WO2012128170A1 - Display element and electrical device using same - Google Patents

Display element and electrical device using same Download PDF

Info

Publication number
WO2012128170A1
WO2012128170A1 PCT/JP2012/056662 JP2012056662W WO2012128170A1 WO 2012128170 A1 WO2012128170 A1 WO 2012128170A1 JP 2012056662 W JP2012056662 W JP 2012056662W WO 2012128170 A1 WO2012128170 A1 WO 2012128170A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
signal
voltage
scanning
electrode
Prior art date
Application number
PCT/JP2012/056662
Other languages
French (fr)
Japanese (ja)
Inventor
吉田茂人
山口典昭
松岡俊樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012128170A1 publication Critical patent/WO2012128170A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/348Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on the deformation of a fluid drop, e.g. electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Definitions

  • the present invention relates to a display element that displays information such as images and characters by moving a polar liquid, and an electrical device using the display element.
  • a display space is formed between the first and second substrates, and ribs (partitions) are formed.
  • the interior of the display space is partitioned according to a plurality of pixel regions by a wall.
  • a conductive liquid (polar liquid) is sealed, and a signal electrode, a scan electrode and a reference electrode (reference electrode) provided in parallel to each other are provided. It was provided to cross.
  • the conductive liquid is moved to the scan electrode side or the reference electrode side to display. The display color on the face side was changed.
  • the conventional display elements as described above may cause problems that the display color cannot be changed with high accuracy, or that it is difficult to change the display color, that is, to speed up the display operation. It was.
  • the conductive liquid cannot be accurately moved to a desired position depending on the previous display color (that is, the position of the conductive liquid). As a result, a subtle color misregistration may occur, resulting in a deterioration in display quality or a failure to perform a display operation at high speed.
  • the present invention provides a display element capable of performing a display operation at high speed while preventing deterioration in display quality even when performing gradation display, and an electric device using the display element. With the goal.
  • the display element according to the present invention is configured such that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. , The second substrate provided on the non-display surface side of the first substrate, the effective display area and the non-effective display area set for the display space, and the effective inside the display space.
  • a display element configured to change a display color on the display surface side by moving the polar liquid, the polar liquid being movably sealed on the display area side or the ineffective display area side
  • a plurality of signal electrodes disposed in the display space so as to be in contact with the polar liquid and provided along a predetermined arrangement direction; Provided on one side of the first and second substrates in a state of being electrically insulated from the polar liquid so as to be installed on one side of the effective display area side and the non-effective display area side.
  • a plurality of scanning electrodes provided to intersect with the plurality of signal electrodes, A plurality of pixel regions provided in a unit of intersection between the signal electrode and the scanning electrode;
  • a display control unit that controls each drive of the signal electrode and the scanning electrode so that a scanning operation along a predetermined scanning direction is performed based on an image input signal from the outside; Connected to the plurality of signal electrodes and the display control unit, and in accordance with an instruction signal from the display control unit, for each of the plurality of signal electrodes, a predetermined value corresponding to information displayed on the display surface side
  • a signal voltage application unit for applying a signal voltage within a voltage range; Connected to the plurality of scan electrodes and the display control unit, and allows the polar liquid to move inside the display space in accordance with the signal voltage with respect to the plurality of scan electrodes.
  • a scanning voltage applying unit that applies one of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space; Before performing the scanning operation on the signal electrode and the scanning electrode from the signal voltage applying unit and the scanning voltage applying unit, respectively, each polar liquid in all the pixel regions is on the effective display region side or the A reset signal instruction unit for instructing to supply a predetermined reset signal so as to move to an initial position determined on the non-effective display area side;
  • a maximum application time acquisition unit that acquires a maximum application time for each scanning operation using an image input signal from the outside and the initial position;
  • a scanning time determination unit that determines a scanning time in a corresponding scanning operation using an image input signal from the outside and a maximum application time from the maximum application time acquisition unit is provided,
  • the display control unit generates an instruction signal to the signal voltage applying unit and the scanning voltage applying unit using an image input signal from the outside and a scanning time from the scanning time determining unit, and at the scanning time, The scanning operation is performed accordingly.
  • the reset signal instruction unit performs the scanning operation on the signal electrode and the scanning electrode from the signal voltage applying unit and the scanning voltage applying unit, respectively.
  • An instruction is given to supply a predetermined reset signal so that the polar liquid moves to the initial position determined on the effective display area side or the non-effective display area side.
  • each polar liquid in all the pixel regions can be moved to the initial position, and the polar liquid is moved to a desired position with high accuracy in the next display operation. It becomes possible to make it.
  • the maximum application time acquisition unit acquires the maximum application time for each scanning operation using the external image input signal and the initial position
  • the scanning time determination unit acquires the external image input signal and the maximum application time.
  • the scanning time in the corresponding scanning operation is determined using the maximum application time from the unit. Further, the display control unit generates each instruction signal to the signal voltage applying unit and the scanning voltage applying unit using the image input signal from the outside and the scanning time from the scanning time determining unit, and according to the scanning time. A scanning operation is performed.
  • the display control unit generates each instruction signal to the signal voltage applying unit and the scanning voltage applying unit using the image input signal from the outside and the scanning time from the scanning time determining unit, and according to the scanning time. A scanning operation is performed.
  • the display control unit is provided with a scanning operation determining unit that determines whether or not to perform a scanning operation based on a scanning time from the scanning time determining unit,
  • the signal voltage applying unit and the scanning voltage applying unit preferably apply voltage to the signal electrode and the scanning electrode, respectively, according to a determination result of the scanning operation determining unit.
  • the display operation can be performed at a higher speed while preventing deterioration in display quality.
  • the first liquid electrode is electrically insulated from the polar liquid and the scan electrode so as to be installed on the other side of the effective display area side and the ineffective display area side.
  • a plurality of reference electrodes provided on one side of the first and second substrates and provided to intersect with the plurality of signal electrodes;
  • the polar liquid is connected to the plurality of reference electrodes and the display control unit and allows the polar liquid to move in the display space according to the signal voltage with respect to the plurality of reference electrodes.
  • a reference voltage applying unit that applies one voltage of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space;
  • the reset signal instruction unit performs the scanning operation on the signal electrode, the scanning electrode, and the reference electrode from the signal voltage applying unit, the scanning voltage applying unit, and the reference voltage applying unit, respectively. Instructing each polar liquid in all of the pixel regions to supply a predetermined reset signal so as to move to an initial position determined on the effective display region side or the non-effective display region side,
  • the display control unit performs drive control of the signal electrode, the scan electrode, and the reference electrode so that a scanning operation along a predetermined scanning direction is performed based on an external image input signal.
  • the display control unit outputs each instruction signal to the signal voltage applying unit, the scanning voltage applying unit, and the reference voltage applying unit using an image input signal from the outside and a scanning time from the scanning time determining unit. It is preferable to generate and perform a scanning operation according to the scanning time.
  • a matrix drive type display element capable of performing a display operation at high speed while preventing a deterioration in display quality even when gradation display is performed without providing a switching element for each pixel region is configured. be able to.
