 2b have a double structure.
  • the first light emitting unit 2a is disposed on the translucent substrate 1 so that the optical axis of the laser light emitted from the light guide member 9 passes through the center thereof.
  • positioning of the 1st light emission part 2a and the 2nd light emission part 2b is mentioned later.
  • the first light emitting unit 2 a includes a first phosphor that emits first fluorescence upon receiving laser light emitted from the semiconductor laser 63 via the light guide member 9.
  • a YAG: Ce phosphor (NYAG4454) manufactured by Intematix is used as a yellow phosphor that emits fluorescence having a peak wavelength in the yellow region by receiving laser light in the blue region as the first phosphor.
  • the type of phosphor is not limited to this.
  • the YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -Garnet phosphor activated with Ce.
  • the YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
  • the second light emitting unit 2b includes a second phosphor that receives laser light and emits second fluorescence having a peak wavelength different from that of the first fluorescence.
  • a CaAlSiN 3 : Eu phosphor (CASN: doped with Eu 2+ as a red light-emitting phosphor that emits fluorescence having a peak wavelength in the red region upon receiving laser light in the blue region. Eu phosphor).
  • the kind of the phosphor used for the second phosphor is not limited to this, and for example, SrCaAlSiN 3 : Eu phosphor doped with Eu 2+ (SCASN: Eu phosphor) may be used as the second phosphor.
  • the compounding ratio of the YAG: Ce phosphor and the low melting point inorganic glass (low melting point glass) in the first light emitting unit 2a is, for example, about 30: 100.
  • the above blending ratio is preferably about 10: 100.
  • the compounding ratio of CASN: Eu fluorescent substance and low melting glass in the 2nd light emission part 2b is about 20: 100, for example, it does not need to be restricted to this.
  • the light emitting unit 2 may be one obtained by pressing a fluorescent material.
  • the sealing material is not limited to the above-mentioned inorganic glass, and may be a so-called organic-inorganic hybrid glass or a resin material such as silicon resin. However, considering heat resistance, the sealing material is preferably made of glass.
  • the first phosphor of the first light emitting unit 2a is doped with Eu 2+ as a green phosphor emitting a fluorescent light having a peak wavelength in the green region by receiving laser light in the blue region instead of the yellow light emitting phosphor.
  • ⁇ -SiAlON: Eu phosphor may be used.
  • each of the first light emitting unit 2a and the second light emitting unit 2b includes one type of phosphor.
  • the present invention is not limited thereto, and two or more types of phosphors may be included.
  • the first light emitting unit 2a may include a YAG: Ce phosphor and a ⁇ -SiAlON: Eu phosphor
  • the second light emitting unit 2b may include a CASN: Eu phosphor and a ⁇ -SiAlON: Eu phosphor.
  • at least a part of the phosphors included in the first light emitting unit 2a and the second light emitting unit 2b may be different.
  • the first light emitting unit 2a includes a YAG: Ce phosphor and a CASN: Eu phosphor.
  • the second light emitting unit 2b may include a CASN: Eu phosphor.
  • the first light emitting unit 2a irradiates the first light emitting unit 2a with laser light without diffusing the laser light. Can produce white light.
  • the translucent substrate 1 and The refractive index difference ⁇ n with respect to the light emitting unit 2 is preferably 0.35 or less.
  • the reflectance RE can be 1% or less.
  • the refractive index difference ⁇ n is set to 0.35 or less, it is preferable to set the refractive index of the translucent substrate 1 to 1.65 or more and the refractive index of the light emitting unit 2 to 2.0 or less.
  • white light or pseudo white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching, or mixing two colors satisfying a complementary color relationship.
  • a combination of blue laser light emitted from a semiconductor laser 63 described later and a YAG: Ce phosphor (yellow light emitting phosphor) or the blue
  • a pseudo white color is realized by a combination of a laser beam and a ⁇ -SiAlON: Eu phosphor (green light-emitting phosphor) (mixture of two colors satisfying a complementary color relationship).
  • the yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less.
  • the green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
  • yellow light emitting phosphor examples include a YAG: Ce phosphor and a Ca ⁇ -SiAlON: Eu phosphor doped with Eu 2+ .
  • the Ca ⁇ -SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
  • the green light emitting phosphor examples include various nitride-based or oxynitride-based phosphors.
  • the oxynitride phosphor is excellent in heat resistance and stable with high luminous efficiency, the first light emitting portion 2a with excellent heat resistance and stable with high luminous efficiency can be realized.
  • Examples of the oxynitride phosphor that emits green light include a ⁇ -SiAlON: Eu phosphor and a Ca ⁇ -SiAlON: Ce phosphor doped with Ce 3+ .
  • the ⁇ -SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm.
  • the Ca ⁇ -SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
  • sialon phosphors oxynitride phosphors
  • Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms.
  • the sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ).
  • a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor can be obtained.
  • red light-emitting phosphor examples include various nitride-based phosphors.
  • examples of the nitride-based phosphor include CASN: Eu phosphor and SCASN: Eu phosphor.
  • the CASN: Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 649 nm, and its luminous efficiency is 73%.
  • the SCASN Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
  • nitride-based phosphors can enhance color rendering properties when combined with the above-described oxynitride phosphors such as the yellow light-emitting phosphor and the green light-emitting phosphor.
  • nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 :
  • Ce-activated nitride phosphors such as Ce.
  • the light emitting unit 2 includes a first light emitting unit 2a including a yellow light emitting phosphor or a green light emitting phosphor and a red light emitting phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm to 650 nm.
  • Two light emitting portions 2b are provided. Thereby, when blue laser light is irradiated to both the 1st light emission part 2a and the 2nd light emission part 2b, the color rendering property as the light emission part 2 whole can be improved.
  • a semiconductor nanoparticle phosphor using nanometer-sized particles of a III-V compound semiconductor can also be used.
  • One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there.
  • InP indium phosphorus
  • the particle size was evaluated with a transmission electron microscope (TEM).
  • this phosphor since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
  • the reflecting mirror 4 reflects the light emitted from the light emitting unit 2 to form a light beam that travels within a predetermined solid angle. That is, the reflecting mirror 4 reflects the light from the light emitting unit 2 to form a light bundle that travels forward of the headlamp 90.
  • the reflecting mirror 4 is, for example, a curved surface (cup shape) member having a metal thin film formed on the surface thereof.
  • the reflecting mirror 4 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 4 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface.
  • the shape of the opening in the reflecting mirror 4 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 90 and its periphery.
  • the light emitting unit 2 is provided at the focal position of the reflecting mirror 4.
  • the laser light irradiation is set so that the first fluorescence emitted from the first light emitting unit 2a is used as illumination light at the time of manufacture.
  • the 1st light emission part 2a is arrange
  • the fixing member 56 is a plate-like member formed with an insertion port through which the light guide member 9 is inserted, and the center of the light emitting end portion of the light guide member 9 and the light receiving surface of the light emitting unit 2 (with the translucent substrate 1 and It is fixed to the reflecting mirror 4 with a screw 78 so that the center of the contact surface) substantially coincides with the center.
  • the center of the light emitting end of the light guide member 9 is fixed so that the center of the light receiving surface of the first light emitting unit 2a substantially coincides.
  • the excitation light source unit 6 is joined to the fixing member 56 so as to surround the insertion port.
  • the material of the fixing member 56 is not particularly limited, metals such as iron and copper can be exemplified.
  • the fixing member 56 is formed with a storage portion 51 in which the support member 61 can be stored. Due to the presence of the storage portion 51, the support member 61 can be moved in the optical axis direction of the laser beam in accordance with the drive of the support member drive portion 62. By this movement, the laser light irradiation range (the size of the laser light irradiation region 79 (see FIG. 36)) in the light emitting unit 2 can be changed. Details of the relationship between the movement of the light emitting unit 2 and the laser light irradiation region 79 will be described later with reference to FIG.
  • the excitation light source unit 6 is a housing that houses, for example, three semiconductor lasers (excitation light sources) 63.
  • the fixing method and wiring method of the semiconductor laser 63 the conventional fixing method and wiring method may be used, and the description thereof is omitted here.
  • the semiconductor laser 63 is a light emitting element that functions as an excitation light source that emits excitation light.
  • a semiconductor laser is used as an excitation light source.
  • an LED may be used.
  • the light emitting unit 2 can be irradiated with a laser beam having high output and high coherency, so that the light emitting unit 2 can be made small and a high-luminance headlamp 90 can be realized.
  • three semiconductor lasers 63 are illustrated in FIG. 32, it is not always necessary to provide a plurality of semiconductor lasers 63, and only one semiconductor laser 63 may be provided. However, it is easier to use a plurality of semiconductor lasers 63 in order to obtain high output pump light.
  • the semiconductor laser 63 has, for example, one light emitting point per chip, oscillates 450 nm (blue) laser light, has an output of 1.6 W, an operating voltage of 4.7 V, and a current of 1.2 A. , Enclosed in a metal package (stem) having a diameter of 9 mm. Therefore, the output as the whole excitation light source unit 6 is about 4.8W.
  • the metal package is not limited to one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 5.6 mm, or other, and it is preferable to select a package having a smaller thermal resistance.
  • the semiconductor laser 63 may have a plurality of light emitting points on one chip.
  • the oscillation wavelength of the semiconductor laser 63 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm.
  • the semiconductor laser 63 emits laser light having an oscillation wavelength in the blue region.
  • the first light emitting unit 2a includes at least a YAG: Ce phosphor that emits fluorescence having a peak wavelength in the yellow region as a first phosphor, or a ⁇ -SiAlON: Eu phosphor that emits fluorescence having a peak wavelength in the green region. including.
  • the color temperature of the illumination light emitted from the first light emitting unit 2a can be increased.
  • the ⁇ -SiAlON: Eu phosphor has high luminous efficiency, when the phosphor is used as the first phosphor, the luminous efficiency of the first light emitting unit 2a can be increased.
  • the lens 82 is provided in the opening of the reflecting mirror 4 and seals the headlamp 90.
  • the fluorescence or scattered light emitted from the light emitting unit 2 or the fluorescence or scattered light reflected by the reflecting mirror 4 is emitted to the front of the headlamp 90 through the lens 82.
  • the lens 82 may be a convex lens or a concave lens.
  • the lens 82 does not necessarily have a lens function, and has at least translucency that transmits the fluorescence or scattered light emitted from the light emitting unit 2 or the fluorescence or scattered light reflected by the reflecting mirror 4. Just do it.
  • the light guide member 9 guides the laser beam oscillated by the semiconductor laser 63 to the light emitting unit 2, and includes an incident end (semiconductor laser 63 side) on which the laser beam emitted from the semiconductor laser 63 is incident, and an incident end. A light emitting end (on the light emitting unit 2 side) that emits laser light incident from the light source.
  • the light guide member 9 has a surrounding structure surrounded by a light reflecting side surface that reflects the laser light incident on the incident end portion, and the cross-sectional area of the output end portion of the light guide member 9 is the incident end portion. It is smaller than the cross-sectional area.
  • the light guide member 9 has a rectangular pyramid-shaped cylindrical shape as a whole, and a cross section (opening) of the exit end is a rectangle of 1 mm ⁇ 3 mm, and a cross section of the incident end (opening). ) Is a rectangle of 15 mm ⁇ 15 mm.
  • the shape of the light guide member 9 is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed.
  • the length from the incident end to the exit end is 25 mm.
  • the light guide member 9 can emit the laser light incident on the incident end portion to the light emitting portion 2 after condensing the laser light on the emission end portion having a smaller cross-sectional area than the incident end portion. For this reason, even if it aims at high output using the some semiconductor laser 63, the light emission part 2 can be designed small. That is, a high output and high brightness headlamp 90 can be realized.
  • the light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
  • the laser light may be condensed on the light emitting unit 2 using an optical fiber or an optical lens instead of the light guide member 9.
  • the support member 61 supports the translucent substrate 1 to which the light emitting unit 2 is bonded, and the translucent substrate 1 can be moved in the optical axis direction of the laser light in conjunction with the drive of the support member driving unit 62. Is something. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of the laser light emitted from the light guide member 9 increases (or decreases) in proportion to the distance from the light guide member 9, the size of the laser light irradiation region 79 (see FIG. 36) is increased. It can be changed.
  • the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62.
  • the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed.
  • the material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into the reflecting mirror 4 due to its movement, the material of the support member 61 is a material having translucency, similar to the translucent substrate 1. Is preferred. Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
  • the support member 61 is described as moving in the optical axis direction of the laser beam.
  • the optical axis is not necessarily required. There is no need to move in the direction.
  • the support member driving unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61.
  • the gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61.
  • One gear may be provided for the support member 61 or a plurality of combinations may be used.
  • the stepping motor should just be provided so that the rotation can be propagated to a gear.
  • the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
  • the entire light receiving surface of the first light emitting unit 2a is designed to be irradiated with laser light. For this reason, if it uses it with the state at the time of manufacture, the headlamp 90 will radiate
  • the support member driving unit 62 changes the relative positions of the light guide member 9 and the first light emitting unit 2a and the second light emitting unit 2b (that is, the relative positions of the semiconductor laser 63 and these light emitting units).
  • the irradiation range of the laser light applied to the second light emitting unit 2b is changed while the irradiation range of the laser light in the first light emitting unit 2a is made constant.
  • the optical path width of the laser light emitted from the semiconductor laser 63 is generally increased according to the distance from the emission point. For this reason, the laser irradiation range (the ratio of the second light emitting unit 2b included in the laser light irradiation region 79) in the second light emitting unit 2b can be changed by the change.
  • FIG. 33 shows a further configuration of the headlamp 90, but each member shown in FIG. 33 has the same function as each member of the headlamp 60 shown in FIG.
  • FIG. 34 shows an arrangement example of the first light emitting unit 2 a and the second light emitting unit 2 b in the headlamp 90.
  • (A) is an arrangement example in the case where the entire light emitting unit 2 has a rectangular parallelepiped shape
  • (b) is an arrangement example in which the first light emitting unit 2a and the second light emitting unit 2b are non-contact
  • (c) is the light emitting unit 2.
  • An arrangement example when the whole is a cylindrical shape
  • (d) shows an arrangement example when the entire light emitting unit 2 has a cylindrical shape and the light emitting unit 2 has a triple structure.
  • the support member driving unit 62 changes the distance between the light guide member 9 and the light emitting unit 2, thereby irradiating the second light emitting unit 2 b with the first light emitting unit 2 a to irradiate the laser light with the color temperature. Change. Therefore, in the arrangement shown in FIG. 34, the laser light irradiation region 79 (the ratio of the second light emitting unit 2b included in the region) is changed more efficiently than in the arrangement shown in FIG. 40A, for example. be able to.
  • FIG. 34 (a) shows an arrangement example in the light emitting unit 2 shown in FIG. 32, and the second light emitting unit 2b is provided so as to be in contact with the outer periphery of the first light emitting unit 2a.
  • the first light emitting unit 2a is a rectangular parallelepiped having a length of 1.5 mm, a width of 4 mm, and a thickness of 0.5 mm
  • the second light emitting unit 2b has a hollow portion corresponding to the size of the first light emitting unit 2a. It is a rectangular parallelepiped of 4.5 mm ⁇ 7 mm wide ⁇ 0.5 mm thick.
  • size of the 1st light emission part 2a and the 2nd light emission part 2b is not restricted to this.
  • the size of the light receiving surface of the first light emitting unit 2a is such that the light emitting unit 2 includes the entire laser light irradiation region 79 (see FIG. 36) when the distance from the light guide member 9 is the shortest. I just need it.
  • the size of the light receiving surface of the entire light emitting unit 2 may be a size that includes the entire laser light irradiation region 79 when the light emitting unit 2 is farthest from the light guide member 9.
  • the thicknesses of the first light-emitting part 2a and the second light-emitting part 2b are not limited to the above, and for example, it is preferable to have a thickness that increases the conversion efficiency to fluorescence or the heat dissipation efficiency.
  • the light receiving surface of the light emitting unit 2 is a rectangle
  • the present invention is not limited thereto, and may be a square.
  • the light receiving surface of the light emitting unit 2 is When it is a rectangle, it is preferable that it is a rectangle which has a long axis in a horizontal direction.
  • FIG. 34A for example, two low-melting-point glasses having the above-described shape are manufactured, and a YAG: Ce phosphor is dispersed inside one, and a CASN: Eu phosphor is dispersed inside the other, whereby the first light emitting unit 2a And the 2nd light emission part 2b is manufactured. Then, after positioning the 1st light emission part 2a with respect to the translucent board
  • the laser light emitted from the plurality of semiconductor lasers 63 is designed to be collected by the light guide member 9 and irradiated to the light emitting unit 2. For this reason, when the support member drive unit 62 changes the distance between the light guide member 9 and the light emitting unit 2 and irradiates the second light emitting unit 2b together with the first light emitting unit 2a, the non-contact is performed. Since the region (non-contact region A) is irradiated with the laser beam, the utilization efficiency of the laser beam is reduced accordingly.
  • the first light emitting unit 2a and the second light emitting unit 2b are arranged in contact with each other, it is possible to prevent a situation in which laser light is irradiated and not converted into fluorescence in the non-contact region A.
  • the laser light can be used for conversion of fluorescence without waste. If this point is not taken into account, or if the headlamp 90 is configured to use the laser light emitted from the non-contact area A as illumination light together with the first fluorescence, FIG. As shown, the 1st light emission part 2a and the 2nd light emission part 2b may be arrange
  • FIG. 34 (c) is a modification of FIG. 34 (a).
  • the first light emitting unit 2a is a cylinder having a diameter of 2.0 mm and a height of 0.5 mm
  • the second light emitting unit 2b has a hollow portion corresponding to the size of the first light emitting unit 2a.
  • the size and shape of the first light emitting unit 2a and the second light emitting unit 2b are preferably determined in consideration of the circumstances shown in FIG. 34 (a). An elliptical shape is preferable.
  • the light emitting unit 2 is not limited to a double structure, and may have a triple structure as shown in FIG. 34 (d), for example.
  • the light emitting section 2 has a hollow portion corresponding to the size of the first light emitting section 2a and the second light emitting section 2b, and has a cylindrical shape with a diameter of 4.0 mm and a height of 0.5 mm.
  • Part 2c is provided.
  • the first light emitting unit 2a includes a YAG: Ce phosphor
  • the second light emitting unit 2b includes a SCASN: Eu phosphor
  • the third light emitting unit 2c includes a CASN: Eu phosphor.
  • the color temperature can be changed more finely than in the case where the light emitting unit 2 includes two light emitting units.
  • the light emission part 2 may consist of four or more light emission parts.
  • the headlamp 90 is designed so that the first light emitting portion 2a (main body portion) is irradiated with laser light at the time of manufacture, and then the support member driving portion 62 causes the light emitting portion 2 to be irradiated. It is designed to be irradiated with laser light including the second light emitting part 2b (peripheral part) by being moved.
  • a phosphor having a shorter peak wavelength than the other light emitting units for example, the second light emitting unit 2b, the third light emitting unit 2c,...) Is used for the first light emitting unit 2a.
  • the headlamp 90 emits illumination light having the highest color temperature when used in a state as manufactured, and then moves the light emitting unit 2 away from the light guide member 9. Illumination light having a low color temperature is emitted.
  • the laser light irradiation region 79 (light emitting unit) 2).
  • the illumination area of the illumination light emitted from the light emitting unit 2 is enlarged in front of the vehicle by an optical system such as the reflecting mirror 4 and the lens 82.
  • an optical system such as the reflecting mirror 4 and the lens 82.
  • visibility and safety are higher when the illuminance of the illumination light is lowered and the front of the vehicle is widely irradiated.
  • the illumination light having a lower color temperature can irradiate the front of the vehicle more widely. Therefore, it is possible to provide a headlamp suitable for irradiation in bad weather (rainy weather, fog, etc.).
  • the phosphor having the longest peak wavelength is used as the first phosphor among the phosphors used in the light emitting unit 2 and used as it is at the time of manufacture.
  • the light emitting unit 2 may be configured to emit illumination light having the lowest color temperature.
  • each light emitting unit is manufactured separately and provided on the translucent substrate 1.
  • the present invention is not limited to this, and the light emitting units may be integrally formed.
  • the manufacturing process and the manufacturing cost can be reduced as compared with the case where each light emitting unit is manufactured separately and provided in the headlamp 90.
  • the light emitting unit 2 is manufactured as follows, for example. First, a sealing material having two different melting points (for example, a low melting point glass) is prepared, and a high melting point sealing material in which phosphors are dispersed is used (a cavity corresponding to the size of the first light emitting portion 2a). The second light emitting portion 2b having a portion is formed. Thereafter, the first light emitting unit 2a made of a low melting point sealing material in which another phosphor is dispersed is formed using the second light emitting unit 2b as an outer frame. Thereby, the integrally formed light emitting part 2 is obtained. Then, after positioning the light emission part 2 with respect to the translucent board
  • a sealing material having two different melting points for example, a low melting point glass
  • FIG. 35 is a view showing an example of the integrally formed light emitting portion 2, (a) is a cross-sectional view showing an example of the light emitting portion 2 bonded to the translucent substrate 1, and (b) is (a) It is a perspective view which shows an example of the light emission part 2 shown to).
  • the first light emitting unit 2a has a so-called mortar shape in which the size of the light receiving surface 201a irradiated with the laser light is larger than that of the emitting surface 202a that emits fluorescence.
  • the first light emitting unit 2a is a rectangular parallelepiped (the size of the light receiving surface 201a is substantially the same as the size of the emitting surface 202a). Compared with the case where it is, it can prevent that the 1st light emission part 2a remove
  • the shape of the light emitting unit 2 shown in FIG. 35 is not limited to the case where the first light emitting unit 2a and the second light emitting unit 2b are integrally formed, and the first light emitting unit 2a and the second light emitting unit 2b described above are formed. It can also be realized when manufactured separately.
  • FIG. 36 is a diagram showing the positional relationship between the light emitting unit 2 and the light guide member 9 and the size of the laser light irradiation region 79 at that time.
  • A of the figure shows a case where the size of the laser light irradiation region 79 is the smallest when the laser light is irradiated on the entire light receiving surface of the first light emitting unit 2a.
  • (b) of the figure shows the case where the positions of the light emitting unit 2 and the light guide member 9 are farther apart and the laser light irradiation region 79 is larger than in the case of (a), and
  • (c) is (b).
  • the laser light is irradiated to the entire light receiving surface of the first light emitting unit 2a, and the second light emission.
  • the portion 2b is hardly irradiated. For this reason, emission of illumination light having a high color temperature according to the setting of laser beam irradiation at the time of manufacture is realized.
  • the entire light receiving surface of the first light emitting unit 2a is irradiated with laser light. For example, if the first light emitting unit 2a has an elliptical shape that is the same shape as the laser light irradiation region 79, only the first light emitting unit 2a is used. Is irradiated with laser light.
  • FIG. 36B shows a case where the distance between the light emitting unit 2 and the light guide member 9 becomes d B (> d A ).
  • the movable control unit 641 drives the supporting member driving unit 62, the supporting member driving unit 62, via the support member 61 until the distance between the light emitting portion 2 and the light guide member 9 is d B The light emitting unit 2 is moved.
  • a condensing member such as a convex lens does not exist between the translucent substrate 1 and the light guide member 9, or when the exit end of the light guide member 9 is not in a shape capable of condensing laser light.
  • the optical path width of the laser light emitted from the light guide member 9 increases in proportion to the distance from the light guide member 9. That is, the laser light irradiation region 79 becomes larger as the light emitting unit 2 is separated from the light guide member 9.
  • the shape of the laser beam in this case is a tapered cone shape (more precisely, an elliptical cone shape).
  • the shape of the laser beam may be a perfect circular cone shape.
  • a condensing member may be provided between the translucent substrate 1 and the light guide member 9. Good.
  • the support member driving unit 62 changes the distance between the light emitting unit 2 and the light guide member 9 from d A to d B , so that the laser beam irradiation region 79 is changed.
  • the ratio of the 2nd light emission part 2b contained is larger than the case of Fig.36 (a). Since the second fluorescence can be emitted in addition to the first fluorescence, the proportion of the second fluorescence relative to the illumination light can be increased.
  • the second phosphor since the second phosphor has a longer peak wavelength than the first phosphor, the second fluorescence emitted from the second light emitting unit 2b has a lower color temperature than the first fluorescence. For this reason, the color temperature of illumination light can be made lower than the case of Fig.36 (a) by increasing the ratio of the 2nd fluorescence contained in illumination light.
  • FIG. 36 (c) shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d C (> d B ), and the ratio of the second light emitting unit 2 b included in the laser light irradiation region 79. Is larger than the case of FIG. Therefore, the color temperature of the illumination light can be further reduced.
  • the support member driving unit 62 changes the size of the laser light irradiation region 79 in the light emitting unit 2 through the support member 61.
  • the support member driving unit 62 changes the irradiation range of the laser light irradiated to the second light emitting unit 2b while keeping the irradiation range of the laser light in the first light emitting unit 2a constant, thereby changing the illumination range.
  • the ratio of the first fluorescence and the second fluorescence to the light can be changed. For this reason, since the spectrum of the illumination light emitted from the light emitting unit 2 can be changed, not only the color temperature of the illumination light but also the chromaticity of the illumination light and the spectrum included in the illumination light can be changed.
  • the support member drive unit 62 is configured to move the light emitting unit 2.
  • the configuration is not limited thereto, and for example, the size of the laser light irradiation region 79 is changed by moving the light guide member 9. There may be.
  • the optical path width of the laser light emitted from the light guide member 9 is increased in proportion to the distance from the light guide member 9, but the optical path width is decreased in proportion to the distance.
  • the size of the laser light irradiation region 79 can be changed by moving the light emitting unit 2 or the light guide member 9.
  • the change moves of the light emitting unit 2
  • the light emitting unit 2 may be positioned only when the distances are d A and d C. That is, the movement of the light emitting unit 2 may be performed stepwise instead of continuously.
  • the support member driving unit 62 gradually changes the state in which the laser light irradiation region 79 includes only the first light emitting unit 2a or the region includes the first light emitting unit 2a and the second light emitting unit 2b. Switch to.
  • the light emission part 2 contains three or more light emission parts, a color temperature change is realizable by performing the same switching.
  • FIG. 37 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp. As shown in the figure, the white chromaticity range required for vehicle headlamps is regulated by law. The chromaticity range is inside a polygon having six points 35 as vertices. A curve 33 indicates the color temperature (K: Kelvin).
  • the laser light is also applied to the light receiving surface of the second light emitting unit 2b from the state where the entire light receiving surface of the first light emitting unit 2a is applied.
  • the color temperature of the illumination light can be moved in the red direction, that is, the color temperature can be decreased.
  • the basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted. Further, the light emission principle of the light emitting unit 2 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
  • FIG. 38 is a view showing a modification of the headlamp 90.
  • This headlamp 90 bends the laser light emitted from the semiconductor laser 63 between the translucent substrate 1 and the light guide member 9, and forms at least one of the first light emitting part 2a and the second light emitting part 2b.
  • a convex lens 161 optical member that emits light is provided, and a support member 61 is provided on a part of the outer periphery of the convex lens 161. That is, in the headlamp 90, the support member driving unit 62 moves the convex lens 161 instead of the light emitting unit 2, thereby realizing a change in the color temperature of the illumination light.
  • the optical path width of the laser light after passing through the convex lens 161 is different from the optical path width of the laser light before entering the convex lens 161, as shown in FIG. It can be emitted so as to change according to the distance. That is, the laser light is transmitted through the convex lens 161, and the optical path width is newly changed with the convex lens 161 as a base point. For this reason, the distance between the convex lens 161 and the first light emitting unit 2a and / or the second light emitting unit 2b can be changed by moving the convex lens 161.
  • the support member driving unit 62 changes the distance, resulting in the color temperature of the illumination light. Can be changed.
  • the convex lens 161 a biconvex lens, a plano-convex lens or the like having a sufficiently long focal length can be used.
  • a concave lens such as a biconcave lens or a plano-concave lens can be used instead of the convex lens 161. That is, the convex lens 161 may be any lens that can change the emission angle of the incident laser light, and may be an aspherical lens as long as it has the function.
  • the convex lens 161 is preferably coated with an optical film (reflection film) that prevents reflection of laser light.
  • an optical film reflection film
  • the shape and material of the convex lens 161 are not particularly limited as long as the lens has the above function, but it is preferable that the transmittance of 440 to 480 nm is high.
  • the headlamp 90 includes a support member 61 and a support member driving unit 62 that change the irradiation range of the laser light irradiated to the second light emitting unit 2b while keeping the irradiation range of the laser light in the first light emitting unit 2a constant. I have. For this reason, since the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
  • the illumination device irradiates illumination light having a color temperature suitable for the situation in consideration of various surrounding situations (weather, time zone, road illumination conditions, etc.) when driving a car at night.
  • various surrounding situations weather, time zone, road illumination conditions, etc.
  • it is possible to further improve the safety of night driving.
  • it can be said that it is an illuminating device which can respond also to such needs.
  • FIG. 39 is a diagram showing a schematic configuration of the headlamp 100 (lighting device, headlamp).
  • symbol is attached
  • the headlamp 100 has a configuration in which the translucent substrate 1a can be moved in a direction perpendicular to the optical axis direction of the laser beam by the translucent substrate driving unit 62a.
  • the movement in the vertical direction is realized without the support member 61, but the configuration is not limited thereto, and the movement may be realized via the support member 61.
  • Translucent substrate 1a The function and material of the translucent substrate 1a are the same as those of the translucent substrate 1 of the ninth embodiment, but the size is, for example, 10 mm long ⁇ 15 mm wide ⁇ 0.5 mm thick. The length (length in the moving direction) is larger than the size of the opening of the reflecting mirror 4 on the light guide member 9 side. Further, the translucent substrate 1a is provided with a groove on the surface of the translucent substrate 1a on the laser light incident side (light guide member 9 side) so as to mesh with the gear of the translucent substrate driving unit 62a. Yes.
  • the translucent substrate 1a has a function of transmitting laser light
  • substrate 1a may be what kind of shape, and it does not need to be processed especially.
  • the translucent substrate driving unit 62a includes, for example, a stepping motor and a gear, and moves the light emitting unit 2 in the direction by moving the translucent substrate 1a in a direction perpendicular to the optical axis direction of the laser beam. Is. That is, in the present embodiment, the basic structure of the irradiation range changing mechanism is formed by the translucent substrate driving unit 62a.
  • the gear is provided such that the surface thereof is in contact with the translucent substrate 1a and the rotation axis thereof is perpendicular to the moving direction of the translucent substrate 1a.
  • the stepping motor should just be provided so that the rotation can be propagated to a gear.
  • the translucent substrate drive unit 62a moves the translucent substrate 1a in accordance with a movement instruction from the movable control unit 641 (see FIG. 33), as in the ninth embodiment.
  • substrate drive part 62a will be the translucent board
  • the configuration is not limited to the configuration in which 2) is moved, and may be a configuration in which the light guide member 9, the excitation light source unit 6 and the like are moved.
  • FIG. 40 shows an arrangement example of the first light emitting unit 2 a and the second light emitting unit 2 b in the headlamp 100.
  • (A) is the example of arrangement
  • (b) is a modification of (a), 1st light emission part 2a and 2nd light emission part 2b when the shape differs
  • (c) is a modification of (a), the arrangement example when the 1st light emission part 2a and the 2nd light emission part 2b are non-contact Show.
  • the size of the first light emitting unit 2a and the second light emitting unit 2b is 4.5 mm long ⁇ 3.5 mm wide ⁇ 0.5 mm thick. Is provided. This size is merely an example, and it may be any size in consideration of laser light irradiation, conversion efficiency to fluorescence, heat dissipation efficiency, and the like, as in the ninth embodiment.
  • the laser beam can be used for conversion of fluorescence without waste.
  • FIG. 40 (b) is a modification of FIG. 40 (a) and shows a case where the first light emitting unit 2a and the second light emitting unit 2b are different in size.
  • the size of the first light emitting unit 2a is 4.5 mm long ⁇ 3 mm wide ⁇ 0.5 mm thick
  • the size of the second light emitting unit 2b is 4.5 mm long ⁇ 4 mm wide ⁇ 0.5 mm thick. It has become.
  • the size is not limited to this.
  • the light emitting unit 2 and the like are positioned so that the laser light irradiation region 79 (see FIG. 41 (a)) has a size included in the light receiving surface of the first light emitting unit 2a.
  • the first light emitting unit 2a is irradiated with laser light (laser light irradiation set at the time of manufacture) as shown in FIG.
  • the second fluorescence can be emitted from the second light emitting unit 2b.
  • illumination light having a relatively high color temperature and color rendering can be emitted.
  • FIG. 41 is a diagram illustrating a change in the size of the laser light irradiation region 79 in the light emitting unit 2.
  • FIG. 41A illustrates a case where only the first light emitting unit 2 a is irradiated with laser light, and FIG. The case where the laser beam is irradiated to both the 1st light emission part 2a and the 2nd light emission part 2b is shown.
  • the first fluorescent light emitted from the first light emitting unit 2a has a color temperature higher than the second fluorescent light emitted from the second light emitting unit 2b. high. For this reason, when only the first light emitting unit 2a is irradiated with laser light, emission of illumination light having a high color temperature according to the setting of laser light irradiation at the time of manufacture is realized.
  • the translucent substrate driving unit 62a moves the translucent substrate 1a from the state of FIG. 41 (a) in the direction perpendicular to the optical axis direction of the laser beam, so that the laser light irradiation region is obtained.
  • the center of the region is moved from the first light emitting unit 2a toward the second light emitting unit 2b with the size of 79 being constant.
  • the ratio of the laser light irradiation region 79 included in the first light emitting unit 2a is reduced and the ratio of the laser light irradiation region 79 included in the second light emitting unit 2b is larger than in the case of FIG. Become.
  • the ratio of the first fluorescence and the second fluorescence to the illumination light emitted from the light emitting unit 2 increases.
  • the color temperature of the second fluorescence is lower than that of the first fluorescence, the color temperature can be lowered by increasing the ratio of the second fluorescence.
  • the ratio of the second fluorescence is further increased as compared with the case of FIG. 41B, the color temperature of the irradiation light can be further reduced.
  • the translucent substrate 1a is moved from the state of FIG. 41B to the state of FIG. 41A, the color temperature of the irradiated light can be increased.
  • the headlamp 100 includes a translucent substrate driving unit 62a that changes the irradiation range of the laser light applied to the first light emitting unit 2a and the second light emitting unit 2b. For this reason, since the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
  • the translucent substrate driving unit 62a moves the light emitting unit 2 through the translucent substrate 1a, whereby the light guide member 9, the first light emitting unit 2a, and the second light emitting unit 2 are moved.
  • the relative position with respect to the light emitting portion 2b (that is, the relative position between the semiconductor laser 63 and these light emitting portions) is changed.
  • the position of the laser light irradiation region 79 in the first light emitting unit 2a and the second light emitting unit 2b can be changed, the size of the region in each of the first light emitting unit 2a and the second light emitting unit 2b can be changed. it can.
  • the above ratio can be changed.
  • the light emitting unit 2 includes a first light emitting unit 2a and a second light emitting unit 2b.
  • FIG. 43 is a diagram showing the positional relationship between the emission end 215a and the light emitting unit 2 when the distance between the emission end 215a and the light emitting unit 2 is the shortest, and the light receiving surface 201a of the first light emitting unit 2a The light-receiving surface 201b of the 2nd light emission part 2b is shown.
  • each emission end portion 215a is irradiated so that the laser light emitted from the plurality of emission end portions 215a includes at least the entire light receiving surface 201a.
  • the distance, the size of the light receiving surface 201a, and the like are set.
  • the LD chip 11 shown in FIG. 8 of the first embodiment is replaced with the semiconductor laser 63, and the light transmitting plate 213 has the same function as the lens 82. Since the configuration is the same as that of the laser downlight 200 described in the first embodiment, the description thereof is omitted.
  • the laser downlight 200 includes the excitation light source unit 6a including at least one semiconductor laser 63 that emits laser light, the first light emitting unit 2a, the second light emitting unit 2b, and the reflecting mirror. And at least one light emitting unit 210 provided with a concave portion 212. Then, the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61 to make the irradiation range of the laser light in the first light emitting unit 2a constant, and then irradiate the second light emitting unit 2b. The irradiation range of the laser beam to be changed is changed. As a result, as in the ninth embodiment, the ratio of the second fluorescence emitted from the second light emitting unit 2b to the illumination light changes, so that the laser downlight 200 that can change the color temperature of the illumination light. Can be realized.
  • the case where the light emitting unit 2 shown in FIGS. 34A to 34D (the light emitting unit 2 of the ninth embodiment) is used as the laser downlight 200 has been described as an example. Not limited to this, the light emitting section 2 (the light emitting section 2 of Embodiment 10) shown in FIGS. 40A to 40C can also be used.
  • the laser downlight 200 does not include the support member 61 but includes the translucent substrate drive unit 62a that can directly move the translucent substrate 1a.
  • the translucent substrate driving unit 62a moves the translucent substrate 1a in the direction in which the first light emitting unit 2a and the second light emitting unit 2b are arranged in parallel with the emission surface of the emission end 215a.
  • the translucent substrate driving unit 62a changes the irradiation range of the laser light applied to the first light emitting unit 2a and the second light emitting unit 2b without changing the size of the laser light irradiation region 79. .
  • the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
  • the ninth embodiment by using several kinds of oxynitride phosphors or nitride phosphors as the entire light emitting unit 2, such as using a high color rendering phosphor for the phosphor of the second light emitting unit 2b, The color rendering properties of the illumination light can be improved.
  • the phosphor light emitting part has at least a double structure (can be triple or more) of the main body part and the peripheral part, and is included in the main body part and the peripheral part At least a part of the phosphors to be emitted is different and has a mechanism for switching the irradiation area of the excitation light emitted from the excitation light source to only the main body part, and the main body part and the peripheral part.
  • the color temperature and chromaticity of the illumination light emitted from the phosphor light emitting unit, and the spectrum included in the illumination light can be changed.
  • the visibility of an object when the object is irradiated with illumination light varies depending on the color temperature of the illumination light.
  • the illumination device of the present invention can change the color temperature by providing the irradiation range changing mechanism, for example, a measuring instrument (tester) capable of measuring the visibility can be manufactured and sold to the store of the illumination device.
  • a measuring instrument tester capable of measuring the visibility
  • the illuminating device of the present invention is realized as a vehicle headlamp, the above-mentioned measuring instrument is installed in an automobile dealer so that the above selection can be made when an individual purchases an automobile.
  • the storage unit 615 selects information that identifies the owner of the lighting device of the present invention (or an object (such as a vehicle) including the lighting device) or a user who frequently uses the lighting device, and the owner or the user selects it.
  • Information indicating the color temperature may be stored in association with each other.
  • the input unit 613 acquires information specifying the owner or the user
  • the movable control unit 641 reads out information indicating the color temperature corresponding to the information from the storage unit 615, and the support member driving unit 62 is moved. Driven to move the support member 61.
  • the lighting device of the present invention can automatically switch to the color temperature suitable for the preference.
  • FIG. 1 an automotive headlamp (light emitting device, illuminating device, vehicle headlamp, headlamp) 110 will be described as an example.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
  • the headlamp 110 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
  • FIG. 44 is a cross-sectional view showing the configuration of the headlamp 110.
  • the headlamp 110 includes a semiconductor laser array 72, an aspheric lens 29, an optical fiber 55, a ferrule 65, a reflecting mirror 81, a transparent plate 92, a housing 75, an extension 76, The lens 77, the 1st light emission part 93, the 2nd light emission part 94, and the position control part 95 are provided.
  • FIG. 44 is a cross-sectional view showing the configuration of the headlamp 110.
  • the headlamp 110 includes a semiconductor laser array 72, an aspheric lens 29, an optical fiber 55, a ferrule 65, a reflecting mirror 81, a transparent plate 92, a housing 75, an extension 76, The lens 77, the 1st light emission part 93, the 2nd light emission part 94, and the position control part 95 are provided.
  • the semiconductor laser array 72 functions as an excitation light source that emits excitation light, and includes a plurality of semiconductor lasers (excitation light sources) 63 on a substrate.
  • Laser light as excitation light is oscillated from each of the semiconductor lasers 63, and the peak wavelength of the laser oscillation is, for example, 405 nm to 490 nm.
  • the peak wavelength of the laser oscillation is, for example, 405 nm to 490 nm.
  • the semiconductor laser 63 has one light emitting point per chip, and oscillates, for example, 450 nm laser light.
  • Each semiconductor laser 63 has an output of 1.6 W (operating voltage 4.7 V, current 1.2 A) and is enclosed in a package having a diameter of 9 mm.
  • the laser beam oscillated by the semiconductor laser 63 is not limited to 450 nm, and any laser beam having a peak wavelength in another wavelength range may be used.
  • the package is not limited to the one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm or other, and it is preferable to select a package having a smaller thermal resistance.
  • the semiconductor laser is used as the excitation light source, but a light emitting diode can be used instead of the semiconductor laser.
  • the aspherical lens 29 is a lens for causing the laser light (excitation light) oscillated from the semiconductor laser 63 to enter the incident end 5 b that is one end of the optical fiber 55.
  • the aspherical lens 29 FLKN1 405 manufactured by Alps Electric can be used.
  • the shape and material of the aspherical lens 29 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 29 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
  • the optical fiber 55 is a light guide member that guides the laser light oscillated by the semiconductor laser 63 to the first light emitting unit 93, and is a bundle of a plurality of optical fibers.
  • the optical fiber 55 has a plurality of incident end portions 5b for receiving the laser light and a plurality of emission end portions 5a for emitting the laser light incident from the incident end portion 5b.
  • the plurality of emission end portions 5 a emit laser beams to different regions on the laser beam irradiation surface of the first light emitting unit 93.
  • the emission end portions 5a of the plurality of optical fibers 55 are arranged side by side in a plane parallel to the laser light irradiation surface.
  • the light intensity distribution in the light intensity distribution of the laser beam emitted from the emission end 5a is the highest (the central portion of the irradiation region (maximum light intensity portion) formed by each laser beam on the laser beam irradiation surface) )
  • the optical fiber 55 does not necessarily have to be a bundle of a plurality of optical fibers (that is, a configuration including a plurality of emission end portions 5a), and may be a single optical fiber.
  • the optical fiber 55 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core.
  • the core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light
  • the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core.
  • the optical fiber 55 is made of quartz having a core diameter of 200 ⁇ m, a cladding diameter of 240 ⁇ m, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber 55 are limited to those described above.
  • the cross section perpendicular to the major axis direction of the optical fiber 55 may be rectangular.
  • the optical fiber 55 has flexibility, the relative positional relationship between the semiconductor laser 63 and the first light emitting unit 93 can be easily changed. Further, by adjusting the length of the optical fiber 55, the semiconductor laser 63 can be installed at a position away from the first light emitting unit 93.
  • the degree of freedom in designing the headlamp 110 can be increased, for example, the semiconductor laser 63 can be installed at a position where it can be easily cooled or easily replaced.
  • a member other than the optical fiber or a combination of the optical fiber and another member may be used as the light guide member.
  • one or a plurality of light guide members having a truncated cone shape (or a truncated pyramid shape) having a laser beam incident end and an emission end may be used.
  • the ferrule 65 holds the plurality of emission end portions 5 a of the optical fiber 55 in a predetermined pattern with respect to the laser light irradiation surface of the first light emitting unit 93.
  • the ferrule 65 may be formed with a predetermined pattern of holes for inserting the emission end portion 5a, and can be separated into an upper portion and a lower portion, and is formed on the upper and lower joint surfaces, respectively.
  • the exit end portion 5a may be sandwiched by a groove.
  • the ferrule 65 may be fixed to the reflecting mirror 81 by a rod-like or cylindrical member extending from the reflecting mirror 81.
  • the material of the ferrule 65 is not specifically limited, For example, it is stainless steel. Further, a plurality of ferrules 65 may be arranged for the first light emitting unit 93.
  • the ferrule 65 can be omitted.
  • the first light emitting unit 93 emits light upon receiving the laser light emitted from the emission end 5a, and includes a phosphor that emits light upon receiving the laser light. This phosphor is dispersed inside a glass material as a sealing material.
  • the first light emitting unit 93 includes one or more of phosphors that emit blue, green, red and the like. Since the semiconductor laser 63 oscillates laser light of 450 nm, when the first light emitting unit 93 is irradiated with the laser light, light in which one or a plurality of colors are mixed is generated.
  • the phosphor that emits yellow light is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm.
  • the phosphor that emits green light is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the phosphor that emits red light is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm to 680 nm.
  • the second light emitting unit 94 receives laser light and emits light of a color different from the fluorescence emitted from the first light emitting unit 93. Alternatively, the second light emitting unit 94 receives fluorescence emitted from the first light emitting unit 93 and emits fluorescence having a color different from that of the first light emitting unit 93.
  • the second light emitting unit 94 includes a phosphor that emits light upon receiving laser light. This phosphor is dispersed inside a glass material as a sealing material.
  • the second light emitting unit 94 includes one or more of phosphors that emit blue, green, red, etc., and the light emitted from the second light emitting unit 94 is a mixture of one or more colors. It will be a thing.
  • the relative position relationship between the second light emitting unit 94 and the emission end portion 5a is changed by the operation of the position control unit 95 described later, or the relative positional relationship with the first light emitting unit 93 is changed. As a result, the amount of light emitted from the second light emitting unit 94 changes.
  • an inorganic glass of about 1 W / mK can be used as the sealing material.
  • the ratio between the glass material and the phosphor is about 10: 1.
  • the sealing material is not limited to inorganic glass, and may be a resin material such as so-called organic-inorganic hybrid glass or silicone resin.
  • inorganic glass when used as the sealing material, the effect of increasing the heat resistance and reducing the thermal resistance of the first light emitting portion 93 and the second light emitting portion 94 is obtained, and therefore inorganic glass is preferable.
  • the phosphors of the first light emitting unit 93 and the second light emitting unit 94 are preferably oxynitride phosphors, nitride phosphors or III-V compound semiconductor nanoparticle phosphors. These materials have high resistance to extremely strong laser light (output and light density) emitted from the semiconductor laser 63, and are optimal for laser illumination light sources.
  • sialon phosphor As a typical oxynitride phosphor, there is a so-called sialon phosphor.
  • a sialon phosphor is a substance in which part of silicon atoms in silicon nitride is replaced with aluminum atoms and part of nitrogen atoms is replaced with oxygen atoms. It can be made by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), rare earth elements and the like in silicon nitride (Si 3 N 4 ).
  • Examples of sialon phosphors that emit blue light upon receiving excitation light include Ce 3+ activated CA ⁇ -SiAlON phosphors, Ce 3+ activated ⁇ -SiAlON phosphors, and the like.
  • oxynitride phosphors include, for example, oxynitride phosphors containing a JEM phase (JEM phase phosphors).
  • the JEM phase phosphor is a substance that has been confirmed to be produced in a process for preparing a sialon phosphor stabilized by a rare earth element.
  • the JEM phase is a ceramic discovered as a grain boundary phase of a silicon nitride-based material, and generally has a composition formula M 1 Al (Si 6-z Al z ) N 10-z O z (where M 1 Is represented by La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), and z is a parameter.
  • M 1 Is represented by La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu
  • z is a parameter.
  • It is a crystal phase (
  • JEM phase phosphor that emits blue light upon receiving excitation light
  • JEM phase: Ce phosphor a Ce 3+ activated (doped) JEM phase phosphor
  • the Ce component contained in the JEM phase phosphor absorbs excitation light in the vicinity of 350 nm to 420 nm, makes it easy to obtain light emission from blue to blue-green, and broadens the half-value width of light emission. It is possible to sufficiently cover a wavelength range with high relative visibility in visual observation.
  • the JEM phase: Ce phosphor has a peak wavelength of 480 nm when the excitation wavelength is 360 nm, and the luminous efficiency at that time is 60%. Further, when the excitation wavelength is 405 nm, the peak wavelength is 490 nm, and the light emission efficiency at that time is 50%.
  • examples of the oxynitride phosphor that emits green light include a ⁇ -SiAlON phosphor doped with Eu 2+ .
  • the ⁇ -SiAlON phosphor doped with Eu 2+ exhibits strong emission with an emission peak wavelength of about 540 nm by ultraviolet to blue excitation light.
  • the full width at half maximum of the emission spectrum of this phosphor is about 55 nm.
  • nitride phosphors that emit red light include, for example, Eu 2+ doped CaAlSiN 3 : phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 phosphor (SCASN: Eu phosphor).
  • CASN Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
  • one of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the particle size is changed within a certain range of the nanometer order, thereby providing a quantum size effect. The point is that the emission color can be changed.
  • InP emits red light when the particle size is about 3 to 4 nm (here, the particle size was evaluated with a transmission electron microscope (TEM)).
  • this semiconductor nanoparticle phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by being highly resistant to high-power excitation light because it can quickly emit the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth as the emission center.
  • the emission lifetime is short, the absorption of the laser beam and the emission of the phosphor can be repeated quickly. As a result, high efficiency can be maintained with respect to strong laser light, and heat generation from the phosphor can be reduced.
  • the shape and size of the first light emitting portion 93 are, for example, a cylindrical shape having a diameter of 3.2 mm and a thickness of 1 mm, and the laser light emitted from the emission end portion 5a is converted into a laser light irradiation surface that is the bottom surface of the cylinder. Receive light.
  • the 1st light emission part 93 may not be a column shape but a rectangular parallelepiped.
  • it is a rectangular parallelepiped of 3 mm ⁇ 1 mm ⁇ 1 mm.
  • the area of the laser light irradiation surface that receives the laser light from the semiconductor laser 63 is 3 mm 2 .
  • the light distribution pattern (light distribution) of a vehicle headlamp that is legally regulated in Japan is narrow in the vertical direction and wide in the horizontal direction. By making it horizontally long (substantially rectangular in cross section), the light distribution pattern can be easily realized.
  • the shape and size of the second light emitting unit 94 may be realized in various forms, and details will be described later.
  • the thickness of the first light emitting unit 93 and the second light emitting unit 94 varies according to the ratio of the sealing material and the phosphor in the first light emitting unit 93 and the second light emitting unit 94. If the phosphor content in the first light-emitting part 93 and the second light-emitting part 94 increases, the efficiency of conversion of laser light into white light increases, so the thickness of the first light-emitting part 93 and the second light-emitting part 94 is reduced. it can. If the first light-emitting portion 93 and the second light-emitting portion 94 are made thin, the thermal resistance is reduced. However, if the thickness is too thin, the laser light may not be converted into fluorescence and may be emitted to the outside. From the viewpoint of absorption of excitation light by the phosphor, the thickness of the light emitting part is preferably at least 10 times the particle size of the phosphor.
  • the thickness of the first light emitting unit 93 and the second light emitting unit 94 using the oxynitride phosphor or the nitride phosphor is preferably 0.2 mm or more and 2 mm or less.
  • the lower limit of the thickness is not limited to this.
  • the thickness of the light-emitting portion when using the nanoparticle phosphor should be 0.01 ⁇ m or more, but considering the ease of the manufacturing process such as dispersion in the sealing material, it is 10 ⁇ m or more. That is, 0.01 mm or more is preferable. On the other hand, if the thickness is too thick, the deviation from the focal point of the reflecting mirror 81 becomes large and the light distribution pattern is blurred.
  • the laser light irradiation surfaces of the first light emitting unit 93 and the second light emitting unit 94 receives the fluorescence emitted from the first light emitting unit 93 and is different from the fluorescence of the first light emitting unit 93.
  • the light receiving surface of the fluorescence emitted from the first light emitting unit 93 is not necessarily a flat surface and may be a curved surface.
  • the laser light irradiation surface preferably has a flat surface.
  • the laser light irradiation surface is a curved surface
  • at least the incident angle to the curved surface changes greatly, so that the direction in which the reflected light travels greatly changes depending on the location where the laser light is irradiated. For this reason, it may be difficult to control the reflection direction of the laser light.
  • the laser light irradiation surface is flat, the direction in which the reflected light travels hardly changes even if the irradiation position of the laser light is slightly shifted, so that the direction in which the laser light is reflected can be easily controlled. In some cases, it is easy to take measures such as placing a laser beam absorber in a place where the reflected light strikes.
  • the laser light irradiation surface is not necessarily perpendicular to the optical axis of the laser light.
  • the reflected laser light returns in the direction of the laser light source, and in some cases, the laser light source may be damaged.
  • the position control unit 95 changes the amount of light emitted from the second light emitting unit 94 by changing the relative positional relationship between the second light emitting unit 94 and the emission end (emission point) 5a. At this time, (A) The position control unit 95 changes the distance between the second light emitting unit 94 and the optical axis of the laser beam. (B) The position control unit 95 moves the second light emitting unit 94 in the direction of the optical axis of the laser light. Perform the operation.
  • the position control unit 95 when the position control unit 95 is connected to the second light emitting unit 94, the position control unit 95 changes the position of the second light emitting unit 94 so as to change the distance from the optical axis of the laser beam.
  • the position control part 95 changes the position of the output end part 5a so that the distance between the optical axes of a laser beam may be changed, when connecting to the output end part 5a.
  • the position control part 95 can change the relative positional relationship of the 2nd light emission part 94 and the radiation
  • emission end part 5a can change the irradiation area of the laser beam irradiated to the 2nd light emission part 94.
  • the amount of light emitted from the second light emitting unit 94 changes.
  • the position control unit 95 changes the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94 and changes the amount of light emitted from the second light emitting unit 94. At this time, (C) The position controller 95 changes the distance between the second light emitter 94 and the optical axis of the laser beam. (D) The position control unit 95 moves the second light emitting unit 94 in the direction of the optical axis of the laser light. Perform the operation.
  • the position control unit 95 when the position control unit 95 is connected to the second light emitting unit 94, the position control unit 95 changes the position of the second light emitting unit 94 so as to change the distance from the optical axis of the laser beam.
  • the position control part 95 changes the position of the output end part 5a so that the distance between the optical axis of a laser beam may be changed, when connecting with the output end part 5a.
  • the position control unit 95 can change the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94, and can change the irradiation area of the laser light applied to the second light emitting unit 94. it can.
  • the amount of light emitted from the second light emitting unit 94 changes.
  • the position control unit 95 has, for example, a structure in which a motor and a gear are combined.
  • the position control unit 95 is connected to at least one of the first light emitting unit 93, the second light emitting unit 94, and the emission end portion 5a, and (a) to (d ). Further, the position control unit 95 is not necessarily connected to the first light emitting unit 93 or the like, and performs the operations (a) to (d) using a non-contact type member such as a magnet. Also good. That is, the position control unit 95 changes the relative positional relationship between the second light emitting unit 94 and the emission end 5a, or changes the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94. Any configuration may be used as long as it is changed.
  • the reflecting mirror 81 reflects the light emitted from the first light emitting unit 93 and / or the second light emitting unit 94 to form a light bundle that travels within a predetermined solid angle. That is, the reflecting mirror 81 reflects the light from the first light emitting unit 93 and / or the second light emitting unit 94 to form a light bundle that travels forward of the headlamp 110.
  • the reflecting mirror 81 is, for example, a curved (cup-shaped) member having a metal thin film formed on the surface thereof.
  • the transparent plate 92 is a transparent resin plate that covers the opening of the reflecting mirror 81.
  • the transparent plate 92 is formed of a material that blocks the laser light from the semiconductor laser 63 and transmits white light generated by converting the laser light in the first light emitting unit 93 and / or the second light emitting unit 94. It is preferable to do. Most of the coherent laser light is converted into incoherent light by the first light emitting unit 93 and / or the second light emitting unit 94. However, there may be a case where a part of the laser light is not converted into incoherent light for some reason. Even in such a case, the laser beam can be prevented from leaking to the outside by blocking the laser beam by the transparent plate 92.
  • the transparent plate 92 may be used for fixing the second light emitting unit 94.
  • the transparent plate 92 has a high thermal conductivity (for example, inorganic glass), the transparent plate 92 also functions as a heat conductive member, and the heat radiation effect of the second light emitting unit 94 can be obtained.
  • a high thermal conductivity for example, inorganic glass
  • the housing 75 forms the main body of the headlamp 110 and houses the reflecting mirror 81 and the like.
  • the optical fiber 55 passes through the housing 75, and the semiconductor laser array 72 is installed outside the housing 75.
  • the semiconductor laser array 72 generates heat when the laser light is oscillated, but the semiconductor laser array 72 can be efficiently cooled by being installed outside the housing 75. Therefore, characteristic deterioration, thermal damage, and the like of the first light emitting unit 93 and / or the second light emitting unit 94 due to heat generated from the semiconductor laser array 72 are prevented.
  • the semiconductor laser 63 it is preferable to install the semiconductor laser 63 at a position where it can be easily replaced in consideration of a failure. If these points are not taken into consideration, the semiconductor laser array 72 may be accommodated in the housing 75.
  • Extension 76 is provided on the front side of the reflecting mirror 81 to hide the internal structure of the headlamp 110 to improve the appearance of the headlamp 110 and enhance the sense of unity between the reflecting mirror 81 and the vehicle body. Yes.
  • the extension 76 is also a member having a metal thin film formed on the surface thereof, like the reflecting mirror 81.
  • the lens 77 is provided in the opening of the housing 75 and seals the headlamp 110.
  • the light generated by the first light emitting unit 93 and / or the second light emitting unit 94 and reflected by the reflecting mirror 81 is emitted to the front of the headlamp 110 through the lens 77.
  • the basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted.
  • the light emission principle of the first light emitting unit 93 and the second light emitting unit 94 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
  • the headlamp 110 is not limited to white, and may be realized by a configuration that emits other colors such as red and yellow.
  • Example 1 Hereinafter, examples according to the present embodiment will be described. Note that the description of the already described contents is omitted.
  • FIG. 45 is a diagram illustrating an embodiment of the configuration of the first light emitting unit 93, the second light emitting unit 94, and the position control unit 95.
  • First light emitting unit 93 a Ce-doped YAG phosphor (NYAG4454) manufactured by Intematix is used as the first light emitting unit 93.
  • the first light emitting unit 93 is manufactured by dispersing a YAG phosphor in a low-melting glass.
  • the compounding ratio of the phosphor and glass is 30: 100.
  • the size of the first light emitting portion 93 is 4 mm long ⁇ 4 mm wide ⁇ 0.5 mm deep, and is bonded to an Al 2 O 3 (sapphire) plate (10 mm ⁇ 10 mm) having a thickness of 0.5 mm.
  • the laser light is irradiated through the Al 2 O 3 (sapphire) plate in the order of the first light emitting unit 93 and the second light emitting unit 94.
  • the first light emitting unit 93 is placed on the heat conducting member 181, but it is not always necessary to be placed on the heat conducting member 181.
  • the second light emitting unit 94 As the second light emitting unit 94, a CASN: Eu 2+ phosphor, which is a nitride phosphor, was used. The external quantum efficiency of the second light emitting unit 94 is 73% when excited at 450 nm, and the emission peak wavelength is 649 nm.
  • the second light emitting unit 94 is manufactured by dispersing a CASN phosphor in a low melting point glass.
  • the mixing ratio of the phosphor and glass is 20: 100.
  • the second light-emitting portion 94 has a diaphragm blade mechanism such that when it is most squeezed, there is an opening of ⁇ 1 mm in the center, and the blade thickness is 0.5 mm.
  • the heat conducting member 181 is a translucent member that is disposed on the laser light irradiation surface side that is the surface irradiated with the laser light in the first light emitting unit 93 and receives the heat of the first light emitting unit 93. It is thermally connected to the light emitting unit 93 (that is, so as to be able to exchange heat energy).
  • the 1st light emission part 93 and the heat conductive member 181 may be connected by the adhesive agent, for example.
  • the heat conducting member 181 is a plate-like member, and one end thereof is in thermal contact with the laser light irradiation surface of the first light emitting unit 93. Further, the other end may be realized by a configuration in which it is thermally connected to a cooling unit (not shown).
  • the heat conducting member 181 Since the heat conducting member 181 has such a shape and connection form, the heat generated from the first light emitting unit 93 is transferred to the outside of the headlamp 110 while holding the minute first light emitting unit 93 at a specific position. Dissipate heat.
  • the heat conductivity of the heat conducting member 181 is 20 W / mK or more in order to efficiently release the heat of the first light emitting unit 93. Further, the laser light emitted from the semiconductor laser 63 passes through the heat conducting member 181 and reaches the first light emitting unit 93. Therefore, it is preferable that the heat conductive member 181 is made of a material having excellent translucency.
  • the material of the heat conducting member 181 is preferably sapphire (Al 2 O 3 ), magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ). By using these materials, a thermal conductivity of 20 W / mK or more can be realized.
  • the thickness (width in the left-right direction of the drawing) of the heat conducting member 181 is preferably 0.3 mm or more and 5.0 mm or less. If the thickness is less than 0.3 mm, the first light emitting unit 93 cannot sufficiently dissipate heat, and the first light emitting unit 93 may be deteriorated. On the other hand, if the thickness exceeds 5.0 mm, the absorption of the irradiated laser light in the heat conducting member 181 increases, and the utilization efficiency of the excitation light is significantly reduced.
  • the heat conducting member 181 By bringing the heat conducting member 181 into contact with the first light emitting unit 93 with an appropriate thickness, the heat generation is quick even when an extremely strong laser beam that generates heat exceeding 1 W in particular is irradiated. In addition, the heat can be efficiently radiated and the first light emitting portion 93 can be prevented from being damaged (deteriorated).
  • the heat conducting member 181 may be a plate-like member that is not bent, or may have a bent part or a curved part.
  • the portion to which the first light emitting unit 93 is bonded is preferably a flat surface (plate shape) from the viewpoint of adhesion stability.
  • the following changes are effective.
  • Increase the heat dissipation area contact area with the first light emitting unit 93).
  • a material having high thermal conductivity is used.
  • a member having a high thermal conductivity is disposed on the surface of the heat conducting member 181.
  • the heat conducting member 181 may have a light-transmitting part (light-transmitting part) and a part having no light-transmitting property (light-shielding part).
  • the light transmitting part is arranged so as to cover the laser light irradiation surface of the first light emitting part 93, and the light shielding part is arranged outside thereof.
  • the light shielding part may be a heat radiating part of metal (for example, copper or aluminum), or aluminum, silver, or other film that has an effect of reflecting illumination light is formed on the surface of the translucent member. May be.
  • FIG. 46 is a diagram for explaining the operation of the second light emitting unit 94 in the present embodiment.
  • FIG. 46A is a diagram showing a state where the distance between the second light emitting unit 94 and the optical axis of the laser beam is the longest.
  • FIG. 46B is a diagram illustrating a state in which the second light emitting unit 94 is moving toward the optical axis of the laser light.
  • FIG. 46C is a diagram showing a state in which the distance between the second light emitting unit 94 and the optical axis of the laser light is closest.
  • the optical axis of the laser beam exists at or near the center of the circle shown in FIG.
  • the circle shown in FIG. 46A represents the light emission center of the first light emitting unit 93.
  • the second light emitting unit 94 receives the operation of the position control unit 95 and changes the distance from the optical axis of the laser light like the operation of a so-called diaphragm blade mechanism.
  • the position control unit 95 is connected to each of the plurality of second light emitting units 94, and the plurality of second light emission components in the direction toward the optical axis of the laser light or in the direction away from the optical axis of the laser light.
  • the units 94 are operated simultaneously.
  • the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted from the first light emitting unit 93 is changed by the operation of the position control unit 95.
  • the amount of light emitted from the second light emitting unit 94 changes, and the characteristics of the illumination light emitted outside the headlamp 110, which is indicated by the light spectrum, chromaticity, color temperature, etc., are easily changed. Can be made.
  • the position control unit 95 may be realized by a configuration in which each of the plurality of second light emitting units 94 is separately (arbitrarily) operated toward or away from the optical axis of the laser beam.
  • the desired position can be obtained through the operation of the position control unit 95. It is also possible to easily realize the characteristics of the illumination light.
  • FIG. 47 is a chromaticity diagram for explaining the effect obtained by the headlamp 110.
  • P in the figure indicates the chromaticity point of the laser light source.
  • Q indicates the chromaticity point of the fluorescence emitted by the first light emitting unit 93.
  • R indicates the chromaticity point of the fluorescence emitted by the second light emitting unit 94.
  • the second light emitting unit 94 changes the position in response to the operation of the position control unit 95.
  • the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted by the first light emitting unit 93 changes, and the color temperature, chromaticity, and spectrum of the illumination light emitted from the headlamp 110 are changed.
  • the second light emitting unit 94 in addition to the first light emitting unit 93, the direction from the point Q to the point R in the figure, in which the chromaticity of the illumination light becomes red (the color temperature is lowered).
  • the change in the characteristics of the illumination light in the direction of movement) can be realized.
  • the headlamp 110 can easily change the characteristics of illumination light such as spectrum, chromaticity, and color temperature with a simple structure.
  • the first light emitting unit 93 is preferably larger than the second light emitting unit 94. Thereby, when using the 2nd light emission part 94 etc., the characteristic change of illumination light rich in variation can be brought about, and the headlamp 110 can be applied in various situations.
  • the configuration shown in FIG. 45 is for explaining one embodiment, and the above-described effect obtained by the headlamp 110 is not limited to the configuration of FIG. That is, in FIG. 45, the first light emitting unit 93 is disposed between the ferrule 65 and the second light emitting unit 94, but for example, the second light emitting unit 94 is disposed between the ferrule 65 and the first light emitting unit 93.
  • the same effect as the configuration of FIG. 45 can be obtained by the configuration.
  • headlamp 110 can emit light of various colors, not limited to red indicated by the point R.
  • FIG. 48 is a view for explaining another operation of the second light emitting unit 94 according to the present embodiment in the structure of the headlamp 110 shown in FIG.
  • FIG. 48A is a diagram showing a state where the distance between the second light emitting unit 94 and the optical axis of the laser beam is the longest.
  • FIG. 48B is a diagram illustrating a state in which the second light emitting unit 94 is moving toward the optical axis of the laser light.
  • FIG. 48C is a diagram illustrating a state in which the distance between the second light emitting unit 94 and the optical axis of the laser light is closest.
  • the optical axis of the laser light exists at the center position of the circle shown in FIG.
  • the circle shown in FIG. 48A represents the light emission center of the first light emitting unit 93.
  • the position of the second light emitting unit 94 changes through the operation of the position control unit 95. Specifically, the position of the second light emitting unit 94 changes as the two second light emitting units 94 formed in a plate shape protrude toward the optical axis. As a result, the irradiation area on the second light emitting unit 94 to which the laser light or the fluorescence emitted from the first light emitting unit 93 is irradiated changes. And the characteristic of illumination light can be changed by the amount of fluorescence generation of the 2nd light emission part 94 changing.
  • the two second light emitting units 94 formed in a plate shape may be realized by an operation in which one protrudes toward the optical axis and the other moves away from the optical axis.
  • the shape and quantity of the second light emitting unit 94 and the method of changing the position of the second light emitting unit 94 by the position control unit 95 can take various forms.
  • the position control unit 95 is configured as a rotating shaft, and the second light emitting unit 94 is attached to the tip of the rotating shaft.
  • the operation of the position control unit 95 causes the second light emitting unit 94 to rotate, whereby the second light emitting unit 94 can be moved toward (or away from) the optical axis of the laser light.
  • the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted from the first light emitting unit 93 changes, and the color temperature, chromaticity, and spectrum of the illumination light emitted from the headlamp 110 are changed.
  • the ratio of can be changed.
  • the position of the second light emitting unit 94 can be changed in any configuration. A change operation may be realized.
  • the first light emitting unit 93 and the second light emitting unit 94 can be positioned in the opposite positions. That is, as long as the irradiation area on the first light emitting unit 93 irradiated with the laser light or the fluorescence emitted from the second light emitting unit 94 can be changed, the position of the first light emitting unit 93 can be changed in any configuration. A change operation may be realized.
  • the lighting device according to the present embodiment can be used for various purposes, and may be realized as, for example, a flashlight, an LED bulb, a pen-type light, a traffic light, a home lighting device, a construction light, or the like.
  • a flashlight an LED bulb
  • a pen-type light a traffic light
  • a home lighting device a construction light, or the like.
  • symbol is attached
  • FIG. 49 is a diagram for explaining the first light emitting unit 99 in which the LED chip 96 is embedded
  • FIG. 49A is a cross-sectional view of the first light emitting unit 93
  • FIG. 3 is a perspective view of a first light emitting unit 99.
  • the first light emitting unit 99 includes a silicon resin in which a phosphor is dispersed and an LED chip 96 embedded in the silicon resin. Embedded. Electrodes 97 are attached to the side surface and the bottom surface of the package 98, and the electrodes 97 supply power to the LED chip 96 via wiring (not shown).
  • a SMD (Surface Mount Device) type is preferably used as the first light emitting unit 99. If the phosphor is a yellow phosphor, the SMD type can emit white light in combination with the LED chip 96 that emits blue light. Moreover, the variation of the color of the emitted light can be changed by changing the combination of the phosphor and the LED chip.
  • FIG. 50 is a diagram in which the first light emitting unit 99, the second light emitting unit 94, and the position control unit 95 shown in FIG. 49 are combined. As shown in the figure, a second light emitting unit 94 and a position control unit 95 are disposed above the first light emitting unit 99. In this case as well, the color temperature and color of the illumination light emitted from the headlamp 110 by the operations of the second light emitting unit 94 and the position control unit 95 described in the [Example 1] and [Example 2] columns. The degree of spectrum can be changed.
  • the phosphor contained in the second phosphor portion is preferably CASN: Eu or SCASN: Eu, but is not limited thereto.
  • the laser downlight 200 includes a first light emitting unit 93 and a second light emitting unit 94, and the laser light emitted from the semiconductor laser 63 is emitted from the first light emitting unit 93 and / or the second light emitting unit 94 (hereinafter referred to as “light emitting unit 94”).
  • the fluorescent light generated by irradiating the light emitting unit 7 including the position control unit 95 may also be used as illumination light.
  • the laser downlight 200 according to the present embodiment includes a heat conducting member 231. Other configurations are the same as those of the laser downlight 200 described in the first embodiment, and thus the description thereof is omitted.
  • the light emitting unit 210 includes a housing 211, an optical fiber 55, a light emitting unit 7, a heat conducting member 231, and a light transmitting plate 213. Similarly to the above-described embodiment, the heat of the light emitting unit 7 is transmitted to the heat conducting member 231 and the heat radiation of the light emitting unit 7 is promoted.
  • a passage 214 for passing the optical fiber 55 is formed in the housing 211, and the optical fiber 55 extends to the heat conducting member 231 through the passage 214.
  • the laser beam emitted from the emission end portion 5 a of the optical fiber 55 passes through the heat conducting member 231 and reaches the light emitting unit 7.
  • the heat conducting member 231 is disposed at the bottom of the housing 211 with the laser light incident side surface in full contact therewith. Therefore, the housing 211 can be made of a material having high thermal conductivity so that it can function as a cooling unit for the heat conducting member 231.
  • the semiconductor laser 63 and the aspherical lens 29 are shown inside the LD light source unit 220.
  • optical fibers extending from the light emitting units 210 respectively.
  • the bundle of 55 may be guided to one LD light source unit 220.
  • a pair of a plurality of semiconductor lasers 63 and the aspheric lens 29 is accommodated in one LD light source unit 220, and the LD light source unit 220 functions as a centralized power supply box.
  • the laser downlight 200 includes the LD light source unit 220 including at least one semiconductor laser 63 that emits laser light, the at least one light emitting unit 210 including the light emitting unit 7 and the recess 212 as a reflecting mirror, And an optical fiber 55 for guiding the laser light to each of the light emitting units 210.
  • a high-power LED may be used as the excitation light source.
  • a light emitting device that emits white light can be realized by combining an LED that emits light having a wavelength of 450 nm (blue) and a yellow phosphor or green and red phosphors.
  • a solid-state laser other than the semiconductor laser may be used as the excitation light source.
  • a semiconductor laser it is preferable to use a semiconductor laser because the excitation light source can be reduced in size.
  • the light-emitting device further includes a diffusion unit that diffuses at least the excitation light irradiated outside the irradiation surface irradiated with the excitation light of the light emitter. You may have.
  • the chromaticity variation of the light emitting device can be suppressed by the light diffusing action of the diffusing unit.
  • To diffuse at least the excitation light irradiated to the outside of the irradiation surface means to diffuse the excitation light irradiated to the outside of the irradiation surface and to irradiate all or part of the irradiation surface. It means that the case where the excitation light is diffused is also included.
  • the light-emitting device has a ratio of a cross-sectional area of the light emitter to an area of the spot of the excitation light of 1 ⁇ 4 or more and / or less. Preferably there is.
  • the ratio of the cross-sectional area of the illuminant to the spot area of the excitation light is smaller than 1/4, the irradiation efficiency of the excitation light to the illuminant becomes too low.
  • the ratio of the cross-sectional area of the illuminant to the area of the excitation light spot is larger than 2/3, the intensity distribution of the laser light on the irradiation surface irradiated with the excitation light of the illuminant will be greatly uneven. End up.
  • the light-emitting device is configured such that the excitation light source emits blue region excitation light, and the light emitter emits yellow region fluorescence. May be included.
  • the illumination light emitted from the light emitting device becomes (pseudo) white light with high luminous efficiency.
  • the light-emitting device includes a green-emitting phosphor in which the excitation light source emits blue region excitation light, and the phosphor emits green region fluorescence. And a red light-emitting phosphor that emits fluorescence in the red region.
  • the illumination light generated from the light emitter becomes white light with good color rendering.
  • the color rendering is better than the combination of the excitation light in the blue region and the yellow light emitting phosphor, and the decrease in the light emission efficiency of the light emitter is also suppressed.
  • a light emitting device includes a thermally conductive substrate that diffuses heat generated in the light emitter, and is irradiated with the excitation light of the light emitter.
  • the side of the surface may be held by the thermally conductive substrate.
  • the heat conductive substrate diffuses the heat generated in the light emitter. For this reason, deterioration of a light-emitting body can be suppressed.
  • the light-emitting device includes a reflective member that reflects the excitation light, and the side of the light emitter facing the irradiation surface irradiated with the excitation light is It may be held by the reflecting member.
  • the excitation light that is transmitted through the illuminant and reflected by the reflecting member excites the illuminant again. Even if the thickness is halved, sufficient luminous efficiency can be obtained.
  • the light-emitting device includes a plurality of the excitation light sources, and guides the excitation light emitted from each of the excitation light sources to the light emitter.
  • a light guide member may be provided.
  • an excitation light source and a light-emitting body can be isolate
  • the light-emitting device has a cross-sectional area closer to the light emitter of the light guide member than a cross-sectional area closer to the excitation light source. May be.
  • the light guide member receives excitation light emitted from the plurality of excitation light sources at at least one incident end, and receives the incident light.
  • the excitation light incident from the end may be emitted from each of the plurality of emission ends, and the light emitter may emit fluorescence upon receiving the excitation light emitted from each of the emission ends.
  • the excitation light from the emission end portions of the plurality of light guide portions is distributed and irradiated to the light emitter.
  • an illumination device may include the light emitting device described above.
  • a headlamp according to an embodiment of the present invention may include the light emitting device described above.
  • a headlamp according to an embodiment of the present invention includes the above light emitting device, a reflecting mirror that forms a light bundle that travels within a predetermined solid angle by reflecting fluorescence emitted from the light emitter, and May be provided.
  • emits the light beam which advances within the predetermined solid angle to the exterior of an apparatus is realizable.
  • a light-emitting device includes a first light source that emits excitation light, a light-emitting unit that emits fluorescence in response to excitation light emitted from the first light source, and a wavelength region different from the excitation light. It is preferable that the second light source that emits the second light having the above-described characteristics is provided, and the fluorescence emitted from the light emitting unit and the second light emitted from the second light source are emitted as illumination light.
  • the second light source functions as the characteristic changing mechanism.
  • the second light source functioning as a characteristic changing mechanism emits second light having a wavelength region different from that of the excitation light emitted from the first light source.
  • the second light is emitted as illumination light together with the fluorescence emitted from the light emitting unit upon receiving the excitation light emitted from the first light source.
  • the light emitting device can use the second light different from the fluorescence emitted by the light emitting unit as the illumination light, so that, for example, laser light as excitation light is prevented from leaking to the outside. It is possible to adjust the color temperature, which has been difficult in the conventional lighting device designed to use only fluorescence as illumination light.
  • the first light source emits light having an oscillation wavelength from an ultraviolet region to a blue-violet region as the excitation light
  • the second light source emits light in a blue region. It is preferable to emit light having a wavelength as the second light.
  • the first light source emits light having an oscillation wavelength from the ultraviolet region to the blue-violet region as excitation light
  • the second light source since the second light source emits the light having the oscillation wavelength in the blue region (blue light) as the second light, the blue light component of the fluorescence can be compensated by the second light. For this reason, the light emitting device can increase the color temperature of the illumination light.
  • the light emitting unit preferably includes a first phosphor having a light absorption peak wavelength in a wavelength range of 350 nm or more and 420 nm or less.
  • the absorption rate of the first phosphor when receiving excitation light in a wavelength range of 350 nm or more and 420 nm or less is preferably 70% or more.
  • the first phosphor is preferably a Ca ⁇ -SiAlON: Ce phosphor.
  • the absorption rate of the first phosphor is higher than the absorption rate in other wavelength ranges.
  • the absorption rate of the first phosphor especially Ca ⁇ -SiAlON: Ce phosphor
  • the absorption rate of the first phosphor when receiving excitation light having an oscillation wavelength in the wavelength range of 350 nm or more and 420 nm or less is 70% or more.
  • the absorption rate of the first phosphor with respect to light having a peak wavelength in the other wavelength range is low. That is, when the light emitting unit is irradiated with second light that is not in the wavelength range of 420 nm or less, for example, has a blue region oscillation wavelength (peak wavelength in a wavelength range of 440 nm or more), the light emitting unit of the second light Absorption rate is low.
  • the light emitting device can efficiently use the second light for color temperature adjustment.
  • the light emitting unit preferably includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
  • the second phosphor is a CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor) or a SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor). It is preferable.
  • the second phosphor that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color.
  • the second phosphor that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color.
  • a highly light-emitting part can be realized.
  • the second light source further includes a diffusion unit that emits laser light as the second light and diffuses the laser light emitted from the second light source. Is preferred.
  • the laser light as the second light is diffused by irradiating the diffusion portion.
  • the second light source is a laser light source
  • the light emitting point size of the laser light can be increased by the diffusing unit, so that the second light can be used as illumination light while suppressing the influence on the human body.
  • the light emitting unit functions as the diffusing unit, and the laser light emitted from the second light source is preferably diffused by the light emitting unit.
  • a light emitting unit that converts excitation light into fluorescence can be used. For this reason, since it is not necessary to separately provide a member for diffusion, the light emitting device can be manufactured at a lower cost.
  • the laser light is highly coherent, it is not necessary to enlarge the light emitting part in order to irradiate the light emitting part with the second light (that is, the light emitting part can be made small). For this reason, a high-luminance light-emitting device can be realized even in the light-emitting device according to an embodiment of the present invention that includes the second light source.
  • the first light source is preferably a laser light source.
  • the first light source emits a high-output and highly coherent laser beam, even if the light emitting unit is made small, the irradiation efficiency of the excitation light to the light emitting unit is high and the light emitting unit is strongly excited. Therefore, the same luminous intensity as the conventional one can be obtained. That is, when the first light source is a laser light source, the light emitting unit can be made small, so that a high-luminance light emitting device can be realized.
  • the light emitting device includes a cutoff filter that blocks the excitation light.
  • the cutoff filter by providing the cutoff filter, it is possible to reliably prevent the excitation light that has not been converted into fluorescence (or not scattered) from being emitted to the outside. Therefore, even if the emission point size of the excitation light is very small and the output power is high, or the excitation light belongs to a wavelength range other than the visible light region, the excitation light leaks to the outside and is given to the human body. The influence can be suppressed.
  • the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
  • the headlamp since the headlamp includes the light-emitting device, the second light different from the excitation light can be used as the illumination light as in the light-emitting device, so that the color temperature of the illumination light is adjusted. it can.
  • a light-emitting device includes an excitation light source that emits excitation light, a light-emitting unit that emits fluorescence in response to excitation light emitted from the excitation light source, and excitation light emitted from the excitation light source. It is preferable to include a light amount changing mechanism that changes a ratio of excitation light that is not converted into fluorescence by the light emitting unit.
  • the light quantity change mechanism functions as the characteristic change mechanism.
  • the light quantity changing mechanism that functions as the characteristic changing mechanism changes the ratio of the excitation light that is not converted into fluorescence by the light emitting unit in the excitation light emitted from the excitation light source (hereinafter referred to as the conversion ratio).
  • the ratio of fluorescence to illumination light changes, so that the color temperature of illumination light can be changed.
  • the light amount changing mechanism changes a ratio of excitation light that is not irradiated on the light emitting unit in excitation light emitted from the excitation light source.
  • the light quantity changing mechanism can change the conversion ratio by changing the ratio of the excitation light that is not irradiated to the light emitting portion in the excitation light emitted from the excitation light source.
  • the light amount changing mechanism changes an irradiation area of the excitation light emitted from the excitation light source in the light emitting unit.
  • the light quantity changing mechanism can change the conversion ratio by changing the irradiation area in the light emitting portion of the excitation light emitted from the excitation light source.
  • the light amount changing mechanism moves the light emitting unit.
  • the conversion ratio changes according to the distance between the excitation light source and the light emitting unit.
  • the conversion ratio can be changed by moving the light emitting unit and changing the distance by the light quantity changing mechanism.
  • the light-emitting device includes an optical member that bends the excitation light emitted from the excitation light source and emits the light to the light-emitting unit, and the light amount changing mechanism moves the optical member. It is preferable to make it.
  • the optical member bends the excitation light emitted from the excitation light source and emits the excitation light to the light emitting part.
  • the optical path width is different from the optical path width of the excitation light before entering the optical member, and can be emitted so as to change according to the distance from the optical member. That is, the excitation light emitted from the excitation light source is transmitted through the optical member, so that the optical path width is newly changed with the optical member as a base point.
  • the light amount changing mechanism moves the optical member, and changes the distance between the optical member and the light emitting unit, thereby providing the same effect as changing the distance between the excitation light source and the light emitting unit when there is no optical member. Can be obtained. That is, in this case, since the conversion ratio changes according to the distance between the optical member and the light emitting unit, the conversion ratio can be changed by the optical change mechanism changing the distance.
  • the light amount changing mechanism changes an incident angle of excitation light incident on the light emitting unit.
  • the light amount changing mechanism changes the incident angle of the excitation light incident on the light emitting unit, thereby changing the ratio of the excitation light that is not irradiated to the light emitting unit out of the excitation light emitted from the excitation light source, or The irradiation area in the light emission part of the excitation light emitted from the excitation light source can be changed. Therefore, the conversion ratio can be changed by the light amount changing mechanism changing the incident angle.
  • the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light, and the light emitting unit emits fluorescence having a peak wavelength in a yellow region. It is preferable that the first phosphor is included.
  • the first phosphor is preferably yttrium, aluminum, and garnet.
  • the first phosphor especially yttrium aluminum garnet (YAG)
  • YAG yttrium aluminum garnet
  • the color temperature of the illumination light can be changed in a wide range by changing the conversion ratio by the light quantity changing means.
  • the light emitting unit preferably includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
  • the second phosphor is a CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor) or a SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor). It is preferable.
  • the second phosphor that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color.
  • the second phosphor that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color.
  • a highly light-emitting part can be realized.
  • the light emitting device preferably further includes a second light source that emits second light different from the excitation light.
  • the second light different from the excitation light emitted from the second light source can be used as part of the illumination light.
  • the light amount changing mechanism changes the conversion ratio and changes the amount of fluorescence, so that the ratio of the fluorescence to the illumination light (the ratio of the second light) changes, so the color temperature of the illumination light is changed. Can be made.
  • the excitation light source emits a first excitation light source that emits the first excitation light and a second excitation light that has an oscillation wavelength different from that of the first excitation light.
  • a second excitation light source that emits first fluorescence upon receiving the first excitation light emitted from the first excitation light source, and the second excitation light source.
  • a second light-emitting unit that emits second fluorescence upon receiving the second excitation light, wherein the light amount changing mechanism includes the first light emission of the first excitation light emitted from the first excitation light source.
  • At least one of a ratio of the first excitation light that is not converted to fluorescence by the second portion and a ratio of the second excitation light that is not converted to fluorescence by the second light emitting portion of the second excitation light emitted from the second excitation light source is preferable to change.
  • the light amount changing mechanism changes the ratio (conversion ratio) of the first excitation light and / or the second excitation light that is not converted into fluorescence by the first light emitting unit and / or the second light emitting unit, and The amount of fluorescence emitted from the light emitting unit and / or the second light emitting unit is changed.
  • the ratio of each fluorescence with respect to illumination light changes, the color temperature of illumination light can be changed.
  • the light emitting device preferably includes an input unit that receives a user operation, and the light amount changing mechanism operates according to the user operation received by the input unit.
  • the light quantity changing mechanism since the light quantity changing mechanism operates according to the user operation received by the input means, the color temperature of the illumination light can be changed according to the user's preference.
  • the light emitting device includes an excitation light source that emits excitation light, a second light source that emits second light different from the excitation light, and excitation light emitted from the excitation light source. And a light emission unit that emits fluorescence, and a light amount changing mechanism that changes at least one of the output of the excitation light emitted from the excitation light source and the output of the second light emitted from the second light source. It is preferable.
  • the light quantity change mechanism functions as the characteristic change mechanism.
  • the light emitting unit receives the excitation light emitted from the excitation light source and emits fluorescence, so that the fluorescence can be used as illumination light.
  • the second light source emits second light different from the excitation light
  • the second light can also be used as part of the illumination light.
  • the light quantity changing mechanism that functions as the characteristic changing mechanism changes at least one of the output of the excitation light and the output of the second light
  • the light quantity of the fluorescence and / or the second light used for the illumination light is changed. Can be changed. Therefore, the color temperature of the illumination light can be changed.
  • a light emitting device includes a first excitation light source that emits first excitation light and a second excitation light source that emits second excitation light having an oscillation wavelength different from that of the first excitation light.
  • a first light emitting unit that emits first fluorescence upon receiving the first excitation light emitted from the first excitation light source, and a second fluorescence upon receiving the second excitation light emitted from the second excitation light source.
  • a second light emitting unit, and a light amount changing mechanism that changes at least one of an output of the first excitation light emitted from the first excitation light source and an output of the second excitation light emitted from the second excitation light source. It is preferable to provide.
  • the first excitation light source and the second excitation light source function as the excitation light source
  • the first light emission unit and the second light emission unit function as the light emission unit
  • the light amount change mechanism functions as the characteristic change mechanism.
  • the 1st light emission part and 2nd light emission part which function as a light emission part are respectively the 1st excitation light and 2nd excitation light radiate
  • first fluorescence and second fluorescence are emitted.
  • the light emitting device can use the first fluorescence and the second fluorescence as illumination light.
  • the light quantity change mechanism which functions as a characteristic change mechanism changes at least one of the output of the 1st excitation light and the 2nd excitation light, the light quantity of each fluorescence utilized for illumination light can be changed. Therefore, the color temperature of the illumination light can be changed.
  • the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
  • the headlamp since the headlamp includes the light emitting device, the ratio of the excitation light converted into fluorescence or the output of the excitation light can be changed as in the light emitting device. Therefore, the color temperature of the illumination light can be changed.
  • a light emitting device includes an excitation light source that emits excitation light, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the first fluorescence upon receiving the excitation light.
  • the second light emitting unit emitting second fluorescence having a peak wavelength different from that of the first light emitting unit, and the irradiation range of the excitation light in the first light emitting unit are made constant, and the irradiation of the excitation light irradiated to the second light emitting unit It is preferable to include an irradiation range changing mechanism that changes the range.
  • the first light emitting unit and the second light emitting unit function as the light emitting unit, and the irradiation range changing mechanism functions as the characteristic changing mechanism.
  • the first light emitting unit that functions as the light emitting unit emits the first fluorescence
  • the second light emitting unit that functions as the light emitting unit has the first fluorescence. Emits a second fluorescence having a peak wavelength different from
  • the irradiation range changing mechanism that functions as a characteristic changing mechanism changes the irradiation range of the excitation light irradiated to the first light emitting unit and the second light emitting unit.
  • the irradiation range changing mechanism changes the irradiation range of the excitation light irradiated to the second light emitting unit after making the irradiation range of the excitation light in the first light emitting unit constant.
  • the irradiation range changing mechanism increases the irradiation range from the state where the excitation light is irradiated to the entire first light emitting unit and is not irradiated to the second light emitting unit. 2 light emitting parts are included. Accordingly, since the second fluorescence can be emitted in addition to the first fluorescence, the ratio of the second fluorescence to the illumination light can be increased.
  • the irradiation range changing mechanism can change the ratio of the first fluorescence and the second fluorescence included in the illumination light. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
  • the light emitting device includes an excitation light source that emits excitation light, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the first light that receives the excitation light.
  • a second light emitting unit that emits second fluorescence having a peak wavelength different from the fluorescence of the first light emitting unit, an irradiation range changing mechanism that changes an irradiation range of excitation light irradiated to the first light emitting unit and the second light emitting unit, It is preferable to provide.
  • the first light emitting unit and the second light emitting unit function as the light emitting unit, and the irradiation range changing mechanism functions as the characteristic changing mechanism.
  • the first light emitting unit that functions as the light emitting unit emits the first fluorescence
  • the second light emitting unit that functions as the light emitting unit has the first fluorescence. Emits a second fluorescence having a peak wavelength different from
  • the irradiation range changing mechanism that functions as a characteristic changing mechanism changes the irradiation range of the excitation light irradiated to the first light emitting unit and the second light emitting unit.
  • the irradiation range changing mechanism reduces the irradiation range in the first light emitting unit by moving the center of the irradiation range from the first light emitting unit to the second light emitting unit while keeping the area of the irradiation range constant. And the irradiation area
  • the irradiation range changing mechanism can change the ratio of the first fluorescence and the second fluorescence included in the illumination light. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
  • the first light emitting unit and the second light emitting unit are arranged in contact with each other.
  • the non-contact region (non contact type)
  • excitation light is irradiated to the region. Since the excitation light irradiated to the non-contact region is not converted into fluorescence, it can be a factor of reducing the utilization efficiency of the excitation light.
  • the excitation light can be used for conversion of fluorescence without waste.
  • the irradiation range changing mechanism can efficiently change the irradiation range as compared with the case where the first light emitting unit and the second light emitting unit are arranged in a non-contact manner.
  • the second light emitting unit is disposed around the first light emitting unit.
  • the irradiation range changing mechanism is configured to change the irradiation range of the excitation light irradiated to the second light emitting unit after making the irradiation range of the excitation light in the first light emitting unit constant. Moreover, the irradiation range in the second light emitting unit can be changed efficiently.
  • the first light emitting unit and the second light emitting unit are integrally formed.
  • the manufacturing process and the manufacturing cost can be reduced as compared with the case where each light emitting unit is manufactured separately and provided in the light emitting device.
  • the irradiation range changing mechanism may change the relative positions of the excitation light source, the first light emitting unit, and the second light emitting unit. It is preferable to change the irradiation range.
  • the light is emitted from the excitation light source. Since the optical path width of the excitation light generally increases according to the distance from the emission point, the irradiation range in the second light emitting unit can be changed by the change.
  • the position of the said irradiation range in a 1st light emission part and a 2nd light emission part can be changed by changing said relative position, the irradiation range in each of a 1st light emission part and a 2nd light emission part is changed. be able to.
  • the light emitting device further includes an optical member that bends the excitation light emitted from the excitation light source and emits the light to at least one of the first light emission unit and the second light emission unit.
  • the irradiation range changing mechanism preferably changes the irradiation range by moving the optical member.
  • the optical member bends the excitation light emitted from the excitation light source and emits the excitation light to the first light emitting part and / or the second light emitting part.
  • the optical light is collected in the first light emitting part and / or the second light emitting part.
  • the optical path width of the excitation light after passing through the optical member, such as light can be emitted so as to be different from the optical path width of the excitation light before entering the optical member and according to the distance from the optical member. That is, the excitation light emitted from the excitation light source is transmitted through the optical member, so that the optical path width is newly changed with the optical member as a base point.
  • the irradiation range changing mechanism is configured to change the irradiation range of the excitation light irradiated to the second light emitting unit, in particular, while keeping the irradiation range of the excitation light in the first light emitting unit constant.
  • the distance between the optical member and the first light emitting unit and / or the second light emitting unit can be changed. This change provides the same effect as changing the distance between the excitation light source and the first light emitting unit and / or the second light emitting unit when no optical member is present.
  • the optical change mechanism moves the optical member and changes the distance. By doing so, the irradiation range can be changed.
  • the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light
  • the first light emitting unit emits fluorescence having a peak wavelength in a yellow region. It is preferable to include a first phosphor that emits as the first fluorescence.
  • the first phosphor is preferably yttrium, aluminum, and garnet.
  • the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light
  • the first light emitting unit is a fluorescent light having a peak wavelength in a green region. It is preferable to include a first phosphor that emits as the first fluorescence.
  • the light when light having an oscillation wavelength in the blue region is used as excitation light and the first phosphor that emits fluorescence having a peak wavelength in the green region is used, the light is emitted from the first light emitting unit.
  • the color temperature of the illumination light can be increased. Therefore, emission of illumination light having a high color temperature can be realized.
  • the first phosphor is preferably a ⁇ -SiAlON: Eu phosphor.
  • the ⁇ -SiAlON: Eu phosphor having high luminous efficiency is used as the first phosphor, the luminous efficiency of the first light emitting unit can be increased. Therefore, a light emitting device with high conversion efficiency to illumination light can be realized.
  • the second light emitting unit includes a second phosphor that emits fluorescence having a peak wavelength in a red region as the second fluorescence.
  • the second phosphor is preferably a CASN: Eu phosphor or a SCASN: Eu phosphor.
  • the second phosphor that is, a red light-emitting phosphor that emits red light (especially, CASN: Eu phosphor or SCASN: Eu phosphor)
  • the second fluorescence is lower than the first phosphor.
  • Color temperature fluorescence can be emitted.
  • the irradiation range by the irradiation range changing mechanism, for example, the color temperature of the illumination light can be lowered as compared with the case where the illumination light is composed only of the first fluorescence.
  • the light emitting device preferably includes an input unit that receives a user operation, and the irradiation range changing mechanism operates according to the user operation received by the input unit.
  • the irradiation range changing mechanism operates according to the user operation received by the input means, it is possible to realize a change in color temperature according to the user's preference.
  • the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
  • the illumination range changing mechanism changes the ratio of the first fluorescence and the second fluorescence included in the illumination light, similarly to the illumination device. Can be made. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
  • a light emitting device includes an excitation light source that generates excitation light emitted from an emission point, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the excitation light.
  • an excitation light source that generates excitation light emitted from an emission point
  • a first light emitting unit that emits first fluorescence upon receiving the excitation light
  • the excitation light By changing the relative positional relationship between the second light emitting unit capable of emitting second fluorescent light having a color different from that of the first fluorescent light, and the second light emitting unit and the emission point, It is preferable to include a position control unit that changes the amount of fluorescence generated in No. 2.
  • the position controller functions as the characteristic changing mechanism.