  • the display control unit is provided with a scanning operation determining unit that determines whether or not to perform a scanning operation based on a scanning time from the scanning time determining unit,
  • the signal voltage application unit, the scan voltage application unit, and the reference voltage application unit apply voltages to the signal electrode, the scan electrode, and the reference electrode, respectively, according to the determination result of the scanning operation determination unit. It is preferable to carry out.
  • the display operation can be performed at a higher speed while preventing deterioration in display quality.
  • the reset signal indicating unit may be configured such that, before performing the scanning operation, the polar liquids in all the pixel regions are set on the side of the effective display region set on the side opposite to the scanning direction.
  • the signal electrode, the scan electrode, and the reference electrode are respectively moved from the signal voltage application unit, the scan voltage application unit, and the reference voltage application unit so as to move to an initial position determined on the ineffective display region side.
  • a predetermined reset signal may be supplied.
  • the initial position is set on the side opposite to the scanning direction, it is possible to reliably prevent the display quality from being deteriorated even when the pixel region is not hermetically separated.
  • the reset signal instruction unit selects the maximum voltage or the minimum voltage of the signal voltage as the voltage of the reset signal for the signal electrode, and the voltage of the reset signal for the reference electrode as the voltage of the reset signal.
  • the selection voltage or the non-selection voltage is selected, and the selection voltage or the non-selection voltage is selected as the voltage of the reset signal for the scan electrode.
  • each configuration of the signal voltage applying unit, the reference voltage applying unit, and the scanning voltage applying unit is simplified. be able to.
  • a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
  • the electric field applied to the polar liquid by the dielectric layer can be reliably increased, and the moving speed of the polar liquid can be improved more easily.
  • the scanning time determination unit uses the image input signal from the outside and the maximum application time from the maximum application time acquisition unit to remove the polar liquid for each pixel region in the corresponding scanning operation. It is preferable to determine the voltage application time for movement.
  • the polar liquid in each pixel region can be appropriately moved in the scanning operation, and high-accuracy gradation display can be reliably performed.
  • the display control unit determines that it is not necessary to move the polar liquid from the initial position in a plurality of pixel regions that are symmetrical with respect to one scanning operation, the determined pixel It is preferable to apply an intermediate voltage in the middle of the predetermined voltage range to the signal electrode corresponding to the region.
  • the polar liquid can be reliably stopped in the pixel region where the polar liquid does not need to be moved from the initial position, and the display quality of the display element can be reliably prevented from deteriorating.
  • a memory capable of storing data of image input signals for at least one scanning operation may be used for the maximum application time acquisition unit.
  • the maximum application time acquisition unit is provided in the display control unit.
  • a general-purpose voltage application unit (driver) can be used for the signal voltage application unit, unlike the case where the maximum application time acquisition unit is provided in the signal voltage application unit. Further, it is possible to easily output an instruction signal from the display control unit to the signal voltage application unit or the like.
  • a rib for separating the inside of the display space is provided on at least one side of the first and second substrates according to the plurality of pixel regions.
  • the plurality of pixel regions are respectively provided according to a plurality of colors capable of full color display on the display surface side.
  • a color image can be displayed by appropriately moving the corresponding polar liquid in each of the plurality of pixel regions.
  • an insulating fluid that does not mix with the polar liquid is sealed in the display space so as to be movable in the display space.
  • the ineffective display area is set by a light shielding film provided on one side of the first and second substrates,
  • the effective display area is preferably set by an opening formed in the light shielding film.
  • the electrical device of the present invention is an electrical device including a display unit that displays information including characters and images, Any one of the display elements described above is used for the display portion.
  • a display element capable of performing a display operation at high speed while preventing deterioration in display quality even when performing gradation display is used for the display unit.
  • Information can be changed at high speed, and a high-performance electric device including a display unit having excellent display quality can be easily configured.
  • the present invention it is possible to provide a display element capable of performing a display operation at a high speed while preventing a deterioration in display quality even when gradation display is performed, and an electric apparatus using the display element. .
  • FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 3 is a block diagram showing a specific configuration of the signal driver shown in FIG. 4 is a block diagram showing a specific configuration of the reference driver shown in FIG.
  • FIG. 5 is a block diagram showing a specific configuration of the scan driver shown in FIG.
  • FIG. 6 is an enlarged plan view showing a main configuration of the upper substrate side shown in FIG. 1 when viewed from the display surface side.
  • FIG. 7 is an enlarged plan view showing the main configuration of the lower substrate side shown in FIG. 1 when viewed from the non-display surface side.
  • FIG. 2 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 8A is an enlarged plan view showing a main part configuration in one pixel region of the display element
  • FIG. 8B is a sectional view taken along line VIIIb-VIIIb in FIG. 8A
  • FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively.
  • FIG. 10 is a diagram for explaining an operation example of the image display device. 11 (a) to 11 (c) are waveform diagrams showing specific examples of reset signals supplied to the signal electrode, reference electrode, and scan electrode shown in FIG. 1, respectively.
  • FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied.
  • FIG. 12 is a diagram for explaining a specific operation example of the display control unit and the maximum application time acquisition unit illustrated in FIG. 3.
  • FIGS. 13A to 13D are diagrams for explaining a specific voltage application operation of the signal driver.
  • FIG. 14 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention.
  • FIG. 15 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 16 is a block diagram showing a specific configuration of the signal driver shown in FIG.
  • FIG. 17 is an enlarged plan view showing a main configuration of the upper substrate side when viewed from the display surface side in the display element according to the third embodiment of the present invention.
  • FIG. 18 is an enlarged plan view showing the main configuration of the lower substrate side when viewed from the non-display surface side in the display element according to the third embodiment of the present invention.
  • FIG. 19A and FIG. 19B are cross-sectional views showing the main configuration of the display element according to the third embodiment of the present invention during non-CF color display and CF color display, respectively.
  • 20A to 20C are waveform diagrams showing specific examples of reset signals respectively supplied to the signal electrode, the reference electrode, and the scan electrode shown in FIG. 19, and FIG.
  • FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied.
  • FIG. 21A to FIG. 21C are diagrams for explaining an operation example in the pixel region of the comparative example.
  • FIG. 22 is a plan view for explaining a display element and an image display apparatus according to the fourth embodiment of the present invention.
  • FIG. 23 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 24 is a block diagram showing a specific configuration of the signal driver shown in FIG.
  • FIG. 25 is a block diagram showing a specific configuration of the reference driver shown in FIG.
  • FIG. 26 is a block diagram showing a specific configuration of the scan driver shown in FIG.
  • FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention.
  • the image display apparatus 1 according to the present embodiment is provided with a display unit using the display element 10 according to the present embodiment, and a rectangular display surface is configured in the display unit.
  • the display element 10 is provided with a display control unit 50, a signal driver 7, a reference driver 8, and a scanning driver 9 connected to the display control unit 50, and the display control unit 50 includes the signal driver 7, Each drive control of the reference driver 8 and the scanning driver 9 is performed.
  • an image input signal from the outside is input to the display control unit 50, and the display control unit 50 receives the signal driver 7, the reference driver 8, and the like based on the input image input signal.
  • Each instruction signal to the scanning driver 9 is generated and output.
  • the display element 10 displays information including characters and images according to the image input signal.
  • the display element 10 includes an upper substrate 2 and a lower substrate 3 which are arranged so as to overlap each other in a direction perpendicular to the paper surface of FIG. 1, and the above-described overlapping portion of the upper substrate 2 and the lower substrate 3 causes the above-described portion.