  • a light emitting device includes a first light emitting unit and a second light emitting unit that receive excitation light emitted from an excitation light source and emit fluorescence of different colors.
  • the second light emitting unit the relative positional relationship with the emission point is changed by the position control unit, and the generation amount of the second fluorescence is changed accordingly.
  • the first fluorescent light and the second fluorescent light whose generation amount changes are mixed, and the illumination light whose spectrum, chromaticity, color temperature, that is, the characteristic of the illumination light changes, is emitted to the outside of the light emitting device. Can do.
  • the light emitting device changes the characteristics of the illumination light with a simple structure in which the relative positional relationship between the second light emitting unit and the emission point is changed by the position control unit. Accordingly, various problems such as the above-described conventional problems, that is, the manufacturing cost and the arrangement of the LED chips in the vehicle headlamp can be solved.
  • a light emitting device includes an excitation light source that generates excitation light, a first light emitting unit that emits first fluorescence in response to excitation light from the excitation light source, and the first fluorescence. And changing the relative positional relationship between the second light emitting unit capable of emitting second fluorescence having a color different from the fluorescence of the first light emitting unit, and the second light emitting unit and the first light emitting unit.
  • a position control unit that changes the generation amount of the second fluorescence.
  • the position controller functions as the characteristic changing mechanism.
  • the light emitting device includes the first light emitting unit that emits the first fluorescence in response to the excitation light emitted from the excitation light source, and the first light emitting unit that receives the first fluorescence.
  • a second light emitting unit capable of emitting second fluorescent light having a color different from that of the single light emitting unit. Then, when the relative positional relationship between the second light emitting unit and the first light emitting unit is changed by the position control unit, the generation amount of the second fluorescence is also changed.
  • the first fluorescent light and the second fluorescent light whose generation amount changes are mixed, and the illumination light whose spectrum, chromaticity, color temperature, that is, the characteristic of the illumination light changes, is emitted to the outside of the light emitting device. Can do.
  • the light emitting device has a simple structure in which the relative positional relationship between the second light emitting unit and the first light emitting unit is changed by the position control unit.
  • the position control unit may be configured to change a distance between the second light emitting unit and the optical axis of the excitation light.
  • the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is large.
  • the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence decreases.
  • the amount of second fluorescence generated can be changed by the position control unit changing the distance between the second light emitting unit and the optical axis of the excitation light.
  • the characteristics of the illumination light can be easily changed.
  • the position control unit may be configured to change the distance between the plurality of second light emitting units and the optical axis.
  • the plurality of the second light emitting units may be arranged in a ring around the optical axis.
  • the position control unit changes the distance between the plurality of second light emitting units and the optical axis, so that the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is changed. By changing it, the generation amount of the second fluorescence can be changed. As a result, the characteristics of the illumination light can be easily changed.
  • the position control unit changes the position of the plate-shaped second light emitting unit, thereby changing the second light emitting unit and the optical axis of the excitation light. It may be configured to change the distance between them.
  • the position control unit changes the position of the plate-like second light emission unit to change the position of the second light emission unit and the excitation light. What is necessary is just to change the distance between optical axes, and the design of a light emitting device with a higher degree of freedom can be realized.
  • the position control unit may be configured to move the second light emitting unit in the optical axis direction of the excitation light.
  • the second light emitting unit moves in the optical axis direction of the excitation light. At this time, if the second light emitting unit is brought close to the emission point of the excitation light, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is increased. Conversely, when the second light emitting unit is far from the excitation light emission point, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is reduced.
  • the amount of second fluorescence generated can be changed by moving the second light emitting unit in the optical axis direction of the excitation light. As a result, the characteristics of the illumination light can be easily changed.
  • the second light emitting unit may have a translucency.
  • the second light emitting unit can ensure light transparency, and the luminous intensity of the illumination light irradiated to the outside of the light emitting device can be increased.
  • the second light emitting unit may include a nanoparticle phosphor.
  • a 2nd light emission part can improve light transmittance by including nanoparticle fluorescent substance, As a result, the luminous intensity of the illumination light irradiated to the exterior of a light-emitting device can be raised.
  • the particle size of the nanoparticle phosphor is not particularly limited, but may be 1 nm to 5 nm.
  • the excitation light source may be a semiconductor laser, and the semiconductor laser and the first light emitting unit may be separated from each other.
  • Semiconductor lasers are known to generate a large amount of heat. Therefore, since the semiconductor laser and the first light emitting unit are separated from each other, it is possible to avoid a situation in which the first light emitting unit is deteriorated or damaged by heat and the life of the light emitting unit is shortened.
  • the excitation light source may be a light emitting diode, and the light emitting diode and the first light emitting unit may be integrally formed.
  • the light emitting diode has a lower calorific value than the semiconductor laser, and even if the light emitting diode and the first light emitting unit are integrally formed, the first light emitting unit is deteriorated or damaged by heat, and the life of the light emitting unit is increased. Is rarely shortened. Therefore, the light emitting diode and the first light emitting unit may be integrally formed, whereby the layout in the light emitting device can be kept compact.
  • the illumination device according to an embodiment of the present invention includes any one of the light-emitting devices described above.
  • a headlamp for example, a vehicle headlamp
  • a headlamp includes any one of the light-emitting devices described above.
  • the light emitting device according to an embodiment of the present invention can be suitably applied to a lighting device, a headlamp, and the like. Thereby, for example, when the light-emitting device according to an embodiment of the present invention is applied to a headlamp, a headlamp capable of emitting illumination light having high efficiency and high color rendering can be realized. .
  • the present invention can be applied to a light emitting device, a lighting device, and the like.
  • the present invention can be applied to headlamps for automobiles, headlamps for vehicles other than automobiles and moving objects (for example, humans, ships, aircraft, submersibles, rockets, etc.) and other lighting devices.
  • other lighting devices for example, it can be applied to a searchlight, a projector, a home lighting device, and the like.
  • the present invention can adjust or change the color temperature of the illumination light, and is particularly suitable for a headlamp for vehicles and the like. Furthermore, the present invention can be suitably applied to a light emitting device that is required to change the characteristics of illumination light with a simple structure, in particular, an illumination device and a vehicle headlamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

A head lamp (10) is provided with an excitation light source unit (6) for radiating laser light, and a light-emitting unit (2) for emitting fluorescent light by irradiation of the laser light radiated by the excitation light source unit (6). The surface area of a spot when the laser light is irradiated toward the light-emitting unit (2) is greater than the surface area of the light-emitting unit (2) when the light-emitting unit (2) is viewed from the side from which the laser light is irradiated.

Description

発光装置、照明装置および前照灯Light emitting device, lighting device and headlamp
 本発明は、励起光の照射により蛍光を発生する蛍光体を含む発光体を備えた発光装置などに関する。また、本発明は、高輝度光源として機能する発光装置、照明装置および当該照明装置を備えた前照灯に関するものである。さらに、本発明は、簡易な構造で照明光の特性を変化させることが可能な発光装置、照明装置、及び車両用前照灯(前照灯)に関する。 The present invention relates to a light-emitting device including a light-emitting body including a phosphor that generates fluorescence when irradiated with excitation light. The present invention also relates to a light-emitting device that functions as a high-intensity light source, a lighting device, and a headlamp that includes the lighting device. Furthermore, the present invention relates to a light emitting device, a lighting device, and a vehicle headlamp (headlamp) that can change the characteristics of illumination light with a simple structure.
 近年、励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から発生した励
起光を、蛍光体を含む発光体(発光部)に照射することによって発生する蛍光を照明光として用いる発光装置の研究が盛んになってきている。
In recent years, a semiconductor light emitting device such as a light emitting diode (LED) or a semiconductor laser (LD) is used as an excitation light source, and the excitation light generated from these excitation light sources is converted into a light emitting body including a phosphor (light emission). Studies of light-emitting devices that use fluorescence generated by irradiating a part) as illumination light have become active.
 このような発光装置の一例として特許文献1に開示された発光装置がある。この発光装置は、基台と、半導体レーザ素子(以下、単に「半導体レーザ」という場合もある)と、拡散部材(拡散部)と、波長変換部材(以下、単に「発光体」または「発光部」という場合もある)とを備える。なお、上記の基台は、底面と内壁とを持つ凹部を有している。半導体レーザは、その光軸が上記の基台における凹部の内壁に向くように配置されている。拡散部材は、半導体レーザの光軸上に配置されている。発光体は、半導体レーザの光軸上ではなく、凹部の開口方向に対して拡散部材と距離を隔てて配置されている。これにより、上記の発光装置は、装置の外部に放射される照明光の安全性を高めている。 An example of such a light emitting device is the light emitting device disclosed in Patent Document 1. This light-emitting device includes a base, a semiconductor laser element (hereinafter sometimes simply referred to as “semiconductor laser”), a diffusion member (diffusion portion), and a wavelength conversion member (hereinafter simply referred to as “light emitter” or “light-emitting portion”). In some cases). In addition, said base has a recessed part with a bottom face and an inner wall. The semiconductor laser is arranged so that its optical axis faces the inner wall of the recess in the base. The diffusion member is disposed on the optical axis of the semiconductor laser. The light emitter is disposed not on the optical axis of the semiconductor laser but at a distance from the diffusion member with respect to the opening direction of the recess. Thereby, the light emitting device described above improves the safety of the illumination light emitted to the outside of the device.
 また、このような照明装置の一例が特許文献2に開示されている。この照明装置では、高輝度光源を実現するために、励起光源として、450nm以下のレーザ光を出射するGaN系半導体レーザを用いている。一般に、半導体レーザから発振されるレーザ光は、コヒーレントな光であるため、指向性が強く、当該レーザ光を励起光として無駄なく集光し、利用することができる。 An example of such an illumination device is disclosed in Patent Document 2. In this illumination device, in order to realize a high-intensity light source, a GaN-based semiconductor laser that emits laser light of 450 nm or less is used as an excitation light source. In general, since laser light oscillated from a semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste.
 また、特許文献2には、励起光源として、上記GaN系半導体レーザの代わりに、GaN系発光ダイオードを用いた照明装置が開示されている。この発光ダイオードは、コンタクト層やクラッド層などから構成される積層体を含み、その積層体には凹部が設けられている。そして、その凹部に蛍光体を充填することにより、蛍光の取り出し効率の向上が図られている。 Patent Document 2 discloses an illumination device that uses a GaN-based light-emitting diode instead of the GaN-based semiconductor laser as an excitation light source. This light emitting diode includes a laminated body composed of a contact layer, a clad layer, and the like, and the laminated body is provided with a recess. And the fluorescent extraction efficiency is improved by filling the concave portion with a fluorescent material.
 さらに、このような発光装置に関する技術の例として特許文献3および4に開示された灯具がある。これらの灯具では、高輝度光源を実現するために、励起光源として半導体レーザを用いている。半導体レーザから発振されるレーザ光は、コヒーレントな光であるため、指向性が強く、当該レーザ光を励起光として無駄なく集光し、利用することができる。このような半導体レーザを励起光源として用いた発光装置(LD発光装置と称する)を車両用ヘッドランプに好適に適用することができる。 Furthermore, there are lamps disclosed in Patent Documents 3 and 4 as examples of techniques relating to such a light emitting device. In these lamps, a semiconductor laser is used as an excitation light source in order to realize a high-intensity light source. Since the laser light oscillated from the semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste. A light-emitting device using such a semiconductor laser as an excitation light source (referred to as an LD light-emitting device) can be suitably applied to a vehicle headlamp.
 さらに、このような照明装置の一例が特許文献5および6に開示されている。特許文献5及び6に記載の車両用前照灯は、異なる色を発する複数のLEDチップを備えている。特許文献5の技術では、雨天、濃霧、積雪時等の視認性の低下を抑制するため、状況に応じて白色光の光量を低下させ、緑や橙色等の光を出射している。また、特許文献6の技術では、歩行者を迅速に認識することができるように、歩行者を他の対象物から見分けやすい赤色光及び緑色光を出射している。 Further, examples of such an illumination device are disclosed in Patent Documents 5 and 6. The vehicle headlamps described in Patent Documents 5 and 6 include a plurality of LED chips that emit different colors. In the technique of Patent Document 5, in order to suppress a decrease in visibility in rainy weather, dense fog, snowfall, or the like, the amount of white light is reduced according to the situation, and light such as green or orange is emitted. Moreover, in the technique of patent document 6, the red light and green light which are easy to distinguish a pedestrian from another target object are radiate | emitted so that a pedestrian can be recognized rapidly.
日本国公開特許公報「特開2009-170723号公報(2009年07月30日公開)」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2009-170723 (released on July 30, 2009)” 日本国公開特許公報「特開2000-174346号公報(2000年6月23日公開)」Japanese Patent Publication “JP 2000-174346 A (published on June 23, 2000)” 日本国公開特許公報「特開2005-150041号公報(2005年6月9日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-150041 (published on June 9, 2005)” 日本国公開特許公報「特開2003-295319号公報(2003年10月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-295319 (published on October 15, 2003)” 日本国公開特許公報「特開2006-351369号公報(2006年12月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-351369 (published on Dec. 28, 2006)” 日本国公開特許公報「特開2009-286198号公報(2009年12月10日公開)」Japanese Patent Publication “JP 2009-286198 A” (published on Dec. 10, 2009)
 しかしながら、上記特許文献1に記載の技術では、拡散部材にレーザ光(励起光)を照射することによって生じた散乱光を発光体に間接的に照射している。また、発光体は、半導体レーザの光軸上に配置されておらず、凹部の開口方向に対して拡散部材と距離を隔てて配置されている。このため、発光体に照射されない散乱光が多く生じるため、発光体に対する励起光の照射効率が著しく低下してしまうという問題点がある。 However, in the technique described in Patent Document 1, scattered light generated by irradiating the diffusing member with laser light (excitation light) is indirectly irradiated on the light emitter. Further, the light emitter is not disposed on the optical axis of the semiconductor laser, but is disposed at a distance from the diffusion member with respect to the opening direction of the recess. For this reason, since many scattered light which is not irradiated to a light-emitting body arises, there exists a problem that the irradiation efficiency of the excitation light with respect to a light-emitting body will fall remarkably.
 よって、発光体に対する励起光の照射効率の低下を抑制するためには、半導体レーザから発生するレーザ光をそのまま発光体に向けて照射することが好ましい。 Therefore, in order to suppress a decrease in the irradiation efficiency of the excitation light with respect to the light emitter, it is preferable to irradiate the light emitter with the laser light generated from the semiconductor laser as it is.
 ところで、半導体レーザから発生するレーザ光の強度分布は、所定の拡がりをもち、ほぼガウシアン分布となることが知られている。よって、レーザ光のスポットの裾の部分の強度は、最大強度部分から距離が離れるに従って急激に小さくなる。 Incidentally, it is known that the intensity distribution of laser light generated from a semiconductor laser has a predetermined spread and is almost Gaussian. Therefore, the intensity of the bottom part of the spot of the laser beam decreases rapidly as the distance from the maximum intensity part increases.
 このため、半導体レーザから発生するレーザ光を発光体に向けて照射したときのスポットのサイズを発光体のサイズ以下とすると、発光体の照射面におけるレーザ光の強度分布に大きなムラが生じる可能性がある。そうすると、発光体の照射面の一部にレーザ光の強度が集中し、発光体の劣化が促進されてしまう可能性がある。 For this reason, if the spot size when the laser beam generated from the semiconductor laser is irradiated to the light emitter is less than or equal to the size of the light emitter, there is a possibility of large unevenness in the intensity distribution of the laser light on the irradiated surface of the light emitter. There is. If it does so, the intensity | strength of a laser beam may concentrate on a part of irradiation surface of a light-emitting body, and deterioration of a light-emitting body may be accelerated | stimulated.
 一方、上述のように、半導体レーザから発生するレーザ光を発光体に向けて照射したときのスポットのサイズを発光体のサイズ以下とするためには、装置を構成する光学系に高い工作精度が要求される。このため、装置の設計の自由度が低くなってしまうという問題点もある。 On the other hand, as described above, in order to set the spot size when the laser beam generated from the semiconductor laser is irradiated to the light emitter to be equal to or smaller than the size of the light emitter, the optical system constituting the apparatus has high work accuracy. Required. For this reason, there is a problem that the degree of freedom in designing the apparatus is lowered.
 さらに、特許文献2では、励起光源として、上記の半導体レーザあるいは発光ダイオードを用い、高輝度光源の実現あるいは蛍光の取り出し効率の向上を図っているが、照明光の色温度を調整するといった技術的思想については一切開示されていない。これは、特許文献2においては、その色温度調整の必要性については認識されていなかったためである。 Furthermore, in Patent Document 2, the above-described semiconductor laser or light-emitting diode is used as an excitation light source to achieve a high-intensity light source or to improve the fluorescence extraction efficiency. However, the technique for adjusting the color temperature of illumination light is known. No idea is disclosed. This is because Patent Document 2 does not recognize the necessity of the color temperature adjustment.
 同様に、特許文献3及び4では、励起光源として半導体レーザを用いた灯具が開示されているが、これらの灯具から出射される照明光の色温度を変化させることについては一切開示されていない。特許文献3及び4においては、その色温度を変化させることの必要性については認識されていなかったためである。 Similarly, Patent Documents 3 and 4 disclose lamps using a semiconductor laser as an excitation light source, but do not disclose changing the color temperature of illumination light emitted from these lamps. This is because Patent Documents 3 and 4 did not recognize the necessity of changing the color temperature.
 また、特許文献5、6の何れも、複数のLEDチップを準備する必要があり、単一のLEDチップ(励起光源)により複数の異なる色を出射するという技術に関するものではない。そのため、特許文献5、6の技術は、複数のLEDチップを用いる必要があり、製造コストや車両用前照灯内でのLEDチップの配置など種々の問題を生じる。 Further, neither of Patent Documents 5 and 6 needs to prepare a plurality of LED chips, and does not relate to a technique of emitting a plurality of different colors by a single LED chip (excitation light source). For this reason, the techniques of Patent Documents 5 and 6 require the use of a plurality of LED chips, which causes various problems such as manufacturing costs and arrangement of LED chips in a vehicle headlamp.
 本発明は、上記の問題点に鑑みなされたものであって、その目的は、発光体の劣化を抑制しつつ、装置の設計の自由度を高くすることが可能な発光装置などを提供することにある。また、本発明は、上記問題点に鑑みてなされたものであり、その目的は、照明光の色温度を変化させる(調整する)ことが可能な発光装置などを提供することにある。さらに、本発明は、上記の問題を解決するためになされたものであり、その目的は、簡易な構造で照明光の特性を変化させることが可能な発光装置などを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting device that can increase the degree of freedom in designing the device while suppressing deterioration of the light-emitting body. It is in. In addition, the present invention has been made in view of the above problems, and an object thereof is to provide a light emitting device that can change (adjust) the color temperature of illumination light. Furthermore, the present invention has been made to solve the above-described problems, and an object thereof is to provide a light-emitting device that can change the characteristics of illumination light with a simple structure.
 本発明の発光装置は、上記の課題を解決するために、励起光を出射する励起光源と、上記励起光源から出射された励起光の照射により蛍光を発する発光体とを備え、上記発光体に向けて上記励起光が照射されるときのスポットの面積が、当該励起光が照射される側から上記発光体を見たときの当該発光体の面積よりも大きいことを特徴とする。 In order to solve the above-described problems, a light-emitting device of the present invention includes an excitation light source that emits excitation light and a light-emitting body that emits fluorescence when irradiated with excitation light emitted from the excitation light source. The area of the spot when the excitation light is irradiated is larger than the area of the light emitter when the light emitter is viewed from the side irradiated with the excitation light.
 ここで、励起光源から発生する励起光の強度分布は、所定の拡がりをもち、ほぼガウシアン分布となることが知られている。よって、励起光のスポットの裾の部分の強度は、最大強度部分から距離が離れるに従って急激に小さくなる。 Here, it is known that the intensity distribution of the excitation light generated from the excitation light source has a predetermined spread and is almost Gaussian. Therefore, the intensity of the bottom part of the spot of the excitation light decreases rapidly as the distance from the maximum intensity part increases.
 このため、励起光源から発生する励起光を発光体に向けて照射したときのスポットの面積を、当該励起光が照射される側から発光体を見たときの発光体の面積(射影の面積)以下とすると、発光体の照射面における励起光の強度分布に大きなムラが生じる可能性がある。そうすると、発光体の照射面の一部に励起光の強度が集中し、発光体の劣化が促進されてしまう可能性がある。 Therefore, the area of the spot when the excitation light generated from the excitation light source is irradiated toward the illuminant is the area of the illuminant when the illuminant is viewed from the side irradiated with the excitation light (projection area). If it is as follows, there is a possibility that large unevenness occurs in the intensity distribution of the excitation light on the irradiation surface of the light emitter. If it does so, the intensity | strength of excitation light will concentrate on a part of irradiation surface of a light-emitting body, and deterioration of a light-emitting body may be accelerated | stimulated.
 そこで、本発明の上記の構成では、発光体に向けて励起光が照射されるときのスポットの面積を、当該励起光が照射される側から発光体を見たときの発光体の断面の面積よりも大きくしている。このため、上記レーザ光のスポットの面積を上記発光体の断面の面積以下とする場合と比較して、励起光が照射される発光体の照射面における励起光の強度分布に生じるムラを小さくできる。このため、発光体の照射面の一部に励起光の強度が集中せず、照射面の全域に亘って励起光がマイルドに照射されるので、発光体の劣化を抑制することができる。 Therefore, in the above configuration of the present invention, the area of the spot when the excitation light is irradiated toward the light emitter is the area of the cross section of the light emitter when the light emitter is viewed from the side irradiated with the excitation light. Is bigger than. For this reason, compared with the case where the area of the spot of the laser beam is equal to or less than the area of the cross section of the light emitter, unevenness generated in the intensity distribution of the excitation light on the irradiation surface of the light emitter irradiated with the excitation light can be reduced. . For this reason, the intensity of the excitation light is not concentrated on a part of the irradiation surface of the illuminator, and the excitation light is radiated mildly over the entire irradiation surface, so that deterioration of the illuminant can be suppressed.
 また、上記の構成では、上記励起光のスポットの面積を、上記発光体の断面の面積よりも大きくするだけで良いので、上記レーザ光のスポットの面積を上記発光体の面積以下とする場合と比較して、装置を構成する光学系に高い工作精度は要求されない。また、これにより、装置の設計の自由度も高くなる。 In the above configuration, since the area of the excitation light spot only needs to be larger than the area of the cross section of the light emitter, the area of the laser light spot is less than or equal to the area of the light emitter. In comparison, high working accuracy is not required for the optical system constituting the apparatus. This also increases the degree of freedom in device design.
 以上より、本発明の上記の構成によれば、発光体の劣化を抑制しつつ、装置の設計の自由度を高くすることができる。 As described above, according to the above-described configuration of the present invention, it is possible to increase the degree of freedom in designing the device while suppressing deterioration of the light emitter.
 なお、上記特許文献1の技術は、半導体レーザ(励起光源)から出射した励起光が直接に発光体に向けて照射される構成ではないため、発光体に向けて励起光が照射されるときのスポットの面積について議論する余地はない。 In addition, since the technique of the said patent document 1 is not the structure to which the excitation light radiate | emitted from the semiconductor laser (excitation light source) is directly irradiated toward a light-emitting body, when the excitation light is irradiated toward a light-emitting body, There is no room to discuss the area of the spot.
 また、本発明の発光装置は、上記の課題を解決するために、励起光を出射する、少なくとも1つの励起光源と、上記励起光源から出射された励起光を受けて蛍光を発する、少なくとも1つの発光部と、自装置が外部へ出射する出射光に含まれる上記蛍光の割合を変化させることにより、当該出射光の特性を変化させる特性変化機構と、を備えることを特徴としている。 In order to solve the above-described problem, the light emitting device of the present invention emits at least one excitation light source that emits excitation light and at least one that emits fluorescence upon receiving the excitation light emitted from the excitation light source. It is characterized by comprising a light emitting section and a characteristic changing mechanism for changing the characteristics of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside.
 上記構成によれば、特性変化機構が、少なくとも1つの発光部が発する、自装置が外部へ出射する出射光に含まれる蛍光の割合を変化させることにより、当該出射光の特性を変化させる。それゆえ、出射光の特性、特にその色温度を変化させることができる。 According to the above configuration, the characteristic changing mechanism changes the characteristic of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside, which is emitted from at least one light emitting unit. Therefore, the characteristics of the emitted light, particularly the color temperature can be changed.
 本発明の発光装置は、以上のように、励起光を出射する励起光源と、上記励起光源から出射された励起光の照射により蛍光を発する発光体とを備え、上記発光体に向けて上記励起光が照射されるときのスポットの面積が、当該励起光が照射される側から上記発光体を見たときの当該発光体の面積よりも大きい構成である。 As described above, the light-emitting device of the present invention includes an excitation light source that emits excitation light and a light emitter that emits fluorescence when irradiated with the excitation light emitted from the excitation light source, and the excitation light is emitted toward the light emitter. The area of the spot when irradiated with light is larger than the area of the light emitter when the light emitter is viewed from the side irradiated with the excitation light.
 それゆえ、発光体の劣化を抑制しつつ、装置の設計の自由度を高くすることができるという効果を奏する。 Therefore, it is possible to increase the degree of freedom in designing the device while suppressing the deterioration of the light emitter.
 また、本発明の発光装置は、以上のように、励起光を出射する、少なくとも1つの励起光源と、上記励起光源から出射された励起光を受けて蛍光を発する、少なくとも1つの発光部と、自装置が外部へ出射する出射光に含まれる上記蛍光の割合を変化させることにより、当該出射光の特性を変化させる特性変化機構と、を備える構成である。 In addition, as described above, the light-emitting device of the present invention includes at least one excitation light source that emits excitation light, and at least one light-emitting unit that emits fluorescence in response to the excitation light emitted from the excitation light source. The apparatus includes a characteristic changing mechanism that changes a characteristic of the emitted light by changing a ratio of the fluorescence contained in the emitted light emitted to the outside.
 それゆえ、出射光の特性、特にその色温度を変化させることができるという効果を奏する。 Therefore, it is possible to change the characteristics of the emitted light, particularly the color temperature.
本発明の一実施形態であるヘッドランプ(透過型)の概要構成を示す片側断面図である。1 is a half sectional view showing a schematic configuration of a headlamp (transmission type) according to an embodiment of the present invention. (a)は、上記ヘッドランプに関し、基板、発光体(発光部)および拡散部のそれぞれの配置方法の一例を示す断面図であり、(b)は、上記配置方法の他の一例を示す断面図であり、(c)は、上記配置方法のさらに他の一例を示す断面図であり、(d)は、上記配置方法のさらに他の一例を示す断面図であり、(e)は、上記配置方法のさらに他の一例を示す断面図である。(A) is sectional drawing which shows an example of each arrangement method of a board | substrate, a light-emitting body (light emission part), and a spreading | diffusion part regarding the said headlamp, (b) is a cross section which shows another example of the said arrangement method. (C) is a cross-sectional view showing still another example of the arrangement method, (d) is a cross-sectional view showing still another example of the arrangement method, and (e) It is sectional drawing which shows another example of the arrangement | positioning method. (a)は、上記ヘッドランプに関し、励起光源の一例(LED)の回路図を模式的に示す図であり、(b)は、上記LEDの外観を示す正面図であり、(c)は、上記励起光源の他の一例(LD)の回路図を模式的に示す図であり、(d)は、上記LDの外観(基本構造)を示す斜視図である。(A) is a figure which shows typically the circuit diagram of an example of an excitation light source (LED) regarding the said headlamp, (b) is a front view which shows the external appearance of the said LED, (c) is It is a figure which shows typically the circuit diagram of other examples (LD) of the said excitation light source, (d) is a perspective view which shows the external appearance (basic structure) of said LD. 本発明の他の実施形態であるヘッドランプ(反射型)の概要構成を示す片側断面図である。It is a half sectional view which shows schematic structure of the headlamp (reflection type) which is other embodiment of this invention. (a)は、比較例のヘッドランプ(透過型)の概要構成を示す片側断面図であり、(b)は、レーザ光のスポットの中心(O)からの距離(r)と、レーザ光の強度との関係を示す分布図である。(A) is a half sectional view showing a schematic configuration of a headlamp (transmission type) of a comparative example, and (b) shows the distance (r) from the center (O) of the spot of the laser beam and the laser beam It is a distribution map which shows the relationship with an intensity | strength. 本発明のさらに他の実施形態であるレーザダウンライトが備える発光ユニットおよび従来のLEDダウンライトの外観を示す概略図である。It is the schematic which shows the external appearance of the light emission unit with which the laser downlight which is further another embodiment of this invention is provided, and the conventional LED downlight. 上記レーザダウンライトが設置された天井の断面図である。It is sectional drawing of the ceiling in which the said laser downlight was installed. 上記レーザダウンライトの断面図である。It is sectional drawing of the said laser downlight. 上記レーザダウンライトが備える光ファイバーの出射端部(フェルール)と発光部との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of the output end part (ferrule) of the optical fiber with which the said laser downlight is provided, and a light emission part. 上記LEDダウンライトが設置された天井の断面図である。It is sectional drawing of the ceiling in which the said LED downlight was installed. 上記レーザダウンライトおよび上記LEDダウンライトのスペックを比較するための図である。It is a figure for comparing the specifications of the laser downlight and the LED downlight. 本発明の更なる別の実施形態に係るヘッドランプの構成を示す断面図である。It is sectional drawing which shows the structure of the headlamp which concerns on another another embodiment of this invention. 上記ヘッドランプが備える光ファイバーの出射端部と発光部との位置関係を示す図である。It is a figure which shows the positional relationship of the output end part and light emission part of an optical fiber with which the said headlamp is provided. Caα-SiAlON:Ce蛍光体の特性を示すグラフである。3 is a graph showing characteristics of a Caα-SiAlON: Ce phosphor. 上記ヘッドランプが備える発光部を波長405nmのレーザ光で励起した場合のスペクトルを示すグラフである。It is a graph which shows the spectrum at the time of exciting the light emission part with which the said headlamp is equipped with the laser beam of wavelength 405nm. 上記発光部に波長460nmの青色レーザ光を照射した場合のスペクトルを示すグラフである。It is a graph which shows a spectrum at the time of irradiating the said light emission part with the blue laser beam of wavelength 460nm. 本発明の更なる別の実施形態に係るヘッドランプの構成を示す図である。It is a figure which shows the structure of the headlamp which concerns on another another embodiment of this invention. 車両用前照灯に要求される白色の色度範囲を示すグラフである。It is a graph which shows the white chromaticity range requested | required of the vehicle headlamp. 本発明の一実施形態に係るレーザダウンライトが設置された天井の断面図である。It is sectional drawing of the ceiling in which the laser downlight which concerns on one Embodiment of this invention was installed. 上記レーザダウンライトの断面図である。It is sectional drawing of the said laser downlight. 上記レーザダウンライトの設置方法の変更例を示す断面図である。It is sectional drawing which shows the example of a change of the installation method of the said laser downlight. 本発明の更なる別の一実施形態に係るヘッドランプの概要構成を示す片側断面図である。It is a half sectional view which shows the outline | summary structure of the headlamp which concerns on another another embodiment of this invention. 上記の一実施形態に係るヘッドランプの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the headlamp which concerns on said one Embodiment. 図22に示す発光部と導光部材との位置関係と、そのときのレーザ光照射領域の大きさを示す図である。(a)はレーザ光照射領域の大きさが発光部の受光面の大きさと略一致する場合を示し、(b)は(a)の場合よりも発光部と導光部材との位置が離れた場合を示し、(c)は(a)の場合よりも発光部と導光部材との位置が近くなった場合を示す。It is a figure which shows the positional relationship of the light emission part and light guide member which are shown in FIG. 22, and the magnitude | size of the laser beam irradiation area | region at that time. (A) shows the case where the size of the laser light irradiation region is substantially the same as the size of the light receiving surface of the light emitting unit, and (b) shows the position of the light emitting unit and the light guide member separated from each other as compared with the case of (a). (C) shows a case where the positions of the light emitting part and the light guide member are closer than in the case of (a). 図22に示す発光部の受光面に含まれるレーザ光照射領域の大きさが変化する様子を示す図である。(a)は発光部がレーザ光の光軸方向に垂直な方向に移動する場合を示し、(b)は発光部が回転する場合を示す。It is a figure which shows a mode that the magnitude | size of the laser beam irradiation area | region contained in the light-receiving surface of the light emission part shown in FIG. 22 changes. (A) shows the case where a light emission part moves to the direction perpendicular | vertical to the optical axis direction of a laser beam, (b) shows the case where a light emission part rotates. 車両用前照灯に要求される白色の色度範囲を示すグラフである。It is a graph which shows the white chromaticity range requested | required of the vehicle headlamp. 図22に示すヘッドランプの変形例を示す図である。It is a figure which shows the modification of the headlamp shown in FIG. (a)および(b)は、図22に示すヘッドランプの別の変形例を示す図である。(A) And (b) is a figure which shows another modification of the headlamp shown in FIG. 本発明の更なる別の実施形態に係るヘッドランプの概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on another another embodiment of this invention. 本発明の更なる別の実施形態に係るヘッドランプの概要構成を示す図である。It is a figure which shows schematic structure of the headlamp which concerns on another another embodiment of this invention. 本発明の一実施形態に係るレーザダウンライトの断面図である。It is sectional drawing of the laser downlight which concerns on one Embodiment of this invention. 本発明の更なる別の一実施形態に係るヘッドランプの概要構成を示す片側断面図である。It is a half sectional view which shows the outline | summary structure of the headlamp which concerns on another another embodiment of this invention. 上記の一実施形態に係るヘッドランプの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the headlamp which concerns on said one Embodiment. 図32に示すヘッドランプの発光部における各発光部の配置例を示す図であり、(a)は発光部全体が直方体形状である場合の配置例、(b)は第1発光部及び第2発光部が非接触である場合の配置例、(c)は発光部全体が円柱形状である場合の配置例、(d)は発光部全体が円柱形状であり、かつ発光部が3重構造である場合の配置例を示す。It is a figure which shows the example of arrangement | positioning of each light emission part in the light emission part of the headlamp shown in FIG. 32, (a) is an example of arrangement | positioning in case the whole light emission part is a rectangular parallelepiped shape, (b) is a 1st light emission part and 2nd. Example of arrangement when light emitting part is non-contact, (c) is an example of arrangement when whole light emitting part is cylindrical, (d) is a whole light emitting part is cylindrical, and light emitting part has a triple structure. An arrangement example in a case is shown. 図32に示す発光部の変形例を示す図であり、(a)は透光性基板に接着された発光部の一例を示す断面図であり、(b)は(a)に示す発光部の一例を示す斜視図である。It is a figure which shows the modification of the light emission part shown in FIG. 32, (a) is sectional drawing which shows an example of the light emission part adhere | attached on the translucent board | substrate, (b) is the light emission part shown to (a). It is a perspective view which shows an example. 図32に示すヘッドランプにおける発光部と導光部材との位置関係と、そのときのレーザ光照射領域の大きさを示す図であり、(a)はレーザ光が第1発光部の受光面全体に照射されたときのレーザ光照射領域の大きさが最も小さい場合を示し、(b)は(a)の場合よりも、発光部と導光部材との位置が離れ、かつレーザ光照射領域が大きい場合を示し、(c)は(b)の場合よりも、発光部と導光部材との位置が離れ、かつレーザ光照射領域が大きい場合を示す。It is a figure which shows the positional relationship of the light emission part and light guide member in the headlamp shown in FIG. 32, and the magnitude | size of the laser beam irradiation area | region at that time, (a) is a laser beam is the whole light-receiving surface of a 1st light emission part. The case where the size of the laser light irradiation area is the smallest when it is irradiated is shown in (b), and the position of the light emitting part and the light guide member is farther than in the case of (a), and the laser light irradiation area is The case where it is large is shown, and (c) shows the case where the positions of the light emitting part and the light guide member are further separated and the laser light irradiation region is larger than in the case of (b). 車両用前照灯に要求される白色の色度範囲を示すグラフである。It is a graph which shows the white chromaticity range requested | required of the vehicle headlamp. 図32に示すヘッドランプの変形例を示す図である。It is a figure which shows the modification of the headlamp shown in FIG. 本発明の更なる別の実施形態に係るヘッドランプの概要構成を示す片側断面図である。It is a half sectional view which shows the outline | summary structure of the headlamp which concerns on another another embodiment of this invention. 図39に示すヘッドランプの発光部における各発光部の配置例を示す図であり、(a)は第1発光部及び第2発光部が同じ形状で、かつ接触して配置されている場合の配置例、(b)は(a)の変形例であり、第1発光部及び第2発光部の形状が異なる場合の配置例、(c)は(a)の変形例であり、第1発光部及び第2発光部が非接触である場合の配置例を示す。It is a figure which shows the example of arrangement | positioning of each light emission part in the light emission part of the headlamp shown in FIG. 39, (a) is the case where the 1st light emission part and the 2nd light emission part are the same shape, and are arrange | positioned in contact. An arrangement example, (b) is a modification example of (a), an arrangement example in which the shapes of the first light emitting part and the second light emitting part are different, and (c) is a modification example of (a), and the first light emission. The example of arrangement | positioning when a part and a 2nd light emission part are non-contact is shown. 図39に示すヘッドランプの発光部におけるレーザ光照射領域の大きさの変化を示す図であり、(a)は第1発光部にだけレーザ光が照射されている場合を示し、(b)は第1発光部及び第2発光部の両方にレーザ光が照射されている場合を示す。It is a figure which shows the change of the magnitude | size of the laser beam irradiation area | region in the light emission part of the headlamp shown in FIG. 39, (a) shows the case where the laser beam is irradiated only to the 1st light emission part, (b) is. A case where both the first light emitting unit and the second light emitting unit are irradiated with laser light is shown. 本発明の一実施形態に係るレーザダウンライトの断面図である。It is sectional drawing of the laser downlight which concerns on one Embodiment of this invention. 上記レーザダウンライトが備える光ファイバーの出射端部と発光部との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of the output end part and light emission part of an optical fiber with which the said laser downlight is equipped. 本発明の更なる一実施形態に係るヘッドランプの構成を示す断面図である。It is sectional drawing which shows the structure of the headlamp which concerns on further one Embodiment of this invention. 上記の一実施形態に係る第1発光部、第2発光部、及び位置制御部の構成を示す図である。It is a figure which shows the structure of the 1st light emission part which concerns on said one Embodiment, a 2nd light emission part, and a position control part. 上記の一実施形態の実施例における第2発光部の動作を説明するための図であり、(a)は、第2発光部とレーザ光の光軸との間の距離が最も離れている状態を示す図であり、(b)は、第2発光部がレーザ光の光軸に向かって移動している様子を示す図であり、(c)は、第2発光部とレーザ光の光軸との間の距離が最も近付いた状態を示す図である。It is a figure for demonstrating operation | movement of the 2nd light emission part in the Example of said one Embodiment, (a) is the state where the distance between a 2nd light emission part and the optical axis of a laser beam is the most separated (B) is a figure which shows a mode that the 2nd light emission part is moving toward the optical axis of a laser beam, (c) is a figure which shows a 2nd light emission part and the optical axis of a laser beam. It is a figure which shows the state from which the distance between was closest. 図44に示すヘッドランプによって得られる効果を説明するための色度図である。It is a chromaticity diagram for demonstrating the effect acquired by the headlamp shown in FIG. 図45に示すヘッドランプの構造において、上記一実施形態の別の実施例に係る第2発光部の他の動作を説明するための図であり、(a)は、第2発光部とレーザ光の光軸との間の距離が最も離れている状態を示す図であり、(b)は、第2発光部がレーザ光の光軸に向かって移動している様子を示す図であり、(c)は、第2発光部とレーザ光の光軸との間の距離が最も近付いた状態を示す図である。In the structure of the headlamp shown in FIG. 45, it is a figure for demonstrating other operation | movement of the 2nd light emission part which concerns on another Example of the said one Embodiment, (a) is a 2nd light emission part and a laser beam. (B) is a figure which shows a mode that the 2nd light emission part is moving toward the optical axis of a laser beam. c) is a diagram showing a state in which the distance between the second light emitting unit and the optical axis of the laser beam is closest. LEDチップが埋め込まれた第1発光部を説明するための図であり、(a)は、第1発光部の断面図であり、(b)は、第1発光部の斜視図である。It is a figure for demonstrating the 1st light emission part with which the LED chip was embedded, (a) is sectional drawing of a 1st light emission part, (b) is a perspective view of a 1st light emission part. 図49に示す第1発光部と、第2発光部および位置制御部とを組み合わせた図である。It is the figure which combined the 1st light emission part shown in FIG. 49, the 2nd light emission part, and the position control part. 本発明の一実施形態に係るレーザダウンライトの断面図である。It is sectional drawing of the laser downlight which concerns on one Embodiment of this invention. 上記レーザダウンライトの設置方法の変更例を示す断面図である。It is sectional drawing which shows the example of a change of the installation method of the said laser downlight.
 〔実施の形態1〕
 本発明の一実施形態について図1~図5に基づいて説明すれば、次の通りである。以下の特定の項目で説明する構成以外の構成については、必要に応じて説明を省略する場合があるが、他の項目で説明されている場合は、その構成と同じである。また、説明の便宜上、各項目に示した部材と同一の機能を有する部材については、同一の符号を付し、適宜その説明を省略する。
[Embodiment 1]
An embodiment of the present invention will be described with reference to FIGS. 1 to 5 as follows. Descriptions of configurations other than those described in the following specific items may be omitted as necessary. However, in the case where they are described in other items, the configurations are the same. For convenience of explanation, members having the same functions as those shown in each item are given the same reference numerals, and the explanation thereof is omitted as appropriate.
 以下では、本発明の一実施形態として、ヘッドランプ(発光装置,照明装置,前照灯)10およびヘッドランプ(発光装置,照明装置,前照灯)20を例に挙げて説明する。 Hereinafter, as an embodiment of the present invention, a headlamp (light emitting device, lighting device, headlamp) 10 and a headlamp (light emitting device, lighting device, headlamp) 20 will be described as examples.
 なお、以下で説明するヘッドランプ10および20の各形態は、いずれも前照灯の発光装置部(発光部材)として説明するが、本発明を具現化した形態はこれらの形態に限られず、前照灯以外の照明装置の発光部材などにも適用することができる。 In addition, although each form of the headlamps 10 and 20 demonstrated below is demonstrated as a light-emitting device part (light-emitting member) of a headlamp, the form which actualized this invention is not restricted to these forms, front The present invention can also be applied to a light emitting member of a lighting device other than a lighting lamp.
 〔1.ヘッドランプ10の構成〕
 まず、図1に基づき、本発明の一実施形態であるヘッドランプ10について説明する。図1は、ヘッドランプ10の概要構成を示す片側断面図である。
[1. Configuration of headlamp 10]
First, a headlamp 10 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a half sectional view showing a schematic configuration of the headlamp 10.
 図1に示すように、ヘッドランプ10は、透光性基板(熱伝導性基板)1、発光部(発光体)2、拡散部(拡散部材)3、パラボラ型反射鏡(反射鏡)4、基板5、励起光源ユニット(励起光源)6、ネジ7L,7R、光学部材8を備える。 As shown in FIG. 1, a headlamp 10 includes a translucent substrate (thermally conductive substrate) 1, a light emitting part (light emitting body) 2, a diffusing part (diffusing member) 3, a parabolic reflector (reflecting mirror) 4, A substrate 5, an excitation light source unit (excitation light source) 6, screws 7L and 7R, and an optical member 8 are provided.
 <透光性基板1>
 本実施形態の透光性基板1は、折れ曲がりのない平板状の部材であり、少なくとも励起光であるレーザ光の発振波長(ここでは440nm~480nm)に対して透光性を有している。
<Translucent substrate 1>
The translucent substrate 1 of the present embodiment is a flat member that is not bent, and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) that is excitation light.
 また、透光性基板1は、縦10mm×横10mm×厚み0.5mmのAl(サファイア)基板である。なお、図1に示す透光性基板1の外径は、拡散部3の外径よりも大きいが、拡散部3の外径と同程度であっても良い。 The translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm × width of 10 mm × thickness of 0.5 mm. Note that the outer diameter of the translucent substrate 1 shown in FIG. 1 is larger than the outer diameter of the diffusing portion 3, but may be approximately the same as the outer diameter of the diffusing portion 3.
 透光性基板1のレーザ光が入射される側の表面SUF1に対向する表面SUF2の側には、発光部2が配置され、発光部2と熱的に(すなわち、熱エネルギーの授受が可能なように)接続されている。なお、本実施形態では、透光性基板1と発光部2とは、接着剤を用いて接合(接着)されているものとして説明するが、透光性基板1と発光部2との接合方法は、接着に限られず、例えば、融着などであっても良い。 The light emitting unit 2 is arranged on the surface SUF2 side facing the surface SUF1 on the side on which the laser light of the translucent substrate 1 is incident, and can be thermally exchanged with the light emitting unit 2 (that is, heat energy can be transferred). Connected). In the present embodiment, the translucent substrate 1 and the light emitting unit 2 are described as being bonded (adhered) using an adhesive, but the bonding method of the translucent substrate 1 and the light emitting unit 2 is described. Is not limited to adhesion, and may be, for example, fusion.
 また、接着剤としては、いわゆる有機系の接着剤や、ガラスペースト接着剤が好適であるが、これに限られない。 Also, as the adhesive, so-called organic adhesives and glass paste adhesives are suitable, but not limited thereto.
 透光性基板1は、以上のような構成、形状、および、発光部2との接続形態を有することで、発光部2を表面SUF2で固定(保持)しつつ、透光性基板1を介して、発光部2から発生する熱を外部に放熱することができるので、発光部2の冷却効率が向上する。 The translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that the light emitting unit 2 is fixed (held) by the surface SUF2 and the translucent substrate 1 is interposed therebetween. Thus, since the heat generated from the light emitting unit 2 can be radiated to the outside, the cooling efficiency of the light emitting unit 2 is improved.
 透光性基板1の熱伝導率は、発光部2の熱を効率良く逃がすために、20W/mK(ワット/メートル・ケルビン)以上であることが好ましい。この場合、透光性基板1は、発光部2(1W/mK程度)よりも約20倍も高い熱伝導率を有しており、発光部2において生じた熱を効率良く吸収することにより発光部2を冷却できる。 The thermal conductivity of the translucent substrate 1 is preferably 20 W / mK (watts / meter · Kelvin) or more in order to efficiently release the heat of the light emitting part 2. In this case, the translucent substrate 1 has a thermal conductivity about 20 times higher than that of the light emitting unit 2 (about 1 W / mK), and emits light by efficiently absorbing the heat generated in the light emitting unit 2. Part 2 can be cooled.
 また、発光部2を励起するレーザ光は、透光性基板1越しに発光部2および拡散部3に照射されるようになっている。すなわち、透光性基板1の表面SUF1に入射したレーザ光は、透光性基板1を透過して発光部2に到達する。そのため、透光性基板1は、透光性の優れた材質からなるものであることが好ましい。 Further, the laser light that excites the light emitting unit 2 is applied to the light emitting unit 2 and the diffusing unit 3 through the translucent substrate 1. That is, the laser light incident on the surface SUF <b> 1 of the translucent substrate 1 passes through the translucent substrate 1 and reaches the light emitting unit 2. Therefore, the translucent substrate 1 is preferably made of a material having excellent translucency.
 以上の点を考慮すると、透光性基板1の材質としては、上述したサファイア(Al)の他、マグネシア(MgO)、窒化ガリウム(GaN)、スピネル(MgAl)が好ましい。これらの材料を用いることにより、熱伝導率20W/mK以上を実現できる。 Considering the above points, the material of the light-transmitting substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above. By using these materials, a thermal conductivity of 20 W / mK or more can be realized.
 しかしながら、透光性基板1の材質は、以上の材質に限られず、例えば、ガラス(石英)などであっても良い。 However, the material of the translucent substrate 1 is not limited to the above materials, and may be glass (quartz), for example.
 但し、マグネシアは、潮解性をもつため、透光性基板1の構成材料としてマグネシアを選択する場合は、透光性基板1の周囲を乾燥空気で満たすことが好ましい。例えば、図示しない筐体に透光性基板1を格納して乾燥空気で満たして密封するか、後述するパラボラ型反射鏡4および光学部材8の内部、または、ハーフパラボラ型反射鏡(反射鏡)4h、熱伝導部材4pおよび光学部材8の内部に格納して乾燥空気を満たして密封する。これにより、潮解性により透光性基板1が損傷することを防止することができる。 However, since magnesia has deliquescence, when selecting magnesia as the constituent material of the translucent substrate 1, it is preferable to fill the periphery of the translucent substrate 1 with dry air. For example, the translucent substrate 1 is stored in a housing (not shown) and filled with dry air and sealed, or inside a parabolic reflector 4 and an optical member 8 described later, or a half parabolic reflector (reflector). 4h, housed inside the heat conducting member 4p and the optical member 8, filled with dry air and sealed. Thereby, it can prevent that the translucent board | substrate 1 is damaged by deliquescence.
 また、図1に示す透光性基板1の厚さ(表面SUF1と表面SUF2との間の距離)は、0.2mm以上、5.0mm以下であることがより好ましい。 Further, the thickness of the translucent substrate 1 shown in FIG. 1 (the distance between the surface SUF1 and the surface SUF2) is more preferably 0.2 mm or more and 5.0 mm or less.
 透光性基板1の厚さが、0.2mm以上であれば、発光部2の放熱を十分にでき、発光部2の劣化を防止できる。 If the thickness of the translucent substrate 1 is 0.2 mm or more, it is possible to sufficiently dissipate heat from the light emitting unit 2 and to prevent deterioration of the light emitting unit 2.
 一方、透光性基板1の厚さが、5.0mmを超えると、発光部2に向けて照射されたレーザ光が、透光性基板1において吸収される率が大きくなり、レーザ光の利用効率が下がってしまう。 On the other hand, when the thickness of the translucent substrate 1 exceeds 5.0 mm, the rate at which the laser light irradiated toward the light emitting unit 2 is absorbed by the translucent substrate 1 increases, and the use of the laser light is increased. Efficiency is reduced.
 また、透光性基板1を適切な厚さで発光部2に接合させることにより、特に発光部2での発熱が1W(ワット)を超えるような極めて強いレーザ光を照射しても、その発熱が迅速、かつ、効率的に放熱され、発光部2が損傷(劣化)してしまうことを防止できる。 In addition, by joining the light-transmitting substrate 1 to the light emitting unit 2 with an appropriate thickness, even when the laser beam is irradiated with an extremely strong laser beam that generates heat exceeding 1 W (watts) in particular, the heat generation occurs. Can be quickly and efficiently dissipated to prevent the light emitting section 2 from being damaged (deteriorated).
 なお、上述したように、透光性基板1は、折れ曲がりのない平板状のものであって良いが、折れ曲がった部分や湾曲した部分を有していてもよい。ただし、透光性基板1と発光部2とを接着する場合、発光部2が接着される部分は、接着の安定性の観点から平面(板状)であることが好ましい。 Note that, as described above, the translucent substrate 1 may have a flat plate shape without bending, but may have a bent portion or a curved portion. However, when the translucent substrate 1 and the light emitting unit 2 are bonded, the portion to which the light emitting unit 2 is bonded is preferably flat (plate-shaped) from the viewpoint of adhesion stability.
 <発光部2>
  (発光部の組成)
 次に、発光部2は、レーザ光が照射されることにより蛍光を発生するものであり、レーザ光を受けて蛍光を発生する蛍光体を含んでいる。より、具体的には、発光部2は、封止材としての低融点の無機ガラス(n=1.760)の内部に蛍光体が分散されている。
<Light emitting part 2>
(Composition of light emitting part)
Next, the light emitting unit 2 generates fluorescence when irradiated with laser light, and includes a phosphor that generates fluorescence upon receiving the laser light. More specifically, in the light emitting unit 2, the phosphor is dispersed inside the low melting point inorganic glass (n = 1.760) as the sealing material.
 本実施形態では、上記蛍光体として、Intematix社製のYAG:Ce蛍光体(NYAG4454)を用いたが、蛍光体の種類は、これに限定されない。なお、YAG:Ce蛍光体は、Ceで賦活したイットリウム(Y)-アルミニウム(Al)-ガーネット(Garnet)蛍光体である。このIntematix社製のYAG:蛍光体は、外部量子効率が90%、発光ピーク波長(以下、単に「ピーク波長」という)は558nm(黄色)、色度点はx=0.444、y=0.536であり、430nmから490nmの励起光で良好に励起される。 In this embodiment, a YAG: Ce phosphor (NYAG4454) manufactured by Intematix was used as the phosphor, but the type of the phosphor is not limited to this. The YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -garnet phosphor activated with Ce. This Intematix YAG: phosphor has an external quantum efficiency of 90%, an emission peak wavelength (hereinafter simply referred to as “peak wavelength”) of 558 nm (yellow), chromaticity points of x = 0.444, y = 0. .536 and is well excited by excitation light of 430 nm to 490 nm.
 なお、YAG:Ce蛍光体は、一般に550nm付近(550nmよりも若干長波長側)に発光ピークが存在するブロードな発光スペクトルをもつ。 The YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
 発光部2は、上記YAG:Ce蛍光体を低融点ガラスに分散させて製造する。上記YAG:Ce蛍光体と低融点ガラスとの配合比は、30:100程度であるが、このような割合に限られるものではない。また、発光部2は、蛍光体を押し固めたものであってもよい。 The light emitting unit 2 is manufactured by dispersing the YAG: Ce phosphor in a low melting point glass. The compounding ratio of the YAG: Ce phosphor and the low melting point glass is about 30: 100, but is not limited to such a ratio. In addition, the light emitting unit 2 may be one obtained by pressing a fluorescent material.
 封止材は、本実施形態の無機ガラスに限定されず、いわゆる有機無機ハイブリッドガラスや、シリコーン樹脂等の樹脂材料であってもよい。 The sealing material is not limited to the inorganic glass of the present embodiment, and may be a so-called organic-inorganic hybrid glass or a resin material such as a silicone resin.
 なお、透光性基板1と発光部2との屈折率差Δnは、0.35以下であることが好ましい。 The refractive index difference Δn between the translucent substrate 1 and the light emitting part 2 is preferably 0.35 or less.
 封止材としてシリコーン樹脂等の樹脂材料を選択した場合、発光部2の屈折率は1.5程度(下限)であり、仮に上記YAG:Ce蛍光体を100%用いて発光部2を作製した場合、発光部2の屈折率は2.0程度である。 When a resin material such as a silicone resin is selected as the sealing material, the light emitting portion 2 has a refractive index of about 1.5 (lower limit), and the light emitting portion 2 was produced using 100% of the YAG: Ce phosphor. In this case, the refractive index of the light emitting unit 2 is about 2.0.
 一方、透光性基板1として、サファイアやマグネシア、窒化ガリウム、スピネルを採用した場合の屈折率は、凡そ1.5~2程度の範囲内にある。そこで、想定される、発光部2および透光性基板1の屈折率が、共に1.5~2.0程度であるとすると、一方の屈折率が1.5であるとき、屈折率差Δnが0.35(すなわち、他方の屈折率が1.85)であればその界面での反射率REは1%となる。 On the other hand, when sapphire, magnesia, gallium nitride, or spinel is used as the translucent substrate 1, the refractive index is in the range of about 1.5-2. Therefore, assuming that the refractive indexes of the light emitting unit 2 and the light transmitting substrate 1 are both about 1.5 to 2.0, when one of the refractive indexes is 1.5, the refractive index difference Δn. Is 0.35 (that is, the other refractive index is 1.85), the reflectance RE at the interface is 1%.
 また、一方の屈折率が2.0の時、屈折率差Δnが0.35(すなわち、他方の屈折率は1.65)であれば、その反射率REは0.92%となる。 Also, when the refractive index difference of one is 2.0 and the refractive index difference Δn is 0.35 (that is, the other refractive index is 1.65), the reflectance RE is 0.92%.
 よって、透光性基板1と発光部2との屈折率差Δnが、0.35以下であれば、透光性基板1と発光部2との間の界面の反射率REを1%以下にすることができる。 Therefore, if the refractive index difference Δn between the translucent substrate 1 and the light emitting unit 2 is 0.35 or less, the reflectance RE of the interface between the translucent substrate 1 and the light emitting unit 2 is 1% or less. can do.
 次に、透光性基板1の屈折率は、1.65以上であることが好ましい。上述したように、発光部2の屈折率の上限が2.0であるとすると、透光性基板1の屈折率が1.65以上であれば、屈折率=1.5~2.0の発光部2に対して屈折率差Δn≦0.35を満たすことができる。 Next, the refractive index of the translucent substrate 1 is preferably 1.65 or more. As described above, assuming that the upper limit of the refractive index of the light emitting unit 2 is 2.0, if the refractive index of the translucent substrate 1 is 1.65 or more, the refractive index is 1.5 to 2.0. The refractive index difference Δn ≦ 0.35 can be satisfied with respect to the light emitting unit 2.
 なお、本実施形態で、発光部2の封止材として無機ガラスを用いたのは、その屈折率(1.760)が、サファイアからなる透光性基板1の屈折率(=1.785)に非常に近いため、両者の界面では反射がほとんど発生しないからである。なお、サファイアと無機ガラスとの界面の反射率は0.005%とほぼゼロである。 In this embodiment, inorganic glass is used as the sealing material of the light emitting unit 2 because the refractive index (1.760) of the light-transmitting substrate 1 made of sapphire (= 1.785). This is because there is almost no reflection at the interface between the two. Note that the reflectance at the interface between sapphire and inorganic glass is 0.005%, which is almost zero.
 よって、発光部2に対するレーザ光の照射効率がさらに向上する。なお、本実施形態の透光性基板1に用いられるサファイアと発光部2に用いられる無機ガラスとの、それぞれの物理的特性について纏めると、以下の表のようになる。 Therefore, the irradiation efficiency of the laser light with respect to the light emission part 2 further improves. In addition, it summarizes about each physical characteristic of the sapphire used for the translucent board | substrate 1 of this embodiment, and the inorganic glass used for the light emission part 2, and it becomes as the following table | surfaces.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  (発光部の種類)
 次に、一般に、照明光として用いられる白色光または擬似白色光は、等色の原理を満たす3つの色の混色、または、補色の関係を満たす2つの色の混色などで実現できる。この等色または補色の原理・関係に基づき、例えば、本実施形態のヘッドランプ10では、後述する励起光源ユニット6から出射される青色のレーザ光と、YAG:Ce蛍光体(黄色発光蛍光体)との組合せ(補色の関係を満たす2つの色の混色)で擬似白色を実現している。
(Type of light emitting part)
Next, in general, white light or pseudo-white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching or mixing two colors satisfying a complementary color relationship. Based on the principle / relationship of this equal color or complementary color, for example, in the headlamp 10 of the present embodiment, a blue laser beam emitted from an excitation light source unit 6 described later and a YAG: Ce phosphor (yellow light emitting phosphor). (A mixed color of two colors satisfying the complementary color relationship) and a pseudo white color is realized.
 しかしながら、発光部2に含まれる蛍光体は、本実施形態のようにYAG:Ce蛍光体(黄色発光蛍光体)の1種類のみに限定されず、複数種類であっても良い。 However, the phosphor included in the light emitting unit 2 is not limited to one type of YAG: Ce phosphor (yellow light emitting phosphor) as in this embodiment, and may be a plurality of types.
 例えば、発光部2が後述する緑色発光蛍光体と赤色発光蛍光体との組合せを含んでいれば、青色のレーザ光との混色で白色光を実現できる。 For example, if the light emitting unit 2 includes a combination of a green light emitting phosphor and a red light emitting phosphor, which will be described later, white light can be realized by mixing with blue laser light.
 なお、黄色発光蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。緑色発光蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。赤色発光蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。 The yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less. The green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
  (黄色発光蛍光体)
 黄色発光蛍光体の具体例としては、本実施形態のYAG:Ce蛍光体や、Eu2+がドープされたCaα-SiAlON:Eu蛍光体などが挙げられる。Caα-SiAlON:Eu蛍光体は、近紫外から青色の励起光によりピーク波長が約580nmの強い発光を示す。
(Yellow-emitting phosphor)
Specific examples of the yellow light emitting phosphor include the YAG: Ce phosphor of this embodiment and the Caα-SiAlON: Eu phosphor doped with Eu 2+ . The Caα-SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
  (緑色発光蛍光体)
 緑色発光蛍光体の具体例としては、各種の窒化物系または酸窒化物系の蛍光体が挙げられる。これら窒化物系または酸窒化物系の蛍光体は耐熱性に優れ、高い発光効率で安定した材料であるので、耐熱性に優れ、高い発光効率で安定した発光部2を実現できる。
(Green light emitting phosphor)
Specific examples of the green light emitting phosphor include various nitride-based or oxynitride-based phosphors. Since these nitride-based or oxynitride-based phosphors have excellent heat resistance and are stable materials with high light emission efficiency, the light emitting portion 2 having excellent heat resistance and stable with high light emission efficiency can be realized.
 例えば、緑色に発光する酸窒化物系蛍光体として、Eu2+がドープされたβ-SiAlON:Eu蛍光体、Ce3+がドープされたCaα-SiAlON:Ce蛍光体などが挙げられる。β-SiAlON:Eu蛍光体は、近紫外から青色(350nm以上460nm以下)の励起光によりピーク波長が約540nmの強い発光を示す。この蛍光体の発光スペクトル半値幅は約55nmである。また、Caα-SiAlON:Ce蛍光体は、近紫外から青色の励起光によりピーク波長が約510nmの強い発光を示す。 Examples of the oxynitride phosphor that emits green light include β-SiAlON: Eu phosphor doped with Eu 2+ and Caα-SiAlON: Ce phosphor doped with Ce 3+ . The β-SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm. Further, the Caα-SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
 なお、上記のα-SiAlONおよびβ-SiAlON(サイアロン)は、いわゆるサイアロン蛍光体(酸窒化物系蛍光体)であり、窒化ケイ素と同様に、結晶構造によりα型とβ型とがある。特に、α-サイアロンは,一般式Si12-(m+n)Al(m+n)16-n(m+n<12,0<m ,n<11;m ,nは整数)であらわされる28原子からなる単位構造の中に2箇所の空隙があり、ここに各種金属を侵入固溶させることが可能である。希土類元素を固溶させることで蛍光体になる。カルシウム(Ca)とユーロピウム(Eu)とを固溶させると、上記のYAG:Ce蛍光体よりも長波長の黄色から橙色の範囲で発光する特性の良い蛍光体が得られる。 The above α-SiAlON and β-SiAlON (sialon) are so-called sialon phosphors (oxynitride phosphors), and there are α-type and β-type depending on the crystal structure, similar to silicon nitride. In particular, alpha-sialon has the general formula Si 12- (m + n) Al (m + n) O n N 16-n (m + n <12,0 <m, n <11; m, n is an integer) from 28 atom represented by There are two voids in the unit structure, and various metals can enter and dissolve therein. A phosphor is obtained by dissolving a rare earth element. When calcium (Ca) and europium (Eu) are dissolved, a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor is obtained.
 また、サイアロン蛍光体は、近紫外から青色の(350nm以上460nm以下)の光で励起可能であり、白色LED用の蛍光体などに適している。 Moreover, the sialon phosphor can be excited by light from near ultraviolet to blue (350 nm or more and 460 nm or less), and is suitable for a phosphor for a white LED.
 (赤色発光蛍光体)
 赤色発光蛍光体の具体例としては、各種の窒化物系の蛍光体が挙げられる。
(Red light emitting phosphor)
Specific examples of the red light-emitting phosphor include various nitride-based phosphors.
 例えば、窒化物系の蛍光体としては、Eu2+がドープされたCaAlSiN:蛍光体(CASN:Eu蛍光体)、Eu2+がドープされたSrCaAlSiN蛍光体(SCASN:Eu蛍光体)などが挙げられる。これらの窒化物系の蛍光体は、上述した酸窒化物蛍光体と組合せることにより、演色性をより高めることができる。 For example, examples of the nitride-based phosphor include Eu 2+ doped CaAlSiN 3 : phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 phosphor (SCASN: Eu phosphor), and the like. It is done. By combining these nitride-based phosphors with the oxynitride phosphors described above, color rendering can be further improved.
 CASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は650nmであり、その発光効率は73%である。また、SCASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は630nmであり、その発光効率は70%である。 CASN: Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
 これらの赤色発光蛍光体を用いることにより、演色性が非常に良い白色光を実現することができる。また、赤色発光蛍光体であれば、その白色光を照射する対象物が赤色である場合に、その対象物の視認性を高めることができる。交通標識の背景色として、赤色、黄色および青色が用いられているため、ヘッドランプ10が備える発光部2に赤色発光蛍光体を用いることは、背景色が赤色の交通標識を視認する上で有効である。 By using these red light emitting phosphors, white light with very good color rendering can be realized. Moreover, if it is a red light emission fluorescent substance, when the target object which irradiates the white light is red, the visibility of the target object can be improved. Since red, yellow, and blue are used as the background colors of traffic signs, it is effective to use a red light-emitting phosphor for the light emitting unit 2 provided in the headlamp 10 for visually recognizing traffic signs with a red background color. It is.
 また、赤色に発光する窒化物系蛍光体の例としては、(Mg、Ca、Sr、Ba)AlSiN:Eu等のEu賦活窒化物蛍光体や(Mg、Ca、Sr、Ba)AlSiN:Ce等のCe賦活窒化物蛍光体などが挙げられる。 Examples of nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 : Examples include Ce-activated nitride phosphors such as Ce.
  (ナノ粒子蛍光体について)
 次に、その他の蛍光体の例として、ナノ粒子蛍光体について説明する。ナノ粒子蛍光体の構成材料である半導体物質の典型は、ZnSe、ZnTe、CdSe、CdTe等のII-VI族化合物、Si、Ge等の4B族元素、GaAs、InP等のIII-V族化合物である。半導体ナノ粒子は半導体材料からなる、直径1~10nm程度の粒子を指し、1個のナノ粒子に含まれる原子数は10~10個である。量子サイズ効果により、バルク(目で見える大きさの塊)の半導体とは異なる波長の光を吸収・発光する。例えば、間接遷移型のため、通常では発光しないSiについてもナノ粒子化することによって発光させることができる。
(About nanoparticle phosphors)
Next, a nanoparticle phosphor will be described as an example of another phosphor. Typical semiconductor materials that constitute the nanoparticle phosphor are II-VI group compounds such as ZnSe, ZnTe, CdSe, and CdTe, 4B group elements such as Si and Ge, and III-V group compounds such as GaAs and InP. is there. A semiconductor nanoparticle refers to a particle having a diameter of about 1 to 10 nm made of a semiconductor material, and the number of atoms contained in one nanoparticle is 10 2 to 10 4 . The quantum size effect absorbs and emits light having a wavelength different from that of a bulk semiconductor. For example, since it is an indirect transition type, Si that does not normally emit light can be emitted by forming nanoparticles.
 量子サイズ効果とは、粒子が小さくなるにつれて材料中の電子の状態が変わって、より短い波長の光を吸収したり放出したりする現象のことである。特に直径10nm以下の粒子について顕著に見られることが多い。 Quantum size effect is a phenomenon in which the state of electrons in a material changes as particles become smaller, and light of shorter wavelengths is absorbed or emitted. In particular, it is often noticeable for particles having a diameter of 10 nm or less.
 すなわち、ナノ粒子蛍光体の特徴の一つは、同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒径をnmオーダのサイズに変更することにより、量子サイズ効果によって発光色を変化させることができる点である。例えば、InPでは、粒子サイズが3~4nm程度のときに赤色に発光する[ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した]。 That is, one of the characteristics of the nanoparticle phosphor is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the particle size is changed to a size on the order of nm, so that the emission color can be obtained by the quantum size effect. It is a point that can be changed. For example, InP emits red light when the particle size is about 3 to 4 nm [where the particle size was evaluated with a transmission electron microscope (TEM)].
 また、ナノ粒子蛍光体は、半導体ベースであるので蛍光寿命が短く、励起光のパワーを素早く蛍光として放射できるのでハイパワーの励起光に対して耐性が強いという特徴もある。これは、このナノ粒子蛍光体の発光寿命が10ns(ナノ秒)程度と、希土類を発光中心とする通常の希土類賦活蛍光体に比べて5桁も小さいためである。 In addition, since the nanoparticle phosphor is semiconductor-based, it has a short fluorescence lifetime, and can emit the excitation light power quickly as fluorescence, and thus has a feature of high resistance to high-power excitation light. This is because the emission lifetime of the nanoparticle phosphor is about 10 ns (nanoseconds), which is five orders of magnitude shorter than that of a normal rare earth activated phosphor having a rare earth as the emission center.
 さらに、上述したように、発光寿命が短いため、励起光の吸収と蛍光体の発光を素早く繰り返すことができる。その結果、強いレーザ光に対しても高効率を保つことができ、蛍光体からの発熱を低減させることができる。 Furthermore, as described above, since the emission lifetime is short, absorption of excitation light and emission of the phosphor can be repeated quickly. As a result, high efficiency can be maintained even with strong laser light, and heat generation from the phosphor can be reduced.
 よって、発光部2に含まれる蛍光体をナノ粒子蛍光体とすることにより、発光部2が熱により劣化(変色や変形)するのをより抑制することができる。これにより、光出力が高い発光素子を光源として用いる場合に、本実施形態のヘッドランプ10や、後述するヘッドランプ20の寿命が短くなるのをより抑制することができる。 Therefore, by making the phosphor contained in the light emitting unit 2 into a nanoparticle phosphor, the light emitting unit 2 can be further suppressed from being deteriorated (discolored or deformed) by heat. Thereby, when using the light emitting element with high light output as a light source, it can suppress more that the lifetime of the headlamp 10 of this embodiment and the headlamp 20 mentioned later becomes short.
 なお、発光部2の劣化は、発光部2に含まれる蛍光体の封止材(例えば、シリコーン樹脂)の劣化が主な原因であると考えられる。例えば、上述のサイアロン蛍光体や窒化物蛍光体は、レーザ光が照射されると60~80%の効率で蛍光を発生させるが、残りは熱となって放出される。この熱によって封止材が劣化すると考えられる。 In addition, it is thought that deterioration of the light emission part 2 is mainly due to deterioration of the phosphor sealing material (for example, silicone resin) included in the light emission part 2. For example, the above-described sialon phosphor and nitride phosphor generate fluorescence with an efficiency of 60 to 80% when irradiated with laser light, but the rest is emitted as heat. It is considered that the sealing material deteriorates due to this heat.
 従って、封止材としては、熱耐性の高い封止材が好ましい。熱耐性の高い封止材としては、例えば、ガラスなどが例示できる。 Therefore, a sealing material with high heat resistance is preferable as the sealing material. As a sealing material with high heat resistance, glass etc. can be illustrated, for example.
 ナノ粒子蛍光体の例としては、Siからなる半導体ナノ粒子(以下、Siナノ粒子という)を挙示することができる。Siナノ粒子は、粒径が1.9nm程度で青紫色~青色(ピーク波長は420nm付近)の蛍光を発する。また、粒径が2.5nm前後で緑色(ピーク波長は500nm付近)の蛍光を発する。さらに、粒径が3.3nm程度で赤色(ピーク波長は720nm付近)の蛍光を発する。 As an example of the nanoparticle phosphor, semiconductor nanoparticles made of Si (hereinafter referred to as Si nanoparticles) can be listed. Si nanoparticles have a particle size of about 1.9 nm and emit blue-violet to blue (peak wavelength around 420 nm) fluorescence. Further, it emits green fluorescence (peak wavelength is around 500 nm) when the particle diameter is around 2.5 nm. Furthermore, it emits red (peak wavelength is around 720 nm) fluorescence with a particle size of about 3.3 nm.
 (Siナノ粒子の製造方法)
 次に、Siナノ粒子を例にとり、ナノ粒子蛍光体の製造方法について説明する。なお、ナノ粒子蛍光体の製造方法は、ここで記載する方法に限定されない。
(Method for producing Si nanoparticles)
Next, taking a Si nanoparticle as an example, a method for producing a nanoparticle phosphor will be described. In addition, the manufacturing method of nanoparticle fluorescent substance is not limited to the method described here.
 Siナノ粒子は、例えば、以下の(1)~(4)のような化学エッチング法を用いて製造することができる。
(1)シリコンウエハなどを粉砕し、Siを粒径50nm程度の粉末にする。
(2)粉末にしたSiを溶媒中(例えば、純水+メタノール)に入れ、さらにフッ酸(HF)および硝酸(HNO)の混合液を加える。
(3)(2)の溶液に超音波振動を加える。これにより、粉末状態のSiがエッチングされる。粒径に応じてエッチング時間を制御する。
(4)フィルタ(PVDFメンブレンフィルターなど)で(3)のエッチング後の溶液をろ過する。これにより、所望のサイズのSiナノ粒子を得ることができる。
Si nanoparticles can be produced, for example, using chemical etching methods such as the following (1) to (4).
(1) A silicon wafer or the like is pulverized to make Si a powder having a particle size of about 50 nm.
(2) The powdered Si is put in a solvent (for example, pure water + methanol), and a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is further added.
(3) Apply ultrasonic vibration to the solution of (2). Thereby, Si in a powder state is etched. The etching time is controlled according to the particle size.
(4) The solution after the etching in (3) is filtered with a filter (such as a PVDF membrane filter). Thereby, Si nanoparticles of a desired size can be obtained.
 なお、その他のナノ粒子蛍光体も同様に製造することができる。 Other nanoparticle phosphors can be manufactured in the same manner.
  (発光部2の形状・サイズ)
 次に、発光部2のサイズは、1.5mm(縦の長さa)×4mm(横の長さb)×0.5mm(奥行き)であり、その形状は、本実施形態では、直方体形状である。レーザ光が照射される発光部2の照射面(断面)SUF4の面積は、6mmである。なお、発光部2は、直方体でなく、円柱形状であってもよい。例えば、後述するレーザダウンライト(発光装置,照明装置)200では、発光部2の形状を底面が直径1cmの円形である円柱形状としている。
(Shape and size of light emitting part 2)
Next, the size of the light emitting unit 2 is 1.5 mm (vertical length a) × 4 mm (horizontal length b) × 0.5 mm (depth), and in this embodiment, the shape is a rectangular parallelepiped shape. It is. The area of the irradiation surface (cross section) SUF4 of the light emitting unit 2 irradiated with the laser light is 6 mm 2 . In addition, the light emission part 2 may not be a rectangular parallelepiped, but may be a cylindrical shape. For example, in a laser downlight (light emitting device, lighting device) 200 described later, the light emitting unit 2 has a cylindrical shape whose bottom surface is a circle having a diameter of 1 cm.
 ここで必要とされる発光部2の厚さは、発光部2における蛍光体と封止材との割合に従って変化する。発光部2における蛍光体の含有量が多くなれば、ある含有量まではレーザ光が白色光に変換される効率が高まるため発光部2の厚さを薄くできる。発光部2を薄くすれば透光性基板1への放熱効果も高まる効果があるが、あまり薄くするとレーザ光が蛍光に変換されず外部に放射される恐れがあり、蛍光体でのレーザ光の吸収の観点からすると発光部2の厚さは蛍光体の粒径の少なくとも10倍以上あることが好ましい。この観点からするとナノ粒子蛍光体を用いた場合の発光部2の厚さは0.01μm以上であればよいことになるが、封止材中への分散等、製造プロセスの容易性を考慮すると10μm以上、すなわち0.01mm以上が好ましい。 Here, the required thickness of the light emitting unit 2 varies according to the ratio of the phosphor and the sealing material in the light emitting unit 2. If the phosphor content in the light emitting unit 2 is increased, the efficiency of conversion of laser light to white light increases up to a certain content, so that the thickness of the light emitting unit 2 can be reduced. If the light emitting part 2 is made thin, the heat dissipation effect to the translucent substrate 1 is also increased. However, if the light emitting part 2 is made too thin, the laser light may not be converted into fluorescence but may be emitted to the outside. From the viewpoint of absorption, the thickness of the light emitting portion 2 is preferably at least 10 times the particle size of the phosphor. From this point of view, the thickness of the light-emitting portion 2 when using the nanoparticle phosphor should be 0.01 μm or more, but considering the ease of the manufacturing process such as dispersion in the sealing material It is preferably 10 μm or more, that is, 0.01 mm or more.
 一方、発光部2に含まれる蛍光体として上記の酸窒化物蛍光体を用いた場合の発光部2の厚みとしては、0.2mm以上、2mm以下が好ましい。但し、蛍光体の含有量を極端に多くした場合(典型的には蛍光体が100%)、厚さの下限はこの限りではない。 On the other hand, the thickness of the light emitting part 2 when the above oxynitride phosphor is used as the phosphor contained in the light emitting part 2 is preferably 0.2 mm or more and 2 mm or less. However, when the content of the phosphor is extremely increased (typically 100% of the phosphor), the lower limit of the thickness is not limited to this.
 <拡散部3>
 次に、発光部2の周囲には、隙間なく同じ奥行きの拡散部(拡散部材)3が設けられている。拡散部3は、発光部2の照射面SUF4の外側に照射されるレーザ光を少なくとも拡散することが好ましい。
<Diffusion part 3>
Next, around the light emitting unit 2, a diffusion unit (diffusion member) 3 having the same depth is provided without a gap. The diffusing unit 3 preferably diffuses at least the laser beam irradiated to the outside of the irradiation surface SUF4 of the light emitting unit 2.
 上記の構成によれば、発光部2に当たらなかったレーザ光は、拡散部3で拡散・散乱されるのでアイセーフを実現できる。また、拡散部3の光拡散作用により、ヘッドランプ10の色度ばらつきを抑制することができる。 According to the above configuration, the laser light that has not hit the light emitting unit 2 is diffused and scattered by the diffusing unit 3, so that an eye safe can be realized. Further, the chromaticity variation of the headlamp 10 can be suppressed by the light diffusing action of the diffusing unit 3.
 なお、後述するように、レーザ光のスポットの面積に対する発光部2の照射面SUF4の面積の比は、1/4以上、2/3以下であることが好ましい。よって、本実施形態では、レーザ光のスポットの面積は、最大限6mm×4=24mmであり、レーザ光を単一の円形のスポットで照射する場合は、スポット径R1(直径)は、5.53mmである。 As will be described later, the ratio of the area of the irradiated surface SUF4 of the light emitting unit 2 to the area of the laser beam spot is preferably ¼ or more and / or less. Therefore, in this embodiment, the area of the spot of the laser beam is 6 mm 2 × 4 = 24 mm 2 at the maximum, and when the laser beam is irradiated with a single circular spot, the spot diameter R1 (diameter) is 5.53 mm.
 よって、本実施形態では、レーザ光のスポット形状が単一の円形である場合は、拡散部3の外径は、縦・横ともに少なくとも5.53mm以上であることが好ましい。但し、ここでは、照射面SUF4の形状が縦と横で長さが異なっている点については無視している。 Therefore, in this embodiment, when the spot shape of the laser beam is a single circle, it is preferable that the outer diameter of the diffusion portion 3 is at least 5.53 mm in both length and width. However, the point that the length of the irradiation surface SUF4 is different in length and width is ignored here.
 ここで、レーザ光のスポットの径と、照射面SUF4の径との関係についてもう少し厳密に検討する。 Here, the relationship between the spot diameter of the laser beam and the diameter of the irradiated surface SUF4 will be examined a little more strictly.
 まず、レーザ光のスポットの形状および発光部2の照射面SUF4の形状が、ともに、真円または正方形である場合について考える。また、ここでは、スポットの径(正方形の場合は、一辺の長さ)と、照射面SUF4の径(正方形の場合は、一辺の長さ)との関係について説明する。 First, let us consider a case where both the spot shape of the laser beam and the shape of the irradiation surface SUF4 of the light emitting unit 2 are perfect circles or squares. Here, the relationship between the spot diameter (in the case of a square, the length of one side) and the diameter of the irradiation surface SUF4 (in the case of a square, the length of one side) will be described.
 ここで、レーザ光のスポットの中心が、照射面SUF4の中心とほぼ一致しているものと仮定する。 Here, it is assumed that the center of the laser beam spot substantially coincides with the center of the irradiated surface SUF4.
 このとき、スポットの径に対する照射面SUF4の径の比は、1/2以上、√(2/3)以下であることが好ましい。 At this time, the ratio of the diameter of the irradiated surface SUF4 to the diameter of the spot is preferably 1/2 or more and √ (2/3) or less.
 一方、レーザ光のスポットの形状および発光部2の照射面SUF4の形状が、真円や正方形と異なり、最大径および最小径のような少なくとも長さの異なる2つの径を定義できるような形状である場合について考える。また、ここでは、スポットの形状の最大径・最小径と、照射面SUF4の形状の最大径・最小径との関係について説明する。 On the other hand, the shape of the spot of the laser beam and the shape of the irradiation surface SUF4 of the light emitting unit 2 are different from a perfect circle or a square, so that at least two different diameters such as a maximum diameter and a minimum diameter can be defined. Think about a case. Here, the relationship between the maximum diameter / minimum diameter of the spot shape and the maximum diameter / minimum diameter of the irradiation surface SUF4 will be described.
 まず、発光部2の照射面SUF4の径のうち、その径が最大となる方向の径を「照射面SUF4の最大径」と呼び、その径が最小となる方向の径を「照射面SUF4の最小径」と呼ぶ。また、レーザ光のスポットの径のうち、その径が最大となる方向の径を「スポットの最大径」と呼び、その径が最小となる方向の径を「スポットの最小径」と呼ぶ。 First, among the diameters of the irradiation surface SUF4 of the light emitting unit 2, the diameter in the direction in which the diameter is maximum is referred to as “the maximum diameter of the irradiation surface SUF4”, and the diameter in the direction in which the diameter is minimum is referred to as “the irradiation surface SUF4. This is called “minimum diameter”. Further, among the laser beam spot diameters, the diameter in the direction in which the diameter is maximum is referred to as the “spot maximum diameter”, and the diameter in the direction in which the diameter is minimum is referred to as the “spot minimum diameter”.
 ここで、レーザ光のスポットの中心が、照射面SUF4の中心とほぼ一致しており、レーザ光のスポットの長手方向(最大径をとる方向)と照射面SUF4の長手方向(最大径をとる方向)とが互いに一致している場合について考える。 Here, the center of the spot of the laser beam substantially coincides with the center of the irradiation surface SUF4, and the longitudinal direction (direction in which the maximum diameter is taken) of the spot of the laser light and the longitudinal direction (direction in which the maximum diameter is taken) of the irradiation surface SUF4. ) And are consistent with each other.
 このとき、スポットの最大径に対する照射面SUF4の最大径の比が、1/2以上、√(2/3)以下であることが好ましい。また、スポット径の最小径に対する照射面SUF4の最小径の比も、1/2以上、√(2/3)以下であることが好ましい。 At this time, the ratio of the maximum diameter of the irradiated surface SUF4 to the maximum diameter of the spot is preferably 1/2 or more and √ (2/3) or less. The ratio of the minimum diameter of the irradiated surface SUF4 to the minimum spot diameter is also preferably ½ or more and √ (2/3) or less.
 なお、本実施形態では、照射面SUF4の形状は、矩形であり、最大径は、4mm、最小径は、1.5mmである。一方、レーザ光のスポットは、単一の円形(その径はR1)である。この場合、レーザ光のスポットは、最大径と最小径とが一致していると考えれば良い。そうすると、スポットの径R1に対する照射面SUF4の最大径(4mm)の比は、1/2以上、√(2/3)以下であることが好ましいから、スポットの径R1は、4.90mm以上、8.0mm以下であることが好ましい。 In the present embodiment, the shape of the irradiation surface SUF4 is a rectangle, the maximum diameter is 4 mm, and the minimum diameter is 1.5 mm. On the other hand, the spot of the laser beam is a single circle (its diameter is R1). In this case, the laser beam spot may be considered that the maximum diameter and the minimum diameter coincide with each other. Then, since the ratio of the maximum diameter (4 mm) of the irradiation surface SUF4 to the spot diameter R1 is preferably ½ or more and √ (2/3) or less, the spot diameter R1 is 4.90 mm or more, It is preferable that it is 8.0 mm or less.
 また、スポットの径R1に対する照射面SUF4の最小径(1.5mm)の比は、1/2以上、√(2/3)以下であることが好ましいから、スポットの径R1は、1.84mm以上、3.0mm以下であることが好ましい。但し、レーザ光のスポットの中心が、照射面SUF4の中心とほぼ一致しているものとした。以上より、拡散部3の外径は、縦3.0mm以上、横8.0mm以上であることが好ましい。 Further, since the ratio of the minimum diameter (1.5 mm) of the irradiated surface SUF4 to the spot diameter R1 is preferably ½ or more and √ (2/3) or less, the spot diameter R1 is 1.84 mm. As mentioned above, it is preferable that it is 3.0 mm or less. However, it is assumed that the center of the laser beam spot substantially coincides with the center of the irradiation surface SUF4. From the above, it is preferable that the outer diameter of the diffusion portion 3 is 3.0 mm or more in length and 8.0 mm or more in width.
 次に、レーザ光のスポットの中心が、照射面SUF4の中心とほぼ一致しており、レーザ光のスポットの長手方向(最大径をとる方向)と照射面SUF4の短手方向(最小径をとる方向)とが互いに一致している場合について考える。 Next, the center of the spot of the laser beam is substantially coincident with the center of the irradiation surface SUF4, and the longitudinal direction (direction in which the maximum diameter is taken) of the spot of the laser beam and the short direction (in which the minimum diameter is taken) of the irradiation surface SUF4. Let us consider a case where the (direction) matches each other.
 このとき、スポットの最大径に対する照射面SUF4の最小径の比が、1/2以上、√(2/3)以下であることが好ましい。また、スポット径の最小径に対する照射面SUF4の最大径の比は、1/2以上、√(2/3)以下であることが好ましい。 At this time, it is preferable that the ratio of the minimum diameter of the irradiation surface SUF4 to the maximum diameter of the spot is 1/2 or more and √ (2/3) or less. Further, the ratio of the maximum diameter of the irradiated surface SUF4 to the minimum spot diameter is preferably ½ or more and √ (2/3) or less.
 例えば、レーザ光のスポット形状をレンズや絞り等を使って矩形にした場合、レーザ光のスポットの矩形の中心は、本実施形態の照射面SUF4における矩形の中心とほぼ一致していることが好ましい。また、この場合、レーザ光のスポットの長手方向の径は、照射面SUF4の最大径(ここでは、4mm)の√(3/2)倍以上、2倍以下、すなわち、4.90mm以上、8.0mm以下であることが好ましい。一方、レーザ光のスポットの短手方向の径は、照射面SUF4の最小径(ここでは、1.5mm)の√(3/2)倍以上、2倍以下、すなわち、1.84mm以上、3.0mm以下であることが好ましい。以上より、拡散部3の外径は、やはり縦3.0mm以上、横8.0mm以上であることが好ましいと見積もれる。 For example, when the spot shape of the laser beam is made rectangular using a lens or a diaphragm, it is preferable that the center of the rectangle of the laser beam spot substantially coincides with the center of the rectangle on the irradiation surface SUF4 of the present embodiment. . In this case, the diameter of the laser beam spot in the longitudinal direction is not less than √ (3/2) times and not more than 2 times the maximum diameter (4 mm in this case) of the irradiation surface SUF4, that is, 4.90 mm or more, 8 It is preferable that it is 0.0 mm or less. On the other hand, the diameter of the laser beam spot in the short direction is √ (3/2) times or more and 2 times or less of the minimum diameter (here, 1.5 mm) of the irradiated surface SUF4, that is, 1.84 mm or more, 3 It is preferable that it is 0.0 mm or less. From the above, it can be estimated that the outer diameter of the diffusion part 3 is preferably 3.0 mm or more in length and 8.0 mm or more in width.
 次に、レーザ光のスポットが単一のスポットではない場合の例として直方体形状の発光部2(照射面SUF4は矩形)に対して、レーザ光のスポット形状が複数の円を互いに横方向(照射面SUF4における矩形の長手方向)に並べたような形状であるような場合について考える。この場合、少なくともレーザ光のスポットの各円の直径が、照射面SUF4の最小径(ここでは、1.5mm)の√(3/2)倍以上、2倍以下、すなわち、1.84mm以上、3.0mm以下であることが好ましい。但し、レーザ光のスポットの各円の中心は、照射面SUF4における矩形の長手方向の対称軸上またはその近傍に位置しているものとする。また、拡散部3の外径は、3.0mm以上であることが好ましいと見積もれる。 Next, as an example in which the laser beam spot is not a single spot, the laser beam spot shape has a plurality of circles in the lateral direction (irradiation) with respect to the rectangular parallelepiped light emitting section 2 (irradiation surface SUF4 is rectangular). Consider a case where the shapes are arranged in a rectangular longitudinal direction on the surface SUF4. In this case, at least the diameter of each circle of the laser beam spot is √ (3/2) times or more and 2 times or less of the minimum diameter (1.5 mm here) of the irradiation surface SUF4, that is, 1.84 mm or more, It is preferable that it is 3.0 mm or less. However, it is assumed that the center of each circle of the spot of the laser beam is located on or near the symmetry axis in the longitudinal direction of the rectangle on the irradiation surface SUF4. Moreover, it is estimated that it is preferable that the outer diameter of the spreading | diffusion part 3 is 3.0 mm or more.
 上記の拡散部3は、上記の低融点ガラス中に、アエロジルやAlの微粉末(10nm~5μm程度)が重量比10~30%程度混合されたものである。上記の発光部2と拡散部3は、上記の透光性基板1に接着される。なお、発光部2(拡散部3)と透光性基板1との接合方法は、接着に限られず、例えば、融着などでも良い。 The diffusion part 3 is obtained by mixing about 10 to 30% by weight of fine powder (about 10 nm to 5 μm) of aerosil and Al 2 O 3 in the low melting point glass. The light emitting unit 2 and the diffusing unit 3 are bonded to the translucent substrate 1. In addition, the joining method of the light emission part 2 (diffusion part 3) and the translucent board | substrate 1 is not restricted to adhesion | attachment, For example, fusion etc. may be sufficient.
 なお、「照射面SUF4の外側に照射されるレーザ光を少なくとも拡散する」とは、照射面SUFの外側に照射されるレーザ光を拡散し、かつ、照射面SUF4の全部または一部に向かって照射されるレーザ光を拡散する場合も含まれることを意味する。 Note that “diffuse at least the laser beam irradiated to the outside of the irradiation surface SUF4” means that the laser beam irradiated to the outside of the irradiation surface SUF is diffused and toward all or part of the irradiation surface SUF4. It means that the case of diffusing irradiated laser light is also included.
 次に、図2(a)~(e)に基づき、上記の「照射面SUF4の外側に照射されるレーザ光を少なくとも拡散する」という条件を満たす透光性基板1、発光部2および拡散部3の配置方法のバリエーションについて説明する。 Next, based on FIGS. 2A to 2E, the translucent substrate 1, the light emitting unit 2 and the diffusing unit satisfying the above-mentioned condition of “at least diffusing the laser beam irradiated to the outside of the irradiation surface SUF4” 3 will be described.
 図2(a)~(e)は、上記ヘッドランプに関し、透光性基板1、発光部2および拡散部3の配置方法のバリエーションを示す断面図である。 2 (a) to 2 (e) are cross-sectional views showing variations of the arrangement method of the translucent substrate 1, the light emitting part 2, and the diffusing part 3 with respect to the headlamp.
 図2(a)に示す例では、透光性基板1上の中央付近に発光部2が接着されている。また、拡散部(拡散部材)3aは、発光部2の周囲を横から取り囲んでいる。なお、発光部2の上部中央付近には、拡散部3aは存在していない。すなわち、発光部2の上部の拡散部3aの中央付近は、開口となっている。このケースでは、発光部2の照射面SUF4全体に亘って、導光部材9から出射されるレーザ光の光路上には、拡散部3aが存在しない。よって、このケースでは、照射面SUF4の外側に照射されるレーザ光のみが拡散部3aによって散乱され、照射面SUF4の全部または一部に向かって照射されるレーザ光はすべて発光部2に照射される。 In the example shown in FIG. 2A, the light emitting portion 2 is bonded to the vicinity of the center on the translucent substrate 1. Moreover, the diffusion part (diffusion member) 3a surrounds the periphery of the light emitting part 2 from the side. Note that the diffusion portion 3 a does not exist near the upper center of the light emitting portion 2. That is, an opening is formed in the vicinity of the center of the diffusion portion 3a above the light emitting portion 2. In this case, the diffusing portion 3a does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, only the laser light irradiated to the outside of the irradiation surface SUF4 is scattered by the diffusing unit 3a, and all the laser beams irradiated toward all or part of the irradiation surface SUF4 are irradiated to the light emitting unit 2. The
 図2(b)に示す例では、透光性基板1上に拡散部(拡散部材)3bが接合されている。また、拡散部3bの中央付近は、開口となっている。また、発光部2は、拡散部3bの開口を覆うように配置されている。このケースでは、発光部2の照射面SUF4の外縁では、導光部材9から出射されるレーザ光の光路上に、拡散部3bが存在する。よって、このケースでは、照射面SUF4の外側に照射されるレーザ光が拡散部3bによって散乱されるだけでなく、照射面SUF4の一部(外縁)に向かって照射されるレーザ光が拡散部3bに当たって散乱される。 In the example shown in FIG. 2 (b), a diffusion part (diffusion member) 3 b is bonded on the light-transmitting substrate 1. In addition, the vicinity of the center of the diffusion portion 3b is an opening. Moreover, the light emission part 2 is arrange | positioned so that the opening of the spreading | diffusion part 3b may be covered. In this case, at the outer edge of the irradiation surface SUF4 of the light emitting unit 2, the diffusion unit 3b exists on the optical path of the laser light emitted from the light guide member 9. Therefore, in this case, the laser light irradiated to the outside of the irradiation surface SUF4 is not only scattered by the diffusion portion 3b, but also the laser light irradiated toward a part (outer edge) of the irradiation surface SUF4 is diffused by the diffusion portion 3b. It is scattered by hitting.
 図2(c)に示す例では、透光性基板1、拡散部(拡散部材)3cおよび発光部2が、この順で積層されている。なお、発光部2は、拡散部3cの上面の中央付近に接合されている。このケースでは、発光部2の照射面SUF4全体に亘って、導光部材9から出射されるレーザ光の光路上に、拡散部3cが存在する。よって、このケースでは、照射面SUF4の外側に照射されるレーザ光が拡散部3によって散乱されるだけでなく、照射面SUF4の全部に向かって照射されるレーザ光が拡散部3cに当たって散乱される。 In the example shown in FIG. 2C, the translucent substrate 1, the diffusion part (diffusion member) 3c, and the light emitting part 2 are laminated in this order. In addition, the light emission part 2 is joined to the center vicinity of the upper surface of the spreading | diffusion part 3c. In this case, the diffusing portion 3c exists on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, not only the laser beam irradiated outside the irradiation surface SUF4 is scattered by the diffusion unit 3, but also the laser beam irradiated toward the entire irradiation surface SUF4 hits the diffusion unit 3c and is scattered. .
 但し、このケースでは、発光部2と拡散部3cとが接合されている(発光部2と拡散部3cとが距離を隔てていない)ため、上記特許文献1に記載の技術と比較して、発光部2に対する励起光の照射効率は高いと考えられる。 However, in this case, since the light emitting unit 2 and the diffusing unit 3c are joined (the light emitting unit 2 and the diffusing unit 3c are not separated from each other), compared to the technique described in Patent Document 1, It is considered that the irradiation efficiency of the excitation light to the light emitting unit 2 is high.
 なお、図2(b)および図2(c)の形態では、透光性基板1と発光部2とが接合されていないため、発光部2に生じる熱の透光性基板1による放熱効果は得られにくくなる。しかしながら、これらの形態のように、透光性基板1と発光部2とが接合されていない形態も本発明の範疇に含まれる。 2B and 2C, since the light-transmitting substrate 1 and the light-emitting portion 2 are not joined, the heat radiation effect of the heat generated in the light-emitting portion 2 by the light-transmitting substrate 1 is as follows. It becomes difficult to obtain. However, the form in which the translucent substrate 1 and the light emitting part 2 are not joined like these forms is also included in the category of the present invention.
 図2(d)に示す例では、透光性基板1、発光部2および拡散部(拡散部材)3dが、この順で積層されている。なお、発光部2は、拡散部3dの下面の中央付近に接合されている。このケースでは、発光部2の照射面SUF4全体に亘って、導光部材9から出射されるレーザ光の光路上には、拡散部3dが存在しない。よって、このケースでは、照射面SUF4の外側に照射されるレーザ光が拡散部3dによって散乱され、照射面SUF4の全部または一部に向かって照射されるレーザ光はすべて発光部2に照射される。なお、発光部2を透過した励起光は、拡散部3dによって散乱されると考えられる。 In the example shown in FIG. 2D, the translucent substrate 1, the light emitting part 2, and the diffusion part (diffusion member) 3d are laminated in this order. In addition, the light emission part 2 is joined to the center vicinity of the lower surface of the spreading | diffusion part 3d. In this case, the diffusing portion 3d does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, the laser light irradiated to the outside of the irradiation surface SUF4 is scattered by the diffusion unit 3d, and the laser light irradiated toward all or part of the irradiation surface SUF4 is irradiated to the light emitting unit 2. . In addition, it is thought that the excitation light which permeate | transmitted the light emission part 2 is scattered by the spreading | diffusion part 3d.
 図2(e)に示す例では、透光性基板1上に発光部2が接合されている。また、発光部2の横および上部は、拡散部(拡散部材)3eで覆われている。このケースでは、発光部2の照射面SUF4全体に亘って、導光部材9から出射されるレーザ光の光路上には、拡散部3eが存在しない。よって、このケースでは、照射面SUF4の外側に照射されるレーザ光が拡散部3eによって散乱され、照射面SUF4の全部または一部に向かって照射されるレーザ光はすべて発光部2に照射される。なお、発光部2を透過した励起光は、拡散部3eによって散乱されると考えられる。 In the example shown in FIG. 2 (e), the light emitting unit 2 is bonded on the translucent substrate 1. Moreover, the side and the upper part of the light emitting part 2 are covered with a diffusion part (diffusion member) 3e. In this case, the diffusing portion 3e does not exist on the optical path of the laser light emitted from the light guide member 9 over the entire irradiation surface SUF4 of the light emitting portion 2. Therefore, in this case, the laser light irradiated to the outside of the irradiation surface SUF4 is scattered by the diffusion unit 3e, and the laser light irradiated toward all or part of the irradiation surface SUF4 is irradiated to the light emitting unit 2. . In addition, it is thought that the excitation light which permeate | transmitted the light emission part 2 is scattered by the spreading | diffusion part 3e.
 <パラボラ型反射鏡4>
 次に、パラボラ型反射鏡4は、発光部2からの蛍光または拡散部3で散乱された散乱光を反射する光反射凹面SUF3を有し、発光部2から発生した蛍光または拡散部3で散乱された散乱光を、光反射凹面SUF3で反射することにより、所定の立体角内を進む光線束を形成するものである。
<Parabolic reflector 4>
Next, the parabolic reflector 4 has a light reflecting concave surface SUF3 that reflects the fluorescent light from the light emitting unit 2 or the scattered light scattered by the diffusing unit 3, and is scattered by the fluorescent light or the diffusing unit 3 generated from the light emitting unit 2. The scattered light is reflected by the light reflecting concave surface SUF3 to form a light bundle that travels within a predetermined solid angle.
 本実施形態の光反射凹面SUF3の形状は、いわゆる回転放物面を採用しているため、図1に示すように、光軸(回転軸)を含む平面によって切断された断面形状は、放物線(パラボラ)となる。 Since the shape of the light reflecting concave surface SUF3 of the present embodiment employs a so-called rotating paraboloid, as shown in FIG. 1, the cross-sectional shape cut by a plane including the optical axis (rotating axis) is a parabola ( Parabola).
 また、光反射凹面SUF3における回転放物面の底には、矩形の嵌合孔が形成されており、透光性基板1は、上記嵌合孔に嵌合されている。 Further, a rectangular fitting hole is formed at the bottom of the paraboloid of the light reflecting concave surface SUF3, and the translucent substrate 1 is fitted into the fitting hole.
 パラボラ型反射鏡4の材質については特に問われないが、反射率を考えると銅やSUS(ステンレス鋼)を用いて反射鏡を作製した後、銀メッキおよびクロメートコートなどを施すことが好ましい。その他、パラボラ型反射鏡4を、アルミニウムを用いて作製し、酸化防止膜を表面に付与してもよいし、樹脂性のパラボラ型反射鏡4本体の表面に金属薄膜を形成してもよい。 The material of the parabolic reflector 4 is not particularly limited, but considering the reflectance, it is preferable to produce a reflector using copper or SUS (stainless steel) and then apply silver plating and chromate coating. In addition, the parabolic reflector 4 may be manufactured using aluminum and an antioxidant film may be provided on the surface, or a metal thin film may be formed on the surface of the resinous parabolic reflector 4 body.
 <基板5>
 次に、基板5は、励起光源ユニット6における導光部材9の出射端部9b側が挿通される挿通口が形成された板状の部材であり、この基板5に対してパラボラ型反射鏡4がネジ7L,7Rによって固定されている。導光部材9の出射端部9bの中心と発光部2の照射面SUF4の中心とはほぼ一致している。そのため、導光部材9から出射したレーザ光は、透光性基板1の表面SUF1に入射し、透光性基板1の内部を透過して、表面SUF1に対向する表面SUF2に接合された発光部2または拡散部3に到達する。
<Substrate 5>
Next, the substrate 5 is a plate-like member formed with an insertion port through which the emission end 9 b side of the light guide member 9 in the excitation light source unit 6 is inserted, and the parabolic reflector 4 is attached to the substrate 5. It is fixed by screws 7L and 7R. The center of the emission end portion 9b of the light guide member 9 and the center of the irradiation surface SUF4 of the light emitting unit 2 are substantially coincident. Therefore, the laser light emitted from the light guide member 9 enters the surface SUF1 of the translucent substrate 1, passes through the translucent substrate 1, and is bonded to the surface SUF2 facing the surface SUF1. 2 or the diffusion part 3 is reached.
 これにより、レーザ光が、発光部2の内部を透過し、その透過光が発光部2に含まれる蛍光体粒子によって散乱されるので、透過光がパラボラ型反射鏡4内で拡散される。また、透光性基板1を透過したレーザ光の一部は、拡散部3で散乱され散乱光となる。基板5の材質は特に問われないが、鉄、銅などの金属を例示することができる。 Thereby, the laser light is transmitted through the inside of the light emitting unit 2, and the transmitted light is scattered by the phosphor particles contained in the light emitting unit 2, so that the transmitted light is diffused in the parabolic reflector 4. Further, part of the laser light transmitted through the translucent substrate 1 is scattered by the diffusion unit 3 and becomes scattered light. Although the material in particular of the board | substrate 5 is not ask | required, metals, such as iron and copper, can be illustrated.
 <励起光源ユニット6>
 次に、図1に示すように、励起光源ユニット6は、合計3つのLDチップ(励起光源)11と、導光部材9とが直方体形状のハウジング(筐体)に収納されたものである。
<Excitation light source unit 6>
Next, as shown in FIG. 1, the excitation light source unit 6 includes a total of three LD chips (excitation light sources) 11 and a light guide member 9 housed in a rectangular parallelepiped housing (housing).
 なお、LDチップ11の固定方法や配線方法については、従来の固定方法や配線方法を利用すれば良いので、ここでは説明を省略する。 In addition, about the fixing method and wiring method of LD chip 11, what is necessary is just to use the conventional fixing method and wiring method, Therefore Description is abbreviate | omitted here.
  (LDチップ11)
 本実施形態のLDチップ11は、1個当たり1.6W(電流値:1.2A、電圧値:4.7V)、発振波長:450nm、φ9mmの金属パッケージ(ステム)に実装されている。なお、LDチップ11の発振波長は、450nmに限られず、440nm以上480nm以下の青色領域の波長であれば良い。励起光源ユニット6全体としては、出力は、4.8W程度である。
(LD chip 11)
Each LD chip 11 of this embodiment is mounted on a metal package (stem) having 1.6 W (current value: 1.2 A, voltage value: 4.7 V), oscillation wavelength: 450 nm, and φ9 mm. The oscillation wavelength of the LD chip 11 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm. The output of the excitation light source unit 6 as a whole is about 4.8 W.
 これにより、単純計算で合計3つのLDチップ11の合計の光束が、光源全体の光束となるので、単一のLDチップ11のみを用いる場合と比較して光源全体の光束を約4倍程度大きくすることができる。但し、LDチップ11の性能は均等であるものとする。 As a result, the total luminous flux of a total of three LD chips 11 becomes a luminous flux of the entire light source by simple calculation, so that the luminous flux of the entire light source is about four times larger than when only a single LD chip 11 is used. can do. However, the performance of the LD chip 11 is assumed to be equal.
 なお、本実施形態では、LDチップ11の数は3つとしているが、LDチップ11の数はこれに限られず、1、2または4つ以上のいずれであっても良い。 In this embodiment, the number of LD chips 11 is three. However, the number of LD chips 11 is not limited to this, and may be one, two, or four or more.
 なお、励起光源としては、本実施形態のLDチップ11のように単一の発光点をもつ1チップ1ストライプ型の半導体レーザチップであっても良いし、複数の発光点をもつ1チップ複数ストライプ型の半導体レーザチップであっても良い。 The excitation light source may be a 1-chip 1-strip type semiconductor laser chip having a single light-emitting point, such as the LD chip 11 of the present embodiment, or a single-chip, multi-stripe having a plurality of light-emitting points. It may be a type of semiconductor laser chip.
 また、励起光源は、本実施形態のLDチップ11のようにコヒーレントな励起光(レーザ光)を発生するものであっても良いし、後述するLEDチップ(励起光源)130のようにインコヒーレントな励起光(EL光;Electro-luminescence light)を発生するものであっても良い。 Further, the excitation light source may generate coherent excitation light (laser light) like the LD chip 11 of the present embodiment, or incoherent like the LED chip (excitation light source) 130 described later. It may generate excitation light (EL light; Electro-luminescence light).
 また、励起光源を複数用いる場合、LDまたはLEDのみで構成しても良いし、LDおよびLEDを混在させても良い。 Further, when a plurality of excitation light sources are used, the light source may be composed of only LD or LED, or LD and LED may be mixed.
 なお、LDチップ11から発生するレーザ光を青色光(発振波長;450nm)としているのは、発光部2の照射面SUF4をはみ出し(または、照射面SUF4に当たらず)、拡散部3に入射して散乱された散乱光を照明光として利用するためである。 Note that the laser light generated from the LD chip 11 is blue light (oscillation wavelength: 450 nm) that protrudes from the irradiation surface SUF4 of the light emitting unit 2 (or does not hit the irradiation surface SUF4) and enters the diffusion unit 3. This is to use the scattered light scattered as illumination light.
  (導光部材9)
 次に、導光部材9は、入射端部(励起光源に近い方)9aから入射した各レーザ光を反射する光反射側面で囲まれた囲繞構造を有していると共に、出射端部(発光部に近い方)9bの断面積は、入射端部9aの断面積よりも小さくなっており、入射端部9aから入射した各レーザ光を、光反射側面の囲繞構造により出射端部9bに導光する。
(Light guide member 9)
Next, the light guide member 9 has a surrounding structure surrounded by a light-reflecting side surface that reflects each laser beam incident from an incident end (the one closer to the excitation light source) 9a, and an emission end (light emission). 9b is smaller than the cross-sectional area of the incident end 9a, and each laser beam incident from the incident end 9a is guided to the emission end 9b by the surrounding structure of the light reflecting side surface. Shine.
 また、励起光源ユニット6の発光部2に近い側の側面には、嵌挿口が設けられており、導光部材9の出射端部9b側は、励起光源ユニット6の内側から外側に向けて嵌挿され、嵌挿口の周囲の上記側面との接続部が接着剤などで固定される。 Further, a fitting insertion opening is provided on the side surface of the excitation light source unit 6 close to the light emitting unit 2, and the emission end 9 b side of the light guide member 9 is directed from the inside to the outside of the excitation light source unit 6. It is inserted and the connection part with the said side surface around an insertion opening is fixed with an adhesive agent etc.
 なお、本実施形態の導光部材9は、全体が四角錐台形状の筒形をなしており、出射端部9bの断面(開口)は、1mm×3mmの矩形であり、入射端部9aの断面(開口)は、10mm×30mmの矩形である。すなわち、出射端部9bの断面積は、入射端部9aの断面積よりも小さくなっている。なお、導光部材の形状は四角錐台形状に限られず、四角錐台形状以外の多角錐台形状、円錐台形状、楕円錐台形状など様々な形状を採用することができる。また、入射端部9aから出射端部9bまでの距離は、25mmである。 In addition, the light guide member 9 of the present embodiment has a cylindrical shape with a quadrangular pyramid shape as a whole, and the cross section (opening) of the emission end 9b is a rectangle of 1 mm × 3 mm, and the incident end 9a The cross section (opening) is a 10 mm × 30 mm rectangle. That is, the cross-sectional area of the exit end 9b is smaller than the cross-sectional area of the entrance end 9a. The shape of the light guide member is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed. The distance from the incident end 9a to the exit end 9b is 25 mm.
 上記の導光部材9によれば、囲繞構造により、入射端部9aから入射した各レーザ光を、入射端部9aの断面積よりも小さい断面積を有する出射端部9bに導光する、すなわち、各レーザ光を、出射端部9bに集光することができる。 According to the light guide member 9 described above, each laser beam incident from the incident end 9a is guided to the emission end 9b having a smaller cross-sectional area than the incident end 9a by the surrounding structure. Each laser beam can be condensed on the emission end 9b.
 なお、導光部材9は、BK(ボロシリケート・クラウン)7、石英ガラス、アクリル樹脂その他の透明素材で構成する。 The light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
 以上の構成によれば、出射端部9bの面積および発光部2のサイズを共に小さくすることにより、励起光源ユニット6に含まれるLDチップ11の数に応じた高輝度・高光束の光を発生する発光部2の小型化が可能となる。ここで、囲繞構造は、各LDチップ11から発生する各レーザ光のすべての光路の周囲を取り囲むように構成する。 According to the above configuration, by reducing both the area of the emission end portion 9b and the size of the light emitting portion 2, light with high luminance and high luminous flux corresponding to the number of LD chips 11 included in the excitation light source unit 6 is generated. Therefore, the light emitting unit 2 to be downsized can be downsized. Here, the surrounding structure is configured to surround all the optical paths of the respective laser beams generated from the respective LD chips 11.
 また、各レーザ光は、囲繞構造に1回だけ反射して出射端部9bに導光される場合、囲繞構造に複数回反射して出射端部9bに導光される場合、囲繞構造に1回も反射することなく出射端部9bに導光される場合のいずれかの光路で導光される。 In addition, each laser beam is reflected only once on the surrounding structure and guided to the emission end portion 9b. When each laser beam is reflected on the surrounding structure multiple times and guided to the emission end portion 9b, 1 laser beam is reflected on the surrounding structure. The light is guided by any one of the optical paths in the case where the light is guided to the emission end portion 9b without being reflected.
 なお、本実施形態では、導光部材9は、入射端部9aおよび出射端部9bがそれぞれ開口を為す囲繞構造を有する構成(筒状の構成)として説明した。しかしながら、導光部材9を屈折率が1よりも高い材料で構成し、囲繞構造を有さない構成(筒状でない構成)としても良い。これにより、導光部材9の空気(屈折率=1)との境界面にレーザ光を反射する光反射側面などを特に形成しなくても、ある角度以上で入射する光は屈折率の異なる界面で全反射を起こす。このため、導光部材9の材料を選択するだけで、導光部材9中でレーザ光を導光させることができるようになるので、導光部材9の作製が容易となる。このような材料としては、BK(ボロシリケート・クラウン)7を例示することができ、その屈折率は、1.52である。 In the present embodiment, the light guide member 9 has been described as a configuration (cylindrical configuration) having a surrounding structure in which the entrance end portion 9a and the exit end portion 9b each have an opening. However, the light guide member 9 may be made of a material having a refractive index higher than 1 and may have a structure without a surrounding structure (a structure that is not cylindrical). Thus, even if a light reflecting side surface that reflects laser light is not particularly formed on the boundary surface between the light guide member 9 and air (refractive index = 1), light incident at a certain angle or more is an interface having a different refractive index. Causes total reflection. For this reason, the laser light can be guided in the light guide member 9 only by selecting the material of the light guide member 9, so that the light guide member 9 can be easily manufactured. As such a material, BK (borosilicate crown) 7 can be exemplified, and its refractive index is 1.52.
 <本発明に係る一実施形態の特徴的構成>
 次に、図5(a)に示す比較例のヘッドランプ30および図5(b)に基づき、本発明に係る一実施形態の特徴的構成について説明する。
<Characteristic Configuration of One Embodiment According to the Present Invention>
Next, a characteristic configuration of an embodiment according to the present invention will be described based on a comparative headlamp 30 shown in FIG. 5A and FIG. 5B.
 図5(a)は、比較例のヘッドランプ30(透過型)の概要構成を示す片側断面図である。また、図5(b)は、レーザ光のスポットの中心(O)からの距離(r)と、レーザ光の強度との関係を示す分布図である。 FIG. 5A is a half sectional view showing a schematic configuration of a headlamp 30 (transmission type) of a comparative example. FIG. 5B is a distribution diagram showing the relationship between the distance (r) from the center (O) of the laser beam spot and the intensity of the laser beam.
 図5(a)に示すヘッドランプ30は、ヘッドランプ10の導光部材9が導光部材9’に置換されている点が、ヘッドランプ10と異なっている。 The headlamp 30 shown in FIG. 5A is different from the headlamp 10 in that the light guide member 9 of the headlamp 10 is replaced with a light guide member 9 '.
 図5(b)の光強度分布Cで示されるように、半導体レーザから発生するレーザ光の強度分布は、所定の拡がりをもち、ほぼガウシアン分布となることが知られている。すなわち、レーザ光のスポットの裾の部分の強度は、最大強度部分(中心O付近)からの距離rが大きくなるに従って急激に小さくなる。なお、このような事情は、複数のLDチップ11から出射される各レーザ光を導光部材9(または導光部材9’)にて導光する上記の励起光源ユニット6についてもほぼ当てはまる。 As shown by the light intensity distribution C in FIG. 5B, it is known that the intensity distribution of the laser light generated from the semiconductor laser has a predetermined spread and is almost Gaussian. That is, the intensity of the bottom part of the laser beam spot decreases rapidly as the distance r from the maximum intensity part (near the center O) increases. Such a situation is also substantially applicable to the excitation light source unit 6 that guides each laser beam emitted from the plurality of LD chips 11 by the light guide member 9 (or the light guide member 9 ').
 このため、図5(a)のヘッドランプ30のように、励起光源ユニット6から出射されるレーザ光の光路上に発光部2を配置し、励起光源ユニット6から発生するレーザ光を発光部2の照射面SUF4に向けて照射したときのレーザ光のスポットの面積(または、スポット径R1’)を、レーザ光が照射される側から発光部2を見たときの、発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)以下とすると、発光部2の照射面SUF4におけるレーザ光の強度分布に大きなムラが生じる可能性がある。そうすると、発光部2の照射面SUF4の一部にレーザ光の強度が集中し、発光部2の劣化が促進されてしまう可能性がある。 Therefore, like the headlamp 30 in FIG. 5A, the light emitting unit 2 is arranged on the optical path of the laser light emitted from the excitation light source unit 6, and the laser light generated from the excitation light source unit 6 is emitted from the light emitting unit 2. The area (or spot diameter R1 ′) of the laser light spot when irradiated toward the irradiation surface SUF4 is the area of the light emitting section 2 when the light emitting section 2 is viewed from the side irradiated with the laser light ( If the area of the irradiation surface SUF4 is equal to or less than the vertical length a or the horizontal length b), a large unevenness may occur in the intensity distribution of the laser light on the irradiation surface SUF4 of the light emitting unit 2. If it does so, the intensity | strength of a laser beam will concentrate on a part of irradiation surface SUF4 of the light emission part 2, and degradation of the light emission part 2 may be accelerated | stimulated.
 一方、上述のように、励起光源ユニット6の光路上に発光部2を配置し、上記レーザ光のスポットの面積(または、スポット径R1’)を、レーザ光が照射される側から発光部2を見たときの、発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)以下とするためには、ヘッドランプ30を構成する光学系(特に導光部材9’の出射端部9b’の形状およびサイズや、出射端部9b’と発光部2の照射面SUF4との距離など)に高い工作精度が要求される。このため、ヘッドランプ30の設計の自由度が低くなってしまうという問題点もある。 On the other hand, as described above, the light emitting unit 2 is arranged on the optical path of the excitation light source unit 6, and the spot area (or spot diameter R1 ′) of the laser light is set to the light emitting unit 2 from the side irradiated with the laser light. In order to make the area of the light emitting unit 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b) equal to or smaller than the optical system (particularly the light guide) included in the headlamp 30. High work accuracy is required for the shape and size of the emission end 9b ′ of the optical member 9 ′, the distance between the emission end 9b ′ and the irradiation surface SUF4 of the light emitting unit 2, and the like. For this reason, there also exists a problem that the freedom degree of design of the headlamp 30 will become low.
 本発明の発明者は、この状況に鑑み、図1に示す本実施形態のヘッドランプ10(または、後述する図4に示すヘッドランプ20)の開発を進めた。つまり、ヘッドランプ10(またはヘッドランプ20)は、レーザ光を出射する励起光源ユニット6と、励起光源ユニット6から出射されたレーザ光の照射により蛍光を発する発光部2とを備え、発光部2に向けてレーザ光が照射されるときのスポットの面積(またはその径R1)が、レーザ光が照射される側から発光部2を見たときの、発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)よりも大きいヘッドランプ10(またはヘッドランプ20)である。 In view of this situation, the inventor of the present invention has advanced the development of the headlamp 10 of the present embodiment shown in FIG. 1 (or the headlamp 20 shown in FIG. 4 described later). That is, the headlamp 10 (or the headlamp 20) includes the excitation light source unit 6 that emits laser light, and the light emitting unit 2 that emits fluorescence when irradiated with the laser light emitted from the excitation light source unit 6. The area (or the diameter R1) of the spot when the laser beam is irradiated toward the surface is the area of the light emitting unit 2 (the area of the irradiation surface SUF4) when the light emitting unit 2 is viewed from the side irradiated with the laser beam. Or the headlamp 10 (or the headlamp 20) which is larger than the vertical length a or the horizontal length b).
 また、本発明の一実施形態に係る特徴的構成は、別の観点では、発光部2(の照射面SUF4)のサイズを超える領域にレーザ光を照射させる点にあると言っても良い。 Moreover, it may be said that the characteristic configuration according to the embodiment of the present invention is that, in another viewpoint, the region exceeding the size of the light emitting unit 2 (irradiation surface SUF4) is irradiated with laser light.
 本発明の発明者は、以上のような構成により、発光部2の劣化を抑制しつつ、ヘッドランプ10(またはヘッドランプ20)の設計の自由度を高くすることができると考えた。 The inventor of the present invention thought that the degree of freedom in designing the headlamp 10 (or the headlamp 20) can be increased while the deterioration of the light emitting unit 2 is suppressed by the configuration as described above.
 すなわち、ヘッドランプ10(またはヘッドランプ20)では、発光部2に向けてレーザ光が照射されるときのスポットの面積(または、スポット径R1)が、レーザ光が照射される側から発光部2を見たときの発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)よりも大きい。このため、レーザ光のスポットの面積(または、スポット径R1)を発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)以下とする場合と比較して、レーザ光が照射される発光部2の照射面SUF4に対するレーザ光の強度分布に生じるムラを小さくできる。このため、発光部2の照射面SUF4の一部にレーザ光の強度が集中せず、照射面SUF4の全域に亘ってレーザ光がマイルドに照射されるので、発光部2の劣化を抑制することができる。 That is, in the headlamp 10 (or the headlamp 20), the spot area (or the spot diameter R1) when the laser beam is irradiated toward the light emitting unit 2 is the light emitting unit 2 from the side irradiated with the laser beam. Is larger than the area of the light emitting unit 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b). For this reason, compared with the case where the area (or spot diameter R1) of the laser light spot is set to be equal to or less than the area of the light emitting portion 2 (the area of the irradiation surface SUF4, or the vertical length a or the horizontal length b). Thus, unevenness in the intensity distribution of the laser beam with respect to the irradiation surface SUF4 of the light emitting unit 2 irradiated with the laser beam can be reduced. For this reason, the intensity of the laser beam does not concentrate on a part of the irradiation surface SUF4 of the light emitting unit 2, and the laser beam is irradiated gently over the entire irradiation surface SUF4, so that the deterioration of the light emitting unit 2 is suppressed. Can do.
 また、上記の構成では、レーザ光のスポットの面積(または、スポット径R1)を、レーザ光が照射される側から発光部2を見たときの発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)よりも大きくするだけで良いので、上記レーザ光のスポットの面積(または、スポット径R1)を発光部2の面積(照射面SUF4の面積、または、縦の長さaあるいは横の長さb)以下とする場合と比較して、ヘッドランプ10および20を構成する光学系(特に導光部材9の出射端部9bの形状およびサイズや、出射端部9bと発光部2の照射面SUF4との距離など)に高い工作精度は要求されない。また、これにより、ヘッドランプ10(またはヘッドランプ20)の設計の自由度も高くなる。 Further, in the above configuration, the area (or spot diameter R1) of the spot of the laser beam is set to the area of the light emitting unit 2 when the light emitting unit 2 is viewed from the side irradiated with the laser beam (the area of the irradiation surface SUF4, Alternatively, since it is only necessary to make it larger than the vertical length a or the horizontal length b), the spot area (or spot diameter R1) of the laser beam is set to the area of the light emitting section 2 (the area of the irradiation surface SUF4, Or, compared with the case where the vertical length a or the horizontal length b) or less, the optical system constituting the headlamps 10 and 20 (particularly the shape and size of the emission end 9b of the light guide member 9, High working accuracy is not required for the distance between the emission end portion 9b and the irradiation surface SUF4 of the light emitting unit 2). This also increases the degree of freedom in designing the headlamp 10 (or the headlamp 20).
 以上より、ヘッドランプ10(またはヘッドランプ20)によれば、発光部2の劣化を抑制しつつ、ヘッドランプ10(またはヘッドランプ20)の設計の自由度を高くすることができる。 As described above, according to the headlamp 10 (or the headlamp 20), it is possible to increase the degree of freedom in designing the headlamp 10 (or the headlamp 20) while suppressing the deterioration of the light emitting unit 2.
 なお、レーザ光のスポットの面積に対する発光部2の照射面SUF4の面積の比は、1/4以上、2/3以下であることが好ましい。上記の比が、1/4よりも小さくなると、発光部2に対するレーザ光の照射効率が低くなり過ぎるからである。 In addition, it is preferable that the ratio of the area of the irradiation surface SUF4 of the light emitting unit 2 to the area of the laser beam spot is ¼ or more and / or less. This is because if the above ratio is smaller than ¼, the irradiation efficiency of the laser light on the light emitting portion 2 becomes too low.
 一方、上記の励起光の比が、2/3よりも大きくなると、発光部2のレーザ光が照射される照射面SUF4におけるレーザ光の強度分布に大きなムラが生じてしまう。 On the other hand, when the ratio of the excitation light is larger than 2/3, large unevenness occurs in the intensity distribution of the laser light on the irradiation surface SUF4 irradiated with the laser light of the light emitting unit 2.
 例えば、本実施形態のヘッドランプ10(またはヘッドランプ20)では、照射面SUF4(または照射面SUF4’)の面積=6mmであるから、照射面SUF4(または照射面SUF4’)を含む平面でのレーザ光のスポットの面積は、4×6mm=24mm(スポット径R1(直径)≒5.53mm)以下であることが好ましい。 For example, in the headlamp 10 (or headlamp 20) of the present embodiment, since the area of the irradiation surface SUF4 (or irradiation surface SUF4 ′) is 6 mm 2, it is a plane including the irradiation surface SUF4 (or irradiation surface SUF4 ′). The area of the laser beam spot is preferably 4 × 6 mm 2 = 24 mm 2 (spot diameter R1 (diameter) ≈5.53 mm) or less.
 また、別の観点では、図5(b)に示すような光強度分布Cにおいて、積分強度の50%以下が漏れ光(発光部2の照射面SUF4に当たらず、拡散部3に当たる光)となることが好ましい。 Further, from another viewpoint, in the light intensity distribution C as shown in FIG. 5B, 50% or less of the integrated intensity is leaked light (light that does not hit the irradiation surface SUF4 of the light emitting part 2 but hits the diffusing part 3). It is preferable to become.
 <光学部材8>
 次に、光学部材8は、パラボラ型反射鏡4の光反射凹面SUF3の開口部に設けられており、ヘッドランプ10を密封している。発光部2から発生した蛍光、拡散部3で散乱された散乱光、もしくは、パラボラ型反射鏡4によって反射された蛍光または散乱光は、光学部材8を通ってヘッドランプ10の前方へ出射される。
<Optical member 8>
Next, the optical member 8 is provided in the opening of the light reflecting concave surface SUF3 of the parabolic reflector 4, and seals the headlamp 10. The fluorescence generated from the light emitting unit 2, the scattered light scattered by the diffusing unit 3, or the fluorescent or scattered light reflected by the parabolic reflector 4 is emitted to the front of the headlamp 10 through the optical member 8. .
 光学部材8は、本実施形態では、凸レンズ形状を有し、レンズ機能を有する構造としているが、凸レンズ形状のみならず、凹レンズ形状を有しても良い。また、光学部材8は、必ずしもレンズ機能を有する構造とする必要はなく、発光部2から発生した蛍光、拡散部3で散乱された散乱光、もしくは、光反射凹面SUF3で反射した蛍光または散乱光を透過する透光性を少なくとも有していれば良い。 In the present embodiment, the optical member 8 has a convex lens shape and a lens function, but may have a concave lens shape as well as a convex lens shape. The optical member 8 does not necessarily have a structure having a lens function. The fluorescence generated from the light emitting unit 2, the scattered light scattered by the diffusion unit 3, or the fluorescent light or scattered light reflected by the light reflecting concave surface SUF3. As long as it has at least translucency to transmit light.
 発光部2を透過するコヒーレントなレーザ光は、発光部2に含まれる蛍光体を励起して蛍光に変換されるか、蛍光体で散乱され、その発光点サイズが十分に拡大される。しかし、何らかの原因で発光点サイズが拡大されない場合も考えられる。このような場合でも、光学部材8によってレーザ光を遮断することにより、発光点サイズが小さく人体の眼に対して危険なレーザ光が外部に漏れることを防止できる。 The coherent laser light transmitted through the light emitting unit 2 excites the phosphor contained in the light emitting unit 2 to be converted into fluorescence, or is scattered by the phosphor, and the emission point size is sufficiently expanded. However, there may be a case where the emission point size is not enlarged for some reason. Even in such a case, by blocking the laser beam by the optical member 8, it is possible to prevent the laser beam having a small emission point size and dangerous to the human eye from leaking to the outside.
 〔2.励起光源の概要構成について〕
 次に、図3(a)~(d)に基づき、励起光源の具体例について説明する。
[2. Overview of the excitation light source configuration)
Next, a specific example of the excitation light source will be described based on FIGS. 3 (a) to 3 (d).
 図3(a)は、励起光源の一例であるLEDランプ(励起光源)13の回路図であり、図3(b)は、LEDランプ13の外観を示す正面図であり、図3(c)は、励起光源の他の例であるLDチップ11の回路図であり、図3(b)は、LDチップ11の外観を示す斜視図である。 FIG. 3A is a circuit diagram of an LED lamp (excitation light source) 13 which is an example of an excitation light source, and FIG. 3B is a front view showing the appearance of the LED lamp 13, and FIG. FIG. 3 is a circuit diagram of an LD chip 11 which is another example of an excitation light source, and FIG. 3B is a perspective view showing an appearance of the LD chip 11.
 図3(b)に示すように、LEDランプ13は、アノード14とカソード15に接続されたLEDチップ(励起光源)130が、エポキシ樹脂キャップ16によって封じこめられた構成である。 As shown in FIG. 3B, the LED lamp 13 has a configuration in which an LED chip (excitation light source) 130 connected to the anode 14 and the cathode 15 is sealed with an epoxy resin cap 16.
 図3(a)に示すように、LEDチップ130は、p型半導体131とn型半導体132とをpn接合し、p型電極133にアノード14が接続され、n型電極134にカソード15が接続される。なお、LDチップ11は、抵抗Rを介して電源Eと接続されている。 As shown in FIG. 3A, the LED chip 130 has a pn junction between a p-type semiconductor 131 and an n-type semiconductor 132, the anode 14 is connected to the p-type electrode 133, and the cathode 15 is connected to the n-type electrode 134. Is done. The LD chip 11 is connected to the power source E via the resistor R.
 また、アノード14とカソード15とを電源Eに接続することにより、回路が構成され、電源EからLEDチップ130に電力が供給されることによってpn接合附近からインコヒーレントな励起光を発生する。 Further, by connecting the anode 14 and the cathode 15 to the power source E, a circuit is configured, and when power is supplied from the power source E to the LED chip 130, incoherent excitation light is generated near the pn junction.
 LEDチップ130の材料としては、発光色が赤色となるGaP、AlGaAs、GaAsPなど、発光色が橙色となるGaAsP、発色光が黄色となるGaAsP、GaP、発光色が緑となるGaP、発光色が青色となるSiC、GaNなどの化合物半導体が例示できる。 The material of the LED chip 130 is GaP, AlGaAs, GaAsP, etc., whose emission color is red, such as GaAsP, whose emission color is orange, GaAsP, GaP, whose emission color is yellow, GaP, whose emission color is green, and emission color. Compound semiconductors such as SiC and GaN that are blue can be exemplified.
 なお、LEDチップ130は、約2V~4V程度の低電圧で動作し、小型軽量で、応答速度が速い、長寿命で、低コストといった特徴がある。 The LED chip 130 operates at a low voltage of about 2V to 4V, is small and lightweight, has a fast response speed, has a long life, and is low in cost.
 次に、LDチップ11の構成を説明する。図3(c)および(d)に示すように、LDチップ11は、カソード電極19、基板18、クラッド層113、活性層111、クラッド層112、アノード電極17がこの順に積層された構成である。 Next, the configuration of the LD chip 11 will be described. As shown in FIGS. 3C and 3D, the LD chip 11 has a configuration in which a cathode electrode 19, a substrate 18, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 17 are laminated in this order. .
 基板18は、半導体基板であり、本願のように蛍光体を励起する為の青色~紫外の励起光を得る為にはGaN、サファイア、SiCを用いることが好ましい。一般的には、半導体レーザ用の基板としては、その他には、Si、GeおよびSiC等のIV属半導体、GaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSbおよびAlNに代表されるIII-V属化合物半導体、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体、ZnO、Al、SiO、TiO、CrOおよびCeO等の酸化物絶縁体、並びに、SiNなどの窒化物絶縁体のいずれかの材料が用いられる。 The substrate 18 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet excitation light for exciting the phosphor as in the present application. In general, as a substrate for a semiconductor laser, in addition, a group IV semiconductor such as Si, Ge, and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN are represented by III. -V group compound semiconductor, ZnTe, ZeSe, II-VI group compound such as ZnS and ZnO semiconductor, ZnO, Al 2 O 3, SiO 2, TiO 2, CrO 2 and CeO 2 or the like oxide insulator, and, SiN Any material of a nitride insulator such as is used.
 アノード電極17は、クラッド層112を介して活性層111に電流を注入するためのものである。 The anode electrode 17 is for injecting current into the active layer 111 through the clad layer 112.
 カソード電極19は、基板18の下部から、クラッド層113を介して活性層111に電流を注入するためのものである。なお、電流の注入は、アノード電極17・カソード電極19に順方向バイアスをかけて行う。 The cathode electrode 19 is for injecting current into the active layer 111 from the lower part of the substrate 18 through the clad layer 113. The current is injected by applying a forward bias to the anode electrode 17 and the cathode electrode 19.
 活性層111は、クラッド層113およびクラッド層112で挟まれた構造になっている。 The active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
 また、活性層111およびクラッド層の材料としては、青色~紫外の励起光を得る為にはAlInGaNから成る混晶半導体が用いられる。一般に半導体レーザの活性層・クラッド層としては、Al、Ga、In、As、P、N、Sbを主たる組成とする混晶半導体が用いられ、そのような構成としても良い。また、Zn、Mg、S、Se、TeおよびZnO等のII-VI属化合物半導体によって構成されていてもよい。 In addition, as a material for the active layer 111 and the cladding layer, a mixed crystal semiconductor made of AlInGaN is used to obtain blue to ultraviolet excitation light. Generally, a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used. Further, it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
 また、活性層111は、注入された電流により発光が生じる領域であり、クラッド層112およびクラッド層113との屈折率差により、発光した光が活性層111内に閉じ込められる。 The active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
 さらに、活性層111には、誘導放出によって増幅される光を閉じ込めるために互いに対向して設けられる表側へき開面114・裏側へき開面115が形成されており、この表側へき開面114・裏側へき開面115が鏡の役割を果す。 Further, the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission, and the front side cleaved surface 114 and the back side cleaved surface 115. Plays the role of a mirror.
 ただし、完全に光を反射する鏡とは異なり、誘導放出によって増幅される光の一部は、活性層111の表側へき開面114・裏側へき開面115(本実施の形態では、便宜上表側へき開面114とする)から出射され、励起光L0(レーザ光)となる。なお、活性層111は、多層量子井戸構造を形成していてもよい。 However, unlike a mirror that completely reflects light, a part of the light amplified by stimulated emission is obtained by cleaving the front side cleaved surface 114 and the back side cleaved surface 115 of the active layer 111 (in this embodiment, the front side cleaved surface 114 for convenience. ) And becomes excitation light L0 (laser light). Note that the active layer 111 may form a multilayer quantum well structure.
 なお、表側へき開面114と対向する裏側へき開面115には、レーザ発振のための反射膜(図示せず)が形成されており、表側へき開面114と裏側へき開面115との反射率に差を設けることで、低反射率端面である、例えば、表側へき開面114より励起光L0の大部分を発光点103から照射されるようにすることが出来る。 Note that a reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different. By providing, for example, most of the excitation light L0 can be emitted from the light emitting point 103 from the cleaved surface 114 which is a low reflectance end face.
 クラッド層113・クラッド層112は、n型およびp型それぞれのGaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSb、及びAlNに代表されるIII-V属化合物半導体、並びに、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体のいずれの半導体によって構成されていてもよく、順方向バイアスをアノード電極17及びカソード電極19に印加することで活性層111に電流を注入できるようになっている。 The cladding layer 113 and the cladding layer 112 are made of n-type and p-type GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN, III-V group compound semiconductors, and ZnTe, ZeSe. , ZnS, ZnO, or any other II-VI compound semiconductor, and by applying a forward bias to the anode electrode 17 and the cathode electrode 19, current can be injected into the active layer 111. It has become.
 クラッド層113・クラッド層112および活性層111などの各半導体層との膜形成については、MOCVD(有機金属化学気相成長)法やMBE(分子線エピタキシー)法、CVD(化学気相成長)法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。各金属層の膜形成については、真空蒸着法やメッキ法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。 As for film formation with each semiconductor layer such as the clad layer 113, the clad layer 112, and the active layer 111, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, CVD (chemical vapor deposition) method. The film can be formed using a general film forming method such as a laser ablation method or a sputtering method. The film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
 (発光部2の発光原理)
 次に、LDチップ11から発振されたレーザ光による蛍光体の発光原理について説明する。
(Light emission principle of the light emitting part 2)
Next, the light emission principle of the phosphor by the laser light oscillated from the LD chip 11 will be described.
 まず、LDチップ11から発振されたレーザ光が発光部2に含まれる蛍光体に照射されることにより、蛍光体内に存在する電子が低エネルギー状態から高エネルギー状態(励起状態)に励起される。 First, the laser light oscillated from the LD chip 11 is irradiated onto the phosphor included in the light emitting unit 2, whereby the electrons existing in the phosphor are excited from the low energy state to the high energy state (excited state).
 その後、この励起状態は不安定であるため、蛍光体内の電子のエネルギー状態は、一定時間後にもとの低エネルギー状態(基底準位のエネルギー状態または励起準位と基底準位との間の準安定準位のエネルギー状態)に遷移する。 Since this excited state is unstable, the energy state of the electrons in the phosphor is changed to the original low energy state after a certain time (the energy state of the ground level or the level between the excited level and the ground level). Transition to a stable level energy state).
 このように、高エネルギー状態に励起された電子が、低エネルギー状態に遷移することによって蛍光体が発光する。 Thus, the phosphors emit light when the electrons excited to the high energy state transition to the low energy state.
 白色光は、等色の原理を満たす3つの色の混色、または補色の関係を満たす2つの色の混色で構成でき、この原理・関係に基づき、半導体レーザから発振されたレーザ光の色と蛍光体が発する光の色とを、上述のように組み合わせることにより白色光を発生させることができる。 White light can be composed of a mixture of three colors that satisfy the principle of equal colors, or a mixture of two colors that satisfy the relationship of complementary colors, and based on this principle and relationship, the color and fluorescence of laser light oscillated from a semiconductor laser. White light can be generated by combining the color of light emitted by the body as described above.
 〔3.ヘッドランプ20の構成〕
 次に、図4に基づき、本発明の他の実施形態であるヘッドランプ20について説明する。図4は、ヘッドランプ20の概要構成を示す片側断面図である。
[3. Configuration of headlamp 20]
Next, a headlamp 20 according to another embodiment of the present invention will be described with reference to FIG. FIG. 4 is a half sectional view showing a schematic configuration of the headlamp 20.
 図4に示すように、ヘッドランプ20は、上述した透光性基板1に替えて反射部材1’を備え、上述した発光部2、上述した拡散部3、上述した励起光源ユニット6の他、ハーフパラボラ型反射鏡(反射鏡)4hおよび熱伝導部材(反射部材)4p、並びに、上述した光学部材8を備える。 As shown in FIG. 4, the headlamp 20 includes a reflective member 1 ′ in place of the above-described translucent substrate 1. In addition to the above-described light emitting unit 2, the above-described diffusion unit 3, and the above-described excitation light source unit 6, A half parabolic reflector (reflecting mirror) 4h, a heat conducting member (reflecting member) 4p, and the optical member 8 described above are provided.
 なお、本実施形態で説明する構成以外の構成については、ほぼ上述したとおりであるので、ここでは、反射部材1’、ハーフパラボラ型反射鏡4h、熱伝導部材4p、および、励起光源ユニット6についてのみ説明する。 Since the configuration other than the configuration described in the present embodiment is substantially the same as described above, here, the reflecting member 1 ′, the half parabolic reflector 4h, the heat conducting member 4p, and the excitation light source unit 6 are described. Only explained.
 <反射部材1’>
 反射部材1’は、発光部2を透過するレーザ光を反射する部材であり、その構成材料は、金属が好ましい。また、反射部材1’は、発光部2のレーザ光が照射される表面SUF4’と対向する側に接合される。これにより、発光部2は反射部材1’によって保持される。
<Reflection member 1 '>
The reflecting member 1 ′ is a member that reflects the laser light that passes through the light emitting unit 2, and the constituent material is preferably a metal. In addition, the reflecting member 1 ′ is bonded to the side facing the surface SUF 4 ′ irradiated with the laser light of the light emitting unit 2. Thereby, the light emission part 2 is hold | maintained by reflection member 1 '.
 上記の構成によれば、発光部2を透過し、反射部材1’で反射したレーザ光が再度発光部2を励起するので、レーザ光をそのまま透過させる形態と比較して、レーザ光の照射方向に対する発光部2の厚さを1/2にしても、十分な発光効率が得られる。 According to said structure, since the laser beam which permeate | transmitted the light emission part 2 and reflected by reflection member 1 'excites the light emission part 2 again, compared with the form which permeate | transmits a laser beam as it is, the irradiation direction of a laser beam Even if the thickness of the light emitting portion 2 is halved, sufficient luminous efficiency can be obtained.
 <ハーフパラボラ型反射鏡4h>
 ハーフパラボラ型反射鏡4hは、上述したパラボラ型反射鏡4を、光軸(回転軸)を含む平面によって半分に切断した形状を有している以外は、上述したパラボラ型反射鏡4と同じである。
<Half parabolic reflector 4h>
The half parabolic reflector 4h is the same as the parabolic reflector 4 described above except that the parabolic reflector 4 is cut in half by a plane including the optical axis (rotation axis). is there.
 <熱伝導部材4p>
 図4に示すように、反射部材1’の表面SUF1側が、熱伝導部材4pに接合される。
<Heat conduction member 4p>
As shown in FIG. 4, the surface SUF1 side of the reflecting member 1 ′ is joined to the heat conducting member 4p.
 熱伝導部材4pの構成材料は、反射部材1’に生じる熱を拡散させる熱伝導性を有するものであれば、どのような材料であっても良いが、金属またはセラミックスが好ましい。 The constituent material of the heat conducting member 4p may be any material as long as it has thermal conductivity that diffuses heat generated in the reflecting member 1 ', but metal or ceramic is preferable.
 金属は、熱伝導率が高いのでより熱伝導部材4pの放熱効果が期待できる。 Since metal has high thermal conductivity, the heat dissipation effect of the heat conductive member 4p can be expected.
 <励起光源ユニット6>
 また、本実施形態のヘッドランプ20では、励起光源ユニット6における導光部材9の出射端部9bから出射されたレーザ光が、ハーフパラボラ型反射鏡4hの外面に設けられた窓部(または開口)を通して発光部2の照射面SUF4’側に向けて(左斜め上側から右斜め下側に向けて)照射されている点で、ヘッドランプ10と異なる。
<Excitation light source unit 6>
In the headlamp 20 of the present embodiment, the laser beam emitted from the emission end portion 9b of the light guide member 9 in the excitation light source unit 6 is a window portion (or opening) provided on the outer surface of the half parabolic reflector 4h. ) Is directed toward the irradiation surface SUF4 ′ side of the light emitting section 2 (from the upper left side to the lower right side).
 〔4.レーザダウンライト200の構成〕
 本発明のさらに他の実施形態について図6~図11に基づいて説明すれば、以下のとおりである。
[4. Configuration of laser downlight 200]
The following will describe still another embodiment of the present invention with reference to FIGS.
 ここでは、本発明の照明装置の一例としてのレーザダウンライト200について説明する。レーザダウンライト200は、家屋、乗物などの構造物の天井に設置される照明装置であり、LDチップ11から出射したレーザ光を発光部2に照射することによって発生する蛍光を照明光として用いるものである。 Here, the laser downlight 200 as an example of the illumination device of the present invention will be described. The laser downlight 200 is an illumination device installed on the ceiling of a structure such as a house or a vehicle, and uses fluorescence generated by irradiating the light emitting unit 2 with laser light emitted from the LD chip 11 as illumination light. It is.
 なお、レーザダウンライト200と同様の構成を有する照明装置を、構造物の側壁または床に設置してもよく、上記照明装置の設置場所は特に限定されない。 Note that an illumination device having the same configuration as the laser downlight 200 may be installed on the side wall or floor of the structure, and the installation location of the illumination device is not particularly limited.
 図6は、発光ユニット210および従来のLEDダウンライト300の外観を示す概略図である。図7は、レーザダウンライト200が設置された天井の断面図である。図8は、レーザダウンライト200の断面図である。 FIG. 6 is a schematic view showing the external appearance of the light emitting unit 210 and the conventional LED downlight 300. FIG. 7 is a cross-sectional view of the ceiling where the laser downlight 200 is installed. FIG. 8 is a cross-sectional view of the laser downlight 200.
 レーザダウンライト200(発光ユニット210)は、図7および図8に示すように、天板400に光ファイバー束(導光部材)215を通す小さな穴402だけを開け、発光ユニット210の薄型・軽量という特長を活かして、強力な粘着テープ等を使って天板400に貼り付けられている。この場合、レーザダウンライト200の設置に係る制約が小さくなり、また工事費用が大幅に削減できるというメリットがある。なお、発光部2が移動可能な構成であれば、発光ユニット210が天板400に埋設されていてもよい。 As shown in FIGS. 7 and 8, the laser downlight 200 (light emitting unit 210) has only a small hole 402 through which the optical fiber bundle (light guide member) 215 is passed through the top plate 400, and the light emitting unit 210 is thin and lightweight. Utilizing the features, it is affixed to the top 400 using a strong adhesive tape or the like. In this case, there are advantages that restrictions on installation of the laser downlight 200 are reduced, and that construction costs can be significantly reduced. In addition, if the light emission part 2 is a structure which can move, the light emission unit 210 may be embed | buried under the top plate 400. FIG.
 レーザダウンライト200は、照明光を出射する発光ユニット210と、光ファイバー束215を介して発光ユニット210へレーザ光を供給する励起光源ユニット(励起光源)6aとを含んでいる。励起光源ユニット6aは、天井には設置されておらず、ユーザが容易に触れることができる位置(例えば、家屋の側壁)に設置されている。このように励起光源ユニット6aの位置を自由に決定できるのは、励起光源ユニット6aと発光ユニット210とが光ファイバー束215によって接続されているからである。この光ファイバー束215は、天板400と断熱材401との間の隙間に配置されている。 The laser downlight 200 includes a light emitting unit 210 that emits illumination light and an excitation light source unit (excitation light source) 6 a that supplies laser light to the light emitting unit 210 via an optical fiber bundle 215. The excitation light source unit 6a is not installed on the ceiling, but is installed at a position where the user can easily touch it (for example, a side wall of a house). The position of the excitation light source unit 6 a can be freely determined in this way because the excitation light source unit 6 a and the light emitting unit 210 are connected by the optical fiber bundle 215. The optical fiber bundle 215 is disposed in a gap between the top plate 400 and the heat insulating material 401.
 (発光ユニット210の構成)
 発光ユニット210は、図8に示すように、透光性基板1、発光部2、拡散部3、支持部材61、支持部材駆動部62、筐体211、透光板213、光ファイバー束215およびフェルール217を備えている。
(Configuration of light emitting unit 210)
As shown in FIG. 8, the light emitting unit 210 includes a light transmitting substrate 1, a light emitting unit 2, a diffusing unit 3, a support member 61, a support member driving unit 62, a housing 211, a light transmitting plate 213, an optical fiber bundle 215, and a ferrule. 217.
 (発光部2)
 本実施形態では、発光部2は、底面が直径1cmの円柱形状である。なお、発光部2の厚さや構成材料などについては、上述したとおりなので、ここでは説明を省略する。
(Light emitting part 2)
In the present embodiment, the light emitting unit 2 has a cylindrical shape with a bottom surface having a diameter of 1 cm. In addition, since it is as having mentioned above about the thickness of the light emission part 2, and a constituent material, description is abbreviate | omitted here.
 (支持部材61)
 支持部材61は、底面が直径1cmの円形をした円柱形状の発光部2を含む透光性基板1を支持するものであり、支持部材駆動部62の駆動に連動して透光性基板1をレーザ光の光軸方向に移動可能なものである。支持部材61が移動することにより、発光部2の位置を変化させることができる。その結果、光ファイバー束215の3つの出射端部215aから出射された各レーザ光の光路幅が出射端部215aからの距離に比例して大きくなる(あるいは小さくなる)場合に、各レーザ光のスポットの大きさを変化させることができる。
(Support member 61)
The support member 61 supports the translucent substrate 1 including the columnar light emitting unit 2 having a circular bottom surface with a diameter of 1 cm. The translucent substrate 1 is coupled with the driving of the support member driving unit 62. It is movable in the direction of the optical axis of the laser beam. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of each laser beam emitted from the three emission end portions 215a of the optical fiber bundle 215 increases (or decreases) in proportion to the distance from the emission end portion 215a, the spot of each laser beam. The size of can be changed.
 また、支持部材61は、支持部材駆動部62のギアと接触するように設けられており、その接触する表面にはギアと噛み合うように溝が設けられている。これにより、支持部材61は、支持部材駆動部62の駆動に従った移動が可能となる。なお、ギアに連動して動作するのであれば、支持部材61の表面がどのような形状になっていてもよく、また特に加工されていなくてもよい。また、上述した理由から、支持部材61の駆動範囲は、3つの出射端部215aから出射された各レーザ光のスポット径R1に対する照射面SUF4の最小径(ここでは1cm)の比が1/2以上、√(2/3)以下の値をとるような範囲に設定することが好ましい。すなわち、支持部材61の駆動範囲は、発光部2の照射面SUF4を含む平面上における上記各レーザ光のスポット径R1(直径)が、1.24cm以上、2.00cm以下の値をとるような範囲に設定することが好ましい。 Further, the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62. Note that the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed. For the reason described above, the driving range of the support member 61 is such that the ratio of the minimum diameter (here, 1 cm) of the irradiation surface SUF4 to the spot diameter R1 of each laser beam emitted from the three emission end portions 215a is 1/2. As described above, it is preferable to set a range that takes a value of √ (2/3) or less. That is, the driving range of the support member 61 is such that the spot diameter R1 (diameter) of each laser beam on the plane including the irradiation surface SUF4 of the light emitting unit 2 takes a value of 1.24 cm or more and 2.00 cm or less. It is preferable to set the range.
 支持部材61の材質は特に問わないが、支持部材61がその移動により後述する筐体211(凹部212)の内部に挿入されることを考慮すれば、透光性基板1と同様、透光性を有する材質であることが好ましい。また、支持部材61の形状は、平板状であっても棒状であってもよい。さらに、支持部材61が透光性基板1と一体に形成されていてもよい。 The material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into a case 211 (recessed portion 212) to be described later due to the movement of the support member 61, the light transmissive property is the same as that of the light transmissive substrate 1. It is preferable that the material has Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
 なお、本実施形態では、レーザ光の光軸方向に支持部材61が移動するものとして説明するが、レーザ光のスポットの大きさを自在に変化させることが可能であれば、必ずしも光軸方向に移動させる必要はない。 In the present embodiment, the support member 61 is described as moving in the optical axis direction of the laser beam. However, if the spot size of the laser beam can be freely changed, the support member 61 is not necessarily in the optical axis direction. There is no need to move it.
 (支持部材駆動部62)
 次に、支持部材駆動部62は、支持部材61をレーザ光の光軸方向へ移動させるためのものであり、例えば、ステッピングモータおよびギアからなり、支持部材61毎に設けられている。ギアは、その表面が支持部材61に接触するように、また、その回転軸が支持部材61の移動方向と垂直な方向となるように設けられている。ギアは、支持部材61に対して1つであっても、複数の組合せからなっていてもよい。また、ステッピングモータは、その回転をギアに伝播できるように設けられていればよい。
(Supporting member driving unit 62)
Next, the support member drive unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61. The gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61. One gear may be provided for the support member 61 or a plurality of combinations may be included. Moreover, the stepping motor should just be provided so that the rotation can be propagated to a gear.
 支持部材駆動部62では、所定の駆動制御部(不図示)から駆動指示を受けると、ステッピングモータが駆動され、ギアが回転する。ギアと支持部材61とが接触して設けられているため、ギアの回転力が支持部材61に伝播され、支持部材61をレーザ光の光軸方向に移動させる。 In the support member drive unit 62, when a drive instruction is received from a predetermined drive control unit (not shown), the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
 なお、発光部2をレーザ光の光軸方向と垂直な方向に移動させる場合には、例えば支持部材駆動部62のギアを、レーザ光の光軸と垂直な透光性基板1の表面に接触させてもよい。この場合、その表面にはギアと噛み合うように溝が設けられ、また、支持部材61を設ける必要がない。 When the light emitting unit 2 is moved in a direction perpendicular to the optical axis direction of the laser beam, for example, the gear of the support member driving unit 62 is brought into contact with the surface of the translucent substrate 1 perpendicular to the optical axis of the laser beam. You may let them. In this case, a groove is provided on the surface so as to mesh with the gear, and it is not necessary to provide the support member 61.
 このように、支持部材駆動部62は、支持部材61を介して発光部2と光ファイバー束215の出射端部215aとの距離を変化させることにより、レーザ光の発光部2に対する照射光量を変化させ、また発光部2に照射されず直接照明光となるレーザ光の光量を変化させることができる。つまり、照明光に含まれる蛍光の光量とレーザ光の光量とのバランスを変化させることができるので、照明光の色温度を変化させることができる。 As described above, the support member driving unit 62 changes the irradiation light amount of the laser light to the light emitting unit 2 by changing the distance between the light emitting unit 2 and the emission end 215a of the optical fiber bundle 215 via the support member 61. In addition, it is possible to change the light quantity of the laser light that is not directly applied to the light emitting unit 2 and that directly becomes illumination light. That is, since the balance between the amount of fluorescent light and the amount of laser light contained in the illumination light can be changed, the color temperature of the illumination light can be changed.
 換言すれば、支持部材駆動部62は、LDチップ11から出射されるレーザ光のうちの発光部2によって蛍光に変換されないレーザ光の割合(以降、変換割合と称する)を変化させる。この変換割合を変化させ、蛍光に変換されないレーザ光の光量を変化させることにより、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることができる。 In other words, the support member drive unit 62 changes the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the LD chip 11 (hereinafter referred to as conversion ratio). By changing the conversion ratio and changing the amount of laser light that is not converted to fluorescence, the ratio of fluorescence to illumination light changes, so that the color temperature of the illumination light can be changed.
 次に、筐体211には、凹部212が形成されている。凹部212の表面には、金属薄膜が形成されており、凹部212は反射鏡として機能する。また、この凹部212の底面付近で、上述した駆動機構により、発光部2の位置を変化させて、光ファイバー束215の3つの出射端部215aから出射された各レーザ光のスポットの大きさを変化させることが可能な位置に、発光部2および拡散部3を備えた透光性基板1が配置されている。上述したように発光部2の位置の変化は、支持部材駆動部62が、支持部材61を介して、発光部2を備えた透光性基板1をレーザ光の光軸方向に移動させることにより実現する。この移動の実現のために、筐体211には、支持部材61を収納できる収納部218が形成されている。 Next, a recess 212 is formed in the housing 211. A metal thin film is formed on the surface of the recess 212, and the recess 212 functions as a reflecting mirror. Further, near the bottom surface of the recess 212, the position of the light emitting unit 2 is changed by the driving mechanism described above to change the size of each laser beam spot emitted from the three emission end portions 215a of the optical fiber bundle 215. The translucent board | substrate 1 provided with the light emission part 2 and the spreading | diffusion part 3 is arrange | positioned in the position which can be made to do. As described above, the position of the light emitting unit 2 is changed by the support member driving unit 62 moving the translucent substrate 1 provided with the light emitting unit 2 in the optical axis direction of the laser light via the support member 61. Realize. In order to realize this movement, the housing 211 is formed with a storage portion 218 in which the support member 61 can be stored.
 なお、後述の実施の形態8(図31参照)では、例えば図24(a)~(c)に示すように、発光部2の位置を変化させて、レーザ光照射領域79の大きさを変化させることが可能な位置に、発光部2及び拡散部3を備えた透光性基板1が配置されている。また、後述の実施の形態11(図42参照)では、例えば図36(a)~(c)に示すように、発光部2の位置を変化させて、レーザ光照射領域79の大きさを変化させることが可能な位置に、発光部2を備えた透光性基板1が配置されている。 In an eighth embodiment (see FIG. 31) described later, for example, as shown in FIGS. 24A to 24C, the position of the light emitting unit 2 is changed and the size of the laser light irradiation region 79 is changed. The translucent board | substrate 1 provided with the light emission part 2 and the spreading | diffusion part 3 is arrange | positioned in the position which can be made to do. In Embodiment 11 (see FIG. 42), which will be described later, for example, as shown in FIGS. 36A to 36C, the position of the light emitting unit 2 is changed to change the size of the laser light irradiation region 79. The translucent board | substrate 1 provided with the light emission part 2 is arrange | positioned in the position which can be made to do.
 また、筐体211には光ファイバー束215を通す小さな穴219が開けられており、この穴219を通って光ファイバー束215が発光部2の近傍まで延びている。これにより、LDチップ11が出射したレーザ光は、光ファイバー束215を介して、発光部2に照射される。また、光ファイバー束215の出射端部215aは、フェルール217によって保持されている。なお、光ファイバー束215およびフェルール217については後述する。 Further, a small hole 219 through which the optical fiber bundle 215 is passed is formed in the housing 211, and the optical fiber bundle 215 extends to the vicinity of the light emitting unit 2 through the hole 219. As a result, the laser light emitted from the LD chip 11 is applied to the light emitting unit 2 via the optical fiber bundle 215. Further, the exit end 215 a of the optical fiber bundle 215 is held by a ferrule 217. The optical fiber bundle 215 and the ferrule 217 will be described later.
 透光板213は、凹部212の開口部をふさぐように配置された透明または半透明の板であり、発光部2の蛍光は、透光板213を透して照明光として出射される。 The translucent plate 213 is a transparent or translucent plate disposed so as to close the opening of the recess 212, and the fluorescence of the light emitting unit 2 is emitted as illumination light through the translucent plate 213.
 この透光板213は、LDチップ11からのレーザ光を遮断するとともに、発光部2においてレーザ光を変換することにより生成されたインコヒーレント光を透過する材質で形成することが好ましい。 The translucent plate 213 is preferably formed of a material that blocks the laser light from the LD chip 11 and transmits incoherent light generated by converting the laser light in the light emitting section 2.
 発光部2によってコヒーレントなレーザ光は、そのほとんどがインコヒーレント光に変換される。しかし、何らかの原因でレーザ光の一部がインコヒーレントな光に変換されない場合も考えられる。このような場合でも、透光板213によってレーザ光を遮断することにより、レーザ光が外部に漏れることを防止できる。なお、透光板213は、筐体211に対して取外し可能であってもよく、省略されてもよい。 Most of the coherent laser light is converted into incoherent light by the light emitting unit 2. However, there may be a case where a part of the laser light is not converted into incoherent light for some reason. Even in such a case, it is possible to prevent the laser light from leaking to the outside by blocking the laser light by the translucent plate 213. The translucent plate 213 may be removable from the housing 211 or may be omitted.
 図6では、発光ユニット210は、円形の外縁を有しているが、発光ユニット210の形状(より厳密には、筐体211の形状)は特に限定されない。 In FIG. 6, the light emitting unit 210 has a circular outer edge, but the shape of the light emitting unit 210 (more precisely, the shape of the housing 211) is not particularly limited.
 なお、ダウンライトでは、ヘッドランプの場合とは異なり、理想的な点光源は要求されず、発光点が1つというレベルで十分である。それゆえ、発光部2の形状、大きさおよび配置に関する制約は、ヘッドランプの場合よりも少ない。 In the downlight, unlike the headlamp, an ideal point light source is not required, and a level of one light emitting point is sufficient. Therefore, there are fewer restrictions on the shape, size, and arrangement of the light emitting unit 2 than in the case of a headlamp.
 (励起光源ユニット6aの構成)
 励起光源ユニット6aは、3つのLDチップ11、光ファイバー束215、および、3つの非球面レンズ216を備えている。
(Configuration of excitation light source unit 6a)
The excitation light source unit 6 a includes three LD chips 11, an optical fiber bundle 215, and three aspheric lenses 216.
 光ファイバー束215の一方の端部である入射端部215bは、励起光源ユニット6aに接続されており、LDチップ11から発振されたレーザ光は、非球面レンズ216を介して光ファイバー束215の入射端部215bに入射される。 An incident end 215 b, which is one end of the optical fiber bundle 215, is connected to the excitation light source unit 6 a, and the laser light oscillated from the LD chip 11 is incident on the incident end of the optical fiber bundle 215 via the aspherical lens 216. It is incident on the portion 215b.
 非球面レンズ216は、LDチップ11から発振されたレーザ光(励起光)を、光ファイバー束215の一方の端部である入射端部215bに入射させるためのレンズである。例えば、非球面レンズ216として、アルプス電気製のFLKN1 405を用いることができる。上述の機能を有するレンズであれば、非球面レンズ216の形状および材質は特に限定されないが、励起光の波長である約405nmの透過率が高く、かつ耐熱性のよい材料であることが好ましい。 The aspheric lens 216 is a lens for causing the laser light (excitation light) oscillated from the LD chip 11 to enter the incident end 215 b that is one end of the optical fiber bundle 215. For example, as the aspheric lens 216, FLKN1 405 manufactured by Alps Electric can be used. The shape and material of the aspherical lens 216 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 216 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
 図8では、励起光源ユニット6aの内部に、LDチップ11および非球面レンズ216がそれぞれ3つずつ備えられ、それぞれの非球面レンズ216から延びる光ファイバーの束が1つの発光ユニット210に導かれている。すなわち、図8では、3つのLDチップ11と3つの非球面レンズ216とからなる1セットの光源が、1つの発光ユニット210用の光源として機能している。発光ユニット210が複数存在する場合には、発光ユニット210からそれぞれ延びる光ファイバーの束を1つの励起光源ユニット6aに導いてもよい。この場合、1つの励起光源ユニット6aに上記の1セットの光源が複数収納されることになり、励起光源ユニット6aは集中電源ボックスとして機能する。 In FIG. 8, three LD chips 11 and three aspheric lenses 216 are provided inside the excitation light source unit 6 a, and a bundle of optical fibers extending from each aspheric lens 216 is guided to one light emitting unit 210. . That is, in FIG. 8, one set of light sources including three LD chips 11 and three aspherical lenses 216 functions as a light source for one light emitting unit 210. When there are a plurality of light emitting units 210, a bundle of optical fibers respectively extending from the light emitting units 210 may be guided to one excitation light source unit 6a. In this case, one excitation light source unit 6a stores a plurality of the above-mentioned one set of light sources, and the excitation light source unit 6a functions as a centralized power supply box.
 (光ファイバー束215およびフェルール217)
 光ファイバー束215は、LDチップ11が発振したレーザ光を発光部2へと導く導光部材であり、複数の光ファイバーの束である。この光ファイバー束215は、LDチップ11から出射されたレーザ光を受け取る入射端部215bと、これらの入射端部から入射したレーザ光を出射する出射端部215aとを有する光ファイバーを含んでいる。
(Optical fiber bundle 215 and ferrule 217)
The optical fiber bundle 215 is a light guide member that guides the laser light oscillated by the LD chip 11 to the light emitting unit 2 and is a bundle of a plurality of optical fibers. The optical fiber bundle 215 includes an optical fiber having an incident end 215b that receives laser light emitted from the LD chip 11 and an output end 215a that emits laser light incident from these incident ends.
 図9は、光ファイバー束215の複数の出射端部215aと発光部2との距離が最も近くなったときの出射端部215aと発光部2との位置関係を示す図である。このとき、同図に示すように、複数の出射端部215aは、発光部2のレーザ光照射面(受光面)201における互いに異なる領域に対してレーザ光を出射する。この構成により、発光部2にレーザ光が局所的に照射されないので、発光部2の一部が著しく劣化することを防止できる。なお、図9では、透光性基板1および拡散部3については図示を省略している。 FIG. 9 is a diagram illustrating a positional relationship between the light emitting portion 215a and the light emitting portion 2 when the distance between the light emitting portions 2 and the plurality of light emitting end portions 215a of the optical fiber bundle 215 is the shortest. At this time, as shown in the figure, the plurality of emission end portions 215a emit laser beams to different regions on the laser beam irradiation surface (light receiving surface) 201 of the light emitting unit 2. With this configuration, since the laser beam is not locally applied to the light emitting unit 2, it is possible to prevent a part of the light emitting unit 2 from being significantly deteriorated. In FIG. 9, the translucent substrate 1 and the diffusion part 3 are not shown.
 光ファイバー束215を構成する光ファイバーは、中芯のコアを、当該コアよりも屈折率の低いクラッドで覆った2層構造をしている。コアは、レーザ光の吸収損失がほとんどない石英ガラス(酸化ケイ素)を主成分とするものであり、クラッドは、コアよりも屈折率の低い石英ガラスまたは合成樹脂材料を主成分とするものである。例えば、光ファイバー束215を構成する光ファイバーは、コアの径が200μm、クラッドの径が240μm、開口数NAが0.22の石英製のものであるが、光ファイバーの構造、太さおよび材質は上述のものに限定されず、光ファイバーの長軸方向に対して垂直な断面は矩形であってもよい。 The optical fiber constituting the optical fiber bundle 215 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core. The core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light, and the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core. . For example, the optical fiber constituting the optical fiber bundle 215 is made of quartz having a core diameter of 200 μm, a cladding diameter of 240 μm, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber are the same as those described above. The cross section perpendicular to the major axis direction of the optical fiber may be rectangular.
 また、図8に示すように、フェルール217は、光ファイバー束215の複数の出射端部215aを透光性基板1(発光部2のレーザ光照射面201および拡散部3の受光面)に対して所定のパターンで保持する。このフェルール217は、出射端部215aを挿入するための孔が所定のパターンで形成されているものでもよいし、上部と下部とに分離できるものであり、上部および下部の接合面にそれぞれ形成された溝によって出射端部215aを挟み込むものでもよい。 Further, as shown in FIG. 8, the ferrule 217 has a plurality of emission end portions 215a of the optical fiber bundle 215 with respect to the translucent substrate 1 (the laser light irradiation surface 201 of the light emitting portion 2 and the light receiving surface of the diffusion portion 3). Hold in a predetermined pattern. The ferrule 217 may have holes for inserting the emission end portion 215a formed in a predetermined pattern, and can be separated into an upper portion and a lower portion, and is formed on the upper and lower joint surfaces, respectively. The exit end portion 215a may be sandwiched between grooves.
 このフェルール217は、筐体211から延出する棒状または筒状の部材などによって発光ユニット210に対して固定されていればよい。フェルール217の材質は、特に限定されず、例えばステンレススチールである。 The ferrule 217 only needs to be fixed to the light emitting unit 210 by a rod-like or cylindrical member extending from the casing 211. The material of the ferrule 217 is not particularly limited, and is stainless steel, for example.
 (レーザダウンライト200と従来のLEDダウンライト300との比較)
 従来のLEDダウンライト300は、図6に示すように、複数の透光板301を備えており、各透光板301からそれぞれ照明光が出射される。すなわち、LEDダウンライト300において発光点は複数存在している。LEDダウンライト300において発光点が複数存在しているのは、個々の発光点から出射される光の光束が比較的小さいため、複数の発光点を設けなければ照明光として十分な光束の光が得られないためである。
(Comparison between laser downlight 200 and conventional LED downlight 300)
As shown in FIG. 6, the conventional LED downlight 300 includes a plurality of light transmitting plates 301, and illumination light is emitted from each light transmitting plate 301. That is, the LED downlight 300 has a plurality of light emitting points. The LED downlight 300 has a plurality of light emitting points because the light flux of light emitted from each light emitting point is relatively small. Therefore, if a plurality of light emitting points are not provided, light having a sufficient light flux as illumination light is provided. This is because it cannot be obtained.
 これに対して、レーザダウンライト200は、高光束の照明装置であるため、発光点は1つでもよい。それゆえ、照明光による陰影がきれいに出るという効果が得られる。また、発光部2の蛍光体を高演色蛍光体(例えば、数種類の酸窒化物蛍光体または窒化物蛍光体の組合せ)にすることにより、照明光の演色性を高めることができる。 On the other hand, since the laser downlight 200 is an illumination device with a high luminous flux, it may have one light emitting point. Therefore, it is possible to obtain an effect that the shadow caused by the illumination light is clearly displayed. Moreover, the color rendering property of illumination light can be improved by making the phosphor of the light emitting section 2 a high color rendering phosphor (for example, a combination of several kinds of oxynitride phosphors or nitride phosphors).
 これにより、白熱電球ダウンライトに迫る高演色を実現することができる。例えば、平均演色評価数Raが90以上のみならず、特殊演色評価数R9も95以上というLEDダウンライトや蛍光灯ダウンライトでは実現が難しい高演色光も高演色蛍光体とLDチップ11の組合せにより実現可能である。 This makes it possible to achieve a high color rendering approaching that of an incandescent bulb downlight. For example, not only the average color rendering index Ra is 90 or more, but also the special color rendering index R9 is 95 or more. It is feasible.
 図10は、LEDダウンライト300が設置された天井の断面図である。同図に示すように、LEDダウンライト300では、LEDチップ、電源および冷却ユニットを収納した筐体302が天板400に埋設されている。筐体302は比較的大きなものであり、筐体302が配置されている部分の断熱材401には、筐体302の形状に沿った凹部が形成される。筐体302から電源ライン303が延びており、この電源ライン303はコンセント(不図示)につながっている。 FIG. 10 is a cross-sectional view of the ceiling where the LED downlight 300 is installed. As shown in the figure, in the LED downlight 300, a casing 302 that houses an LED chip, a power source, and a cooling unit is embedded in the top plate 400. The housing 302 is relatively large, and a recess along the shape of the housing 302 is formed in a portion of the heat insulating material 401 where the housing 302 is disposed. A power line 303 extends from the housing 302, and the power line 303 is connected to an outlet (not shown).
 このような構成では、次のような問題が生じる。まず、天板400と断熱材401との間に発熱源である光源(LEDチップ)および電源が存在しているため、LEDダウンライト300を使用することにより天井の温度が上がり、部屋の冷房効率が低下するという問題が生じる。 Such a configuration causes the following problems. First, since there is a light source (LED chip) and a power source that are heat sources between the top plate 400 and the heat insulating material 401, the use of the LED downlight 300 raises the ceiling temperature, and the cooling efficiency of the room. Problem arises.
 また、LEDダウンライト300では、光源ごとに電源および冷却ユニットが必要であり、トータルのコストが増大するという問題が生じる。 In addition, the LED downlight 300 requires a power source and a cooling unit for each light source, resulting in a problem that the total cost increases.
 また、筐体302は比較的大きなものであるため、天板400と断熱材401との間の隙間にLEDダウンライト300を配置することが困難な場合が多いという問題が生じる。 Also, since the housing 302 is relatively large, there is a problem that it is often difficult to arrange the LED downlight 300 in the gap between the top 400 and the heat insulating material 401.
 これに対して、レーザダウンライト200では、発光ユニット210には、大きな発熱源は含まれていないため、部屋の冷房効率を低下させることはない。その結果、部屋の冷房コストの増大を避けることができる。 In contrast, in the laser downlight 200, since the light emitting unit 210 does not include a large heat source, the cooling efficiency of the room is not reduced. As a result, an increase in room cooling costs can be avoided.
 また、発光ユニット210ごとに電源および冷却ユニットを設ける必要がないため、レーザダウンライト200を小型および薄型にすることができる。その結果、レーザダウンライト200を設置するためのスペースの制約が小さくなり、既存の住宅への設置が容易になる。 Further, since it is not necessary to provide a power source and a cooling unit for each light emitting unit 210, the laser downlight 200 can be made small and thin. As a result, the space restriction for installing the laser downlight 200 is reduced, and installation in an existing house is facilitated.
 また、レーザダウンライト200は、小型および薄型であるため、上述したように、発光ユニット210を天板400の表面に設置することができ、天板裏側のスペースもほとんど必要ないためにLEDダウンライト300よりも設置に係る制約を小さくすることができるとともに工事費用を大幅に削減できる。 Further, since the laser downlight 200 is small and thin, as described above, the light emitting unit 210 can be installed on the surface of the top plate 400, and the space on the back side of the top plate is hardly required. It is possible to make the restrictions on installation smaller than 300 and to greatly reduce the construction cost.
 図11は、レーザダウンライト200およびLEDダウンライト300のスペックを比較するための図である。同図に示すように、レーザダウンライト200は、その一例では、LEDダウンライト300に比べて体積は94%減少し、質量は86%減少する。 FIG. 11 is a diagram for comparing the specifications of the laser downlight 200 and the LED downlight 300. As shown in the figure, in the laser downlight 200, in one example, the volume is reduced by 94% and the mass is reduced by 86% compared to the LED downlight 300.
 また、励起光源ユニット6aをユーザの手が容易に届く所(高さ)に設置できるため、LDチップ11が故障した場合でも、手軽にLDチップ11を交換できる。また、複数の発光ユニット210から延びる光ファイバー束215を1つの励起光源ユニット6aに導くことにより、複数のLDチップ11を一括管理できる。そのため、複数のLDチップ11を交換する場合でも、その交換が容易にできる。 Moreover, since the excitation light source unit 6a can be installed at a place (height) that can be easily reached by the user, even if the LD chip 11 breaks down, the LD chip 11 can be easily replaced. Further, by guiding the optical fiber bundle 215 extending from the plurality of light emitting units 210 to one excitation light source unit 6a, the plurality of LD chips 11 can be managed collectively. Therefore, even when a plurality of LD chips 11 are replaced, the replacement can be easily performed.
 なお、LEDダウンライト300において、高演色蛍光体を用いたタイプの場合、消費電力10Wで約500lm(ルーメン)の光束が出射できるが、同じ明るさの光をレーザダウンライト200で実現するためには、3.3Wの光出力が必要である。この光出力は、LD効率が35%であれば、消費電力10Wに相当し、LEDダウンライト300の消費電力も10Wであるため、消費電力では、両者の間に顕著な差は見られない。それゆえ、レーザダウンライト200では、LEDダウンライト300と同じ消費電力で、上述の種々のメリットが得られることになる。 When the LED downlight 300 is a type using a high color rendering phosphor, a light flux of about 500 lm (lumen) can be emitted with a power consumption of 10 W, but in order to realize the light of the same brightness with the laser downlight 200. Requires an optical output of 3.3 W. If the LD efficiency is 35%, this light output corresponds to power consumption of 10 W, and the power consumption of the LED downlight 300 is also 10 W. Therefore, there is no significant difference in power consumption between the two. Therefore, in the laser downlight 200, the above-described various advantages can be obtained with the same power consumption as that of the LED downlight 300.
 以上のように、レーザダウンライト200は、レーザ光を出射するLDチップ11を少なくとも1つ備える励起光源ユニット6aと、発光部2および反射鏡としての凹部212を備える少なくとも1つの発光ユニット210とを備える。そして、支持部材駆動部62が支持部材61を介して発光部2の位置を変化させることにより、LDチップ11から出射されるレーザ光のうちの発光部2によって蛍光に変換されないレーザ光の割合を変化させる。これにより、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることが可能なレーザダウンライト200を実現できる。 As described above, the laser downlight 200 includes the excitation light source unit 6a including at least one LD chip 11 that emits laser light, and at least one light emitting unit 210 including the light emitting unit 2 and the recess 212 as a reflecting mirror. Prepare. Then, the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61, and thereby the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 out of the laser light emitted from the LD chip 11 is set. Change. Thereby, since the ratio of the fluorescence with respect to illumination light changes, the laser downlight 200 which can change the color temperature of illumination light is realizable.
 また、例えば、光ファイバー束215の複数の出射端部215aのそれぞれから出射されるレーザ光を、発光部2の照射面SUF4の互いに異なる領域に対して照射することが可能となる。換言すれば、光ファイバー束215の複数の出射端部215aのそれぞれからのレーザ光は、発光部2に対して分散して照射される。 Further, for example, it is possible to irradiate laser light emitted from each of the plurality of emission end portions 215a of the optical fiber bundle 215 to different regions of the irradiation surface SUF4 of the light emitting unit 2. In other words, the laser light from each of the plurality of emission end portions 215a of the optical fiber bundle 215 is distributed and applied to the light emitting unit 2.
 それゆえ、レーザ光が発光部2の一箇所に集中的に照射されることによって発光部2が著しく劣化する可能性を低減でき、出射する光の光束を低下させることなくより長寿命のレーザダウンライト200を実現することができる。また、発光部2に照射するレーザ光の強度を低下させる必要がないため、レーザダウンライト200の光束のみならず、輝度を大きくすることができる。従って、小型で高輝度なレーザダウンライト200を実現できる。 Therefore, it is possible to reduce the possibility that the light emitting section 2 is significantly deteriorated by irradiating the laser light to one place of the light emitting section 2, and to reduce the laser life with a longer life without lowering the luminous flux of the emitted light. The light 200 can be realized. In addition, since it is not necessary to reduce the intensity of the laser light applied to the light emitting unit 2, not only the luminous flux of the laser downlight 200 but also the luminance can be increased. Therefore, a small and high-intensity laser downlight 200 can be realized.
 〔実施の形態1に係る発明の別の表現〕
 また、本発明は、以下のように表現することもできる。
[Another Expression of Invention According to Embodiment 1]
The present invention can also be expressed as follows.
 すなわち、本発明のレーザ照明光源(発光装置,照明装置,前照灯)は、蛍光体発光部(発光体、発光部)と、励起光源である半導体レーザと、からなるレーザ照明光源に関し、励起光照射エリアとして、蛍光体発光部のサイズを超える領域に励起光を照射させて(励起光照射エリアの面積>蛍光体発光部の照射面の面積)も良い。 That is, the laser illumination light source (light emitting device, illumination device, headlamp) of the present invention relates to a laser illumination light source comprising a phosphor light emitting unit (light emitting unit, light emitting unit) and a semiconductor laser as an excitation light source. As the light irradiation area, an area exceeding the size of the phosphor light emitting portion may be irradiated with excitation light (area of the excitation light irradiation area> area of the irradiation surface of the phosphor light emitting portion).
 また、本発明のレーザ照明光源は、励起光源としては青色半導体レーザを用い、蛍光体としては、黄色に発光する黄色発光蛍光体、もしくは緑色に発光する緑色発光蛍光体と赤色に発光する赤色発光蛍光体とを組合せても良い。 The laser illumination light source of the present invention uses a blue semiconductor laser as an excitation light source, and as a phosphor, a yellow light emitting phosphor that emits yellow light, or a green light emitting phosphor that emits green light and a red light emitting that emits red light. You may combine with fluorescent substance.
 また、本発明のレーザ照明光源は、透過型であっても良いし、反射型であっても良い。また、反射型の場合、拡散部材の下に反射部材が設けられていても良い。 The laser illumination light source of the present invention may be a transmission type or a reflection type. In the case of the reflection type, a reflection member may be provided under the diffusion member.
 ここで、黄色発光蛍光体を用いる場合を例にとって説明すると、上記の構成を採用することで、黄色発光蛍光体が存在する領域について、励起光を透過させる必要が無くなる(もちろん透過させてもよい)ため、蛍光体の励起効率だけを考慮した濃度・厚み設計ができ、発光装置としての効率を向上させることができるようになる。 Here, the case where a yellow light emitting phosphor is used will be described as an example. By adopting the above configuration, it is not necessary to transmit excitation light in a region where the yellow light emitting phosphor exists (of course, it may be transmitted). Therefore, the concentration / thickness design considering only the excitation efficiency of the phosphor can be performed, and the efficiency as the light emitting device can be improved.
 また、黄色発光蛍光体の照射面の全面に亘って励起光を照射できる(言い換えれば、蛍光体発光部に対して局所的に励起光が集中してしまうことがない)。したがって、蛍光体の一部分だけ負担(励起)が強くなることがないので、蛍光体発光部の効率を最大限高められる。 Further, the excitation light can be irradiated over the entire irradiation surface of the yellow light emitting phosphor (in other words, the excitation light does not concentrate locally on the phosphor light emitting portion). Therefore, since the burden (excitation) does not become strong only for a part of the phosphor, the efficiency of the phosphor light emitting portion can be maximized.
 さらに、励起光源から放射される励起光はどうしても強度分布を有する(典型的にはガウス分布の形状だと言われる)。本発明のレーザ照明光源の上記構成であれば、そのような励起光の強度分布のうち、周辺の強度が急激に落ちる部分を蛍光体に当てないようにできる。すなわち、より一様に蛍光体発光部を励起することができるようになるので、発光装置全体としての発光効率が向上する。逆に言えば、従来の発光装置では、どうしても照射される励起光スポットの周辺部分の励起光強度は低くなってしまっていた。 Furthermore, the excitation light emitted from the excitation light source necessarily has an intensity distribution (typically said to have a Gaussian distribution shape). If it is the said structure of the laser illumination light source of this invention, it can be made not to hit the part to which intensity | strength of surrounding intensity falls rapidly among such intensity distributions of excitation light. That is, since the phosphor light emitting portion can be excited more uniformly, the luminous efficiency of the entire light emitting device is improved. In other words, in the conventional light emitting device, the excitation light intensity in the peripheral portion of the excitation light spot to be irradiated is inevitably low.
 また、本発明のレーザ照明光源の上記構成であれば、蛍光体発光部に当たらなかった励起光(レーザ光)は、拡散部材で拡散・散乱されるのでアイセーフを実現できる。 Also, with the above-described configuration of the laser illumination light source of the present invention, the excitation light (laser light) that did not hit the phosphor light emitting part is diffused and scattered by the diffusing member, so that eye-safe can be realized.
 また、本発明のレーザ照明光源の上記構成であれば、励起光の照射光学系の設計に余裕度がでるため、発光装置のコストダウンが可能となる。例えば、蛍光体発光部の全域にむらなく励起光を当て、しかも蛍光体発光部の存在しない領域には励起光ができるだけ当たらないようにするには、光学系の設計をきっちりと行い、工作精度の良い部品を使って、きっちりと組みたてる必要がある。しかしながら、本発明のレーザ照明光源は、励起光は蛍光体発光部が存在する領域からはみ出すことが前提であるので、装置の各部における設計の自由度が高まる。 Also, with the above-described configuration of the laser illumination light source of the present invention, there is a margin in the design of the excitation light irradiation optical system, so the cost of the light emitting device can be reduced. For example, in order to irradiate the entire area of the phosphor light emitting portion with excitation light and to prevent the excitation light from hitting the area where the phosphor light emitting portion does not exist as much as possible, the optical system must be designed precisely and the work accuracy It is necessary to assemble it properly using good parts. However, since the laser illumination light source of the present invention is based on the premise that the excitation light protrudes from the region where the phosphor light emitting portion exists, the degree of freedom of design in each part of the apparatus is increased.
 〔実施の形態2~14の概要について〕
 次に、実施形態2~14について説明するが、その具体的な説明の前に、実施の形態2~14に係るヘッドランプ40~110(発光装置、照明装置、前照灯)およびレーザダウンライト200(発光装置、照明装置)の概要について説明する。
[Outline of Embodiments 2 to 14]
Next, Embodiments 2 to 14 will be described. Before specific description thereof, headlamps 40 to 110 (light emitting device, illumination device, headlight) and laser downlight according to Embodiments 2 to 14 will be described. An outline of 200 (light emitting device, lighting device) will be described.
 ヘッドランプ40~110およびレーザダウンライト200は、励起光を出射する、少なくとも1つの励起光源と、上記励起光源から出射された励起光を受けて蛍光を発する、少なくとも1つの発光部と、自装置が外部へ出射する出射光に含まれる上記蛍光の割合を変化させることにより、当該出射光の特性を変化させる特性変化機構と、を備える構成である。 The headlamps 40 to 110 and the laser downlight 200 include at least one excitation light source that emits excitation light, at least one light emitting unit that emits fluorescence in response to the excitation light emitted from the excitation light source, and the device itself And a characteristic changing mechanism that changes the characteristics of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted to the outside.
 上記構成によれば、特性変化機構が、少なくとも1つの発光部が発する、自装置が外部へ出射する出射光に含まれる蛍光の割合を変化させることにより、当該出射光の特性を変化させる。それゆえ、出射光の特性、特にその色温度を変化させることができる。 According to the above configuration, the characteristic changing mechanism changes the characteristic of the emitted light by changing the ratio of the fluorescence contained in the emitted light emitted from the device itself to the outside, which is emitted from at least one light emitting unit. Therefore, the characteristics of the emitted light, particularly the color temperature can be changed.
 以下の実施の形態2~4では、主として、上記励起光源がメイン光源27として機能し、上記発光部が発光部2として機能し、上記特性変化機構がサブ光源(第2光源)28として機能する場合について説明する。 In the following second to fourth embodiments, the excitation light source mainly functions as the main light source 27, the light emitting unit functions as the light emitting unit 2, and the characteristic changing mechanism functions as the sub light source (second light source) 28. The case will be described.
 また、実施の形態5~8では、主として、上記励起光源が半導体レーザ63、半導体レーザ(第1励起光源)63a、半導体レーザ(第2励起光源)63bとして機能し、上記発光部が発光部2、発光部(第1発光部)2a、発光部(第2発光部)2bとして機能し、上記特性変化機構(光量変化機構)が、支持部材61、支持部材駆動部62、出力制御部642として機能する場合について説明する。 In the fifth to eighth embodiments, the excitation light source mainly functions as the semiconductor laser 63, the semiconductor laser (first excitation light source) 63a, and the semiconductor laser (second excitation light source) 63b, and the light emitting unit is the light emitting unit 2. , Functioning as a light emitting unit (first light emitting unit) 2a and a light emitting unit (second light emitting unit) 2b, and the characteristic changing mechanism (light quantity changing mechanism) as a supporting member 61, a supporting member driving unit 62, and an output control unit 642. The case of functioning will be described.
 また、実施の形態9~11では、主として、上記励起光源が半導体レーザ63として機能し、上記発光部が発光部2(第1発光部2a、第2発光部2b)として機能し、上記特性変化機構(照射範囲変化機構)が、支持部材61、支持部材駆動部62、透光性基板駆動部62aとして機能する場合について説明する。 In the ninth to eleventh embodiments, mainly, the excitation light source functions as the semiconductor laser 63, and the light emitting unit functions as the light emitting unit 2 (first light emitting unit 2a, second light emitting unit 2b). A case where the mechanism (irradiation range changing mechanism) functions as the support member 61, the support member drive unit 62, and the translucent substrate drive unit 62a will be described.
 また、実施の形態12~14では、主として、上記励起光源が半導体レーザ63として機能し、上記発光部が第1発光部93、99、第2発光部94として機能し、上記特性変化機構が位置制御部95として機能する場合について説明する。 In the twelfth to fourteenth embodiments, the excitation light source mainly functions as the semiconductor laser 63, the light-emitting portion functions as the first light-emitting portions 93 and 99, and the second light-emitting portion 94, and the characteristic changing mechanism is positioned. A case of functioning as the control unit 95 will be described.
 〔実施の形態2〕
 本発明の他の実施形態について図12~図16、図18に基づいて説明すれば、以下のとおりである。ここでは、本発明の照明装置の一例として、自動車用のヘッドランプ(前照灯)1を例に挙げて説明する。ただし、本発明の照明装置は、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、その他の照明装置として実現されてもよい。その他の照明装置として、例えば、サーチライト、プロジェクター、家庭用照明器具を挙げることができる。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. 12 to 16 and FIG. Here, as an example of the illumination device of the present invention, an automotive headlamp (headlamp) 1 will be described as an example. However, the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
 ヘッドランプ40は、走行用前照灯(ハイビーム)の配光特性基準を満たしていてもよいし、すれ違い用前照灯(ロービーム)の配光特性基準を満たしていてもよい。 The headlamp 40 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
 <色温度について>
 紫外領域から青紫色領域(350~405nm近傍)の発振波長を有する励起光を青色蛍光体に照射することにより照明光の色温度を高めることは、理論的には可能である。しかし、発光効率が高く、レーザ光源を備える照明装置に適した青色蛍光体は希少であるため、この方法で照明光の色温度を高めることは困難であった。
<About color temperature>
It is theoretically possible to increase the color temperature of the illumination light by irradiating the blue phosphor with excitation light having an oscillation wavelength from the ultraviolet region to the blue-violet region (around 350 to 405 nm). However, it is difficult to increase the color temperature of the illumination light by this method because the blue phosphors that have high luminous efficiency and are suitable for illumination devices including a laser light source are rare.
 また、例えば、405nm近傍の発振波長を有する励起光源とともに、当該励起光により励起される蛍光体(青緑発光蛍光体+赤色発光蛍光体)を使用し、当該蛍光体においてその励起光が全て蛍光に変換される場合、照明光としては白色光が出射される。しかし、この場合、青色蛍光体を使用した場合に比べ、蛍光体から出射される蛍光に含まれる青味成分は少なくなるので、その青味成分が少ない分、その白色光の色度範囲、すなわち「所謂白色」にできる範囲が狭くなってしまう。 Further, for example, together with an excitation light source having an oscillation wavelength near 405 nm, a phosphor excited by the excitation light (blue-green emission phosphor + red emission phosphor) is used, and the excitation light is all fluorescent in the phosphor. White light is emitted as the illumination light. However, in this case, the blue component contained in the fluorescence emitted from the phosphor is reduced compared to the case where the blue phosphor is used. Therefore, the chromaticity range of the white light, that is, the amount of the blue component is small, that is, The range that can be “white” becomes narrow.
 したがって、405nm近傍の発振波長を有する励起光により励起される青緑発光蛍光体及び赤色発光蛍光体を使用して、照明光として白色光を出射する従来の照明装置において、照明光の色温度を高めることは困難であった。 Therefore, in a conventional lighting device that emits white light as illumination light using a blue-green phosphor and a red light-emitting phosphor excited by excitation light having an oscillation wavelength near 405 nm, the color temperature of the illumination light is set. It was difficult to increase.
 なお、「所謂白色」と呼ばれる色度範囲の一例としては、図18に示す6つの点35で囲まれた範囲が挙げられる。図18は、車両用前照灯に要求される白色の色度範囲を示すグラフ(色度図)である。同図において、点35で囲まれた範囲が法律で規定された車両用前照灯に要求される白色の色度範囲であり、曲線33は色温度(K:ケルビン)を示している。 An example of a chromaticity range called “so-called white” is a range surrounded by six points 35 shown in FIG. FIG. 18 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp. In the figure, a range surrounded by a point 35 is a white chromaticity range required for a vehicle headlamp stipulated by law, and a curve 33 indicates a color temperature (K: Kelvin).
 また、上記の青緑発光蛍光体の一例としてはCaα-SiAlON:Ce蛍光体、赤色発光蛍光体の一例としてはCASN:Eu蛍光体が挙げられる。また、図18では、Caα-SiAlON:Ce蛍光体(色度点31)及びCASN:Eu蛍光体(色度点32)を使用した場合に照明光が取り得る色度範囲は直線34で示されている。 In addition, an example of the blue-green light emitting phosphor includes a Caα-SiAlON: Ce phosphor, and an example of a red light-emitting phosphor includes a CASN: Eu phosphor. In FIG. 18, the chromaticity range that the illumination light can take when using the Caα-SiAlON: Ce phosphor (chromaticity point 31) and the CASN: Eu phosphor (chromaticity point 32) is shown by a straight line 34. ing.