  • An effective display area on the display surface is formed (details will be described later).
  • a plurality of signal electrodes 4 are provided in stripes along the X direction at a predetermined interval from each other.
  • a plurality of reference electrodes 5 and a plurality of scanning electrodes 6 are provided alternately in a stripe pattern along the Y direction.
  • the plurality of signal electrodes 4, the plurality of reference electrodes 5, and the plurality of scan electrodes 6 are provided so as to intersect with each other.
  • the signal electrodes 4 and the scan electrodes 6 are in units of intersections. A plurality of pixel areas are set.
  • the plurality of signal electrodes 4, the plurality of reference electrodes 5, and the plurality of scan electrodes 6 are independently of each other a high voltage (hereinafter referred to as “H voltage”) as a first voltage and a second voltage.
  • H voltage high voltage
  • L voltage low voltage
  • the plurality of pixel regions are partitioned by a partition wall, and the plurality of pixel regions correspond to a plurality of colors capable of full color display on the display surface side.
  • a polar liquid described later is moved by an electrowetting phenomenon for each of a plurality of pixels (display cells) provided in a matrix, and the display color on the display surface side is changed. ing.
  • the plurality of pixel regions may be configured to be capable of monochrome display on the display surface side.
  • the plurality of reference electrodes 5, and the plurality of scanning electrodes 6, one end side is drawn out to the outside of the effective display area of the display surface to form terminal portions 4a, 5a, and 6a. ing.
  • a signal driver 7 is connected to each terminal portion 4a of the plurality of signal electrodes 4 via a wiring 7a.
  • the signal driver 7 constitutes a signal voltage application unit.
  • a plurality of each of the plurality of signal drivers 7 are in accordance with an instruction signal from the display control unit 50.
  • a signal voltage Vd corresponding to information is applied to the signal electrode 4.
  • the signal driver 7 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later).
  • a voltage of a predetermined reset signal is applied to each of the signal electrodes 4 (details will be described later).
  • a reference driver 8 is connected to each terminal portion 5a of the plurality of reference electrodes 5 via a wiring 8a.
  • the reference driver 8 constitutes a reference voltage applying unit.
  • a plurality of each of the reference drivers 8 is provided according to an instruction signal from the display control unit 50.
  • a reference voltage Vr is applied to the reference electrode 5.
  • the reference driver 8 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later).
  • a predetermined reset signal voltage is applied to each of the reference electrodes 5 (details will be described later).
  • a scanning driver 9 is connected to each terminal portion 6a of the plurality of scanning electrodes 6 via a wiring 9a.
  • the scanning driver 9 constitutes a scanning voltage application unit.
  • each of the plurality of scanning drivers 9 is in accordance with an instruction signal from the display control unit 50.
  • a scanning voltage Vs is applied to the scanning electrode 6.
  • the scanning driver 9 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later).
  • a predetermined reset signal voltage is applied to each of the scanning electrodes 6 (details will be described later).
  • a non-selection voltage that prevents the polar liquid from moving with respect to each of the plurality of scan electrodes 6, and a selection voltage that allows the polar liquid to move according to the signal voltage Vd is applied as the scanning voltage Vs.
  • the reference driver 8 is configured to operate with reference to the operation of the scanning driver 9, and the reference driver 8 prevents the polar liquid from moving with respect to each of the plurality of reference electrodes 5.
  • One voltage of the non-selection voltage and the selection voltage that allows the polar liquid to move according to the signal voltage Vd is applied as the reference voltage Vr.
  • the scanning driver 9 sequentially applies the selection voltage to the scanning electrodes 6 from the left side to the right side of FIG. 1, for example, and the reference driver 8 is synchronized with the operation of the scanning driver 9.
  • the scanning operation is performed for each line by sequentially applying a selection voltage to the reference electrodes 5 from the left side to the right side of 1 (details will be described later).
  • the signal driver 7 is configured to apply the corresponding signal voltage Vd corresponding to the information to all the signal electrodes 4 all at once.
  • the signal driver 7, the reference driver 8, and the scanning driver 9 include a DC power supply or an AC power supply, and supply corresponding signal voltage Vd, reference voltage Vr, and scanning voltage Vs. .
  • the reference driver 8 is configured to switch the polarity of the reference voltage Vr every predetermined time (for example, one frame).
  • the scanning driver 9 is configured to switch each polarity of the scanning voltage Vs in response to switching of the polarity of the reference voltage Vr.
  • FIG. 2 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 3 is a block diagram showing a specific configuration of the signal driver shown in FIG. 4 is a block diagram showing a specific configuration of the reference driver shown in FIG.
  • FIG. 5 is a block diagram showing a specific configuration of the scan driver shown in FIG.
  • the display control unit 50 includes an image processing unit 51, a frame buffer 52, a reset signal instruction unit 53, and a scanning time determination unit 54.
  • an image input signal is input to the display control unit 50 from the outside of the image display device 1, and the display control unit 50 performs a predetermined scanning direction based on the image input signal from the outside.
  • the drive operation of the signal electrode 4, the scan electrode 6, and the reference electrode 5 is performed so that the above-described scanning operation is performed.
  • the display control unit 50 uses the image input signal from the outside and the scanning time from the scanning time determining unit 53 to send signals to the signal driver 7, the scanning driver 9, and the reference driver 8. An instruction signal is generated, and a scanning operation corresponding to the scanning time is performed.
  • the display control unit 50 determines that it is not necessary to move the polar liquid from an initial position described later in a plurality of pixel regions that are symmetrical with one scanning operation, the signal corresponding to the determined pixel region.
  • An intermediate voltage in the predetermined voltage range that is, an M voltage described later, which is an intermediate voltage between the H voltage and the L voltage
  • the polar liquid can be reliably stopped in the pixel region where the polar liquid does not need to be moved from the initial position, and the display quality of the display element 10 is reduced. This can be surely prevented (details will be described later).
  • the image processing unit 51 is configured to perform predetermined image processing on an external image input signal. Then, the image processing unit 51 generates instruction signals for the signal driver 7, the reference driver 8, and the scanning driver 9 based on the result of the image processing. In addition, the image processing unit 51 corrects each of the generated instruction signals using the image input signal and the scanning time determined by the scanning time determination unit 54, and a signal corresponding to each of the corrected instruction signals. The data is output to the driver 7, the reference driver 8, and the scanning driver 9. Thereby, the signal driver 7, the reference driver 8, and the scanning driver 9 output the signal voltage Vd, the reference voltage Vr, and the scanning voltage Vs, respectively, and an image (information) corresponding to the image input signal is displayed on the display surface. Is displayed.
  • the frame buffer 52 is configured to be able to store image input signal data for at least one frame.
  • the reset signal instruction unit 53 displays the signal electrode 4 and the reference from the signal driver 7, the reference driver 8, and the scanning driver 9, respectively, after the information display for one frame is performed and before the scanning operation is performed in the next frame. Instructing the electrode 5 and the scanning electrode 6 to supply a predetermined reset signal. Specifically, the reset signal instructing unit 53 selects the maximum voltage (the H voltage) or the minimum voltage (the L voltage) of the signal voltage Vd as the voltage of the reset signal for the signal electrode 4, and the signal driver 7 is instructed. Further, the reset signal instruction unit 53 selects the selection voltage or the non-selection voltage as the voltage of the reset signal for the reference electrode 5 and instructs the reference driver 8. Further, the reset signal instruction unit 53 selects the selection voltage or the non-selection voltage as the voltage of the reset signal for the scanning electrode 6 and instructs the scanning driver 9.