 したがって、従来の照明装置では、色温度の高い照明光の実現が困難であったため、そもそも色温度の調整を行うことが困難であった。このため、このような照明装置を用いて、様々なニーズ及びユーザの嗜好にあわせたアプリケーション開発を行うことも困難であった。 Therefore, since it is difficult to realize illumination light having a high color temperature in the conventional illumination device, it is difficult to adjust the color temperature in the first place. For this reason, it has also been difficult to develop applications that meet various needs and user preferences using such lighting devices.
 一方、本実施形態に係るヘッドランプ40は、発光部7から出射された蛍光およびサブ光源28から出射された青色レーザ光を、例えば発光部7において拡散させた上で照明光として出射する。この構成により、従来の照明装置において実現が困難であった色温度の調整を行うことができる。以下、その構成等について、具体的に説明する。 On the other hand, the headlamp 40 according to this embodiment emits the fluorescence emitted from the light emitting unit 7 and the blue laser light emitted from the sub light source 28 as illumination light after being diffused in the light emitting unit 7, for example. With this configuration, it is possible to adjust the color temperature, which is difficult to realize in the conventional lighting device. Hereinafter, the configuration and the like will be specifically described.
 <ヘッドランプ40の構成>
 図12は、ヘッドランプ40の構成を示す断面図である。同図に示すように、ヘッドランプ40は、メイン光源(第1光源、レーザ光源)27、サブ光源(第2光源)28、非球面レンズ29、光ファイバー55、フェルール65、発光部7、反射鏡81、遮断フィルタ91、ハウジング75、エクステンション76およびレンズ77を備えている。メイン光源27、サブ光源28、光ファイバー55、フェルール65および発光部7によって発光装置の基本構造が形成されている。
<Configuration of headlamp 40>
FIG. 12 is a cross-sectional view showing the configuration of the headlamp 40. As shown in the figure, the headlamp 40 includes a main light source (first light source, laser light source) 27, a sub light source (second light source) 28, an aspheric lens 29, an optical fiber 55, a ferrule 65, a light emitting unit 7, and a reflecting mirror. 81, a cutoff filter 91, a housing 75, an extension 76, and a lens 77. The main light source 27, the sub light source 28, the optical fiber 55, the ferrule 65, and the light emitting unit 7 form a basic structure of the light emitting device.
 (メイン光源27)
 メイン光源27は、励起光を出射する励起光源として機能する発光素子であり、半導体レーザまたはLEDである。以下では、メイン光源27は半導体レーザであるとして説明する。半導体レーザである場合には、高出力かつコヒーレント性の高いレーザ光を発光部7に照射できるので発光部7を小さくでき、高輝度なヘッドランプ40を実現できる。図12には、メイン光源27が2個図示されているが、メイン光源27を複数設ける必要は必ずしもなく、1つのみ設けてもよい。しかし、高出力の励起光を得るためには、複数のメイン光源27を用いる方が容易である。
(Main light source 27)
The main light source 27 is a light emitting element that functions as an excitation light source that emits excitation light, and is a semiconductor laser or an LED. In the following description, it is assumed that the main light source 27 is a semiconductor laser. In the case of a semiconductor laser, the light emitting unit 7 can be irradiated with laser light having high output and high coherency, so that the light emitting unit 7 can be made small and a headlamp 40 with high brightness can be realized. Although two main light sources 27 are illustrated in FIG. 12, it is not always necessary to provide a plurality of main light sources 27, and only one main light source 27 may be provided. However, it is easier to use a plurality of main light sources 27 in order to obtain high output excitation light.
 メイン光源27は、例えば、1チップに1つの発光点を有するものであり、405nm(青紫色)のレーザ光を発振し、出力1.0W、動作電圧5V、電流0.6Aのものであり、直径5.6mmのパッケージに封入されているものである。 The main light source 27 has, for example, one light emitting point per chip, oscillates 405 nm (blue-violet) laser light, has an output of 1.0 W, an operating voltage of 5 V, and a current of 0.6 A. It is enclosed in a package with a diameter of 5.6 mm.
 ただし、パッケージは直径5.6mmのものに限定されず、例えば、直径3.8mmや直径9mm、あるいはそれ以外であってもよく、熱抵抗がより小さいパッケージを選択することが好ましい。また、メイン光源27は、1チップに複数の発光点を有するものであってもよい。 However, the package is not limited to one having a diameter of 5.6 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 9 mm, or other, and it is preferable to select a package having a smaller thermal resistance. Further, the main light source 27 may have a plurality of light emitting points on one chip.
 メイン光源27が発振するレーザ光は、405nmに限定されず、350nm以上420nm以下の波長範囲にピーク波長を有するレーザ光、すなわち紫外領域から青紫色領域を含む波長範囲に発振波長を有するレーザ光であればよい。 The laser light oscillated by the main light source 27 is not limited to 405 nm, but is laser light having a peak wavelength in the wavelength range of 350 nm to 420 nm, that is, laser light having an oscillation wavelength in the wavelength range from the ultraviolet region to the blue-violet region. I just need it.
 メイン光源27は、470nm以下の波長範囲にピーク波長を有するレーザ光を出射することも可能である。しかし、本実施の形態では、サブ光源28から出射される青色領域の発振波長を有する光(第2の光)を照明光として利用する。このため、その光が効率よく照明光として利用されるためには、発光部7において吸収されにくいことが好ましく、これを考慮すれば、メイン光源27が発振するレーザ光のピーク波長は420nm以下であることが好ましい。また、発光部7がCaα-SiAlON:Ce3+蛍光体(Caα-SiAlON:Ce蛍光体)を含む場合の発光部7における励起光の吸収率について考慮すれば、当該ピーク波長が420nm以下であることが好ましい。この吸収率については図14を用いて後述する。 The main light source 27 can also emit laser light having a peak wavelength in a wavelength range of 470 nm or less. However, in the present embodiment, light (second light) having a blue region oscillation wavelength emitted from the sub light source 28 is used as illumination light. For this reason, in order for the light to be efficiently used as illumination light, it is preferable that the light is not easily absorbed by the light emitting unit 7. In consideration of this, the peak wavelength of the laser light oscillated by the main light source 27 is 420 nm or less. Preferably there is. Further, in consideration of the absorption rate of excitation light in the light emitting unit 7 when the light emitting unit 7 includes a Caα-SiAlON: Ce 3+ phosphor (Caα-SiAlON: Ce phosphor), the peak wavelength is 420 nm or less. Is preferred. This absorption rate will be described later with reference to FIG.
 なお、発光部7において、サブ光源28から出射される光を拡散する必要がない、又は発光部7以外の部材(例えば、実施の形態3の拡散部71)において当該光を拡散させる場合には、メイン光源27が発振するレーザ光のピーク波長は、350nm以上470nm以下であってもよい。 When light emitted from the sub-light source 28 does not need to be diffused in the light emitting unit 7 or when the light is diffused in a member other than the light emitting unit 7 (for example, the diffusing unit 71 of the third embodiment). The peak wavelength of the laser light oscillated by the main light source 27 may be 350 nm or more and 470 nm or less.
 (サブ光源28)
 サブ光源28は、メイン光源27から出射されるレーザ光とは異なる波長領域を有する光を出射する半導体レーザである。より具体的には、サブ光源28は、青色領域(波長440~460nm)の発振波長を有する光(青色レーザ光と称する)を発光部7に対して照射する。
(Sub-light source 28)
The sub light source 28 is a semiconductor laser that emits light having a wavelength region different from that of the laser light emitted from the main light source 27. More specifically, the sub light source 28 irradiates the light emitting unit 7 with light (referred to as blue laser light) having an oscillation wavelength in a blue region (wavelength 440 to 460 nm).
 発光部7に照射された青色レーザ光は、発光部7において拡散され、コヒーレント性が低下した後に、照明光としてヘッドランプ40の外部に出射される。それゆえ、青色レーザ光の人体に与える影響を抑制した上で当該青色レーザ光を照明光の一部として利用できる。つまり、発光部7から出射される蛍光とともに、当該青色レーザ光が照明光として出射されるので、蛍光のみを照明光として出射するよう設計されてきた従来の照明装置では困難であった照明光の色温度の調整を行うことができる。また、サブ光源28がコヒーレント性の高いレーザ光を出射する場合には、青色レーザ光の照射のために発光部7を大きくする必要がないので、高輝度な発光特性を維持したまま色温度の調整を行うことができる。 The blue laser light irradiated to the light emitting unit 7 is diffused in the light emitting unit 7 and is emitted to the outside of the headlamp 40 as illumination light after coherency is lowered. Therefore, the blue laser light can be used as part of the illumination light after suppressing the influence of the blue laser light on the human body. That is, since the blue laser light is emitted as illumination light together with the fluorescence emitted from the light emitting unit 7, the illumination light that has been difficult to be achieved by the conventional illumination device designed to emit only the fluorescence as illumination light. The color temperature can be adjusted. Further, when the sub-light source 28 emits laser light having high coherency, it is not necessary to enlarge the light emitting portion 7 for irradiation with blue laser light, so that the color temperature can be maintained while maintaining high luminance light emission characteristics. Adjustments can be made.
 なお、サブ光源28は、青色領域にピーク波長を有する光を出射可能な構成であればよく、例えばLEDであってもよい。以下では、サブ光源28は半導体レーザであるとして説明する。 The sub light source 28 may be configured to emit light having a peak wavelength in the blue region, and may be, for example, an LED. In the following description, it is assumed that the sub light source 28 is a semiconductor laser.
 (非球面レンズ29)
 非球面レンズ29は、メイン光源27またはサブ光源28から発振されたレーザ光を、光ファイバー55の一方の端部である入射端部51b~53bに入射させるためのレンズである。例えば、非球面レンズ29として、アルプス電気製のFLKN1 405を用いることができる。上述の機能を有するレンズであれば、非球面レンズ29の形状および材質は特に限定されないが、励起光の波長である約405nmの透過率が高く、かつ耐熱性のよい材料であることが好ましい。
(Aspherical lens 29)
The aspheric lens 29 is a lens for causing the laser light oscillated from the main light source 27 or the sub light source 28 to enter the incident end portions 51 b to 53 b that are one end portions of the optical fiber 55. For example, as the aspherical lens 29, FLKN1 405 manufactured by Alps Electric can be used. The shape and material of the aspherical lens 29 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 29 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
 (光ファイバー55)
 光ファイバー55は、メイン光源27およびサブ光源28が発振したレーザ光を発光部7へと導く導光部材であり、複数の光ファイバーの束である。この光ファイバー55は、メイン光源27から出射されたレーザ光を受け取る入射端部51b・52bと、これらの入射端部から入射したレーザ光を出射する出射端部51a・52a(図13参照)とを有する光ファイバーを含んでいる。また、光ファイバー55は、サブ光源28から出射されたレーザ光を受け取る入射端部53bと、これらの入射端部から入射したレーザ光を出射する出射端部53a(図13参照)とを有する光ファイバーを含んでいる。
(Optical fiber 55)
The optical fiber 55 is a light guide member that guides the laser light oscillated by the main light source 27 and the sub light source 28 to the light emitting unit 7, and is a bundle of a plurality of optical fibers. The optical fiber 55 includes incident end portions 51b and 52b that receive laser light emitted from the main light source 27, and emission end portions 51a and 52a that emit laser light incident from these incident end portions (see FIG. 13). Includes optical fiber. The optical fiber 55 is an optical fiber having an incident end portion 53b that receives the laser light emitted from the sub-light source 28 and an emission end portion 53a (see FIG. 13) that emits the laser light incident from these incident end portions. Contains.
 図13は、出射端部51a~53aと発光部7との位置関係を示す図である。図13に示すように、複数の出射端部51a~53aは、発光部7のレーザ光照射面(受光面)7aにおける互いに異なる領域に対してレーザ光を出射する。この構成により、発光部7にレーザ光が局所的に照射されないので、発光部7の一部が著しく劣化することを防止できる。 FIG. 13 is a diagram showing a positional relationship between the emission end portions 51a to 53a and the light emitting portion 7. As shown in FIG. As shown in FIG. 13, the plurality of emission end portions 51a to 53a emit laser beams to different regions on the laser beam irradiation surface (light receiving surface) 7a of the light emitting unit 7. With this configuration, since the laser beam is not locally applied to the light emitting unit 7, it is possible to prevent a part of the light emitting unit 7 from being significantly deteriorated.
 光ファイバー55は、中芯のコアを、当該コアよりも屈折率の低いクラッドで覆った2層構造をしている。コアは、レーザ光の吸収損失がほとんどない石英ガラス(酸化ケイ素)を主成分とするものであり、クラッドは、コアよりも屈折率の低い石英ガラスまたは合成樹脂材料を主成分とするものである。例えば、光ファイバー55は、コアの径が200μm、クラッドの径が240μm、開口数NAが0.22の石英製のものであるが、光ファイバー55の構造、太さおよび材質は上述のものに限定されず、光ファイバー55の長軸方向に対して垂直な断面は矩形であってもよい。 The optical fiber 55 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core. The core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light, and the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core. . For example, the optical fiber 55 is made of quartz having a core diameter of 200 μm, a cladding diameter of 240 μm, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber 55 are limited to those described above. Instead, the cross section perpendicular to the major axis direction of the optical fiber 55 may be rectangular.
 なお、実施の形態3において示すように、導光部材として光ファイバー以外の部材を用いてもよく、導光部材の種類は限定されない。また、導光部材を用いずに、メイン光源27およびサブ光源28からのレーザ光を、光学レンズ等を用いて発光部7に集光してもよい。 In addition, as shown in Embodiment 3, a member other than the optical fiber may be used as the light guide member, and the type of the light guide member is not limited. Further, the laser light from the main light source 27 and the sub light source 28 may be condensed on the light emitting unit 7 using an optical lens or the like without using the light guide member.
 また、メイン光源27からのレーザ光とサブ光源28からのレーザ光とを発光部7の同一の面に照射する必要は必ずしもない。例えば、メイン光源27からのレーザ光をレーザ光照射面7aに照射し、サブ光源28からのレーザ光をレーザ光照射面7aに対する側面に照射してもよい。 Further, it is not always necessary to irradiate the same surface of the light emitting unit 7 with the laser light from the main light source 27 and the laser light from the sub light source 28. For example, the laser light from the main light source 27 may be applied to the laser light irradiation surface 7a, and the laser light from the sub light source 28 may be applied to the side surface with respect to the laser light irradiation surface 7a.
 (フェルール65)
 図13に示すように、フェルール65は、光ファイバー55の複数の出射端部51a~53aを発光部7のレーザ光照射面7aに対して所定のパターンで保持する。このフェルール65は、出射端部51a~53aを挿入するための孔が所定のパターンで形成されているものでもよいし、上部と下部とに分離できるものであり、上部および下部の接合面にそれぞれ形成された溝によって出射端部51a~53aを挟み込むものでもよい。
(Ferrule 65)
As shown in FIG. 13, the ferrule 65 holds the plurality of emission end portions 51 a to 53 a of the optical fiber 55 in a predetermined pattern with respect to the laser light irradiation surface 7 a of the light emitting unit 7. The ferrule 65 may have holes for inserting the emission end portions 51a to 53a formed in a predetermined pattern, and can be separated into an upper portion and a lower portion, and the upper and lower joint surfaces are respectively provided. The exit end portions 51a to 53a may be sandwiched between the formed grooves.
 このフェルール65は、反射鏡81から延出する棒状または筒状の部材などによって反射鏡81に対して固定されていればよい。フェルール65の材質は、特に限定されず、例えばステンレススチールである。また、1つの発光部7に対して、複数のフェルール65を配置してもよい。 The ferrule 65 may be fixed to the reflecting mirror 81 with a rod-like or cylindrical member extending from the reflecting mirror 81. The material of the ferrule 65 is not specifically limited, For example, it is stainless steel. A plurality of ferrules 65 may be arranged for one light emitting unit 7.
 (発光部7)
 発光部7は、メイン光源27から出射されたレーザ光を受けて蛍光を発するものであり、レーザ光を受けて発光する蛍光体を含んでいる。発光部7は、例えば、封止材の内部に蛍光体が分散されているものである。封止材と蛍光体との割合(重量比)は、100:5程度である。封止材として、例えば、1W/mK程度の無機ガラスを用いることができる。
(Light Emitting Unit 7)
The light emitting unit 7 emits fluorescence by receiving the laser light emitted from the main light source 27, and includes a phosphor that emits light by receiving the laser light. The light emitting unit 7 is, for example, a phosphor dispersed in a sealing material. The ratio (weight ratio) between the sealing material and the phosphor is about 100: 5. As the sealing material, for example, an inorganic glass of about 1 W / mK can be used.
 なお、封止材は、無機ガラスに限定されず、いわゆる有機無機ハイブリッドガラスやシリコーン樹脂等の樹脂材料であってもよい。ただし、封止材として無機ガラスを用いた場合には、熱耐性が高まるとともに発光部7の熱抵抗を下げるという効果が得られるため、無機ガラスが好ましい。また、発光部7は、蛍光体を押し固めたものであってもよい。 In addition, the sealing material is not limited to inorganic glass, and may be a resin material such as so-called organic-inorganic hybrid glass or silicone resin. However, when inorganic glass is used as the sealing material, the effect of increasing the heat resistance and lowering the thermal resistance of the light emitting portion 7 is obtained, and therefore inorganic glass is preferable. In addition, the light emitting unit 7 may be formed by pressing a fluorescent material.
 上記蛍光体は、酸窒化物系または窒化物系のものであり、青色、緑色および赤色の蛍光体がシリコーン樹脂に分散されている。メイン光源27は、405nm(青紫色)のレーザ光を発振するため、発光部7に当該レーザ光が照射されると白色光が発生する。それゆえ、発光部7は、波長変換材料であるといえる。 The phosphor is an oxynitride or nitride phosphor, and blue, green and red phosphors are dispersed in a silicone resin. Since the main light source 27 oscillates 405 nm (blue-violet) laser light, white light is generated when the light emitting unit 7 is irradiated with the laser light. Therefore, it can be said that the light emitting portion 7 is a wavelength conversion material.
 発光部7の形状および大きさは、例えば、3mm×1mm×1mmの直方体である。日本国内で法的に規定されている車両用ヘッドランプの配光パターン(配光分布)は、鉛直方向に狭く、水平方向に広いため、発光部7の形状を、水平方向に対して横長(断面略長方形形状)にすることにより、上記配光パターンを実現しやすくなる。 The shape and size of the light emitting unit 7 is, for example, a rectangular parallelepiped of 3 mm × 1 mm × 1 mm. The light distribution pattern (light distribution) of a vehicle headlamp that is legally regulated in Japan is narrow in the vertical direction and wide in the horizontal direction. By making the cross section substantially rectangular), the light distribution pattern can be easily realized.
 発光部7は、直方体でなくてもよく、レーザ光照射面7aが楕円である筒状であってもよい。 The light emitting unit 7 may not be a rectangular parallelepiped, and may be a cylindrical shape in which the laser light irradiation surface 7a is an ellipse.
 また、発光部7のレーザ光照射面7aは、平面である必要は必ずしもなく、曲面であってもよい。ただし、反射したレーザ光を制御するためには、レーザ光照射面7aは平面を有していることが好ましい。レーザ光照射面7aが曲面の場合、少なくとも曲面への入射角度が大きく変わるため、レーザ光が照射される場所によって、反射光の進む方向が大きく変わってしまう。そのため、レーザ光の反射方向を制御することが困難な場合がある。これに対してレーザ光照射面7aが平面であれば、レーザ光の照射位置が若干ずれたとしても反射光の進む方向はほとんど変わらないため、レーザ光が反射する方向を制御しやすい。場合によっては反射光が当たる場所にレーザ光の吸収材を置くなどの対応がとり易くなる。 Further, the laser light irradiation surface 7a of the light emitting unit 7 is not necessarily a flat surface, and may be a curved surface. However, in order to control the reflected laser light, the laser light irradiation surface 7a preferably has a flat surface. When the laser light irradiation surface 7a is a curved surface, at least the incident angle to the curved surface changes greatly, so that the direction in which the reflected light travels greatly changes depending on the location where the laser light is irradiated. For this reason, it may be difficult to control the reflection direction of the laser light. On the other hand, if the laser light irradiation surface 7a is flat, the direction in which the reflected light travels hardly changes even if the irradiation position of the laser light is slightly deviated. Therefore, it is easy to control the direction in which the laser light is reflected. In some cases, it is easy to take measures such as placing a laser beam absorber in a place where the reflected light strikes.
 なお、レーザ光照射面7aがレーザ光の光軸に対して垂直である必要は必ずしもない。レーザ光照射面7aがレーザ光の光軸に対して垂直な場合、反射したレーザ光はレーザ光源の方向に戻るため、場合によってはレーザ光源にダメージを与える可能性もある。 Note that the laser light irradiation surface 7a is not necessarily perpendicular to the optical axis of the laser light. When the laser light irradiation surface 7a is perpendicular to the optical axis of the laser light, the reflected laser light returns in the direction of the laser light source, and in some cases, the laser light source may be damaged.
 また、発光部7は、図12では遮断フィルタ91の内側の面に固定されているが、発光部7の位置の固定方法は、この方法に限定されず、反射鏡81から延出する棒状または筒状の部材によって発光部7の位置を固定してもよい。 In addition, the light emitting unit 7 is fixed to the inner surface of the blocking filter 91 in FIG. 12, but the method for fixing the position of the light emitting unit 7 is not limited to this method, and a bar-like shape extending from the reflecting mirror 81 or You may fix the position of the light emission part 7 with a cylindrical member.
 また、発光部7は、レーザ光を拡散する機能を有している。この機能は、発光部7に含まれる封止材と蛍光体との屈折率の差を利用することで実現できる。そのために、サブ光源28が発振したレーザ光を十分に拡散できる体積(特に厚み)を有するように発光部7を設計する。 Further, the light emitting unit 7 has a function of diffusing laser light. This function can be realized by utilizing the difference in refractive index between the sealing material included in the light emitting unit 7 and the phosphor. For this purpose, the light emitting unit 7 is designed to have a volume (particularly thickness) that can sufficiently diffuse the laser light oscillated by the sub light source 28.
 また、発光部7の拡散機能をさらに高めるため、または、発光部7を小型化するために、発光部7に拡散粒子を含ませてもよい。拡散粒子として酸化ジルコニウム、ダイヤモンドなどの粒子を用いることができる。これら以外の粒子を用いてもよいが、発光部7の発熱に耐えられる粒子であることが好ましい。 Further, in order to further enhance the diffusion function of the light emitting unit 7 or to reduce the size of the light emitting unit 7, the light emitting unit 7 may include diffusion particles. Particles such as zirconium oxide and diamond can be used as the diffusing particles. Although particles other than these may be used, particles that can withstand the heat generation of the light emitting portion 7 are preferable.
 発光部7が上記の拡散機能を有しているので、サブ光源28がレーザ光源であっても、ヘッドランプ40は、サブ光源28から出射されるコヒーレント性が高く発光点サイズの極めて小さな青色レーザ光を、人体への影響がほとんどない発光点サイズの大きな光に変換し、照明光として出射できる。すなわち、ヘッドランプ40は、安全性を確保した上でサブ光源28から出射された青色レーザ光を照明光として利用できる。また、実施の形態3のように拡散部71(図17参照)を設ける必要がないので、その分ヘッドランプ40を安価に製造できる。 Since the light emitting unit 7 has the above-described diffusing function, even if the sub-light source 28 is a laser light source, the headlamp 40 is a blue laser that emits from the sub-light source 28 with high coherence and has a very small emission point size. Light can be converted into light having a large emission point size that has little influence on the human body and can be emitted as illumination light. That is, the headlamp 40 can use the blue laser light emitted from the sub light source 28 as illumination light while ensuring safety. Further, since it is not necessary to provide the diffusing portion 71 (see FIG. 17) as in the third embodiment, the headlamp 40 can be manufactured at a lower cost.
 発光部7に含まれる蛍光体の詳細については後述する。 Details of the phosphor included in the light emitting unit 7 will be described later.
 (反射鏡81)
 反射鏡81は、発光部7から出射した光を反射することにより、所定の立体角内を進む光線束を形成するものである。すなわち、反射鏡81は、発光部7からの光を反射することにより、ヘッドランプ40の前方へ進む光線束を形成する。この反射鏡81は、例えば、金属薄膜がその表面に形成された曲面形状(カップ形状)の部材である。
(Reflector 81)
The reflecting mirror 81 reflects the light emitted from the light emitting unit 7 to form a light bundle that travels within a predetermined solid angle. That is, the reflecting mirror 81 reflects the light from the light emitting unit 7 to form a light beam that travels forward of the headlamp 40. The reflecting mirror 81 is, for example, a curved (cup-shaped) member having a metal thin film formed on the surface thereof.
 また、反射鏡81は、半球面ミラーに限定されず、楕円面ミラーやパラボラミラーまたはそれらの部分曲面を有するミラーあってもよい。すなわち、反射鏡81は、回転軸を中心として図形(楕円、円、放物線)を回転させることによって形成される曲面の少なくとも一部をその反射面に含んでいるものであればよい。また、反射鏡81における開口部の形状は円形に限定されない。ヘッドランプ40およびその周辺のデザインに応じて、適宜開口部の形状を決定することができる。 Further, the reflecting mirror 81 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 81 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface. The shape of the opening in the reflecting mirror 81 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 40 and its surroundings.
 (遮断フィルタ91)
 遮断フィルタ91は、発光部7においてレーザ光を変換することにより生成された白色光を透過するとともに、メイン光源27およびサブ光源28からのレーザ光を遮断する。遮断フィルタ91としては、例えば五鈴精工硝子社製のITY418を使用できる。
(Blocking filter 91)
The blocking filter 91 transmits white light generated by converting the laser light in the light emitting unit 7 and blocks laser light from the main light source 27 and the sub light source 28. As the cutoff filter 91, for example, TY418 manufactured by Isuzu Seiko Glass Co., Ltd. can be used.
 発光部7によってコヒーレント性の高いレーザ光は、そのほとんどが蛍光体に吸収されインコヒーレントな光に変換される。しかし、何らかの原因でレーザ光の一部がインコヒーレントな光に変換されない場合も考えられる。このような場合でも、遮断フィルタ91によってレーザ光を遮断することにより、レーザ光が外部に漏れることを防止できる。これにより、レーザ光(励起光)の発光点サイズが非常に小さく、かつ高出力光である、あるいはレーザ光が可視光領域以外の波長範囲に属していても、レーザ光が外部に漏れ出て人体に与える影響を抑制できる。 Most of the coherent laser light is absorbed by the phosphor and converted into incoherent light by the light emitting unit 7. However, there may be a case where a part of the laser light is not converted into incoherent light for some reason. Even in such a case, the laser beam can be prevented from leaking to the outside by blocking the laser beam by the blocking filter 91. As a result, even if the emission point size of the laser light (excitation light) is very small and the output power is high, or the laser light belongs to a wavelength range other than the visible light region, the laser light leaks to the outside. The influence on the human body can be suppressed.
 なお、メイン光源27がLEDの場合であっても、紫外領域(350nm以上、380nm以下あるいは400nm以下)の励起光を出射する場合には、皮膚や目など人体に影響を与える可能性がある。したがって、遮断フィルタ91としては、400nm以下の光を遮断できるものが選択されることが好ましい。 Even when the main light source 27 is an LED, there is a possibility of affecting the human body such as skin and eyes when emitting excitation light in the ultraviolet region (350 nm or more, 380 nm or less or 400 nm or less). Therefore, it is preferable to select a blocking filter 91 that can block light of 400 nm or less.
 また、メイン光源27が400nmよりも長い波長の光を出射する場合には、その光が必ずしも遮断フィルタ91によって遮断される必要はない。しかしながら、レーザ光の場合には、その発光点サイズを拡大させ、人体の眼に対して安全な光とするために、当該レーザ光の大部分が発光部7において蛍光に変換されるか、複数回散乱あるいは拡散される必要がある。 Further, when the main light source 27 emits light having a wavelength longer than 400 nm, the light need not necessarily be blocked by the blocking filter 91. However, in the case of laser light, in order to enlarge the light emission point size and make the light safe for the human eye, most of the laser light is converted into fluorescence in the light emitting unit 7 or a plurality of light is emitted. Must be scattered or diffused once.
 (レーザ光利用時の安全性確保について)
 小さな発光点サイズを有する光源から高いエネルギーを有する光が出射され、当該光が人間の眼に入射した場合、網膜上では、その小さな発光点サイズにまで光源像が絞られるため、結像箇所におけるエネルギー密度が極めて高くなってしまうことがある。例えば、レーザ光源(半導体レーザ)から出射されるレーザ光は、スポットサイズが10μm角よりも小さい場合がある。そのような光源から出射されるレーザ光が、直接眼に入射、あるいはレンズや反射鏡といった光学部材を介したとしても小さな発光点が直接見える形で眼に入射すると、網膜上の結像箇所が損傷してしまうことがある。
(Ensuring safety when using laser light)
When light having high energy is emitted from a light source having a small light emitting spot size and the light enters the human eye, the light source image is narrowed down to the small light emitting spot size on the retina. The energy density can be very high. For example, laser light emitted from a laser light source (semiconductor laser) may have a spot size smaller than 10 μm square. When laser light emitted from such a light source is directly incident on the eye or is incident on the eye in such a way that a small light emitting point can be seen directly even through an optical member such as a lens or a reflecting mirror, the imaged portion on the retina is It can be damaged.
 典型的な高出力の半導体レーザにおける発光点サイズは、例えば1μm×10μmである。すなわち、当該半導体レーザの出射面積は10μm=1.0×10-5mmである。このため、半導体レーザが出射する光が、例えば発光点サイズが1mmの光源と同じエネルギーを有する光であったとしても、半導体レーザの場合の網膜上での結像箇所のエネルギー密度は、発光点サイズが1mmの光源の場合よりも10倍も高くなってしまう。 The emission point size in a typical high-power semiconductor laser is, for example, 1 μm × 10 μm. That is, the emission area of the semiconductor laser is 10 μm 2 = 1.0 × 10 −5 mm 2 . For this reason, even if the light emitted from the semiconductor laser is, for example, light having the same energy as that of a light source having a light emitting point size of 1 mm 2 , the energy density of the image formation location on the retina in the case of the semiconductor laser is light emission. point size is increased even 105 times higher than the case of the 1 mm 2 light sources.
 これを回避するためには、発光点サイズをある程度の大きさ(有限のサイズ)(具体的には例えば1mm×1mm以上)に拡大させる必要がある。発光点サイズを拡大させることにより、網膜上での結像サイズを拡大させることができるようになるため、同じエネルギーの光が眼に入射した場合であっても、網膜上のエネルギー密度を低減させることが可能となる。 In order to avoid this, it is necessary to enlarge the light emitting spot size to a certain size (finite size) (specifically, for example, 1 mm × 1 mm or more). By enlarging the emission point size, the image size on the retina can be enlarged, so even if light of the same energy is incident on the eye, the energy density on the retina is reduced. It becomes possible.
 発光点サイズを拡大させるためには、光源そのものの発光点を視認できないようにする必要がある。このため、本実施の形態では、上述のように発光部2に拡散機能を持たせ、メイン光源27及びサブ光源28の発光点サイズを拡大させることにより、人体に対する安全性、特に人間の眼に対する安全性を確保している(アイセーフ化)。 In order to increase the light emission point size, it is necessary to make the light emission point of the light source itself invisible. For this reason, in the present embodiment, as described above, the light emitting unit 2 is provided with a diffusion function, and the light emission point sizes of the main light source 27 and the sub light source 28 are enlarged, so that safety to the human body, particularly for human eyes. Ensures safety (Eye safe).
 なお、発光点サイズの拡大については、レーザ光源に限らず、LED光源においても考慮する必要がある。但し、レーザ光は、LED光源から出射される光よりも単色性、すなわち波長が揃っているため、波長の違いによる網膜上での結像のボケ(いわゆる色収差)がなく、当該光よりも危険である。このため、レーザ光源から出射された光を照明光として利用する照明装置においては発光点サイズの拡大について、よりしっかりと考慮することが好ましい。 In addition, it is necessary to consider the enlargement of the light emitting spot size not only in the laser light source but also in the LED light source. However, since the laser light is more monochromatic than the light emitted from the LED light source, that is, has a uniform wavelength, there is no blurring of the image on the retina (so-called chromatic aberration) due to the difference in wavelength, and it is more dangerous than the light. It is. For this reason, in an illuminating device that uses light emitted from a laser light source as illumination light, it is preferable to more firmly consider the expansion of the emission point size.
 (ハウジング75)
 ハウジング75は、ヘッドランプ40の本体を形成しており、反射鏡81等を収納している。光ファイバー55は、このハウジング75を貫いており、メイン光源27およびサブ光源28は、ハウジング75の外部に設置される。半導体レーザは、レーザ光の発振時に発熱するが、ハウジング75の外部に設置することによりメイン光源27およびサブ光源28を効率良く冷却することが可能となる。
(Housing 75)
The housing 75 forms the main body of the headlamp 40 and houses the reflecting mirror 81 and the like. The optical fiber 55 passes through the housing 75, and the main light source 27 and the sub light source 28 are installed outside the housing 75. The semiconductor laser generates heat when the laser beam oscillates, but the main light source 27 and the sub light source 28 can be efficiently cooled by being installed outside the housing 75.
 また、メイン光源27およびサブ光源28は、万一故障した時のことを考慮して、交換しやすい位置に設置することが好ましい。これらの点を考慮しなければ、メイン光源27およびサブ光源28をハウジング75の内部に収納してもよい。 Also, it is preferable to install the main light source 27 and the sub light source 28 at positions where they can be easily replaced in consideration of a failure. If these points are not taken into consideration, the main light source 27 and the sub light source 28 may be housed in the housing 75.
 (エクステンション76)
 エクステンション76は、反射鏡81の前方の側部に設けられており、ヘッドランプ40の内部構造を隠して見栄えを良くするとともに、反射鏡81と車体との一体感を高めている。このエクステンション76も反射鏡81と同様に金属薄膜がその表面に形成された部材である。
(Extension 76)
The extension 76 is provided on the front side of the reflecting mirror 81 to improve the appearance by concealing the internal structure of the headlamp 40 and enhance the sense of unity between the reflecting mirror 81 and the vehicle body. The extension 76 is also a member having a metal thin film formed on the surface thereof, like the reflecting mirror 81.
 (レンズ77)
 レンズ77は、ハウジング75の開口部に設けられており、ヘッドランプ40を密封している。発光部7が発生し、反射鏡81によって反射された光は、レンズ77を通ってヘッドランプ40の前方へ出射される。
(Lens 77)
The lens 77 is provided in the opening of the housing 75 and seals the headlamp 40. The light generated by the light emitting unit 7 and reflected by the reflecting mirror 81 is emitted to the front of the headlamp 40 through the lens 77.
 <発光部7の詳細>
 (蛍光体の組成)
 上述のように、メイン光源27は、紫外領域から青紫色領域の発振波長を有するレーザ光を出射するものであり、発光部7はこのレーザ光を受けて白色光を出射するために、黄色発光蛍光体または緑色発光蛍光体と、赤色発光蛍光体との混合物であることが好ましい。換言すれば、メイン光源27は、上記領域の発振波長を有するレーザ光を出射してもよく、この場合、白色光を生成するための発光部の材料(蛍光体材料)を容易に選定および製造できる。なお、黄色発光蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。緑色発光蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。赤色発光蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。
<Details of the light emitting unit 7>
(Phosphor composition)
As described above, the main light source 27 emits laser light having an oscillation wavelength from the ultraviolet region to the blue-violet region, and the light emitting unit 7 receives this laser light and emits white light. A mixture of a phosphor or green-emitting phosphor and a red-emitting phosphor is preferable. In other words, the main light source 27 may emit laser light having an oscillation wavelength in the above region, and in this case, the material (phosphor material) of the light emitting unit for generating white light can be easily selected and manufactured. it can. The yellow light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm. The green light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The red light emitting phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
 上記蛍光体は、サイアロン蛍光体と通称されるものが好ましい。サイアロンとは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。サイアロン蛍光体は、窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。 The phosphor is preferably a so-called sialon phosphor. Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. The sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ).
 また、上記蛍光体の別の好適な例としては、III-V族化合物半導体のナノメータサイズの粒子を用いた半導体ナノ粒子蛍光体を用いることもできる。同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径を変更させることにより、量子サイズ効果によって発光色を変化させることができることが半導体ナノ粒子蛍光体の特徴の一つである。例えばInPでは、粒子サイズが3~4nm程度のときに赤色に発光する。ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した。 As another preferred example of the phosphor, a semiconductor nanoparticle phosphor using nanometer-size particles of a III-V compound semiconductor can also be used. One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
 また、この蛍光体は半導体ベースであるので蛍光寿命が短く、励起光のパワーを素早く蛍光として放射できるのでハイパワーの励起光に対して耐性が強いという特徴もある。これは、上記半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。発光寿命が短いため、励起光の吸収と蛍光の発光を素早く繰り返すことができる。 Also, since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
 その結果、強い励起光に対して高効率を保つことができ、蛍光体からの発熱が低減される。よって、光変換部材が熱により劣化(変色や変形)するのをより抑制することができる。これにより、光の出力が高い発光素子を光源として用いる場合に、発光装置の寿命が短くなるのをより抑制することができる。 As a result, high efficiency can be maintained against strong excitation light, and heat generation from the phosphor is reduced. Therefore, it is possible to further suppress the light conversion member from being deteriorated (discolored or deformed) by heat. Thereby, when using the light emitting element with a high light output as a light source, it can suppress more that the lifetime of a light-emitting device becomes short.
 本実施の形態では、メイン光源27が405nm近傍の発振波長を有するレーザ光を出射する。このため、ヘッドランプ40が白色光の出射を実現するために、発光部7の蛍光体としては、Caα-SiAlON:Ce蛍光体(第1蛍光体)と、CaAlSiN:Eu2+蛍光体(CASN:Eu蛍光体、第2蛍光体)とを混合したものが用いられている。 In the present embodiment, the main light source 27 emits laser light having an oscillation wavelength near 405 nm. For this reason, in order for the headlamp 40 to emit white light, the phosphors of the light emitting unit 7 include Caα-SiAlON: Ce phosphor (first phosphor) and CaAlSiN 3 : Eu 2+ phosphor (CASN). : Eu phosphor and second phosphor) are used.
 Caα-SiAlON:Ce蛍光体は、励起波長が405nmのとき、青色から緑色にかけての蛍光を発し、その発光ピークの波長は510nmである。また、当該蛍光体の発光効率は65%(図14参照)であり、発光効率が高い。さらに、この蛍光体は、耐熱性が高いため、高い出力のレーザ光を高い光密度で発光部7に照射しても発光部7が劣化する可能性が少ない。 The Caα-SiAlON: Ce phosphor emits fluorescence from blue to green when the excitation wavelength is 405 nm, and the wavelength of the emission peak is 510 nm. Further, the luminous efficiency of the phosphor is 65% (see FIG. 14), and the luminous efficiency is high. Furthermore, since this phosphor has high heat resistance, there is little possibility that the light emitting section 7 will deteriorate even if the light emitting section 7 is irradiated with a high output laser beam at a high light density.
 また、CASN:Eu蛍光体は、励起波長が405nmのとき、赤色の蛍光を発し、その発光ピークの波長は650nmである。また、この蛍光体の発光効率は73%であり、発光効率が高い。さらに、この蛍光体も耐熱性が高いため、高い出力の励起光を高い光密度で発光部7に照射しても発光部7が劣化する可能性が少ない。 The CASN: Eu phosphor emits red fluorescence when the excitation wavelength is 405 nm, and the wavelength of the emission peak is 650 nm. Further, the luminous efficiency of this phosphor is 73%, and the luminous efficiency is high. Furthermore, since this phosphor also has high heat resistance, there is little possibility that the light emitting section 7 will deteriorate even if the light emitting section 7 is irradiated with high output excitation light at a high light density.
 なお、赤色発光蛍光体として、CASN:Eu蛍光体の代わりに、SrCaAlSiN:Eu2+蛍光体(SCASN:Eu蛍光体、第2蛍光体)を用いてもよい。SCASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は630nmであり、その発光効率は70%である。 As a red-emitting phosphor, CASN: instead of Eu phosphor, SrCaAlSiN 3: Eu 2+ phosphor (SCASN: Eu phosphor, a second phosphor) may be used. The SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
 このように、発光部7に、緑色蛍光発光体としてCaα-SiAlON:Ce蛍光体、赤色蛍光発光体としてCASN:Eu蛍光体又はSCASN:Eu蛍光体を用いることにより、高輝度・高光束の白色光を出射する照明装置(前照灯)を実現できる。また、この赤色発光蛍光体、すなわち630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する蛍光体を用いることにより、演色性の高い発光部を実現できる。 As described above, by using the Caα-SiAlON: Ce phosphor as the green phosphor and the CASN: Eu phosphor or the SCASN: Eu phosphor as the red phosphor in the light emitting unit 7, a high luminance and high luminous flux white color is obtained. An illumination device (headlight) that emits light can be realized. Further, by using this red light emitting phosphor, that is, a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less, a light emitting portion having high color rendering properties can be realized.
 (Caα-SiAlON:Ce蛍光体の特性)
 本実施の形態においてCaα-SiAlON:Ce蛍光体が用いられる理由のひとつとして、上述したように、メイン光源27から出射された励起光が照射されたときの発光効率が高いことが挙げられる。一方で、このCaα-SiAlON:Ce蛍光体は、サブ光源28から出射された青色レーザ光が照射されたときの発光効率が低い。ここで、図14を用いて、Caα-SiAlON:Ce蛍光体の特性について説明する。図14に示すグラフにおいては、Caα-SiAlON:Ce蛍光体の内部量子効率、吸収率及び外部量子効率が示されている。外部量子効率とは、いわゆる発光効率であり、内部量子効率×吸収率により求められる。
(Characteristics of Caα-SiAlON: Ce phosphor)
One of the reasons why the Caα-SiAlON: Ce phosphor is used in the present embodiment is that, as described above, the luminous efficiency is high when the excitation light emitted from the main light source 27 is irradiated. On the other hand, the Caα-SiAlON: Ce phosphor has a low luminous efficiency when irradiated with the blue laser light emitted from the sub-light source 28. Here, the characteristics of the Caα-SiAlON: Ce phosphor will be described with reference to FIG. In the graph shown in FIG. 14, the internal quantum efficiency, the absorption rate, and the external quantum efficiency of the Caα-SiAlON: Ce phosphor are shown. The external quantum efficiency is so-called luminous efficiency, and is obtained by internal quantum efficiency × absorption rate.
 図示のように、Caα-SiAlON:Ce蛍光体は、特に350nm以上、420nm以下の波長範囲の光については高い吸収率(励起光全体に対する、蛍光体により吸収された励起光の割合)を示している。換言すれば、Caα-SiAlON:Ce蛍光体は、350nm以上、420nm以下の波長範囲に光の吸収ピーク波長を有しているといえる。 As shown in the figure, the Caα-SiAlON: Ce phosphor exhibits a high absorptance (the ratio of the excitation light absorbed by the phosphor to the entire excitation light) particularly for light in the wavelength range of 350 nm to 420 nm. Yes. In other words, it can be said that the Caα-SiAlON: Ce phosphor has an absorption peak wavelength of light in a wavelength range of 350 nm or more and 420 nm or less.
 具体的には、Caα-SiAlON:Ce蛍光体の場合、その吸収率が70%以上となるときの、メイン光源27から出射されるレーザ光の波長範囲がおよそ420nm以下であることがわかる。また、一般に、Caα-SiAlON:Ce蛍光体とは異なる蛍光体であっても、420nm以下に光の吸収ピーク波長を有する蛍光体であれば、メイン光源27から出射されるレーザ光の発振波長がおよそ420nm以下の場合には、その蛍光体における当該レーザ光の吸収率は70%以上を示す。図示のように、Caα-SiAlON:Ce蛍光体の場合、吸収率が70%のときの外部量子効率(発光効率)は50%程度であり、高い発光効率を実現している。 Specifically, in the case of the Caα-SiAlON: Ce phosphor, it can be seen that the wavelength range of the laser light emitted from the main light source 27 when the absorption rate is 70% or more is approximately 420 nm or less. In general, even if the phosphor is different from the Caα-SiAlON: Ce phosphor, if the phosphor has a light absorption peak wavelength of 420 nm or less, the oscillation wavelength of the laser light emitted from the main light source 27 is In the case of approximately 420 nm or less, the absorption rate of the laser light in the phosphor shows 70% or more. As shown in the figure, in the case of a Caα-SiAlON: Ce phosphor, the external quantum efficiency (luminous efficiency) when the absorption rate is 70% is about 50%, and high luminous efficiency is realized.
 逆に言えば、420nm以下に励起光の吸収ピーク波長を有する蛍光体(特にCaα-SiAlON:Ce蛍光体)に、420nmよりも長い波長を有する光が照射された場合には、その吸収率は70%未満となる。特に440nm以上の波長範囲にピーク波長を有する光(サブ光源28が出射する青色レーザ光)が発光部7に照射された場合には、図示のように、その青色レーザ光の吸収率が50%よりも低くなる。このため、このときの発光効率は、その吸収率が70%であるときに比べてさらに低くなる。 In other words, when a phosphor having an absorption peak wavelength of excitation light below 420 nm (particularly Caα-SiAlON: Ce phosphor) is irradiated with light having a wavelength longer than 420 nm, the absorptance is Less than 70%. In particular, when the light emitting unit 7 is irradiated with light having a peak wavelength in the wavelength range of 440 nm or more (blue laser light emitted from the sub-light source 28), the blue laser light absorption rate is 50% as illustrated. Lower than. For this reason, the luminous efficiency at this time is further lower than when the absorptance is 70%.
 具体的には、照射される光の波長が440nmであるとき、その吸収率は約45%であり、その外部量子効率(発光効率)は約35%である。なお、発明者は、Caα-SiAlON:Ce蛍光体に波長445nmの青色レーザ光を照射した場合には、当該蛍光体がほとんど蛍光を発していないことを確認している。なお、波長445nmの光が照射されたときの発光効率は約30%である(図14参照)。 Specifically, when the wavelength of the irradiated light is 440 nm, the absorptance is about 45%, and the external quantum efficiency (luminous efficiency) is about 35%. The inventors have confirmed that when a Caα-SiAlON: Ce phosphor is irradiated with blue laser light having a wavelength of 445 nm, the phosphor hardly emits fluorescence. Note that the light emission efficiency when irradiated with light having a wavelength of 445 nm is about 30% (see FIG. 14).
 つまり、発光部7に、350nm以上、420nm以下の波長範囲に光の吸収ピーク波長を有し、メイン光源27から出射されるレーザ光が照射されるときの吸収率が70%以上である蛍光体を用いた場合には、サブ光源28から出射された青色レーザ光は発光部7においてほとんど吸収されない。よって、当該青色レーザ光の発光部7における減衰を抑制できるので、ヘッドランプ40は、以下に述べるように、効率よく照明光の色温度を調整できる。 That is, the phosphor having a light absorption peak wavelength in the wavelength range of 350 nm or more and 420 nm or less on the light emitting unit 7 and an absorption rate of 70% or more when irradiated with the laser light emitted from the main light source 27. Is used, the blue laser light emitted from the sub-light source 28 is hardly absorbed by the light emitting unit 7. Therefore, since the attenuation of the blue laser light in the light emitting unit 7 can be suppressed, the headlamp 40 can efficiently adjust the color temperature of the illumination light as described below.
 (発光部7から出射される光のスペクトル)
 次に、発光部7から出射される光のスペクトルについて説明する。メイン光源27だけを使用した場合のスペクトルについては図15を用いて、メイン光源27及びサブ光源28を使用した場合のスペクトルについては図16を用いて説明する。
(Spectrum of light emitted from the light emitting unit 7)
Next, the spectrum of the light emitted from the light emitting unit 7 will be described. The spectrum when only the main light source 27 is used will be described with reference to FIG. 15, and the spectrum when the main light source 27 and the sub light source 28 are used will be described with reference to FIG.
 図15及び図16では、メイン光源27が405nm近傍の発振波長を有するレーザ光を出射し、発光部7のCaα-SiAlON:Ce蛍光体及びCASN:Eu蛍光体を励起している。また、これらの蛍光体の重量比は3:1であり、メイン光源27の光出力は5Wである。 15 and 16, the main light source 27 emits laser light having an oscillation wavelength near 405 nm to excite the Caα-SiAlON: Ce phosphor and the CASN: Eu phosphor of the light emitting unit 7. The weight ratio of these phosphors is 3: 1, and the light output of the main light source 27 is 5W.
 また、図16では、サブ光源28が460nm近傍の発振波長を有する青色レーザ光を発光部7に照射しており、サブ光源28の光出力は0.5Wである。 In FIG. 16, the sub light source 28 irradiates the light emitting unit 7 with blue laser light having an oscillation wavelength near 460 nm, and the light output of the sub light source 28 is 0.5 W.
 図15では、発光部7は、405nm近傍の発振波長を有するレーザ光に加え、500~700nm程度の波長を有する蛍光(白色光)を出射している。ヘッドランプ40は、このレーザ光を遮断フィルタ91で遮断することにより、皮膚や目など人体に対して障害を与えないようにした上で照明光を出射できる。 In FIG. 15, the light emitting section 7 emits fluorescence (white light) having a wavelength of about 500 to 700 nm in addition to laser light having an oscillation wavelength near 405 nm. The headlamp 40 can emit the illumination light while blocking the laser light with the blocking filter 91 so as not to cause any damage to the human body such as skin and eyes.
 一方、図16では、発光部7は、460nm近傍の発振波長を有する青色レーザ光も出射している。上述のとおり、発光部7にCaα-SiAlON:Ce蛍光体を用いているので、発光部7における青色レーザ光の吸収率は低い。つまり、図16に示すように、サブ光源28から青色レーザ光が出射されることにより、図15の場合に比べて発光部7から出射される青色領域(460nm近傍)の光の光量が増加している。 On the other hand, in FIG. 16, the light emitting unit 7 also emits blue laser light having an oscillation wavelength near 460 nm. As described above, since the Caα-SiAlON: Ce phosphor is used for the light emitting unit 7, the blue laser light absorption rate in the light emitting unit 7 is low. That is, as shown in FIG. 16, when the blue laser light is emitted from the sub light source 28, the amount of light in the blue region (near 460 nm) emitted from the light emitting unit 7 is increased compared to the case of FIG. ing.
 このため、メイン光源27が出射する350nm以上、420nm以下の発振波長を有するレーザ光から得られる蛍光の青味成分は少ないが、その青味成分を上記の青色領域の光にて補填することができる。すなわち、サブ光源28から出射される青色レーザ光を拡散した上で照明光として利用することにより、上記青味成分を補填でき、照明光の色温度を高めることができる。 For this reason, although the blue component of the fluorescence obtained from the laser light having an oscillation wavelength of 350 nm or more and 420 nm or less emitted from the main light source 27 is small, the bluish component can be supplemented with the light in the blue region. it can. That is, by diffusing the blue laser light emitted from the sub light source 28 and using it as illumination light, the bluish component can be compensated for and the color temperature of the illumination light can be increased.
 また、拡散後の青色レーザ光を照明光として利用することにより、蛍光のみを照明光として利用するよう設計されてきた従来の照明装置では困難であった照明光の色温度の調整を行うことができる。また、その青色レーザ光は発光部7により蛍光に変換されにくいので、拡散後の青色レーザ光を照明光として効率よく利用できる。すなわち、色温度の調整に効率よく利用できる。 In addition, by using the blue laser light after diffusion as the illumination light, it is possible to adjust the color temperature of the illumination light, which has been difficult with the conventional illumination device designed to use only fluorescence as the illumination light. it can. Further, since the blue laser light is difficult to be converted into fluorescence by the light emitting unit 7, the diffused blue laser light can be efficiently used as illumination light. That is, it can be efficiently used for adjusting the color temperature.
 なお、メイン光源27及びサブ光源28としての半導体レーザの基本構造については、実施の形態1で説明した図3(c)および(d)を用いて説明したLDチップ11の基本構造と同様であるため、その説明を割愛する。また、発光部7の発光原理についても、実施の形態1で説明した発光部2の発光原理と同様であるため、その説明を割愛する。 The basic structure of the semiconductor laser as the main light source 27 and the sub light source 28 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D described in the first embodiment. Therefore, the explanation is omitted. In addition, the light emission principle of the light emitting unit 7 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
 <ヘッドランプ40の効果>
 ヘッドランプ40は、発光部7から出射された蛍光およびサブ光源28から出射された青色レーザ光を、例えば発光部7において拡散させた上で照明光として出射する。これにより、ヘッドランプ40は、メイン光源27から出射されたレーザ光により発光部7を励起させて蛍光を得ることにより高輝度な発光特性を維持しつつ、当該蛍光とともに拡散後の青色レーザ光を照明光として利用することにより照明光の色温度の調整も実現できる。
<Effect of the headlamp 40>
The headlamp 40 emits the fluorescent light emitted from the light emitting unit 7 and the blue laser light emitted from the sub light source 28 as illumination light after being diffused in the light emitting unit 7, for example. As a result, the headlamp 40 excites the light emitting unit 7 with the laser light emitted from the main light source 27 to obtain the fluorescence, thereby maintaining the high-luminance emission characteristics, and the blue laser light after diffusion with the fluorescence. Adjustment of the color temperature of the illumination light can also be realized by using the illumination light.
 なお、サブ光源28が半導体レーザでない場合には、サブ光源28から出射される光を発光部7において拡散させることなく、そのまま照明光として利用できる。 When the sub light source 28 is not a semiconductor laser, the light emitted from the sub light source 28 can be used as illumination light without being diffused in the light emitting unit 7.
 〔実施の形態3〕
 本発明の他の実施形態について図17に基づいて説明すれば、以下のとおりである。なお、実施の形態2と同様の部材に関しては、同じ符号を付し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described below with reference to FIG. In addition, about the member similar to Embodiment 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 本実施の形態のヘッドランプ50は、上述のヘッドランプ40とは異なり、サブ光源28が出射した青色レーザ光を拡散する拡散部71を備えている。また、ヘッドランプ50は、メイン光源27からの励起光を発光部7へ導く導光部材として導光部511を備えるとともに、サブ光源28からの青色レーザ光を拡散部71へ導く導光部512を備えている。 Unlike the above-described headlamp 40, the headlamp 50 of the present embodiment includes a diffusing unit 71 that diffuses the blue laser light emitted from the sub-light source 28. The headlamp 50 includes a light guide 511 as a light guide member that guides the excitation light from the main light source 27 to the light emitting unit 7, and guides the blue laser light from the sub light source 28 to the diffusion unit 71. It has.
 (拡散部71)
 拡散部71は、例えば、レーザ光を拡散させる拡散粒子が母材中に分散されているものである。
(Diffusion part 71)
The diffusion unit 71 is, for example, one in which diffusion particles that diffuse laser light are dispersed in a base material.
 拡散部71に対して高出力のレーザ光が照射される場合も想定されるため、拡散部71は耐熱性であることが好ましい。この点を考慮すれば、上記母材として、無機ガラスを用いることが好ましい。 Since it is assumed that the diffusing unit 71 is irradiated with high-power laser light, the diffusing unit 71 is preferably heat resistant. Considering this point, it is preferable to use inorganic glass as the base material.
 一方、拡散粒子として、例えば、フュームドシリカ、Al、酸化ジルコニウムまたはダイヤモンドを用いることができる。これらの微粉末(直径10nm~5μm程度)が重量比10~30%程度で無機ガラスに混合されている。 On the other hand, for example, fumed silica, Al 2 O 3 , zirconium oxide, or diamond can be used as the diffusing particles. These fine powders (diameter of about 10 nm to 5 μm) are mixed with inorganic glass at a weight ratio of about 10 to 30%.
 無機ガラスの屈折率は、例えば1.5~1.8程度であるのに対して、酸化ジルコニウムおよびダイヤモンドの屈折率は、約2.4である。それゆえ、無機ガラスと拡散粒子との屈折率の差が大きくなるため、拡散効果を高めることができる。 The refractive index of inorganic glass is about 1.5 to 1.8, for example, while the refractive index of zirconium oxide and diamond is about 2.4. Therefore, the difference in refractive index between the inorganic glass and the diffusing particles becomes large, so that the diffusion effect can be enhanced.
 また、酸化ジルコニウムの融点は2715℃であり、ダイヤモンドの融点は3550℃であるので、通常の無機ガラスの溶融温度程度では融けたり変質したりすることはなく、拡散粒子として無機ガラス中に分散させる材料として好適である。 Further, since the melting point of zirconium oxide is 2715 ° C. and the melting point of diamond is 3550 ° C., it does not melt or change at the melting temperature of ordinary inorganic glass, and is dispersed in the inorganic glass as diffusion particles. Suitable as a material.
 上述した拡散部71の材質はあくまで一例であり、青色レーザ光を拡散可能なものであれば、拡散部71の材質は特に限定されない。また、拡散部71の形状および大きさ(厚み)についても、その拡散効率を考慮して、十分に青色レーザ光を拡散できる形状および大きさを設定すればよい。 The material of the diffusion part 71 described above is merely an example, and the material of the diffusion part 71 is not particularly limited as long as it can diffuse blue laser light. Further, the shape and size (thickness) of the diffusing portion 71 may be set to a shape and size that can sufficiently diffuse the blue laser light in consideration of the diffusion efficiency.
 拡散部71形状および大きさは、発光部7と同程度で良いが発光部7を覆うように形成されることが好ましい。また、発光部7および拡散部71は、反射鏡81の焦点位置の近傍に配置されることが好ましい。 The shape and size of the diffusion part 71 may be the same as that of the light emitting part 7, but it is preferably formed so as to cover the light emitting part 7. In addition, the light emitting unit 7 and the diffusing unit 71 are preferably disposed in the vicinity of the focal position of the reflecting mirror 81.
 このように、サブ光源28から出射される青色レーザ光を拡散部71において拡散させることにより、青色レーザ光の発光点サイズを拡大することができるので、安全性を確保した上で、当該青色レーザ光を照明光として利用することができる。 As described above, since the blue laser light emitted from the sub-light source 28 is diffused in the diffusing unit 71, the emission point size of the blue laser light can be expanded. Light can be used as illumination light.
 (導光部511・512)
 導光部511・512は、円錐台状の導光部材であり、非球面レンズ29を介して(または、直接的に)メイン光源27およびサブ光源28と光学的に結合している。
(Light guides 511 and 512)
The light guides 511 and 512 are frustoconical light guide members, and are optically coupled to the main light source 27 and the sub light source 28 via the aspherical lens 29 (or directly).
 導光部511・512は、メイン光源27またはサブ光源28が出射したレーザ光を受光する光入射面と当該光入射面において受光したレーザ光を出射する光出射面とを有している。 The light guides 511 and 512 have a light incident surface for receiving the laser light emitted from the main light source 27 or the sub light source 28 and a light emitting surface for emitting the laser light received on the light incident surface.
 光出射面の面積は、光入射面の面積よりも小さいため、光入射面から入射した各レーザ光は、導光部511・512の側面に反射しつつ前進することにより収束されて光出射面から出射される。 Since the area of the light emitting surface is smaller than the area of the light incident surface, each laser beam incident from the light incident surface is converged by traveling forward while being reflected on the side surfaces of the light guide portions 511 and 512. It is emitted from.
 導光部511・512は、BK7、石英ガラス、アクリル樹脂その他の透明素材で構成する。また、光入射面および光出射面は、平面形状であっても曲面形状であってもよい。 The light guides 511 and 512 are made of BK7, quartz glass, acrylic resin, or other transparent material. Further, the light incident surface and the light emitting surface may be planar or curved.
 なお、導光部511・512は、角錐台状であってもよく、その形状は限定されない。 The light guides 511 and 512 may have a truncated pyramid shape, and the shape is not limited.
 〔実施の形態4〕
 本発明の他の実施形態について図19~図21に基づいて説明すれば、以下のとおりである。なお、実施の形態2・3と同様の部材に関しては、同じ符号を付し、その説明を省略する。また、以下の説明において、発光ユニット210および従来のLEDダウンライト300の外観を示す概略図、LEDダウンライト300が設置された天井を示す断面図、レーザダウンライト200およびLEDダウンライト300のスペックを比較するための図としては、それぞれ実施の形態1の図6、図10、図11を参照する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIGS. In addition, about the member similar to Embodiment 2 * 3, the same code | symbol is attached | subjected and the description is abbreviate | omitted. Further, in the following description, a schematic diagram showing the appearance of the light emitting unit 210 and the conventional LED downlight 300, a cross-sectional view showing a ceiling where the LED downlight 300 is installed, and specifications of the laser downlight 200 and the LED downlight 300 are shown. For comparison, refer to FIGS. 6, 10, and 11 of the first embodiment, respectively.
 ここでは、本発明の照明装置の一例としてのレーザダウンライト200について説明する。レーザダウンライト200は、家屋、乗物などの構造物の天井に設置される照明装置である。レーザダウンライト200は、メイン光源27から出射されたレーザ光を発光部7に照射することによって蛍光と、サブ光源28から出射され、発光部7で拡散された青色レーザ光とを照明光として用いるものである。 Here, the laser downlight 200 as an example of the illumination device of the present invention will be described. The laser downlight 200 is an illumination device installed on the ceiling of a structure such as a house or a vehicle. The laser downlight 200 uses the fluorescence by irradiating the light emitting unit 7 with the laser light emitted from the main light source 27 and the blue laser light emitted from the sub light source 28 and diffused by the light emitting unit 7 as illumination light. Is.
 なお、レーザダウンライト200と同様の構成を有する照明装置を、構造物の側壁または床に設置してもよく、上記照明装置の設置場所は特に限定されない。 Note that an illumination device having the same configuration as the laser downlight 200 may be installed on the side wall or floor of the structure, and the installation location of the illumination device is not particularly limited.
 図19は、レーザダウンライト200が設置された天井の断面図である。図20は、レーザダウンライト200の断面図である。図6、図19および図20に示すように、レーザダウンライト200は、天板400に埋設され、照明光を出射する発光ユニット210と、光ファイバー55を介して発光ユニット210へレーザ光を供給するLD光源ユニット220とを含んでいる。LD光源ユニット220は、天井には設置されておらず、ユーザが容易に触れることができる位置(例えば、家屋の側壁)に設置されている。このようにLD光源ユニット220の位置を自由に決定できるのは、LD光源ユニット220と発光ユニット210とが光ファイバー55によって接続されているからである。この光ファイバー55は、天板400と断熱材401との間の隙間に配置されている。 FIG. 19 is a cross-sectional view of the ceiling where the laser downlight 200 is installed. FIG. 20 is a cross-sectional view of the laser downlight 200. As shown in FIGS. 6, 19, and 20, the laser downlight 200 is embedded in the top plate 400 and supplies laser light to the light emitting unit 210 via the light emitting unit 210 that emits illumination light and the optical fiber 55. An LD light source unit 220. The LD light source unit 220 is not installed on the ceiling, but is installed at a position where the user can easily touch it (for example, a side wall of a house). The position of the LD light source unit 220 can be freely determined in this way because the LD light source unit 220 and the light emitting unit 210 are connected by the optical fiber 55. The optical fiber 55 is disposed in a gap between the top plate 400 and the heat insulating material 401.
 (発光ユニット210の構成)
 発光ユニット210は、図20に示すように、筐体211、光ファイバー55、発光部7および透光板213を備えている。
(Configuration of light emitting unit 210)
As shown in FIG. 20, the light emitting unit 210 includes a housing 211, an optical fiber 55, a light emitting unit 7, and a light transmitting plate 213.
 筐体211には、凹部212が形成されており、この凹部212の底面に発光部7が配置されている。凹部212の表面には、金属薄膜が形成されており、凹部212は反射鏡として機能する。 A recess 212 is formed in the housing 211, and the light emitting unit 7 is disposed on the bottom surface of the recess 212. A metal thin film is formed on the surface of the recess 212, and the recess 212 functions as a reflecting mirror.
 また、筐体211には、光ファイバー55を通すための通路214が形成されており、この通路214を通って光ファイバー55が発光部7まで延びている。光ファイバー55の出射端部51a~53aと発光部7との位置関係は上述したものと同様である。 Further, a passage 214 for passing the optical fiber 55 is formed in the housing 211, and the optical fiber 55 extends to the light emitting unit 7 through the passage 214. The positional relationship between the emission end portions 51a to 53a of the optical fiber 55 and the light emitting portion 7 is the same as described above.
 透光板213は、凹部212の開口部をふさぐように配置された透明または半透明の板である。この透光板213は、遮断フィルタ91と同様の機能を有するものであり、発光部7の蛍光は、透光板213を透して照明光として出射される。透光板213は、筐体211に対して取外し可能であってもよく、省略されてもよい。 The translucent plate 213 is a transparent or translucent plate disposed so as to close the opening of the recess 212. The translucent plate 213 has a function similar to that of the blocking filter 91, and the fluorescence of the light emitting unit 7 is emitted as illumination light through the translucent plate 213. The translucent plate 213 may be removable from the housing 211 or may be omitted.
 図6では、発光ユニット210は、円形の外縁を有しているが、発光ユニット210の形状(より厳密には、筐体211の形状)は特に限定されない。 In FIG. 6, the light emitting unit 210 has a circular outer edge, but the shape of the light emitting unit 210 (more precisely, the shape of the housing 211) is not particularly limited.
 なお、ダウンライトでは、ヘッドランプの場合とは異なり、理想的な点光源は要求されず、発光点が1つというレベルで十分である。それゆえ、発光部7の形状、大きさおよび配置に関する制約は、ヘッドランプの場合よりも少ない。 In the downlight, unlike the headlamp, an ideal point light source is not required, and a level of one light emitting point is sufficient. Therefore, there are fewer restrictions on the shape, size and arrangement of the light emitting section 7 than in the case of the headlamp.
 (LD光源ユニット220の構成)
 LD光源ユニット220は、メイン光源27、サブ光源28、非球面レンズ29および光ファイバー55を備えている。
(Configuration of LD light source unit 220)
The LD light source unit 220 includes a main light source 27, a sub light source 28, an aspheric lens 29, and an optical fiber 55.
 光ファイバー55の一方の端部である入射端部5bは、LD光源ユニット220に接続されており、メイン光源27およびサブ光源28から発振されたレーザ光はそれぞれ、非球面レンズ29を介して光ファイバー55の入射端部5bに入射される。 The incident end portion 5 b, which is one end portion of the optical fiber 55, is connected to the LD light source unit 220, and the laser beams oscillated from the main light source 27 and the sub light source 28 are respectively connected to the optical fiber 55 via the aspherical lens 29. Is incident on the incident end 5b.
 図20では、LD光源ユニット220の内部に、一対のメイン光源27および非球面レンズ29と一対のサブ光源28および非球面レンズ29とが備えられ、それぞれの非球面レンズ29から延びる光ファイバーの束が1つの発光ユニット210に導かれている。すなわち、図20では、一対のメイン光源27および非球面レンズ29と一対のサブ光源28および非球面レンズ29とからなる1セットの光源が、1つの発光ユニット210用の光源として機能している。なお、メイン光源27およびサブ光源28が1つずつである必要はなく、その個数は、1光源あたりの出力量や、レーザダウンライト200で実現する照明光の色温度、あるいはその調整幅などを考慮して決定されればよい。 In FIG. 20, a pair of main light source 27 and aspherical lens 29 and a pair of sub-light source 28 and aspherical lens 29 are provided inside LD light source unit 220, and a bundle of optical fibers extending from each aspherical lens 29. It is guided to one light emitting unit 210. That is, in FIG. 20, one set of light sources including a pair of main light sources 27 and aspherical lenses 29 and a pair of sub light sources 28 and aspherical lenses 29 functions as a light source for one light emitting unit 210. The main light source 27 and the sub light source 28 do not need to be provided one by one, and the number of the light sources includes the output amount per light source, the color temperature of illumination light realized by the laser downlight 200, or the adjustment width thereof. It may be determined in consideration.
 また、発光ユニット210が複数存在する場合には、発光ユニット210からそれぞれ延びる光ファイバーの束を1つのLD光源ユニット220に導いてもよい。この場合、1つのLD光源ユニット220に上記の1セットの光源が複数収納されることになり、LD光源ユニット220は集中電源ボックスとして機能する。 Further, when there are a plurality of light emitting units 210, a bundle of optical fibers extending from the light emitting units 210 may be guided to one LD light source unit 220. In this case, one LD light source unit 220 contains a plurality of the above-mentioned one set of light sources, and the LD light source unit 220 functions as a centralized power supply box.
 (レーザダウンライト200の設置方法の変更例)
 図21は、レーザダウンライト200の設置方法の変更例を示す断面図である。同図に示すように、レーザダウンライト200の設置方法の変形例として、天板400には光ファイバー55を通す小さな穴402だけを開け、薄型・軽量の特長を活かしてレーザダウンライト本体(発光ユニット210)を強力な粘着テープ等を使って天板400に貼り付けるということもできる。この場合、レーザダウンライト200の設置に係る制約が小さくなり、また工事費用が大幅に削減できるというメリットがある。
(Example of changing the installation method of the laser downlight 200)
FIG. 21 is a cross-sectional view showing a modified example of the installation method of the laser downlight 200. As shown in the figure, as a modified example of the installation method of the laser downlight 200, only a small hole 402 through the optical fiber 55 is opened in the top plate 400, and the laser downlight main body (light emitting unit) is utilized by taking advantage of the thin and light weight. 210) can be attached to the top plate 400 using a strong adhesive tape or the like. In this case, there are advantages that restrictions on installation of the laser downlight 200 are reduced, and that construction costs can be significantly reduced.
 (レーザダウンライト200と従来のLEDダウンライト300との比較)
 レーザダウンライト200と従来のLEDダウンライト300との比較については、実施の形態1で図13および図14を用いて説明したので、ここではその説明を省略する。
(Comparison between laser downlight 200 and conventional LED downlight 300)
Since the comparison between the laser downlight 200 and the conventional LED downlight 300 has been described with reference to FIGS. 13 and 14 in the first embodiment, the description thereof is omitted here.
 なお、本実施の形態においても、実施の形態1と同様、LD光源ユニット220をユーザの手が容易に届く所(高さ)に設置できるため、メイン光源27およびサブ光源28が故障した場合でも、手軽にこれらの光源を交換できる。また、複数の発光ユニット210から延びる光ファイバー55を1つのLD光源ユニット220に導くことにより、複数のメイン光源27および複数のサブ光源28を一括管理できる。そのため、複数のメイン光源27および複数のサブ光源28を交換する場合でも、その交換が容易にできる。 In the present embodiment, as in the first embodiment, the LD light source unit 220 can be installed at a place (height) that can be easily reached by the user, so that even if the main light source 27 and the sub light source 28 break down. You can easily replace these light sources. Further, by guiding the optical fibers 55 extending from the plurality of light emitting units 210 to one LD light source unit 220, the plurality of main light sources 27 and the plurality of sub light sources 28 can be collectively managed. Therefore, even when the plurality of main light sources 27 and the plurality of sub light sources 28 are replaced, the replacement can be easily performed.
 以上のように、レーザダウンライト200は、レーザ光を出射するメイン光源27および青色レーザ光を出射するサブ光源28を少なくとも1つずつ備えるLD光源ユニット220と、当該レーザ光および青色レーザ光が照射される発光部7を備える少なくとも1つの発光ユニット210とを備える。そして、メイン光源27から出射されたレーザ光を受けて発光部7から出射された蛍光と、サブ光源28から出射された青色レーザ光(発光部7で拡散された青色レーザ光)とを照明光として出射する。 As described above, the laser downlight 200 is irradiated with the LD light source unit 220 including at least one main light source 27 that emits laser light and one sub-light source 28 that emits blue laser light, and the laser light and the blue laser light. And at least one light-emitting unit 210 including the light-emitting unit 7 to be operated. Then, the fluorescent light emitted from the light emitting unit 7 upon receiving the laser light emitted from the main light source 27 and the blue laser light emitted from the sub light source 28 (blue laser light diffused by the light emitting unit 7) are used as illumination light. To be emitted.
 それゆえ、レーザダウンライト200は、発光部7が発した蛍光とは異なる青色レーザ光を照明光として利用できるので、励起光としてのレーザ光が外部に漏れることを防ぎ、蛍光のみを照明光として用いるように設計された従来の照明装置においては困難であった色温度の調整を行うことができる。 Therefore, since the laser downlight 200 can use blue laser light different from the fluorescence emitted by the light emitting unit 7 as illumination light, the laser light as excitation light is prevented from leaking to the outside, and only fluorescence is used as illumination light. It is possible to adjust the color temperature, which is difficult in the conventional lighting device designed to be used.
 〔実施の形態2~4に係る発明の別の表現〕
 実施の形態2~4に係る発明は、以下のようにも表現できる。
[Another Expression of Inventions According to Embodiments 2 to 4]
The inventions according to Embodiments 2 to 4 can also be expressed as follows.
 すなわち、本発明の一実施形態に係る照明装置(固体照明光源)は、蛍光体発光部と、発振波長が405nm近傍の青紫領域、または350nmから400nmの紫外線から青紫領域にある半導体レーザまたはLEDを励起光源と、からなる固体照明光源に関するものである。この照明装置の第一の側面は、蛍光体発光部の少なくとも一部を構成する蛍光体として、Caα-SiAlON:Ce3+を用いていることである。また、照明装置の第二の側面は、照明光の色温度を上げる目的として青色半導体レーザ(440nm以上460nm以下にレーザ発振のピークを有する)を有することである。そして、この照明装置は、前記青色半導体レーザから発せられるレーザ光を前記蛍光体発光部に照射し、前記蛍光体発光部で散乱させてレーザ光の発光点サイズを拡大させることによりアイセーフ化させて、発光部から出射される照明光の青色光成分を補填する。 That is, an illuminating device (solid-state illumination light source) according to an embodiment of the present invention includes a phosphor light emitting unit and a semiconductor laser or LED having an oscillation wavelength in the blue-violet region near 405 nm, or in the ultraviolet to blue-violet region from 350 nm to 400 nm. The present invention relates to a solid-state illumination light source comprising an excitation light source. The first aspect of the illumination device is that Caα-SiAlON: Ce 3+ is used as a phosphor constituting at least a part of the phosphor light emitting portion. A second aspect of the illumination device is to have a blue semiconductor laser (having a laser oscillation peak at 440 nm to 460 nm) for the purpose of increasing the color temperature of the illumination light. The illumination device is made eye-safe by irradiating the phosphor light emitting portion with the laser light emitted from the blue semiconductor laser, and scattering the phosphor light emitting portion to enlarge the emission point size of the laser light. The blue light component of the illumination light emitted from the light emitting unit is compensated.
 〔実施の形態2~4に係る付記事項〕
 例えば、サブ光源28の出力をユーザが変化させることにより、色温度の調整をユーザの嗜好に合わせて調整することができる。すなわち、この場合には、ユーザによる色温度のカスタマイズが可能となる。
[Additional notes pertaining to Embodiments 2 to 4]
For example, when the user changes the output of the sub light source 28, the color temperature can be adjusted to the user's preference. That is, in this case, the user can customize the color temperature.
 また、発光部7で用いられる蛍光体は、実施の形態2に記載の組成に限られない。例えば、発光部7で用いられる蛍光体が黄色発光蛍光体だけからなる構成であってもよい。この場合、メイン光源27の出力は3~4Wとし、サブ光源28の出力を0.3~0.4Wとすることができる。また、赤色発光蛍光体だけを用いた場合には、メイン光源27の出力を3.5~5Wとすることができる。 Further, the phosphor used in the light emitting unit 7 is not limited to the composition described in the second embodiment. For example, the phosphor used in the light emitting unit 7 may be composed of only a yellow light emitting phosphor. In this case, the output of the main light source 27 can be 3 to 4 W, and the output of the sub light source 28 can be 0.3 to 0.4 W. When only the red light emitting phosphor is used, the output of the main light source 27 can be set to 3.5 to 5 W.
 すなわち、発光部7における蛍光体の組成の変更により、メイン光源27及びサブ光源28の出力は適宜変更できる。また、サブ光源28から出射される光を照明光として利用することにより、色温度の調整あるいは向上させることができればよく、照明光が白色光に限定されるものではない。 That is, the outputs of the main light source 27 and the sub light source 28 can be appropriately changed by changing the composition of the phosphor in the light emitting unit 7. Further, it is sufficient that the color temperature can be adjusted or improved by using the light emitted from the sub light source 28 as the illumination light, and the illumination light is not limited to white light.
 〔実施の形態5〕
 本発明の他の実施形態について図22~図28に基づいて説明すれば、以下のとおりである。ここでは、本発明の照明装置の一例として、自動車用のヘッドランプ(前照灯)60を例に挙げて説明する。ただし、本発明の照明装置は、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、その他の照明装置として実現されてもよい。その他の照明装置として、例えば、サーチライト、プロジェクター、家庭用照明器具を挙げることができる。
[Embodiment 5]
The following will describe another embodiment of the present invention with reference to FIGS. Here, as an example of the illumination device of the present invention, a headlamp (headlamp) 60 for an automobile will be described as an example. However, the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
 ヘッドランプ60は、走行用前照灯(ハイビーム)の配光特性基準を満たしていてもよいし、すれ違い用前照灯(ロービーム)の配光特性基準を満たしていてもよい。 The headlamp 60 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
 <ヘッドランプ60の構成>
 まず、図22に基づき、本発明の一実施形態であるヘッドランプ60について説明する。図22は、ヘッドランプ60の概要構成を示す片側断面図である。図22に示すように、ヘッドランプ60は、透光性基板1、発光部2、拡散部3、反射鏡4、固定部材56、励起光源ユニット(励起光源)6、ネジ78、レンズ82、導光部材9、支持部材61および支持部材駆動部62を備える。励起光源ユニット6、導光部材9および発光部2によって発光装置の基本構造が形成されている。また、支持部材61および支持部材駆動部62によって光量変化機構の基本構造が形成されている。
<Configuration of headlamp 60>
First, based on FIG. 22, the headlamp 60 which is one Embodiment of this invention is demonstrated. FIG. 22 is a half sectional view showing a schematic configuration of the headlamp 60. As shown in FIG. 22, the headlamp 60 includes a translucent substrate 1, a light emitting unit 2, a diffusing unit 3, a reflecting mirror 4, a fixing member 56, an excitation light source unit (excitation light source) 6, screws 78, a lens 82, a light guide. The optical member 9, the support member 61, and the support member drive part 62 are provided. The excitation light source unit 6, the light guide member 9, and the light emitting unit 2 form a basic structure of the light emitting device. Further, the support member 61 and the support member driving unit 62 form a basic structure of the light amount changing mechanism.
 (透光性基板1)
 透光性基板1は、平板状の部材であり、少なくとも励起光であるレーザ光の発振波長(ここでは440nm~480nm)に対して透光性を有している。透光性基板1は、平板状でなく、湾曲した部分を有してもよいが、透光性基板1と発光部2とを接着する場合、少なくとも発光部2が接着される部分は、接着の安定性の観点から平面(板状)であることが好ましい。
(Translucent substrate 1)
The translucent substrate 1 is a flat member and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) as excitation light. The translucent substrate 1 may have a curved portion instead of a flat plate shape. However, when the translucent substrate 1 and the light emitting unit 2 are bonded, at least the portion to which the light emitting unit 2 is bonded is bonded. From the viewpoint of stability, the surface is preferably flat (plate-like).
 また、透光性基板1は、縦10mm×横10mm×厚み0.5mmのAl(サファイア)基板である。なお、図22に示す透光性基板1の外径は、拡散部3の外径よりも大きいが、拡散部3の外径と同程度であっても良い。 The translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm × width of 10 mm × thickness of 0.5 mm. Note that the outer diameter of the translucent substrate 1 shown in FIG. 22 is larger than the outer diameter of the diffusing portion 3, but may be approximately the same as the outer diameter of the diffusing portion 3.
 透光性基板1のレーザ光が入射する側の表面に対向する表面には、発光部2が配置され、発光部2と熱的に(すなわち、熱エネルギーの授受が可能なように)接続されている。なお、本実施の形態では、透光性基板1と発光部2とは、接着剤を用いて接合(接着)されているものとして説明するが、透光性基板1と発光部2との接合方法は、接着に限られず、例えば、融着などであっても良い。接着剤としては、いわゆる有機系の接着剤や、ガラスペースト接着剤が好適であるが、これに限られない。 The light emitting unit 2 is disposed on the surface of the translucent substrate 1 that faces the surface on which the laser beam is incident, and is thermally connected to the light emitting unit 2 (that is, capable of transferring thermal energy). ing. In the present embodiment, the light-transmitting substrate 1 and the light-emitting portion 2 are described as being bonded (adhered) using an adhesive, but the light-transmitting substrate 1 and the light-emitting portion 2 are bonded. The method is not limited to adhesion, and may be, for example, fusion. As the adhesive, so-called organic adhesives and glass paste adhesives are suitable, but not limited thereto.
 透光性基板1は、以上のような構成、形状、および、発光部2との接続形態を有することにより、発光部2を基板表面に固定(保持)しつつ、発光部2で発生した熱を外部に放熱するので、発光部2の冷却効率を向上させることができる。 The translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that the heat generated in the light emitting unit 2 while fixing (holding) the light emitting unit 2 to the substrate surface. Since heat is radiated to the outside, the cooling efficiency of the light emitting unit 2 can be improved.
 また、透光性基板1の材質は、上述したサファイア(Al)の他、マグネシア(MgO)、窒化ガリウム(GaN)、スピネル(MgAl)が好ましい。これらの材質は、熱伝導率(例えば20W/mK以上)及び透光性が優れているためである。この点を考慮しないのであれば、これらの材質に限らず、例えばガラス(石英)などであっても良い。 Moreover, the material of the translucent substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above. This is because these materials have excellent thermal conductivity (for example, 20 W / mK or more) and translucency. If this point is not taken into consideration, the material is not limited to these materials, and may be glass (quartz), for example.
 また、図22に示す透光性基板1の厚さは、発光部2での発熱を効果的に放熱することを考慮すれば、30μm以上、5.0mm以下が好ましく、より好ましくは、0.2mm以上、5.0mm以下であることがより好ましい。なお、透光性基板1の厚さが、5.0mmを超えると、発光部2に照射されたレーザ光が、透光性基板1において吸収される割合が大きくなる一方で、放熱効果はさほど向上せず、また部材のコストも上昇してしまう。 The thickness of the translucent substrate 1 shown in FIG. 22 is preferably 30 μm or more and 5.0 mm or less, more preferably 0. More preferably, it is 2 mm or more and 5.0 mm or less. In addition, when the thickness of the translucent substrate 1 exceeds 5.0 mm, the ratio of the laser light irradiated to the light emitting unit 2 absorbed in the translucent substrate 1 is increased, but the heat dissipation effect is not so much. It does not improve, and the cost of the member also increases.
 (発光部2)
 発光部2は、半導体レーザ63から出射されたレーザ光を受けて蛍光を発するものである。
(Light emitting part 2)
The light emitting unit 2 emits fluorescence upon receiving laser light emitted from the semiconductor laser 63.
 本実施の形態では、上記蛍光の発光を実現する発光体としてIntematix社製のYAG:Ce蛍光体(NYAG4454)を用いているが、蛍光体の種類はこれに限定されない。YAG:Ce蛍光体とは、Ceで賦活したイットリウム(Y)-アルミニウム(Al)-ガーネット(Garnet)蛍光体である。このIntematix社製のYAG:Ce蛍光体は、外部量子効率が90%、発光ピーク波長(以下、単に「ピーク波長」という)は558nm(黄色)、色度点はx=0.444、y=0.536であり、430nmから490nmの励起光で良好に励起される。なお、YAG:Ce蛍光体は、一般に550nm付近(550nmよりも若干長波長側)に発光ピークが存在するブロードな発光スペクトルをもつ。 In this embodiment, a YAG: Ce phosphor (NYAG4454) manufactured by Intematix is used as a light emitter that realizes the light emission of the fluorescence, but the type of the phosphor is not limited to this. The YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -garnet phosphor activated with Ce. This Intematix YAG: Ce phosphor has an external quantum efficiency of 90%, an emission peak wavelength (hereinafter simply referred to as “peak wavelength”) of 558 nm (yellow), chromaticity points of x = 0.444, y = 0.536, which is well excited by excitation light from 430 nm to 490 nm. The YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
 発光部2は、YAG:Ce蛍光体を、封止材としての低融点の無機ガラス(屈折率n=1.760)の内部に分散させて製造される。YAG:Ce蛍光体と低融点の無機ガラス(低融点ガラス)との配合比は、例えば30:100程度である。これに限らず、発光部2でレーザ光を拡散させてそのレーザ光の色成分(例えば青色成分)を利用する場合には、上記の配合比は10:100程度が好ましい。また、発光部2は、蛍光体を押し固めたものであってもよい。 The light emitting part 2 is manufactured by dispersing YAG: Ce phosphor inside a low melting point inorganic glass (refractive index n = 1.760) as a sealing material. The compounding ratio of the YAG: Ce phosphor and the low melting point inorganic glass (low melting point glass) is, for example, about 30: 100. However, the present invention is not limited to this, and when the laser light is diffused by the light emitting section 2 and the color component (for example, blue component) of the laser light is used, the above blending ratio is preferably about 10: 100. In addition, the light emitting unit 2 may be one obtained by pressing a fluorescent material.
 封止材は、上記の無機ガラスに限定されず、いわゆる有機無機ハイブリッドガラスや、シリコーン樹脂等の樹脂材料であってもよい。ただし、耐熱性を考慮すれば、封止材はガラスからなることが好ましい。 The sealing material is not limited to the above inorganic glass, and may be a so-called organic-inorganic hybrid glass or a resin material such as a silicone resin. However, considering heat resistance, the sealing material is preferably made of glass.
 なお、透光性基板1と発光部2との間の界面の反射率REをできる限り低下させ、レーザ光の発光部2での利用効率を高めることを考慮すれば、透光性基板1と発光部2との屈折率差Δnは、0.35以下であることが好ましい。この場合、反射率REを1%以下にすることができる。また、屈折率差Δnを0.35以下とする場合、透光性基板1の屈折率を1.65以上、発光部2の屈折率を2.0以下とすることが好ましい。 In consideration of reducing the reflectance RE of the interface between the translucent substrate 1 and the light emitting unit 2 as much as possible and increasing the utilization efficiency of the laser light in the light emitting unit 2, the translucent substrate 1 and The refractive index difference Δn with respect to the light emitting unit 2 is preferably 0.35 or less. In this case, the reflectance RE can be 1% or less. Further, when the refractive index difference Δn is set to 0.35 or less, it is preferable to set the refractive index of the translucent substrate 1 to 1.65 or more and the refractive index of the light emitting unit 2 to 2.0 or less.
 また、一般に、照明光として用いられる白色光または擬似白色光は、等色の原理を満たす3つの色の混色、または、補色の関係を満たす2つの色の混色などで実現できる。この等色または補色の原理に基づき、例えば、ヘッドランプ60では、後述する半導体レーザ63から出射される青色のレーザ光と、YAG:Ce蛍光体(黄色発光蛍光体)との組合せ(補色の関係を満たす2つの色の混色)で擬似白色を実現している。換言すれば、半導体レーザ63は、青色領域の発振波長を有する光をレーザ光として出射し、発光部2は、黄色領域にピーク波長を有する蛍光を発する黄色発光蛍光体(第1蛍光体)を含む構成である。この場合、照明光の色温度を広範囲に変化させることができる。 In general, white light or pseudo white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching, or mixing two colors satisfying a complementary color relationship. Based on the principle of the same color or complementary color, for example, in the headlamp 60, a combination of blue laser light emitted from a semiconductor laser 63 described later and a YAG: Ce phosphor (yellow light emitting phosphor) (complementary color relationship). A pseudo white color is realized by mixing two colors satisfying In other words, the semiconductor laser 63 emits light having an oscillation wavelength in the blue region as laser light, and the light emitting unit 2 generates a yellow light emitting phosphor (first phosphor) that emits fluorescence having a peak wavelength in the yellow region. It is the composition which includes. In this case, the color temperature of the illumination light can be changed in a wide range.
 しかしながら、発光部2に含まれる蛍光体は、YAG:Ce蛍光体の1種類のみに限定されず、複数種類であっても良い。例えば、発光部2が後述する緑色発光蛍光体と赤色発光蛍光体との組合せを含んでいれば、青色のレーザ光との混色で白色光を実現できる。 However, the phosphor included in the light emitting unit 2 is not limited to one type of YAG: Ce phosphor, and may be a plurality of types. For example, if the light emitting unit 2 includes a combination of a green light emitting phosphor and a red light emitting phosphor, which will be described later, white light can be realized by mixing with blue laser light.
 ここで、黄色発光蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。緑色発光蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。赤色発光蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。 Here, the yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less. The green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
 黄色発光蛍光体の具体例としては、YAG:Ce蛍光体や、Eu2+がドープされたCaα-SiAlON:Eu蛍光体などが挙げられる。Caα-SiAlON:Eu蛍光体は、近紫外から青色の励起光によりピーク波長が約580nmの強い発光を示す。 Specific examples of the yellow light emitting phosphor include a YAG: Ce phosphor and a Caα-SiAlON: Eu phosphor doped with Eu 2+ . The Caα-SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
 緑色発光蛍光体の具体例としては、各種の窒化物系または酸窒化物系の蛍光体が挙げられる。特に、酸窒化物系の蛍光体は耐熱性に優れ、高い発光効率で安定した材料であるので、耐熱性に優れ、高い発光効率で安定した発光部2を実現できる。 Specific examples of the green light emitting phosphor include various nitride-based or oxynitride-based phosphors. In particular, since the oxynitride phosphor is excellent in heat resistance and stable with high light emission efficiency, the light emitting portion 2 with excellent heat resistance and stable with high light emission efficiency can be realized.
 例えば、緑色に発光する酸窒化物系蛍光体として、Eu2+がドープされたβ-SiAlON:Eu蛍光体、Ce3+がドープされたCaα-SiAlON:Ce蛍光体などが挙げられる。β-SiAlON:Eu蛍光体は、近紫外から青色(350nm以上460nm以下)の励起光によりピーク波長が約540nmの強い発光を示す。この蛍光体の発光スペクトル半値幅は約55nmである。また、Caα-SiAlON:Ce蛍光体は、近紫外から青色の励起光によりピーク波長が約510nmの強い発光を示す。 Examples of the oxynitride phosphor that emits green light include β-SiAlON: Eu phosphor doped with Eu 2+ and Caα-SiAlON: Ce phosphor doped with Ce 3+ . The β-SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm. Further, the Caα-SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
 上記のα-SiAlONおよびβ-SiAlON(サイアロン)は、いわゆるサイアロン蛍光体(酸窒化物系蛍光体)と通称されるものである。サイアロンとは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。サイアロン蛍光体は、窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。このサイアロン蛍光体にカルシウム(Ca)とユーロピウム(Eu)とを固溶させると、YAG:Ce蛍光体よりも長波長の黄色から橙色の範囲で発光する特性の良い蛍光体が得られる。 The above-mentioned α-SiAlON and β-SiAlON (sialon) are commonly called so-called sialon phosphors (oxynitride phosphors). Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. The sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ). When calcium (Ca) and europium (Eu) are dissolved in this sialon phosphor, a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor can be obtained.
 赤色発光蛍光体の具体例としては、各種の窒化物系の蛍光体が挙げられる。例えば、窒化物系の蛍光体としては、Eu2+がドープされたCaAlSiN:Eu蛍光体(CASN:Eu蛍光体)、Eu2+がドープされたSrCaAlSiN:Eu蛍光体(SCASN:Eu蛍光体)などが挙げられる。これらの窒化物系の蛍光体は、上述した酸窒化物蛍光体と組み合せることにより、演色性を高めることができる。 Specific examples of the red light-emitting phosphor include various nitride-based phosphors. For example, as a nitride-based phosphor, Eu 2+ doped CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor) Etc. These nitride-based phosphors can enhance color rendering properties by combining with the above-described oxynitride phosphors.
 例えば、CASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は650nmであり、その発光効率は73%である。また、SCASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は630nmであり、その発光効率は70%である。 For example, CASN: Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
 また、赤色に発光する窒化物系蛍光体の例としては、(Mg、Ca、Sr、Ba)AlSiN:Eu等のEu賦活窒化物蛍光体や(Mg、Ca、Sr、Ba)AlSiN:Ce等のCe賦活窒化物蛍光体などが挙げられる。 Examples of nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 : Examples include Ce-activated nitride phosphors such as Ce.
 換言すれば、発光部2は、演色性を高めるために、例えば黄色発光蛍光体とともに、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する赤色発光蛍光体(第2蛍光体)を含むことが好ましい。 In other words, the light emitting unit 2 includes, for example, a yellow light emitting phosphor and a red light emitting phosphor (second phosphor) that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less in order to improve color rendering. It is preferable to include.
 また、上記蛍光体の別の好適な例としては、III-V族化合物半導体のナノメータサイズの粒子を用いた半導体ナノ粒子蛍光体を用いることもできる。同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径を変更させることにより、量子サイズ効果によって発光色を変化させることができることが半導体ナノ粒子蛍光体の特徴の一つである。例えばInPでは、粒子サイズが3~4nm程度のときに赤色に発光する。ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した。 As another preferred example of the phosphor, a semiconductor nanoparticle phosphor using nanometer-size particles of a III-V compound semiconductor can also be used. One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
 また、この蛍光体は半導体ベースであるので蛍光寿命が短く、励起光のパワーを素早く蛍光として放射できるのでハイパワーの励起光に対して耐性が強いという特徴もある。これは、上記半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。発光寿命が短いため、励起光の吸収と蛍光の発光を素早く繰り返すことができる。 Also, since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
 その結果、強い励起光に対して高効率を保つことができ、蛍光体からの発熱が低減される。よって、光変換部材が熱により劣化(変色や変形)するのをより抑制することができる。これにより、光の出力が高い発光素子を光源として用いる場合に、発光装置の寿命が短くなるのをより抑制することができる。 As a result, high efficiency can be maintained against strong excitation light, and heat generation from the phosphor is reduced. Therefore, it is possible to further suppress the light conversion member from being deteriorated (discolored or deformed) by heat. Thereby, when using the light emitting element with a high light output as a light source, it can suppress more that the lifetime of a light-emitting device becomes short.
 また、発光部2は、1.5mm×4mm×0.5mmの直方体であり、レーザ光が照射される発光部2の受光面(断面)の面積は6mmである。なお、発光部2は、直方体でなく、円柱形状であってもよい。 Further, the light emitting unit 2 is a rectangular 1.5 mm × 4 mm × 0.5 mm, the area of the light receiving surface of the light-emitting portion 2 that laser light is irradiated (cross-section) is 6 mm 2. In addition, the light emission part 2 may not be a rectangular parallelepiped, but may be a cylindrical shape.
 (拡散部3)
 拡散部3は、発光部2を介すことなく外部に出射されるレーザ光を拡散・散乱するものである。例えば、拡散部3は、発光部2の周囲に隙間なく設けられ、発光部2と同じ厚みを有している。このため、励起光源ユニット(励起光源)6から出射された発光点の非常に小さなレーザ光を、発光点を拡大して外部に出射できるので、人体への影響を抑制する(例えばアイセーフ化)ことができる。
(Diffusion part 3)
The diffusing unit 3 diffuses and scatters laser light emitted outside without passing through the light emitting unit 2. For example, the diffusion unit 3 is provided around the light emitting unit 2 without a gap and has the same thickness as the light emitting unit 2. For this reason, a laser beam with a very small emission point emitted from the excitation light source unit (excitation light source) 6 can be emitted to the outside by expanding the emission point, thereby suppressing the influence on the human body (for example, making it eye-safe). Can do.