  • the reset signal instructing unit 53 selects the maximum voltage (the H voltage) or the minimum voltage (the L voltage) of the signal voltage Vd as the voltage of the reset signal for the signal electrode 4, and the
  • each polar liquid in all the pixel regions is displayed on the effective display region side or ineffective display described later. It moves to the initial position determined on the region side (details will be described later).
  • the scanning time determination unit 54 determines the scanning time in the corresponding scanning operation using the image input signal from the outside and the maximum application time from the maximum application time acquisition unit described later. Further, as will be described in detail later, the scanning time determination unit 54 uses the image input signal and the maximum application time to apply a voltage application time for moving the polar liquid for each pixel region in the corresponding scanning operation (that is, The voltage application time of the signal voltage to the corresponding signal electrode 4 for each pixel area) is determined.
  • the signal driver 7 is provided with a maximum application time acquisition unit 71, a shift register 72, and a level shifter 73.
  • the maximum application time acquisition unit 71 is provided with a line memory 71a as a memory.
  • the line memory 71a is configured to be able to store image input signal data for at least one scanning operation.
  • the maximum application time acquisition unit 71 acquires the maximum application time for each scanning operation using an external image input signal stored in the line memory 71a and an initial position defined by the reset signal. Is configured to do. Then, the maximum application time acquisition unit 71 outputs the acquired maximum application time to the scanning time determination unit 54 of the display control unit 50.
  • the shift register 72 is configured to supply the corresponding signal voltage Vd from the level shifter 73 to the plurality of signal electrodes 4 according to the scanning operation based on the instruction signal from the image processing unit 51. Specifically, the shift register 72 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51, and the shift register 72 receives the input start pulse and Based on the clock signal, the level shifter 73 is operated in units of scanning operation for each line. In addition, a plurality of (all) signal electrodes 4 are connected to the level shifter 73, and in response to an operation instruction from the shift register 72, an instruction signal from the image processing unit 51 is sent to all the signal electrodes 4. The corresponding signal voltage Vd is applied to the corresponding signal electrodes 4 all at once.
  • the reference driver 8 is configured using a general-purpose driver, and the reference driver 8 is provided with a shift register 81 and a level shifter 82 as shown in FIG.
  • the shift register 81 supplies the corresponding reference voltage Vr from the level shifter 82 to the plurality of reference electrodes 5 in accordance with the scanning operation.
  • the shift register 81 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51.
  • the shift register 81 receives the input start pulse and
  • the level shifter 82 is operated based on the clock signal.
  • a plurality of (all) reference electrodes 5 are connected to the level shifter 82, and according to an operation instruction from the shift register 81, a selection voltage or a reference voltage Vr according to an instruction signal from the image processing unit 51. A non-selection voltage is applied to the reference electrode 5.
  • the scan driver 9 is configured by using a general-purpose driver.
  • the scan driver 9 is provided with a shift register 91 and a level shifter 92 as shown in FIG. Yes.
  • the shift register 91 supplies a corresponding scanning voltage Vs from the level shifter 92 to the plurality of scanning electrodes 6 in accordance with the scanning operation.
  • the shift register 91 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51.
  • the shift register 91 receives the input start pulse and
  • the level shifter 92 is operated based on the clock signal.
  • a plurality of (all) scanning electrodes 6 are connected to the level shifter 92, and according to an operation instruction from the shift register 91, a selection voltage or a scanning voltage Vs is selected according to an instruction signal from the image processing unit 51. A non-selection voltage is applied to the scan electrode 6.
  • FIG. 6 is an enlarged plan view showing a main part configuration on the upper substrate side shown in FIG. 1 when viewed from the display surface side.
  • FIG. 7 is an enlarged plan view showing the main configuration of the lower substrate side shown in FIG. 1 when viewed from the non-display surface side.
  • FIG. 8A is an enlarged plan view showing a main part configuration in one pixel region of the display element, and
  • FIG. 8B is a sectional view taken along line VIIIb-VIIIb in FIG. 8A.
  • FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively. 6 and 7, for the sake of simplification of the drawing, twelve pixels arranged at the upper left end portion of FIG. 1 among the plurality of pixels provided on the display surface are illustrated. . Further, in FIG. 6, a rail member and a flat plate member which will be described later provided on the non-display surface side are omitted for the sake of clarity.
  • the display element 10 includes the upper substrate 2 as the first substrate provided on the display surface side and the second substrate provided on the back side (non-display surface side) of the upper substrate 2.
  • the lower substrate 3 as a substrate is provided.
  • the upper substrate 2 and the lower substrate 3 are arranged at a predetermined distance from each other, so that a predetermined display space S is formed between the upper substrate 2 and the lower substrate 3. .
  • the polar liquid 16 and the insulating oil 17 not mixed with the polar liquid 16 are arranged in the X direction (left and right direction in FIG. 6) in the display space S.
  • the polar liquid 16 can be moved to the later-described effective display area P1 side or the non-effective display area P2 side.
  • a movement space K for moving the oil 17 as the insulating fluid for each of the pixel regions P there is provided a movement space K for moving the oil 17 as the insulating fluid for each of the pixel regions P. According to the movement, the oil 17 can be smoothly and appropriately moved to the effective display area P1 side or the non-effective display area P2 side.
  • the polar liquid 16 for example, an aqueous solution containing water as a solvent and a predetermined electrolyte as a solute is used. Specifically, for example, an aqueous solution of 1 mmol / L potassium chloride (KCl) is used for the polar liquid 16.
  • the polar liquid 16 is a predetermined color, for example, a color colored black with a self-dispersing pigment.
  • the polar liquid 16 is colored black, the polar liquid 16 functions as a shutter that allows or blocks light transmission in each pixel. That is, in each pixel of the display element 10, as will be described in detail later, the polar liquid 16 moves inside the display space S on the reference electrode 5 side (effective display region P1 side) or on the scanning electrode 6 side (non-effective display region P2). The display color is changed to either black or RGB by sliding to the side).
  • the oil 17 is a non-polar, colorless and transparent oil composed of one or more selected from, for example, side chain higher alcohol, side chain higher fatty acid, alkane hydrocarbon, silicone oil, and matching oil. It has been. Further, the oil 17 moves in the moving space K partitioned on the upper substrate 2 side in the display space S as the polar liquid 16 slides.
  • a transparent glass material such as a non-alkali glass substrate or a transparent transparent sheet material such as a transparent synthetic resin such as an acrylic resin is used.
  • a color filter layer 11 is formed on the surface of the upper substrate 2 on the non-display surface side.
  • a guide portion 21 having two rail members 21 a and a flat plate member 21 b is formed on the color filter layer 11 on the non-display surface side surface of the upper substrate 2, and moves into the display space S.
  • the work space K is partitioned (details will be described later).