 拡散部3の大きさは、発光部2に照射されないレーザ光の全てが照射される大きさであればよい。また、拡散部3は、発光部2に照射されなかったレーザ光を十分に拡散させ、発光点のサイズを拡大させることができれば、発光部の周囲に同じ厚みで設けられる必要はない。例えば、拡散部3は、発光部2より大きい断面を有し、発光部2のレーザ光入射側と対向する表面に積層されていてもよい。また、拡散部3は、低融点ガラス中に、アエロジルやAlの微粉末(10nm~5μm程度)が重量比10~30%程度混合されたものである。拡散部3は、発光部2と同様、透光性基板1に接着(あるいは融着)されている。 The size of the diffusing unit 3 may be any size as long as all of the laser light not irradiated on the light emitting unit 2 is irradiated. Moreover, the diffusion part 3 does not need to be provided with the same thickness around the light emitting part as long as the laser light that has not been irradiated onto the light emitting part 2 can be sufficiently diffused to increase the size of the light emitting point. For example, the diffusing unit 3 may have a larger cross section than the light emitting unit 2 and may be laminated on the surface of the light emitting unit 2 facing the laser light incident side. The diffusion part 3 is obtained by mixing low-melting glass with fine powder of aerosil or Al 2 O 3 (about 10 nm to 5 μm) in a weight ratio of about 10 to 30%. Similar to the light emitting unit 2, the diffusion unit 3 is bonded (or fused) to the translucent substrate 1.
 なお、例えば、発光部2がレーザ光を拡散する機能を有している場合や、レンズ82がレーザ光を遮断するフィルタ機能を有している場合には、必ずしも拡散部3を備える必要はない。例えば、発光部2が拡散機能を有する場合、発光部2に含まれる封止材と蛍光体との屈折率との差を利用することで実現できる。そのために、レーザ光を十分に拡散できる堆積(特に厚み)を有するように発光部2を設計する。また、発光部2に拡散粒子(酸化ジルコミウム、ダイヤモンドなど)を含ませることにより、発光部2の拡散機能を実現してもよい。 For example, when the light emitting unit 2 has a function of diffusing laser light, or when the lens 82 has a filter function of blocking laser light, the diffusing unit 3 is not necessarily provided. . For example, when the light emitting unit 2 has a diffusing function, it can be realized by utilizing the difference between the refractive index of the sealing material included in the light emitting unit 2 and the phosphor. Therefore, the light emitting unit 2 is designed so as to have a deposition (particularly thickness) that can sufficiently diffuse the laser beam. Further, the diffusion function of the light emitting unit 2 may be realized by including diffusing particles (such as zirconium oxide or diamond) in the light emitting unit 2.
 (反射鏡4)
 反射鏡4は、発光部2から出射した光を反射することにより、所定の立体角内を進む光線束を形成するものである。すなわち、反射鏡4は、発光部2からの光を反射することにより、ヘッドランプ60の前方へ進む光線束を形成する。この反射鏡4は、例えば、金属薄膜がその表面に形成された曲面形状(カップ形状)の部材である。
(Reflector 4)
The reflecting mirror 4 reflects the light emitted from the light emitting unit 2 to form a light beam that travels within a predetermined solid angle. That is, the reflecting mirror 4 reflects the light from the light emitting unit 2 to form a light bundle that travels forward of the headlamp 60. The reflecting mirror 4 is, for example, a curved surface (cup shape) member having a metal thin film formed on the surface thereof.
 また、反射鏡4は、半球面ミラーに限定されず、楕円面ミラーやパラボラミラーまたはそれらの部分曲面を有するミラーあってもよい。すなわち、反射鏡4は、回転軸を中心として図形(楕円、円、放物線)を回転させることによって形成される曲面の少なくとも一部をその反射面に含んでいるものであればよい。また、反射鏡4における開口部の形状は円形に限定されない。ヘッドランプ60およびその周辺のデザインに応じて、適宜開口部の形状を決定することができる。 Further, the reflecting mirror 4 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 4 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface. Further, the shape of the opening in the reflecting mirror 4 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 60 and its surroundings.
 (固定部材56)
 固定部材56は、導光部材9が挿通される挿通口が形成された板状の部材であり、導光部材9の出射端部の中心と発光部2の受光面の中心とがほぼ一致するように、ネジ78によって反射鏡4を固定している。また、固定部材56には、その挿通口を囲むように励起光源ユニット6が接合されている。固定部材56の材質は特に問わないが、鉄、銅などの金属を例示することができる。
(Fixing member 56)
The fixing member 56 is a plate-like member having an insertion port through which the light guide member 9 is inserted, and the center of the light emitting end portion of the light guide member 9 and the center of the light receiving surface of the light emitting portion 2 substantially coincide with each other. As described above, the reflecting mirror 4 is fixed by a screw 78. The excitation light source unit 6 is joined to the fixing member 56 so as to surround the insertion port. Although the material of the fixing member 56 is not particularly limited, metals such as iron and copper can be exemplified.
 また、固定部材56には、支持部材61を収納できる収納部51が形成されている。この収納部51の存在により、支持部材駆動部62の駆動に従った支持部材61のレーザ光の光軸方向への移動が可能となる。そして、この移動により、発光部2(透過性部材1)におけるレーザ光の照射面積(レーザ光照射領域79(図24参照))を変化させることができる。発光部2の移動とレーザ光照射領域79との関係の詳細については、図24及び図25を用いて後述する。 Further, the fixing member 56 is formed with a storage portion 51 in which the support member 61 can be stored. Due to the presence of the storage portion 51, the support member 61 can be moved in the optical axis direction of the laser beam in accordance with the drive of the support member drive portion 62. By this movement, the laser light irradiation area (laser light irradiation region 79 (see FIG. 24)) in the light emitting section 2 (transparent member 1) can be changed. Details of the relationship between the movement of the light emitting unit 2 and the laser light irradiation region 79 will be described later with reference to FIGS. 24 and 25.
 (励起光源ユニット6)
 励起光源ユニット6は、例えば3つの半導体レーザ(励起光源)63を収納した筐体である。半導体レーザ63の固定方法および配線方法については、従来の固定方法および配線方法を利用すれば良いので、ここでは説明を省略する。
(Excitation light source unit 6)
The excitation light source unit 6 is a housing that houses, for example, three semiconductor lasers (excitation light sources) 63. Regarding the fixing method and wiring method of the semiconductor laser 63, the conventional fixing method and wiring method may be used, and the description thereof is omitted here.
 半導体レーザ63は、励起光を出射する励起光源として機能する発光素子である。本実施の形態では、励起光源として半導体レーザが利用される場合について説明するが、例えばLEDであってもよい。半導体レーザである場合には、高出力かつコヒーレント性の高いレーザ光を発光部2に照射できるので発光部2を小さくでき、高輝度なヘッドランプ60を実現できる。図22には、半導体レーザ63が3個図示されているが、半導体レーザ63を複数設ける必要は必ずしもなく、1つのみ設けてもよい。しかし、高出力の励起光を得るためには、複数の半導体レーザ63を用いる方が容易である。 The semiconductor laser 63 is a light emitting element that functions as an excitation light source that emits excitation light. In this embodiment, a case where a semiconductor laser is used as an excitation light source will be described. However, for example, an LED may be used. In the case of a semiconductor laser, the light emitting unit 2 can be irradiated with laser light having high output and high coherency, so that the light emitting unit 2 can be made small and a high-intensity headlamp 60 can be realized. Although three semiconductor lasers 63 are illustrated in FIG. 22, it is not always necessary to provide a plurality of semiconductor lasers 63, and only one semiconductor laser 63 may be provided. However, it is easier to use a plurality of semiconductor lasers 63 in order to obtain high output pump light.
 半導体レーザ63は、例えば、1チップに1つの発光点を有するものであり、450nm(青色)のレーザ光を発振し、出力1.6W、動作電圧4.7V、電流1.2Aのものであり、直径9mmの金属パッケージ(ステム)に封入されているものである。したがって、励起光源ユニット6全体としての出力は、4.8W程度である。 The semiconductor laser 63 has, for example, one light emitting point per chip, oscillates 450 nm (blue) laser light, has an output of 1.6 W, an operating voltage of 4.7 V, and a current of 1.2 A. , Enclosed in a metal package (stem) having a diameter of 9 mm. Therefore, the output as the whole excitation light source unit 6 is about 4.8W.
 ただし、金属パッケージは直径9mmのものに限定されず、例えば、直径3.8mmや直径5.6mm、あるいはそれ以外であってもよく、熱抵抗がより小さいパッケージを選択することが好ましい。また、半導体レーザ63は、1チップに複数の発光点を有するものであってもよい。また、半導体レーザ63の発振波長は、450nmに限られず、440nm以上480nm以下の青色領域の波長であれば良い。 However, the metal package is not limited to one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 5.6 mm, or other, and it is preferable to select a package having a smaller thermal resistance. The semiconductor laser 63 may have a plurality of light emitting points on one chip. The oscillation wavelength of the semiconductor laser 63 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm.
 (レンズ82)
 次に、レンズ82は、反射鏡4の開口部に設けられており、ヘッドランプ60を密封している。発光部2から出射された蛍光、拡散部3で散乱された散乱光、もしくは、反射鏡4によって反射された蛍光または散乱光は、レンズ82を通ってヘッドランプ60の前方へ出射される。
(Lens 82)
Next, the lens 82 is provided in the opening of the reflecting mirror 4 and seals the headlamp 60. The fluorescence emitted from the light emitting unit 2, the scattered light scattered by the diffusion unit 3, or the fluorescence or scattered light reflected by the reflecting mirror 4 is emitted through the lens 82 to the front of the headlamp 60.
 レンズ82は、凸レンズであっても、凹レンズであってもよい。また、レンズ82は、必ずしもレンズ機能を有する必要はなく、発光部2から出射された蛍光、拡散部3で散乱された散乱光、もしくは、反射鏡4で反射した蛍光または散乱光を透過する透光性を少なくとも有していれば良い。 The lens 82 may be a convex lens or a concave lens. In addition, the lens 82 does not necessarily have a lens function, and transmits the fluorescence emitted from the light emitting unit 2, the scattered light scattered by the diffusion unit 3, or the fluorescence reflected by the reflecting mirror 4 or the scattered light. What is necessary is just to have at least light property.
 (導光部材9)
 導光部材9は、半導体レーザ63が発振したレーザ光を発光部2へと導くものであり、半導体レーザ63から出射されたレーザ光を入射する入射端部(半導体レーザ63側)と、入射端部から入射したレーザ光を出射する出射端部(発光部2側)を有している。
(Light guide member 9)
The light guide member 9 guides the laser beam oscillated by the semiconductor laser 63 to the light emitting unit 2, and includes an incident end (semiconductor laser 63 side) on which the laser beam emitted from the semiconductor laser 63 is incident, and an incident end. A light emitting end (on the light emitting unit 2 side) that emits laser light incident from the light source.
 また、導光部材9は、入射端部に入射したレーザ光を反射する光反射側面で囲まれた囲繞構造を有しており、導光部材9の出射端部(発光部2側)の断面積は、入射端部の断面積よりも小さくなっている。 In addition, the light guide member 9 has a surrounding structure surrounded by a light reflection side surface that reflects the laser light incident on the incident end portion, and the light emitting member 9 has a light emitting end portion (on the light emitting portion 2 side) cut off. The area is smaller than the cross-sectional area of the incident end.
 具体的には、導光部材9は、全体が四角錐台形状の筒形をなしており、出射端部の断面(開口)は、1mm×3mmの矩形であり、入射端部の断面(開口)は、15mm×15mmの矩形である。導光部材9の形状は四角錐台形状に限られず、四角錐台形状以外の多角錐台形状、円錐台形状、楕円錐台形状など様々な形状を採用することができる。また、入射端部から出射端部までの長さは、25mmである。 Specifically, the light guide member 9 has a rectangular pyramid-shaped cylindrical shape as a whole, and a cross section (opening) of the exit end is a rectangle of 1 mm × 3 mm, and a cross section of the incident end (opening). ) Is a rectangle of 15 mm × 15 mm. The shape of the light guide member 9 is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed. The length from the incident end to the exit end is 25 mm.
 この囲繞構造により、導光部材9は、入射端部に入射したレーザ光を、入射端部の断面積よりも小さい断面積を有する出射端部に集光した上で発光部2に出射できる。このため、複数の半導体レーザ63を用いて高出力化を図ったとしても、発光部2を小さく設計することができる。すなわち、高出力・高輝度なヘッドランプ60を実現できる。 With this surrounding structure, the light guide member 9 can emit the laser light incident on the incident end portion to the light emitting portion 2 after condensing the laser light on the emission end portion having a smaller cross-sectional area than the incident end portion. For this reason, even if it aims at high output using the some semiconductor laser 63, the light emission part 2 can be designed small. That is, it is possible to realize a headlamp 60 with high output and high brightness.
 また、導光部材9は、BK(ボロシリケート・クラウン)7、石英ガラス、アクリル樹脂その他の透明素材で構成される。 The light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
 なお、導光部材9の代わりに光ファイバーや光学レンズ等を用いて、レーザ光を発光部2に集光してもよい。 The laser light may be condensed on the light emitting unit 2 using an optical fiber or an optical lens instead of the light guide member 9.
 (支持部材61)
 支持部材61は、発光部2を含む透光性基板1を支持するものであり、支持部材駆動部62の駆動に連動して透光性基板1をレーザ光の光軸方向に移動可能なものである。支持部材61が移動することにより、発光部2の位置を変化させることができる。その結果、導光部材9から出射されたレーザ光の光路幅が導光部材9からの距離に比例して大きくなる(あるいは小さくなる)場合に、レーザ光照射領域79(図24参照)の大きさを変化させることができる。
(Support member 61)
The support member 61 supports the translucent substrate 1 including the light emitting unit 2, and can move the translucent substrate 1 in the optical axis direction of the laser light in conjunction with the drive of the support member driving unit 62. It is. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of the laser light emitted from the light guide member 9 increases (or decreases) in proportion to the distance from the light guide member 9, the size of the laser light irradiation region 79 (see FIG. 24) is increased. It can be changed.
 また、支持部材61は、支持部材駆動部62のギアと接触するように設けられており、その接触する表面にはギアと噛み合うように溝が設けられている。これにより、支持部材61は、支持部材駆動部62の駆動に従った移動が可能となる。なお、ギアに連動して動作するのであれば、支持部材61の表面がどのような形状になっていてもよく、また特に加工されていなくてもよい。 Further, the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62. Note that the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed.
 支持部材61の材質は特に問わないが、支持部材61がその移動により反射鏡4の内部に挿入されることを考慮すれば、透光性基板1と同様、透光性を有する材質であることが好ましい。また、支持部材61の形状は、平板状であっても棒状であってもよい。さらに、支持部材61が透光性基板1と一体に形成されていてもよい。 The material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into the reflecting mirror 4 due to its movement, the material of the support member 61 is a material having translucency, similar to the translucent substrate 1. Is preferred. Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
 なお、本実施の形態では、レーザ光の光軸方向に支持部材61が移動するものとして説明するが、レーザ光照射領域79の大きさを自在に変化させることが可能であれば、必ずしも光軸方向に移動する必要はない。 In the present embodiment, the support member 61 is described as moving in the optical axis direction of the laser beam. However, if the size of the laser beam irradiation region 79 can be freely changed, the optical axis is not necessarily required. There is no need to move in the direction.
 例えば、レーザ光の光軸から所定の角度を有した方向に移動可能なように、支持部材61及び固定部材56の収納部51が設けられてもよい。また、レーザ光の光軸方向と垂直な方向に支持部材61を設け、その方向に支持部材61が移動できるように、支持部材61を収納可能な収納部を反射鏡4に設けてもよい。この場合、レーザ光の光軸方向と垂直な方向に発光部2を移動させることができ、レーザ光照射領域79のうちの発光部2に照射される照射領域を変化させることができる(図25(a)参照)。 For example, the storage portion 51 of the support member 61 and the fixing member 56 may be provided so as to be movable in a direction having a predetermined angle from the optical axis of the laser beam. In addition, the support member 61 may be provided in a direction perpendicular to the optical axis direction of the laser light, and a storage portion in which the support member 61 can be stored may be provided in the reflecting mirror 4 so that the support member 61 can move in that direction. In this case, the light emitting unit 2 can be moved in a direction perpendicular to the optical axis direction of the laser light, and the irradiation region irradiated on the light emitting unit 2 in the laser light irradiation region 79 can be changed (FIG. 25). (See (a)).
 (支持部材駆動部62)
 支持部材駆動部62は、支持部材61をレーザ光の光軸方向へ移動させるためのものであり、例えばステッピングモータ及びギアからなり、支持部材61毎に設けられている。ギアは、その表面が支持部材61に接触するように、また、その回転軸が支持部材61の移動方向と垂直な方向となるように設けられている。ギアは、支持部材61に対して1つであっても、複数の組合せからなっていてもよい。また、ステッピングモータは、その回転をギアに伝播できるように設けられていればよい。
(Supporting member driving unit 62)
The support member driving unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61. The gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61. One gear may be provided for the support member 61 or a plurality of combinations may be included. Moreover, the stepping motor should just be provided so that the rotation can be propagated to a gear.
 支持部材駆動部62では、可動制御部641(図23参照)から可動指示を受けると、ステッピングモータが駆動し、ギアが回転する。ギアと支持部材61とが接触して設けられているため、ギアの回転力が支持部材61に伝播され、支持部材61をレーザ光の光軸方向に移動させる。 In the support member driving unit 62, when a movement instruction is received from the movement control unit 641 (see FIG. 23), the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
 なお、発光部2をレーザ光の光軸方向と垂直な方向に移動させる場合には、例えば支持部材駆動部62のギアを、レーザ光の光軸と垂直な透光性基板1の表面に接触させてもよい。この場合、その表面にはギアと噛み合うように溝が設けられ、また、支持部材61を設ける必要がない。 When the light emitting unit 2 is moved in a direction perpendicular to the optical axis direction of the laser beam, for example, the gear of the support member driving unit 62 is brought into contact with the surface of the translucent substrate 1 perpendicular to the optical axis of the laser beam. You may let them. In this case, a groove is provided on the surface so as to mesh with the gear, and it is not necessary to provide the support member 61.
 このように、支持部材駆動部62は、支持部材61を介して発光部2と導光部材9との距離を変化させることにより、レーザ光の発光部2に対する照射光量を変化させ、また発光部2に照射されず直接照明光となるレーザ光の光量を変化させることができる。つまり、照明光に含まれる蛍光の光量とレーザ光の光量とのバランスを変化させることができるので、照明光の色温度を変化させることができる。 In this way, the support member drive unit 62 changes the amount of laser light applied to the light emitting unit 2 by changing the distance between the light emitting unit 2 and the light guide member 9 via the support member 61, and also the light emitting unit. It is possible to change the light amount of the laser light that is not irradiated onto 2 but directly becomes illumination light. That is, since the balance between the amount of fluorescent light and the amount of laser light contained in the illumination light can be changed, the color temperature of the illumination light can be changed.
 換言すれば、支持部材駆動部62は、半導体レーザ63から出射されるレーザ光のうちの発光部2によって蛍光に変換されないレーザ光の割合(以降、変換割合と称する)を変化させる。この変換割合を変化させ、蛍光に変換されないレーザ光の光量を変化させることにより、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることができる。蛍光の割合と照明光の色温度の変化との関係については、図24~図26を用いて後述する。 In other words, the support member driving unit 62 changes the ratio of laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the semiconductor laser 63 (hereinafter referred to as a conversion ratio). By changing the conversion ratio and changing the amount of laser light that is not converted to fluorescence, the ratio of fluorescence to illumination light changes, so that the color temperature of the illumination light can be changed. The relationship between the ratio of fluorescence and the change in color temperature of illumination light will be described later with reference to FIGS.
 <ヘッドランプ60の更なる構成>
 次に、ヘッドランプ60の更なる構成について、図23を用いて説明する。図23は、ヘッドランプ60の概略構成の一例を示すブロック図である。ヘッドランプ60は、図22に示す構成部材の他、入力部613(入力手段)、制御部614および記憶部615を備えている。支持部材駆動部62及び半導体レーザ63については上述したので、その説明を省略する。なお、本実施の形態では、これらの部材がヘッドランプ60の構成部材であるものとして説明するが、これに限らず、例えばヘッドランプ60が取り付けられる車両等が備える入力部、制御部及び記憶部により実現されてもよい。
<Further structure of the headlamp 60>
Next, a further configuration of the headlamp 60 will be described with reference to FIG. FIG. 23 is a block diagram illustrating an example of a schematic configuration of the headlamp 60. The headlamp 60 includes an input unit 613 (input means), a control unit 614, and a storage unit 615 in addition to the components shown in FIG. Since the support member driving unit 62 and the semiconductor laser 63 have been described above, description thereof will be omitted. In the present embodiment, these members are described as components of the headlamp 60. However, the present invention is not limited to this. For example, an input unit, a control unit, and a storage unit included in a vehicle or the like to which the headlamp 60 is attached. May be realized.
 (入力部613)
 入力部613は、例えば支持部材駆動部62の駆動指示、半導体レーザ63の出力変更指示などのユーザ操作を受け付けるものであり、タッチパッドなどにより実現される。
(Input unit 613)
The input unit 613 receives user operations such as a drive instruction of the support member drive unit 62 and an output change instruction of the semiconductor laser 63, and is realized by a touch pad or the like.
 例えば、入力部613がユーザ操作として駆動指示を受け付けた場合、可動制御部641は、その受け付けたユーザ操作に従って支持部材駆動部62を動作させる。この場合、ユーザは、照明光の光度を自身の目で確認しながら、入力部613を介して上記の駆動指示を与えることができるので、ユーザ操作の都度、支持部材61を駆動させることができる。それゆえ、ユーザ嗜好にあわせて照明光の色温度を変化させることができる。 For example, when the input unit 613 receives a driving instruction as a user operation, the movable control unit 641 operates the support member driving unit 62 according to the received user operation. In this case, the user can give the above-described driving instruction via the input unit 613 while confirming the intensity of the illumination light with his / her eyes, so that the support member 61 can be driven each time the user performs an operation. . Therefore, the color temperature of the illumination light can be changed according to the user preference.
 (制御部614)
 制御部614は、主として、可動制御部641及び出力制御部642を備える。制御部614は、例えば制御プログラムを実行することにより、ヘッドランプ60を構成する部材を制御するものである。制御部614は、記憶部615に格納されているプログラムを、例えばRAM(Random Access Memory)等で構成される一次記憶部(不図示)に読み出して実行することにより、支持部材駆動部62の駆動制御、半導体レーザ63の出力制御等の各種処理を行う。
(Control unit 614)
The control unit 614 mainly includes a movable control unit 641 and an output control unit 642. The control unit 614 controls members constituting the headlamp 60, for example, by executing a control program. The control unit 614 reads the program stored in the storage unit 615 into a primary storage unit (not shown) configured by, for example, a RAM (Random Access Memory) and executes the program, thereby driving the support member driving unit 62. Various processes such as control and output control of the semiconductor laser 63 are performed.
 可動制御部641は、入力部613から受信した駆動指示に従って、支持部材駆動部62の駆動制御を行うものであり、例えば、駆動指示を受け付けるたびに支持部材駆動部62のステッピングモータに所定の駆動電圧を印加する。 The movable control unit 641 performs drive control of the support member drive unit 62 in accordance with the drive instruction received from the input unit 613. For example, every time a drive instruction is received, the movable control unit 641 performs predetermined drive on the stepping motor of the support member drive unit 62. Apply voltage.
 出力制御部642は、半導体レーザ63の出力制御を行うものであり、例えば製造時に設定された駆動電圧を半導体レーザ63に印加する。あるいは、出力制御部642は、入力部613から受信した出力変更指示を受け付けるたびに半導体レーザ63に所定の駆動電圧を印加する。 The output control unit 642 controls the output of the semiconductor laser 63, and applies, for example, a drive voltage set during manufacture to the semiconductor laser 63. Alternatively, the output control unit 642 applies a predetermined drive voltage to the semiconductor laser 63 every time an output change instruction received from the input unit 613 is received.
 (記憶部615)
 記憶部615は、制御部614が実行する(1)各部の制御プログラム、(2)OSプログラム、(3)アプリケーションプログラム、および、(4)これらプログラムを実行するときに読み出す各種データを記録するものである。制御部614は、例えばROM(Read Only Memory)フラッシュメモリなどの不揮発性の記憶装置によって構成されるものである。なお、上述した一次記憶部は、RAMなどの揮発性の記憶装置によって構成されているが、本実施形態では、記憶部615が一次記憶部の機能も備えているものとして説明する場合もある。記憶部615は、例えば支持部材駆動部62または半導体レーザ63への駆動電圧値等を格納している。
(Storage unit 615)
The storage unit 615 records (1) a control program for each unit, (2) an OS program, (3) an application program, and (4) various data to be read when the program is executed by the control unit 614. It is. The control unit 614 is configured by a nonvolatile storage device such as a ROM (Read Only Memory) flash memory. The primary storage unit described above is configured by a volatile storage device such as a RAM. However, in the present embodiment, the storage unit 615 may be described as having the function of the primary storage unit. The storage unit 615 stores, for example, a driving voltage value for the support member driving unit 62 or the semiconductor laser 63.
 <安全性について>
 小さな発光点サイズを有する光源から高いエネルギーを有する光が出射され、当該光が人間の眼に入射した場合、網膜上では、その小さな発光点サイズにまで光源像が絞られるため、結像箇所におけるエネルギー密度が極めて高くなってしまうことがある。例えば、レーザ光源(半導体レーザ)から出射されるレーザ光は、スポットサイズが10μm角よりも小さい場合がある。そのような光源から出射されるレーザ光が、直接眼に入射、あるいはレンズや反射鏡といった光学部材を介したとしても小さな発光点が直接見える形で眼に入射すると、網膜上の結像箇所が損傷してしまうことがある。
<About safety>
When light having high energy is emitted from a light source having a small light emitting spot size and the light enters the human eye, the light source image is narrowed down to the small light emitting spot size on the retina. The energy density can be very high. For example, laser light emitted from a laser light source (semiconductor laser) may have a spot size smaller than 10 μm square. When laser light emitted from such a light source is directly incident on the eye or is incident on the eye in such a way that a small light emitting point can be seen directly even through an optical member such as a lens or a reflecting mirror, the imaged portion on the retina is It can be damaged.
 典型的な高出力の半導体レーザにおける発光点サイズは、例えば1μm×10μmである。すなわち、当該半導体レーザの出射面積は10μm=1.0×10-5mmである。このため、半導体レーザが出射する光が、例えば発光点サイズが1mmの光源と同じエネルギーを有する光であったとしても、半導体レーザの場合の網膜上での結像箇所のエネルギー密度は、発光点サイズが1mmの光源の場合よりも10倍も高くなってしまう。 The emission point size in a typical high-power semiconductor laser is, for example, 1 μm × 10 μm. That is, the emission area of the semiconductor laser is 10 μm 2 = 1.0 × 10 −5 mm 2 . For this reason, even if the light emitted from the semiconductor laser is, for example, light having the same energy as that of a light source having a light emitting point size of 1 mm 2 , the energy density of the image formation location on the retina in the case of the semiconductor laser is light emission. point size is increased even 105 times higher than the case of the 1 mm 2 light sources.
 これを回避するためには、発光点サイズをある程度大きさ(有限のサイズ)(具体的には例えば1mm×1mm以上)に拡大させる必要がある。発光点サイズを拡大させることにより、網膜上での結像サイズを拡大させることができるようになるため、同じエネルギーの光が眼に入射した場合であっても、網膜上のエネルギー密度を低減させることが可能となる。 In order to avoid this, it is necessary to enlarge the emission point size to some extent (finite size) (specifically, for example, 1 mm × 1 mm or more). By enlarging the emission point size, the image size on the retina can be enlarged, so even if light of the same energy is incident on the eye, the energy density on the retina is reduced. It becomes possible.
 発光点サイズを拡大させるためには、光源そのものの発光点を視認できないようにする必要がある。このため、本実施の形態では、上述のように発光部2に拡散機能を持たせ、半導体レーザ63の発光点サイズを拡大させることにより、人体に対する安全性、特に人間の眼に対する安全性を確保している(アイセーフ化)。 In order to increase the light emission point size, it is necessary to make the light emission point of the light source itself invisible. For this reason, in the present embodiment, as described above, the light emitting unit 2 is provided with a diffusion function, and the light emitting point size of the semiconductor laser 63 is increased, thereby ensuring safety for the human body, particularly for human eyes. (I make it safe).
 なお、発光点サイズの拡大については、レーザ光源に限らず、LED光源においても考慮することができる。但し、レーザ光は、LED光源から出射される光よりも単色性、すなわち波長が揃っているため、波長の違いによる網膜上での結像のボケ(いわゆる色収差)がなく、当該光よりも危険である。このため、レーザ光源から出射された光を照明光として利用する照明装置においては発光点サイズの拡大について、しっかりと考慮することが好ましい。 It should be noted that the enlargement of the light emission point size can be considered not only for the laser light source but also for the LED light source. However, since the laser light is more monochromatic than the light emitted from the LED light source, that is, has a uniform wavelength, there is no blurring of the image on the retina (so-called chromatic aberration) due to the difference in wavelength, and it is more dangerous than the light. It is. For this reason, in an illuminating device that uses light emitted from a laser light source as illumination light, it is preferable to firmly consider the expansion of the emission point size.
 <発光部2の移動制御>
 (レーザ光照射領域79の変化について)
 次に、レーザ光照射領域79の大きさが変化する様子、あるいは発光部2の受光面に含まれるレーザ光照射領域79の大きさ(形状)が変化する様子について、図24及び図25を用いて説明する。ここでは、その様子をわかりやすくするために、発光部2の形状がそれぞれ、図24では円柱形状、図25(a)では直方体(受光面が正方形)、図25(b)では直方体(受光面が長方形)であるものとして説明する。また、図24及び図25では、拡散部3の図示を省略している。
<Movement control of light emitting unit 2>
(Regarding changes in the laser light irradiation region 79)
Next, FIG. 24 and FIG. 25 are used to describe how the size of the laser light irradiation region 79 changes or how the size (shape) of the laser light irradiation region 79 included in the light receiving surface of the light emitting unit 2 changes. I will explain. Here, in order to make the state easy to understand, the shape of the light emitting section 2 is a cylindrical shape in FIG. 24, a rectangular parallelepiped (light receiving surface is square) in FIG. 25A, and a rectangular parallelepiped (light receiving surface in FIG. 25B). Is assumed to be a rectangle). 24 and 25, the diffusion unit 3 is not shown.
 図24は、発光部2と導光部材9との位置関係と、そのときのレーザ光照射領域79の大きさを示す図である。同図の(a)はレーザ光照射領域79の大きさが発光部2の受光面の大きさと略一致する場合を示す。また、同図の(b)は(a)の場合よりも発光部2と導光部材9との位置が離れた場合を示し、(c)は(a)の場合よりも発光部2と導光部材9との位置が近くなった場合を示す。 FIG. 24 is a diagram showing the positional relationship between the light emitting unit 2 and the light guide member 9 and the size of the laser light irradiation region 79 at that time. (A) of the figure shows a case where the size of the laser beam irradiation region 79 substantially matches the size of the light receiving surface of the light emitting unit 2. Further, (b) in the figure shows a case where the light emitting unit 2 and the light guide member 9 are separated from each other as compared with the case (a), and (c) shows a case where the light emitting unit 2 and the light emitting unit 2 are guided more than the case (a). The case where the position with the optical member 9 becomes close is shown.
 まず、図24(a)に示すように、発光部2と導光部材9との距離がdであるとき、発光部2の受光面の大きさとレーザ光照射領域79との大きさとが略一致している。この場合、製造時に想定している照明光の色温度が実現される。 First, as shown in FIG. 24A, when the distance between the light emitting unit 2 and the light guide member 9 is d, the size of the light receiving surface of the light emitting unit 2 and the size of the laser light irradiation region 79 are substantially equal. I'm doing it. In this case, the color temperature of the illumination light assumed at the time of manufacture is realized.
 なお、本実施の形態では、発光部2から出射される蛍光の照明光としての利用効率を高めることを考慮し、上記の距離がdであるときに発光部2が反射鏡4の焦点位置に設けられている。しかし、その利用効率を考慮しないのであれば、発光部2が反射鏡4の焦点位置に必ずしも設けられる必要はない。 In the present embodiment, considering that the use efficiency of the fluorescent light emitted from the light emitting unit 2 as illumination light is increased, the light emitting unit 2 is positioned at the focal position of the reflecting mirror 4 when the distance is d. Is provided. However, if the utilization efficiency is not taken into consideration, the light emitting unit 2 is not necessarily provided at the focal position of the reflecting mirror 4.
 次に、図24(b)では、発光部2と導光部材9との距離がd1(>d)となったときを示している。この場合、可動制御部641が支持部材駆動部62を駆動することにより、支持部材駆動部62は、支持部材61を介して、発光部2と導光部材9との距離がd1となるまで移動させている。このとき、発光部2の受光面の大きさよりもレーザ光照射領域79の大きさの方が大きくなる。 Next, FIG. 24B shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d1 (> d). In this case, when the movable control unit 641 drives the support member driving unit 62, the support member driving unit 62 moves through the support member 61 until the distance between the light emitting unit 2 and the light guide member 9 becomes d1. I am letting. At this time, the size of the laser light irradiation region 79 is larger than the size of the light receiving surface of the light emitting unit 2.
 一方、図24(c)では、発光部2と導光部材9との距離がd2(<d)となったときを示している。この場合、図24(b)と同様、可動制御部641が支持部材駆動部62を駆動することにより、発光部2と導光部材9との距離がd2となるまで移動させている。このとき、発光部2の受光面の大きさよりもレーザ光照射領域79の大きさの方が小さくなる。 On the other hand, FIG. 24C shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d2 (<d). In this case, as in FIG. 24B, the movable control unit 641 drives the support member driving unit 62 to move the light emitting unit 2 and the light guide member 9 until the distance is d2. At this time, the size of the laser light irradiation region 79 is smaller than the size of the light receiving surface of the light emitting unit 2.
 一般に、透光性基板1と導光部材9との間に凸レンズ等の集光部材が存在しない、あるいは導光部材9の出射端部がレーザ光を集光できる形状となっていない場合には、導光部材9から出射されたレーザ光の光路幅は、導光部材9からの距離に比例して大きくなる。すなわち、発光部2が導光部材9から離れるほどレーザ光照射領域79が大きくなる。この場合のレーザ光の形状は、先太りの円錐形状(正確には楕円錐形状)となっている。なお、レーザ光の形状は真円の円錐形状であってもよく、当該円錐形状を実現する目的であれば、透光性基板1と導光部材9との間に集光部材を設けてもよい。 In general, when a condensing member such as a convex lens does not exist between the translucent substrate 1 and the light guide member 9, or when the exit end of the light guide member 9 is not in a shape capable of condensing laser light. The optical path width of the laser light emitted from the light guide member 9 increases in proportion to the distance from the light guide member 9. That is, the laser light irradiation region 79 becomes larger as the light emitting unit 2 is separated from the light guide member 9. The shape of the laser beam in this case is a tapered cone shape (more precisely, an elliptical cone shape). The shape of the laser beam may be a perfect circular cone shape. For the purpose of realizing the cone shape, a condensing member may be provided between the translucent substrate 1 and the light guide member 9. Good.
 支持部材駆動部62は、上記の距離d1をdよりも大きくなる範囲で変化させる場合には、図24(b)に示す発光部2の外部に形成されるレーザ光照射領域79の大きさを変化させることができる。つまり、発光部2から漏れ出るレーザ光を照明光の一部として利用できるので、照明光が蛍光のみからなる場合には困難であった照明光の色温度変化を実現できる。 When the support member driving unit 62 changes the distance d1 within a range larger than d, the size of the laser light irradiation region 79 formed outside the light emitting unit 2 shown in FIG. Can be changed. That is, since the laser light leaking from the light emitting unit 2 can be used as a part of the illumination light, it is possible to realize a change in the color temperature of the illumination light, which is difficult when the illumination light is composed only of fluorescence.
 換言すれば、この場合には、支持部材駆動部62は、半導体レーザ63から出射されるレーザ光のうちの発光部2に照射されないレーザ光の割合を変化させる。この割合を変化させることにより、上記の変換割合を変化させることができるので、照明光の色温度を変化させることができる。発光部2に照射されないレーザ光が増えた場合には、照明光(レーザ光+蛍光)の色温度はレーザ光(青色領域)側にシフトする。また、この場合には、発光部2に照射されるレーザ光が減るので、蛍光の量も減ることになり、照明光の色温度はよりレーザ光側へシフトする。 In other words, in this case, the support member driving unit 62 changes the ratio of the laser light that is not irradiated to the light emitting unit 2 in the laser light emitted from the semiconductor laser 63. By changing this ratio, the conversion ratio can be changed, so that the color temperature of the illumination light can be changed. When the laser light that is not irradiated to the light emitting unit 2 increases, the color temperature of the illumination light (laser light + fluorescence) shifts to the laser light (blue region) side. Further, in this case, the amount of laser light applied to the light emitting unit 2 is reduced, so that the amount of fluorescence is also reduced, and the color temperature of the illumination light is further shifted to the laser light side.
 一方、支持部材駆動部62は、上記の距離d2をdよりも小さくなる範囲で変化させた場合には、図24(c)に示す発光部2の受光面に形成されるレーザ光照射領域79の大きさを変化させることができる。発光部2の受光面においてレーザ光照射領域79が小さくなった場合(レーザ光の密度が高くなった場合)、発光部2に含まれる蛍光体がレーザ光の光量に比べて不足するか、またはその部分の温度が上昇することにより、蛍光への変換効率が下がる。その結果、レーザ光の透過量が多くなり、照明光の色温度を高めることができる。 On the other hand, the support member driving unit 62 changes the laser beam irradiation region 79 formed on the light receiving surface of the light emitting unit 2 shown in FIG. The size of can be changed. When the laser light irradiation region 79 is small on the light receiving surface of the light emitting unit 2 (when the density of the laser light is high), the phosphor contained in the light emitting unit 2 is insufficient compared to the amount of laser light, or As the temperature of the portion increases, the conversion efficiency to fluorescence decreases. As a result, the amount of transmitted laser light increases, and the color temperature of illumination light can be increased.
 なお、発光部2に含まれる蛍光体の量がレーザ光の光量に比べて圧倒的に多く、かつ、レーザ光が発光部2をある程度透過できる構成であって、発光部2におけるレーザ光の透過量がある一定量を超えるという状況が生じた場合には、レーザ光照射領域79が小さくなると蛍光への変換量よりも発光部2を透過するレーザ光の光量が少なくなる。したがって、この場合には、レーザ光照射領域79の大きさが小さくなると、照明光の色温度は低くなる。 Note that the amount of the phosphor contained in the light emitting unit 2 is overwhelmingly larger than the amount of laser light, and the laser light can be transmitted through the light emitting unit 2 to some extent. When a situation occurs in which the amount exceeds a certain amount, when the laser light irradiation region 79 becomes smaller, the amount of laser light transmitted through the light emitting unit 2 becomes smaller than the amount converted to fluorescence. Therefore, in this case, when the size of the laser light irradiation region 79 is reduced, the color temperature of the illumination light is lowered.
 いずれにしろ、発光部2の受光面におけるレーザ光照射領域79の大きさを変化させた場合であっても、照明光が蛍光のみからなる場合には困難であった照明光の色温度変化を実現できる。 In any case, even when the size of the laser light irradiation region 79 on the light receiving surface of the light emitting unit 2 is changed, the change in the color temperature of the illumination light, which is difficult when the illumination light is composed only of fluorescence, is changed. realizable.
 換言すれば、支持部材駆動部62は、半導体レーザ63から出射されるレーザ光の発光部2におけるレーザ光照射領域79の大きさ(照射面積)を変化させる。これにより、上記の変換割合を変化させることができるので、照明光の色温度を変化させることができる。レーザ光照射領域79の大きさの変化により蛍光の量が減った場合には、相対的にレーザ光の量が増えるので、照明光の色温度はレーザ光側にシフトする。 In other words, the support member driving unit 62 changes the size (irradiation area) of the laser light irradiation region 79 in the light emitting unit 2 of the laser light emitted from the semiconductor laser 63. Thereby, since said conversion ratio can be changed, the color temperature of illumination light can be changed. When the amount of fluorescence decreases due to a change in the size of the laser light irradiation region 79, the amount of laser light relatively increases, so that the color temperature of the illumination light shifts to the laser light side.
 以上のように、レーザ光の光路幅が導光部材9(半導体レーザ63)からの距離に応じて変化する場合には、上記の変換割合は、半導体レーザ63と発光部2の距離に応じて変化する。このため、支持部材駆動部62が、支持部材61あるいは透光性基板1を介して発光部2を移動させることにより、上記の変換割合を変化させることができるので、照明光の色温度を変化させることができる。 As described above, when the optical path width of the laser light changes according to the distance from the light guide member 9 (semiconductor laser 63), the above conversion ratio depends on the distance between the semiconductor laser 63 and the light emitting unit 2. Change. For this reason, since the support member drive unit 62 can change the conversion ratio by moving the light emitting unit 2 via the support member 61 or the translucent substrate 1, the color temperature of the illumination light is changed. Can be made.
 つまり、本実施の形態のヘッドランプ60が出射する照明光は、図24(b)の場合(レーザ光照射領域79の大きさが発光部2の受光面よりも大きい場合)には、発光部2から出射された蛍光と、半導体レーザ63から出射されたレーザ光(蛍光に変換されない励起光)とを含むものといえる。なお、図24(a)及び(c)の場合(レーザ光照射領域79の大きさが発光部2の受光面と同じ、あるいは小さい場合)であっても、レーザ光が発光部2をある程度透過できる構成の場合には、照明光が蛍光とレーザ光とを含むものといえる。 That is, the illumination light emitted from the headlamp 60 of the present embodiment is the light emitting unit in the case of FIG. 24B (when the size of the laser light irradiation region 79 is larger than the light receiving surface of the light emitting unit 2). 2 and the laser light emitted from the semiconductor laser 63 (excitation light that is not converted into fluorescence). 24A and 24C (when the size of the laser light irradiation region 79 is the same as or smaller than the light receiving surface of the light emitting unit 2), the laser light is transmitted through the light emitting unit 2 to some extent. In the case of a possible configuration, it can be said that the illumination light includes fluorescence and laser light.
 なお、上記では、支持部材駆動部62が発光部2を移動させる構成であったが、これに限らず、例えば導光部材9を移動させて上記の変換割合を変化させる構成であってもよい。 In the above description, the support member driving unit 62 is configured to move the light emitting unit 2. However, the present invention is not limited thereto, and for example, a configuration in which the conversion ratio is changed by moving the light guide member 9 may be used. .
 また、上記では、導光部材9から出射されたレーザ光の光路幅が、導光部材9からの距離に比例して大きくなる場合について説明したが、当該光路幅が当該距離に比例して小さくなる場合であっても、発光部2または導光部材9を移動させることにより上記の変換割合を変化させることができる。 In the above description, the optical path width of the laser light emitted from the light guide member 9 is increased in proportion to the distance from the light guide member 9, but the optical path width is decreased in proportion to the distance. Even in this case, the conversion ratio can be changed by moving the light emitting unit 2 or the light guide member 9.
 (変形例)
 図24では、発光部2がレーザ光の光軸方向に移動した場合について説明したが、図25に示すように、発光部2が光軸方向に移動しなくても、発光部2の受光面に形成されるレーザ光照射領域79の大きさを変化させることができる。すなわち、図25に示す発光部2の移動(回転)によっても、上記の変換効率を変化させることができる。図25は、発光部2の受光面に含まれるレーザ光照射領域79の大きさ(形状)が変化する様子を示す図である。
(Modification)
24, the case where the light emitting unit 2 has moved in the optical axis direction of the laser beam has been described. However, as shown in FIG. 25, even if the light emitting unit 2 does not move in the optical axis direction, the light receiving surface of the light emitting unit 2 The size of the laser light irradiation region 79 formed on the substrate can be changed. That is, the conversion efficiency can be changed also by the movement (rotation) of the light emitting unit 2 shown in FIG. FIG. 25 is a diagram illustrating how the size (shape) of the laser light irradiation region 79 included in the light receiving surface of the light emitting unit 2 changes.
 図25(a)は発光部2がレーザ光の光軸方向に垂直な方向に移動する場合を示す。この場合、発光部2に全てのレーザ光が照射されていた状態から、発光部2の移動により、発光部2の外部にレーザ光の一部が漏れ出ている。この漏れ出たレーザ光が照明光として利用されることにより、照明光の色温度を高めることができる。また、その移動量を変化させることにより、発光部2の外部に漏れ出るレーザ光の光量を変化させることができるので、照明光の色温度を変化させることができる。 FIG. 25A shows a case where the light emitting unit 2 moves in a direction perpendicular to the optical axis direction of the laser light. In this case, a part of the laser light leaks to the outside of the light emitting unit 2 due to the movement of the light emitting unit 2 from a state in which the light emitting unit 2 has been irradiated with all the laser light. By using the leaked laser light as illumination light, the color temperature of the illumination light can be increased. Further, by changing the amount of movement, the amount of laser light leaking out of the light emitting section 2 can be changed, so that the color temperature of the illumination light can be changed.
 図25(b)は発光部2が回転する場合を示す。この場合も、発光部2が回転するにつれて、発光部2の外部に漏れ出るレーザ光の光量を変化させることができるので、照明光の色温度を変化させることができる。この場合には、例えば細い棒状の支持部材61が発光部2の中心軸に接合されており、その支持部材61を回転させるように支持部材駆動部62のギアが設けられている。 FIG. 25B shows a case where the light emitting unit 2 rotates. Also in this case, as the light emitting unit 2 rotates, the amount of laser light leaking out of the light emitting unit 2 can be changed, so that the color temperature of the illumination light can be changed. In this case, for example, a thin rod-like support member 61 is joined to the central axis of the light emitting unit 2, and a gear of the support member driving unit 62 is provided so as to rotate the support member 61.
 (色温度の変化について)
 次に、半導体レーザ63から出射されるレーザ光及び発光部2に含まれる蛍光体と、そのときの照明光の色温度との関係について、図26を用いて説明する。図26は、車両用前照灯に要求される白色の色度範囲を示すグラフ(色度図)である。同図に示すように車両用前照灯に要求される白色の色度範囲が法律により規定されている。当該色度範囲は、6つの点35を頂点とする多角形の内部である。また、曲線33は、色温度(K:ケルビン)を示すものである。
(About changes in color temperature)
Next, the relationship between the laser light emitted from the semiconductor laser 63 and the phosphor included in the light emitting unit 2 and the color temperature of the illumination light at that time will be described with reference to FIG. FIG. 26 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp. As shown in the figure, the white chromaticity range required for vehicle headlamps is regulated by law. The chromaticity range is inside a polygon having six points 35 as vertices. A curve 33 indicates the color temperature (K: Kelvin).
 図示のように、半導体レーザ63の発振波長が440nm(色度点41:青色領域)、蛍光体のピーク波長が570nm(色度点42:黄色領域)の場合、支持部材駆動部62が上記の変換割合を変化させることにより、直線39上の色度範囲において照明光の色温度を変化させることができる。この場合には、約4500Kから8500Kまで広範囲にわたって色温度を変化させることができる。 As shown in the figure, when the oscillation wavelength of the semiconductor laser 63 is 440 nm (chromaticity point 41: blue region) and the phosphor has a peak wavelength of 570 nm (chromaticity point 42: yellow region), the support member driving unit 62 is By changing the conversion ratio, the color temperature of the illumination light can be changed in the chromaticity range on the straight line 39. In this case, the color temperature can be changed over a wide range from about 4500K to 8500K.
 また、半導体レーザ63の発振波長が475nm(色度点44:青色領域)、蛍光体のピーク波長が580nm(色度点45(x=約0.5、y=約0.49):黄色領域)の場合、支持部材駆動部62が上記の変換割合を変化させることにより、直線43上の色度範囲において照明光を変化させることができる。この場合には、約3000Kから20000Kという非常に広範囲にわたって色温度を変化させることができる。 The oscillation wavelength of the semiconductor laser 63 is 475 nm (chromaticity point 44: blue region), and the peak wavelength of the phosphor is 580 nm (chromaticity point 45 (x = about 0.5, y = about 0.49): yellow region. In the case of), the support member driving unit 62 can change the conversion ratio, thereby changing the illumination light in the chromaticity range on the straight line 43. In this case, the color temperature can be changed over a very wide range of about 3000K to 20000K.
 なお、半導体レーザ63の基本構造については、実施の形態1で図3(c)および(d)を用いて説明したLDチップ11の基本構造と同様であるため、その説明を割愛する。また、発光部2の発光原理についても、実施の形態1で説明した発光部2の発光原理と同様であるため、その説明を割愛する。 The basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted. Further, the light emission principle of the light emitting unit 2 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
 <ヘッドランプ60の変形例1>
 図27は、ヘッドランプ60の変形例を示す図である。このヘッドランプ60は、透光性基板1と導光部材9との間に、半導体レーザ63から出射されたレーザ光を屈曲して、発光部2に出射する凸レンズ161(光学部材)を備えており、凸レンズ161の外周の一部に支持部材61が設けられている。すなわち、このヘッドランプ60では、支持部材駆動部62が、発光部2の代わりに凸レンズ161を移動させることにより、照明光の色温度変化を実現している。
<Variation 1 of the headlamp 60>
FIG. 27 is a view showing a modification of the headlamp 60. The headlamp 60 includes a convex lens 161 (optical member) that bends the laser light emitted from the semiconductor laser 63 and emits the light to the light emitting unit 2 between the translucent substrate 1 and the light guide member 9. The support member 61 is provided on a part of the outer periphery of the convex lens 161. That is, in the headlamp 60, the support member driving unit 62 moves the convex lens 161 instead of the light emitting unit 2, thereby realizing a change in the color temperature of the illumination light.
 具体的には、凸レンズ161を備えることにより、図27に示すように、凸レンズ161透過後のレーザ光の光路幅を、凸レンズ161入射前のレーザ光の光路幅とは異なり、かつ、凸レンズ161からの距離に応じて変化するように出射できる。つまり、レーザ光は、凸レンズ161を透過することにより、凸レンズ161を基点としてその光路幅が新たに変化していくこととなる。このため、上記の変換割合が凸レンズ161と発光部2との距離に応じて変化するので、支持部材駆動部62がその距離を変更することにより、結果として照明光の色温度を変化させることができる。 Specifically, by providing the convex lens 161, the optical path width of the laser light after passing through the convex lens 161 is different from the optical path width of the laser light before entering the convex lens 161, as shown in FIG. It can be emitted so as to change according to the distance. That is, the laser light is transmitted through the convex lens 161, and the optical path width is newly changed with the convex lens 161 as a base point. For this reason, since said conversion ratio changes according to the distance of the convex lens 161 and the light emission part 2, when the support member drive part 62 changes the distance, the color temperature of illumination light can be changed as a result. it can.
 導光部材9から出射されるレーザ光の光路に対して焦点距離が十分に長いレンズの場合、図27のようにレーザ光の光路幅を変更できる。このため、凸レンズ161としては、焦点距離が十分に長い両凸レンズ、平凸レンズなどが使用できる。その他、導光部材9から出射されるレーザ光が、平行光で、かつ細いレーザ光である場合には、凸レンズ161の代わりとして、両凹レンズ、平凹レンズなどの凹レンズも使用可能である。つまり、凸レンズ161は、入射するレーザ光の出射角度を変更可能なレンズであればよく、その機能を有していれば非球面レンズであってもよい。 In the case of a lens having a sufficiently long focal length with respect to the optical path of the laser light emitted from the light guide member 9, the optical path width of the laser light can be changed as shown in FIG. For this reason, as the convex lens 161, a biconvex lens, a plano-convex lens or the like having a sufficiently long focal length can be used. In addition, when the laser light emitted from the light guide member 9 is parallel and thin laser light, a concave lens such as a biconcave lens or a plano-concave lens can be used instead of the convex lens 161. That is, the convex lens 161 may be any lens that can change the emission angle of the incident laser light, and may be an aspherical lens as long as it has the function.
 なお、凸レンズ161には、レーザ光の反射を防止する光学膜(反射膜)がコーティングされていることが好ましい。また、上述の機能を有するレンズであれば、凸レンズ161の形状および材質は特に限定されないが、440~480nmの透過率が高いことが好ましい。 The convex lens 161 is preferably coated with an optical film (reflection film) that prevents reflection of laser light. In addition, the shape and material of the convex lens 161 are not particularly limited as long as the lens has the above function, but it is preferable that the transmittance of 440 to 480 nm is high.
 <ヘッドランプ60の変形例2>
 図28は、ヘッドランプ60の別の変形例を示す図である。上記では、レーザ光の光軸が発光部2の中心を通る直線lと一致しており、かつ、レーザ光の光路幅が導光部材9からの距離に比例して大きくなっている場合について説明した。この変形例では、発光部2に照射されるレーザ光の光路幅が一定(平行光)である場合に、支持部材駆動部62(不図示)が、励起光源ユニット6(半導体レーザ63)および導光部材9を例えば発光部2を中心として回転移動させて、発光部2に対するレーザ光の入射角度を変化させている。また、図28のヘッドランプ60は、レンズ25を備えている。
<Modification 2 of the headlamp 60>
FIG. 28 is a view showing another modification of the headlamp 60. The case where the optical axis of the laser light coincides with the straight line l passing through the center of the light emitting unit 2 and the optical path width of the laser light is increased in proportion to the distance from the light guide member 9 is described above. did. In this modification, when the optical path width of the laser light applied to the light emitting unit 2 is constant (parallel light), the support member driving unit 62 (not shown) is connected to the excitation light source unit 6 (semiconductor laser 63) and the light guide. For example, the optical member 9 is rotated about the light emitting unit 2 to change the incident angle of the laser light with respect to the light emitting unit 2. The headlamp 60 in FIG. 28 includes a lens 25.
 (レンズ25)
 レンズ25は、導光部材9から出射されるレーザ光を平行光として出射するレンズが用いられる。その機能を有するレンズであれば、レンズ25の形状および材質は特に限定されないが、450nm近傍の透過率が高く、かつ耐熱性のよい材料であることが好ましい。
(Lens 25)
The lens 25 is a lens that emits laser light emitted from the light guide member 9 as parallel light. If it is a lens which has the function, the shape and material of the lens 25 will not be specifically limited, However, It is preferable that it is a material with the high transmittance | permeability of 450 nm vicinity, and favorable heat resistance.
 (レーザ光照射領域79の変化について)
 図28(a)は、導光部材9から出射されたレーザ光の発光部2の受光面に対する入射角度が90度である(レーザ光の光軸と直線lとが一致する)場合のレーザ光照射領域79の大きさを示している。一方、図28(b)は、導光部材9から出射されたレーザ光の発光部2の受光面に対する入射角度が60度である(レーザ光の光軸と直線lとが一致しない)場合のレーザ光照射領域79の大きさを示している。励起光源ユニット6および導光部材9が図28(a)に示す位置から図28(b)に示す位置に移動した場合、導光部材9から出射されるレーザ光の光束には変化がないが、その入射角度の変化により、レーザ光照射領域79は大きくなっている。
(Regarding changes in the laser light irradiation region 79)
FIG. 28A shows the laser beam when the incident angle of the laser beam emitted from the light guide member 9 with respect to the light receiving surface of the light emitting section 2 is 90 degrees (the optical axis of the laser beam coincides with the straight line l). The size of the irradiation area 79 is shown. On the other hand, FIG. 28B shows the case where the incident angle of the laser light emitted from the light guide member 9 with respect to the light receiving surface of the light emitting portion 2 is 60 degrees (the optical axis of the laser light does not coincide with the straight line l). The size of the laser beam irradiation region 79 is shown. When the excitation light source unit 6 and the light guide member 9 are moved from the position shown in FIG. 28A to the position shown in FIG. 28B, the luminous flux of the laser light emitted from the light guide member 9 is not changed. The laser beam irradiation region 79 is enlarged due to the change in the incident angle.
 換言すれば、支持部材駆動部62は、発光部2に入射されるレーザ光の入射角度を変化させることにより、導光部材9から出射されるレーザ光の総量に対する発光部2に照射されないレーザ光の割合を変えることができる。すなわち、導光部材9から出射されたレーザ光の光路幅が一定(平行光)である場合であっても、上記の入射角度を変化させることにより、照明光の色温度を変化させることができる。 In other words, the support member driving unit 62 changes the incident angle of the laser light incident on the light emitting unit 2 to change the laser light not irradiated on the light emitting unit 2 with respect to the total amount of laser light emitted from the light guide member 9. The ratio of can be changed. That is, even when the optical path width of the laser light emitted from the light guide member 9 is constant (parallel light), the color temperature of the illumination light can be changed by changing the incident angle. .
 図28では、レーザ光照射領域79が発光部2の受光面よりも大きい場合について説明したが、レーザ光照射領域79のすべてが受光面に含まれる場合であっても、入射角度を変化させることにより、照明光の色温度を変化させることができる。また、図28では平行光の場合について説明したが、上述のように、レンズ25を設けず、レーザ光の光路幅が導光部材9からの距離に比例して大きく(あるいは小さく)なる場合であっても、図28の場合と同様の効果が得られる。 In FIG. 28, the case where the laser light irradiation region 79 is larger than the light receiving surface of the light emitting unit 2 has been described. However, even when the laser light irradiation region 79 is entirely included in the light receiving surface, the incident angle is changed. Thus, the color temperature of the illumination light can be changed. 28, the case of parallel light has been described. However, as described above, the lens 25 is not provided, and the optical path width of the laser light increases (or decreases) in proportion to the distance from the light guide member 9. Even if it exists, the effect similar to the case of FIG. 28 is acquired.
 <ヘッドランプ60の効果>
 以上のように、ヘッドランプ60は、半導体レーザ63から出射されるレーザ光のうちの発光部2によって蛍光に変換されないレーザ光の割合を変化させる支持部材駆動部62を備える。これにより、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることができる。
<Effect of headlamp 60>
As described above, the headlamp 60 includes the support member driving unit 62 that changes the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 in the laser light emitted from the semiconductor laser 63. Thereby, since the ratio of the fluorescence with respect to illumination light changes, the color temperature of illumination light can be changed.
 特に、本実施の形態では、レーザ光を照明光として利用するヘッドランプ60の構成の一例を示すものである。この場合、レーザ光の総光量(全光束)が一定という条件下において、蛍光に変換されないレーザ光の光量が変化すれば蛍光の量が変化するので、蛍光に変換されなかったレーザ光それ自身の照明光に対する影響が変化する。 In particular, in the present embodiment, an example of the configuration of the headlamp 60 that uses laser light as illumination light is shown. In this case, under the condition that the total amount of light (total luminous flux) of the laser light is constant, if the amount of laser light that is not converted to fluorescence changes, the amount of fluorescence changes, so the laser light that has not been converted to fluorescence itself The effect on the illumination light changes.
 具体的には、本実施の形態では、図24~図26を用いて説明したように、上記条件下において、支持部材駆動部62がレーザ光照射領域79の大きさ、発光部2の受光面に対するレーザ光照射領域79の割合を変化させることにより、蛍光に変換されないレーザ光の光量が変化させている。そして、例えば、図24(b)の場合、及び、図24(c)の場合でレーザ光の光量に対する蛍光体不足あるいはレーザ光照射による発光部2の温度上昇により当該割合が多くなる。一方、図24(c)の場合でレーザ光が発光部2をある程度透過できる構成の場合にはレーザ光の光量が小さくなり上記割合が小さくなる。このように、上記のレーザ光照射領域79の大きさ(割合)が変化することにより、蛍光に変換されなかったレーザ光それ自身の照明光に対する影響が変化する。 Specifically, in the present embodiment, as described with reference to FIGS. 24 to 26, under the above conditions, the support member driving unit 62 has the size of the laser light irradiation region 79 and the light receiving surface of the light emitting unit 2. By changing the ratio of the laser beam irradiation region 79 to the laser beam, the amount of laser beam that is not converted into fluorescence is changed. Then, for example, in the case of FIG. 24B and FIG. 24C, the ratio increases due to phosphor shortage relative to the amount of laser light or temperature rise of the light emitting unit 2 due to laser light irradiation. On the other hand, in the case of FIG. 24C, when the laser beam can be transmitted through the light emitting unit 2 to some extent, the light amount of the laser beam is reduced and the above ratio is reduced. As described above, when the size (ratio) of the laser light irradiation region 79 is changed, the influence of the laser light itself that has not been converted into fluorescence on the illumination light is changed.
 その結果、ヘッドランプ60は、照明光に対する蛍光の割合(最終的に照明光として利用される蛍光の量)を変化させるので、照明光の色温度を変化させることができる。 As a result, the headlamp 60 changes the ratio of the fluorescence to the illumination light (the amount of fluorescence finally used as the illumination light), so that the color temperature of the illumination light can be changed.
 〔実施の形態6〕
 本発明の他の実施形態について図29に基づいて説明すれば、以下のとおりである。図29は、ヘッドランプ70(照明装置、前照灯)の概要構成を示す図である。なお、実施の形態5と同様の部材に関しては、同じ符号を付し、その説明を省略する。
[Embodiment 6]
The following will describe another embodiment of the present invention with reference to FIG. FIG. 29 is a diagram showing a schematic configuration of the headlamp 70 (illumination device, headlamp). In addition, about the member similar to Embodiment 5, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 本実施の形態のヘッドランプ70は、上述のヘッドランプ60とは異なり、半導体レーザ63と発光ダイオード64(第2光源)とを備えている。また、ヘッドランプ70は、半導体レーザ63から出射された励起光を発光部2へ導く導光部513を備えるとともに、発光ダイオード64からの青色光を反射部材26へ導く導光部514を備えている。 Unlike the above-described headlamp 60, the headlamp 70 according to the present embodiment includes a semiconductor laser 63 and a light emitting diode 64 (second light source). The headlamp 70 includes a light guide 513 that guides the excitation light emitted from the semiconductor laser 63 to the light emitting unit 2, and a light guide 514 that guides the blue light from the light emitting diode 64 to the reflection member 26. Yes.
 (発光ダイオード64)
 発光ダイオード64は、半導体レーザ63が出射するレーザ光とは異なる光(第2の光)を出射するものである。この異なる光とは、例えば発光ダイオード64から出射されるインコヒーレントな光を指す。発光ダイオード64から出射される光は、半導体レーザ63の発振波長と同様の波長を有している。すなわち、発光ダイオード64から出射される光は、青色光である。
(Light emitting diode 64)
The light emitting diode 64 emits light (second light) different from the laser light emitted from the semiconductor laser 63. The different light refers to incoherent light emitted from the light emitting diode 64, for example. The light emitted from the light emitting diode 64 has the same wavelength as the oscillation wavelength of the semiconductor laser 63. That is, the light emitted from the light emitting diode 64 is blue light.
 (導光部513・514)
 導光部513・514は、円錐台状の導光部材であり、半導体レーザ63および発光ダイオード64と光学的に結合しており、導光部材9と同様の機能を有している。なお、導光部513・514は、角錐台状であってもよく、その形状は限定されない。
(Light guide part 513/514)
The light guides 513 and 514 are truncated cone-shaped light guide members, which are optically coupled to the semiconductor laser 63 and the light emitting diode 64 and have the same functions as the light guide member 9. The light guides 513 and 514 may have a truncated pyramid shape, and the shape is not limited.
 (反射鏡4・支持部材61・支持部材駆動部62)
 また、導光部513をレーザ光の光軸方向に移動させるために、導光部513には支持部材61が接合されている。このため、支持部材駆動部62が支持部材61を移動させることにより、導光部513を移動させることができる。ただし、本実施の形態では、発光部2から漏れ出るレーザ光を利用する必要はないので、原則としてレーザ光照射領域79のすべてが発光部2の受光面内に収まるように設計されている。
(Reflecting mirror 4, support member 61, support member drive unit 62)
Further, a support member 61 is joined to the light guide 513 in order to move the light guide 513 in the optical axis direction of the laser light. For this reason, the light guide part 513 can be moved by the support member drive part 62 moving the support member 61. However, in the present embodiment, it is not necessary to use the laser light leaking from the light emitting unit 2, so that in principle, the entire laser light irradiation region 79 is designed to be within the light receiving surface of the light emitting unit 2.
 また、支持部材61の移動を可能にすべく、反射鏡4には収納部46が設けられている。収納部46は、収納部51と同様の機能を有する。 In addition, the reflecting mirror 4 is provided with a storage portion 46 so that the support member 61 can be moved. The storage unit 46 has the same function as the storage unit 51.
 (発光部2・反射部材26)
 反射部材26は、発光ダイオード64から出射された光を反射鏡4に反射させるものである。反射部材26の形状および材質は、その反射機能を有しているものであればよい。また、発光部2及び反射部材26は、発光部2から出射される蛍光及び発光ダイオード64から出射された光の照明光としての利用効率を高めるために、反射鏡4の焦点位置に設けることが好ましい。
(Light Emitting Unit 2 / Reflecting Member 26)
The reflecting member 26 reflects the light emitted from the light emitting diode 64 to the reflecting mirror 4. The shape and material of the reflection member 26 may be any as long as it has the reflection function. Further, the light emitting unit 2 and the reflecting member 26 are provided at the focal position of the reflecting mirror 4 in order to increase the use efficiency of the fluorescence emitted from the light emitting unit 2 and the light emitted from the light emitting diode 64 as illumination light. preferable.
 なお、反射部材26の代わりに、拡散部3を設けて、発光ダイオード64から出射された光を拡散させるようにしてもよい。また、反射部材26を設けず、当該光を照明光として直接する構成であってもよい。 In addition, instead of the reflecting member 26, the diffusing unit 3 may be provided to diffuse the light emitted from the light emitting diode 64. Moreover, the structure which makes the said light directly as illumination light, without providing the reflection member 26 may be sufficient.
 (ヘッドランプ70の効果)
 ヘッドランプ70は、半導体レーザ63とは異なる光源である発光ダイオード64を備えることにより、発光ダイオード64から出射された光を照明光の一部として利用できる。この場合、支持部材駆動部62が上記の変換割合を変化させ、蛍光の量を変化させることにより、照明光に対する当該蛍光の割合(最終的に照明光として利用される蛍光の量)を変化させることができる。これにより、照明光の色温度を変化させることができる。すなわち、ヘッドランプ70では、半導体レーザ63から出射されるレーザ光を利用せずに、照明光の色温度変化を実現することができる。
(Effect of headlamp 70)
The headlamp 70 includes a light emitting diode 64 that is a light source different from the semiconductor laser 63, so that the light emitted from the light emitting diode 64 can be used as part of the illumination light. In this case, the support member driving unit 62 changes the conversion ratio and changes the amount of fluorescence, thereby changing the ratio of the fluorescence to the illumination light (the amount of fluorescence finally used as the illumination light). be able to. Thereby, the color temperature of illumination light can be changed. That is, in the headlamp 70, the color temperature change of the illumination light can be realized without using the laser light emitted from the semiconductor laser 63.
 〔実施の形態7〕
 本発明の実施の一形態について図30に基づいて説明すれば、以下のとおりである。図30は、ヘッドランプ80(照明装置、前照灯)の概要構成を示す図である。なお、実施の形態5及び6と同様の部材に関しては、同じ符号を付し、その説明を省略する。本実施の形態のヘッドランプ80は、上述のヘッドランプ70とは異なり、半導体レーザ63a・63b(第1励起光源、第2励起光源)及び発光部24a・24b(第1発光部、第2発光部)を備えている。
[Embodiment 7]
The following will describe an embodiment of the present invention with reference to FIG. FIG. 30 is a diagram illustrating a schematic configuration of a headlamp 80 (illumination device, headlamp). In addition, about the member similar to Embodiment 5 and 6, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The headlamp 80 according to the present embodiment is different from the above-described headlamp 70 in that the semiconductor lasers 63a and 63b (first excitation light source and second excitation light source) and the light emission units 24a and 24b (first light emission unit and second light emission). Part).
 (半導体レーザ63a・63b)
 半導体レーザ63a・63bは、半導体レーザ63と同様の機能を有するが、それぞれの発振波長は異なる。例えば、半導体レーザ63aの発振波長は、主に黄色発光蛍光体を効率よく励起させることを可能とするために、半導体レーザ63と同じ発振波長(450nm以上480nm以下の波長)となっている。一方、半導体レーザ63bの発振波長は、主に緑色発光蛍光体を効率よく励起させることを可能とするために、405nm近傍の発振波長となっている。換言すれば、半導体レーザ63bは、半導体レーザ63aから出射されるレーザ光(第1励起光)とは異なる発振波長を有する第2レーザ光(第2励起光)を出射するものである。
( Semiconductor lasers 63a and 63b)
The semiconductor lasers 63a and 63b have the same function as the semiconductor laser 63, but their oscillation wavelengths are different. For example, the oscillation wavelength of the semiconductor laser 63a is the same as that of the semiconductor laser 63 (wavelength of 450 nm or more and 480 nm or less) in order to mainly excite the yellow light emitting phosphor efficiently. On the other hand, the oscillation wavelength of the semiconductor laser 63b is an oscillation wavelength in the vicinity of 405 nm in order to mainly excite the green light emitting phosphor efficiently. In other words, the semiconductor laser 63b emits a second laser beam (second excitation beam) having an oscillation wavelength different from that of the laser beam (first excitation beam) emitted from the semiconductor laser 63a.
 (発光部24a・24b)
 発光部24aは、発光部2と同様、黄色発光蛍光体を含み、半導体レーザ63aから出射されるレーザ光を受けて蛍光(第1蛍光)を発光する。一方、発光部24bは、緑色発光蛍光体を含み、半導体レーザ63bから出射される第2レーザ光を受けて蛍光(第2蛍光)を発光する。発光部24a・24bには、発光部2と同様、演色性を向上させるために、赤色発光蛍光体が含まれていてもよい。
(Light emitting part 24a / 24b)
Like the light emitting unit 2, the light emitting unit 24a includes a yellow light emitting phosphor, and receives the laser light emitted from the semiconductor laser 63a to emit fluorescence (first fluorescence). On the other hand, the light emitting unit 24b includes a green light emitting phosphor, and receives the second laser light emitted from the semiconductor laser 63b to emit fluorescence (second fluorescence). Similarly to the light emitting unit 2, the light emitting units 24a and 24b may include a red light emitting phosphor in order to improve color rendering.
 (反射鏡4・支持部材61・支持部材駆動部62)
 また、本実施の形態では、導光部513・514をレーザ光の光軸方向に移動させるために、導光部513・514にはそれぞれ支持部材61が接合されている。本実施の形態においても、実施の形態6と同様、発光部24a・24bから漏れ出るレーザ光を利用する必要はないので、原則としてレーザ光照射領域79のすべてが発光部24a・24bの受光面内に収まるように設計されている。
(Reflecting mirror 4, support member 61, support member drive unit 62)
In the present embodiment, in order to move the light guides 513 and 514 in the optical axis direction of the laser light, the support members 61 are joined to the light guides 513 and 514, respectively. Also in the present embodiment, as in the sixth embodiment, it is not necessary to use the laser light leaking from the light emitting portions 24a and 24b. Therefore, in principle, all of the laser light irradiation regions 79 are light receiving surfaces of the light emitting portions 24a and 24b. Designed to fit within.
 また、支持部材61それぞれの移動を可能にすべく、反射鏡4には収納部46が2箇所に設けられている。 Further, in order to enable the movement of each of the support members 61, the reflecting mirror 4 is provided with storage portions 46 at two locations.
 (ヘッドランプ80の効果)
 ヘッドランプ80は、励起光源及び発光部を複数備え、各発光部から出射される蛍光(少なくとも異なる色の蛍光を含む)を照明光として利用する場合には、上記蛍光の量が変化することにより、照明光に対する各蛍光の割合が変化する。
(Effect of headlamp 80)
The headlamp 80 includes a plurality of excitation light sources and light emitting units, and when using fluorescence emitted from each light emitting unit (including at least fluorescent light of different colors) as illumination light, the amount of the fluorescence changes. The ratio of each fluorescence to the illumination light changes.
 具体的には、支持部材駆動部62は、2つの支持部材61を別々に移動させることにより、導光部513・514から出射されるレーザ光が発光部24a・24bの受光面に形成するレーザ光照射領域79のそれぞれの大きさを別々に変化させることができる。換言すれば、支持部材駆動部62は、半導体レーザ63aから出射されるレーザ光のうちの発光部24aによって蛍光に変換されないレーザ光の割合、及び半導体レーザ63bから出射されるレーザ光のうちの発光部24bによって蛍光に変換されない第2レーザ光の割合の少なくとも一方を変化させる。 Specifically, the support member driving unit 62 moves the two support members 61 separately, so that the laser beams emitted from the light guide units 513 and 514 are formed on the light receiving surfaces of the light emitting units 24a and 24b. Each size of the light irradiation region 79 can be changed separately. In other words, the support member driving unit 62 has a ratio of the laser light that is not converted into fluorescence by the light emitting unit 24a in the laser light emitted from the semiconductor laser 63a, and the light emission of the laser light emitted from the semiconductor laser 63b. At least one of the proportions of the second laser light that is not converted into fluorescence by the unit 24b is changed.
 これにより、半導体レーザ63a・63bから出射される蛍光の量がそれぞれ変化し、照明光に対する各蛍光の割合が変化するので、最終的に照明光として利用される蛍光の量が変化し、照明光の色温度を変化させることができる。すなわち、ヘッドランプ80においても、半導体レーザ63a・63bから出射されるレーザ光を利用せずに、照明光の色温度変化を実現することができる。 As a result, the amount of fluorescence emitted from each of the semiconductor lasers 63a and 63b changes, and the ratio of each fluorescence to the illumination light changes. Therefore, the amount of fluorescence finally used as illumination light changes, and the illumination light The color temperature can be changed. That is, also in the headlamp 80, the color temperature change of the illumination light can be realized without using the laser light emitted from the semiconductor lasers 63a and 63b.
 <実施の形態6及び7の変形例>
 なお、ヘッドランプ70及び80では、支持部材駆動部62が支持部材61を介して導光部513のみ、あるいは導光部513・514を移動させることにより、照明光の色温度変化を実現していた。これに限らず、半導体レーザ63、63a・63b及び発光ダイオード64の出力を変更することによって、照明光の色温度変化を実現してもよい。
<Modification of Embodiments 6 and 7>
In the headlamps 70 and 80, the support member driving unit 62 moves only the light guide unit 513 or the light guide units 513 and 514 via the support member 61, thereby realizing a change in the color temperature of the illumination light. It was. However, the color temperature change of the illumination light may be realized by changing the outputs of the semiconductor lasers 63, 63a and 63b and the light emitting diode 64.
 この場合、例えば、入力部613が出力変更指示を取得し、その指示に従って出力制御部642が半導体レーザ63、63a・63bあるいは発光ダイオード64の出力を制御する。換言すれば、出力制御部642は、半導体レーザ63から出射されるレーザ光の出力、及び発光ダイオード64から出射される第2の光の出力の少なくとも一方を変化させる光量変化機構として機能する。あるいは、出力制御部642は、半導体レーザ63aから出射されるレーザ光の出力、及び半導体レーザ63bから出射される第2レーザ光の出力の少なくとも一方を変化させる光量変化機構として機能する。 In this case, for example, the input unit 613 acquires an output change instruction, and the output control unit 642 controls the output of the semiconductor lasers 63, 63a and 63b or the light emitting diode 64 according to the instruction. In other words, the output control unit 642 functions as a light amount changing mechanism that changes at least one of the output of the laser light emitted from the semiconductor laser 63 and the output of the second light emitted from the light emitting diode 64. Alternatively, the output control unit 642 functions as a light amount changing mechanism that changes at least one of the output of the laser light emitted from the semiconductor laser 63a and the output of the second laser light emitted from the semiconductor laser 63b.
 〔実施の形態8〕
 本実施の形態は、図31に基づいて、本発明の照明装置の一例としてのレーザダウンライト200について説明するものである。
[Embodiment 8]
In the present embodiment, a laser downlight 200 as an example of an illumination device of the present invention will be described based on FIG.
 本実施の形態に係るレーザダウンライト200は、レーザ光を出射する半導体レーザ63を少なくとも1つ備える励起光源ユニット6aと、発光部2および反射鏡としての凹部212を備える少なくとも1つの発光ユニット210とを備える。そして、支持部材駆動部62が支持部材61を介して発光部2の位置を変化させることにより、半導体レーザ63から出射されるレーザ光のうちの発光部2によって蛍光に変換されないレーザ光の割合を変化させる。これにより、実施の形態2と同様、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることが可能なレーザダウンライト200を実現できる。 A laser downlight 200 according to the present embodiment includes an excitation light source unit 6a including at least one semiconductor laser 63 that emits laser light, and at least one light emitting unit 210 including a light emitting unit 2 and a recess 212 as a reflecting mirror. Is provided. Then, the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61, and thereby the ratio of the laser light that is not converted into fluorescence by the light emitting unit 2 out of the laser light emitted from the semiconductor laser 63 is set. Change. Thereby, since the ratio of the fluorescence with respect to illumination light changes like Embodiment 2, the laser downlight 200 which can change the color temperature of illumination light is realizable.
 なお、図31に示すように、実施の形態1の図8に示すLDチップ11が半導体レーザ63に置換された以外、また、透光板213がレンズ82と同様の機能を有している以外は、実施の形態1で述べたレーザダウンライト200と同様の構成であるので、その説明は省略する。 As shown in FIG. 31, except that the LD chip 11 shown in FIG. 8 of the first embodiment is replaced with the semiconductor laser 63, and the translucent plate 213 has the same function as the lens 82. Since the configuration is the same as that of the laser downlight 200 described in the first embodiment, the description thereof is omitted.
 〔実施形態5~8に係る発明の別の表現〕
 実施形態5~8に係る発明は、以下のようにも表現できる。
[Another Expression of Inventions According to Embodiments 5 to 8]
The inventions according to Embodiments 5 to 8 can be expressed as follows.
 すなわち、本発明の一実施形態に係る照明装置(レーザ照明光源)は、蛍光体発光部と、励起光源である半導体レーザと、からなるレーザ照明光源に関するものであって、励起光照射エリアとして、蛍光体発光部のサイズよりも小さい領域から超える領域まで励起光を照射させ(すなわち励起光照射エリア≦蛍光体発光部面積≦励起光照射エリア)、前記励起光照射エリアを変えることで、励起光と蛍光の割合を変化させて色温度を変えるものである。 That is, an illumination device (laser illumination light source) according to an embodiment of the present invention relates to a laser illumination light source including a phosphor light emitting unit and a semiconductor laser that is an excitation light source. Excitation light is irradiated from a region smaller than the size of the phosphor light emitting part to an area exceeding it (that is, excitation light irradiation area ≦ phosphor light emitting part area ≦ excitation light irradiation area), and the excitation light irradiation area is changed. The color temperature is changed by changing the ratio of fluorescence.
 また、レーザ照明光源は、励起光源としては青色半導体レーザを用い、蛍光体としては、黄色に発光する黄色蛍光体、もしくは緑色に発光する緑色蛍光体と赤色に発光する赤色蛍光体とを組み合わせることが好ましい。 The laser illumination light source uses a blue semiconductor laser as an excitation light source, and as a phosphor, a yellow phosphor that emits yellow light, or a green phosphor that emits green light and a red phosphor that emits red light. Is preferred.
 〔実施の形態5~8に係る付記事項〕
 照明光を対象物に照射したときの当該対象物を見やすさは、照明光の色温度によって個々人において異なるものである。本発明の照明装置は、光量変化機構を備えることにより、色温度を変化させることができるので、例えば、その見やすさを測定可能な測定器(テスター)を作製して照明装置の販売店に設置することにより、個々人の嗜好にあった色温度を個々人に選択させることができる。すなわち、各ユーザは、ユーザ嗜好にあった色温度の照明光を出射する照明装置を購入できる。本発明の照明装置が車両用前照灯として実現されている場合、上記の測定器を自動車ディーラーに設置しておくことにより、個々人が自動車を購入する際に上記の選択を行うことができる。
[Additional Notes on Embodiments 5 to 8]
The visibility of an object when the object is irradiated with illumination light varies depending on the color temperature of the illumination light. Since the lighting device of the present invention can change the color temperature by providing the light quantity changing mechanism, for example, a measuring instrument (tester) capable of measuring the visibility is manufactured and installed in the lighting device store. By doing this, it is possible to allow an individual to select a color temperature that suits the taste of the individual. That is, each user can purchase an illumination device that emits illumination light having a color temperature that suits the user's preference. When the illuminating device of the present invention is realized as a vehicle headlamp, the above-mentioned measuring instrument is installed in an automobile dealer so that the above selection can be made when an individual purchases an automobile.
 また、記憶部615に、本発明の照明装置(あるいは照明装置を備える物(車両など))の所有者あるいは当該照明装置をよく利用するユーザを特定する情報と、その所有者あるいはユーザが選択した色温度を示す情報とを対応付けて記憶しておいてもよい。この場合、例えば、入力部613が所有者あるいはユーザを特定する情報を取得し、可動制御部641が、その情報に対応する色温度を示す情報を記憶部615から読み出し、支持部材駆動部62を駆動し、支持部材61を移動させる。これにより、所有者あるいはユーザの嗜好にあった色温度を記憶しておくことを条件に、本発明の照明装置は、その嗜好にあった色温度に自動的に切り替えることができる。 In addition, the storage unit 615 selects information that identifies the owner of the lighting device of the present invention (or an object (such as a vehicle) including the lighting device) or a user who frequently uses the lighting device, and the owner or the user selects it. Information indicating the color temperature may be stored in association with each other. In this case, for example, the input unit 613 acquires information specifying the owner or the user, the movable control unit 641 reads out information indicating the color temperature corresponding to the information from the storage unit 615, and the support member driving unit 62 is moved. Driven to move the support member 61. Thereby, on condition that the color temperature suitable for the owner or the user is stored, the lighting device of the present invention can automatically switch to the color temperature suitable for the preference.
 〔実施の形態9〕
 本発明の実施の一形態について図32~図38に基づいて説明すれば、以下のとおりである。ここでは、本発明の照明装置の一例として、自動車用のヘッドランプ(前照灯)90を例に挙げて説明する。ただし、本発明の照明装置は、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、その他の照明装置として実現されてもよい。その他の照明装置として、例えば、サーチライト、プロジェクター、家庭用照明器具を挙げることができる。
[Embodiment 9]
The following will describe one embodiment of the present invention with reference to FIGS. Here, a headlamp (headlight) 90 for an automobile will be described as an example as an example of the illumination device of the present invention. However, the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
 ヘッドランプ90は、走行用前照灯(ハイビーム)の配光特性基準を満たしていてもよいし、すれ違い用前照灯(ロービーム)の配光特性基準を満たしていてもよい。 The headlamp 90 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
 <ヘッドランプ90の構成>
 まず、図32に基づき、本発明の一実施形態であるヘッドランプ90について説明する。図32は、ヘッドランプ90の概要構成を示す片側断面図である。図32に示すように、ヘッドランプ90は、透光性基板1、発光部2、反射鏡4、固定部材56、励起光源ユニット(励起光源)6、ネジ78、レンズ82、導光部材9、支持部材61および支持部材駆動部62を備える。励起光源ユニット6、導光部材9および発光部2によって発光装置の基本構造が形成されている。また、支持部材61および支持部材駆動部62によって照射範囲変化機構の基本構造が形成されている。
<Configuration of headlamp 90>
First, based on FIG. 32, the headlamp 90 which is one Embodiment of this invention is demonstrated. FIG. 32 is a half sectional view showing a schematic configuration of the headlamp 90. As shown in FIG. 32, the headlamp 90 includes a translucent substrate 1, a light emitting unit 2, a reflecting mirror 4, a fixing member 56, an excitation light source unit (excitation light source) 6, screws 78, a lens 82, a light guide member 9, A support member 61 and a support member driving unit 62 are provided. The excitation light source unit 6, the light guide member 9, and the light emitting unit 2 form a basic structure of the light emitting device. The support member 61 and the support member drive unit 62 form a basic structure of the irradiation range changing mechanism.
 なお、本実施の形態では、発光部2が複数の発光部(例えば第1発光部2a及び第2発光部2b)を備えているが、特に個々の発光部ごとに説明する必要がない場合には「発光部2」と称して一括して説明する場合もある。 In the present embodiment, the light emitting unit 2 includes a plurality of light emitting units (for example, the first light emitting unit 2a and the second light emitting unit 2b), but it is not particularly necessary to explain each individual light emitting unit. May be collectively referred to as “light emitting unit 2”.
 (透光性基板1)
 透光性基板1は、平板状の部材であり、少なくとも励起光であるレーザ光の発振波長(ここでは440nm~480nm)に対して透光性を有している。透光性基板1は、平板上でなく、湾曲した部分を有していてもよいが、透光性基板1と発光部2とを接着する場合、少なくとも発光部2が接着される部分は、接着の安定性の観点から平面(板状)であることが好ましい。
(Translucent substrate 1)
The translucent substrate 1 is a flat member and has translucency at least with respect to the oscillation wavelength of laser light (440 nm to 480 nm in this case) as excitation light. The translucent substrate 1 may have a curved portion instead of a flat plate. However, when the translucent substrate 1 and the light emitting unit 2 are bonded, at least the portion to which the light emitting unit 2 is bonded is From the viewpoint of adhesion stability, a flat surface (plate shape) is preferable.
 また、透光性基板1は、縦10mm×横10mm×厚み0.5mmのAl(サファイア)基板である。なお、図32に示す透光性基板1の外径は、発光部2の外径よりも大きいが、発光部2の外径と同程度であっても良い。 The translucent substrate 1 is an Al 2 O 3 (sapphire) substrate having a length of 10 mm × width of 10 mm × thickness of 0.5 mm. Note that the outer diameter of the light-transmitting substrate 1 illustrated in FIG.
 透光性基板1のレーザ光が入射する側の表面に対向する表面には、発光部2が配置され、発光部2と熱的に(すなわち、熱エネルギーの授受が可能なように)接続されている。なお、本実施の形態では、透光性基板1と発光部2とは、接着剤を用いて接合(接着)されているものとして説明するが、透光性基板1と発光部2との接合方法は、接着に限られず、例えば、融着などであっても良い。接着剤としては、いわゆる有機系の接着剤や、ガラスペースト接着剤が好適であるが、これに限られない。 The light emitting unit 2 is disposed on the surface of the translucent substrate 1 that faces the surface on which the laser beam is incident, and is thermally connected to the light emitting unit 2 (that is, capable of transferring thermal energy). ing. In the present embodiment, the light-transmitting substrate 1 and the light-emitting portion 2 are described as being bonded (adhered) using an adhesive, but the light-transmitting substrate 1 and the light-emitting portion 2 are bonded. The method is not limited to adhesion, and may be, for example, fusion. As the adhesive, so-called organic adhesives and glass paste adhesives are suitable, but not limited thereto.
 透光性基板1は、以上のような構成、形状、および、発光部2との接続形態を有することにより、発光部2を基板表面に固定(保持)しつつ、発光部2から発生する熱を外部に放熱するので、発光部2の冷却効率を向上させることができる。 The translucent substrate 1 has the configuration, shape, and connection form with the light emitting unit 2 as described above, so that heat generated from the light emitting unit 2 while fixing (holding) the light emitting unit 2 to the substrate surface. Since heat is radiated to the outside, the cooling efficiency of the light emitting unit 2 can be improved.
 また、透光性基板1の材質は、上述したサファイア(Al)の他、マグネシア(MgO)、窒化ガリウム(GaN)、スピネル(MgAl)が好ましい。これらの材料は、熱伝導率(例えば20W/mK以上)及び透光性が優れているためである。この点を考慮しないのであれば、これらの材質に限らず、例えばガラス(石英)などであっても良い。 Moreover, the material of the translucent substrate 1 is preferably magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ) in addition to the sapphire (Al 2 O 3 ) described above. This is because these materials have excellent thermal conductivity (for example, 20 W / mK or more) and translucency. If this point is not taken into consideration, the material is not limited to these materials, and may be glass (quartz), for example.
 また、図32に示す透光性基板1の厚さは、発光部2での発熱を効果的に放熱することを考慮すれば、30μm以上、5.0mm以下が好ましく、より好ましくは、0.2mm以上、5.0mm以下であることがより好ましい。なお、透光性基板1の厚さが5.0mmを超えると、発光部2に照射されたレーザ光が透光性基板1において吸収される割合が大きくなる一方で、放熱効果はさほど向上せず、また部材のコストも上昇してしまう。 Further, the thickness of the translucent substrate 1 shown in FIG. 32 is preferably 30 μm or more and 5.0 mm or less, more preferably 0. More preferably, it is 2 mm or more and 5.0 mm or less. If the thickness of the translucent substrate 1 exceeds 5.0 mm, the rate at which the laser light applied to the light emitting unit 2 is absorbed in the translucent substrate 1 increases, but the heat dissipation effect is greatly improved. In addition, the cost of the member also increases.
 (発光部2)
 発光部2は、半導体レーザ63から出射されたレーザ光を受けて蛍光を発するものであり、第1発光部2a及び第2発光部2bを備えている。本実施の形態では、第1発光部2aの外周に接触するように第2発光部2bが設けられている。換言すれば、第1発光部2a及び第2発光部2bは二重構造となっている。また、第1発光部2aは、その中心を導光部材9から出射されるレーザ光の光軸が通るように、透光性基板1上に配置されている。なお、第1発光部2a及び第2発光部2bの配置例については後述する。
(Light emitting part 2)
The light emitting unit 2 emits fluorescence upon receiving laser light emitted from the semiconductor laser 63, and includes a first light emitting unit 2a and a second light emitting unit 2b. In the present embodiment, the second light emitting unit 2b is provided so as to be in contact with the outer periphery of the first light emitting unit 2a. In other words, the first light emitting unit 2a and the second light emitting unit 2b have a double structure. Further, the first light emitting unit 2a is disposed on the translucent substrate 1 so that the optical axis of the laser light emitted from the light guide member 9 passes through the center thereof. In addition, the example of arrangement | positioning of the 1st light emission part 2a and the 2nd light emission part 2b is mentioned later.
 第1発光部2aは、導光部材9を介して、半導体レーザ63から出射されたレーザ光を受けて第1の蛍光を発する第1蛍光体を含んでいる。本実施の形態では、第1蛍光体として、青色領域のレーザ光を受けて黄色領域にピーク波長を有する蛍光を発する黄色蛍光発光体としてIntematix社製のYAG:Ce蛍光体(NYAG4454)を用いているが、蛍光体の種類はこれに限定されない。YAG:Ce蛍光体は、Ceで賦活したイットリウム(Y)-アルミニウム(Al)-ガーネット(Garnet)蛍光体である。このIntematix社製の蛍光体は、発光効率が90%、発光ピーク波長(以下、単に「ピーク波長」という)は558nm(黄色)、色度点はx=0.444、y=0.536であり、430nmから490nmの励起光で良好に励起される。なお、YAG:Ce蛍光体は、一般に550nm付近(550nmよりも若干長波長側)に発光ピークが存在するブロードな発光スペクトルをもつ。 The first light emitting unit 2 a includes a first phosphor that emits first fluorescence upon receiving laser light emitted from the semiconductor laser 63 via the light guide member 9. In the present embodiment, a YAG: Ce phosphor (NYAG4454) manufactured by Intematix is used as a yellow phosphor that emits fluorescence having a peak wavelength in the yellow region by receiving laser light in the blue region as the first phosphor. However, the type of phosphor is not limited to this. The YAG: Ce phosphor is an yttrium (Y) -aluminum (Al) -Garnet phosphor activated with Ce. The phosphor manufactured by Intematix has an emission efficiency of 90%, an emission peak wavelength (hereinafter simply referred to as “peak wavelength”) of 558 nm (yellow), chromaticity points of x = 0.444 and y = 0.536. Yes, it is excited well by excitation light of 430 nm to 490 nm. The YAG: Ce phosphor generally has a broad emission spectrum in which an emission peak exists in the vicinity of 550 nm (slightly longer than 550 nm).
 また、第2発光部2bは、レーザ光を受けて第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する第2蛍光体を含んでいる。本実施の形態では、第2蛍光体として、青色領域のレーザ光を受けて赤色領域にピーク波長を有する蛍光を発する赤色発光蛍光体としてEu2+がドープされたCaAlSiN:Eu蛍光体(CASN:Eu蛍光体)を用いている。第2蛍光体に用いられる蛍光体の種類はこれに限定されず、例えばEu2+がドープされたSrCaAlSiN:Eu蛍光体(SCASN:Eu蛍光体)が第2蛍光体として用いてもよい。 The second light emitting unit 2b includes a second phosphor that receives laser light and emits second fluorescence having a peak wavelength different from that of the first fluorescence. In the present embodiment, as the second phosphor, a CaAlSiN 3 : Eu phosphor (CASN: doped with Eu 2+ as a red light-emitting phosphor that emits fluorescence having a peak wavelength in the red region upon receiving laser light in the blue region. Eu phosphor). The kind of the phosphor used for the second phosphor is not limited to this, and for example, SrCaAlSiN 3 : Eu phosphor doped with Eu 2+ (SCASN: Eu phosphor) may be used as the second phosphor.
 第1発光部2aはYAG:Ce蛍光体を、第2発光部2bはCASN:Eu蛍光体を、封止材としての低融点の無機ガラス(屈折率n=1.760)の内部にそれぞれ分散させて製造される。第1発光部2aにおけるYAG:Ce蛍光体と低融点の無機ガラス(低融点ガラス)との配合比は、例えば30:100程度である。これに限らず、第1発光部2aでレーザ光を拡散させてそのレーザ光の色成分(例えば青色成分)を利用することを考慮すれば、上記の配合比は10:100程度が好ましい。また、第2発光部2bにおけるCASN:Eu蛍光体と低融点ガラスとの配合比は、例えば20:100程度であるが、これに限らずともよい。また、発光部2は、蛍光体を押し固めたものであってもよい。 The first light emitting unit 2a disperses the YAG: Ce phosphor and the second light emitting unit 2b disperses the CASN: Eu phosphor inside the low melting point inorganic glass (refractive index n = 1.760) as a sealing material. Manufactured. The compounding ratio of the YAG: Ce phosphor and the low melting point inorganic glass (low melting point glass) in the first light emitting unit 2a is, for example, about 30: 100. In addition to this, considering the fact that the first light emitting unit 2a diffuses the laser light and uses the color component (for example, blue component) of the laser light, the above blending ratio is preferably about 10: 100. Moreover, although the compounding ratio of CASN: Eu fluorescent substance and low melting glass in the 2nd light emission part 2b is about 20: 100, for example, it does not need to be restricted to this. In addition, the light emitting unit 2 may be one obtained by pressing a fluorescent material.
 封止材は、上記の無機ガラスに限定されず、いわゆる有機無機ハイブリッドガラスや、シリコン樹脂等の樹脂材料であってもよい。ただし、耐熱性を考慮すれば、封止材はガラスからなることが好ましい。 The sealing material is not limited to the above-mentioned inorganic glass, and may be a so-called organic-inorganic hybrid glass or a resin material such as silicon resin. However, considering heat resistance, the sealing material is preferably made of glass.
 また、第1発光部2aの第1蛍光体は、黄色発光蛍光体の代わりに、青色領域のレーザ光を受けて緑色領域にピーク波長を有する蛍光を発する緑色蛍光発光体としてEu2+がドープされたβ-SiAlON:Eu蛍光体であってもよい。 In addition, the first phosphor of the first light emitting unit 2a is doped with Eu 2+ as a green phosphor emitting a fluorescent light having a peak wavelength in the green region by receiving laser light in the blue region instead of the yellow light emitting phosphor. Alternatively, β-SiAlON: Eu phosphor may be used.
 また、上記では、第1発光部2a及び第2発光部2bのそれぞれが1種類の蛍光体を含んで構成されているが、これに限らず、2種類以上の蛍光体を含んでもよい。例えば、第1発光部2aがYAG:Ce蛍光体及びβ-SiAlON:Eu蛍光体を含み、第2発光部2bがCASN:Eu蛍光体及びβ-SiAlON:Eu蛍光体を含んでもよい。また、第1発光部2a及び第2発光部2bに含まれる蛍光体の少なくとも一部が異なる構成であってもよく、例えば第1発光部2aにはYAG:Ce蛍光体及びCASN:Eu蛍光体が含まれ、第2発光部2bにはCASN:Eu蛍光体が含まれる構成であってもよい。特に、第1発光部2aが補色の関係を満たす2種類の蛍光体を含む場合には、第1発光部2aは、レーザ光を拡散させることなく、第1発光部2aへのレーザ光の照射だけで白色光を生成できる。 In the above description, each of the first light emitting unit 2a and the second light emitting unit 2b includes one type of phosphor. However, the present invention is not limited thereto, and two or more types of phosphors may be included. For example, the first light emitting unit 2a may include a YAG: Ce phosphor and a β-SiAlON: Eu phosphor, and the second light emitting unit 2b may include a CASN: Eu phosphor and a β-SiAlON: Eu phosphor. Further, at least a part of the phosphors included in the first light emitting unit 2a and the second light emitting unit 2b may be different. For example, the first light emitting unit 2a includes a YAG: Ce phosphor and a CASN: Eu phosphor. The second light emitting unit 2b may include a CASN: Eu phosphor. In particular, when the first light emitting unit 2a includes two types of phosphors that satisfy the complementary color relationship, the first light emitting unit 2a irradiates the first light emitting unit 2a with laser light without diffusing the laser light. Can produce white light.
 なお、透光性基板1と発光部2との間の界面の反射率REをできる限り低下させ、レーザ光の発光部2での利用効率を高めることを考慮すれば、透光性基板1と発光部2との屈折率差Δnは、0.35以下であることが好ましい。この場合、反射率REを1%以下にすることができる。また、屈折率差Δnを0.35以下とする場合、透光性基板1の屈折率を1.65以上、発光部2の屈折率を2.0以下とすることが好ましい。 In consideration of reducing the reflectance RE of the interface between the translucent substrate 1 and the light emitting unit 2 as much as possible and increasing the utilization efficiency of the laser light in the light emitting unit 2, the translucent substrate 1 and The refractive index difference Δn with respect to the light emitting unit 2 is preferably 0.35 or less. In this case, the reflectance RE can be 1% or less. Further, when the refractive index difference Δn is set to 0.35 or less, it is preferable to set the refractive index of the translucent substrate 1 to 1.65 or more and the refractive index of the light emitting unit 2 to 2.0 or less.
 また、一般に、照明光として用いられる白色光または擬似白色光は、等色の原理を満たす3つの色の混色、または、補色の関係を満たす2つの色の混色などで実現できる。この等色または補色の原理に基づき、例えば、ヘッドランプ90では、後述する半導体レーザ63から出射される青色のレーザ光とYAG:Ce蛍光体(黄色発光蛍光体)との組み合わせ、あるいは当該青色のレーザ光とβ-SiAlON:Eu蛍光体(緑色発光蛍光体)との組み合わせ(補色の関係を満たす2つの色の混色)で擬似白色を実現している。 In general, white light or pseudo white light used as illumination light can be realized by mixing three colors satisfying the principle of color matching, or mixing two colors satisfying a complementary color relationship. Based on the principle of the same color or complementary color, for example, in the headlamp 90, a combination of blue laser light emitted from a semiconductor laser 63 described later and a YAG: Ce phosphor (yellow light emitting phosphor), or the blue A pseudo white color is realized by a combination of a laser beam and a β-SiAlON: Eu phosphor (green light-emitting phosphor) (mixture of two colors satisfying a complementary color relationship).
 ここで、黄色発光蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。緑色発光蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。赤色発光蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する蛍光を発生する蛍光体である。 Here, the yellow light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 560 nm or more and 590 nm or less. The green light emitting phosphor is a phosphor that emits fluorescence having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The red light-emitting phosphor is a phosphor that generates fluorescence having a peak wavelength in a wavelength range of 600 nm or more and 680 nm or less.
 黄色発光蛍光体の具体例としては、YAG:Ce蛍光体や、Eu2+がドープされたCaα-SiAlON:Eu蛍光体などが挙げられる。Caα-SiAlON:Eu蛍光体は、近紫外から青色の励起光によりピーク波長が約580nmの強い発光を示す。 Specific examples of the yellow light emitting phosphor include a YAG: Ce phosphor and a Caα-SiAlON: Eu phosphor doped with Eu 2+ . The Caα-SiAlON: Eu phosphor exhibits strong light emission with a peak wavelength of about 580 nm by near ultraviolet to blue excitation light.
 緑色発光蛍光体の具体例としては、各種の窒化物系または酸窒化物系の蛍光体が挙げられる。特に、酸窒化物系の蛍光体は耐熱性に優れ、高い発光効率で安定した材料であるので、耐熱性に優れ、高い発光効率で安定した第1発光部2aを実現できる。 Specific examples of the green light emitting phosphor include various nitride-based or oxynitride-based phosphors. In particular, since the oxynitride phosphor is excellent in heat resistance and stable with high luminous efficiency, the first light emitting portion 2a with excellent heat resistance and stable with high luminous efficiency can be realized.
 例えば、緑色に発光する酸窒化物系蛍光体として、β-SiAlON:Eu蛍光体、Ce3+がドープされたCaα-SiAlON:Ce蛍光体などが挙げられる。β-SiAlON:Eu蛍光体は、近紫外から青色(350nm以上460nm以下)の励起光によりピーク波長が約540nmの強い発光を示す。この蛍光体の発光スペクトル半値幅は約55nmである。また、Caα-SiAlON:Ce蛍光体は、近紫外から青色の励起光によりピーク波長が約510nmの強い発光を示す。 Examples of the oxynitride phosphor that emits green light include a β-SiAlON: Eu phosphor and a Ca α-SiAlON: Ce phosphor doped with Ce 3+ . The β-SiAlON: Eu phosphor exhibits strong emission with a peak wavelength of about 540 nm by excitation light from near ultraviolet to blue (350 nm to 460 nm). The half width of the emission spectrum of this phosphor is about 55 nm. Further, the Caα-SiAlON: Ce phosphor exhibits strong light emission with a peak wavelength of about 510 nm by near ultraviolet to blue excitation light.
 上記のα-SiAlONおよびβ-SiAlON(サイアロン)は、いわゆるサイアロン蛍光体(酸窒化物系蛍光体)と通称されるものである。サイアロンとは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。サイアロン蛍光体は、窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。このサイアロン蛍光体にカルシウム(Ca)とユーロピウム(Eu)とを固溶させると、YAG:Ce蛍光体よりも長波長の黄色から橙色の範囲で発光する特性の良い蛍光体が得られる。 The above-mentioned α-SiAlON and β-SiAlON (sialon) are commonly called so-called sialon phosphors (oxynitride phosphors). Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. The sialon phosphor can be produced by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), a rare earth element, and the like in silicon nitride (Si 3 N 4 ). When calcium (Ca) and europium (Eu) are dissolved in this sialon phosphor, a phosphor that emits light having a longer wavelength range from yellow to orange than the YAG: Ce phosphor can be obtained.
 赤色発光蛍光体の具体例としては、各種の窒化物系の蛍光体が挙げられる。例えば、窒化物系の蛍光体としては、CASN:Eu蛍光体、SCASN:Eu蛍光体などが挙げられる。CASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は649nmであり、その発光効率は73%である。また、SCASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は630nmであり、その発光効率は70%である。これらの窒化物系の蛍光体は、上述した黄色発光蛍光体や緑色発光蛍光体などの酸窒化物蛍光体と組み合わせることにより、演色性を高めることができる。また、赤色に発光する窒化物系蛍光体の例としては、(Mg、Ca、Sr、Ba)AlSiN:Eu等のEu賦活窒化物蛍光体や(Mg、Ca、Sr、Ba)AlSiN:Ce等のCe賦活窒化物蛍光体などが挙げられる。 Specific examples of the red light-emitting phosphor include various nitride-based phosphors. For example, examples of the nitride-based phosphor include CASN: Eu phosphor and SCASN: Eu phosphor. The CASN: Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 649 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%. These nitride-based phosphors can enhance color rendering properties when combined with the above-described oxynitride phosphors such as the yellow light-emitting phosphor and the green light-emitting phosphor. Examples of nitride phosphors that emit red light include Eu-activated nitride phosphors such as (Mg, Ca, Sr, Ba) AlSiN 3 : Eu, and (Mg, Ca, Sr, Ba) AlSiN 3 : Examples include Ce-activated nitride phosphors such as Ce.
 換言すれば、発光部2は、黄色発光蛍光体あるいは緑色発光蛍光体を含む第1発光部2aとともに、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する赤色発光蛍光体を含む第2発光部2bを備えている。これにより、第1発光部2a及び第2発光部2bの両方に青色のレーザ光が照射された場合に、発光部2全体としての演色性を高めることができる。 In other words, the light emitting unit 2 includes a first light emitting unit 2a including a yellow light emitting phosphor or a green light emitting phosphor and a red light emitting phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm to 650 nm. Two light emitting portions 2b are provided. Thereby, when blue laser light is irradiated to both the 1st light emission part 2a and the 2nd light emission part 2b, the color rendering property as the light emission part 2 whole can be improved.
 また、上記第1蛍光体及び第2蛍光体の別の好適な例としては、III-V族化合物半導体のナノメータサイズの粒子を用いた半導体ナノ粒子蛍光体を用いることもできる。同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径を変更させることにより、量子サイズ効果によって発光色を変化させることができることが半導体ナノ粒子蛍光体の特徴の一つである。例えばInPでは、粒子サイズが3~4nm程度のときに赤色に発光する。ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した。 As another preferred example of the first phosphor and the second phosphor, a semiconductor nanoparticle phosphor using nanometer-sized particles of a III-V compound semiconductor can also be used. One of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color can be changed by the quantum size effect by changing the particle diameter. is there. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
 また、この蛍光体は半導体ベースであるので蛍光寿命が短く、励起光のパワーを素早く蛍光として放射できるのでハイパワーの励起光に対して耐性が強いという特徴もある。これは、上記半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。発光寿命が短いため、励起光の吸収と蛍光の発光を素早く繰り返すことができる。 Also, since this phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by strong resistance to high-power excitation light because it can quickly radiate the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth-based emission center. Since the emission lifetime is short, absorption of excitation light and emission of fluorescence can be repeated quickly.
 その結果、強い励起光に対して高効率を保つことができ、蛍光体からの発熱が低減される。よって、光変換部材が熱により劣化(変色や変形)するのをより抑制することができる。これにより、光の出力が高い発光素子を光源として用いる場合に、発光装置の寿命が短くなるのをより抑制することができる。 As a result, high efficiency can be maintained against strong excitation light, and heat generation from the phosphor is reduced. Therefore, it is possible to further suppress the light conversion member from being deteriorated (discolored or deformed) by heat. Thereby, when using the light emitting element with a high light output as a light source, it can suppress more that the lifetime of a light-emitting device becomes short.
 (反射鏡4)
 反射鏡4は、発光部2から出射した光を反射することにより、所定の立体角内を進む光線束を形成するものである。すなわち、反射鏡4は、発光部2からの光を反射することにより、ヘッドランプ90の前方へ進む光線束を形成する。この反射鏡4は、例えば、金属薄膜がその表面に形成された曲面形状(カップ形状)の部材である。
(Reflector 4)
The reflecting mirror 4 reflects the light emitted from the light emitting unit 2 to form a light beam that travels within a predetermined solid angle. That is, the reflecting mirror 4 reflects the light from the light emitting unit 2 to form a light bundle that travels forward of the headlamp 90. The reflecting mirror 4 is, for example, a curved surface (cup shape) member having a metal thin film formed on the surface thereof.
 また、反射鏡4は、半球面ミラーに限定されず、楕円面ミラーやパラボラミラーまたはそれらの部分曲面を有するミラーあってもよい。すなわち、反射鏡4は、回転軸を中心として図形(楕円、円、放物線)を回転させることによって形成される曲面の少なくとも一部をその反射面に含んでいるものであればよい。また、反射鏡4における開口部の形状は円形に限定されない。ヘッドランプ90およびその周辺のデザインに応じて、適宜開口部の形状を決定することができる。 Further, the reflecting mirror 4 is not limited to a hemispherical mirror, and may be an ellipsoidal mirror, a parabolic mirror, or a mirror having a partial curved surface thereof. That is, the reflecting mirror 4 only needs to include at least a part of a curved surface formed by rotating a figure (ellipse, circle, parabola) about the rotation axis on the reflecting surface. Further, the shape of the opening in the reflecting mirror 4 is not limited to a circle. The shape of the opening can be determined as appropriate according to the design of the headlamp 90 and its periphery.
 また、発光部2から出射される蛍光の照明光としての利用効率を高めることを考慮すれば、反射鏡4の焦点位置に発光部2が設けられていることが好ましい。本実施の形態では、製造時には第1発光部2aから出射される第1の蛍光を照明光として利用するものとしてレーザ光照射の設定が行われている。このため、反射鏡4の焦点位置に第1発光部2aが配置されることが好ましい。 In consideration of increasing the utilization efficiency of the fluorescent light emitted from the light emitting unit 2 as illumination light, it is preferable that the light emitting unit 2 is provided at the focal position of the reflecting mirror 4. In the present embodiment, the laser light irradiation is set so that the first fluorescence emitted from the first light emitting unit 2a is used as illumination light at the time of manufacture. For this reason, it is preferable that the 1st light emission part 2a is arrange | positioned in the focus position of the reflective mirror 4. FIG.
 (固定部材56)
 固定部材56は、導光部材9が挿通される挿通口が形成された板状の部材であり、導光部材9の出射端部の中心と発光部2の受光面(透光性基板1と接触している面)の中心とがほぼ一致するように、ネジ78によって反射鏡4に固定している。図32に示す発光部2では、導光部材9の出射端部の中心と第1発光部2aの受光面の中心とがほぼ一致するように固定されている。また、固定部材56には、その挿通口を囲むように励起光源ユニット6が接合されている。固定部材56の材質は特に問わないが、鉄、銅などの金属を例示することができる。
(Fixing member 56)
The fixing member 56 is a plate-like member formed with an insertion port through which the light guide member 9 is inserted, and the center of the light emitting end portion of the light guide member 9 and the light receiving surface of the light emitting unit 2 (with the translucent substrate 1 and It is fixed to the reflecting mirror 4 with a screw 78 so that the center of the contact surface) substantially coincides with the center. In the light emitting unit 2 shown in FIG. 32, the center of the light emitting end of the light guide member 9 is fixed so that the center of the light receiving surface of the first light emitting unit 2a substantially coincides. The excitation light source unit 6 is joined to the fixing member 56 so as to surround the insertion port. Although the material of the fixing member 56 is not particularly limited, metals such as iron and copper can be exemplified.
 また、固定部材56には、支持部材61を収納できる収納部51が形成されている。この収納部51の存在により、支持部材駆動部62の駆動に従った支持部材61のレーザ光の光軸方向への移動が可能となる。そして、この移動により、発光部2におけるレーザ光の照射範囲(レーザ光照射領域79(図36参照)の大きさ)を変化させることができる。発光部2の移動とレーザ光照射領域79との関係の詳細については、図36を用いて後述する。 Further, the fixing member 56 is formed with a storage portion 51 in which the support member 61 can be stored. Due to the presence of the storage portion 51, the support member 61 can be moved in the optical axis direction of the laser beam in accordance with the drive of the support member drive portion 62. By this movement, the laser light irradiation range (the size of the laser light irradiation region 79 (see FIG. 36)) in the light emitting unit 2 can be changed. Details of the relationship between the movement of the light emitting unit 2 and the laser light irradiation region 79 will be described later with reference to FIG.
 (励起光源ユニット6)
 励起光源ユニット6は、例えば3つの半導体レーザ(励起光源)63を収納した筐体である。半導体レーザ63の固定方法および配線方法については、従来の固定方法および配線方法を利用すれば良いので、ここでは説明を省略する。
(Excitation light source unit 6)
The excitation light source unit 6 is a housing that houses, for example, three semiconductor lasers (excitation light sources) 63. Regarding the fixing method and wiring method of the semiconductor laser 63, the conventional fixing method and wiring method may be used, and the description thereof is omitted here.
 半導体レーザ63は、励起光を出射する励起光源として機能する発光素子である。本実施の形態では、励起光源として半導体レーザが利用される場合について説明するが、例えばLEDであってもよい。半導体レーザである場合には、高出力かつコヒーレント性の高いレーザ光を発光部2に照射できるので発光部2を小さくでき、高輝度なヘッドランプ90を実現できる。図32には、半導体レーザ63が3個図示されているが、半導体レーザ63を複数設ける必要は必ずしもなく、1つのみ設けてもよい。しかし、高出力の励起光を得るためには、複数の半導体レーザ63を用いる方が容易である。 The semiconductor laser 63 is a light emitting element that functions as an excitation light source that emits excitation light. In this embodiment, a case where a semiconductor laser is used as an excitation light source will be described. However, for example, an LED may be used. In the case of a semiconductor laser, the light emitting unit 2 can be irradiated with a laser beam having high output and high coherency, so that the light emitting unit 2 can be made small and a high-luminance headlamp 90 can be realized. Although three semiconductor lasers 63 are illustrated in FIG. 32, it is not always necessary to provide a plurality of semiconductor lasers 63, and only one semiconductor laser 63 may be provided. However, it is easier to use a plurality of semiconductor lasers 63 in order to obtain high output pump light.
 半導体レーザ63は、例えば、1チップに1つの発光点を有するものであり、450nm(青色)のレーザ光を発振し、出力1.6W、動作電圧4.7V、電流1.2Aのものであり、直径9mmの金属パッケージ(ステム)に封入されているものである。したがって、励起光源ユニット6全体としての出力は、4.8W程度である。 The semiconductor laser 63 has, for example, one light emitting point per chip, oscillates 450 nm (blue) laser light, has an output of 1.6 W, an operating voltage of 4.7 V, and a current of 1.2 A. , Enclosed in a metal package (stem) having a diameter of 9 mm. Therefore, the output as the whole excitation light source unit 6 is about 4.8W.
 ただし、金属パッケージは直径9mmのものに限定されず、例えば、直径3.8mmや直径5.6mm、あるいはそれ以外であってもよく、熱抵抗がより小さいパッケージを選択することが好ましい。また、半導体レーザ63は、1チップに複数の発光点を有するものであってもよい。また、半導体レーザ63の発振波長は、450nmに限られず、440nm以上480nm以下の青色領域の波長であれば良い。 However, the metal package is not limited to one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm, a diameter of 5.6 mm, or other, and it is preferable to select a package having a smaller thermal resistance. The semiconductor laser 63 may have a plurality of light emitting points on one chip. The oscillation wavelength of the semiconductor laser 63 is not limited to 450 nm, and may be any wavelength in the blue region from 440 nm to 480 nm.
 このように、半導体レーザ63が、青色領域の発振波長を有するレーザ光を出射する。また、第1発光部2aは、少なくとも、第1蛍光体として黄色領域にピーク波長を有する蛍光を発するYAG:Ce蛍光体、あるいは緑色領域にピーク波長を有する蛍光を発するβ-SiAlON:Eu蛍光体を含む。これらの構成により、第1発光部2aから出射される照明光の色温度を高くできる。また、β-SiAlON:Eu蛍光体は発光効率が高いので、当該蛍光体を第1蛍光体として用いた場合には、第1発光部2aの発光効率を高めることができる。 Thus, the semiconductor laser 63 emits laser light having an oscillation wavelength in the blue region. The first light emitting unit 2a includes at least a YAG: Ce phosphor that emits fluorescence having a peak wavelength in the yellow region as a first phosphor, or a β-SiAlON: Eu phosphor that emits fluorescence having a peak wavelength in the green region. including. With these configurations, the color temperature of the illumination light emitted from the first light emitting unit 2a can be increased. In addition, since the β-SiAlON: Eu phosphor has high luminous efficiency, when the phosphor is used as the first phosphor, the luminous efficiency of the first light emitting unit 2a can be increased.
 (レンズ82)
 次に、レンズ82は、反射鏡4の開口部に設けられており、ヘッドランプ90を密封している。発光部2から出射された蛍光または散乱光、もしくは、反射鏡4によって反射された蛍光または散乱光は、レンズ82を通ってヘッドランプ90の前方へ出射される。
(Lens 82)
Next, the lens 82 is provided in the opening of the reflecting mirror 4 and seals the headlamp 90. The fluorescence or scattered light emitted from the light emitting unit 2 or the fluorescence or scattered light reflected by the reflecting mirror 4 is emitted to the front of the headlamp 90 through the lens 82.
 レンズ82は、凸レンズであっても、凹レンズであってもよい。また、レンズ82は、必ずしもレンズ機能を有する必要はなく、発光部2から出射された蛍光または散乱光、もしくは、反射鏡4で反射した蛍光または散乱光を透過する透光性を少なくとも有していれば良い。 The lens 82 may be a convex lens or a concave lens. The lens 82 does not necessarily have a lens function, and has at least translucency that transmits the fluorescence or scattered light emitted from the light emitting unit 2 or the fluorescence or scattered light reflected by the reflecting mirror 4. Just do it.
 (導光部材9)
 導光部材9は、半導体レーザ63が発振したレーザ光を発光部2へと導くものであり、半導体レーザ63から出射されたレーザ光を入射する入射端部(半導体レーザ63側)と、入射端部から入射したレーザ光を出射する出射端部(発光部2側)を有している。
(Light guide member 9)
The light guide member 9 guides the laser beam oscillated by the semiconductor laser 63 to the light emitting unit 2, and includes an incident end (semiconductor laser 63 side) on which the laser beam emitted from the semiconductor laser 63 is incident, and an incident end. A light emitting end (on the light emitting unit 2 side) that emits laser light incident from the light source.
 また、導光部材9は、入射端部に入射したレーザ光を反射する光反射側面で囲まれた囲繞構造を有しており、導光部材9の出射端部の断面積は、入射端部の断面積よりも小さくなっている。 The light guide member 9 has a surrounding structure surrounded by a light reflecting side surface that reflects the laser light incident on the incident end portion, and the cross-sectional area of the output end portion of the light guide member 9 is the incident end portion. It is smaller than the cross-sectional area.
 具体的には、導光部材9は、全体が四角錐台形状の筒形をなしており、出射端部の断面(開口)は、1mm×3mmの矩形であり、入射端部の断面(開口)は、15mm×15mmの矩形である。導光部材9の形状は四角錐台形状に限られず、四角錐台形状以外の多角錐台形状、円錐台形状、楕円錐台形状など様々な形状を採用することができる。また、入射端部から出射端部までの長さは、25mmである。 Specifically, the light guide member 9 has a rectangular pyramid-shaped cylindrical shape as a whole, and a cross section (opening) of the exit end is a rectangle of 1 mm × 3 mm, and a cross section of the incident end (opening). ) Is a rectangle of 15 mm × 15 mm. The shape of the light guide member 9 is not limited to the quadrangular frustum shape, and various shapes such as a polygonal frustum shape other than the quadrangular frustum shape, a frustum shape, and an elliptic frustum shape can be employed. The length from the incident end to the exit end is 25 mm.
 この囲繞構造により、導光部材9は、入射端部に入射したレーザ光を、入射端部の断面積よりも小さい断面積を有する出射端部に集光した上で発光部2に出射できる。このため、複数の半導体レーザ63を用いて高出力化を図ったとしても、発光部2を小さく設計することができる。すなわち、高出力・高輝度なヘッドランプ90を実現できる。 With this surrounding structure, the light guide member 9 can emit the laser light incident on the incident end portion to the light emitting portion 2 after condensing the laser light on the emission end portion having a smaller cross-sectional area than the incident end portion. For this reason, even if it aims at high output using the some semiconductor laser 63, the light emission part 2 can be designed small. That is, a high output and high brightness headlamp 90 can be realized.
 また、導光部材9は、BK(ボロシリケート・クラウン)7、石英ガラス、アクリル樹脂その他の透明素材で構成される。 The light guide member 9 is made of BK (borosilicate crown) 7, quartz glass, acrylic resin, or other transparent material.
 なお、導光部材9の代わりに光ファイバーや光学レンズ等を用いて、レーザ光を発光部2に集光してもよい。 The laser light may be condensed on the light emitting unit 2 using an optical fiber or an optical lens instead of the light guide member 9.
 (支持部材61)
 支持部材61は、発光部2が接着された透光性基板1を支持するものであり、支持部材駆動部62の駆動に連動して透光性基板1をレーザ光の光軸方向に移動可能なものである。支持部材61が移動することにより、発光部2の位置を変化させることができる。その結果、導光部材9から出射されたレーザ光の光路幅が導光部材9からの距離に比例して大きくなる(あるいは小さくなる)場合に、レーザ光照射領域79(図36参照)の大きさを変化させることができる。
(Support member 61)
The support member 61 supports the translucent substrate 1 to which the light emitting unit 2 is bonded, and the translucent substrate 1 can be moved in the optical axis direction of the laser light in conjunction with the drive of the support member driving unit 62. Is something. As the support member 61 moves, the position of the light emitting unit 2 can be changed. As a result, when the optical path width of the laser light emitted from the light guide member 9 increases (or decreases) in proportion to the distance from the light guide member 9, the size of the laser light irradiation region 79 (see FIG. 36) is increased. It can be changed.
 また、支持部材61は、支持部材駆動部62のギアと接触するように設けられており、その接触する表面にはギアと噛み合うように溝が設けられている。これにより、支持部材61は、支持部材駆動部62の駆動に従った移動が可能となる。なお、ギアに連動して動作するのであれば、支持部材61の表面がどのような形状になっていてもよく、また特に加工されていなくてもよい。 Further, the support member 61 is provided so as to come into contact with the gear of the support member driving unit 62, and a groove is provided on the contact surface so as to mesh with the gear. As a result, the support member 61 can move in accordance with the drive of the support member drive unit 62. Note that the surface of the support member 61 may have any shape as long as it operates in conjunction with the gear, and may not be particularly processed.
 支持部材61の材質は特に問わないが、支持部材61がその移動により反射鏡4の内部に挿入されることを考慮すれば、透光性基板1と同様、透光性を有する材質であることが好ましい。また、支持部材61の形状は、平板状であっても棒状であってもよい。さらに、支持部材61が透光性基板1と一体に形成されていてもよい。 The material of the support member 61 is not particularly limited. However, considering that the support member 61 is inserted into the reflecting mirror 4 due to its movement, the material of the support member 61 is a material having translucency, similar to the translucent substrate 1. Is preferred. Further, the shape of the support member 61 may be a flat plate shape or a rod shape. Further, the support member 61 may be formed integrally with the translucent substrate 1.
 なお、本実施の形態では、レーザ光の光軸方向に支持部材61が移動するものとして説明するが、レーザ光照射領域79の大きさを自在に変化させることが可能であれば、必ずしも光軸方向に移動する必要はない。 In the present embodiment, the support member 61 is described as moving in the optical axis direction of the laser beam. However, if the size of the laser beam irradiation region 79 can be freely changed, the optical axis is not necessarily required. There is no need to move in the direction.
 (支持部材駆動部62)
 支持部材駆動部62は、支持部材61をレーザ光の光軸方向へ移動させるためのものであり、例えばステッピングモータ及びギアからなり、支持部材61毎に設けられている。ギアは、その表面が支持部材61に接触するように、また、その回転軸が支持部材61の移動方向と垂直な方向となるように設けられている。ギアは、支持部材61に対して1つであっても、複数の組み合わせからなっていてもよい。また、ステッピングモータは、その回転をギアに伝播できるように設けられていればよい。
(Supporting member driving unit 62)
The support member driving unit 62 is for moving the support member 61 in the direction of the optical axis of the laser beam, and includes, for example, a stepping motor and a gear, and is provided for each support member 61. The gear is provided such that the surface thereof is in contact with the support member 61 and the rotation axis thereof is in a direction perpendicular to the moving direction of the support member 61. One gear may be provided for the support member 61 or a plurality of combinations may be used. Moreover, the stepping motor should just be provided so that the rotation can be propagated to a gear.
 支持部材駆動部62では、可動制御部641(図33参照)から可動指示を受けると、ステッピングモータが駆動し、ギアが回転する。ギアと支持部材61とが接触して設けられているため、ギアの回転力が支持部材61に伝播され、支持部材61をレーザ光の光軸方向に移動させる。 In the support member driving unit 62, when a movement instruction is received from the movement control unit 641 (see FIG. 33), the stepping motor is driven and the gear rotates. Since the gear and the support member 61 are provided in contact with each other, the rotational force of the gear is transmitted to the support member 61 and moves the support member 61 in the optical axis direction of the laser beam.
 本実施の形態では、製造時には、第1発光部2aの受光面全体にレーザ光が照射されるように設計されている。このため、製造時の状態のまま使用すれば、ヘッドランプ90は、第1発光部2aから出射された第1の蛍光を照明光として出射する。そして、支持部材駆動部62が支持部材61を介して発光部2を移動させることにより、第2発光部2bにもレーザ光が照射され、照明光の一部に第2の蛍光を含めることができる。 In the present embodiment, at the time of manufacture, the entire light receiving surface of the first light emitting unit 2a is designed to be irradiated with laser light. For this reason, if it uses it with the state at the time of manufacture, the headlamp 90 will radiate | emit the 1st fluorescence emitted from the 1st light emission part 2a as illumination light. Then, when the support member driving unit 62 moves the light emitting unit 2 through the support member 61, the second light emitting unit 2b is also irradiated with laser light, and the second fluorescent light is included in a part of the illumination light. it can.
 つまり、支持部材駆動部62は、導光部材9と、第1発光部2a及び第2発光部2bとの相対的な位置(すなわち半導体レーザ63とこれら発光部の相対的な位置)を変化させることにより、第1発光部2aにおけるレーザ光の照射範囲を一定にした上で、第2発光部2bに照射されるレーザ光の照射範囲を変化させている。この相対的な位置を変化させることにより、半導体レーザ63から出射されたレーザ光の光路幅は、一般に出射点からの距離に応じて大きくなる。このため、その変化により、第2発光部2bにおけるレーザの照射範囲(レーザ光照射領域79に含まれる第2発光部2bの割合)を変化させることができる。 That is, the support member driving unit 62 changes the relative positions of the light guide member 9 and the first light emitting unit 2a and the second light emitting unit 2b (that is, the relative positions of the semiconductor laser 63 and these light emitting units). Thus, the irradiation range of the laser light applied to the second light emitting unit 2b is changed while the irradiation range of the laser light in the first light emitting unit 2a is made constant. By changing the relative position, the optical path width of the laser light emitted from the semiconductor laser 63 is generally increased according to the distance from the emission point. For this reason, the laser irradiation range (the ratio of the second light emitting unit 2b included in the laser light irradiation region 79) in the second light emitting unit 2b can be changed by the change.
 <ヘッドランプ90の更なる構成>
 図33には、ヘッドランプ90の更なる構成を示しているが、図33に示す各部材は、図23に示すヘッドランプ60の各部材と同様の機能を有するので、その説明を割愛する。
<Further structure of the headlamp 90>
FIG. 33 shows a further configuration of the headlamp 90, but each member shown in FIG. 33 has the same function as each member of the headlamp 60 shown in FIG.
 <発光部2における各発光部の配置例>
 次に、第1発光部2a及び第2発光部2bの配置例について図34を用いて説明する。図34は、ヘッドランプ90における第1発光部2a及び第2発光部2bの配置例を示すものである。(a)は発光部2全体が直方体形状である場合の配置例、(b)は第1発光部2a及び第2発光部2bが非接触である場合の配置例、(c)は発光部2全体が円柱形状である場合の配置例、(d)は発光部2全体が円柱形状であり、かつ発光部2が3重構造である場合の配置例を示す。
<Example of arrangement of each light emitting unit in the light emitting unit 2>
Next, an arrangement example of the first light emitting unit 2a and the second light emitting unit 2b will be described with reference to FIG. FIG. 34 shows an arrangement example of the first light emitting unit 2 a and the second light emitting unit 2 b in the headlamp 90. (A) is an arrangement example in the case where the entire light emitting unit 2 has a rectangular parallelepiped shape, (b) is an arrangement example in which the first light emitting unit 2a and the second light emitting unit 2b are non-contact, and (c) is the light emitting unit 2. An arrangement example when the whole is a cylindrical shape, (d) shows an arrangement example when the entire light emitting unit 2 has a cylindrical shape and the light emitting unit 2 has a triple structure.
 図34では、第2発光部2bが第1発光部2aの周囲に配置された発光部2の構成を示している。本実施の形態では、支持部材駆動部62が導光部材9と発光部2との距離を変化させることにより、第1発光部2aとともに第2発光部2bにレーザ光を照射して色温度を変化させる。このため、図34の配置の場合、例えば図40(a)に示すような配置の場合よりも、効率よくレーザ光照射領域79(当該領域に含まれる第2発光部2bの割合)を変化させることができる。 34 shows a configuration of the light emitting unit 2 in which the second light emitting unit 2b is arranged around the first light emitting unit 2a. In the present embodiment, the support member driving unit 62 changes the distance between the light guide member 9 and the light emitting unit 2, thereby irradiating the second light emitting unit 2 b with the first light emitting unit 2 a to irradiate the laser light with the color temperature. Change. Therefore, in the arrangement shown in FIG. 34, the laser light irradiation region 79 (the ratio of the second light emitting unit 2b included in the region) is changed more efficiently than in the arrangement shown in FIG. 40A, for example. be able to.
 図34(a)では、図32に示す発光部2における配置例を示しており、第1発光部2aの外周に接触するように第2発光部2bが設けられている。この場合の第1発光部2aは、縦1.5mm×横4mm×厚み0.5mmの直方体であり、第2発光部2bは、第1発光部2aの大きさ分だけ空洞部分を有する、縦4.5mm×横7mm×厚み0.5mmの直方体である。なお、第1発光部2a及び第2発光部2bの大きさはこれに限られたものではない。例えば、第1発光部2aの受光面の大きさは、発光部2が導光部材9との距離が最も近くなるときにレーザ光照射領域79(図36参照)を全て含むような大きさであればよい。また、発光部2全体の受光面の大きさは、発光部2が導光部材9から最も離れたときにレーザ光照射領域79を全て含むような大きさであればよい。さらに、第1発光部2a及び第2発光部2bの厚みも上記に限られるものではなく、例えば蛍光への変換効率、あるいは放熱効率が高くなるような厚みであることが好ましい。 FIG. 34 (a) shows an arrangement example in the light emitting unit 2 shown in FIG. 32, and the second light emitting unit 2b is provided so as to be in contact with the outer periphery of the first light emitting unit 2a. In this case, the first light emitting unit 2a is a rectangular parallelepiped having a length of 1.5 mm, a width of 4 mm, and a thickness of 0.5 mm, and the second light emitting unit 2b has a hollow portion corresponding to the size of the first light emitting unit 2a. It is a rectangular parallelepiped of 4.5 mm × 7 mm wide × 0.5 mm thick. In addition, the magnitude | size of the 1st light emission part 2a and the 2nd light emission part 2b is not restricted to this. For example, the size of the light receiving surface of the first light emitting unit 2a is such that the light emitting unit 2 includes the entire laser light irradiation region 79 (see FIG. 36) when the distance from the light guide member 9 is the shortest. I just need it. In addition, the size of the light receiving surface of the entire light emitting unit 2 may be a size that includes the entire laser light irradiation region 79 when the light emitting unit 2 is farthest from the light guide member 9. Furthermore, the thicknesses of the first light-emitting part 2a and the second light-emitting part 2b are not limited to the above, and for example, it is preferable to have a thickness that increases the conversion efficiency to fluorescence or the heat dissipation efficiency.
 また、発光部2の受光面が長方形である場合を例示しているが、これに限らず、正方形であってもよい。但し、半導体レーザ63から出射されたレーザ光が形成する照射領域は楕円形状であること、また、車両用前照灯の配光特性基準を満たすことを考慮すれば、発光部2の受光面が矩形である場合には、水平方向に長軸を有する長方形であることが好ましい。 Moreover, although the case where the light receiving surface of the light emitting unit 2 is a rectangle is illustrated, the present invention is not limited thereto, and may be a square. However, considering that the irradiation region formed by the laser light emitted from the semiconductor laser 63 is elliptical and satisfies the light distribution characteristic standard of the vehicle headlamp, the light receiving surface of the light emitting unit 2 is When it is a rectangle, it is preferable that it is a rectangle which has a long axis in a horizontal direction.
 図34(a)では、例えば、上記形状の2つの低融点ガラスを製造し、一方の内部にYAG:Ce蛍光体、他方の内部にCASN:Eu蛍光体をそれぞれ分散させて第1発光部2a及び第2発光部2bを製造する。その後、第1発光部2aの透光性基板1に対する位置決めをした後、第1発光部2aを透光性基板1に接着する。第2発光部2bについても同様に透光性基板1に接着する。 In FIG. 34A, for example, two low-melting-point glasses having the above-described shape are manufactured, and a YAG: Ce phosphor is dispersed inside one, and a CASN: Eu phosphor is dispersed inside the other, whereby the first light emitting unit 2a And the 2nd light emission part 2b is manufactured. Then, after positioning the 1st light emission part 2a with respect to the translucent board | substrate 1, the 1st light emission part 2a is adhere | attached on the translucent board | substrate 1. FIG. Similarly, the second light emitting unit 2b is bonded to the translucent substrate 1.
 ここで、図34(b)のように、第1発光部2a及び第2発光部2bが非接触に配置されている場合を示す。本実施の形態では、複数の半導体レーザ63から出射されたレーザ光は、導光部材9で集光され、発光部2に照射されるように設計されている。このため、支持部材駆動部62が導光部材9と発光部2との距離を変化させ、第1発光部2aとともに第2発光部2bにもレーザ光を照射させた場合に、その非接触となっている領域(非接触領域A)にレーザ光が照射されてしまうので、その分、レーザ光の利用効率が低下してしまう。 Here, as shown in FIG. 34 (b), a case where the first light emitting unit 2a and the second light emitting unit 2b are arranged in a non-contact manner is shown. In the present embodiment, the laser light emitted from the plurality of semiconductor lasers 63 is designed to be collected by the light guide member 9 and irradiated to the light emitting unit 2. For this reason, when the support member drive unit 62 changes the distance between the light guide member 9 and the light emitting unit 2 and irradiates the second light emitting unit 2b together with the first light emitting unit 2a, the non-contact is performed. Since the region (non-contact region A) is irradiated with the laser beam, the utilization efficiency of the laser beam is reduced accordingly.
 図34(a)では、第1発光部2aと第2発光部2bとが接触して配置されているので、非接触領域Aにおいてレーザ光が照射され蛍光に変換されないという事態を防ぐことができ、レーザ光を蛍光の変換に無駄なく利用できる。この点を考慮しなければ、あるいは、ヘッドランプ90が非接触領域Aから出射されるレーザ光を第1の蛍光とともに照明光として利用する構成となっている場合には、図34(b)に示すように、第1発光部2a及び第2発光部2bが非接触に配置されていてもよい。なお、図34(b)では、ヘッドランプ90は、発光部2が導光部材9に最も近い位置にあるときに、レーザ光照射領域79が第1発光部2a及び非接触領域Aを全て含むように設計されている。 In FIG. 34 (a), since the first light emitting unit 2a and the second light emitting unit 2b are arranged in contact with each other, it is possible to prevent a situation in which laser light is irradiated and not converted into fluorescence in the non-contact region A. The laser light can be used for conversion of fluorescence without waste. If this point is not taken into account, or if the headlamp 90 is configured to use the laser light emitted from the non-contact area A as illumination light together with the first fluorescence, FIG. As shown, the 1st light emission part 2a and the 2nd light emission part 2b may be arrange | positioned non-contactingly. 34B, in the headlamp 90, when the light emitting unit 2 is located closest to the light guide member 9, the laser light irradiation region 79 includes all of the first light emitting unit 2a and the non-contact region A. Designed to be
 図34(c)は図34(a)の変形例である。第1発光部2aは、直径2.0mm、高さ0.5mmの円柱であり、第2発光部2bは、第1発光部2aの大きさ分だけ空洞部分を有する、直径3.0mm、高さ0.5mmの円柱である。第1発光部2a及び第2発光部2bの大きさ及び形状は、図34(a)で示した事情を考慮して決定されることが好ましく、例えば上記の配光特性基準などを考慮すれば楕円形状であることが好ましい。 FIG. 34 (c) is a modification of FIG. 34 (a). The first light emitting unit 2a is a cylinder having a diameter of 2.0 mm and a height of 0.5 mm, and the second light emitting unit 2b has a hollow portion corresponding to the size of the first light emitting unit 2a. A cylinder with a thickness of 0.5 mm. The size and shape of the first light emitting unit 2a and the second light emitting unit 2b are preferably determined in consideration of the circumstances shown in FIG. 34 (a). An elliptical shape is preferable.
 また、発光部2は2重構造に限らず、例えば図34(d)に示すように3重構造となっていてもよい。図34(d)では、発光部2は、第1発光部2a及び第2発光部2bの大きさ分だけ空洞部分を有する、直径4.0mm、高さ0.5mmの円柱形状の第3発光部2cを備えている。例えば、第1発光部2aがYAG:Ce蛍光体を含み、第2発光部2bがSCASN:Eu蛍光体を含み、第3発光部2cがCASN:Eu蛍光体を含んでいる。この場合、発光部2が2つの発光部からなる場合に比べ、より細かく色温度を変化させることができる。なお、発光部2は4つ以上の発光部からなっていてもよい。 Further, the light emitting unit 2 is not limited to a double structure, and may have a triple structure as shown in FIG. 34 (d), for example. In FIG. 34 (d), the light emitting section 2 has a hollow portion corresponding to the size of the first light emitting section 2a and the second light emitting section 2b, and has a cylindrical shape with a diameter of 4.0 mm and a height of 0.5 mm. Part 2c is provided. For example, the first light emitting unit 2a includes a YAG: Ce phosphor, the second light emitting unit 2b includes a SCASN: Eu phosphor, and the third light emitting unit 2c includes a CASN: Eu phosphor. In this case, the color temperature can be changed more finely than in the case where the light emitting unit 2 includes two light emitting units. In addition, the light emission part 2 may consist of four or more light emission parts.
 ここで、本実施の形態では、ヘッドランプ90は、製造時には第1発光部2a(本体部)にレーザ光が照射されるように設計されており、その後支持部材駆動部62が発光部2を移動させることで、第2発光部2b(周辺部)を含めてレーザ光が照射されるように設計されている。また、第1発光部2aには他の発光部(例えば第2発光部2b、第3発光部2c、…)よりも短いピーク波長を有する蛍光体が用いられる。この配置の場合、ヘッドランプ90は、製造時のままの状態で使用された場合に最も色温度が高い照明光を出射し、その後発光部2を導光部材9から遠ざけるように移動させることで色温度が低い照明光を出射する。 Here, in the present embodiment, the headlamp 90 is designed so that the first light emitting portion 2a (main body portion) is irradiated with laser light at the time of manufacture, and then the support member driving portion 62 causes the light emitting portion 2 to be irradiated. It is designed to be irradiated with laser light including the second light emitting part 2b (peripheral part) by being moved. In addition, a phosphor having a shorter peak wavelength than the other light emitting units (for example, the second light emitting unit 2b, the third light emitting unit 2c,...) Is used for the first light emitting unit 2a. In the case of this arrangement, the headlamp 90 emits illumination light having the highest color temperature when used in a state as manufactured, and then moves the light emitting unit 2 away from the light guide member 9. Illumination light having a low color temperature is emitted.
 ここで、色温度が低い照明光を出射した(第2の蛍光を出射した)場合には、第1の蛍光だけを照明光として利用している場合に比べ、レーザ光照射領域79(発光部2の受光面における発光点サイズ)が拡大する。また、発光部2から出射された照明光は、反射鏡4やレンズ82等の光学系により、車両の前方においてその照射領域が拡大される。一般に、照明光の照度を低くして車両の前方を広く照射した方が視認性・安全性が高い。例えば、濃霧時に照度が高いハイビームを点灯させた場合には視認性が低下する。本実施の形態では、色温度が低い照明光ほど車両の前方を広く照射できるので、悪天候時(雨天時、霧発生時など)における照射に適したヘッドランプを提供できる。 Here, in the case where illumination light having a low color temperature is emitted (second fluorescence is emitted), compared with a case where only the first fluorescence is used as illumination light, the laser light irradiation region 79 (light emitting unit) 2). The illumination area of the illumination light emitted from the light emitting unit 2 is enlarged in front of the vehicle by an optical system such as the reflecting mirror 4 and the lens 82. Generally, visibility and safety are higher when the illuminance of the illumination light is lowered and the front of the vehicle is widely irradiated. For example, when a high beam with high illuminance is turned on during dense fog, the visibility decreases. In the present embodiment, the illumination light having a lower color temperature can irradiate the front of the vehicle more widely. Therefore, it is possible to provide a headlamp suitable for irradiation in bad weather (rainy weather, fog, etc.).
 なお、上記の視認性・安全性を考慮しなければ、発光部2に用いる蛍光体のうち最もピーク波長が長い蛍光体を第1蛍光体として利用し、製造時のままの状態で使用した場合に最も低い色温度の照明光を出射するように発光部2が構成されていてもよい。 If the above visibility and safety are not taken into account, the phosphor having the longest peak wavelength is used as the first phosphor among the phosphors used in the light emitting unit 2 and used as it is at the time of manufacture. The light emitting unit 2 may be configured to emit illumination light having the lowest color temperature.
 また、上記では、各発光部が別々に製造され、透光性基板1に設けられるものとして説明したが、これに限らず、一体に形成されてもよい。一体形成した場合には、各発光部を別々に製造してヘッドランプ90に備える場合に比べ、製造工程及び製造コストを削減できる。 In the above description, each light emitting unit is manufactured separately and provided on the translucent substrate 1. However, the present invention is not limited to this, and the light emitting units may be integrally formed. When integrally formed, the manufacturing process and the manufacturing cost can be reduced as compared with the case where each light emitting unit is manufactured separately and provided in the headlamp 90.
 各発光部が一体形成される場合には、発光部2は例えば次のように製造される。まず、異なる2つの融点を有する封止材(例えば低融点ガラス)を用意し、蛍光体が分散された高融点の方の封止材を用いて(第1発光部2aの大きさ分だけ空洞部分を有する)第2発光部2bを形成する。その後、この第2発光部2bを外枠として別の蛍光体が分散された低融点の封止材からなる第1発光部2aを形成する。これにより、一体形成の発光部2が得られる。その後、発光部2の透光性基板1に対する位置決めをした後、発光部2を透光性基板1に接着する。 When the light emitting units are integrally formed, the light emitting unit 2 is manufactured as follows, for example. First, a sealing material having two different melting points (for example, a low melting point glass) is prepared, and a high melting point sealing material in which phosphors are dispersed is used (a cavity corresponding to the size of the first light emitting portion 2a). The second light emitting portion 2b having a portion is formed. Thereafter, the first light emitting unit 2a made of a low melting point sealing material in which another phosphor is dispersed is formed using the second light emitting unit 2b as an outer frame. Thereby, the integrally formed light emitting part 2 is obtained. Then, after positioning the light emission part 2 with respect to the translucent board | substrate 1, the light emission part 2 is adhere | attached on the translucent board | substrate 1. FIG.
 図35は、一体形成された発光部2の一例を示す図であり、(a)は透光性基板1に接着された発光部2の一例を示す断面図であり、(b)は(a)に示す発光部2の一例を示す斜視図である。同図に示すように、第1発光部2aは、レーザ光が照射される受光面201aの大きさが、蛍光を出射する出射面202aよりも大きい、所謂すり鉢形状となっている。すなわち、受光面201aの各頂点と出射面202aの各頂点とを結ぶ直線が形成する4つの面(第1発光部2a及び第2発光部2bの接触面(壁面))が受光面201aに対して斜面を形成している。それゆえ、第1発光部2aの受光面201a側が透光性基板1に接着したときに、例えば第1発光部2aが直方体(受光面201aの大きさが出射面202aの大きさとが略同一)である場合に比べ、第1発光部2aが透光性基板1から外れて落ちないようにすることができる。 FIG. 35 is a view showing an example of the integrally formed light emitting portion 2, (a) is a cross-sectional view showing an example of the light emitting portion 2 bonded to the translucent substrate 1, and (b) is (a) It is a perspective view which shows an example of the light emission part 2 shown to). As shown in the figure, the first light emitting unit 2a has a so-called mortar shape in which the size of the light receiving surface 201a irradiated with the laser light is larger than that of the emitting surface 202a that emits fluorescence. That is, four surfaces (contact surfaces (wall surfaces) of the first light emitting unit 2a and the second light emitting unit 2b) formed by straight lines connecting the respective vertexes of the light receiving surface 201a and the respective vertexes of the emission surface 202a are in relation to the light receiving surface 201a. The slope is formed. Therefore, when the light receiving surface 201a side of the first light emitting unit 2a is bonded to the translucent substrate 1, for example, the first light emitting unit 2a is a rectangular parallelepiped (the size of the light receiving surface 201a is substantially the same as the size of the emitting surface 202a). Compared with the case where it is, it can prevent that the 1st light emission part 2a remove | deviates from the translucent board | substrate 1, and falls.
 なお、図35に示す発光部2の形状は、第1発光部2aと第2発光部2bとが一体形成された場合に限らず、上述した第1発光部2aと第2発光部2bとが別々に製造される場合にも実現できる。 The shape of the light emitting unit 2 shown in FIG. 35 is not limited to the case where the first light emitting unit 2a and the second light emitting unit 2b are integrally formed, and the first light emitting unit 2a and the second light emitting unit 2b described above are formed. It can also be realized when manufactured separately.
 <発光部2の移動制御>
 (レーザ光照射領域79の変化について)
 次に、レーザ光照射領域79の大きさが変化する様子について、図36を用いて説明する。ここでは、その様子をわかりやすくするために、レーザ光照射領域79の形状が楕円形状で、発光部2の形状が直方体であるものとして説明する。
<Movement control of light emitting unit 2>
(Regarding changes in the laser light irradiation region 79)
Next, how the size of the laser light irradiation region 79 changes will be described with reference to FIG. Here, in order to make the situation easy to understand, it is assumed that the laser light irradiation region 79 has an elliptical shape and the light emitting unit 2 has a rectangular parallelepiped shape.
 図36は、発光部2と導光部材9との位置関係と、そのときのレーザ光照射領域79の大きさを示す図である。同図の(a)はレーザ光が第1発光部2aの受光面全体に照射されたときのレーザ光照射領域79の大きさが最も小さい場合を示す。また、同図の(b)は(a)の場合よりも、発光部2と導光部材9との位置が離れ、かつレーザ光照射領域79が大きい場合を示し、(c)は(b)の場合よりも、発光部2と導光部材9との位置が離れ、かつレーザ光照射領域79が大きい場合を示す。 FIG. 36 is a diagram showing the positional relationship between the light emitting unit 2 and the light guide member 9 and the size of the laser light irradiation region 79 at that time. (A) of the figure shows a case where the size of the laser light irradiation region 79 is the smallest when the laser light is irradiated on the entire light receiving surface of the first light emitting unit 2a. Moreover, (b) of the figure shows the case where the positions of the light emitting unit 2 and the light guide member 9 are farther apart and the laser light irradiation region 79 is larger than in the case of (a), and (c) is (b). The case where the positions of the light emitting unit 2 and the light guide member 9 are separated and the laser light irradiation region 79 is larger than the case of FIG.
 まず、図36(a)に示すように、発光部2と導光部材9との距離がdであるとき、レーザ光は、第1発光部2aの受光面全体に照射され、第2発光部2bにはほとんど照射されていない。このため、製造時のレーザ光照射の設定に従った色温度が高い照明光の出射が実現されている。なお、第1発光部2aの受光面全体にレーザ光が照射されていればよく、例えば第1発光部2aがレーザ光照射領域79と同形状の楕円形状であれば、第1発光部2aのみにレーザ光が照射されることとなる。 First, as shown in FIG. 36A, when the distance between the light emitting unit 2 and the light guide member 9 is d A , the laser light is irradiated to the entire light receiving surface of the first light emitting unit 2a, and the second light emission. The portion 2b is hardly irradiated. For this reason, emission of illumination light having a high color temperature according to the setting of laser beam irradiation at the time of manufacture is realized. Note that it is sufficient that the entire light receiving surface of the first light emitting unit 2a is irradiated with laser light. For example, if the first light emitting unit 2a has an elliptical shape that is the same shape as the laser light irradiation region 79, only the first light emitting unit 2a is used. Is irradiated with laser light.
 次に、図36(b)では、発光部2と導光部材9との距離がd(>d)となったときを示している。この場合、可動制御部641が支持部材駆動部62を駆動することにより、支持部材駆動部62は、支持部材61を介して、発光部2と導光部材9との距離がdとなるまで発光部2を移動させている。 Next, FIG. 36B shows a case where the distance between the light emitting unit 2 and the light guide member 9 becomes d B (> d A ). This case, the movable control unit 641 drives the supporting member driving unit 62, the supporting member driving unit 62, via the support member 61 until the distance between the light emitting portion 2 and the light guide member 9 is d B The light emitting unit 2 is moved.
 一般に、透光性基板1と導光部材9との間に凸レンズ等の集光部材が存在しない、あるいは導光部材9の出射端部がレーザ光を集光できる形状となっていない場合には、導光部材9から出射されたレーザ光の光路幅は、導光部材9からの距離に比例して大きくなる。すなわち、発光部2が導光部材9から離れるほどレーザ光照射領域79が大きくなる。この場合のレーザ光の形状は、先太りの円錐形状(正確には楕円錐形状)となっている。なお、レーザ光の形状は真円の円錐形状であってもよく、当該円錐形状を実現する目的であれば、透光性基板1と導光部材9との間に集光部材を設けてもよい。 In general, when a condensing member such as a convex lens does not exist between the translucent substrate 1 and the light guide member 9, or when the exit end of the light guide member 9 is not in a shape capable of condensing laser light. The optical path width of the laser light emitted from the light guide member 9 increases in proportion to the distance from the light guide member 9. That is, the laser light irradiation region 79 becomes larger as the light emitting unit 2 is separated from the light guide member 9. The shape of the laser beam in this case is a tapered cone shape (more precisely, an elliptical cone shape). The shape of the laser beam may be a perfect circular cone shape. For the purpose of realizing the cone shape, a condensing member may be provided between the translucent substrate 1 and the light guide member 9. Good.
 つまり、上記の移動により、図36(b)では、支持部材駆動部62が発光部2と導光部材9との距離をdからdまで変化させたことにより、レーザ光照射領域79に含まれる第2発光部2bの割合が、図36(a)の場合よりも大きくなっている。その割合が大きくなった分だけ第1の蛍光に加え第2の蛍光を出射できるので、照明光に対する第2の蛍光の割合を増加させることができる。 That is, by the above movement, in FIG. 36B, the support member driving unit 62 changes the distance between the light emitting unit 2 and the light guide member 9 from d A to d B , so that the laser beam irradiation region 79 is changed. The ratio of the 2nd light emission part 2b contained is larger than the case of Fig.36 (a). Since the second fluorescence can be emitted in addition to the first fluorescence, the proportion of the second fluorescence relative to the illumination light can be increased.
 本実施の形態では、第2蛍光体は第1蛍光体よりもピーク波長が長いので、第2発光部2bが出射する第2の蛍光は第1の蛍光よりも色温度が低い。このため、照明光に含まれる第2の蛍光の割合を増加させることにより、図36(a)の場合よりも照明光の色温度を低くできる。 In the present embodiment, since the second phosphor has a longer peak wavelength than the first phosphor, the second fluorescence emitted from the second light emitting unit 2b has a lower color temperature than the first fluorescence. For this reason, the color temperature of illumination light can be made lower than the case of Fig.36 (a) by increasing the ratio of the 2nd fluorescence contained in illumination light.
 図36(c)では、発光部2と導光部材9との距離がd(>d)となったときを示しており、レーザ光照射領域79に含まれる第2発光部2bの割合が図36(b)の場合よりも大きくなっている。それゆえ、さらに照明光の色温度を低くできる。 FIG. 36 (c) shows a case where the distance between the light emitting unit 2 and the light guide member 9 is d C (> d B ), and the ratio of the second light emitting unit 2 b included in the laser light irradiation region 79. Is larger than the case of FIG. Therefore, the color temperature of the illumination light can be further reduced.
 一方、例えば図36(c)の発光部2の位置から図36(a)の発光部2の位置に移動させる(距離dから距離dに変更)ことにより、照明光に含まれる第2の蛍光の割合を小さくできるので、照明光の色温度を高めることができる。 On the other hand, for example, by moving from the position of the light emitting unit 2 in FIG. 36C to the position of the light emitting unit 2 in FIG. 36A (changing from the distance d C to the distance d A ), the second included in the illumination light. Therefore, the color temperature of the illumination light can be increased.
 このように、支持部材駆動部62は、支持部材61を介して、発光部2におけるレーザ光照射領域79の大きさを変化させている。換言すれば、支持部材駆動部62は、第1発光部2aにおけるレーザ光の照射範囲を一定にした上で、第2発光部2bに照射されるレーザ光の照射範囲を変化させることにより、照明光に対する第1の蛍光及び第2の蛍光の割合を変化させることができる。このため、発光部2から出射される照明光のスペクトルを変化させることができるので、照明光の色温度のみならず、照明光の色度、照明光に含まれるスペクトルを変更することができる。 As described above, the support member driving unit 62 changes the size of the laser light irradiation region 79 in the light emitting unit 2 through the support member 61. In other words, the support member driving unit 62 changes the irradiation range of the laser light irradiated to the second light emitting unit 2b while keeping the irradiation range of the laser light in the first light emitting unit 2a constant, thereby changing the illumination range. The ratio of the first fluorescence and the second fluorescence to the light can be changed. For this reason, since the spectrum of the illumination light emitted from the light emitting unit 2 can be changed, not only the color temperature of the illumination light but also the chromaticity of the illumination light and the spectrum included in the illumination light can be changed.
 なお、上記では、支持部材駆動部62が発光部2を移動させる構成であったが、これに限らず、例えば導光部材9を移動させてレーザ光照射領域79の大きさを変化させる構成であってもよい。 In the above description, the support member drive unit 62 is configured to move the light emitting unit 2. However, the configuration is not limited thereto, and for example, the size of the laser light irradiation region 79 is changed by moving the light guide member 9. There may be.
 また、上記では、導光部材9から出射されたレーザ光の光路幅が、導光部材9からの距離に比例して大きくなる場合について説明したが、当該光路幅が当該距離に比例して小さくなる場合であっても、発光部2または導光部材9を移動させることにより、レーザ光照射領域79の大きさを変化させることができる。但し、この場合、図36(a)におけるレーザ光の照射状態が、発光部2が導光部材9から最も離れたとき(d=d)に実現され、図36(c)におけるレーザ光の照射状態が、発光部2が導光部材9から最も近いとき(d=d)に実現される。 In the above description, the optical path width of the laser light emitted from the light guide member 9 is increased in proportion to the distance from the light guide member 9, but the optical path width is decreased in proportion to the distance. Even in this case, the size of the laser light irradiation region 79 can be changed by moving the light emitting unit 2 or the light guide member 9. However, in this case, the irradiation state of the laser light in FIG. 36A is realized when the light emitting unit 2 is farthest from the light guide member 9 (d = d C ), and the laser light irradiation in FIG. The irradiation state is realized when the light emitting unit 2 is closest to the light guide member 9 (d = d A ).
 なお、本実施の形態では、発光部2と導光部材9との距離がdからdに変化する場合、その変化(発光部2の移動)は連続的に行われるものとして説明したが、例えばその距離がd及びdのときだけ発光部2の位置決めが可能である構成であってもよい。すなわち、発光部2の移動が連続的でなく、段階的に行われてもよい。この場合、支持部材駆動部62は、レーザ光照射領域79に第1発光部2aのみが含まれる、あるいは、当該領域に第1発光部2a及び第2発光部2bが含まれるといった状態を段階的に切り替える。なお、発光部2が3つ以上の発光部を含む場合にも、同様の切り替えを行うことにより色温度変化を実現できる。 In the present embodiment, when the distance between the light emitting unit 2 and the light guide member 9 changes from d A to d C , the change (movement of the light emitting unit 2) is described as being performed continuously. For example, the light emitting unit 2 may be positioned only when the distances are d A and d C. That is, the movement of the light emitting unit 2 may be performed stepwise instead of continuously. In this case, the support member driving unit 62 gradually changes the state in which the laser light irradiation region 79 includes only the first light emitting unit 2a or the region includes the first light emitting unit 2a and the second light emitting unit 2b. Switch to. In addition, also when the light emission part 2 contains three or more light emission parts, a color temperature change is realizable by performing the same switching.
 (色温度の変化について)
 次に、半導体レーザ63から出射されるレーザ光及び発光部2に含まれる蛍光体と、そのときの照明光の色温度との関係について、図37を用いて説明する。図37は、車両用前照灯に要求される白色の色度範囲を示すグラフ(色度図)である。同図に示すように車両用前照灯に要求される白色の色度範囲が法律により規定されている。当該色度範囲は、6つの点35を頂点とする多角形の内部である。また、曲線33は、色温度(K:ケルビン)を示すものである。
(About changes in color temperature)
Next, the relationship between the laser light emitted from the semiconductor laser 63 and the phosphor included in the light emitting unit 2 and the color temperature of the illumination light at that time will be described with reference to FIG. FIG. 37 is a graph (chromaticity diagram) showing a white chromaticity range required for a vehicle headlamp. As shown in the figure, the white chromaticity range required for vehicle headlamps is regulated by law. The chromaticity range is inside a polygon having six points 35 as vertices. A curve 33 indicates the color temperature (K: Kelvin).
 図示のように、半導体レーザ63の発振波長が440nm(色度点41:青色領域)、蛍光体のピーク波長が570nm(色度点42:黄色領域)の場合、直線39に示すように、約4500Kから8500Kの照明光の色温度を実現できる。一方、半導体レーザ63の発振波長が440nm(色度点41:青色領域)、蛍光体のピーク波長が649nm(色度点431:赤色領域)の場合には、直線441に示すように、黄色発光蛍光体を用いた場合よりも照明光の色温度が非常に低くなることがわかる。 As shown in the figure, when the oscillation wavelength of the semiconductor laser 63 is 440 nm (chromaticity point 41: blue region) and the peak wavelength of the phosphor is 570 nm (chromaticity point 42: yellow region), as shown by a straight line 39, about A color temperature of illumination light from 4500K to 8500K can be realized. On the other hand, when the oscillation wavelength of the semiconductor laser 63 is 440 nm (chromaticity point 41: blue region) and the peak wavelength of the phosphor is 649 nm (chromaticity point 431: red region), as shown by a straight line 441, yellow light is emitted. It can be seen that the color temperature of the illumination light is much lower than when a phosphor is used.
 したがって、図37に示す色度図からもわかるように、第1発光部2aの受光面全体にレーザ光が照射された状態から、第2発光部2bの受光面にもレーザ光が照射される状態とすることにより、照明光の色温度を赤色方向に移動させる、すなわち色温度が低下する方向に移動させることができる。 Therefore, as can be seen from the chromaticity diagram shown in FIG. 37, the laser light is also applied to the light receiving surface of the second light emitting unit 2b from the state where the entire light receiving surface of the first light emitting unit 2a is applied. By setting the state, the color temperature of the illumination light can be moved in the red direction, that is, the color temperature can be decreased.
 なお、半導体レーザ63の基本構造については、実施の形態1で図3(c)および(d)を用いて説明したLDチップ11の基本構造と同様であるため、その説明を割愛する。また、発光部2の発光原理についても、実施の形態1で説明した発光部2の発光原理と同様であるため、その説明を割愛する。 The basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted. Further, the light emission principle of the light emitting unit 2 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted.
 <ヘッドランプ90の変形例1>
 図38は、ヘッドランプ90の変形例を示す図である。このヘッドランプ90は、透光性基板1と導光部材9との間に、半導体レーザ63から出射されたレーザ光を屈曲して、第1発光部2a及び第2発光部2bの少なくとも一方に出射する凸レンズ161(光学部材)を備えており、凸レンズ161の外周の一部に支持部材61が設けられている。すなわち、このヘッドランプ90では、支持部材駆動部62が、発光部2の代わりに凸レンズ161を移動させることにより、照明光の色温度変化を実現している。
<Modification 1 of Headlamp 90>
FIG. 38 is a view showing a modification of the headlamp 90. This headlamp 90 bends the laser light emitted from the semiconductor laser 63 between the translucent substrate 1 and the light guide member 9, and forms at least one of the first light emitting part 2a and the second light emitting part 2b. A convex lens 161 (optical member) that emits light is provided, and a support member 61 is provided on a part of the outer periphery of the convex lens 161. That is, in the headlamp 90, the support member driving unit 62 moves the convex lens 161 instead of the light emitting unit 2, thereby realizing a change in the color temperature of the illumination light.
 具体的には、凸レンズ161を備えることにより、図38に示すように、凸レンズ161透過後のレーザ光の光路幅を、凸レンズ161入射前のレーザ光の光路幅とは異なり、かつ、凸レンズ161からの距離に応じて変化するように出射できる。つまり、レーザ光は、凸レンズ161を透過することにより、凸レンズ161を基点としてその光路幅が新たに変化していくこととなる。このため、凸レンズ161を移動させることにより、凸レンズ161と第1発光部2a及び/又は第2発光部2bとの距離を変更できる。第2発光部2bにおけるレーザ光の照射範囲が、凸レンズ161と発光部2との距離に応じて変化するので、支持部材駆動部62がその距離を変更することにより、結果として照明光の色温度を変化させることができる。 Specifically, by providing the convex lens 161, the optical path width of the laser light after passing through the convex lens 161 is different from the optical path width of the laser light before entering the convex lens 161, as shown in FIG. It can be emitted so as to change according to the distance. That is, the laser light is transmitted through the convex lens 161, and the optical path width is newly changed with the convex lens 161 as a base point. For this reason, the distance between the convex lens 161 and the first light emitting unit 2a and / or the second light emitting unit 2b can be changed by moving the convex lens 161. Since the irradiation range of the laser light in the second light emitting unit 2b changes according to the distance between the convex lens 161 and the light emitting unit 2, the support member driving unit 62 changes the distance, resulting in the color temperature of the illumination light. Can be changed.
 導光部材9から出射されるレーザ光の光路に対して焦点距離が十分に長いレンズの場合、図38のようにレーザ光の光路幅を変更できる。このため、凸レンズ161としては、焦点距離が十分に長い両凸レンズ、平凸レンズなどが使用できる。その他、導光部材9から出射されるレーザ光が、平行光で、かつ細いレーザ光である場合には、凸レンズ161の代わりとして、両凹レンズ、平凹レンズなどの凹レンズも使用可能である。つまり、凸レンズ161は、入射するレーザ光の出射角度を変更可能なレンズであればよく、その機能を有していれば非球面レンズであってもよい。 In the case of a lens having a sufficiently long focal length with respect to the optical path of the laser light emitted from the light guide member 9, the optical path width of the laser light can be changed as shown in FIG. For this reason, as the convex lens 161, a biconvex lens, a plano-convex lens or the like having a sufficiently long focal length can be used. In addition, when the laser light emitted from the light guide member 9 is parallel and thin laser light, a concave lens such as a biconcave lens or a plano-concave lens can be used instead of the convex lens 161. That is, the convex lens 161 may be any lens that can change the emission angle of the incident laser light, and may be an aspherical lens as long as it has the function.
 なお、凸レンズ161には、レーザ光の反射を防止する光学膜(反射膜)がコーティングされていることが好ましい。また、上述の機能を有するレンズであれば、凸レンズ161の形状および材質は特に限定されないが、440~480nmの透過率が高いことが好ましい。 The convex lens 161 is preferably coated with an optical film (reflection film) that prevents reflection of laser light. In addition, the shape and material of the convex lens 161 are not particularly limited as long as the lens has the above function, but it is preferable that the transmittance of 440 to 480 nm is high.
 <ヘッドランプ90の効果>
 ヘッドランプ90は、第1発光部2aにおけるレーザ光の照射範囲を一定にした上で、第2発光部2bに照射されるレーザ光の照射範囲を変化させる支持部材61及び支持部材駆動部62を備えている。このため、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができるので、その割合の変化により、照明光の色温度を変化させることができる。
<Effect of headlamp 90>
The headlamp 90 includes a support member 61 and a support member driving unit 62 that change the irradiation range of the laser light irradiated to the second light emitting unit 2b while keeping the irradiation range of the laser light in the first light emitting unit 2a constant. I have. For this reason, since the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
 特に、本発明の照明装置は、夜間の自動車運転を行う際、周囲の様々な状況(天候・時間帯・道路の照明状況等)を鑑みて、その状況により適合した色温度の照明光を照射できるので、夜間走行の安全性をより向上させることができる。また、そのようなニーズにも対応できる照明装置といえる。 In particular, the illumination device according to the present invention irradiates illumination light having a color temperature suitable for the situation in consideration of various surrounding situations (weather, time zone, road illumination conditions, etc.) when driving a car at night. As a result, it is possible to further improve the safety of night driving. Moreover, it can be said that it is an illuminating device which can respond also to such needs.
 〔実施の形態10〕
 本発明の他の実施形態について図39~図41に基づいて説明すれば、以下のとおりである。図39は、ヘッドランプ100(照明装置、前照灯)の概要構成を示す図である。なお、実施の形態9と同様の部材に関しては、同じ符号を付し、その説明を省略する。
[Embodiment 10]
The following will describe another embodiment of the present invention with reference to FIGS. FIG. 39 is a diagram showing a schematic configuration of the headlamp 100 (lighting device, headlamp). In addition, about the member similar to Embodiment 9, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 本実施の形態のヘッドランプ100は、透光性基板駆動部62aにより、透光性基板1aがレーザ光の光軸方向に対して垂直な方向に移動することが可能な構成となっている。図39では、支持部材61を備えずに当該垂直な方向への移動を実現しているが、これに限らず、支持部材61を介してその移動を実現する構成であってもよい。 The headlamp 100 according to the present embodiment has a configuration in which the translucent substrate 1a can be moved in a direction perpendicular to the optical axis direction of the laser beam by the translucent substrate driving unit 62a. In FIG. 39, the movement in the vertical direction is realized without the support member 61, but the configuration is not limited thereto, and the movement may be realized via the support member 61.
 (透光性基板1a)
 透光性基板1aの機能及び材質は、実施の形態9の透光性基板1と同様であるが、その大きさは、例えば縦10mm×横15mm×厚み0.5mmとなっており、横の長さ(移動方向への長さ)が、反射鏡4の導光部材9側の開口部の大きさよりも大きくなっている。また、透光性基板1aには、透光性基板駆動部62aのギアと噛み合うように、透光性基板1aのレーザ光入射側(導光部材9側)の表面には溝が設けられている。
(Translucent substrate 1a)
The function and material of the translucent substrate 1a are the same as those of the translucent substrate 1 of the ninth embodiment, but the size is, for example, 10 mm long × 15 mm wide × 0.5 mm thick. The length (length in the moving direction) is larger than the size of the opening of the reflecting mirror 4 on the light guide member 9 side. Further, the translucent substrate 1a is provided with a groove on the surface of the translucent substrate 1a on the laser light incident side (light guide member 9 side) so as to mesh with the gear of the translucent substrate driving unit 62a. Yes.
 但し、透光性基板1aがレーザ光を透過させる機能を有していることを考慮すれば、当該溝は発光部2が接着された表面に対向する表面には設けられていないことが好ましい。また、また、ギアに連動して動作するのであれば、透光性基板1aの表面がどのような形状になっていてもよく、また特に加工されていなくてもよい。 However, considering that the translucent substrate 1a has a function of transmitting laser light, it is preferable that the groove is not provided on the surface facing the surface to which the light emitting unit 2 is bonded. Moreover, as long as it operate | moves interlock | cooperating with a gear, the surface of the translucent board | substrate 1a may be what kind of shape, and it does not need to be processed especially.
 (透光性基板駆動部62a)
 透光性基板駆動部62aは、例えばステッピングモータ及びギアからなり、透光性基板1aをレーザ光の光軸方向に対して垂直な方向に移動させることにより、発光部2をその方向に移動させるものである。つまり、本実施の形態では、透光性基板駆動部62aによって照射範囲変化機構の基本構造が形成されている。
(Translucent substrate driving part 62a)
The translucent substrate driving unit 62a includes, for example, a stepping motor and a gear, and moves the light emitting unit 2 in the direction by moving the translucent substrate 1a in a direction perpendicular to the optical axis direction of the laser beam. Is. That is, in the present embodiment, the basic structure of the irradiation range changing mechanism is formed by the translucent substrate driving unit 62a.
 ギアは、その表面が透光性基板1aに接触するように、また、その回転軸が透光性基板1aの移動方向と垂直な方向となるように設けられている。ギアは、1つであっても、複数の組み合わせからなっていてもよい。また、ステッピングモータは、その回転をギアに伝播できるように設けられていればよい。 The gear is provided such that the surface thereof is in contact with the translucent substrate 1a and the rotation axis thereof is perpendicular to the moving direction of the translucent substrate 1a. There may be one gear or a plurality of combinations. Moreover, the stepping motor should just be provided so that the rotation can be propagated to a gear.
 また、透光性基板駆動部62aは、実施の形態9と同様、可動制御部641(図33参照)からの可動指示により、透光性基板1aを移動させる。 Also, the translucent substrate drive unit 62a moves the translucent substrate 1a in accordance with a movement instruction from the movable control unit 641 (see FIG. 33), as in the ninth embodiment.
 なお、レーザ光照射領域79に含まれる第1発光部2a及び第2発光部2bの割合を変化させることが可能であれば、透光性基板駆動部62aが透光性基板1a(すなわち発光部2)を移動させる構成に限られず、導光部材9や励起光源ユニット6等を移動させる構成であってもよい。 In addition, if the ratio of the 1st light emission part 2a and the 2nd light emission part 2b contained in the laser beam irradiation area | region 79 can be changed, the translucent board | substrate drive part 62a will be the translucent board | substrate 1a (namely, light emission part). The configuration is not limited to the configuration in which 2) is moved, and may be a configuration in which the light guide member 9, the excitation light source unit 6 and the like are moved.
 (発光部2における各発光部の配置例)
 次に、第1発光部2a及び第2発光部2bの配置例について図40を用いて説明する。図40は、ヘッドランプ100における第1発光部2a及び第2発光部2bの配置例を示すものである。(a)は第1発光部2a及び第2発光部2bが同じ形状で、かつ接触して配置されている場合の配置例、(b)は(a)の変形例であり、第1発光部2a及び第2発光部2bの形状が異なる場合の配置例、(c)は(a)の変形例であり、第1発光部2a及び第2発光部2bが非接触である場合の配置例を示す。
(Example of arrangement of light emitting units in the light emitting unit 2)
Next, an arrangement example of the first light emitting unit 2a and the second light emitting unit 2b will be described with reference to FIG. FIG. 40 shows an arrangement example of the first light emitting unit 2 a and the second light emitting unit 2 b in the headlamp 100. (A) is the example of arrangement | positioning in case the 1st light emission part 2a and the 2nd light emission part 2b are the same shape, and are arrange | positioned in contact, (b) is a modification of (a), 1st light emission part 2a and 2nd light emission part 2b when the shape differs, (c) is a modification of (a), the arrangement example when the 1st light emission part 2a and the 2nd light emission part 2b are non-contact Show.
 図40(a)では、第1発光部2a及び第2発光部2bの大きさは、ともに縦4.5mm×横3.5mm×厚み0.5mmとなっており、両発光部は接触して設けられている。この大きさは一例であり、実施の形態9と同様、レーザ光の照射、蛍光への変換効率、放熱効率などを考慮した大きさであればよい。 In FIG. 40 (a), the size of the first light emitting unit 2a and the second light emitting unit 2b is 4.5 mm long × 3.5 mm wide × 0.5 mm thick. Is provided. This size is merely an example, and it may be any size in consideration of laser light irradiation, conversion efficiency to fluorescence, heat dissipation efficiency, and the like, as in the ninth embodiment.
 第1発光部2a及び第2発光部2bが接触して設けられている場合、実施の形態9と同様、例えば図40(c)に示すような両発光部が非接触に設けられている場合に生じる、非接触領域Aにレーザ光が照射され蛍光に変換されないという事態を防ぐことができる。それゆえ、レーザ光を蛍光の変換に無駄なく利用できる。 When the first light emitting unit 2a and the second light emitting unit 2b are provided in contact with each other, as in the case of the ninth embodiment, for example, when both the light emitting units as shown in FIG. It is possible to prevent a situation in which the non-contact area A is irradiated with laser light and is not converted into fluorescence. Therefore, the laser beam can be used for conversion of fluorescence without waste.
 また、図40(b)は、図40(a)の変形例であり、第1発光部2a及び第2発光部2bの大きさが異なる場合を示している。図40では、例えば、第1発光部2aの大きさが縦4.5mm×横3mm×厚み0.5mm、第2発光部2bの大きさが縦4.5mm×横4mm×厚み0.5mmとなっている。図40(a)と同様、その大きさはこれに限られない。 FIG. 40 (b) is a modification of FIG. 40 (a) and shows a case where the first light emitting unit 2a and the second light emitting unit 2b are different in size. In FIG. 40, for example, the size of the first light emitting unit 2a is 4.5 mm long × 3 mm wide × 0.5 mm thick, and the size of the second light emitting unit 2b is 4.5 mm long × 4 mm wide × 0.5 mm thick. It has become. As in FIG. 40A, the size is not limited to this.
 ヘッドランプ100では、レーザ光照射領域79(図41(a)参照)が第1発光部2aの受光面に含まれる大きさとなるように、発光部2などの位置決めがされている。このため、図40(b)の場合には、図41(a)のように第1発光部2aにレーザ光を照射した場合(製造時に設定されたレーザ光照射)であっても、わずかに第2発光部2bから第2の蛍光を出射させることができる。このため、ヘッドランプ100が製造時の状態のまま使用されても、色温度及び演色性が比較的高い照明光を出射できる。 In the headlamp 100, the light emitting unit 2 and the like are positioned so that the laser light irradiation region 79 (see FIG. 41 (a)) has a size included in the light receiving surface of the first light emitting unit 2a. For this reason, in the case of FIG. 40B, even when the first light emitting unit 2a is irradiated with laser light (laser light irradiation set at the time of manufacture) as shown in FIG. The second fluorescence can be emitted from the second light emitting unit 2b. For this reason, even if the headlamp 100 is used as it is at the time of manufacture, illumination light having a relatively high color temperature and color rendering can be emitted.
 なお、図示しないが、例えば3つ以上の発光部を並べて配置することによって、図34(d)と同様、より細かく色温度を変化させることも可能である。 Although not shown, for example, by arranging three or more light emitting units side by side, it is possible to change the color temperature more finely as in FIG. 34 (d).
 (レーザ光照射領域79の変化について)
 次に、レーザ光照射領域79の大きさが変化する様子について、図41を用いて説明する。図41は、発光部2におけるレーザ光照射領域79の大きさの変化を示す図であり、(a)は第1発光部2aにだけレーザ光が照射されている場合を示し、(b)は第1発光部2a及び第2発光部2bの両方にレーザ光が照射されている場合を示す。
(Regarding changes in the laser light irradiation region 79)
Next, how the size of the laser light irradiation region 79 changes will be described with reference to FIG. FIG. 41 is a diagram illustrating a change in the size of the laser light irradiation region 79 in the light emitting unit 2. FIG. 41A illustrates a case where only the first light emitting unit 2 a is irradiated with laser light, and FIG. The case where the laser beam is irradiated to both the 1st light emission part 2a and the 2nd light emission part 2b is shown.
 図41(a)の場合、実施の形態9と同様、第1発光部2aから出射される第1の蛍光の方が、第2発光部2bから出射される第2の蛍光よりも色温度が高い。このため、第1発光部2aにだけレーザ光が照射されている場合には、製造時のレーザ光照射の設定に従った色温度が高い照明光の出射が実現されている。 In the case of FIG. 41A, as in the ninth embodiment, the first fluorescent light emitted from the first light emitting unit 2a has a color temperature higher than the second fluorescent light emitted from the second light emitting unit 2b. high. For this reason, when only the first light emitting unit 2a is irradiated with laser light, emission of illumination light having a high color temperature according to the setting of laser light irradiation at the time of manufacture is realized.
 図41(b)では、透光性基板駆動部62aが透光性基板1aを、図41(a)の状態からレーザ光の光軸方向と垂直な方向に移動させることにより、レーザ光照射領域79の大きさを一定にした状態で当該領域の中心を第1発光部2aから第2発光部2bへ向けて移動させている。この移動により、図41(a)の場合に比べ、第1発光部2aに含まれるレーザ光照射領域79の割合が小さくなり、第2発光部2bに含まれるレーザ光照射領域79の割合が大きくなる。その結果、発光部2から出射される照明光に対する第1の蛍光及び第2の蛍光の割合が大きくなる。上述のように、第1の蛍光よりも第2の蛍光の色温度が低いので、第2の蛍光の割合が大きくなることで、色温度を低下させることができる。 In FIG. 41 (b), the translucent substrate driving unit 62a moves the translucent substrate 1a from the state of FIG. 41 (a) in the direction perpendicular to the optical axis direction of the laser beam, so that the laser light irradiation region is obtained. The center of the region is moved from the first light emitting unit 2a toward the second light emitting unit 2b with the size of 79 being constant. As a result of this movement, the ratio of the laser light irradiation region 79 included in the first light emitting unit 2a is reduced and the ratio of the laser light irradiation region 79 included in the second light emitting unit 2b is larger than in the case of FIG. Become. As a result, the ratio of the first fluorescence and the second fluorescence to the illumination light emitted from the light emitting unit 2 increases. As described above, since the color temperature of the second fluorescence is lower than that of the first fluorescence, the color temperature can be lowered by increasing the ratio of the second fluorescence.
 また、図41(b)の場合よりも更に第2の蛍光の割合が大きくなれば、さらに照射光の色温度を低下させることができる。一方、図41(b)の状態から図41(a)の状態となるように透光性基板1aを移動させた場合には、照射光の色温度を高めることができる。 Further, if the ratio of the second fluorescence is further increased as compared with the case of FIG. 41B, the color temperature of the irradiation light can be further reduced. On the other hand, when the translucent substrate 1a is moved from the state of FIG. 41B to the state of FIG. 41A, the color temperature of the irradiated light can be increased.
 (ヘッドランプ100の効果)
 ヘッドランプ100は、第1発光部2a及び第2発光部2bに照射されるレーザ光の照射範囲を変化させる透光性基板駆動部62aを備えている。このため、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができるので、その割合の変化により、照明光の色温度を変化させることができる。
(Effect of headlamp 100)
The headlamp 100 includes a translucent substrate driving unit 62a that changes the irradiation range of the laser light applied to the first light emitting unit 2a and the second light emitting unit 2b. For this reason, since the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
 また、その割合を変化させる一例として、透光性基板駆動部62aは、透光性基板1aを介して発光部2を移動させることにより、導光部材9と、第1発光部2a及び第2発光部2bとの相対的な位置(すなわち半導体レーザ63とこれら発光部との相対的な位置)を変化させている。この場合、第1発光部2a及び第2発光部2bにおけるレーザ光照射領域79の位置を変更できるので、第1発光部2a及び第2発光部2bそれぞれにおける当該領域の大きさを変化させることができる。その結果、上記の割合を変化させることができる。 Further, as an example of changing the ratio, the translucent substrate driving unit 62a moves the light emitting unit 2 through the translucent substrate 1a, whereby the light guide member 9, the first light emitting unit 2a, and the second light emitting unit 2 are moved. The relative position with respect to the light emitting portion 2b (that is, the relative position between the semiconductor laser 63 and these light emitting portions) is changed. In this case, since the position of the laser light irradiation region 79 in the first light emitting unit 2a and the second light emitting unit 2b can be changed, the size of the region in each of the first light emitting unit 2a and the second light emitting unit 2b can be changed. it can. As a result, the above ratio can be changed.
 〔実施の形態11〕
 本実施の形態は、図42および図43に基づいて、本発明の照明装置の一例としてのレーザダウンライト200について説明するものである。
[Embodiment 11]
In the present embodiment, a laser downlight 200 as an example of the illumination device of the present invention will be described based on FIGS. 42 and 43.
 本実施の形態に係るレーザダウンライト200は、発光部2が第1発光部2aおよび第2発光部2bからなる。図43は、出射端部215aと発光部2との距離が最も近くなったときの出射端部215aと発光部2との位置関係を示す図であり、第1発光部2aの受光面201aと、第2発光部2bの受光面201bとを示している。この出射端部215aと発光部2との距離が最も近いときに、複数の出射端部215aから出射されたレーザ光が少なくとも受光面201a全域を含んで照射されるように、各出射端部215aの間隔、当該距離、受光面201aの大きさなどが設定される。 In the laser downlight 200 according to the present embodiment, the light emitting unit 2 includes a first light emitting unit 2a and a second light emitting unit 2b. FIG. 43 is a diagram showing the positional relationship between the emission end 215a and the light emitting unit 2 when the distance between the emission end 215a and the light emitting unit 2 is the shortest, and the light receiving surface 201a of the first light emitting unit 2a The light-receiving surface 201b of the 2nd light emission part 2b is shown. When the distance between the emission end portion 215a and the light emitting portion 2 is the shortest, each emission end portion 215a is irradiated so that the laser light emitted from the plurality of emission end portions 215a includes at least the entire light receiving surface 201a. , The distance, the size of the light receiving surface 201a, and the like are set.
 その他、図42に示すように、実施の形態1の図8に示すLDチップ11が半導体レーザ63に置換された以外、また、透光板213がレンズ82と同様の機能を有している以外は、実施の形態1で述べたレーザダウンライト200と同様の構成であるので、その説明は省略する。 In addition, as shown in FIG. 42, the LD chip 11 shown in FIG. 8 of the first embodiment is replaced with the semiconductor laser 63, and the light transmitting plate 213 has the same function as the lens 82. Since the configuration is the same as that of the laser downlight 200 described in the first embodiment, the description thereof is omitted.
 以上のように、本実施の形態に係るレーザダウンライト200は、レーザ光を出射する半導体レーザ63を少なくとも1つ備える励起光源ユニット6aと、第1発光部2a、第2発光部2bおよび反射鏡としての凹部212を備える少なくとも1つの発光ユニット210とを備える。そして、支持部材駆動部62が支持部材61を介して発光部2の位置を変化させることにより、第1発光部2aにおけるレーザ光の照射範囲を一定にした上で、第2発光部2bに照射されるレーザ光の照射範囲を変化させる。これにより、実施の形態9と同様、第2発光部2bから出射される第2の蛍光の、照明光に対する割合が変化するので、照明光の色温度を変化させることが可能なレーザダウンライト200を実現できる。 As described above, the laser downlight 200 according to the present embodiment includes the excitation light source unit 6a including at least one semiconductor laser 63 that emits laser light, the first light emitting unit 2a, the second light emitting unit 2b, and the reflecting mirror. And at least one light emitting unit 210 provided with a concave portion 212. Then, the support member driving unit 62 changes the position of the light emitting unit 2 through the support member 61 to make the irradiation range of the laser light in the first light emitting unit 2a constant, and then irradiate the second light emitting unit 2b. The irradiation range of the laser beam to be changed is changed. As a result, as in the ninth embodiment, the ratio of the second fluorescence emitted from the second light emitting unit 2b to the illumination light changes, so that the laser downlight 200 that can change the color temperature of the illumination light. Can be realized.
 また、上記では、レーザダウンライト200に、例えば図34(a)~(d)に示す発光部2(実施の形態9の発光部2)を用いた場合を例に挙げて説明したが、これに限らず、図40(a)~(c)に示す発光部2(実施の形態10の発光部2)を用いることも可能である。 In the above description, the case where the light emitting unit 2 shown in FIGS. 34A to 34D (the light emitting unit 2 of the ninth embodiment) is used as the laser downlight 200 has been described as an example. Not limited to this, the light emitting section 2 (the light emitting section 2 of Embodiment 10) shown in FIGS. 40A to 40C can also be used.
 この場合、例えば、レーザダウンライト200は、実施の形態10で述べたように、支持部材61を備えず、透光性基板1aを直接移動させることが可能な透光性基板駆動部62aを備える。透光性基板駆動部62aは、出射端部215aの出射面と平行に、かつ第1発光部2a及び第2発光部2bが並んでいる方向に、透光性基板1aを移動させる。換言すれば、透光性基板駆動部62aは、レーザ光照射領域79の大きさを変化させずに、第1発光部2a及び第2発光部2bに照射されるレーザ光の照射範囲を変化させる。これにより、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができるので、その割合の変化により、照明光の色温度を変化させることができる。 In this case, for example, as described in Embodiment 10, the laser downlight 200 does not include the support member 61 but includes the translucent substrate drive unit 62a that can directly move the translucent substrate 1a. . The translucent substrate driving unit 62a moves the translucent substrate 1a in the direction in which the first light emitting unit 2a and the second light emitting unit 2b are arranged in parallel with the emission surface of the emission end 215a. In other words, the translucent substrate driving unit 62a changes the irradiation range of the laser light applied to the first light emitting unit 2a and the second light emitting unit 2b without changing the size of the laser light irradiation region 79. . Thereby, since the ratio of the 1st fluorescence contained in illumination light and the 2nd fluorescence can be changed, the color temperature of illumination light can be changed by the change of the ratio.
 また、実施の形態9で述べたように第2発光部2bの蛍光体に高演色蛍光体を用いるなど、発光部2全体として数種類の酸窒化物蛍光体または窒化物蛍光体を用いることにより、照明光の演色性を高めることができる。 Further, as described in the ninth embodiment, by using several kinds of oxynitride phosphors or nitride phosphors as the entire light emitting unit 2, such as using a high color rendering phosphor for the phosphor of the second light emitting unit 2b, The color rendering properties of the illumination light can be improved.
 〔実施形態9~11に係る発明の別の表現〕
 本発明は、以下のようにも表現できる。
[Another Expression of Inventions in Embodiments 9 to 11]
The present invention can also be expressed as follows.
 すなわち、本発明に係る照明装置(レーザ光照明光源)は、蛍光体発光部が本体部と周辺部の少なくとも二重構造(三重以上でも可能)となっており、本体部と周辺部とで含まれる蛍光体の少なくとも一部が異なり、励起光源から出射される励起光の照射エリアを本体部だけと、本体部及び周辺部とに切り替える機構を有する構成である。これにより、蛍光体発光部から出射される照明光の色温度や色度、照明光に含まれるスペクトルを変更できる。 That is, in the illumination device (laser beam illumination light source) according to the present invention, the phosphor light emitting part has at least a double structure (can be triple or more) of the main body part and the peripheral part, and is included in the main body part and the peripheral part At least a part of the phosphors to be emitted is different and has a mechanism for switching the irradiation area of the excitation light emitted from the excitation light source to only the main body part, and the main body part and the peripheral part. Thereby, the color temperature and chromaticity of the illumination light emitted from the phosphor light emitting unit, and the spectrum included in the illumination light can be changed.
 〔実施の形態9~11に係る付記事項〕
 照明光を対象物に照射したときの当該対象物を見やすさは、照明光の色温度によって個々人において異なるものである。本発明の照明装置は、照射範囲変化機構を備えることにより、色温度を変化させることができるので、例えば、その見やすさを測定可能な測定器(テスター)を作製して照明装置の販売店に設置することにより、個々人の嗜好にあった色温度を個々人に選択させることができる。すなわち、各ユーザは、ユーザ嗜好にあった色温度の照明光を出射する照明装置を購入できる。本発明の照明装置が車両用前照灯として実現されている場合、上記の測定器を自動車ディーラーに設置しておくことにより、個々人が自動車を購入する際に上記の選択を行うことができる。
[Additional Notes on Embodiments 9 to 11]
The visibility of an object when the object is irradiated with illumination light varies depending on the color temperature of the illumination light. Since the illumination device of the present invention can change the color temperature by providing the irradiation range changing mechanism, for example, a measuring instrument (tester) capable of measuring the visibility can be manufactured and sold to the store of the illumination device. By installing, it is possible to allow an individual to select a color temperature that suits the taste of the individual. That is, each user can purchase an illumination device that emits illumination light having a color temperature that suits the user's preference. When the illuminating device of the present invention is realized as a vehicle headlamp, the above-mentioned measuring instrument is installed in an automobile dealer so that the above selection can be made when an individual purchases an automobile.
 また、記憶部615に、本発明の照明装置(あるいは照明装置を備える物(車両など))の所有者あるいは当該照明装置をよく利用するユーザを特定する情報と、その所有者あるいはユーザが選択した色温度を示す情報とを対応付けて記憶しておいてもよい。この場合、例えば、入力部613が所有者あるいはユーザを特定する情報を取得し、可動制御部641が、その情報に対応する色温度を示す情報を記憶部615から読み出し、支持部材駆動部62を駆動し、支持部材61を移動させる。これにより、所有者あるいはユーザの嗜好にあった色温度を記憶しておくことを条件に、本発明の照明装置は、その嗜好にあった色温度に自動的に切り替えることができる。 In addition, the storage unit 615 selects information that identifies the owner of the lighting device of the present invention (or an object (such as a vehicle) including the lighting device) or a user who frequently uses the lighting device, and the owner or the user selects it. Information indicating the color temperature may be stored in association with each other. In this case, for example, the input unit 613 acquires information specifying the owner or the user, the movable control unit 641 reads out information indicating the color temperature corresponding to the information from the storage unit 615, and the support member driving unit 62 is moved. Driven to move the support member 61. Thereby, on condition that the color temperature suitable for the owner or the user is stored, the lighting device of the present invention can automatically switch to the color temperature suitable for the preference.
 〔実施の形態12〕
 本発明の実施の一形態について図44~図48に基づいて説明すれば、以下のとおりである。ここでは、本発明の照明装置の一例として、自動車用のヘッドランプ(発光装置、照明装置、車両用前照灯、前照灯)110を例に挙げて説明する。ただし、本発明の照明装置は、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、その他の照明装置として実現されてもよい。その他の照明装置として、例えば、サーチライト、プロジェクター、家庭用照明器具を挙げることができる。
[Embodiment 12]
One embodiment of the present invention will be described below with reference to FIGS. 44 to 48. FIG. Here, as an example of the illuminating device of the present invention, an automotive headlamp (light emitting device, illuminating device, vehicle headlamp, headlamp) 110 will be described as an example. However, the lighting device of the present invention may be realized as a headlamp of a vehicle other than an automobile or a moving object (for example, a human, a ship, an aircraft, a submersible craft, a rocket), or may be realized as another lighting device. Also good. Examples of other lighting devices include a searchlight, a projector, and a home lighting device.