  • a water repellent film 12 is provided on the surface of the upper substrate 2 on the non-display surface side so as to cover the color filter layer 11, the rail member 21a, and the flat plate member 21b.
  • the lower substrate 3 is made of a transparent glass material such as a transparent glass material such as a non-alkali glass substrate or a transparent synthetic resin such as an acrylic resin, like the upper substrate 2.
  • the reference electrode 5 and the scan electrode 6 are provided on the surface of the lower substrate 3 on the display surface side, and a dielectric layer 13 is formed so as to cover the reference electrode 5 and the scan electrode 6. Is formed.
  • a rib 14 having ribs 14a and 14b provided in parallel to the Y direction and the X direction is provided on the surface of the dielectric layer 13 on the display surface side.
  • the ribs 14 are provided so as to hermetically divide the inside of the display space S in accordance with the pixel area P, and are configured in a frame shape for each pixel area P as illustrated in FIG.
  • the signal electrode 4 is formed so as to penetrate the rib 14 a on the surface of the dielectric layer 13. Further, in the lower substrate 3, a water repellent film 15 is provided so as to cover the signal electrode 4, the dielectric layer 13, and the ribs 14a and 14b.
  • a backlight 18 that emits white illumination light is integrally assembled on the back side (non-display surface side) of the lower substrate 3, and the transmissive display element 10 is configured.
  • the backlight 18 uses a light source such as a cold cathode fluorescent tube or an LED.
  • the color filter layer 11 includes red (R), green (G), and blue (B) color filter portions 11r, 11g, and 11b, and a black matrix portion 11s as a light shielding film.
  • the pixels of each color of RGB are configured. That is, in the color filter layer 11, as illustrated in FIG. 6, RGB color filter portions 11 r, 11 g, and 11 b are sequentially provided along the X direction, and each of the four color filter portions 11 r, 11 g, and 11 b is Y A total of 12 pixels are arranged in the X direction and the Y direction, respectively, 3 pixels and 4 pixels.
  • any one of RGB color filter portions 11 r, 11 g, and 11 b is provided at a location corresponding to the effective display region P 1 of the pixel.
  • a black matrix portion 11s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 10, an ineffective display region P2 (non-opening portion) is set for the display space S by the black matrix portion (light-shielding film) 11s, and an opening portion (non-opening portion) formed in the black matrix portion 11s ( That is, the effective display area P1 is set by any one of the color filter portions 11r, 11g, and 11b).
  • the area of the color filter portions 11r, 11g, and 11b is selected to be the same or slightly smaller than the area of the effective display area P1.
  • the area of the black matrix portion 11s is selected to be the same or slightly larger than the area of the ineffective display area P2.
  • FIG. 6 in order to clarify the boundary portion between adjacent pixels, the boundary line between two black matrix portions 11 s corresponding to the adjacent pixels is indicated by a dotted line. Then, there is no boundary line between the black matrix portions 11s.
  • the display space S is divided in units of pixel areas P by the ribs 14 as the partition walls. That is, in the display element 10, the display space S of each pixel is partitioned by two ribs 14a facing each other and two ribs 14b facing each other as illustrated in FIG. A frame-like rib 14 is provided for each. Further, in the display element 10, the ribs 14 a and 14 b are provided so that the tip portions thereof are in contact with the upper substrate 2, and the rib 14 partitions the inside of the display space S in an airtight manner according to the pixel region P. It is configured as follows. Further, for example, an epoxy resin resist material is used for the ribs 14a and 14b.
  • the water-repellent films 12 and 15 are made of a transparent synthetic resin, preferably, for example, a fluorine resin that becomes a hydrophilic layer with respect to the polar liquid 16 when a voltage is applied. Thereby, in the display element 10, the wettability (contact angle) between the polar liquid 16 on each surface side on the display space S side of the upper substrate 2 and the lower substrate 3 can be greatly changed. The moving speed of 16 can be increased.
  • the dielectric layer 13 is made of a transparent dielectric film containing, for example, parylene, silicon nitride, hafnium oxide, zinc oxide, titanium dioxide, or aluminum oxide.
  • each of the water repellent films 12 and 15 is several tens of nm to several ⁇ m, and the specific thickness dimension of the dielectric layer 13 is several hundred nm. Further, the water repellent film 15 does not electrically insulate the signal electrode 4 from the polar liquid 16 and does not hinder the improvement of the response of the polar liquid 16.
  • a transparent electrode material such as indium oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (AZO, GZO, or IZO) is used.
  • ITO indium oxide
  • SnO 2 tin oxide
  • AZO zinc oxide
  • GZO GZO
  • IZO zinc oxide
  • the signal electrode 4 uses a linear wiring arranged so as to be parallel to the X direction.
  • the signal electrode 4 is made of a transparent electrode material such as ITO. Further, the signal electrode 4 is disposed on the dielectric layer 13 so as to pass through the rib 14 a so as to pass through substantially the center of each pixel region P in the Y direction. It is configured to be in electrical contact with the polar liquid 16. Thereby, in the display element 10, the response of the polar liquid 16 during the display operation is improved.
  • the guide portion 21 is provided on the non-display surface side of the upper substrate 2.
  • the guide portion 21 includes a plurality of, for example, two rail members 21 a provided at a predetermined interval on the surface of the upper substrate 2 on the non-display surface side, and two so as to face the upper substrate 2.
  • a flat plate member 21b that is connected to each tip portion of the rail member 21a and is formed in a planar shape so as to come into contact with the polar liquid 16 inside the display space S.
  • the guide portion 21 is provided with one end portion side and the other end portion side on the effective display region P1 side and the non-effective display region P2 side, respectively, and oil 17 according to the movement of the polar liquid 16. Is guided to the effective display area P1 side or the non-effective display area P2 side.
  • the movement space K for moving the oil (insulating fluid) 17 in each pixel region P is the display space S. Is formed on the upper substrate 2 side of the space in which the polar liquid 16 moves.
  • Each rail member 21a protrudes from the upper substrate 2 side to the inside of the display space S, and connects the effective display area P1 and the ineffective display area P2 on the upper substrate 2 side. It is provided in a straight line. Further, the flat plate member 21b is connected to the tip portions of the two rail members 21a so that a tunnel-like movement space K is formed between the two rail members 21a and the upper substrate 2. ing. For example, an epoxy resin resist material is used for each rail member 21a and flat plate member 21b. Further, since each rail member 21a and the flat plate member 21b are not provided on the lower substrate 3 side where the signal electrode 4, the reference electrode 5, the scanning electrode 6, and the dielectric layer 13 are installed, each rail member 21a and the flat plate member 21b are provided. The member 21b is configured not to inhibit the movement of the polar liquid 16 due to the electrowetting phenomenon.
  • the dimensions h2 and h3 between the rib 14b and the rail member 21a and the flat plate member 21b adjacent to the rib 14b are larger than the dimension H of the polar liquid 16 in the direction perpendicular to the upper substrate 2 and the lower substrate 3, respectively.
  • Small dimensions are set. Specifically, in the present embodiment, the dimensions h2 and h3 are each set to 10 ⁇ m, for example, and the dimension H is set to 40 ⁇ m, for example.
  • the dimension h1 between the two adjacent rail members 21a is set to 50 ⁇ m, for example, but the gap between the two rail members 21a is covered with the flat plate member 21b, so that the polar liquid 16 does not enter.
  • the polar liquid 16 is applied between the rib 14a and the rail member 21a and the flat plate member 21b adjacent to the rib 14a, and between the rib 14b and the rib 14b. It can prevent entering between each between the member 21a and the flat plate member 21b. As a result, in this embodiment, it is possible to prevent the operation of the polar liquid 16 from becoming unstable.
  • the pixel region P is hermetically separated by the ribs 14 and the moving space K is provided by installing the guide portion 21 to smoothly move the oil (insulating fluid) 17.
  • the display element 10 according to the present embodiment is not limited to this, and the upper substrate 2 and the lower substrate 3 (at least one side of the first and second substrates) are provided in accordance with the plurality of pixel regions P. Any rib that can easily prevent the polar liquid 16 from being coalesced between the adjacent pixel regions P by providing ribs that divide the interior of the display space S may be used.
  • ribs 14a and 14b are provided on the lower substrate 3 side so that a gap is generated between the upper substrate 2 and the non-display surface side, or gaps are generated at the four corners of the pixel region P.
  • the configuration may be such that the ends of the ribs 14a and 14b are provided on the lower substrate 3 side in a state of being separated from each other. When such a gap is provided, the installation of the moving space K for the insulating fluid can be omitted (see the third embodiment described later).
  • FIG. 10 is a diagram for explaining an operation example of the image display device.
  • 11 (a) to 11 (c) are waveform diagrams showing specific examples of reset signals supplied to the signal electrode, reference electrode, and scan electrode shown in FIG. 1, respectively.
  • FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied.
  • FIG. 12 is a diagram for explaining a specific operation example of the display control unit and the maximum application time acquisition unit illustrated in FIG. 3.
  • FIGS. 13A to 13D are diagrams for explaining a specific voltage application operation of the signal driver.
  • the reference driver 8 and the scanning driver 9 select the reference voltage Vr and the scanning voltage Vs as the reference voltage Vr and the scanning voltage Vs, respectively, for the reference electrode 5 and the scanning electrode 6 in a predetermined scanning direction from the left side to the right side in FIG. Apply voltage sequentially. Specifically, the reference driver 8 and the scan driver 9 sequentially apply an H voltage (first voltage) and an L voltage (second voltage) as selection voltages to the reference electrode 5 and the scan electrode 6, respectively. The scanning operation for selecting the line is performed. In this selection line, the signal driver 7 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 4 according to the image input signal from the outside.
  • the polar liquid 16 is moved to the effective display area P1 side or the non-effective display area P2 side, and the display color on the display surface side is changed.
  • the oil 17 passes through the inside of the movement space K in accordance with the movement of the polar liquid 16, and the ineffective display area P2 side or the effective display area on the side opposite to the movement destination of the polar liquid 16. Moved to the P1 side.
  • the reference driver 8 and the scan driver 9 apply the non-selection voltage as the reference voltage Vr and the scan voltage Vs to the non-selected lines, that is, all the remaining reference electrodes 5 and scan electrodes 6, respectively.
  • the reference driver 8 and the scan driver 9 apply an intermediate voltage (Middle) that is, for example, an intermediate voltage between the H voltage and the L voltage to the remaining reference electrodes 5 and scan electrodes 6 as non-selection voltages. Voltage, hereinafter referred to as “M voltage”).
  • H voltage, L voltage, and M voltage are abbreviated as “H”, “L”, and “M”, respectively (the same applies to Table 2 described later).
  • Specific values of the H voltage, the L voltage, and the M voltage are, for example, + 16V, 0V, and + 8V, respectively.
  • ⁇ Operation on selected line> In the selection line, for example, when an H voltage is applied to the signal electrode 4, an H voltage is applied between the reference electrode 5 and the signal electrode 4. There is no potential difference with the electrode 4. On the other hand, since the L voltage is applied to the scan electrode 6 between the signal electrode 4 and the scan electrode 6, a potential difference is generated. Therefore, the polar liquid 16 moves in the display space S toward the scanning electrode 6 where a potential difference is generated with respect to the signal electrode 4. As a result, as illustrated in FIG. 9B, the polar liquid 16 is moved to the ineffective display area P ⁇ b> 2 side, and the oil 17 is moved to the reference electrode 5 side to illuminate light from the backlight 18. Is allowed to reach the color filter portion 11r.
  • the display color on the display surface side is in a red display (CF color display) state by the color filter unit 11r.
  • CF color display red display
  • the polar liquid 16 moves to the ineffective display area P ⁇ b> 2 side and CF colored display is performed, from the RGB pixels.
  • the red light, green light, and blue light are mixed with white light, and white display is performed.
  • the polar liquid 16 is maintained in a stationary state at the current position and is maintained in the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases.
  • the polar liquid 16 does not move but remains stationary and the display color on the display surface side. Does not change.
  • the polar liquid 16 can be moved according to the voltage applied to the signal electrode 4 as described above, and the display color on the display surface side can be changed.
  • the display color at each pixel on the selected line is applied to the signal electrode 4 corresponding to each pixel, for example, as shown in FIG. 10 by the combination of applied voltages shown in Table 1.
  • the color filter portions 11r, 11g, and 11b are CF colored (red, green, or blue) or the non-CF colored (black) by the polar liquid 16.
  • the reference driver 8 and the scanning driver 9 perform the scanning operation of the selection lines of the reference electrode 5 and the scanning electrode 6 from the left to the right in FIG. 10, for example, The display color also changes sequentially from left to right in FIG.
  • the image display apparatus 1 can perform various information including moving images based on an external image input signal. Can be displayed.
  • combinations of voltages applied to the reference electrode 5, the scan electrode 6, and the signal electrode 4 are not limited to Table 1 but may be those shown in Table 2.
  • the reference driver 8 and the scan driver 9 are, for example, in a predetermined scanning direction from the left side to the right side in the figure, with respect to the reference electrode 5 and the scan electrode 6 as L voltage (second voltage) and H as selection voltages.
  • a scanning operation is performed in which a voltage (first voltage) is sequentially applied to select lines.
  • the signal driver 7 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 4 according to the image input signal from the outside.
  • the reference driver 8 and the scan driver 9 apply the M voltage as the non-selection voltage to the non-selected lines, that is, all the remaining reference electrodes 5 and scan electrodes 6.
  • the polar liquid 16 is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases.
  • the polar liquid 16 can be moved according to the voltage applied to the signal electrode 4 as described above, and the display color on the display surface side can be changed.
  • the applied voltage to the signal electrode 4 is not limited to the binary value of the H voltage or the L voltage.
  • the voltage between the H voltage and the L voltage can be changed according to information displayed on the display surface side.
  • the image display device 1 can perform gradation display by controlling the signal voltage Vd. Thereby, the display element 10 excellent in display performance can be configured.
  • the reset signal instruction unit 53 performs the signal driver 7 before performing the scanning operation in the next frame after the information display for one frame is performed as described above.
  • the reference driver 8 and the scan driver 9 are instructed to supply the predetermined reset signal (voltage application).
  • the reset signal instruction unit 53 is, for example, normally white, that is, each polar liquid 16 in all the pixel regions P moves to the ineffective display region P2 side as its initial position. Thus, a reset signal is instructed.