 また、ヘッドランプ110は、走行用前照灯(ハイビーム)の配光特性基準を満たしていてもよいし、すれ違い用前照灯(ロービーム)の配光特性基準を満たしていてもよい。 Further, the headlamp 110 may satisfy the light distribution characteristic standard of the traveling headlamp (high beam), or may satisfy the light distribution characteristic standard of the passing headlamp (low beam).
 (ヘッドランプ110の構成)
 まず、図44を参照しながら、ヘッドランプ110の構成について説明する。図44は、ヘッドランプ110の構成を示す断面図である。同図に示すように、ヘッドランプ110は、半導体レーザアレイ72と、非球面レンズ29と、光ファイバー55と、フェルール65と、反射鏡81と、透明板92と、ハウジング75と、エクステンション76と、レンズ77と、第1発光部93と、第2発光部94と、位置制御部95とを備えている。
(Configuration of the headlamp 110)
First, the configuration of the headlamp 110 will be described with reference to FIG. FIG. 44 is a cross-sectional view showing the configuration of the headlamp 110. As shown in the figure, the headlamp 110 includes a semiconductor laser array 72, an aspheric lens 29, an optical fiber 55, a ferrule 65, a reflecting mirror 81, a transparent plate 92, a housing 75, an extension 76, The lens 77, the 1st light emission part 93, the 2nd light emission part 94, and the position control part 95 are provided.
 (ヘッドランプ110の構成)
 まず、図44を参照しながら、ヘッドランプ110の構成について説明する。図44は、ヘッドランプ110の構成を示す断面図である。同図に示すように、ヘッドランプ110は、半導体レーザアレイ72と、非球面レンズ29と、光ファイバー55と、フェルール65と、反射鏡81と、透明板92と、ハウジング75と、エクステンション76と、レンズ77と、第1発光部93と、第2発光部94と、位置制御部95とを備えている。
(Configuration of the headlamp 110)
First, the configuration of the headlamp 110 will be described with reference to FIG. FIG. 44 is a cross-sectional view showing the configuration of the headlamp 110. As shown in the figure, the headlamp 110 includes a semiconductor laser array 72, an aspheric lens 29, an optical fiber 55, a ferrule 65, a reflecting mirror 81, a transparent plate 92, a housing 75, an extension 76, The lens 77, the 1st light emission part 93, the 2nd light emission part 94, and the position control part 95 are provided.
 (半導体レーザアレイ72/半導体レーザ63)
 半導体レーザアレイ72は、励起光を出射する励起光源として機能し、複数の半導体レーザ(励起光源)63を基板上に備えるものである。半導体レーザ63のそれぞれから励起光としてのレーザ光が発振され、レーザ発振のピーク波長は、例えば405nm~490nmである。なお、励起光源として複数の半導体レーザ63を用いる必要は必ずしもなく、半導体レーザ63を1つのみ用いてもよいが、高出力のレーザ光を得るためには、複数の半導体レーザ63を用いる方が容易である。
(Semiconductor laser array 72 / semiconductor laser 63)
The semiconductor laser array 72 functions as an excitation light source that emits excitation light, and includes a plurality of semiconductor lasers (excitation light sources) 63 on a substrate. Laser light as excitation light is oscillated from each of the semiconductor lasers 63, and the peak wavelength of the laser oscillation is, for example, 405 nm to 490 nm. Note that it is not always necessary to use a plurality of semiconductor lasers 63 as an excitation light source, and only one semiconductor laser 63 may be used. However, in order to obtain a high-power laser beam, it is preferable to use a plurality of semiconductor lasers 63. Easy.
 半導体レーザ63は、1チップに1つの発光点を有するものであり、例えば、450nmのレーザ光を発振する。この半導体レーザ63は、1つ当たり、出力1.6W(動作電圧4.7V、電流1.2A)のものであり、直径9mmのパッケージに封入されている。半導体レーザ63が発振するレーザ光は、450nmに限定されず、その他の波長範囲にピーク波長を有するレーザ光であればよい。また、パッケージは直径9mmのものに限定されず、例えば、直径3.8mm、あるいはそれ以外であってもよく、熱抵抗がより小さいパッケージを選択することが好ましい。 The semiconductor laser 63 has one light emitting point per chip, and oscillates, for example, 450 nm laser light. Each semiconductor laser 63 has an output of 1.6 W (operating voltage 4.7 V, current 1.2 A) and is enclosed in a package having a diameter of 9 mm. The laser beam oscillated by the semiconductor laser 63 is not limited to 450 nm, and any laser beam having a peak wavelength in another wavelength range may be used. Further, the package is not limited to the one having a diameter of 9 mm, and may be, for example, a diameter of 3.8 mm or other, and it is preferable to select a package having a smaller thermal resistance.
 また、本実施形態では、励起光源として半導体レーザを用いたが、半導体レーザの代わりに、発光ダイオードを用いることも可能である。 In this embodiment, the semiconductor laser is used as the excitation light source, but a light emitting diode can be used instead of the semiconductor laser.
 (非球面レンズ29)
 非球面レンズ29は、半導体レーザ63から発振されたレーザ光(励起光)を、光ファイバー55の一方の端部である入射端部5bに入射させるためのレンズである。例えば、非球面レンズ29として、アルプス電気製のFLKN1 405を用いることができる。上述の機能を有するレンズであれば、非球面レンズ29の形状および材質は特に限定されないが、励起光の波長である約405nmの透過率が高く、かつ耐熱性のよい材料であることが好ましい。
(Aspherical lens 29)
The aspherical lens 29 is a lens for causing the laser light (excitation light) oscillated from the semiconductor laser 63 to enter the incident end 5 b that is one end of the optical fiber 55. For example, as the aspherical lens 29, FLKN1 405 manufactured by Alps Electric can be used. The shape and material of the aspherical lens 29 are not particularly limited as long as the lens has the above-described function. However, it is preferable that the aspherical lens 29 is a material having a high transmittance of about 405 nm, which is the wavelength of excitation light, and good heat resistance.
 (光ファイバー55)
 (光ファイバー55の配置)
 光ファイバー55は、半導体レーザ63が発振したレーザ光を第1発光部93へと導く導光部材であり、複数の光ファイバーの束である。この光ファイバー55は、上記レーザ光を受け取る複数の入射端部5bと、入射端部5bから入射したレーザ光を出射する複数の出射端部5aとを有している。複数の出射端部5aは、第1発光部93のレーザ光照射面における互いに異なる領域に対してレーザ光を出射する。
(Optical fiber 55)
(Disposition of optical fiber 55)
The optical fiber 55 is a light guide member that guides the laser light oscillated by the semiconductor laser 63 to the first light emitting unit 93, and is a bundle of a plurality of optical fibers. The optical fiber 55 has a plurality of incident end portions 5b for receiving the laser light and a plurality of emission end portions 5a for emitting the laser light incident from the incident end portion 5b. The plurality of emission end portions 5 a emit laser beams to different regions on the laser beam irradiation surface of the first light emitting unit 93.
 例えば、複数の光ファイバー55の出射端部5aは、レーザ光照射面に対して平行な平面において並んで配置されている。このような配置により、出射端部5aから出射されるレーザ光の光強度分布における最も光強度が大きいところ(各レーザ光がレーザ光照射面に形成する照射領域の中央部分(最大光強度部分))が、第1発光部93のレーザ光照射面の互いに異なる部分に対して出射されるため、第1発光部93のレーザ光照射面に対してレーザ光を2次元平面的に分散して照射することができる。 For example, the emission end portions 5a of the plurality of optical fibers 55 are arranged side by side in a plane parallel to the laser light irradiation surface. With such an arrangement, the light intensity distribution in the light intensity distribution of the laser beam emitted from the emission end 5a is the highest (the central portion of the irradiation region (maximum light intensity portion) formed by each laser beam on the laser beam irradiation surface) ) Are emitted to different portions of the laser light irradiation surface of the first light emitting unit 93, so that the laser light is dispersed and irradiated two-dimensionally on the laser light irradiation surface of the first light emitting unit 93. can do.
 それゆえ、第1発光部93にレーザ光が局所的に照射されることにより、第1発光部93の一部が著しく劣化することを防止できる。 Therefore, it is possible to prevent a part of the first light emitting unit 93 from being significantly deteriorated by locally irradiating the first light emitting unit 93 with the laser light.
 なお、光ファイバー55は複数の光ファイバーの束(すなわち複数の出射端部5aを備えた構成)である必要は必ずしもなく、1本の光ファイバーであってもよい。 The optical fiber 55 does not necessarily have to be a bundle of a plurality of optical fibers (that is, a configuration including a plurality of emission end portions 5a), and may be a single optical fiber.
 (光ファイバー55の材質および構造)
 光ファイバー55は、中芯のコアを、当該コアよりも屈折率の低いクラッドで覆った2層構造をしている。コアは、レーザ光の吸収損失がほとんどない石英ガラス(酸化ケイ素)を主成分とするものであり、クラッドは、コアよりも屈折率の低い石英ガラスまたは合成樹脂材料を主成分とするものである。例えば、光ファイバー55は、コアの径が200μm、クラッドの径が240μm、開口数NAが0.22の石英製のものであるが、光ファイバー55の構造、太さおよび材質は上述のものに限定されず、光ファイバー55の長軸方向に対して垂直な断面は矩形であってもよい。
(Material and structure of optical fiber 55)
The optical fiber 55 has a two-layer structure in which the core of the core is covered with a clad having a refractive index lower than that of the core. The core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light, and the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core. . For example, the optical fiber 55 is made of quartz having a core diameter of 200 μm, a cladding diameter of 240 μm, and a numerical aperture NA of 0.22, but the structure, thickness, and material of the optical fiber 55 are limited to those described above. Instead, the cross section perpendicular to the major axis direction of the optical fiber 55 may be rectangular.
 また、光ファイバー55は、可撓性を有しているため、半導体レーザ63と第1発光部93との相対的な位置関係を容易に変更できる。また、光ファイバー55の長さを調整することにより、半導体レーザ63を第1発光部93から離れた位置に設置することができる。 In addition, since the optical fiber 55 has flexibility, the relative positional relationship between the semiconductor laser 63 and the first light emitting unit 93 can be easily changed. Further, by adjusting the length of the optical fiber 55, the semiconductor laser 63 can be installed at a position away from the first light emitting unit 93.
 それゆえ、半導体レーザ63を、冷却しやすい位置または交換しやすい位置に設置できるなど、ヘッドランプ110の設計自由度を高めることができる。 Therefore, the degree of freedom in designing the headlamp 110 can be increased, for example, the semiconductor laser 63 can be installed at a position where it can be easily cooled or easily replaced.
 なお、導光部材として光ファイバー以外の部材、または光ファイバーと他の部材とを組み合わせたものを用いてもよい。例えば、レーザ光の入射端部と出射端部とを有する円錐台形状(または角錐台形状)の導光部材を1つまたは複数用いてもよい。 Note that a member other than the optical fiber or a combination of the optical fiber and another member may be used as the light guide member. For example, one or a plurality of light guide members having a truncated cone shape (or a truncated pyramid shape) having a laser beam incident end and an emission end may be used.
 (フェルール65)
 フェルール65は、光ファイバー55の複数の出射端部5aを第1発光部93のレーザ光照射面に対して所定のパターンで保持する。このフェルール65は、出射端部5aを挿入するための孔が所定のパターンで形成されているものでもよいし、上部と下部とに分離できるものであり、上部および下部の接合面にそれぞれ形成された溝によって出射端部5aを挟み込むものでもよい。
(Ferrule 65)
The ferrule 65 holds the plurality of emission end portions 5 a of the optical fiber 55 in a predetermined pattern with respect to the laser light irradiation surface of the first light emitting unit 93. The ferrule 65 may be formed with a predetermined pattern of holes for inserting the emission end portion 5a, and can be separated into an upper portion and a lower portion, and is formed on the upper and lower joint surfaces, respectively. The exit end portion 5a may be sandwiched by a groove.
 このフェルール65は、反射鏡81から延出する棒状または筒状の部材などによって反射鏡81に対して固定されていてもよい。フェルール65の材質は、特に限定されず、例えばステンレススチールである。また、第1発光部93に対して、複数のフェルール65を配置してもよい。 The ferrule 65 may be fixed to the reflecting mirror 81 by a rod-like or cylindrical member extending from the reflecting mirror 81. The material of the ferrule 65 is not specifically limited, For example, it is stainless steel. Further, a plurality of ferrules 65 may be arranged for the first light emitting unit 93.
 なお、光ファイバー55の出射端部5aが1つの場合には、フェルール65を省略することも可能である。 In addition, when the output end part 5a of the optical fiber 55 is one, the ferrule 65 can be omitted.
 (第1発光部93および第2発光部94)
 (第1発光部93の組成)
 第1発光部93は、出射端部5aから出射されたレーザ光を受けて発光するものであり、レーザ光を受けて発光する蛍光体を含んでいる。この蛍光体は、封止材としてのガラス材の内部に分散されている。
(First light emitting part 93 and second light emitting part 94)
(Composition of the 1st light emission part 93)
The first light emitting unit 93 emits light upon receiving the laser light emitted from the emission end 5a, and includes a phosphor that emits light upon receiving the laser light. This phosphor is dispersed inside a glass material as a sealing material.
 この第1発光部93は、青色、緑色、赤色等に発光する蛍光体のいずれか1種類以上を含んでいる。半導体レーザ63は、450nmのレーザ光を発振するため、第1発光部93に当該レーザ光が照射されると1または複数の色が混合された光が発生する。 The first light emitting unit 93 includes one or more of phosphors that emit blue, green, red and the like. Since the semiconductor laser 63 oscillates laser light of 450 nm, when the first light emitting unit 93 is irradiated with the laser light, light in which one or a plurality of colors are mixed is generated.
 なお、黄色に発光する蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。緑色に発光する蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。赤色に発光する蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。 Note that the phosphor that emits yellow light is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm. The phosphor that emits green light is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The phosphor that emits red light is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm to 680 nm.
 (第2発光部94の組成)
 第2発光部94は、レーザ光を受けて、第1発光部93から発せられる蛍光とは異なる色の発光するものである。あるいは、第2発光部94は、第1発光部93から発せられる蛍光を受けて第1発光部93の蛍光とは異なる色の蛍光を発するものである。その第2発光部94は、レーザ光を受けて発光する蛍光体を含んでいる。この蛍光体は、封止材としてのガラス材の内部に分散されている。
(Composition of the 2nd light emission part 94)
The second light emitting unit 94 receives laser light and emits light of a color different from the fluorescence emitted from the first light emitting unit 93. Alternatively, the second light emitting unit 94 receives fluorescence emitted from the first light emitting unit 93 and emits fluorescence having a color different from that of the first light emitting unit 93. The second light emitting unit 94 includes a phosphor that emits light upon receiving laser light. This phosphor is dispersed inside a glass material as a sealing material.
 この第2発光部94は、青色、緑色、赤色等に発光する蛍光体のいずれか1種類以上を含んでおり、第2発光部94から発せられる光は、1または複数の色が混合されたものとなる。 The second light emitting unit 94 includes one or more of phosphors that emit blue, green, red, etc., and the light emitted from the second light emitting unit 94 is a mixture of one or more colors. It will be a thing.
 第2発光部94は、後述する位置制御部95の動作によって、出射端部5aとの相対的な位置関係が変化し、あるいは、第1発光部93との相対的な位置関係が変化し、それにより第2発光部94から発せられる光の発生量が変化する。 The relative position relationship between the second light emitting unit 94 and the emission end portion 5a is changed by the operation of the position control unit 95 described later, or the relative positional relationship with the first light emitting unit 93 is changed. As a result, the amount of light emitted from the second light emitting unit 94 changes.
 (封止材)
 封止材として、例えば、1W/mK程度の無機ガラスを用いることができる。ガラス材と蛍光体との割合は、10:1程度である。
(Encapsulant)
As the sealing material, for example, an inorganic glass of about 1 W / mK can be used. The ratio between the glass material and the phosphor is about 10: 1.
 なお、封止材は、無機ガラスに限定されず、いわゆる有機無機ハイブリッドガラスやシリコーン樹脂等の樹脂材料であってもよい。ただし、封止材として無機ガラスを用いた場合には、熱耐性が高まるとともに第1発光部93および第2発光部94の熱抵抗を下げるという効果が得られるため、無機ガラスが好ましい。 In addition, the sealing material is not limited to inorganic glass, and may be a resin material such as so-called organic-inorganic hybrid glass or silicone resin. However, when inorganic glass is used as the sealing material, the effect of increasing the heat resistance and reducing the thermal resistance of the first light emitting portion 93 and the second light emitting portion 94 is obtained, and therefore inorganic glass is preferable.
 (蛍光体)
 第1発光部93および第2発光部94の蛍光体は、酸窒化物系蛍光体、窒化物系蛍光体またはIII-V族化合物半導体ナノ粒子蛍光体であることが好ましい。これらの材料は、半導体レーザ63から発せられた極めて強いレーザ光(出力および光密度)に対しての耐性が高く、レーザ照明光源に最適である。
(Phosphor)
The phosphors of the first light emitting unit 93 and the second light emitting unit 94 are preferably oxynitride phosphors, nitride phosphors or III-V compound semiconductor nanoparticle phosphors. These materials have high resistance to extremely strong laser light (output and light density) emitted from the semiconductor laser 63, and are optimal for laser illumination light sources.
 代表的な酸窒化物系蛍光体として、サイアロン蛍光体と通称されるものがある。サイアロン蛍光体とは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。励起光を受けて青色に発光するサイアロン蛍光体の例としては、Ce3+付活のCAα-SiAlON蛍光体、Ce3+付活のβ-SiAlON蛍光体などが挙げられる。 As a typical oxynitride phosphor, there is a so-called sialon phosphor. A sialon phosphor is a substance in which part of silicon atoms in silicon nitride is replaced with aluminum atoms and part of nitrogen atoms is replaced with oxygen atoms. It can be made by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), rare earth elements and the like in silicon nitride (Si 3 N 4 ). Examples of sialon phosphors that emit blue light upon receiving excitation light include Ce 3+ activated CAα-SiAlON phosphors, Ce 3+ activated β-SiAlON phosphors, and the like.
 その他の代表的な酸窒化物系蛍光体として、例えばJEM相を含む酸窒化物蛍光体(JEM相蛍光体)が挙げられる。JEM相蛍光体は、希土類元素によって安定化されたサイアロン蛍光体を調整するプロセスにおいて生成することが確認された物質である。また、JEM相は、窒化珪素系材料の粒界相として発見されたセラミックスであり、一般的に、組成式MAl(Si6-zAl)N10-z(ただし、MはLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群から選択される少なくとも1種の元素)で表され、zをパラメータとする組成からなる特有な原子配列を有する結晶相(酸窒化物結晶)である。JEM相は、結晶の共有結合性が強いため耐熱性に優れている。 Other typical oxynitride phosphors include, for example, oxynitride phosphors containing a JEM phase (JEM phase phosphors). The JEM phase phosphor is a substance that has been confirmed to be produced in a process for preparing a sialon phosphor stabilized by a rare earth element. The JEM phase is a ceramic discovered as a grain boundary phase of a silicon nitride-based material, and generally has a composition formula M 1 Al (Si 6-z Al z ) N 10-z O z (where M 1 Is represented by La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), and z is a parameter. It is a crystal phase (oxynitride crystal) having a unique atomic arrangement consisting of composition. The JEM phase has excellent heat resistance due to strong covalent bonding of crystals.
 励起光を受けて青色に発光するJEM相蛍光体の一例として、Ce3+付活(ドープされた)のJEM相蛍光体(JEM相:Ce蛍光体)が挙げられる。JEM相蛍光体にCe成分が含まれることにより、350nm~420nm近傍の励起光を吸収し、青色から青緑色にかけての発光を得やすくなるとともに、発光の半値幅もブロードとなるため、例えば暗所視における比視感度の高い波長域を十分カバーすることができる。また、JEM相:Ce蛍光体は、励起波長が360nmのとき、ピーク波長が480nmであり、そのときの発光効率は60%である。また、励起波長が405nmのとき、ピーク波長が490nmであり、そのときの発光効率は50%である。 An example of a JEM phase phosphor that emits blue light upon receiving excitation light is a Ce 3+ activated (doped) JEM phase phosphor (JEM phase: Ce phosphor). The Ce component contained in the JEM phase phosphor absorbs excitation light in the vicinity of 350 nm to 420 nm, makes it easy to obtain light emission from blue to blue-green, and broadens the half-value width of light emission. It is possible to sufficiently cover a wavelength range with high relative visibility in visual observation. The JEM phase: Ce phosphor has a peak wavelength of 480 nm when the excitation wavelength is 360 nm, and the luminous efficiency at that time is 60%. Further, when the excitation wavelength is 405 nm, the peak wavelength is 490 nm, and the light emission efficiency at that time is 50%.
 さらに、緑色に発光する酸窒化物系蛍光体の例としては、Eu2+がドープされたβ-SiAlON蛍光体などが挙げられる。Eu2+がドープされたβ-SiAlON蛍光体は、紫外から青色の励起光により発光ピーク波長が約540nmの強い発光を示す。この蛍光体の発光スペクトル半値全幅は約55nmである。 Further, examples of the oxynitride phosphor that emits green light include a β-SiAlON phosphor doped with Eu 2+ . The β-SiAlON phosphor doped with Eu 2+ exhibits strong emission with an emission peak wavelength of about 540 nm by ultraviolet to blue excitation light. The full width at half maximum of the emission spectrum of this phosphor is about 55 nm.
 また、赤色に発光する窒化物系蛍光体の例としては、例えば、Eu2+がドープされたCaAlSiN:蛍光体(CASN:Eu蛍光体)、Eu2+がドープされたSrCaAlSiN蛍光体(SCASN:Eu蛍光体)などが挙げられる。 Examples of nitride phosphors that emit red light include, for example, Eu 2+ doped CaAlSiN 3 : phosphor (CASN: Eu phosphor), Eu 2+ doped SrCaAlSiN 3 phosphor (SCASN: Eu phosphor).
 CASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は650nmであり、その発光効率は73%である。また、SCASN:Eu蛍光体は、励起波長が350nm~450nmのとき、赤色の蛍光を発し、そのピーク波長は630nmであり、その発光効率は70%である。 CASN: Eu phosphor emits red fluorescence when its excitation wavelength is 350 nm to 450 nm, its peak wavelength is 650 nm, and its luminous efficiency is 73%. Further, the SCASN: Eu phosphor emits red fluorescence when the excitation wavelength is 350 nm to 450 nm, its peak wavelength is 630 nm, and its luminous efficiency is 70%.
 一方、半導体ナノ粒子蛍光体の特徴の一つは、同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径をナノメータオーダーのある範囲内で変更することにより、量子サイズ効果によって発光色を変化させることができる点である。例えば、InPでは、粒子サイズが3~4nm程度のときに赤色に発光する(ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した)。 On the other hand, one of the characteristics of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the particle size is changed within a certain range of the nanometer order, thereby providing a quantum size effect. The point is that the emission color can be changed. For example, InP emits red light when the particle size is about 3 to 4 nm (here, the particle size was evaluated with a transmission electron microscope (TEM)).
 また、この半導体ナノ粒子蛍光体は、半導体ベースであるので蛍光寿命が短く、励起光のパワーを素早く蛍光として放射できるのでハイパワーの励起光に対して耐性が強いという特徴もある。これは、この半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。 In addition, since this semiconductor nanoparticle phosphor is based on a semiconductor, it has a short fluorescence lifetime and is characterized by being highly resistant to high-power excitation light because it can quickly emit the excitation light power as fluorescence. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth as the emission center.
 さらに、上述したように、発光寿命が短いため、レーザ光の吸収と蛍光体の発光とを素早く繰り返すことができる。その結果、強いレーザ光に対して高効率を保つことができ、蛍光体からの発熱を低減させることができる。 Furthermore, as described above, since the emission lifetime is short, the absorption of the laser beam and the emission of the phosphor can be repeated quickly. As a result, high efficiency can be maintained with respect to strong laser light, and heat generation from the phosphor can be reduced.
 (第1発光部93および第2発光部94の形状および大きさ)
 第1発光部93の形状および大きさは、例えば、直径3.2mmおよび厚さ1mmの円柱形状であり、出射端部5aから出射されたレーザ光を、当該円柱の底面であるレーザ光照射面において受光する。
(Shapes and sizes of the first light emitting part 93 and the second light emitting part 94)
The shape and size of the first light emitting portion 93 are, for example, a cylindrical shape having a diameter of 3.2 mm and a thickness of 1 mm, and the laser light emitted from the emission end portion 5a is converted into a laser light irradiation surface that is the bottom surface of the cylinder. Receive light.
 また、第1発光部93は、円柱形状でなく、直方体であってもよい。例えば、3mm×1mm×1mmの直方体である。この場合、半導体レーザ63からのレーザ光を受けるレーザ光照射面の面積は、3mmである。日本国内で法的に規定されている車両用ヘッドランプの配光パターン(配光分布)は、鉛直方向に狭く、水平方向に広いため、第1発光部93の形状を、水平方向に対して横長(断面略長方形形状)にすることにより、上記配光パターンを実現しやすくなる。 Moreover, the 1st light emission part 93 may not be a column shape but a rectangular parallelepiped. For example, it is a rectangular parallelepiped of 3 mm × 1 mm × 1 mm. In this case, the area of the laser light irradiation surface that receives the laser light from the semiconductor laser 63 is 3 mm 2 . The light distribution pattern (light distribution) of a vehicle headlamp that is legally regulated in Japan is narrow in the vertical direction and wide in the horizontal direction. By making it horizontally long (substantially rectangular in cross section), the light distribution pattern can be easily realized.
 第2発光部94の形状および大きさは、種々の態様で実現されてよく詳細は後述する。 The shape and size of the second light emitting unit 94 may be realized in various forms, and details will be described later.
 第1発光部93および第2発光部94の厚みは、第1発光部93および第2発光部94における封止材と蛍光体との割合に従って変化する。第1発光部93および第2発光部94における蛍光体の含有量が多くなれば、レーザ光が白色光に変換される効率が高まるため第1発光部93および第2発光部94の厚みを薄くできる。第1発光部93および第2発光部94を薄くすれば熱抵抗が低下するという効果があるが、あまり薄くするとレーザ光が蛍光に変換されず外部に放射される恐れがある。蛍光体での励起光の吸収の観点からすると発光部の厚みは蛍光体の粒径の少なくとも10倍以上あることが好ましい。 The thickness of the first light emitting unit 93 and the second light emitting unit 94 varies according to the ratio of the sealing material and the phosphor in the first light emitting unit 93 and the second light emitting unit 94. If the phosphor content in the first light-emitting part 93 and the second light-emitting part 94 increases, the efficiency of conversion of laser light into white light increases, so the thickness of the first light-emitting part 93 and the second light-emitting part 94 is reduced. it can. If the first light-emitting portion 93 and the second light-emitting portion 94 are made thin, the thermal resistance is reduced. However, if the thickness is too thin, the laser light may not be converted into fluorescence and may be emitted to the outside. From the viewpoint of absorption of excitation light by the phosphor, the thickness of the light emitting part is preferably at least 10 times the particle size of the phosphor.
 このため、酸窒化物系蛍光体または窒化物蛍光体を用いた第1発光部93および第2発光部94の厚みとしては、0.2mm以上、2mm以下が好ましい。ただし、蛍光体の含有量を極端に多くした場合(典型的には蛍光体が100%)、厚みの下限はこの限りではない。 Therefore, the thickness of the first light emitting unit 93 and the second light emitting unit 94 using the oxynitride phosphor or the nitride phosphor is preferably 0.2 mm or more and 2 mm or less. However, when the content of the phosphor is extremely increased (typically 100% of the phosphor), the lower limit of the thickness is not limited to this.
 この観点からするとナノ粒子蛍光体を用いた場合の発光部の厚みは0.01μm以上であればよいことになるが、封止材中への分散等、製造プロセスの容易性を考慮すると10μm以上、すなわち0.01mm以上が好ましい。逆に厚くしすぎると反射鏡81の焦点からのずれが大きくなり配光パターンがぼけてしまう。 From this point of view, the thickness of the light-emitting portion when using the nanoparticle phosphor should be 0.01 μm or more, but considering the ease of the manufacturing process such as dispersion in the sealing material, it is 10 μm or more. That is, 0.01 mm or more is preferable. On the other hand, if the thickness is too thick, the deviation from the focal point of the reflecting mirror 81 becomes large and the light distribution pattern is blurred.
 また、第1発光部93および第2発光部94のレーザ光照射面(または、第2発光部94が、第1発光部93から発せられる蛍光を受けて第1発光部93の蛍光とは異なる色の蛍光を発する場合には、第1発光部93から発せられる蛍光の受光面)は、平面である必要は必ずしもなく、曲面であってもよい。ただし、反射したレーザ光を制御するためには、レーザ光照射面は平面を有していることが好ましい。レーザ光照射面が曲面の場合、少なくとも曲面への入射角度が大きく変わるため、レーザ光が照射される場所によって、反射光の進む方向が大きく変わってしまう。そのため、レーザ光の反射方向を制御することが困難な場合がある。これに対してレーザ光照射面が平面であれば、レーザ光の照射位置が若干ずれたとしても反射光の進む方向はほとんど変わらないため、レーザ光が反射する方向を制御しやすい。場合によっては反射光が当たる場所にレーザ光の吸収材を置くなどの対応がとり易くなる。 Further, the laser light irradiation surfaces of the first light emitting unit 93 and the second light emitting unit 94 (or the second light emitting unit 94 receives the fluorescence emitted from the first light emitting unit 93 and is different from the fluorescence of the first light emitting unit 93. In the case of emitting color fluorescence, the light receiving surface of the fluorescence emitted from the first light emitting unit 93 is not necessarily a flat surface and may be a curved surface. However, in order to control the reflected laser light, the laser light irradiation surface preferably has a flat surface. When the laser light irradiation surface is a curved surface, at least the incident angle to the curved surface changes greatly, so that the direction in which the reflected light travels greatly changes depending on the location where the laser light is irradiated. For this reason, it may be difficult to control the reflection direction of the laser light. On the other hand, if the laser light irradiation surface is flat, the direction in which the reflected light travels hardly changes even if the irradiation position of the laser light is slightly shifted, so that the direction in which the laser light is reflected can be easily controlled. In some cases, it is easy to take measures such as placing a laser beam absorber in a place where the reflected light strikes.
 なお、レーザ光照射面がレーザ光の光軸に対して垂直である必要は必ずしもない。レーザ光照射面がレーザ光の光軸に対して垂直な場合、反射したレーザ光はレーザ光源の方向に戻るため、場合によってはレーザ光源にダメージを与える可能性もある。 It should be noted that the laser light irradiation surface is not necessarily perpendicular to the optical axis of the laser light. When the laser light irradiation surface is perpendicular to the optical axis of the laser light, the reflected laser light returns in the direction of the laser light source, and in some cases, the laser light source may be damaged.
 (位置制御部95)
 位置制御部95は、第2発光部94と出射端部(出射点)5aとの相対的な位置関係を変化させて、第2発光部94から発せられる光の発生量を変化させる。このとき、
(a)位置制御部95は、第2発光部94とレーザ光の光軸との間の距離を変化させる。(b)位置制御部95は、第2発光部94をレーザ光の光軸の方向に移動させる。
という動作を行う。
(Position controller 95)
The position control unit 95 changes the amount of light emitted from the second light emitting unit 94 by changing the relative positional relationship between the second light emitting unit 94 and the emission end (emission point) 5a. At this time,
(A) The position control unit 95 changes the distance between the second light emitting unit 94 and the optical axis of the laser beam. (B) The position control unit 95 moves the second light emitting unit 94 in the direction of the optical axis of the laser light.
Perform the operation.
 (a)について説明すると、位置制御部95は、第2発光部94に接続されている場合に、レーザ光の光軸との間の距離を変化させるように第2発光部94の位置を変化させる。あるいは、位置制御部95は、出射端部5aに接続されている場合に、レーザ光の光軸との間の距離を変化させるように出射端部5aの位置を変化させる。これにより、位置制御部95は、第2発光部94と出射端部5aとの相対的な位置関係を変化させ、第2発光部94に照射されるレーザ光の照射面積を変化させることができる。その結果、第2発光部94から発せられる光の発生量が変化する。 Explaining (a), when the position control unit 95 is connected to the second light emitting unit 94, the position control unit 95 changes the position of the second light emitting unit 94 so as to change the distance from the optical axis of the laser beam. Let Or the position control part 95 changes the position of the output end part 5a so that the distance between the optical axes of a laser beam may be changed, when connecting to the output end part 5a. Thereby, the position control part 95 can change the relative positional relationship of the 2nd light emission part 94 and the radiation | emission end part 5a, and can change the irradiation area of the laser beam irradiated to the 2nd light emission part 94. FIG. . As a result, the amount of light emitted from the second light emitting unit 94 changes.
 さらに、次のケースも考えうる。つまり、位置制御部95は、第1発光部93と第2発光部94との相対的な位置関係を変化させて、第2発光部94から発せられる光の発生量を変化させる。このとき、
(c)位置制御部95は、第2発光部94とレーザ光の光軸との間の距離を変化させる。(d)位置制御部95は、第2発光部94をレーザ光の光軸の方向に移動させる。
という動作を行う。
In addition, the following cases can be considered. That is, the position control unit 95 changes the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94 and changes the amount of light emitted from the second light emitting unit 94. At this time,
(C) The position controller 95 changes the distance between the second light emitter 94 and the optical axis of the laser beam. (D) The position control unit 95 moves the second light emitting unit 94 in the direction of the optical axis of the laser light.
Perform the operation.
 (c)について説明すると、位置制御部95は、第2発光部94に接続されている場合に、レーザ光の光軸との間の距離を変化させるように第2発光部94の位置を変化させる。あるいは、位置制御部95は、出射端部5aと接続されている場合に、レーザ光の光軸との間の距離を変化させるように出射端部5aの位置を変化させる。これにより、位置制御部95は、第1発光部93と第2発光部94との相対的な位置関係を変化させ、第2発光部94に照射されるレーザ光の照射面積を変化させることができる。その結果、第2発光部94から発せられる光の発生量が変化する。 Explaining (c), when the position control unit 95 is connected to the second light emitting unit 94, the position control unit 95 changes the position of the second light emitting unit 94 so as to change the distance from the optical axis of the laser beam. Let Or the position control part 95 changes the position of the output end part 5a so that the distance between the optical axis of a laser beam may be changed, when connecting with the output end part 5a. Accordingly, the position control unit 95 can change the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94, and can change the irradiation area of the laser light applied to the second light emitting unit 94. it can. As a result, the amount of light emitted from the second light emitting unit 94 changes.
 なお、位置制御部95は、例えばモータとギアとを組み合わせた構造からなり、第1発光部93、第2発光部94、出射端部5aのうち少なくとも1つと接続して(a)~(d)の動作を行えばよい。さらに、位置制御部95は、第1発光部93等と必ずしも接続されている必要はなく、例えば磁石等の非接触型の部材を用いて、上記(a)~(d)の動作を行ってもよい。つまり、位置制御部95は、第2発光部94と出射端部5aとの相対的な位置関係を変化させる、あるいは、第1発光部93と第2発光部94との相対的な位置関係を変化させるものであれば、どのような構成で実現されてもよい。 The position control unit 95 has, for example, a structure in which a motor and a gear are combined. The position control unit 95 is connected to at least one of the first light emitting unit 93, the second light emitting unit 94, and the emission end portion 5a, and (a) to (d ). Further, the position control unit 95 is not necessarily connected to the first light emitting unit 93 or the like, and performs the operations (a) to (d) using a non-contact type member such as a magnet. Also good. That is, the position control unit 95 changes the relative positional relationship between the second light emitting unit 94 and the emission end 5a, or changes the relative positional relationship between the first light emitting unit 93 and the second light emitting unit 94. Any configuration may be used as long as it is changed.
 (反射鏡81)
 反射鏡81は、第1発光部93および/または第2発光部94から出射した光を反射することにより、所定の立体角内を進む光線束を形成するものである。すなわち、反射鏡81は、第1発光部93および/または第2発光部94からの光を反射することにより、ヘッドランプ110の前方へ進む光線束を形成する。この反射鏡81は、例えば、金属薄膜がその表面に形成された曲面形状(カップ形状)の部材である。
(Reflector 81)
The reflecting mirror 81 reflects the light emitted from the first light emitting unit 93 and / or the second light emitting unit 94 to form a light bundle that travels within a predetermined solid angle. That is, the reflecting mirror 81 reflects the light from the first light emitting unit 93 and / or the second light emitting unit 94 to form a light bundle that travels forward of the headlamp 110. The reflecting mirror 81 is, for example, a curved (cup-shaped) member having a metal thin film formed on the surface thereof.
 (透明板92)
 透明板92は、反射鏡81の開口部を覆う透明な樹脂板である。この透明板92を、半導体レーザ63からのレーザ光を遮断するとともに、第1発光部93および/または第2発光部94においてレーザ光を変換することにより生成された白色光を透過する材質で形成することが好ましい。第1発光部93および/または第2発光部94によってコヒーレントなレーザ光は、そのほとんどがインコヒーレント光に変換される。しかし、何らかの原因でレーザ光の一部がインコヒーレントな光に変換されない場合も考えられる。このような場合でも、透明板92によってレーザ光を遮断することにより、レーザ光が外部に漏れることを防止できる。
(Transparent plate 92)
The transparent plate 92 is a transparent resin plate that covers the opening of the reflecting mirror 81. The transparent plate 92 is formed of a material that blocks the laser light from the semiconductor laser 63 and transmits white light generated by converting the laser light in the first light emitting unit 93 and / or the second light emitting unit 94. It is preferable to do. Most of the coherent laser light is converted into incoherent light by the first light emitting unit 93 and / or the second light emitting unit 94. However, there may be a case where a part of the laser light is not converted into incoherent light for some reason. Even in such a case, the laser beam can be prevented from leaking to the outside by blocking the laser beam by the transparent plate 92.
 また、透明板92は、第2発光部94を固定するために用いられてもよい。 Further, the transparent plate 92 may be used for fixing the second light emitting unit 94.
 このとき、透明板92が、熱伝導率の高いもの(例えば、無機ガラス)であれば、透明板92も熱伝導部材として機能し、第2発光部94の放熱効果を得ることができる。 At this time, if the transparent plate 92 has a high thermal conductivity (for example, inorganic glass), the transparent plate 92 also functions as a heat conductive member, and the heat radiation effect of the second light emitting unit 94 can be obtained.
 (ハウジング75)
 ハウジング75は、ヘッドランプ110の本体を形成しており、反射鏡81等を収納している。光ファイバー55は、このハウジング75を貫いており、半導体レーザアレイ72は、ハウジング75の外部に設置される。半導体レーザアレイ72は、レーザ光の発振時に発熱するが、ハウジング75の外部に設置することにより半導体レーザアレイ72を効率良く冷却することが可能となる。したがって、半導体レーザアレイ72から発生する熱による、第1発光部93および/または第2発光部94の特性劣化や熱的損傷等が防止される。
(Housing 75)
The housing 75 forms the main body of the headlamp 110 and houses the reflecting mirror 81 and the like. The optical fiber 55 passes through the housing 75, and the semiconductor laser array 72 is installed outside the housing 75. The semiconductor laser array 72 generates heat when the laser light is oscillated, but the semiconductor laser array 72 can be efficiently cooled by being installed outside the housing 75. Therefore, characteristic deterioration, thermal damage, and the like of the first light emitting unit 93 and / or the second light emitting unit 94 due to heat generated from the semiconductor laser array 72 are prevented.
 また、半導体レーザ63は、万一故障した時のことを考慮して、交換しやすい位置に設置することが好ましい。これらの点を考慮しなければ、半導体レーザアレイ72をハウジング75の内部に収納してもよい。 Also, it is preferable to install the semiconductor laser 63 at a position where it can be easily replaced in consideration of a failure. If these points are not taken into consideration, the semiconductor laser array 72 may be accommodated in the housing 75.
 (エクステンション76)
 エクステンション76は、反射鏡81の前方の側部に設けられており、ヘッドランプ110の内部構造を隠して、ヘッドランプ110の見栄えを良くするとともに、反射鏡81と車体との一体感を高めている。このエクステンション76も反射鏡81と同様に金属薄膜がその表面に形成された部材である。
(Extension 76)
The extension 76 is provided on the front side of the reflecting mirror 81 to hide the internal structure of the headlamp 110 to improve the appearance of the headlamp 110 and enhance the sense of unity between the reflecting mirror 81 and the vehicle body. Yes. The extension 76 is also a member having a metal thin film formed on the surface thereof, like the reflecting mirror 81.
 (レンズ77)
 レンズ77は、ハウジング75の開口部に設けられており、ヘッドランプ110を密封している。第1発光部93および/または第2発光部94で発生し、反射鏡81によって反射された光は、レンズ77を通ってヘッドランプ110の前方へ出射される。
(Lens 77)
The lens 77 is provided in the opening of the housing 75 and seals the headlamp 110. The light generated by the first light emitting unit 93 and / or the second light emitting unit 94 and reflected by the reflecting mirror 81 is emitted to the front of the headlamp 110 through the lens 77.
 なお、半導体レーザ63の基本構造については、実施の形態1で図3(c)および(d)を用いて説明したLDチップ11の基本構造と同様であるため、その説明を割愛する。また、第1発光部93および第2発光部94の発光原理についても、実施の形態1で説明した発光部2の発光原理と同様であるため、その説明を割愛する。また、本実施形態では、ヘッドランプ110は、白色に限らず、赤色、黄色等の他の色を出射する構成で実現されてもよい。 The basic structure of the semiconductor laser 63 is the same as the basic structure of the LD chip 11 described with reference to FIGS. 3C and 3D in the first embodiment, and therefore the description thereof is omitted. In addition, the light emission principle of the first light emitting unit 93 and the second light emitting unit 94 is the same as the light emission principle of the light emitting unit 2 described in the first embodiment, and thus the description thereof is omitted. In the present embodiment, the headlamp 110 is not limited to white, and may be realized by a configuration that emits other colors such as red and yellow.
 〔実施例1〕
 以下、本実施の形態に係る実施例を説明する。なお、既出の内容については、その説明を省略する。
[Example 1]
Hereinafter, examples according to the present embodiment will be described. Note that the description of the already described contents is omitted.
 (ヘッドランプ110の形態)
 本実施例に係るヘッドランプ110の一実施形態を図45により説明する。図45は、第1発光部93、第2発光部94、及び位置制御部95の構成の一実施形態を示す図である。
(Form of headlamp 110)
One embodiment of the headlamp 110 according to the present embodiment will be described with reference to FIG. FIG. 45 is a diagram illustrating an embodiment of the configuration of the first light emitting unit 93, the second light emitting unit 94, and the position control unit 95.
 (第1発光部93)
 本実施例では、第1発光部93として、Intematix社製のCeドープのYAG蛍光体(NYAG4454)が用いれている。この第1発光部93は、外部量子効率が90%、発光ピーク波長は558nm、色度点はx=0.444、y=0.536であり、430nmから490nmの励起光で良好に励起される。
(First light emitting unit 93)
In the present embodiment, a Ce-doped YAG phosphor (NYAG4454) manufactured by Intematix is used as the first light emitting unit 93. The first light emitting unit 93 has an external quantum efficiency of 90%, an emission peak wavelength of 558 nm, chromaticity points of x = 0.444, y = 0.536, and is excited well by excitation light of 430 nm to 490 nm. The
 第1発光部93は、YAG蛍光体を低融点ガラスに分散させて製造する。蛍光体とガラスとの配合比は30:100である。第1発光部93のサイズは、縦4mm×横4mm×奥行き0.5mmであり、厚み0.5mmのAl(サファイア)板(10mm×10mm)に接着されている。レーザ光は、Al(サファイア)板越しに第1発光部93、第2発光部94の順に照射される。 The first light emitting unit 93 is manufactured by dispersing a YAG phosphor in a low-melting glass. The compounding ratio of the phosphor and glass is 30: 100. The size of the first light emitting portion 93 is 4 mm long × 4 mm wide × 0.5 mm deep, and is bonded to an Al 2 O 3 (sapphire) plate (10 mm × 10 mm) having a thickness of 0.5 mm. The laser light is irradiated through the Al 2 O 3 (sapphire) plate in the order of the first light emitting unit 93 and the second light emitting unit 94.
 なお、図45では、第1発光部93は熱伝導部材181上に置かれているが、熱伝導部材181上に置かれている必要は必ずしもない。 In FIG. 45, the first light emitting unit 93 is placed on the heat conducting member 181, but it is not always necessary to be placed on the heat conducting member 181.
 (第2発光部94)
 第2発光部94としては、窒化物系蛍光体であるCASN:Eu2+蛍光体を用いた。第2発光部94の外部量子効率は450nm励起時において73%であり、発光ピーク波長は649nmである。
(Second light emitting unit 94)
As the second light emitting unit 94, a CASN: Eu 2+ phosphor, which is a nitride phosphor, was used. The external quantum efficiency of the second light emitting unit 94 is 73% when excited at 450 nm, and the emission peak wavelength is 649 nm.
 第2発光部94は、CASN蛍光体を低融点ガラスに分散させて製造する。蛍光体とガラスとの配合比は20:100である。また、第2発光部94のサイズは、最も絞ったときに、中心部にφ1mmの開口部があるような、絞り羽根機構を有し、羽根の厚みは0.5mmで形成している。 The second light emitting unit 94 is manufactured by dispersing a CASN phosphor in a low melting point glass. The mixing ratio of the phosphor and glass is 20: 100. The second light-emitting portion 94 has a diaphragm blade mechanism such that when it is most squeezed, there is an opening of φ1 mm in the center, and the blade thickness is 0.5 mm.
 (熱伝導部材181)
 熱伝導部材181が、第1発光部93におけるレーザ光が照射される面であるレーザ光照射面の側に配置され、第1発光部93の熱を受け取る透光性の部材であり、第1発光部93と熱的に(すなわち、熱エネルギーの授受が可能なように)接続されている。第1発光部93と熱伝導部材181とは、例えば、接着剤によって接続されていてもよい。
(Heat conduction member 181)
The heat conducting member 181 is a translucent member that is disposed on the laser light irradiation surface side that is the surface irradiated with the laser light in the first light emitting unit 93 and receives the heat of the first light emitting unit 93. It is thermally connected to the light emitting unit 93 (that is, so as to be able to exchange heat energy). The 1st light emission part 93 and the heat conductive member 181 may be connected by the adhesive agent, for example.
 熱伝導部材181は、板状の部材であり、その一方の端部が第1発光部93のレーザ光照射面に熱的に接触している。また、他方の端部は、冷却部(不図示)に熱的に接続されている構成で実現されよい。 The heat conducting member 181 is a plate-like member, and one end thereof is in thermal contact with the laser light irradiation surface of the first light emitting unit 93. Further, the other end may be realized by a configuration in which it is thermally connected to a cooling unit (not shown).
 熱伝導部材181は、このような形状および接続形態を有することで、微小な第1発光部93を特定の位置で保持しつつ、第1発光部93から発生する熱をヘッドランプ110の外部に放熱する。 Since the heat conducting member 181 has such a shape and connection form, the heat generated from the first light emitting unit 93 is transferred to the outside of the headlamp 110 while holding the minute first light emitting unit 93 at a specific position. Dissipate heat.
 第1発光部93の熱を効率良く逃がすために、熱伝導部材181の熱伝導率は、20W/mK以上であることが好ましい。また、半導体レーザ63から出射されたレーザ光は、熱伝導部材181を透過して第1発光部93に到達する。そのため、熱伝導部材181は、透光性の優れた材質からなるものであることが好ましい。 It is preferable that the heat conductivity of the heat conducting member 181 is 20 W / mK or more in order to efficiently release the heat of the first light emitting unit 93. Further, the laser light emitted from the semiconductor laser 63 passes through the heat conducting member 181 and reaches the first light emitting unit 93. Therefore, it is preferable that the heat conductive member 181 is made of a material having excellent translucency.
 これらの点を考慮して、熱伝導部材181の材質としては、サファイア(Al)やマグネシア(MgO)、窒化ガリウム(GaN)、スピネル(MgAl)が好ましい。これらの材料を用いることにより、熱伝導率20W/mK以上を実現できる。 Considering these points, the material of the heat conducting member 181 is preferably sapphire (Al 2 O 3 ), magnesia (MgO), gallium nitride (GaN), or spinel (MgAl 2 O 4 ). By using these materials, a thermal conductivity of 20 W / mK or more can be realized.
 また、熱伝導部材181の厚み(図面左右方向の幅)は、0.3mm以上、5.0mm以下が好ましい。0.3mmよりも薄いと第1発光部93の放熱を十分にできず、第1発光部93が劣化してしまう可能性がある。また、5.0mmを超えるような厚みにすると、照射されたレーザ光の熱伝導部材181における吸収が大きくなり、励起光の利用効率が顕著に下がる。 The thickness (width in the left-right direction of the drawing) of the heat conducting member 181 is preferably 0.3 mm or more and 5.0 mm or less. If the thickness is less than 0.3 mm, the first light emitting unit 93 cannot sufficiently dissipate heat, and the first light emitting unit 93 may be deteriorated. On the other hand, if the thickness exceeds 5.0 mm, the absorption of the irradiated laser light in the heat conducting member 181 increases, and the utilization efficiency of the excitation light is significantly reduced.
 熱伝導部材181を適切な厚みで第1発光部93に当接させることにより、特に第1発光部93での発熱が1Wを超えるような極めて強いレーザ光を照射しても、その発熱が迅速且つ効率的に放熱され、第1発光部93が損傷(劣化)してしまうことを防止できる。 By bringing the heat conducting member 181 into contact with the first light emitting unit 93 with an appropriate thickness, the heat generation is quick even when an extremely strong laser beam that generates heat exceeding 1 W in particular is irradiated. In addition, the heat can be efficiently radiated and the first light emitting portion 93 can be prevented from being damaged (deteriorated).
 なお、熱伝導部材181は、折れ曲がりのない板状のものであってもよいし、折れ曲がった部分や湾曲した部分を有していてもよい。ただし、第1発光部93が接着される部分は、接着の安定性の観点から平面(板状)である方が好ましい。 It should be noted that the heat conducting member 181 may be a plate-like member that is not bent, or may have a bent part or a curved part. However, the portion to which the first light emitting unit 93 is bonded is preferably a flat surface (plate shape) from the viewpoint of adhesion stability.
 ここで、熱伝導部材181の熱吸収効果および放熱効果を高めるために、次の変更が有効である。
・放熱面積(第1発光部93との接触面積)を増加させる。
・熱伝導部材181の厚みを増加させる。
・熱伝導部材181の熱伝導率を高める。例えば、熱伝導率の高い材質を用いる。または、熱伝導部材181の表面に熱伝導率の高い部材(薄膜または板状部材など)を配設する。
Here, in order to enhance the heat absorption effect and the heat dissipation effect of the heat conducting member 181, the following changes are effective.
Increase the heat dissipation area (contact area with the first light emitting unit 93).
-Increase the thickness of the heat conducting member 181.
-Increase the thermal conductivity of the heat conducting member 181. For example, a material having high thermal conductivity is used. Alternatively, a member having a high thermal conductivity (such as a thin film or a plate member) is disposed on the surface of the heat conducting member 181.
 なお、熱伝導部材181の表面に金属薄膜などを形成する場合には、光束が低下する可能性がある。また、熱伝導部材181の表面を被覆したり、別の部材を配設したりする場合には、製造コストが増加する。 Note that when a metal thin film or the like is formed on the surface of the heat conducting member 181, there is a possibility that the luminous flux is lowered. In addition, when the surface of the heat conducting member 181 is covered or another member is provided, the manufacturing cost increases.
 (熱伝導部材181の変更例)
 熱伝導部材181は、透光性を有する部分(透光部)と透光性を有さない部分(遮光部)とを有していてもよい。この構成の場合、透光部は第1発光部93のレーザ光照射面を覆うように配置され、遮光部はその外側に配置される。
(Modification example of heat conduction member 181)
The heat conducting member 181 may have a light-transmitting part (light-transmitting part) and a part having no light-transmitting property (light-shielding part). In the case of this configuration, the light transmitting part is arranged so as to cover the laser light irradiation surface of the first light emitting part 93, and the light shielding part is arranged outside thereof.
 遮光部は、金属(例えば銅やアルミ)の放熱パーツであってもよいし、アルミや銀その他、照明光を反射させる効果のある膜が透光性部材の表面に形成されているものであってもよい。 The light shielding part may be a heat radiating part of metal (for example, copper or aluminum), or aluminum, silver, or other film that has an effect of reflecting illumination light is formed on the surface of the translucent member. May be.
 (第2発光部94と位置制御部95との関係)
 図示するように、ヘッドランプ110では、第2発光部94と位置制御部95とが接続されており、位置制御部95は、自身の動作を介して第2発光部94の位置を変化させる。これにより、位置制御部95は、第2発光部94から発せられる光の発生量を変化させることができる。
(Relationship between second light emitting unit 94 and position control unit 95)
As illustrated, in the headlamp 110, the second light emitting unit 94 and the position control unit 95 are connected, and the position control unit 95 changes the position of the second light emitting unit 94 through its own operation. Accordingly, the position control unit 95 can change the amount of light emitted from the second light emitting unit 94.
 より具体的に、位置制御部95を介した第2発光部94の動作を説明する。図46は、本実施例における第2発光部94の動作を説明するための図である。このうち、図46(a)は、第2発光部94とレーザ光の光軸との間の距離が最も離れている状態を示す図である。図46(b)は、第2発光部94がレーザ光の光軸に向かって移動している様子を示す図である。また、図46(c)は、第2発光部94とレーザ光の光軸との間の距離が最も近付いた状態を示す図である。なお、不図示であるが、レーザ光の光軸は、図46(a)に示される円の中心部またはその付近に存在するものとする。また、図46(a)に示す円は、第1発光部93の発光中心を表すものとする。 More specifically, the operation of the second light emitting unit 94 via the position control unit 95 will be described. FIG. 46 is a diagram for explaining the operation of the second light emitting unit 94 in the present embodiment. Among these, FIG. 46A is a diagram showing a state where the distance between the second light emitting unit 94 and the optical axis of the laser beam is the longest. FIG. 46B is a diagram illustrating a state in which the second light emitting unit 94 is moving toward the optical axis of the laser light. FIG. 46C is a diagram showing a state in which the distance between the second light emitting unit 94 and the optical axis of the laser light is closest. Although not shown, it is assumed that the optical axis of the laser beam exists at or near the center of the circle shown in FIG. In addition, the circle shown in FIG. 46A represents the light emission center of the first light emitting unit 93.
 図示するように、第2発光部94は、複数存在し、その複数の第2発光部94が光軸の周りに環状に配設されている。そして、第2発光部94は、位置制御部95の動作を受けて、いわゆる絞り羽根機構の動作のようにレーザ光の光軸との間の距離を変化させる。 As shown in the figure, there are a plurality of second light-emitting portions 94, and the plurality of second light-emitting portions 94 are annularly arranged around the optical axis. Then, the second light emitting unit 94 receives the operation of the position control unit 95 and changes the distance from the optical axis of the laser light like the operation of a so-called diaphragm blade mechanism.
 つまり、位置制御部95は、複数の第2発光部94の各々と接続されており、レーザ光の光軸に向かう方向、あるいは、レーザ光の光軸から離れる方向に、その複数の第2発光部94を同時に動作させる。 That is, the position control unit 95 is connected to each of the plurality of second light emitting units 94, and the plurality of second light emission components in the direction toward the optical axis of the laser light or in the direction away from the optical axis of the laser light. The units 94 are operated simultaneously.
 このように、ヘッドランプ110では、位置制御部95の動作によって、レーザ光、または、第1発光部93が発する蛍光の照射される第2発光部94上の照射面積が変化する。その結果、第2発光部94から発せられる光の発生量が変化し、光のスペクトル、色度、色温度等で示される、ヘッドランプ110の外部に照射される照明光の特性を容易に変化させることができる。 As described above, in the headlamp 110, the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted from the first light emitting unit 93 is changed by the operation of the position control unit 95. As a result, the amount of light emitted from the second light emitting unit 94 changes, and the characteristics of the illumination light emitted outside the headlamp 110, which is indicated by the light spectrum, chromaticity, color temperature, etc., are easily changed. Can be made.
 なお、位置制御部95は、複数の第2発光部94の各々を、レーザ光の光軸に向かう方または離れる方向それぞれ別々に(任意に)動作させる構成で実現されてもよい。 The position control unit 95 may be realized by a configuration in which each of the plurality of second light emitting units 94 is separately (arbitrarily) operated toward or away from the optical axis of the laser beam.
 また、複数存在する第2発光部の各々の移動方向、移動量を決めておき、その状態での照明光の特性を予め把握しておくことにより、位置制御部95の動作を介して、所望の照明光の特性を容易に実現することも可能となる。 Further, by determining the moving direction and moving amount of each of the plurality of second light emitting units, and grasping the characteristics of the illumination light in that state in advance, the desired position can be obtained through the operation of the position control unit 95. It is also possible to easily realize the characteristics of the illumination light.
 (ヘッドランプ110によって得られる効果)
 ヘッドランプ110によって得られる効果を図47により説明する。図47は、ヘッドランプ110によって得られる効果を説明するための色度図である。
(Effects obtained by the headlamp 110)
The effect obtained by the headlamp 110 will be described with reference to FIG. FIG. 47 is a chromaticity diagram for explaining the effect obtained by the headlamp 110.
 図中のPは、レーザ光源の色度点を示す。Qは、第1発光部93が発する蛍光の色度点を示す。Rは、第2発光部94が発する蛍光の色度点を示す。 P in the figure indicates the chromaticity point of the laser light source. Q indicates the chromaticity point of the fluorescence emitted by the first light emitting unit 93. R indicates the chromaticity point of the fluorescence emitted by the second light emitting unit 94.
 上記構成によれば、第2発光部94は、位置制御部95の動作を受けて位置を変化させる。それにより、レーザ光、または、第1発光部93が発する蛍光が照射される第2発光部94上の照射面積が変化し、ヘッドランプ110から出射される照明光の色温度や色度、スペクトルの割合も変化する。 According to the above configuration, the second light emitting unit 94 changes the position in response to the operation of the position control unit 95. Thereby, the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted by the first light emitting unit 93 changes, and the color temperature, chromaticity, and spectrum of the illumination light emitted from the headlamp 110 are changed. The ratio of changes.
 つまり、第1発光部93に加え、さらに第2発光部94を励起することにより、図中の点Qから点Rの方向である、照明光の色度が赤色となる方向(色温度を低下させる方向)への照明光の特性変化を実現することができる。 That is, by exciting the second light emitting unit 94 in addition to the first light emitting unit 93, the direction from the point Q to the point R in the figure, in which the chromaticity of the illumination light becomes red (the color temperature is lowered). The change in the characteristics of the illumination light in the direction of movement) can be realized.
 このように、ヘッドランプ110は、簡易な構造によりスペクトル、色度、色温度などの照明光の特性を容易に変化させることができる。 Thus, the headlamp 110 can easily change the characteristics of illumination light such as spectrum, chromaticity, and color temperature with a simple structure.
 なお、第1発光部93は、第2発光部94よりも大きい方が好ましい。それにより、複数の第2発光部94を使用する場合などにおいて、よりバリエーションに富んだ照明光の特性変化をもたらすことができ、様々なシチュエーションにおいてヘッドランプ110を適用することができる。 The first light emitting unit 93 is preferably larger than the second light emitting unit 94. Thereby, when using the 2nd light emission part 94 etc., the characteristic change of illumination light rich in variation can be brought about, and the headlamp 110 can be applied in various situations.
 また、図45で示される構成は一実施例を説明するためのものであり、ヘッドランプ110によって得られる上記効果は、図45の構成に限られない。つまり、図45では、フェルール65と第2発光部94との間に第1発光部93が配置されていものの、例えば、フェルール65と第1発光部93との間に第2発光部94が配置されていてもよく、その構成によっても図45の構成と同様の効果を得ることができる。 Further, the configuration shown in FIG. 45 is for explaining one embodiment, and the above-described effect obtained by the headlamp 110 is not limited to the configuration of FIG. That is, in FIG. 45, the first light emitting unit 93 is disposed between the ferrule 65 and the second light emitting unit 94, but for example, the second light emitting unit 94 is disposed between the ferrule 65 and the first light emitting unit 93. The same effect as the configuration of FIG. 45 can be obtained by the configuration.
 そして、ヘッドランプ110は、点Rによって示される赤色に限らず、種々の色の光を出射することができる。 And the headlamp 110 can emit light of various colors, not limited to red indicated by the point R.
 〔実施例2〕
 以下、本実施の形態に係る他の実施例を説明する。なお、既出の内容については、その説明を省略する。
[Example 2]
Hereinafter, other examples according to the present embodiment will be described. Note that the description of the already described contents is omitted.
 図48は、図45に示すヘッドランプ110の構造において、本実施形態に係る第2発光部94の他の動作を説明するための図である。このうち、図48(a)は、第2発光部94とレーザ光の光軸との間の距離が最も離れている状態を示す図である。図48(b)は、第2発光部94がレーザ光の光軸に向かって移動している様子を示す図である。また、図48(c)は、第2発光部94とレーザ光の光軸との間の距離が最も近付いた状態を示す図である。なお、不図示であるが、レーザ光の光軸は、図48(a)に示される円の中心位置に存在するものとする。また、図48(a)に示す円は、第1発光部93の発光中心を表すものとする。 48 is a view for explaining another operation of the second light emitting unit 94 according to the present embodiment in the structure of the headlamp 110 shown in FIG. Among these, FIG. 48A is a diagram showing a state where the distance between the second light emitting unit 94 and the optical axis of the laser beam is the longest. FIG. 48B is a diagram illustrating a state in which the second light emitting unit 94 is moving toward the optical axis of the laser light. FIG. 48C is a diagram illustrating a state in which the distance between the second light emitting unit 94 and the optical axis of the laser light is closest. Although not shown, it is assumed that the optical axis of the laser light exists at the center position of the circle shown in FIG. Also, the circle shown in FIG. 48A represents the light emission center of the first light emitting unit 93.
 図示するように、図48では、第2発光部94の位置は、位置制御部95の動作を介して変化する。具体的には、板状に形成された2つの第2発光部94が光軸の方向に向かってせり出してくることにより、第2発光部94の位置が変化する。その結果、レーザ光、または、第1発光部93が発する蛍光が照射される第2発光部94上の照射面積が変化する。そして、第2発光部94の蛍光の発生量が変化することにより、照明光の特性を変化させることができる。 48, in FIG. 48, the position of the second light emitting unit 94 changes through the operation of the position control unit 95. Specifically, the position of the second light emitting unit 94 changes as the two second light emitting units 94 formed in a plate shape protrude toward the optical axis. As a result, the irradiation area on the second light emitting unit 94 to which the laser light or the fluorescence emitted from the first light emitting unit 93 is irradiated changes. And the characteristic of illumination light can be changed by the amount of fluorescence generation of the 2nd light emission part 94 changing.
 なお、板状に形成された2つの第2発光部94は、一方が光軸の方向に向かってせり出してき、他方が光軸の方向から離れるような動作によって実現されてもよい。 The two second light emitting units 94 formed in a plate shape may be realized by an operation in which one protrudes toward the optical axis and the other moves away from the optical axis.
 以上の説明からも分かるように、第2発光部94の形状、数量、及び、位置制御部95によって第2発光部94の位置が変化する方法は、様々な形態を採ることができる。その一例として、位置制御部95が回転軸として構成されており、その回転軸の先端部に第2発光部94が取り付けられている場合を考える。このとき、位置制御部95が動作することで第2発光部94が回転し、それにより第2発光部94がレーザ光の光軸に向かう(遠ざかる)動作を実現することができる。その結果、レーザ光、または、第1発光部93が発する蛍光が照射される第2発光部94上の照射面積が変化し、ヘッドランプ110から出射される照明光の色温度や色度、スペクトルの割合を変化させることができる。 As can be understood from the above description, the shape and quantity of the second light emitting unit 94 and the method of changing the position of the second light emitting unit 94 by the position control unit 95 can take various forms. As an example, consider the case where the position control unit 95 is configured as a rotating shaft, and the second light emitting unit 94 is attached to the tip of the rotating shaft. At this time, the operation of the position control unit 95 causes the second light emitting unit 94 to rotate, whereby the second light emitting unit 94 can be moved toward (or away from) the optical axis of the laser light. As a result, the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted from the first light emitting unit 93 changes, and the color temperature, chromaticity, and spectrum of the illumination light emitted from the headlamp 110 are changed. The ratio of can be changed.
 つまり、レーザ光、または、第1発光部93が発する蛍光が照射される第2発光部94上の照射面積を変化させることができるのであれば、どのような構成で第2発光部94の位置変化の動作を実現してもよい。 That is, as long as the irradiation area on the second light emitting unit 94 irradiated with the laser light or the fluorescence emitted from the first light emitting unit 93 can be changed, the position of the second light emitting unit 94 can be changed in any configuration. A change operation may be realized.
 また、第1発光部93と第2発光部94とを逆の位置付けにすることも可能である。すなわち、レーザ光、または、第2発光部94が発する蛍光が照射される第1発光部93上の照射面積を変化させることができるのであれば、どのような構成で第1発光部93の位置変化の動作を実現してもよい。 Also, the first light emitting unit 93 and the second light emitting unit 94 can be positioned in the opposite positions. That is, as long as the irradiation area on the first light emitting unit 93 irradiated with the laser light or the fluorescence emitted from the second light emitting unit 94 can be changed, the position of the first light emitting unit 93 can be changed in any configuration. A change operation may be realized.
 〔実施の形態13〕
 本発明の他の実施形態について図49、図50に基づいて説明すれば、以下のとおりである。なお、本実施の形態に係る照明装置は、種々の用途に用いることができ、例えば、懐中電灯、LED電球、ペン型ライト、信号機、家庭用照明器具、工事用ライトなどとして実現されてよい。以下、本実施の形態について説明するが、実施の形態12と同様の部材に関しては、同じ符号を付し、その説明を省略する。
[Embodiment 13]
Another embodiment of the present invention will be described below with reference to FIGS. 49 and 50. Note that the lighting device according to the present embodiment can be used for various purposes, and may be realized as, for example, a flashlight, an LED bulb, a pen-type light, a traffic light, a home lighting device, a construction light, or the like. Hereinafter, although this Embodiment is demonstrated, about the member similar to Embodiment 12, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 ヘッドランプ110で用いられる励起光源がLEDの場合の実施の形態を図49、図50により説明する。図49は、LEDチップ96が埋め込まれた第1発光部99を説明するための図であり、図49(a)は、第1発光部93の断面図であり、図49(b)は、第1発光部99の斜視図である。 An embodiment in which the excitation light source used in the headlamp 110 is an LED will be described with reference to FIGS. 49 and 50. FIG. 49 is a diagram for explaining the first light emitting unit 99 in which the LED chip 96 is embedded, FIG. 49A is a cross-sectional view of the first light emitting unit 93, and FIG. 3 is a perspective view of a first light emitting unit 99. FIG.
 図49(a)・(b)に示すように、第1発光部99は、蛍光体が分散されたシリコン樹脂と、そのシリコン樹脂の内部に埋め込まれたLEDチップ96とからなり、パッケージ98に埋め込まれている。そのパッケージ98の側面および底面には電極97が取り付けられており、電極97は、図示しない配線を介して、LEDチップ96へ給電する。 As shown in FIGS. 49A and 49B, the first light emitting unit 99 includes a silicon resin in which a phosphor is dispersed and an LED chip 96 embedded in the silicon resin. Embedded. Electrodes 97 are attached to the side surface and the bottom surface of the package 98, and the electrodes 97 supply power to the LED chip 96 via wiring (not shown).
 第1発光部99としては、SMD(Surface Mount Device)型のものが好適に用いられる。SMD型は、蛍光体が黄色蛍光体であれば、青色に発光するLEDチップ96と組み合わせて白色光を発することができる。また、蛍光体およびLEDチップの組み合わせを様々に変えることで、出射する光の色のバリエーションも変えることができる。 As the first light emitting unit 99, a SMD (Surface Mount Device) type is preferably used. If the phosphor is a yellow phosphor, the SMD type can emit white light in combination with the LED chip 96 that emits blue light. Moreover, the variation of the color of the emitted light can be changed by changing the combination of the phosphor and the LED chip.
 図50は、図49に示す第1発光部99と、第2発光部94および位置制御部95とを組み合わせた図である。図示するように、第1発光部99の上方に、第2発光部94および位置制御部95が配設されている。そして、この場合にも、〔実施例1〕、〔実施例2〕欄において説明した第2発光部94および位置制御部95の動作によって、ヘッドランプ110から出射される照明光の色温度や色度、スペクトルの割合を変化させることができる。なお、このとき、第2蛍光体部に含まれる蛍光体は、CASN:EuやSCASN:Euが好ましいが、これに限られるものではない。 FIG. 50 is a diagram in which the first light emitting unit 99, the second light emitting unit 94, and the position control unit 95 shown in FIG. 49 are combined. As shown in the figure, a second light emitting unit 94 and a position control unit 95 are disposed above the first light emitting unit 99. In this case as well, the color temperature and color of the illumination light emitted from the headlamp 110 by the operations of the second light emitting unit 94 and the position control unit 95 described in the [Example 1] and [Example 2] columns. The degree of spectrum can be changed. At this time, the phosphor contained in the second phosphor portion is preferably CASN: Eu or SCASN: Eu, but is not limited thereto.
 〔実施の形態14〕
 本実施の形態は、図51および図52に基づいて、本発明の照明装置の一例としてのレーザダウンライト200について説明するものである。
[Embodiment 14]
In the present embodiment, a laser downlight 200 as an example of the illumination device of the present invention will be described with reference to FIGS. 51 and 52.
 本実施の形態に係るレーザダウンライト200は、第1発光部93および第2発光部94からなり、半導体レーザ63から出射したレーザ光を第1発光部93および/または第2発光部94(以下、単に、位置制御部95も含めて、発光部7と称する場合もある)に照射することによって発生する蛍光を照明光として用いるものである。また、本実施の形態に係るレーザダウンライト200は、熱伝導部材231を備える。それ以外の構成については、実施の形態1で述べたレーザダウンライト200と同様の構成であるので、その説明を割愛する。 The laser downlight 200 according to the present embodiment includes a first light emitting unit 93 and a second light emitting unit 94, and the laser light emitted from the semiconductor laser 63 is emitted from the first light emitting unit 93 and / or the second light emitting unit 94 (hereinafter referred to as “light emitting unit 94”). The fluorescent light generated by irradiating the light emitting unit 7 including the position control unit 95 may also be used as illumination light. Further, the laser downlight 200 according to the present embodiment includes a heat conducting member 231. Other configurations are the same as those of the laser downlight 200 described in the first embodiment, and thus the description thereof is omitted.
 発光ユニット210は、図51に示すように、筐体211、光ファイバー55、発光部7、熱伝導部材231および透光板213を備えている。上述の実施形態と同様に、発光部7の熱が熱伝導部材231に伝わることで発光部7の放熱が促進される。 As shown in FIG. 51, the light emitting unit 210 includes a housing 211, an optical fiber 55, a light emitting unit 7, a heat conducting member 231, and a light transmitting plate 213. Similarly to the above-described embodiment, the heat of the light emitting unit 7 is transmitted to the heat conducting member 231 and the heat radiation of the light emitting unit 7 is promoted.
 また、筐体211には、光ファイバー55を通すための通路214が形成されており、この通路214を通って光ファイバー55が熱伝導部材231まで延びている。光ファイバー55の出射端部5aから出射されたレーザ光は、熱伝導部材231を透過して発光部7に到達する。 Further, a passage 214 for passing the optical fiber 55 is formed in the housing 211, and the optical fiber 55 extends to the heat conducting member 231 through the passage 214. The laser beam emitted from the emission end portion 5 a of the optical fiber 55 passes through the heat conducting member 231 and reaches the light emitting unit 7.
 また、図52に示す構成の場合、熱伝導部材231は、筐体211の底部に、レーザ光入射側の面を全面的に当接させて配置されている。それゆえ、筐体211を熱伝導率の高い物質からなるものにすることによって熱伝導部材231の冷却部として機能させることができる。 In the case of the configuration shown in FIG. 52, the heat conducting member 231 is disposed at the bottom of the housing 211 with the laser light incident side surface in full contact therewith. Therefore, the housing 211 can be made of a material having high thermal conductivity so that it can function as a cooling unit for the heat conducting member 231.
 なお、図51に示すLD光源ユニット220の内部には、半導体レーザ63および非球面レンズ29が一対のみ示されているが、発光ユニット210が複数存在する場合には、発光ユニット210からそれぞれ延びる光ファイバー55の束を1つのLD光源ユニット220に導いてもよい。この場合、1つのLD光源ユニット220に複数の半導体レーザ63と非球面レンズ29との対が収納されることになり、LD光源ユニット220は集中電源ボックスとして機能する。 51, only one pair of the semiconductor laser 63 and the aspherical lens 29 is shown inside the LD light source unit 220. However, when there are a plurality of light emitting units 210, optical fibers extending from the light emitting units 210, respectively. The bundle of 55 may be guided to one LD light source unit 220. In this case, a pair of a plurality of semiconductor lasers 63 and the aspheric lens 29 is accommodated in one LD light source unit 220, and the LD light source unit 220 functions as a centralized power supply box.
 以上のように、レーザダウンライト200は、レーザ光を出射する半導体レーザ63を少なくとも1つ備えるLD光源ユニット220と、発光部7および反射鏡としての凹部212を備える少なくとも1つの発光ユニット210と、発光ユニット210のそれぞれへ上記レーザ光を導く光ファイバー55とを含んでいる。 As described above, the laser downlight 200 includes the LD light source unit 220 including at least one semiconductor laser 63 that emits laser light, the at least one light emitting unit 210 including the light emitting unit 7 and the recess 212 as a reflecting mirror, And an optical fiber 55 for guiding the laser light to each of the light emitting units 210.
 〔実施の形態12~14に係る付記事項〕
 例えば、励起光源として高出力のLEDを用いてもよい。この場合には、450nmの波長の光(青色)を出射するLEDと、黄色の蛍光体、または緑色および赤色の蛍光体とを組み合わせることにより白色光を出射する発光装置を実現できる。
[Additional Notes on Embodiments 12 to 14]
For example, a high-power LED may be used as the excitation light source. In this case, a light emitting device that emits white light can be realized by combining an LED that emits light having a wavelength of 450 nm (blue) and a yellow phosphor or green and red phosphors.
 また、励起光源として、半導体レーザ以外の固体レーザを用いてもよい。ただし、半導体レーザを用いる方が、励起光源を小型化できるため好ましい。 Further, a solid-state laser other than the semiconductor laser may be used as the excitation light source. However, it is preferable to use a semiconductor laser because the excitation light source can be reduced in size.
 〔本発明の別の表現〕
 上記各実施の形態に係る発光装置などは、以下のようにも表現できる。
[Another expression of the present invention]
The light emitting device according to each of the above embodiments can be expressed as follows.
 すなわち、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記発光体の上記励起光が照射される照射面の外側に照射される励起光を少なくとも拡散する拡散部をさらに備えていても良い。 In other words, in addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention further includes a diffusion unit that diffuses at least the excitation light irradiated outside the irradiation surface irradiated with the excitation light of the light emitter. You may have.
 上記の構成によれば、拡散部の光拡散作用により、発光装置の色度ばらつきを抑制することができる。 According to the above configuration, the chromaticity variation of the light emitting device can be suppressed by the light diffusing action of the diffusing unit.
 なお、「照射面の外側に照射される励起光を少なくとも拡散する」とは、照射面の外側に照射される励起光を拡散し、かつ、照射面の全部または一部に向かって照射される励起光を拡散する場合も含まれることを意味する。 “To diffuse at least the excitation light irradiated to the outside of the irradiation surface” means to diffuse the excitation light irradiated to the outside of the irradiation surface and to irradiate all or part of the irradiation surface. It means that the case where the excitation light is diffused is also included.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記励起光のスポットの面積に対する上記発光体の断面の面積の比が、1/4以上、2/3以下であることが好ましい。 In addition to the above configuration, the light-emitting device according to an embodiment of the present invention has a ratio of a cross-sectional area of the light emitter to an area of the spot of the excitation light of ¼ or more and / or less. Preferably there is.
 励起光のスポットの面積に対する発光体の断面の面積の比が、1/4よりも小さくなると、発光体に対する励起光の照射効率が低くなり過ぎる。 If the ratio of the cross-sectional area of the illuminant to the spot area of the excitation light is smaller than 1/4, the irradiation efficiency of the excitation light to the illuminant becomes too low.
 一方、励起光のスポットの面積に対する発光体の断面の面積の比が、2/3よりも大きくなると、発光体の励起光が照射される照射面におけるレーザ光の強度分布に大きなムラが生じてしまう。 On the other hand, if the ratio of the cross-sectional area of the illuminant to the area of the excitation light spot is larger than 2/3, the intensity distribution of the laser light on the irradiation surface irradiated with the excitation light of the illuminant will be greatly uneven. End up.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記励起光源は、青色領域の励起光を出射し、上記発光体は、黄色領域の蛍光を発する黄色発光蛍光体を含んでいても良い。 In addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention is configured such that the excitation light source emits blue region excitation light, and the light emitter emits yellow region fluorescence. May be included.
 上記の構成によれば、発光装置から放射される照明光が発光効率の高い(擬似)白色光となる。 According to the above configuration, the illumination light emitted from the light emitting device becomes (pseudo) white light with high luminous efficiency.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記励起光源は、青色領域の励起光を出射し、上記発光体は、緑色領域の蛍光を発する緑色発光蛍光体と、赤色領域の蛍光を発する赤色発光蛍光体とを含んでいても良い。 In addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention includes a green-emitting phosphor in which the excitation light source emits blue region excitation light, and the phosphor emits green region fluorescence. And a red light-emitting phosphor that emits fluorescence in the red region.
 上記の構成によれば、発光体から発生する照明光が演色性の良い白色光となる。また、上記青色領域の励起光と黄色発光蛍光体との組合せよりも演色性が良く、かつ発光体の発光効率の低下も抑制される。 According to the above configuration, the illumination light generated from the light emitter becomes white light with good color rendering. In addition, the color rendering is better than the combination of the excitation light in the blue region and the yellow light emitting phosphor, and the decrease in the light emission efficiency of the light emitter is also suppressed.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記発光体に生じた熱を拡散させる熱伝導性基板を備え、上記発光体の上記励起光が照射される照射面の側が、上記熱伝導性基板によって保持されていても良い。 In addition to the above configuration, a light emitting device according to an embodiment of the present invention includes a thermally conductive substrate that diffuses heat generated in the light emitter, and is irradiated with the excitation light of the light emitter. The side of the surface may be held by the thermally conductive substrate.
 上記の構成では、熱伝導性基板が発光体に生じた熱を拡散させる。このため、発光体の劣化を抑制することができる。 In the above configuration, the heat conductive substrate diffuses the heat generated in the light emitter. For this reason, deterioration of a light-emitting body can be suppressed.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記励起光を反射する反射部材を備え、上記発光体の上記励起光が照射される照射面と対向する側が、上記反射部材によって保持されていても良い。 In addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention includes a reflective member that reflects the excitation light, and the side of the light emitter facing the irradiation surface irradiated with the excitation light is It may be held by the reflecting member.
 上記の構成によれば、発光体を透過し、反射部材で反射した励起光が再度発光体を励起するので、励起光をそのまま透過させる形態と比較して、励起光の照射方向に対する発光体の厚さを1/2にしても、十分な発光効率が得られる。 According to the above configuration, the excitation light that is transmitted through the illuminant and reflected by the reflecting member excites the illuminant again. Even if the thickness is halved, sufficient luminous efficiency can be obtained.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記励起光源が複数存在しており、上記励起光源のそれぞれから出射される励起光を上記発光体に導光する導光部材を備えていても良い。 In addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention includes a plurality of the excitation light sources, and guides the excitation light emitted from each of the excitation light sources to the light emitter. A light guide member may be provided.
 これにより、複数の励起光源のそれぞれから出射される励起光を発光体に導光できるので、高光束および高輝度の発光装置を実現できる。また、導光部材の長さ(入射端部と出射端部との距離)を必要に応じて変更することにより、励起光源と発光体とを任意の距離で分離することできる。したがって、発光装置の設計自由度を高めることができる。 Thereby, since the excitation light emitted from each of the plurality of excitation light sources can be guided to the light emitter, a light emitting device with high luminous flux and high brightness can be realized. Moreover, an excitation light source and a light-emitting body can be isolate | separated by arbitrary distances by changing the length (distance of an incident end part and an output end part) of a light guide member as needed. Therefore, the design freedom of the light emitting device can be increased.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記導光部材の上記発光体に近い方の断面積は、上記励起光源に近い方の断面積よりも小さくなっていても良い。 In addition to the above-described configuration, the light-emitting device according to an embodiment of the present invention has a cross-sectional area closer to the light emitter of the light guide member than a cross-sectional area closer to the excitation light source. May be.
 上記の構成によれば、導光部材の発光体に近い方の断面積を小さくすることにより、発光体の小型化が可能となる。 According to the above configuration, it is possible to reduce the size of the light emitter by reducing the cross-sectional area of the light guide member closer to the light emitter.
 また、本発明の一実施形態に係る発光装置は、上記の構成に加えて、上記導光部材は、少なくとも1つの入射端部で、上記複数の励起光源が出射した励起光を受け取り、当該入射端部から入射した励起光を複数の出射端部のそれぞれから出射し、上記発光体は、上記出射端部のそれぞれから出射された励起光を受けて蛍光を発しても良い。 In addition to the above configuration, in the light emitting device according to an embodiment of the present invention, the light guide member receives excitation light emitted from the plurality of excitation light sources at at least one incident end, and receives the incident light. The excitation light incident from the end may be emitted from each of the plurality of emission ends, and the light emitter may emit fluorescence upon receiving the excitation light emitted from each of the emission ends.
 上記構成によれば、例えば、導光部材のそれぞれの出射端部から出射される励起光を、発光体の互いに異なる領域に対して照射することが可能となる。換言すれば、複数の導光部のそれぞれの出射端部からの励起光は、発光体に対して分散して照射される。 According to the above configuration, for example, it is possible to irradiate the different regions of the light emitter with the excitation light emitted from the respective emission end portions of the light guide member. In other words, the excitation light from the emission end portions of the plurality of light guide portions is distributed and irradiated to the light emitter.
 それゆえ、励起光が発光体の一箇所に集中的に照射されることによって発光体が著しく劣化する可能性を低減でき、出射する光の光束を低下させることなくより長寿命の発光装置を実現することができる。また、発光体に照射する励起光の強度を低下させる必要がないため、発光装置の光束のみならず、輝度を大きくすることができる。従って、小型で高輝度な発光装置を実現できる。 Therefore, it is possible to reduce the possibility of significant deterioration of the light emitter by intensively irradiating excitation light to one place of the light emitter, realizing a longer-life light-emitting device without reducing the luminous flux of the emitted light can do. In addition, since it is not necessary to reduce the intensity of the excitation light applied to the light emitter, not only the luminous flux of the light emitting device but also the luminance can be increased. Therefore, a light emitting device with a small size and high luminance can be realized.
 また、本発明の一実施形態に係る照明装置は、上記の発光装置を備えていても良い。 Further, an illumination device according to an embodiment of the present invention may include the light emitting device described above.
 また、本発明の一実施形態に係る前照灯は、上記の発光装置を備えていても良い。 Further, a headlamp according to an embodiment of the present invention may include the light emitting device described above.
 また、本発明の一実施形態に係る前照灯は、上記の発光装置と、上記発光体から発した蛍光を反射することにより、所定の立体角内を進む光線束を形成する反射鏡と、を備えていても良い。これにより、所定の立体角内を進む光線束を装置の外部へ放射する前照灯を実現することができる。 In addition, a headlamp according to an embodiment of the present invention includes the above light emitting device, a reflecting mirror that forms a light bundle that travels within a predetermined solid angle by reflecting fluorescence emitted from the light emitter, and May be provided. Thereby, the headlamp which radiates | emits the light beam which advances within the predetermined solid angle to the exterior of an apparatus is realizable.
 本発明の一実施形態に係る発光装置は、励起光を出射する第1光源と、上記第1光源から出射された励起光を受けて蛍光を発する発光部と、上記励起光とは異なる波長領域を有する第2の光を出射する第2光源とを備え、上記発光部から出射された蛍光および上記第2光源から出射された第2の光を照明光として出射することが好ましい。なお、第2光源は、上記特性変化機構として機能する。 A light-emitting device according to an embodiment of the present invention includes a first light source that emits excitation light, a light-emitting unit that emits fluorescence in response to excitation light emitted from the first light source, and a wavelength region different from the excitation light. It is preferable that the second light source that emits the second light having the above-described characteristics is provided, and the fluorescence emitted from the light emitting unit and the second light emitted from the second light source are emitted as illumination light. The second light source functions as the characteristic changing mechanism.
 上記構成によれば、特性変化機構として機能する第2光源は、第1光源から出射された励起光とは異なる波長領域を有する第2の光を出射する。この第2の光は、第1光源から出射された励起光を受けて発光部が発した蛍光とともに、照明光として出射される。 According to the above configuration, the second light source functioning as a characteristic changing mechanism emits second light having a wavelength region different from that of the excitation light emitted from the first light source. The second light is emitted as illumination light together with the fluorescence emitted from the light emitting unit upon receiving the excitation light emitted from the first light source.
 それゆえ、本発明の一実施形態に係る発光装置は、発光部が発した蛍光とは異なる第2の光を照明光として利用できるので、例えば励起光としてのレーザ光が外部に漏れることを防ぎ、蛍光のみを照明光として用いるように設計された従来の照明装置においては困難であった色温度の調整を行うことができる。 Therefore, the light emitting device according to the embodiment of the present invention can use the second light different from the fluorescence emitted by the light emitting unit as the illumination light, so that, for example, laser light as excitation light is prevented from leaking to the outside. It is possible to adjust the color temperature, which has been difficult in the conventional lighting device designed to use only fluorescence as illumination light.
 また、本発明の一実施形態に係る発光装置では、上記第1光源は、紫外領域から青紫色領域の発振波長を有する光を上記励起光として出射し、上記第2光源は、青色領域の発振波長を有する光を上記第2の光として出射することが好ましい。 In the light emitting device according to an embodiment of the present invention, the first light source emits light having an oscillation wavelength from an ultraviolet region to a blue-violet region as the excitation light, and the second light source emits light in a blue region. It is preferable to emit light having a wavelength as the second light.
 第1光源が紫外領域から青紫色領域の発振波長を有する光を励起光として出射する場合、その励起光から得られる蛍光の青味成分はほとんどないか、あってもわずかである。上記構成によれば、第2光源が青色領域の発振波長を有する光(青色光)を第2の光として出射するので、蛍光の青味成分をその第2の光により補填できる。このため、発光装置は、照明光の色温度を高めることができる。 When the first light source emits light having an oscillation wavelength from the ultraviolet region to the blue-violet region as excitation light, there is little or no fluorescence bluish component obtained from the excitation light. According to the above configuration, since the second light source emits the light having the oscillation wavelength in the blue region (blue light) as the second light, the blue light component of the fluorescence can be compensated by the second light. For this reason, the light emitting device can increase the color temperature of the illumination light.
 また、本発明の一実施形態に係る発光装置では、上記発光部は、350nm以上、420nm以下の波長範囲に光の吸収ピーク波長を有する第1蛍光体を含むことが好ましい。 In the light emitting device according to the embodiment of the present invention, the light emitting unit preferably includes a first phosphor having a light absorption peak wavelength in a wavelength range of 350 nm or more and 420 nm or less.
 また、本発明の一実施形態に係る発光装置では、350nm以上、420nm以下の波長範囲の励起光を受けたときの上記第1蛍光体の吸収率は、70%以上であることが好ましい。 Moreover, in the light emitting device according to an embodiment of the present invention, the absorption rate of the first phosphor when receiving excitation light in a wavelength range of 350 nm or more and 420 nm or less is preferably 70% or more.
 また、本発明の一実施形態に係る発光装置では、上記第1蛍光体は、Caα-SiAlON:Ce蛍光体であることが好ましい。 In the light emitting device according to the embodiment of the present invention, the first phosphor is preferably a Caα-SiAlON: Ce phosphor.
 第1蛍光体は、350nm以上、420nm以下の波長範囲に光の吸収ピーク波長を有しているので、第1蛍光体の吸収率は、他の波長範囲における吸収率よりも高い。特に、350nm以上、420nm以下の波長範囲に発振波長を有する励起光を受けたときの第1蛍光体(特にCaα-SiAlON:Ce蛍光体)の吸収率は70%以上である。 Since the first phosphor has an absorption peak wavelength of light in a wavelength range of 350 nm or more and 420 nm or less, the absorption rate of the first phosphor is higher than the absorption rate in other wavelength ranges. In particular, the absorption rate of the first phosphor (especially Caα-SiAlON: Ce phosphor) when receiving excitation light having an oscillation wavelength in the wavelength range of 350 nm or more and 420 nm or less is 70% or more.
 逆に言えば、上記他の波長範囲にピーク波長を有する光についての第1蛍光体の吸収率は低い。つまり、420nm以下の波長範囲ではない、例えば青色領域の発振波長(440nm以上の波長範囲にピーク波長)を有する第2の光が発光部に照射されたとき、その第2の光の発光部における吸収率は低い。 Conversely, the absorption rate of the first phosphor with respect to light having a peak wavelength in the other wavelength range is low. That is, when the light emitting unit is irradiated with second light that is not in the wavelength range of 420 nm or less, for example, has a blue region oscillation wavelength (peak wavelength in a wavelength range of 440 nm or more), the light emitting unit of the second light Absorption rate is low.
 このため、発光部において第2の光が吸収されにくいので、発光部における第2の光の減衰を抑制できる。それゆえ、本発明の一実施形態に係る発光装置は、第2の光を効率よく色温度調整に利用できる。 For this reason, the second light is not easily absorbed by the light emitting unit, so that the attenuation of the second light in the light emitting unit can be suppressed. Therefore, the light emitting device according to the embodiment of the present invention can efficiently use the second light for color temperature adjustment.
 また、本発明の一実施形態に係る発光装置では、上記発光部は、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する第2蛍光体を含むことが好ましい。 In the light emitting device according to the embodiment of the present invention, the light emitting unit preferably includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
 また、本発明の一実施形態に係る発光装置では、上記第2蛍光体は、CaAlSiN:Eu蛍光体(CASN:Eu蛍光体)又はSrCaAlSiN:Eu蛍光体(SCASN:Eu蛍光体)であることが好ましい。 In the light emitting device according to the embodiment of the present invention, the second phosphor is a CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor) or a SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor). It is preferable.
 上記構成によれば、第2蛍光体を、すなわち赤色で発光する赤色発光蛍光体(特に、CaAlSiN:Eu蛍光体又はSrCaAlSiN:Eu蛍光体)を第1蛍光体と混合することにより、演色性の高い発光部を実現できる。 According to the above configuration, the second phosphor, that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color. A highly light-emitting part can be realized.
 また、本発明の一実施形態に係る発光装置では、上記第2光源は、上記第2の光としてレーザ光を出射し、上記第2光源が出射したレーザ光を拡散する拡散部をさらに備えることが好ましい。 In the light emitting device according to an embodiment of the present invention, the second light source further includes a diffusion unit that emits laser light as the second light and diffuses the laser light emitted from the second light source. Is preferred.
 上記構成によれば、第2の光としてのレーザ光は、拡散部に照射されることにより拡散される。これにより、第2光源がレーザ光源であっても、拡散部によってレーザ光の発光点サイズを拡大することができるので、人体に与える影響を抑制しつつ第2の光を照明光として利用できる。 According to the above configuration, the laser light as the second light is diffused by irradiating the diffusion portion. Thereby, even if the second light source is a laser light source, the light emitting point size of the laser light can be increased by the diffusing unit, so that the second light can be used as illumination light while suppressing the influence on the human body.
 また、本発明の一実施形態に係る発光装置では、上記発光部は、上記拡散部として機能するものであり、上記第2光源が出射したレーザ光は、上記発光部によって拡散されることが好ましい。 In the light emitting device according to an embodiment of the present invention, the light emitting unit functions as the diffusing unit, and the laser light emitted from the second light source is preferably diffused by the light emitting unit. .
 上記構成によれば、第2の光としてのレーザ光を拡散させるために、励起光を蛍光に変換する発光部を利用できる。このため、拡散のための部材を別途備える必要がないので、その分安価に発光装置を製造できる。 According to the above configuration, in order to diffuse the laser light as the second light, a light emitting unit that converts excitation light into fluorescence can be used. For this reason, since it is not necessary to separately provide a member for diffusion, the light emitting device can be manufactured at a lower cost.
 また、レーザ光はコヒーレント性が高いので、第2の光を発光部に照射させるために発光部を大きくする必要がない(すなわち、発光部を小さくできる)。このため、第2光源を備えた本発明の一実施形態に係る発光装置においても高輝度な発光装置を実現できる。 Also, since the laser light is highly coherent, it is not necessary to enlarge the light emitting part in order to irradiate the light emitting part with the second light (that is, the light emitting part can be made small). For this reason, a high-luminance light-emitting device can be realized even in the light-emitting device according to an embodiment of the present invention that includes the second light source.
 また、本発明の一実施形態に係る発光装置では、上記第1光源は、レーザ光源であることが好ましい。 In the light emitting device according to the embodiment of the present invention, the first light source is preferably a laser light source.
 上記構成によれば、第1光源が高出力かつコヒーレント性の高いレーザ光を出射するので、発光部を小さくしても、その発光部に対する励起光の照射効率を高く、かつ発光部を強く励起できるため、従来と同様の光度を得ることができる。すなわち、第1光源がレーザ光源である場合、発光部を小さくできるので、高輝度な発光装置を実現できる。 According to the above configuration, since the first light source emits a high-output and highly coherent laser beam, even if the light emitting unit is made small, the irradiation efficiency of the excitation light to the light emitting unit is high and the light emitting unit is strongly excited. Therefore, the same luminous intensity as the conventional one can be obtained. That is, when the first light source is a laser light source, the light emitting unit can be made small, so that a high-luminance light emitting device can be realized.
 また、本発明の一実施形態に係る発光装置では、上記励起光を遮断する遮断フィルタを備えることが好ましい。 Moreover, it is preferable that the light emitting device according to the embodiment of the present invention includes a cutoff filter that blocks the excitation light.
 上記構成によれば、遮断フィルタを備えることにより、蛍光に変換されなかった(あるいは散乱されなかった)励起光が外部に出射されることを確実に防ぐことができる。それゆえ、励起光の発光点サイズが非常に小さく、かつ高出力光である、あるいは励起光が可視光領域以外の波長範囲に属していても、その励起光が外部に漏れ出て人体に与える影響を抑制できる。 According to the above configuration, by providing the cutoff filter, it is possible to reliably prevent the excitation light that has not been converted into fluorescence (or not scattered) from being emitted to the outside. Therefore, even if the emission point size of the excitation light is very small and the output power is high, or the excitation light belongs to a wavelength range other than the visible light region, the excitation light leaks to the outside and is given to the human body. The influence can be suppressed.