  • the signal driver 7 applies, for example, an H voltage to all the signal electrodes 4 in a predetermined reset time from the time point Tr1 to the time point Tr2, as shown in FIG.
  • the reference driver 8 applies, for example, an H voltage to all the reference electrodes 5 at a predetermined reset time, as shown in FIG.
  • the scan driver 9 applies, for example, an L voltage to all the scan electrodes 6 at a predetermined reset time as shown in FIG.
  • the polar liquids 16 in all the pixel regions P are set on the same side as the scanning direction as indicated by the arrows in the figure.
  • the ineffective display area (scanning electrode 6) moves to the initial position (position at the rightmost end in the display space S) determined on the P2 side.
  • the predetermined reset time is the time required to move the polar liquid 16 to the maximum, that is, the state where the polar liquid 16 is located at the leftmost end in the display space S of the pixel region P (FIG. 9). (See (a)) and the state in which the polar liquid 16 is located at the rightmost end in the display space S of the pixel region P (see FIG. 9B) from one state to the other state. It is defined by the voltage application time required to move to.
  • an L voltage, an L voltage, and an H voltage are applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively. 16 may be moved to the initial position on the non-effective display area P2 side.
  • the hatched portion on the lower left diagonal indicates non-CF color display, that is, black display (including gradation display other than complete black display) is performed, and the non-hatched portion is CF colored.
  • display that is, white display in normally white
  • complete red display is performed.
  • the gradation value for each pixel region P included in the image input signal is displayed as a minimum value and a maximum value (for example, 256 gradation display). In this case, the gradation value is “0” and “255”). Further, in FIG. 12, it is assumed that the scanning operation for each line is performed from the upper side to the lower side of the drawing.
  • the red color is completely red in all the pixel areas P from the left end pixel area LE to the right end pixel area RE. Display is performed. Further, in all the pixel regions P included in these lines, it is not necessary to move the polar liquid 16 from the initial position by the reset signal. That is, the scanning operation is not performed on each of the plurality of lines included in the region A and the region C.
  • the scanning operation is not performed, and the selection voltage is not applied from the reference driver 8 and the scanning driver 9 to the corresponding reference electrode 5 and scanning electrode 6, respectively.
  • the maximum application time acquisition unit 71 stores all the data (tone values) of the image input signals in all the pixel regions P included in the line a stored in the line memory 71a as “255”. If it is discriminated that the value is, it is discriminated that it is not necessary to apply voltage to the signal electrode 4 in all the pixel regions P included in the line a. Then, the maximum application time acquisition unit 71 acquires that the maximum application time in the line a is “0” and notifies the scanning time determination unit 54 of it.
  • the scanning time determination unit 54 stores data (tone values) of image input signals in all the pixel regions P included in the line a stored in the frame buffer 52 and the maximum application time from the maximum application time acquisition unit 71.
  • the scanning time in the scanning operation for line a is determined using the application time. That is, the scanning time determination unit 54 determines that all the image input signal data (gradation values) in all the pixel regions P included in the line a are “255” and the maximum application time acquisition unit 71. Based on the fact that the value of the maximum application time of “0” is “0”, it is determined that it is not necessary to move the polar liquid 16 from the initial position in all the pixel regions P included in the line a.
  • the scanning time of the scanning operation on the line a is set to “0”. Then, the scanning time determination unit 54 notifies the image processing unit 51 of the determined scanning time of the line a.
  • the instruction signals after correction are output to the corresponding signal driver 7, reference driver 8, and scan driver 9. That is, in line a, since the value of the scanning time determined by the scanning time determination unit 54 is “0”, the image processing unit 51 does not perform the scanning operation in line a, and the reference driver 8
  • the scan driver 9 instructs the corresponding reference electrode 5 and scan electrode 6 to maintain the application of the non-selection voltage without applying the selection voltage. Further, the image processing unit 51 instructs the signal driver 4 not to apply a voltage to the signal electrode 4.
  • the signal driver 7, the reference driver 8, and the scanning driver 9 operate only the shift registers 72, 81, and 91, respectively, and perform an operation of selecting the next line without performing the scanning operation. .
  • the signal driver 7, the reference driver 8, and the scanning driver 9 operate only the shift registers 72, 81, and 91, respectively, and perform an operation of selecting the next line without performing the scanning operation.
  • pixel regions P that perform complete red display and black display are mixed in each of the plurality of lines included in the region B.
  • the pixel region P from the pixel region LE at the left end of the display surface to the pixel region adjacent to the left of the pixel region D, and the pixel region F from the pixel region right adjacent to the pixel region E Complete red display is performed in the pixel region P up to the pixel region P on the left side and the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface.
  • black display is performed in the pixel region from the pixel region D to the pixel region E and the pixel region from the pixel region F to the pixel region G.
  • the data (tone value) of the image input signal is the smallest in the line b, for example, a value of “50”, that is, a floor relatively close to perfect black display. It is assumed that the key is displayed.
  • the image input signal data is, for example, displayed with a gradation value of “150”.
  • gradation display with a value of “120” is performed.
  • the difference value and the absolute maximum value of the difference value “255” that is, the gradation value “0” corresponding to the initial position and the position farthest from the initial position
  • the product value TW1 is acquired as the maximum application time in the line b.
  • the maximum application time acquisition unit 71 notifies the scanning time determination unit 54 of the acquired maximum application time.
  • the scanning time determination unit 54 stores data (tone values) of image input signals in all the pixel regions P included in the line b stored in the frame buffer 52 and the maximum from the maximum application time acquisition unit 71.
  • the scanning time in the scanning operation of the line b is determined using the application time.
  • the scanning time determination unit 54 determines that the image input signal data in the pixel region P included in the line b are not all the same value, and the scanning time determination unit 54 determines the data of the image input signal.
  • the voltage application time for moving the polar liquid 16 for each pixel region P in the scanning operation of the line b is determined using the maximum application time from the maximum application time acquisition unit 71.
  • the scanning time determination unit 54 determines the maximum application time (that is, TW1) from the maximum application time acquisition unit 71 as the voltage application time in the pixel regions E and G, and uses this voltage application time.
  • the scanning time in the scanning operation for line b is determined.
  • the scanning time determination unit 54 uses the determined scanning time as a reference, the pixel region P from the pixel region D to the pixel region on the left side of the pixel region E, and the pixel region on the left side of the pixel region G from the pixel region F.
  • the voltage application time for moving the polar liquid 16 in the pixel region P up to is determined.
  • the scanning time determination unit 54 determines the gradation value in the pixel region P from the pixel region D to the pixel region adjacent to the left of the pixel region E from the value of the gradation value corresponding to the initial position (that is, “255”). Is obtained from the pixel region D to the pixel region using the difference value and the scanning time (TW1) of the line b. A voltage application time for moving the polar liquid 16 in the pixel region P up to the pixel region on the left side of E is determined. Specifically, the scanning time determination unit 54 sets TW1 ⁇ 105 ⁇ as the voltage application time for moving the polar liquid 16 in each pixel region P from the pixel region D to the pixel region adjacent to the left of the pixel region E. It is determined from the formula 205.
  • the scanning time determination unit 54 determines the gradation value in the pixel region P from the pixel region F to the pixel region on the left side of the pixel region G from the value of the gradation value corresponding to the initial position (that is, “255”).