 また、本発明の一実施形態に係る前照灯は、上記に記載の発光装置を備えることが好ましい。 Moreover, the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
 上記構成によれば、前照灯は、上記発光装置を備えているので、当該発光装置と同様、励起光とは異なる第2の光を照明光として利用できるので、照明光の色温度を調整できる。 According to the above configuration, since the headlamp includes the light-emitting device, the second light different from the excitation light can be used as the illumination light as in the light-emitting device, so that the color temperature of the illumination light is adjusted. it can.
 本発明の一実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光源から出射された励起光を受けて蛍光を発する発光部と、上記励起光源から出射される励起光のうちの上記発光部によって蛍光に変換されない励起光の割合を変化させる光量変化機構と、を備えることが好ましい。なお、上記光量変化機構は、上記特性変化機構として機能する。 A light-emitting device according to an embodiment of the present invention includes an excitation light source that emits excitation light, a light-emitting unit that emits fluorescence in response to excitation light emitted from the excitation light source, and excitation light emitted from the excitation light source. It is preferable to include a light amount changing mechanism that changes a ratio of excitation light that is not converted into fluorescence by the light emitting unit. The light quantity change mechanism functions as the characteristic change mechanism.
 上記構成によれば、特性変化機構として機能する光量変化機構は、励起光源から出射される励起光のうちの発光部によって蛍光に変換されない励起光の割合(以降、変換割合と称する)を変化させる。 According to the above configuration, the light quantity changing mechanism that functions as the characteristic changing mechanism changes the ratio of the excitation light that is not converted into fluorescence by the light emitting unit in the excitation light emitted from the excitation light source (hereinafter referred to as the conversion ratio). .
 それゆえ、その変換割合を変化させ、蛍光に変換されない励起光の光量を変化させることにより、照明光に対する蛍光の割合が変化するので、照明光の色温度を変化させることができる。 Therefore, by changing the conversion ratio and changing the amount of excitation light that is not converted to fluorescence, the ratio of fluorescence to illumination light changes, so that the color temperature of illumination light can be changed.
 また、本発明の一実施形態に係る発光装置では、上記光量変化機構は、上記励起光源から出射される励起光のうちの上記発光部に照射されない励起光の割合を変化させることが好ましい。 Moreover, in the light emitting device according to an embodiment of the present invention, it is preferable that the light amount changing mechanism changes a ratio of excitation light that is not irradiated on the light emitting unit in excitation light emitted from the excitation light source.
 上記構成によれば、光量変化機構は、励起光源から出射される励起光のうちの発光部に照射されない励起光の割合を変化させることにより、上記変換割合を変化させることができる。 According to the above configuration, the light quantity changing mechanism can change the conversion ratio by changing the ratio of the excitation light that is not irradiated to the light emitting portion in the excitation light emitted from the excitation light source.
 また、本発明の一実施形態に係る発光装置では、上記光量変化機構は、上記励起光源から出射される励起光の上記発光部における照射面積を変化させることが好ましい。 Moreover, in the light emitting device according to an embodiment of the present invention, it is preferable that the light amount changing mechanism changes an irradiation area of the excitation light emitted from the excitation light source in the light emitting unit.
 上記構成によれば、光量変化機構は、励起光源から出射される励起光の発光部における照射面積を変化させることにより、上記変換割合を変化させることができる。 According to the above configuration, the light quantity changing mechanism can change the conversion ratio by changing the irradiation area in the light emitting portion of the excitation light emitted from the excitation light source.
 また、本発明の一実施形態に係る発光装置では、上記光量変化機構は、上記発光部を移動させることが好ましい。 In the light emitting device according to an embodiment of the present invention, it is preferable that the light amount changing mechanism moves the light emitting unit.
 上記構成によれば、励起光源から出射された励起光の光路幅が励起光源からの距離に応じて変化する場合、上記変換割合は、励起光源と発光部との距離に応じて変化する。光量変化機構が発光部を移動させ、その距離を変更することにより、上記変換割合を変化させることができる。 According to the above configuration, when the optical path width of the excitation light emitted from the excitation light source changes according to the distance from the excitation light source, the conversion ratio changes according to the distance between the excitation light source and the light emitting unit. The conversion ratio can be changed by moving the light emitting unit and changing the distance by the light quantity changing mechanism.
 また、本発明の一実施形態に係る発光装置は、上記励起光源から出射された励起光を屈曲して、上記発光部に出射する光学部材を備え、上記光量変化機構は、上記光学部材を移動させることが好ましい。 The light-emitting device according to an embodiment of the present invention includes an optical member that bends the excitation light emitted from the excitation light source and emits the light to the light-emitting unit, and the light amount changing mechanism moves the optical member. It is preferable to make it.
 上記構成によれば、光学部材は、励起光源から出射された励起光を屈曲して発光部に出射するので、例えばその励起光を発光部に集光するなど、光学部材透過後の励起光の光路幅を、光学部材入射前の励起光の光路幅とは異なり、かつ、光学部材からの距離に応じて変化するように出射できる。つまり、励起光源から出射された励起光は、光学部材を透過することにより、光学部材を基点としてその光路幅が新たに変化していくこととなる。 According to the above configuration, the optical member bends the excitation light emitted from the excitation light source and emits the excitation light to the light emitting part. The optical path width is different from the optical path width of the excitation light before entering the optical member, and can be emitted so as to change according to the distance from the optical member. That is, the excitation light emitted from the excitation light source is transmitted through the optical member, so that the optical path width is newly changed with the optical member as a base point.
 このため、光量変化機構が光学部材を移動させ、光学部材と発光部との距離を変更することにより、光学部材が存在しない場合の励起光源と発光部との距離を変更するのと同様の効果を得られる。つまり、この場合、上記変換割合が光学部材と発光部との距離に応じて変化することになるので、光学変化機構がその距離を変更することにより、上記変換割合を変化させることができる。 For this reason, the light amount changing mechanism moves the optical member, and changes the distance between the optical member and the light emitting unit, thereby providing the same effect as changing the distance between the excitation light source and the light emitting unit when there is no optical member. Can be obtained. That is, in this case, since the conversion ratio changes according to the distance between the optical member and the light emitting unit, the conversion ratio can be changed by the optical change mechanism changing the distance.
 また、本発明の一実施形態に係る発光装置では、上記光量変化機構は、上記発光部に入射される励起光の入射角度を変化させることが好ましい。 In the light emitting device according to the embodiment of the present invention, it is preferable that the light amount changing mechanism changes an incident angle of excitation light incident on the light emitting unit.
 上記構成によれば、光量変化機構は、発光部に入射される励起光の入射角度を変化させることにより、励起光源から出射される励起光のうちの発光部に照射されない励起光の割合、または励起光源から出射される励起光の発光部における照射面積を変えることができる。それゆえ、光量変化機構が入射角度を変化させることにより、上記変換割合を変化させることができる。 According to the above configuration, the light amount changing mechanism changes the incident angle of the excitation light incident on the light emitting unit, thereby changing the ratio of the excitation light that is not irradiated to the light emitting unit out of the excitation light emitted from the excitation light source, or The irradiation area in the light emission part of the excitation light emitted from the excitation light source can be changed. Therefore, the conversion ratio can be changed by the light amount changing mechanism changing the incident angle.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、青色領域の発振波長を有する光を上記励起光として出射し、上記発光部は、黄色領域にピーク波長を有する蛍光を発する第1蛍光体を含むことが好ましい。 In the light emitting device according to an embodiment of the present invention, the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light, and the light emitting unit emits fluorescence having a peak wavelength in a yellow region. It is preferable that the first phosphor is included.
 また、本発明の一実施形態に係る発光装置では、上記第1蛍光体は、イットリウム・アルミニウム・ガーネットであることが好ましい。 In the light emitting device according to the embodiment of the present invention, the first phosphor is preferably yttrium, aluminum, and garnet.
 上記構成によれば、励起光として青色領域の発振波長を有する光を用い、かつ、黄色領域にピーク波長を有する蛍光を発する第1蛍光体(特にイットリウム・アルミニウム・ガーネット(YAG))を用いた場合には、光量変化手段が上記変換割合を変化させることにより、照明光の色温度を広範囲に変化させることができる。 According to the above configuration, the first phosphor (especially yttrium aluminum garnet (YAG)) that emits fluorescence having a peak wavelength in the yellow region is used as the excitation light. In this case, the color temperature of the illumination light can be changed in a wide range by changing the conversion ratio by the light quantity changing means.
 また、本発明の一実施形態に係る発光装置では、上記発光部は、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する第2蛍光体を含むことが好ましい。 In the light emitting device according to the embodiment of the present invention, the light emitting unit preferably includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
 また、本発明の一実施形態に係る発光装置では、上記第2蛍光体は、CaAlSiN:Eu蛍光体(CASN:Eu蛍光体)又はSrCaAlSiN:Eu蛍光体(SCASN:Eu蛍光体)であることが好ましい。 In the light emitting device according to the embodiment of the present invention, the second phosphor is a CaAlSiN 3 : Eu phosphor (CASN: Eu phosphor) or a SrCaAlSiN 3 : Eu phosphor (SCASN: Eu phosphor). It is preferable.
 上記構成によれば、第2蛍光体を、すなわち赤色で発光する赤色発光蛍光体(特に、CaAlSiN:Eu蛍光体又はSrCaAlSiN:Eu蛍光体)を第1蛍光体と混合することにより、演色性の高い発光部を実現できる。 According to the above configuration, the second phosphor, that is, the red light-emitting phosphor that emits red light (particularly, the CaAlSiN 3 : Eu phosphor or the SrCaAlSiN 3 : Eu phosphor) is mixed with the first phosphor, thereby rendering the color. A highly light-emitting part can be realized.
 また、本発明の一実施形態に係る発光装置では、上記励起光とは異なる第2の光を出射する第2光源をさらに備えることが好ましい。 The light emitting device according to an embodiment of the present invention preferably further includes a second light source that emits second light different from the excitation light.
 上記構成によれば、第2光源から出射された励起光とは異なる第2の光を、照明光の一部として利用できる。この場合、光量変化機構が上記変換割合を変化させ、蛍光の量を変化させることにより、照明光に対する当該蛍光の割合(第2の光の割合)が変化するので、照明光の色温度を変化させることができる。 According to the above configuration, the second light different from the excitation light emitted from the second light source can be used as part of the illumination light. In this case, the light amount changing mechanism changes the conversion ratio and changes the amount of fluorescence, so that the ratio of the fluorescence to the illumination light (the ratio of the second light) changes, so the color temperature of the illumination light is changed. Can be made.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、第1励起光を出射する第1励起光源と、当該第1励起光とは異なる発振波長を有する第2励起光を出射する第2励起光源と、を有し、上記発光部は、上記第1励起光源から出射された第1励起光を受けて第1蛍光を発する第1発光部と、上記第2励起光源から出射された第2励起光を受けて第2蛍光を発する第2発光部と、を有し、上記光量変化機構は、上記第1励起光源から出射される第1励起光のうちの上記第1発光部によって蛍光に変換されない第1励起光の割合、及び上記第2励起光源から出射される第2励起光のうちの上記第2発光部によって蛍光に変換されない第2励起光の割合の少なくとも一方を変化させることが好ましい。 In the light emitting device according to an embodiment of the present invention, the excitation light source emits a first excitation light source that emits the first excitation light and a second excitation light that has an oscillation wavelength different from that of the first excitation light. A second excitation light source that emits first fluorescence upon receiving the first excitation light emitted from the first excitation light source, and the second excitation light source. A second light-emitting unit that emits second fluorescence upon receiving the second excitation light, wherein the light amount changing mechanism includes the first light emission of the first excitation light emitted from the first excitation light source. At least one of a ratio of the first excitation light that is not converted to fluorescence by the second portion and a ratio of the second excitation light that is not converted to fluorescence by the second light emitting portion of the second excitation light emitted from the second excitation light source. It is preferable to change.
 上記構成によれば、光量変化機構は、第1発光部及び/又は第2発光部によって蛍光に変換されない第1励起光及び/又は第2励起光の割合(変換割合)を変化させ、第1発光部及び/又は第2発光部から出射される蛍光の量をそれぞれ変化させる。これにより、照明光に対する各蛍光の割合が変化するので、照明光の色温度を変化させることができる。 According to the above configuration, the light amount changing mechanism changes the ratio (conversion ratio) of the first excitation light and / or the second excitation light that is not converted into fluorescence by the first light emitting unit and / or the second light emitting unit, and The amount of fluorescence emitted from the light emitting unit and / or the second light emitting unit is changed. Thereby, since the ratio of each fluorescence with respect to illumination light changes, the color temperature of illumination light can be changed.
 また、本発明の一実施形態に係る発光装置は、ユーザ操作を受け付ける入力手段を備え、上記光量変化機構は、上記入力手段が受け付けたユーザ操作に従って動作することが好ましい。 In addition, the light emitting device according to an embodiment of the present invention preferably includes an input unit that receives a user operation, and the light amount changing mechanism operates according to the user operation received by the input unit.
 上記構成によれば、光量変化機構が入力手段が受け付けたユーザ操作に従って動作するので、ユーザの嗜好にあわせて照明光の色温度を変化させることができる。 According to the above configuration, since the light quantity changing mechanism operates according to the user operation received by the input means, the color temperature of the illumination light can be changed according to the user's preference.
 さらに、本発明の一実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光とは異なる第2の光を出射する第2光源と、上記励起光源から出射された励起光を受けて蛍光を発する発光部と、上記励起光源から出射される励起光の出力、及び上記第2光源から出射される第2の光の出力の少なくとも一方を変化させる光量変化機構と、を備えることが好ましい。なお、光量変化機構は、上記特性変化機構として機能する。 Furthermore, the light emitting device according to an embodiment of the present invention includes an excitation light source that emits excitation light, a second light source that emits second light different from the excitation light, and excitation light emitted from the excitation light source. And a light emission unit that emits fluorescence, and a light amount changing mechanism that changes at least one of the output of the excitation light emitted from the excitation light source and the output of the second light emitted from the second light source. It is preferable. The light quantity change mechanism functions as the characteristic change mechanism.
 上記構成によれば、発光部が、励起光源から出射される励起光を受けて蛍光を発することにより、その蛍光を照明光として利用できる。一方、第2光源が励起光とは異なる第2の光を出射することにより、その第2の光も照明光の一部として利用できる。そして、特性変化機構として機能する光量変化機構が、上記励起光の出力及び第2の光の出力の少なくとも一方を変化させるので、照明光に利用される蛍光及び/又は第2の光の光量を変化させることができる。それゆえ、照明光の色温度を変化させることができる。 According to the above configuration, the light emitting unit receives the excitation light emitted from the excitation light source and emits fluorescence, so that the fluorescence can be used as illumination light. On the other hand, when the second light source emits second light different from the excitation light, the second light can also be used as part of the illumination light. And since the light quantity changing mechanism that functions as the characteristic changing mechanism changes at least one of the output of the excitation light and the output of the second light, the light quantity of the fluorescence and / or the second light used for the illumination light is changed. Can be changed. Therefore, the color temperature of the illumination light can be changed.
 さらに、本発明の一実施形態に係る発光装置は、第1励起光を出射する第1励起光源と、上記第1励起光とは異なる発振波長を有する第2励起光を出射する第2励起光源と、上記第1励起光源から出射された第1励起光を受けて第1蛍光を発する第1発光部と、上記第2励起光源から出射された第2励起光を受けて第2蛍光を発する第2発光部と、上記第1励起光源から出射される第1励起光の出力、及び上記第2励起光源から出射される第2励起光の出力の少なくとも一方を変化させる光量変化機構と、を備えることが好ましい。なお、第1励起光源および上記第2励起光源は、上記励起光源として機能し、第1発光部および第2発光部は、上記発光部として機能し、光量変化機構は、上記特性変化機構として機能する。 Furthermore, a light emitting device according to an embodiment of the present invention includes a first excitation light source that emits first excitation light and a second excitation light source that emits second excitation light having an oscillation wavelength different from that of the first excitation light. A first light emitting unit that emits first fluorescence upon receiving the first excitation light emitted from the first excitation light source, and a second fluorescence upon receiving the second excitation light emitted from the second excitation light source. A second light emitting unit, and a light amount changing mechanism that changes at least one of an output of the first excitation light emitted from the first excitation light source and an output of the second excitation light emitted from the second excitation light source. It is preferable to provide. The first excitation light source and the second excitation light source function as the excitation light source, the first light emission unit and the second light emission unit function as the light emission unit, and the light amount change mechanism functions as the characteristic change mechanism. To do.
 上記構成によれば、発光部として機能する第1発光部及び第2発光部はそれぞれ、励起光源として機能する第1励起光源及び第2励起光源から出射される第1励起光及び第2励起光を受けて第1蛍光及び第2蛍光を発する。これにより、発光装置は、第1蛍光及び第2蛍光を照明光として利用できる。そして、特性変化機構として機能する光量変化機構が、第1励起光及び第2励起光の出力の少なくとも一方を変化させるので、照明光に利用される各蛍光の光量を変化させることができる。それゆえ、照明光の色温度を変化させることができる。 According to the said structure, the 1st light emission part and 2nd light emission part which function as a light emission part are respectively the 1st excitation light and 2nd excitation light radiate | emitted from the 1st excitation light source and 2nd excitation light source which function as an excitation light source. In response, first fluorescence and second fluorescence are emitted. Thereby, the light emitting device can use the first fluorescence and the second fluorescence as illumination light. And since the light quantity change mechanism which functions as a characteristic change mechanism changes at least one of the output of the 1st excitation light and the 2nd excitation light, the light quantity of each fluorescence utilized for illumination light can be changed. Therefore, the color temperature of the illumination light can be changed.
 また、本発明の一実施形態に係る前照灯は、上記に記載の発光装置を備えることが好ましい。 Moreover, the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
 上記構成によれば、前照灯は、上記発光装置を備えているので、当該発光装置と同様、蛍光に変換される励起光の割合、あるいは励起光の出力を変化させることができる。それゆえ、照明光の色温度を変化させることができる。 According to the above configuration, since the headlamp includes the light emitting device, the ratio of the excitation light converted into fluorescence or the output of the excitation light can be changed as in the light emitting device. Therefore, the color temperature of the illumination light can be changed.
 本発明の一実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光を受けて第1の蛍光を発する第1発光部と、上記励起光を受けて上記第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する第2発光部と、上記第1発光部における励起光の照射範囲を一定にした上で、上記第2発光部に照射される励起光の照射範囲を変化させる照射範囲変化機構と、を備えることが好ましい。なお、第1発光部および上記第2発光部は、上記発光部として機能し、照射範囲変化機構は、上記特性変化機構として機能する。 A light emitting device according to an embodiment of the present invention includes an excitation light source that emits excitation light, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the first fluorescence upon receiving the excitation light. The second light emitting unit emitting second fluorescence having a peak wavelength different from that of the first light emitting unit, and the irradiation range of the excitation light in the first light emitting unit are made constant, and the irradiation of the excitation light irradiated to the second light emitting unit It is preferable to include an irradiation range changing mechanism that changes the range. The first light emitting unit and the second light emitting unit function as the light emitting unit, and the irradiation range changing mechanism functions as the characteristic changing mechanism.
 上記構成によれば、励起光源から出射された励起光を受けて、発光部として機能する第1発光部が第1の蛍光を発し、発光部として機能する第2発光部が、第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する。 According to the above configuration, upon receiving the excitation light emitted from the excitation light source, the first light emitting unit that functions as the light emitting unit emits the first fluorescence, and the second light emitting unit that functions as the light emitting unit has the first fluorescence. Emits a second fluorescence having a peak wavelength different from
 特性変化機構として機能する照射範囲変化機構は、これら第1発光部及び第2発光部に照射される励起光の照射範囲を変化させる。例えば、照射範囲変化機構は、第1発光部における励起光の照射範囲を一定にした上で、第2発光部に照射される励起光の照射範囲を変化させる。例えば、照射範囲変化機構は、励起光が第1発光部の全体に照射されており、第2発光部には照射されていない状態から、その照射範囲を大きくすることにより、その照射範囲に第2発光部を含める。これにより、第1の蛍光に加え第2の蛍光を出射できるので、照明光に対する第2の蛍光の割合を増加させることができる。 The irradiation range changing mechanism that functions as a characteristic changing mechanism changes the irradiation range of the excitation light irradiated to the first light emitting unit and the second light emitting unit. For example, the irradiation range changing mechanism changes the irradiation range of the excitation light irradiated to the second light emitting unit after making the irradiation range of the excitation light in the first light emitting unit constant. For example, the irradiation range changing mechanism increases the irradiation range from the state where the excitation light is irradiated to the entire first light emitting unit and is not irradiated to the second light emitting unit. 2 light emitting parts are included. Accordingly, since the second fluorescence can be emitted in addition to the first fluorescence, the ratio of the second fluorescence to the illumination light can be increased.
 このように、照射範囲変化機構は、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができる。それゆえ、その割合の変化により、照明光の色温度を変化させることができる。 Thus, the irradiation range changing mechanism can change the ratio of the first fluorescence and the second fluorescence included in the illumination light. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
 また、本発明の一実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光を受けて第1の蛍光を発する第1発光部と、上記励起光を受けて上記第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する第2発光部と、上記第1発光部及び上記第2発光部に照射される励起光の照射範囲を変化させる照射範囲変化機構と、を備えることが好ましい。なお、第1発光部および第2発光部は、上記発光部として機能し、照射範囲変化機構は、上記特性変化機構として機能する。 The light emitting device according to an embodiment of the present invention includes an excitation light source that emits excitation light, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the first light that receives the excitation light. A second light emitting unit that emits second fluorescence having a peak wavelength different from the fluorescence of the first light emitting unit, an irradiation range changing mechanism that changes an irradiation range of excitation light irradiated to the first light emitting unit and the second light emitting unit, It is preferable to provide. The first light emitting unit and the second light emitting unit function as the light emitting unit, and the irradiation range changing mechanism functions as the characteristic changing mechanism.
 上記構成によれば、励起光源から出射された励起光を受けて、発光部として機能する第1発光部が第1の蛍光を発し、発光部として機能する第2発光部が、第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する。 According to the above configuration, upon receiving the excitation light emitted from the excitation light source, the first light emitting unit that functions as the light emitting unit emits the first fluorescence, and the second light emitting unit that functions as the light emitting unit has the first fluorescence. Emits a second fluorescence having a peak wavelength different from
 特性変化機構として機能する照射範囲変化機構は、これら第1発光部及び第2発光部に照射される励起光の照射範囲を変化させる。例えば、照射範囲変化機構は、照射範囲の面積を一定にした状態で当該照射範囲の中心を第1発光部から第2発光部へ向けて移動させることにより、第1発光部における照射範囲を小さくし、第2発光部における照射領域を大きくする。第1発光部及び第2発光部はそれぞれ異なるピーク波長を有する蛍光を発するので、その照射範囲の変化により、照明光に対する第1の蛍光及び第2の蛍光の割合を変化させることができる。 The irradiation range changing mechanism that functions as a characteristic changing mechanism changes the irradiation range of the excitation light irradiated to the first light emitting unit and the second light emitting unit. For example, the irradiation range changing mechanism reduces the irradiation range in the first light emitting unit by moving the center of the irradiation range from the first light emitting unit to the second light emitting unit while keeping the area of the irradiation range constant. And the irradiation area | region in a 2nd light emission part is enlarged. Since the first light emitting unit and the second light emitting unit emit fluorescence having different peak wavelengths, the ratio of the first fluorescence and the second fluorescence to the illumination light can be changed by changing the irradiation range.
 このように、照射範囲変化機構は、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができる。それゆえ、その割合の変化により、照明光の色温度を変化させることができる。 Thus, the irradiation range changing mechanism can change the ratio of the first fluorescence and the second fluorescence included in the illumination light. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
 また、本発明の一実施形態に係る発光装置では、上記第1発光部と上記第2発光部とは、接触して配置されていることが好ましい。 In the light emitting device according to the embodiment of the present invention, it is preferable that the first light emitting unit and the second light emitting unit are arranged in contact with each other.
 第1発光部と第2発光部とが非接触に配置されている場合、第1発光部及び第2発光部のそれぞれにレーザ光が照射されない限り、その非接触となっている領域(非接触領域)に励起光が照射される可能性がある。当該非接触領域に照射される励起光は、蛍光に変換されないので、励起光の利用効率を低下させる要因となり得る。 When the first light emitting unit and the second light emitting unit are arranged in a non-contact manner, unless the laser beam is irradiated to each of the first light emitting unit and the second light emitting unit, the non-contact region (non contact type) There is a possibility that excitation light is irradiated to the region. Since the excitation light irradiated to the non-contact region is not converted into fluorescence, it can be a factor of reducing the utilization efficiency of the excitation light.
 上記構成によれば、第1発光部と第2発光部とが接触して配置されているので、非接触領域に励起光が照射され蛍光に変換されないという事態を防ぐことができる。すなわち、当該構成によれば、励起光を蛍光の変換に無駄なく利用できる。 According to the above configuration, since the first light emitting unit and the second light emitting unit are arranged in contact with each other, it is possible to prevent a situation in which the non-contact region is irradiated with excitation light and is not converted into fluorescence. That is, according to this configuration, the excitation light can be used for conversion of fluorescence without waste.
 また、第1発光部と第2発光部とが非接触に配置されている場合に比べ、照射範囲変化機構が上記照射範囲を効率よく変化させることができる。 Also, the irradiation range changing mechanism can efficiently change the irradiation range as compared with the case where the first light emitting unit and the second light emitting unit are arranged in a non-contact manner.
 また、本発明の一実施形態に係る発光装置では、上記第2発光部は、上記第1発光部の周囲に配置されていることが好ましい。 In the light emitting device according to the embodiment of the present invention, it is preferable that the second light emitting unit is disposed around the first light emitting unit.
 上記構成によれば、特に、照射範囲変化機構が、第1発光部における励起光の照射範囲を一定にした上で、第2発光部に照射される励起光の照射範囲を変化させる構成の場合に、効率よく第2発光部における照射範囲を変化させることができる。 According to the above configuration, in particular, the irradiation range changing mechanism is configured to change the irradiation range of the excitation light irradiated to the second light emitting unit after making the irradiation range of the excitation light in the first light emitting unit constant. Moreover, the irradiation range in the second light emitting unit can be changed efficiently.
 また、本発明の一実施形態に係る発光装置では、上記第1発光部と上記第2発光部とは、一体形成されていることが好ましい。 In the light emitting device according to the embodiment of the present invention, it is preferable that the first light emitting unit and the second light emitting unit are integrally formed.
 上記構成によれば、それぞれの発光部を別々に製造して発光装置に備える場合に比べ、製造工程及び製造コストを削減できる。 According to the above configuration, the manufacturing process and the manufacturing cost can be reduced as compared with the case where each light emitting unit is manufactured separately and provided in the light emitting device.
 また、本発明の一実施形態に係る発光装置では、上記照射範囲変化機構は、上記励起光源と、上記第1発光部及び上記第2発光部との相対的な位置を変化させることにより、上記照射範囲を変化させることが好ましい。 In the light emitting device according to the embodiment of the present invention, the irradiation range changing mechanism may change the relative positions of the excitation light source, the first light emitting unit, and the second light emitting unit. It is preferable to change the irradiation range.
 上記構成によれば、上記の相対的な位置を変化させることにより、励起光源と、第1発光部及び/又は第2発光部との距離を変化させた場合には、励起光源から出射された励起光の光路幅は、一般に出射点からの距離に応じて大きくなるため、その変化により、第2発光部における照射範囲を変化させることができる。 According to the above configuration, when the distance between the excitation light source and the first light emitting unit and / or the second light emitting unit is changed by changing the relative position, the light is emitted from the excitation light source. Since the optical path width of the excitation light generally increases according to the distance from the emission point, the irradiation range in the second light emitting unit can be changed by the change.
 また、上記の相対的な位置を変化させることにより、第1発光部及び第2発光部における上記照射範囲の位置を変更できるので、第1発光部及び第2発光部それぞれにおける照射範囲を変化させることができる。 Moreover, since the position of the said irradiation range in a 1st light emission part and a 2nd light emission part can be changed by changing said relative position, the irradiation range in each of a 1st light emission part and a 2nd light emission part is changed. be able to.
 また、本発明の一実施形態に係る発光装置では、上記励起光源から出射された励起光を屈曲して、上記第1発光部及び上記第2発光部の少なくとも一方に出射する光学部材をさらに備え、上記照射範囲変化機構は、上記光学部材を移動させることにより、上記照射範囲を変化させることが好ましい。 The light emitting device according to an embodiment of the present invention further includes an optical member that bends the excitation light emitted from the excitation light source and emits the light to at least one of the first light emission unit and the second light emission unit. The irradiation range changing mechanism preferably changes the irradiation range by moving the optical member.
 光学部材は、励起光源から出射された励起光を屈曲して第1発光部及び/又は第2発光部に出射するので、例えばその励起光を第1発光部及び/又は第2発光部に集光するなど、光学部材透過後の励起光の光路幅を、光学部材入射前の励起光の光路幅とは異なり、かつ、光学部材からの距離に応じて変化させるように出射できる。つまり、励起光源から出射された励起光は、光学部材を透過することにより、光学部材を基点としてその光路幅が新たに変化していくこととなる。 The optical member bends the excitation light emitted from the excitation light source and emits the excitation light to the first light emitting part and / or the second light emitting part. For example, the optical light is collected in the first light emitting part and / or the second light emitting part. The optical path width of the excitation light after passing through the optical member, such as light, can be emitted so as to be different from the optical path width of the excitation light before entering the optical member and according to the distance from the optical member. That is, the excitation light emitted from the excitation light source is transmitted through the optical member, so that the optical path width is newly changed with the optical member as a base point.
 このため、照射範囲変化機構が、特に、第1発光部における励起光の照射範囲を一定にした上で、第2発光部に照射される励起光の照射範囲を変化させる構成の場合には、光学部材を移動させることにより、光学部材と第1発光部及び/又は第2発光部との距離を変更できる。この変更により、光学部材が存在しない場合の励起光源と第1発光部及び/又は第2発光部との距離を変更するのと同様の効果が得られる。 For this reason, in the case where the irradiation range changing mechanism is configured to change the irradiation range of the excitation light irradiated to the second light emitting unit, in particular, while keeping the irradiation range of the excitation light in the first light emitting unit constant, By moving the optical member, the distance between the optical member and the first light emitting unit and / or the second light emitting unit can be changed. This change provides the same effect as changing the distance between the excitation light source and the first light emitting unit and / or the second light emitting unit when no optical member is present.
 つまり、この場合、上記照射範囲が光学部材と第1発光部及び/又は第2発光部との距離に応じて変化させることになるので、光学変化機構が光学部材を移動させ、その距離を変更することにより、上記照射範囲を変化させることができる。 That is, in this case, since the irradiation range is changed according to the distance between the optical member and the first light emitting unit and / or the second light emitting unit, the optical change mechanism moves the optical member and changes the distance. By doing so, the irradiation range can be changed.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、青色領域の発振波長を有する光を上記励起光として出射し、上記第1発光部は、黄色領域にピーク波長を有する蛍光を、上記第1の蛍光として発する第1蛍光体を含むことが好ましい。 In the light emitting device according to an embodiment of the present invention, the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light, and the first light emitting unit emits fluorescence having a peak wavelength in a yellow region. It is preferable to include a first phosphor that emits as the first fluorescence.
 また、本発明の一実施形態に係る発光装置では、上記第1蛍光体は、イットリウム・アルミニウム・ガーネットであることが好ましい。 In the light emitting device according to the embodiment of the present invention, the first phosphor is preferably yttrium, aluminum, and garnet.
 励起光として青色領域の発振波長を有する光を用い、かつ、黄色領域にピーク波長を有する蛍光を発する第1蛍光体(特にYAG(イットリウム・アルミニウム・ガーネット))を用いた場合には、第1発光部から出射される照明光の色温度を高くできる。それゆえ、色温度の高い照明光の出射を実現できる。 When light having an oscillation wavelength in the blue region is used as excitation light and a first phosphor that emits fluorescence having a peak wavelength in the yellow region (particularly YAG (yttrium, aluminum, garnet)) is used, The color temperature of the illumination light emitted from the light emitting unit can be increased. Therefore, emission of illumination light having a high color temperature can be realized.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、青色領域の発振波長を有する光を上記励起光として出射し、上記第1発光部は、緑色領域にピーク波長を有する蛍光を、上記第1の蛍光として発する第1蛍光体を含むことが好ましい。 In the light emitting device according to an embodiment of the present invention, the excitation light source emits light having an oscillation wavelength in a blue region as the excitation light, and the first light emitting unit is a fluorescent light having a peak wavelength in a green region. It is preferable to include a first phosphor that emits as the first fluorescence.
 上記構成によれば、励起光として青色領域の発振波長を有する光を用い、かつ、緑色領域にピーク波長を有する蛍光を発する第1蛍光体を用いた場合には、第1発光部から出射される照明光の色温度を高くできる。それゆえ、色温度の高い照明光の出射を実現できる。 According to the above configuration, when light having an oscillation wavelength in the blue region is used as excitation light and the first phosphor that emits fluorescence having a peak wavelength in the green region is used, the light is emitted from the first light emitting unit. The color temperature of the illumination light can be increased. Therefore, emission of illumination light having a high color temperature can be realized.
 また、本発明の一実施形態に係る発光装置では、上記第1蛍光体は、β-SiAlON:Eu蛍光体であることが好ましい。 In the light emitting device according to an embodiment of the present invention, the first phosphor is preferably a β-SiAlON: Eu phosphor.
 上記構成によれば、発光効率の高いβ-SiAlON:Eu蛍光体を第1蛍光体として用いているので、第1発光部の発光効率を高めることができる。それゆえ、照明光への変換効率が高い発光装置を実現できる。 According to the above configuration, since the β-SiAlON: Eu phosphor having high luminous efficiency is used as the first phosphor, the luminous efficiency of the first light emitting unit can be increased. Therefore, a light emitting device with high conversion efficiency to illumination light can be realized.
 また、本発明の一実施形態に係る発光装置では、上記第2発光部は、赤色領域にピーク波長を有する蛍光を、上記第2の蛍光として発する第2蛍光体を含むことが好ましい。 In the light emitting device according to the embodiment of the present invention, it is preferable that the second light emitting unit includes a second phosphor that emits fluorescence having a peak wavelength in a red region as the second fluorescence.
 また、本発明の一実施形態に係る発光装置では、上記第2蛍光体は、CASN:Eu蛍光体又はSCASN:Eu蛍光体であることが好ましい。 In the light emitting device according to an embodiment of the present invention, the second phosphor is preferably a CASN: Eu phosphor or a SCASN: Eu phosphor.
 第2蛍光体を、すなわち赤色で発光する赤色発光蛍光体(特に、CASN:Eu蛍光体又はSCASN:Eu蛍光体)を用いた場合には、第2の蛍光として、第1蛍光体よりも低い色温度の蛍光を出射できる。このため、照射範囲変化機構が照射範囲を変化させることにより、例えば照明光が第1の蛍光のみからなる場合に比べ、その照明光の色温度を低くできる。 When the second phosphor, that is, a red light-emitting phosphor that emits red light (especially, CASN: Eu phosphor or SCASN: Eu phosphor) is used, the second fluorescence is lower than the first phosphor. Color temperature fluorescence can be emitted. For this reason, by changing the irradiation range by the irradiation range changing mechanism, for example, the color temperature of the illumination light can be lowered as compared with the case where the illumination light is composed only of the first fluorescence.
 また、本発明の一実施形態に係る発光装置では、ユーザ操作を受け付ける入力手段を備え、上記照射範囲変化機構は、上記入力手段が受け付けたユーザ操作に従って動作することが好ましい。 Further, the light emitting device according to an embodiment of the present invention preferably includes an input unit that receives a user operation, and the irradiation range changing mechanism operates according to the user operation received by the input unit.
 照射範囲変化機構が入力手段が受け付けたユーザ操作に従って動作するので、ユーザの嗜好にあわせた色温度の変化を実現できる。 Since the irradiation range changing mechanism operates according to the user operation received by the input means, it is possible to realize a change in color temperature according to the user's preference.
 また、本発明の一実施形態に係る前照灯は、上記に記載の発光装置を備えることが好ましい。 Moreover, the headlamp according to an embodiment of the present invention preferably includes the light emitting device described above.
 上記構成によれば、前照灯は、上記発光装置を備えているので、当該照明装置と同様、照射範囲変化機構が、照明光に含まれる第1の蛍光及び第2の蛍光の割合を変化させることができる。それゆえ、その割合の変化により、照明光の色温度を変化させることができる。 According to the above configuration, since the headlamp includes the light-emitting device, the illumination range changing mechanism changes the ratio of the first fluorescence and the second fluorescence included in the illumination light, similarly to the illumination device. Can be made. Therefore, the color temperature of the illumination light can be changed by changing the ratio.
 本発明の一実施形態に係る発光装置は、出射点から出射される励起光を発生させる励起光源と、上記励起光を受けて第1の蛍光を発する第1発光部と、上記励起光を受けて上記第1の蛍光とは異なる色の第2の蛍光を発することができる第2発光部と、上記第2発光部と上記出射点との相対的な位置関係を変化させることにより、上記第2の蛍光の発生量を変化させる位置制御部と、を備えることが好ましい。なお、位置制御部は、上記特性変化機構として機能する。 A light emitting device according to an embodiment of the present invention includes an excitation light source that generates excitation light emitted from an emission point, a first light emitting unit that emits first fluorescence upon receiving the excitation light, and the excitation light. By changing the relative positional relationship between the second light emitting unit capable of emitting second fluorescent light having a color different from that of the first fluorescent light, and the second light emitting unit and the emission point, It is preferable to include a position control unit that changes the amount of fluorescence generated in No. 2. The position controller functions as the characteristic changing mechanism.
 上記構成によれば、本発明の一実施形態に係る発光装置は、励起光源から出射される励起光を受けて異なる色の蛍光を発する、第1発光部および第2発光部を備える。このうち、第2発光部は、上記出射点との相対的な位置関係が位置制御部によって変化し、それに伴い第2の蛍光の発生量も変化する。その結果、第1の蛍光と発生量が変化する第2の蛍光とが混色して、スペクトル、色度、色温度、すなわち照明光の特性が変化する照明光を発光装置の外部に出射することができる。 According to the above configuration, a light emitting device according to an embodiment of the present invention includes a first light emitting unit and a second light emitting unit that receive excitation light emitted from an excitation light source and emit fluorescence of different colors. Among these, in the second light emitting unit, the relative positional relationship with the emission point is changed by the position control unit, and the generation amount of the second fluorescence is changed accordingly. As a result, the first fluorescent light and the second fluorescent light whose generation amount changes are mixed, and the illumination light whose spectrum, chromaticity, color temperature, that is, the characteristic of the illumination light changes, is emitted to the outside of the light emitting device. Can do.
 このように、本発明の一実施形態に係る発光装置は、第2発光部と上記出射点との相対的な位置関係を位置制御部によって変化させるという簡易な構造により、照明光の特性を変化させることができ、それにより上記従来の課題、すなわち、製造コストや車両用前照灯内でのLEDチップの配置など種々の問題を解決することができる。 As described above, the light emitting device according to the embodiment of the present invention changes the characteristics of the illumination light with a simple structure in which the relative positional relationship between the second light emitting unit and the emission point is changed by the position control unit. Accordingly, various problems such as the above-described conventional problems, that is, the manufacturing cost and the arrangement of the LED chips in the vehicle headlamp can be solved.
 本発明の一実施形態に係る発光装置は、励起光を発生させる励起光源と、上記励起光源からの励起光を受けて第1の蛍光を発する第1発光部と、上記第1の蛍光を受けて当該第1発光部の蛍光とは異なる色の第2の蛍光を発することができる第2発光部と、上記第2発光部と上記第1発光部との相対的な位置関係を変化させることにより、上記第2の蛍光の発生量を変化させる位置制御部と、を備えることが好ましい。なお、位置制御部は、上記特性変化機構として機能する。 A light emitting device according to an embodiment of the present invention includes an excitation light source that generates excitation light, a first light emitting unit that emits first fluorescence in response to excitation light from the excitation light source, and the first fluorescence. And changing the relative positional relationship between the second light emitting unit capable of emitting second fluorescence having a color different from the fluorescence of the first light emitting unit, and the second light emitting unit and the first light emitting unit. Thus, it is preferable to include a position control unit that changes the generation amount of the second fluorescence. The position controller functions as the characteristic changing mechanism.
 上記構成によれば、本発明の一実施形態に係る発光装置は、励起光源から出射される励起光を受けて第1の蛍光を発する第1発光部と、第1の蛍光を受けて当該第1発光部の蛍光とは異なる色の第2の蛍光を発することができる第2発光部とを備える。そして、第2発光部と第1発光部との相対的な位置関係が位置制御部によって変化することにより、第2の蛍光の発生量も変化する。その結果、第1の蛍光と発生量が変化する第2の蛍光とが混色して、スペクトル、色度、色温度、すなわち照明光の特性が変化する照明光を発光装置の外部に出射することができる。 According to the above configuration, the light emitting device according to an embodiment of the present invention includes the first light emitting unit that emits the first fluorescence in response to the excitation light emitted from the excitation light source, and the first light emitting unit that receives the first fluorescence. A second light emitting unit capable of emitting second fluorescent light having a color different from that of the single light emitting unit. Then, when the relative positional relationship between the second light emitting unit and the first light emitting unit is changed by the position control unit, the generation amount of the second fluorescence is also changed. As a result, the first fluorescent light and the second fluorescent light whose generation amount changes are mixed, and the illumination light whose spectrum, chromaticity, color temperature, that is, the characteristic of the illumination light changes, is emitted to the outside of the light emitting device. Can do.
 このように、本発明の一実施形態に係る発光装置は、第2発光部と上記第1発光部との相対的な位置関係を位置制御部によって変化させるという簡易な構造により、照明光の特性を変化させることができ、それにより上記従来の課題を解決することができる。 As described above, the light emitting device according to the embodiment of the present invention has a simple structure in which the relative positional relationship between the second light emitting unit and the first light emitting unit is changed by the position control unit. Thus, the above-described conventional problems can be solved.
 また、本発明の一実施形態に係る発光装置は、上記位置制御部は、上記第2発光部と上記励起光の光軸との間の距離を変化させる構成であってよい。 In the light emitting device according to an embodiment of the present invention, the position control unit may be configured to change a distance between the second light emitting unit and the optical axis of the excitation light.
 上記構成によれば、上記第2発光部と上記励起光の光軸との間の距離が近くなると、励起光、または、第1の蛍光が照射される第2発光部上の照射面積は大きくなる。逆に、上記第2発光部と上記励起光の光軸との間の距離が遠くなると、励起光、または、第1の蛍光が照射される第2発光部上の照射面積は小さくなる。 According to the above configuration, when the distance between the second light emitting unit and the optical axis of the excitation light is reduced, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is large. Become. Conversely, when the distance between the second light emitting unit and the optical axis of the excitation light increases, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence decreases.
 このように、上記位置制御部が上記第2発光部と上記励起光の光軸との間の距離を変化させることにより、第2の蛍光の発生量を変化させることができる。その結果、照明光の特性を容易に変化させることができる。 Thus, the amount of second fluorescence generated can be changed by the position control unit changing the distance between the second light emitting unit and the optical axis of the excitation light. As a result, the characteristics of the illumination light can be easily changed.
 また、本発明の一実施形態に係る発光装置では、上記第2発光部は、複数存在し、複数の上記第2発光部が、上記光軸の周りに環状に配設されているときに、上記位置制御部は、複数の上記第2発光部と上記光軸との距離を変化させる構成であってよい。 Further, in the light emitting device according to an embodiment of the present invention, there are a plurality of the second light emitting units, and when the plurality of the second light emitting units are annularly arranged around the optical axis, The position control unit may be configured to change the distance between the plurality of second light emitting units and the optical axis.
 上記第2発光部は、複数存在し、複数の上記第2発光部が、上記光軸の周りに環状に配設されていてもよい。 There may be a plurality of the second light emitting units, and the plurality of second light emitting units may be arranged in a ring around the optical axis.
 このとき、上記位置制御部が複数の上記第2発光部と上記光軸との距離を変化させることにより、励起光、または、第1の蛍光が照射される第2発光部上の照射面積を変化させて、第2の蛍光の発生量を変化させることができる。その結果、照明光の特性を容易に変化させることができる。 At this time, the position control unit changes the distance between the plurality of second light emitting units and the optical axis, so that the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is changed. By changing it, the generation amount of the second fluorescence can be changed. As a result, the characteristics of the illumination light can be easily changed.
 また、本発明の一実施形態に係る発光装置では、上記位置制御部は、板状の上記第2発光部の位置を変化させることにより、上記第2発光部と上記励起光の光軸との間の距離を変化させる構成であってよい。 Moreover, in the light emitting device according to an embodiment of the present invention, the position control unit changes the position of the plate-shaped second light emitting unit, thereby changing the second light emitting unit and the optical axis of the excitation light. It may be configured to change the distance between them.
 例えば、励起光が出射される出射点が固定されているのであれば、上記位置制御部は、板状の上記第2発光部の位置を変化させて、上記第2発光部と上記励起光の光軸との間の距離を変化させればよく、より自由度の高い発光装置の設計を実現することができる。 For example, if the emission point from which the excitation light is emitted is fixed, the position control unit changes the position of the plate-like second light emission unit to change the position of the second light emission unit and the excitation light. What is necessary is just to change the distance between optical axes, and the design of a light emitting device with a higher degree of freedom can be realized.
 また、本発明の一実施形態に係る発光装置では、上記位置制御部は、上記第2発光部を、上記励起光の光軸方向に移動させる構成であってよい。 Moreover, in the light emitting device according to an embodiment of the present invention, the position control unit may be configured to move the second light emitting unit in the optical axis direction of the excitation light.
 上記構成によれば、上記第2発光部は上記励起光の光軸方向に移動する。このとき、上記第2発光部が上記励起光の出射点に近づけば、励起光、または、第1の蛍光が照射される第2発光部上の照射面積は大きくなる。逆に、上記第2発光部が上記励起光の出射点から遠くなると、励起光、または、第1の蛍光が照射される第2発光部上の照射面積は小さくなる。 According to the above configuration, the second light emitting unit moves in the optical axis direction of the excitation light. At this time, if the second light emitting unit is brought close to the emission point of the excitation light, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is increased. Conversely, when the second light emitting unit is far from the excitation light emission point, the irradiation area on the second light emitting unit irradiated with the excitation light or the first fluorescence is reduced.
 このように、上記第2発光部を、上記励起光の光軸方向に移動させることにより、第2の蛍光の発生量を変化させることができる。その結果、照明光の特性を容易に変化させることができる。 As described above, the amount of second fluorescence generated can be changed by moving the second light emitting unit in the optical axis direction of the excitation light. As a result, the characteristics of the illumination light can be easily changed.
 また、本発明の一実施形態に係る発光装置は、上記第2発光部は、透光性を有する構成であってよい。 Further, in the light emitting device according to an embodiment of the present invention, the second light emitting unit may have a translucency.
 上記構成により、第2発光部は光透過性を確保することができ、発光装置の外部に照射される照明光の光度を高めることができる。 With the above-described configuration, the second light emitting unit can ensure light transparency, and the luminous intensity of the illumination light irradiated to the outside of the light emitting device can be increased.
 また、本発明の一実施形態に係る発光装置は、上記第2発光部は、ナノ粒子蛍光体を含む構成であってよい。 In the light emitting device according to the embodiment of the present invention, the second light emitting unit may include a nanoparticle phosphor.
 上記構成によれば、第2発光部は、ナノ粒子蛍光体を含むことにより、光透過性を高めることができ、その結果、発光装置の外部に照射される照明光の光度を高めることができる。 According to the said structure, a 2nd light emission part can improve light transmittance by including nanoparticle fluorescent substance, As a result, the luminous intensity of the illumination light irradiated to the exterior of a light-emitting device can be raised. .
 なお、ナノ粒子蛍光体の粒径は、特に限定されないが、1nm~5nmであればよい。 The particle size of the nanoparticle phosphor is not particularly limited, but may be 1 nm to 5 nm.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、半導体レーザであって、上記半導体レーザと上記第1発光部とが離間している構成であってよい。 In the light emitting device according to the embodiment of the present invention, the excitation light source may be a semiconductor laser, and the semiconductor laser and the first light emitting unit may be separated from each other.
 半導体レーザは、その発熱量が大きいことが知られている。したがって、上記半導体レーザと上記第1発光部とが離間していることにより、第1発光部が熱によって劣化・損傷し、発光部の寿命が短くなる事態が避けられる。 Semiconductor lasers are known to generate a large amount of heat. Therefore, since the semiconductor laser and the first light emitting unit are separated from each other, it is possible to avoid a situation in which the first light emitting unit is deteriorated or damaged by heat and the life of the light emitting unit is shortened.
 また、本発明の一実施形態に係る発光装置では、上記励起光源は、発光ダイオードであって、上記発光ダイオードと上記第1発光部とが一体形成されている構成であってよい。 In the light emitting device according to an embodiment of the present invention, the excitation light source may be a light emitting diode, and the light emitting diode and the first light emitting unit may be integrally formed.
 発光ダイオードは、その発熱量が半導体レーザに比べて低く、たとえ上記発光ダイオードと上記第1発光部とが一体形成されていても、第1発光部が熱によって劣化・損傷し、発光部の寿命が短くなることは少ない。そのため、上記発光ダイオードと上記第1発光部とが一体形成されていてもよく、それにより、発光装置内のレイアウトをコンパクトに保つことができる。 The light emitting diode has a lower calorific value than the semiconductor laser, and even if the light emitting diode and the first light emitting unit are integrally formed, the first light emitting unit is deteriorated or damaged by heat, and the life of the light emitting unit is increased. Is rarely shortened. Therefore, the light emitting diode and the first light emitting unit may be integrally formed, whereby the layout in the light emitting device can be kept compact.
 また、本発明の一実施形態に係る照明装置は、上記何れかに記載の発光装置を備えていることが好ましい。 Moreover, it is preferable that the illumination device according to an embodiment of the present invention includes any one of the light-emitting devices described above.
 また、本発明の一実施形態に係る前照灯(例えば車両用前照灯)は、上記何れかに記載の発光装置を備えていることが好ましい。 Moreover, it is preferable that a headlamp (for example, a vehicle headlamp) according to an embodiment of the present invention includes any one of the light-emitting devices described above.
 本発明の一実施形態に係る発光装置は、照明装置や前照灯などに好適に適用することができる。これにより、例えば本発明の一実施形態に係る発光装置を前照灯に適用した場合、高効率で、高い演色性を有する照明光を照射することが可能な前照灯を実現することができる。 The light emitting device according to an embodiment of the present invention can be suitably applied to a lighting device, a headlamp, and the like. Thereby, for example, when the light-emitting device according to an embodiment of the present invention is applied to a headlamp, a headlamp capable of emitting illumination light having high efficiency and high color rendering can be realized. .
 なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組合せて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.
 本発明は、発光装置および照明装置などに適用することができる。例えば、自動車用のヘッドランプ、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプや、その他の照明装置に適用することができる。また、その他の照明装置として、例えば、サーチライト、プロジェクター、家庭用照明器具などにも適用することができる。 The present invention can be applied to a light emitting device, a lighting device, and the like. For example, the present invention can be applied to headlamps for automobiles, headlamps for vehicles other than automobiles and moving objects (for example, humans, ships, aircraft, submersibles, rockets, etc.) and other lighting devices. Further, as other lighting devices, for example, it can be applied to a searchlight, a projector, a home lighting device, and the like.
 また、本発明は、照明光の色温度を調整または変化させることができ、特に車両用等のヘッドランプなどに好適である。さらに、本発明は、簡易な構造で照明光の特性を変化させることが要求される発光装置、特に、照明装置、及び車両用前照灯に好適に適用することができる。 Also, the present invention can adjust or change the color temperature of the illumination light, and is particularly suitable for a headlamp for vehicles and the like. Furthermore, the present invention can be suitably applied to a light emitting device that is required to change the characteristics of illumination light with a simple structure, in particular, an illumination device and a vehicle headlamp.
 1  透光性基板(熱伝導性基板)
 1’ 反射部材
 2  発光部(発光体、第1発光部、第2発光部)
 2a 第1発光部
 2b 第2発光部
 3,3a~3e  拡散部(拡散部材)
 4  パラボラ型反射鏡(反射鏡)
 4  反射鏡
 4h ハーフパラボラ型反射鏡(反射鏡)
 4p 熱伝導部材
 5  基板
 6  励起光源ユニット(励起光源)
 6a 励起光源ユニット(励起光源)
 7  発光部(拡散部)
 7L,7R ネジ
 7a レーザ光照射面
 8  光学部材
 9  導光部材
 9’ 導光部材
 9a  入射端部(励起光源に近い方)
 9a’ 入射端部
 9b  出射端部(発光体に近い方)
 9b’ 出射端部
 10、20~110  ヘッドランプ(発光装置,照明装置,前照灯)
 11  LDチップ(励起光源)
 24a 発光部(第1発光部)
 24b 発光部(第2発光部)
 27  メイン光源(第1光源、レーザ光源)
 28  サブ光源(第2光源、特性変化機構)
 29  非球面レンズ
 30  ヘッドランプ
 55  光ファイバー
 61  支持部材(光量変化機構、照射範囲変化機構、特性変化機構)
 62  支持部材駆動部(光量変化機構、照射範囲変化機構、特性変化機構)
 62a 透光性基板駆動部(照射範囲変化機構、特性変化機構)
 63  半導体レーザ(励起光源)
 63a 半導体レーザ(第1励起光源)
 63b 半導体レーザ(第2励起光源)
 64  発光ダイオード(第2光源)
 65  フェルール
 71  拡散部
 72  半導体レーザアレイ(励起光源)
 75  ハウジング
 76  エクステンション
 77  レンズ
 79  レーザ光照射領域(照射範囲)
 91  遮断フィルタ
 92  透明板
 93、99 第1発光部
 94  第2発光部
 95  位置制御部(特性変化機構)
 96  LEDチップ
 97  電極
 98  パッケージ
 161 凸レンズ(光学部材)
 200 レーザダウンライト(発光装置,照明装置)
 613 入力部(入力手段)
 642 出力制御部(光量変化機構、特性変化機構)
 215 光ファイバー束(導光部材)
 C   光強度分布
 R1,R1’ スポット径
 a,b  長さ
 SUF1 表面
 SUF2 表面
 SUF3 光反射凹面
 SUF4 照射面
1 Translucent substrate (thermally conductive substrate)
1 'reflecting member 2 light emitting part (light emitting body, first light emitting part, second light emitting part)
2a 1st light emission part 2b 2nd light emission part 3, 3a-3e Diffusion part (diffusion member)
4 Parabolic reflector (reflector)
4 Reflector 4h Half parabolic reflector (reflector)
4p Thermal conduction member 5 Substrate 6 Excitation light source unit (excitation light source)
6a Excitation light source unit (excitation light source)
7 Light emitting part (diffusion part)
7L, 7R Screw 7a Laser light irradiation surface 8 Optical member 9 Light guide member 9 'Light guide member 9a Incident end (one closer to the excitation light source)
9a 'entrance end 9b exit end (the one closer to the light emitter)
9b 'emitting end 10, 20 to 110 headlamp (light emitting device, lighting device, headlamp)
11 LD chip (excitation light source)
24a Light emitting part (first light emitting part)
24b Light emitting part (second light emitting part)
27 Main light source (first light source, laser light source)
28 Sub-light source (second light source, characteristic change mechanism)
29 Aspherical lens 30 Headlamp 55 Optical fiber 61 Support member (light quantity changing mechanism, irradiation range changing mechanism, characteristic changing mechanism)
62 Support member drive unit (light quantity change mechanism, irradiation range change mechanism, characteristic change mechanism)
62a Translucent substrate driving unit (irradiation range changing mechanism, characteristic changing mechanism)
63 Semiconductor laser (excitation light source)
63a Semiconductor laser (first excitation light source)
63b Semiconductor laser (second excitation light source)
64 Light emitting diode (second light source)
65 Ferrule 71 Diffuser 72 Semiconductor laser array (excitation light source)
75 Housing 76 Extension 77 Lens 79 Laser light irradiation area (irradiation range)
91 Blocking filter 92 Transparent plate 93, 99 First light emitting unit 94 Second light emitting unit 95 Position control unit (characteristic changing mechanism)
96 LED chip 97 Electrode 98 Package 161 Convex lens (optical member)
200 Laser downlight (light emitting device, lighting device)
613 Input unit (input means)
642 Output control unit (light quantity change mechanism, characteristic change mechanism)
215 Optical fiber bundle (light guide member)
C Light intensity distribution R1, R1 ′ Spot diameter a, b Length SUF1 surface SUF2 surface SUF3 Light reflecting concave surface SUF4 Irradiation surface

Claims (59)

  1.  励起光を出射する励起光源と、
     上記励起光源から出射された励起光の照射により蛍光を発する発光体とを備え、
     上記発光体に向けて上記励起光が照射されるときのスポットの面積が、当該励起光が照射される側から上記発光体を見たときの当該発光体の面積よりも大きいことを特徴とする発光装置。
    An excitation light source that emits excitation light;
    A light emitter that emits fluorescence by irradiation of excitation light emitted from the excitation light source,
    The area of the spot when the excitation light is irradiated toward the light emitter is larger than the area of the light emitter when the light emitter is viewed from the side irradiated with the excitation light. Light emitting device.
  2.  上記発光体の上記励起光が照射される照射面の外側に照射される励起光を少なくとも拡散する拡散部をさらに備えることを特徴とする請求項1に記載の発光装置。 The light-emitting device according to claim 1, further comprising a diffusing unit that diffuses at least the excitation light irradiated to the outside of the irradiation surface irradiated with the excitation light of the light emitter.
  3.  上記励起光のスポットの面積に対する上記発光体の断面の面積の比が、1/4以上、2/3以下であることを特徴とする請求項1または2に記載の発光装置。 3. The light emitting device according to claim 1, wherein a ratio of a cross-sectional area of the light emitter to an area of the spot of the excitation light is ¼ or more and 、 2 or less.
  4.  上記励起光源は、青色領域の励起光を出射し、
     上記発光体は、黄色領域の蛍光を発する黄色発光蛍光体を含むことを特徴とする請求項1から3までのいずれか1項に記載の発光装置。
    The excitation light source emits blue region excitation light,
    The light emitting device according to any one of claims 1 to 3, wherein the light emitter includes a yellow light emitting phosphor that emits fluorescence in a yellow region.
  5.  上記励起光源は、青色領域の励起光を出射し、
     上記発光体は、緑色領域の蛍光を発する緑色発光蛍光体と、赤色領域の蛍光を発する赤色発光蛍光体とを含むことを特徴とする請求項1から3までのいずれか1項に記載の発光装置。
    The excitation light source emits blue region excitation light,
    4. The light emitting device according to claim 1, wherein the phosphor includes a green light-emitting phosphor that emits fluorescence in a green region and a red light-emitting phosphor that emits fluorescence in a red region. 5. apparatus.
  6.  上記発光体に生じた熱を拡散させる熱伝導性基板を備え、
     上記発光体の上記励起光が照射される照射面の側が、上記熱伝導性基板によって保持されていることを特徴とする請求項1から5までのいずれか1項に記載の発光装置。
    Comprising a thermally conductive substrate for diffusing heat generated in the luminous body,
    The light emitting device according to any one of claims 1 to 5, wherein an irradiation surface side of the light emitting body on which the excitation light is irradiated is held by the thermally conductive substrate.
  7.  上記励起光を反射する反射部材を備え、
     上記発光体の上記励起光が照射される照射面と対向する側が、上記反射部材によって保持されていることを特徴とする請求項1から5までのいずれか1項に記載の発光装置。
    A reflection member that reflects the excitation light;
    The light emitting device according to any one of claims 1 to 5, wherein a side of the light emitter facing the irradiation surface irradiated with the excitation light is held by the reflecting member.
  8.  上記励起光源が複数存在しており、
     上記励起光源のそれぞれから出射される励起光を上記発光体に導光する導光部材を備えていることを特徴とする請求項1から7までのいずれか1項に記載の発光装置。
    There are multiple excitation light sources,
    The light-emitting device according to claim 1, further comprising a light guide member that guides excitation light emitted from each of the excitation light sources to the light emitter.
  9.  上記導光部材の上記発光体に近い方の断面積は、上記励起光源に近い方の断面積よりも小さくなっていることを特徴とする請求項8に記載の発光装置。 The light-emitting device according to claim 8, wherein a cross-sectional area of the light guide member closer to the light emitter is smaller than a cross-sectional area of the light guide member closer to the excitation light source.
  10.  上記導光部材は、少なくとも1つの入射端部で、上記複数の励起光源が出射した励起光を受け取り、当該入射端部から入射した励起光を複数の出射端部のそれぞれから出射し、
     上記発光体は、上記出射端部のそれぞれから出射された励起光を受けて蛍光を発することを特徴とする請求項8に記載の発光装置。
    The light guide member receives excitation light emitted from the plurality of excitation light sources at at least one incident end, and emits excitation light incident from the incident end from each of the plurality of emission ends.
    The light emitting device according to claim 8, wherein the light emitter emits fluorescence in response to excitation light emitted from each of the emission end portions.
  11.  励起光を出射する、少なくとも1つの励起光源と、
     上記励起光源から出射された励起光を受けて蛍光を発する、少なくとも1つの発光部と、
     自装置が外部へ出射する出射光に含まれる上記蛍光の割合を変化させることにより、当該出射光の特性を変化させる特性変化機構と、を備えることを特徴とする発光装置。
    At least one excitation light source that emits excitation light;
    At least one light emitting unit that emits fluorescence in response to excitation light emitted from the excitation light source;
    A light-emitting device comprising: a characteristic changing mechanism that changes a characteristic of the emitted light by changing a ratio of the fluorescence included in the emitted light emitted from the apparatus to the outside.
  12.  励起光を出射する第1光源と、
     上記第1光源から出射された励起光を受けて蛍光を発する発光部と、
     上記励起光とは異なる波長領域を有する第2の光を出射する第2光源と、を備え、
     上記発光部から出射された蛍光および上記第2光源から出射された第2の光を照明光として出射するものであり、
     上記第2光源は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    A first light source that emits excitation light;
    A light emitting unit that emits fluorescence in response to excitation light emitted from the first light source;
    A second light source that emits second light having a wavelength region different from that of the excitation light,
    The fluorescent light emitted from the light emitting unit and the second light emitted from the second light source are emitted as illumination light,
    The light emitting device according to claim 11, wherein the second light source functions as the characteristic changing mechanism.
  13.  上記第1光源は、紫外領域から青紫色領域の発振波長を有する光を上記励起光として出射し、
     上記第2光源は、青色領域の発振波長を有する光を上記第2の光として出射することを特徴とする請求項12に記載の発光装置。
    The first light source emits light having an oscillation wavelength from an ultraviolet region to a blue-violet region as the excitation light,
    The light emitting device according to claim 12, wherein the second light source emits light having an oscillation wavelength in a blue region as the second light.
  14.  上記発光部は、350nm以上、420nm以下の波長範囲に光の吸収ピーク波長を有する第1蛍光体を含むことを特徴とする請求項13に記載の発光装置。 The light emitting device according to claim 13, wherein the light emitting unit includes a first phosphor having an absorption peak wavelength of light in a wavelength range of 350 nm or more and 420 nm or less.
  15.  350nm以上、420nm以下の波長範囲の励起光を受けたときの上記第1蛍光体の吸収率は、70%以上であることを特徴とする請求項14に記載の発光装置。 The light-emitting device according to claim 14, wherein the first phosphor has an absorptance of 70% or more when receiving excitation light in a wavelength range of 350 nm or more and 420 nm or less.
  16.  上記第1蛍光体は、Caα-SiAlON:Ce蛍光体であることを特徴とする請求項14または15に記載の発光装置。 16. The light emitting device according to claim 14, wherein the first phosphor is a Caα-SiAlON: Ce phosphor.
  17.  上記発光部は、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する第2蛍光体を含むことを特徴とする請求項14から16のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 14 to 16, wherein the light emitting unit includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
  18.  上記第2光源は、上記第2の光としてレーザ光を出射し、
     上記第2光源が出射したレーザ光を拡散する拡散部をさらに備えることを特徴とする請求項12から17のいずれか1項に記載の発光装置。
    The second light source emits laser light as the second light,
    18. The light emitting device according to claim 12, further comprising a diffusion unit that diffuses laser light emitted from the second light source.
  19.  上記発光部は、上記拡散部として機能するものであり、
     上記第2光源が出射したレーザ光は、上記発光部によって拡散されることを特徴とする請求項18に記載の発光装置。
    The light emitting unit functions as the diffusion unit,
    The light emitting device according to claim 18, wherein the laser light emitted from the second light source is diffused by the light emitting unit.
  20.  上記第1光源は、レーザ光源であることを特徴とする請求項12から19のいずれか1項に記載の発光装置。 The light-emitting device according to any one of claims 12 to 19, wherein the first light source is a laser light source.
  21.  上記励起光を遮断する遮断フィルタを備えることを特徴とする請求項20に記載の発光装置。 21. The light emitting device according to claim 20, further comprising a cutoff filter that blocks the excitation light.
  22.  励起光を出射する励起光源と、
     上記励起光源から出射された励起光を受けて蛍光を発する発光部と、
     上記励起光源から出射される励起光のうちの上記発光部によって蛍光に変換されない励起光の割合を変化させる光量変化機構と、を備え、
     上記光量変化機構は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that emits excitation light;
    A light emitting unit that emits fluorescence in response to excitation light emitted from the excitation light source;
    A light amount change mechanism that changes a ratio of excitation light that is not converted into fluorescence by the light emitting unit in excitation light emitted from the excitation light source,
    The light-emitting device according to claim 11, wherein the light quantity change mechanism functions as the characteristic change mechanism.
  23.  上記光量変化機構は、上記励起光源から出射される励起光のうちの上記発光部に照射されない励起光の割合を変化させることを特徴とする請求項22に記載の発光装置。 23. The light emitting device according to claim 22, wherein the light quantity changing mechanism changes a ratio of excitation light that is not irradiated to the light emitting unit in excitation light emitted from the excitation light source.
  24.  上記光量変化機構は、上記励起光源から出射される励起光の上記発光部における照射面積を変化させることを特徴とする請求項22に記載の発光装置。 23. The light emitting device according to claim 22, wherein the light amount changing mechanism changes an irradiation area of the excitation light emitted from the excitation light source in the light emitting unit.
  25.  上記光量変化機構は、上記発光部を移動させることを特徴とする請求項22から24のいずれか1項に記載の発光装置。 25. The light-emitting device according to claim 22, wherein the light quantity change mechanism moves the light-emitting unit.
  26.  上記励起光源から出射された励起光を屈曲して、上記発光部に出射する光学部材を備え、
     上記光量変化機構は、上記光学部材を移動させることを特徴とする請求項22から24のいずれか1項に記載の発光装置。
    An optical member that bends the excitation light emitted from the excitation light source and emits the light to the light emitting unit;
    25. The light-emitting device according to claim 22, wherein the light quantity changing mechanism moves the optical member.
  27.  上記光量変化機構は、上記発光部に入射される励起光の入射角度を変化させることを特徴とする請求項22から24のいずれか1項に記載の発光装置。 25. The light emitting device according to claim 22, wherein the light amount changing mechanism changes an incident angle of excitation light incident on the light emitting unit.
  28.  上記励起光源は、青色領域の発振波長を有する光を上記励起光として出射し、
     上記発光部は、黄色領域にピーク波長を有する蛍光を発する第1蛍光体を含むことを特徴とする請求項22から27のいずれか1項に記載の発光装置。
    The excitation light source emits light having an oscillation wavelength in a blue region as the excitation light,
    28. The light emitting device according to any one of claims 22 to 27, wherein the light emitting unit includes a first phosphor that emits fluorescence having a peak wavelength in a yellow region.
  29.  上記発光部は、630nm以上、650nm以下の波長範囲にピーク波長を有する蛍光を発する第2蛍光体を含むことを特徴とする請求項28に記載の発光装置。 29. The light emitting device according to claim 28, wherein the light emitting unit includes a second phosphor that emits fluorescence having a peak wavelength in a wavelength range of 630 nm or more and 650 nm or less.
  30.  上記励起光とは異なる第2の光を出射する第2光源をさらに備えることを特徴とする請求項22から29のいずれか1項に記載の発光装置。 30. The light emitting device according to any one of claims 22 to 29, further comprising a second light source that emits a second light different from the excitation light.
  31.  上記励起光源は、第1励起光を出射する第1励起光源と、当該第1励起光とは異なる発振波長を有する第2励起光を出射する第2励起光源と、を有し、
     上記発光部は、上記第1励起光源から出射された第1励起光を受けて第1蛍光を発する第1発光部と、上記第2励起光源から出射された第2励起光を受けて第2蛍光を発する第2発光部と、を有し、
     上記光量変化機構は、上記第1励起光源から出射される第1励起光のうちの上記第1発光部によって蛍光に変換されない第1励起光の割合、及び上記第2励起光源から出射される第2励起光のうちの上記第2発光部によって蛍光に変換されない第2励起光の割合の少なくとも一方を変化させることを特徴とする請求項22から27のいずれか1項に記載の発光装置。
    The excitation light source includes a first excitation light source that emits first excitation light, and a second excitation light source that emits second excitation light having an oscillation wavelength different from the first excitation light,
    The light emitting unit receives a first excitation light emitted from the first excitation light source and emits a first fluorescence, and receives a second excitation light emitted from the second excitation light source and receives a second excitation light. A second light emitting unit that emits fluorescence,
    The light quantity changing mechanism includes a ratio of the first excitation light that is not converted into fluorescence by the first light emitting unit in the first excitation light emitted from the first excitation light source, and the first excitation light emitted from the second excitation light source. 28. The light-emitting device according to claim 22, wherein at least one of the ratios of the second excitation light that is not converted into fluorescence by the second light-emitting unit in the two excitation lights is changed.
  32.  ユーザ操作を受け付ける入力手段を備え、
     上記光量変化機構は、上記入力手段が受け付けたユーザ操作に従って動作することを特徴とする請求項22から31のいずれか1項に記載の発光装置。
    An input means for accepting a user operation;
    32. The light emitting device according to claim 22, wherein the light quantity changing mechanism operates according to a user operation received by the input unit.
  33.  励起光を出射する励起光源と、
     上記励起光とは異なる第2の光を出射する第2光源と、
     上記励起光源から出射された励起光を受けて蛍光を発する発光部と、
     上記励起光源から出射される励起光の出力、及び上記第2光源から出射される第2の光の出力の少なくとも一方を変化させる光量変化機構と、を備え、
     上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that emits excitation light;
    A second light source that emits second light different from the excitation light;
    A light emitting unit that emits fluorescence in response to excitation light emitted from the excitation light source;
    A light amount changing mechanism for changing at least one of the output of the excitation light emitted from the excitation light source and the output of the second light emitted from the second light source,
    The light emitting device according to claim 11, wherein the light emitting device functions as the characteristic changing mechanism.
  34.  第1励起光を出射する第1励起光源と、
     上記第1励起光とは異なる発振波長を有する第2励起光を出射する第2励起光源と、
     上記第1励起光源から出射された第1励起光を受けて第1蛍光を発する第1発光部と、
     上記第2励起光源から出射された第2励起光を受けて第2蛍光を発する第2発光部と、
     上記第1励起光源から出射される第1励起光の出力、及び上記第2励起光源から出射される第2励起光の出力の少なくとも一方を変化させる光量変化機構と、を備え、
     上記第1励起光源および上記第2励起光源は、上記励起光源として機能し、
     上記第1発光部および上記第2発光部は、上記発光部として機能し、
     上記光量変化機構は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    A first excitation light source that emits first excitation light;
    A second excitation light source that emits second excitation light having an oscillation wavelength different from that of the first excitation light;
    A first light emitting unit that emits first fluorescence in response to the first excitation light emitted from the first excitation light source;
    A second light emitting unit that emits second fluorescence in response to the second excitation light emitted from the second excitation light source;
    A light amount changing mechanism that changes at least one of the output of the first excitation light emitted from the first excitation light source and the output of the second excitation light emitted from the second excitation light source,
    The first excitation light source and the second excitation light source function as the excitation light source,
    The first light emitting unit and the second light emitting unit function as the light emitting unit,
    The light-emitting device according to claim 11, wherein the light quantity change mechanism functions as the characteristic change mechanism.
  35.  励起光を出射する励起光源と、
     上記励起光を受けて第1の蛍光を発する第1発光部と、
     上記励起光を受けて上記第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する第2発光部と、
     上記第1発光部における励起光の照射範囲を一定にした上で、上記第2発光部に照射される励起光の照射範囲を変化させる照射範囲変化機構と、を備え、
     上記第1発光部および上記第2発光部は、上記発光部として機能し、
     上記照射範囲変化機構は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that emits excitation light;
    A first light emitting unit that emits first fluorescence in response to the excitation light;
    A second light emitting unit that receives the excitation light and emits second fluorescence having a peak wavelength different from that of the first fluorescence;
    An irradiation range changing mechanism for changing the irradiation range of the excitation light irradiated to the second light emitting unit after making the irradiation range of the excitation light in the first light emitting unit constant,
    The first light emitting unit and the second light emitting unit function as the light emitting unit,
    The light emitting device according to claim 11, wherein the irradiation range changing mechanism functions as the characteristic changing mechanism.
  36.  励起光を出射する励起光源と、
     上記励起光を受けて第1の蛍光を発する第1発光部と、
     上記励起光を受けて上記第1の蛍光とは異なるピーク波長を有する第2の蛍光を発する第2発光部と、
     上記第1発光部及び上記第2発光部に照射される励起光の照射範囲を変化させる照射範囲変化機構と、を備え、
     上記第1発光部および上記第2発光部は、上記発光部として機能し、
     上記照射範囲変化機構は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that emits excitation light;
    A first light emitting unit that emits first fluorescence in response to the excitation light;
    A second light emitting unit that receives the excitation light and emits second fluorescence having a peak wavelength different from that of the first fluorescence;
    An irradiation range changing mechanism for changing an irradiation range of excitation light applied to the first light emitting unit and the second light emitting unit,
    The first light emitting unit and the second light emitting unit function as the light emitting unit,
    The light emitting device according to claim 11, wherein the irradiation range changing mechanism functions as the characteristic changing mechanism.
  37.  上記第1発光部と上記第2発光部とは、接触して配置されていることを特徴とする請求項35または36に記載の発光装置。 37. The light emitting device according to claim 35 or 36, wherein the first light emitting unit and the second light emitting unit are disposed in contact with each other.
  38.  上記第2発光部は、上記第1発光部の周囲に配置されていることを特徴とする請求項37に記載の発光装置。 38. The light emitting device according to claim 37, wherein the second light emitting unit is disposed around the first light emitting unit.
  39.  上記第1発光部と上記第2発光部とは、一体形成されていることを特徴とする請求項37または38に記載の発光装置。 39. The light emitting device according to claim 37 or 38, wherein the first light emitting unit and the second light emitting unit are integrally formed.
  40.  上記照射範囲変化機構は、上記励起光源と、上記第1発光部及び上記第2発光部との相対的な位置を変化させることにより、上記照射範囲を変化させることを特徴とする請求項35~39のいずれか1項に記載の発光装置。 The irradiation range changing mechanism changes the irradiation range by changing a relative position between the excitation light source and the first light emitting unit and the second light emitting unit. 40. The light emitting device according to any one of 39.
  41.  上記励起光源から出射された励起光を屈曲して、上記第1発光部及び上記第2発光部の少なくとも一方に出射する光学部材をさらに備え、
     上記照射範囲変化機構は、上記光学部材を移動させることにより、上記照射範囲を変化させることを特徴とする請求項35~39のいずれか1項に記載の発光装置。
    An optical member that bends the excitation light emitted from the excitation light source and emits the light to at least one of the first light emitting unit and the second light emitting unit;
    The light emitting device according to any one of claims 35 to 39, wherein the irradiation range changing mechanism changes the irradiation range by moving the optical member.
  42.  上記励起光源は、青色領域の発振波長を有する光を上記励起光として出射し、
     上記第1発光部は、黄色領域にピーク波長を有する蛍光を、上記第1の蛍光として発する第1蛍光体を含むことを特徴とする請求項35~41のいずれか1項に記載の発光装置。
    The excitation light source emits light having an oscillation wavelength in a blue region as the excitation light,
    The light emitting device according to any one of claims 35 to 41, wherein the first light emitting unit includes a first phosphor that emits fluorescence having a peak wavelength in a yellow region as the first fluorescence. .
  43.  上記第1蛍光体は、β-SiAlON:Eu蛍光体であることを特徴とする請求項42に記載の発光装置。 43. The light emitting device according to claim 42, wherein the first phosphor is a β-SiAlON: Eu phosphor.
  44.  上記第2発光部は、赤色領域にピーク波長を有する蛍光を、上記第2の蛍光として発する第2蛍光体を含むことを特徴とする請求項35~43のいずれか1項に記載の発光装置。 44. The light emitting device according to claim 35, wherein the second light emitting unit includes a second phosphor that emits fluorescence having a peak wavelength in a red region as the second fluorescence. .
  45.  ユーザ操作を受け付ける入力手段を備え、
     上記照射範囲変化機構は、上記入力手段が受け付けたユーザ操作に従って動作することを特徴とする請求項35~44のいずれか1項に記載の発光装置。
    An input means for accepting a user operation;
    The light emitting device according to any one of claims 35 to 44, wherein the irradiation range changing mechanism operates according to a user operation received by the input means.
  46.  上記第1蛍光体は、イットリウム・アルミニウム・ガーネットであることを特徴とする請求項28または42に記載の発光装置。 43. The light emitting device according to claim 28, wherein the first phosphor is yttrium aluminum garnet.
  47.  上記第2蛍光体は、CASN:Eu蛍光体又はSCASN:Eu蛍光体であることを特徴とする請求項17、29または44に記載の発光装置。 45. The light emitting device according to claim 17, 29 or 44, wherein the second phosphor is a CASN: Eu phosphor or a SCASN: Eu phosphor.
  48.  出射点から出射される励起光を発生させる励起光源と、
     上記励起光を受けて第1の蛍光を発する第1発光部と、
     上記励起光を受けて上記第1の蛍光とは異なる色の第2の蛍光を発することができる第2発光部と、
     上記第2発光部と上記出射点との相対的な位置関係を変化させることにより、上記第2の蛍光の発生量を変化させる位置制御部と、を備え、
     上記第1発光部および上記第2発光部は、上記発光部として機能し、
     上記位置制御部は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that generates excitation light emitted from the emission point;
    A first light emitting unit that emits first fluorescence in response to the excitation light;
    A second light-emitting unit capable of receiving the excitation light and emitting second fluorescence having a color different from that of the first fluorescence;
    A position control unit that changes the amount of the second fluorescence generated by changing a relative positional relationship between the second light emitting unit and the emission point;
    The first light emitting unit and the second light emitting unit function as the light emitting unit,
    The light emitting device according to claim 11, wherein the position control unit functions as the characteristic changing mechanism.
  49.  励起光を発生させる励起光源と、
     上記励起光源からの励起光を受けて第1の蛍光を発する第1発光部と、
     上記第1の蛍光を受けて当該第1発光部の蛍光とは異なる色の第2の蛍光を発することができる第2発光部と、
     上記第2発光部と上記第1発光部との相対的な位置関係を変化させることにより、上記第2の蛍光の発生量を変化させる位置制御部と、備え、
     上記第1発光部および上記第2発光部は、上記発光部として機能し、
     上記位置制御部は、上記特性変化機構として機能することを特徴とする請求項11に記載の発光装置。
    An excitation light source that generates excitation light;
    A first light emitting unit that emits first fluorescence in response to excitation light from the excitation light source;
    A second light emitting unit capable of receiving the first fluorescence and emitting a second fluorescence of a color different from the fluorescence of the first light emitting unit;
    A position control unit that changes the amount of the second fluorescence generated by changing a relative positional relationship between the second light emitting unit and the first light emitting unit;
    The first light emitting unit and the second light emitting unit function as the light emitting unit,
    The light emitting device according to claim 11, wherein the position control unit functions as the characteristic changing mechanism.
  50.  上記位置制御部は、上記第2発光部と上記励起光の光軸との間の距離を変化させることを特徴とする請求項48または49に記載の発光装置。 The light emitting device according to claim 48 or 49, wherein the position control unit changes a distance between the second light emitting unit and the optical axis of the excitation light.
  51.  上記第2発光部は、複数存在し、
     複数の上記第2発光部が、上記光軸の周りに環状に配設されているときに、
     上記位置制御部は、複数の上記第2発光部と上記光軸との距離を変化させることを特徴とする請求項50に記載の発光装置。
    There are a plurality of the second light emitting units,
    When the plurality of second light emitting units are annularly arranged around the optical axis,
    51. The light emitting device according to claim 50, wherein the position control unit changes a distance between a plurality of the second light emitting units and the optical axis.
  52.  上記位置制御部は、板状の上記第2発光部の位置を変化させることにより、上記第2発光部と上記励起光の光軸との間の距離を変化させることを特徴とする請求項50に記載の発光装置。 51. The position control unit changes a distance between the second light emitting unit and the optical axis of the excitation light by changing a position of the plate-like second light emitting unit. The light emitting device according to 1.
  53.  上記位置制御部は、上記第2発光部を、上記励起光の光軸方向に移動させることを特徴とする請求項48から50の何れか1項に記載の発光装置。 51. The light emitting device according to claim 48, wherein the position control unit moves the second light emitting unit in an optical axis direction of the excitation light.
  54.  上記第2発光部は、透光性を有することを特徴とする請求項48から53の何れか1項に記載の発光装置。 54. The light emitting device according to any one of claims 48 to 53, wherein the second light emitting unit has translucency.
  55.  上記第2発光部は、ナノ粒子蛍光体を含むことを特徴とする請求項48から54の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 48 to 54, wherein the second light emitting unit includes a nanoparticle phosphor.
  56.  上記励起光源は、半導体レーザであって、
     上記半導体レーザと上記第1発光部とが離間していることを特徴とする請求項48から55の何れか1項に記載の発光装置。
    The excitation light source is a semiconductor laser,
    56. The light emitting device according to any one of claims 48 to 55, wherein the semiconductor laser and the first light emitting unit are separated from each other.
  57.  上記励起光源は、発光ダイオードであって、
     上記発光ダイオードと上記第1発光部とが一体形成されていることを特徴とする請求項48から55の何れか1項に記載の発光装置。
    The excitation light source is a light emitting diode,
    56. The light emitting device according to any one of claims 48 to 55, wherein the light emitting diode and the first light emitting unit are integrally formed.
  58.  請求項1から57のいずれか1項に記載の発光装置を備えていることを特徴とする照明装置。 An illuminating device comprising the light emitting device according to any one of claims 1 to 57.
  59.  請求項1から57のいずれか1項に記載の発光装置を備えていることを特徴とする前照灯。 A headlamp comprising the light-emitting device according to any one of claims 1 to 57.
PCT/JP2012/057718 2011-03-24 2012-03-26 Light-emitting device, illumination device, and headlight WO2012128384A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011066131A JP2012204071A (en) 2011-03-24 2011-03-24 Lighting device and headlight
JP2011-066131 2011-03-24
JP2011084047A JP2012221635A (en) 2011-04-05 2011-04-05 Light-emitting device, lighting device, and vehicle headlamp
JP2011084045A JP5172987B2 (en) 2011-04-05 2011-04-05 Light emitting device, lighting device and headlamp
JP2011-084045 2011-04-05
JP2011084046A JP2012221634A (en) 2011-04-05 2011-04-05 Lighting system and headlamp
JP2011-084047 2011-04-05
JP2011084044A JP2012221633A (en) 2011-04-05 2011-04-05 Lighting device and headlamp
JP2011-084046 2011-04-05
JP2011-084044 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012128384A1 true WO2012128384A1 (en) 2012-09-27

Family

ID=46879515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057718 WO2012128384A1 (en) 2011-03-24 2012-03-26 Light-emitting device, illumination device, and headlight

Country Status (1)

Country Link
WO (1) WO2012128384A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883984A (en) * 2012-12-19 2014-06-25 欧司朗股份有限公司 Remote Phosphor Converter Apparatus
JP2017501530A (en) * 2013-10-17 2017-01-12 ナノシス・インク. Light emitting diode (LED) device
JP2017120864A (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device
JP2017183114A (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Lighting device
CN107388118A (en) * 2017-06-13 2017-11-24 佛山市南海区协隆电器有限公司 Light projecting apparatus and illuminating lamp
CN107388119A (en) * 2017-06-13 2017-11-24 佛山市南海区协隆电器有限公司 Light projecting apparatus and illuminating lamp
CN107461701A (en) * 2017-06-13 2017-12-12 佛山市南海区协隆电器有限公司 A kind of light projecting apparatus and illuminating lamp
EP3267095A1 (en) * 2016-06-22 2018-01-10 LG Innotek Co., Ltd. Phosphor plate and lighting device including the same
US20180115137A1 (en) * 2016-10-25 2018-04-26 Osram Gmbh Laser activated remote phosphor system and vehicle headlights
FR3062894A1 (en) * 2017-02-14 2018-08-17 Valeo Vision LUMINOUS DEVICE OF LASER SCANNING VEHICLE
CN109154425A (en) * 2016-05-13 2019-01-04 松下知识产权经营株式会社 Light supply apparatus and lighting device
CN109681840A (en) * 2018-07-30 2019-04-26 长春理工大学 A kind of novel laser car light
WO2019110224A1 (en) * 2017-12-06 2019-06-13 Osram Gmbh Headlight having a conversion luminaire, a vehicle therewith, control method therefor, and vehicle having at least one such headlight, and device and method for measuring a conversion luminaire
WO2022025099A1 (en) * 2020-07-31 2022-02-03 京セラ株式会社 Illumination system and illumination method
CN114877265A (en) * 2022-05-06 2022-08-09 佛山电器照明股份有限公司 Laser lighting device and manufacturing method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2006351369A (en) * 2005-06-16 2006-12-28 Stanley Electric Co Ltd Vehicular lighting fixture, and its led light source
JP2007173177A (en) * 2005-12-26 2007-07-05 Stanley Electric Co Ltd Lighting device
JP2007258019A (en) * 2006-03-23 2007-10-04 Nichia Chem Ind Ltd Light-emitting device
JP2007335760A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Photoelectric converting film, and solar battery photoelectric converting element, or imaging element including same
JP2009180935A (en) * 2008-01-30 2009-08-13 Tekkusu Iijii:Kk Light source device
JP2009224053A (en) * 2008-03-13 2009-10-01 Sharp Corp Headlamp and vehicular infrared night vision apparatus employing the headlamp as light source
WO2010020930A1 (en) * 2008-08-22 2010-02-25 Koninklijke Philips Electronics N.V. Compact multiple beam type vehicle light system
JP2010225793A (en) * 2009-03-23 2010-10-07 Stanley Electric Co Ltd Method of manufacturing semiconductor light emitting device
JP2011142000A (en) * 2010-01-07 2011-07-21 Stanley Electric Co Ltd Light source device and lighting system
JP2011222238A (en) * 2010-04-08 2011-11-04 Stanley Electric Co Ltd Headlight for vehicle
JP2012040990A (en) * 2010-08-20 2012-03-01 Sharp Corp Control device, system of controlling head lamp for vehicle, control program, recording medium, and control method
JP2012074355A (en) * 2010-08-31 2012-04-12 Sharp Corp Lighting system, headlight and moving body
JP2012109201A (en) * 2010-10-29 2012-06-07 Sharp Corp Light-emitting device, vehicular headlight, lighting device, and laser element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (en) * 2003-04-28 2004-11-18 Seiko Epson Corp Lighting device and projection type display device
JP2006351369A (en) * 2005-06-16 2006-12-28 Stanley Electric Co Ltd Vehicular lighting fixture, and its led light source
JP2007173177A (en) * 2005-12-26 2007-07-05 Stanley Electric Co Ltd Lighting device
JP2007258019A (en) * 2006-03-23 2007-10-04 Nichia Chem Ind Ltd Light-emitting device
JP2007335760A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Photoelectric converting film, and solar battery photoelectric converting element, or imaging element including same
JP2009180935A (en) * 2008-01-30 2009-08-13 Tekkusu Iijii:Kk Light source device
JP2009224053A (en) * 2008-03-13 2009-10-01 Sharp Corp Headlamp and vehicular infrared night vision apparatus employing the headlamp as light source
WO2010020930A1 (en) * 2008-08-22 2010-02-25 Koninklijke Philips Electronics N.V. Compact multiple beam type vehicle light system
JP2010225793A (en) * 2009-03-23 2010-10-07 Stanley Electric Co Ltd Method of manufacturing semiconductor light emitting device
JP2011142000A (en) * 2010-01-07 2011-07-21 Stanley Electric Co Ltd Light source device and lighting system
JP2011222238A (en) * 2010-04-08 2011-11-04 Stanley Electric Co Ltd Headlight for vehicle
JP2012040990A (en) * 2010-08-20 2012-03-01 Sharp Corp Control device, system of controlling head lamp for vehicle, control program, recording medium, and control method
JP2012074355A (en) * 2010-08-31 2012-04-12 Sharp Corp Lighting system, headlight and moving body
JP2012109201A (en) * 2010-10-29 2012-06-07 Sharp Corp Light-emitting device, vehicular headlight, lighting device, and laser element

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883984A (en) * 2012-12-19 2014-06-25 欧司朗股份有限公司 Remote Phosphor Converter Apparatus
JP2017501530A (en) * 2013-10-17 2017-01-12 ナノシス・インク. Light emitting diode (LED) device
US10416373B2 (en) 2013-10-17 2019-09-17 Nanosys, Inc. Light emitting diode (LED) devices
JP2017120864A (en) * 2015-12-28 2017-07-06 株式会社タムラ製作所 Light emitting device
US10975497B2 (en) 2015-12-28 2021-04-13 Tamura Corporation Light emitting device
JP2017183114A (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Lighting device
CN113237032A (en) * 2016-05-13 2021-08-10 新唐科技日本株式会社 Light source device and lighting device
EP3457021A4 (en) * 2016-05-13 2019-05-01 Panasonic Intellectual Property Management Co., Ltd. Light source device and lighting device
CN109154425B (en) * 2016-05-13 2021-06-15 新唐科技日本株式会社 Light source device and lighting device
US11028988B2 (en) 2016-05-13 2021-06-08 Panasonic Semiconductor Solutions Co., Ltd. Light source device and lighting device
CN113237032B (en) * 2016-05-13 2024-01-05 新唐科技日本株式会社 Light source device and lighting device
US12018805B2 (en) 2016-05-13 2024-06-25 Nuvoton Technology Corporation Japan Light source device and lighting device
CN109154425A (en) * 2016-05-13 2019-01-04 松下知识产权经营株式会社 Light supply apparatus and lighting device
US20190097095A1 (en) * 2016-05-13 2019-03-28 Panasonic Intellectual Property Management Co., Ltd. Light source device and lighting device
EP3267095A1 (en) * 2016-06-22 2018-01-10 LG Innotek Co., Ltd. Phosphor plate and lighting device including the same
US10928035B2 (en) 2016-06-22 2021-02-23 Lg Innotek Co., Ltd. Phosphor plate and lighting device including the same
CN107975756A (en) * 2016-10-25 2018-05-01 欧司朗有限公司 Laser excitation remote fluorescence system and front lamp of vehicle
US20180115137A1 (en) * 2016-10-25 2018-04-26 Osram Gmbh Laser activated remote phosphor system and vehicle headlights
US10326254B2 (en) 2016-10-25 2019-06-18 Osram Gmbh Laser activated remote phosphor system and vehicle headlights
EP3315852A1 (en) * 2016-10-25 2018-05-02 OSRAM GmbH Laser activated remote phosphor system and vehicle headlamp
FR3062894A1 (en) * 2017-02-14 2018-08-17 Valeo Vision LUMINOUS DEVICE OF LASER SCANNING VEHICLE
CN107461701A (en) * 2017-06-13 2017-12-12 佛山市南海区协隆电器有限公司 A kind of light projecting apparatus and illuminating lamp
CN107388119A (en) * 2017-06-13 2017-11-24 佛山市南海区协隆电器有限公司 Light projecting apparatus and illuminating lamp
CN107388118A (en) * 2017-06-13 2017-11-24 佛山市南海区协隆电器有限公司 Light projecting apparatus and illuminating lamp
WO2019110224A1 (en) * 2017-12-06 2019-06-13 Osram Gmbh Headlight having a conversion luminaire, a vehicle therewith, control method therefor, and vehicle having at least one such headlight, and device and method for measuring a conversion luminaire
CN109681840A (en) * 2018-07-30 2019-04-26 长春理工大学 A kind of novel laser car light
WO2022025099A1 (en) * 2020-07-31 2022-02-03 京セラ株式会社 Illumination system and illumination method
JPWO2022025099A1 (en) * 2020-07-31 2022-02-03
JP7387005B2 (en) 2020-07-31 2023-11-27 京セラ株式会社 Lighting system and method
CN114877265A (en) * 2022-05-06 2022-08-09 佛山电器照明股份有限公司 Laser lighting device and manufacturing method thereof
CN114877265B (en) * 2022-05-06 2024-01-23 佛山电器照明股份有限公司 Laser lighting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2012128384A1 (en) Light-emitting device, illumination device, and headlight
JP5172987B2 (en) Light emitting device, lighting device and headlamp
US9028106B2 (en) Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
WO2012124587A1 (en) Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight
US8733996B2 (en) Light emitting device, illuminating device, and vehicle headlamp
JP5232815B2 (en) Vehicle headlamp
US9346395B2 (en) Light-emitting apparatus, illumination system, vehicle headlamp, projector, and method for manufacturing light-emitting apparatus
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
JP5534974B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP5380476B2 (en) Light emitting device, lighting device and headlamp
JP5254418B2 (en) Lighting device and headlamp
JP2012221634A (en) Lighting system and headlamp
WO2013051623A1 (en) Light-emitting body, illumination device, and headlight
US9441155B2 (en) Wavelength converting member, light-emitting device, illuminating device, vehicle headlight, and method for producing wavelength converting member
JP5425023B2 (en) Light emitting device, lighting device, and vehicle headlamp
WO2014080705A1 (en) Light emitting apparatus, method for manufacturing same, lighting apparatus, and headlamp
JP2012193283A (en) Light-emitting body, illuminating device, and headlight
JP2012059454A (en) Light emitting device, lighting system, and headlamp for vehicle
JP2011243373A (en) Light-emitting device, illuminating device, and vehicle headlight
JP6192903B2 (en) Light source device, lighting device and vehicle headlamp
JP2012009355A (en) Light-emitting device, lighting device, and vehicular headlight
JP2013079311A (en) Light-emitting body, illumination device, and headlight
JP5021089B1 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE, VEHICLE HEADLAMP, PROJECTOR, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5271349B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2014082057A (en) Light-emitting device, and vehicle headlamp and luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760745

Country of ref document: EP

Kind code of ref document: A1