  • a voltage application time for moving the polar liquid 16 in the pixel region P up to the pixel region on the left side of G is determined.
  • the scanning time determination unit 54 sets TW1 ⁇ 135 ⁇ 205 as a voltage application time for moving the polar liquid 16 in the pixel region P from the pixel region F to the pixel region adjacent to the left of the pixel region G. Determined from the formula of
  • the scanning time determination unit 54 includes a pixel region P from the pixel region LE at the left end of the display surface to the pixel region on the left side of the pixel region D, and a pixel region on the right side of the pixel region E to the left of the pixel region F.
  • all the data (tone values) of the image input signal are “ By determining that the value is 255 ′′, it is determined that it is not necessary to move the polar liquid 16 from the initial position in each of the pixel regions P.
  • the scanning time determination unit 54 calculates the difference between the gradation value value (that is, “255”) corresponding to the initial position and the gradation value value (that is, “255”) in these pixel regions P.
  • the scanning time determination unit 54 includes a pixel area P from the pixel area LE at the left end of the display surface to the pixel area on the left side of the pixel area D, and a pixel area from the pixel area on the right side of the pixel area E to the pixel area.
  • the time is determined from the formula of TW1 ⁇ 0 ⁇ 205. That is, the scanning time determination unit 54 does not apply a voltage for moving the polar liquid 16 in each of the pixel regions P, and the M voltage is applied during the scanning time (TW1) of the line b as described above. Apply.
  • the scanning time determination unit 54 notifies the image processing unit 51 of the determined voltage application time. Thereafter, the image processing unit 51 instructs the signal driver 7 by including the voltage application time (TW1) during which the H voltage is applied in the pixel regions E and G in the instruction signal.
  • TW1 the voltage application time
  • the signal driver 7 applies the signal driver 7 to the signal electrodes 4 corresponding to the pixel regions E and G from the time point T1 in the pixel regions E and G, respectively.
  • the H liquid is applied to move the polar liquid 16 until time T3. Also, in the figure, from time T1 to time T2, the time required to move the polar liquid 16 to the maximum from the initial position (that is, complete red display (see FIG. 9B)) to complete black display (FIG. 9). 9 (see (a))).
  • TW1-H voltage application time TW1 ⁇ 105 ⁇ 205
  • an H voltage is applied from the time T1 to the time T4 during the time from the time T1 to the time T3.
  • M voltage is applied from time T4 to time T3, and the polar liquid 16 is stopped at the moved position.
  • the polar liquid 16 is moved by applying an H voltage from the time point T1 to the time point T5 to the signal electrode 4 corresponding to each pixel region P up to the pixel region on the left side of G, the time point T5 From time to time T3, the M voltage is applied, and the polar liquid 16 is stopped at the position where it has moved.
  • the image processing unit 51 provides the signal driver 7 with a pixel area P from a pixel area LE at the left end of the display surface to a pixel area to the left of the pixel area D, and a pixel area to the right of the pixel area E.
  • a pixel area P from the pixel region F to the pixel region F on the left side of the pixel region F and the time for applying the M voltage in the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface. Instructions are included in the instruction signal.
  • the signal driver 7 causes the pixel region P from the pixel region LE at the left end portion of the display surface to the pixel region adjacent to the left of the pixel region D and the pixel region E to the right as shown in FIG.
  • the signal driver 7 In the pixel region P from the pixel region to the pixel region P on the left side of the pixel region F and the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface, the signal driver 7 , Each pixel region P from the pixel region LE at the left end of the display surface to the pixel region to the left of the pixel region D, and from the pixel region to the right of the pixel region E to the pixel region to the left of the pixel region F.
  • the H voltage that moves the polar liquid 16 is applied first, the time during which the M voltage is applied, and the H voltage.
  • the application time for applying the voltage may be divided into a plurality of times, and the time for applying the M voltage and the H voltage may be alternately provided within a predetermined scanning time.
  • the reset signal instruction unit 53 includes the signal driver (signal voltage application unit) 7, the scan driver (scan voltage application unit) 9, and the reference driver (reference voltage application unit). ) Before the scanning operation is performed on the signal electrode 4, the scanning electrode 6, and the reference electrode 5 from 8, the polar liquids 16 in all the pixel regions P are initially set to the ineffective display region P 2 side. It is instructed to supply a predetermined reset signal so as to move to the position.
  • each polar liquid 16 in all the pixel areas P can be moved to the said initial position, and in the case of the next display operation
  • the maximum application time acquisition unit 71 acquires the maximum application time for each scanning operation using the image input signal from the outside and the initial position, and the scanning time determination unit 54 The scanning time in the corresponding scanning operation is determined using the external image input signal and the maximum application time from the maximum application time acquisition unit 71. Furthermore, the display control unit 50 generates each instruction signal to the signal driver 7, the scan driver 9, and the reference driver 8 using the image input signal from the outside and the scan time from the scan time determination unit 54. A scanning operation corresponding to the scanning time is performed.
  • the display element 10 that can perform a display operation at high speed while preventing deterioration of display quality even when performing gradation display.
  • the display element 10 that can perform display operation at high speed while preventing deterioration in display quality is used for the display unit even when gradation display is performed. Therefore, it is possible to easily configure a high-performance image display device (electrical device) 1 including a display unit that can change display information at high speed and has excellent display quality.
  • the reset signal instruction unit 53 selects the maximum voltage or the minimum voltage of the signal voltage Vd as the voltage of the reset signal for the signal electrode 4, and the voltage of the reset signal for the reference electrode 5. As described above, one of the selection voltage and the non-selection voltage is selected, and the other of the selection voltage and the non-selection voltage is selected as the voltage of the reset signal for the scan electrode 6. Thereby, in the display element 10 of the present embodiment, the same voltage can be used as the voltage applied during the scanning operation and the voltage of the reset signal, so that each of the signal driver 7, the reference driver 8, and the scanning driver 9 can be used. The configuration can be simplified.
  • the scanning time determination unit 54 uses the image input signal from the outside and the maximum application time from the maximum application time acquisition unit 71 for each pixel region P in the corresponding scanning operation.
  • the voltage application time for moving the polar liquid 16 is determined.
  • the maximum application time acquisition unit 71 uses a line memory 71a capable of storing image input signal data for at least one scanning operation. An accurate maximum application time can be obtained reliably and easily.
  • FIG. 14 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention.
  • FIG. 15 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 16 is a block diagram showing a specific configuration of the signal driver shown in FIG.
  • the main difference between the present embodiment and the first embodiment is that a maximum application time acquisition unit is provided in the display control unit.
  • symbol is attached
  • the maximum application time acquisition unit 55 is provided inside the display control unit 50 '.
  • the frame buffer 52 is configured to be able to store image input signal data for at least one frame, as in the first embodiment, and at least one scan. It also serves as a memory that can store image input signal data for operation.
  • the maximum application time acquisition unit 55 acquires the maximum application time for each scanning operation, as in the first embodiment. Specifically, the maximum application time acquisition unit 55 is defined by image input signal data (gradation value) for one scanning operation stored in the frame buffer 52 as a memory and the reset signal. The maximum application time for each scanning operation is obtained using the initial position. Then, the maximum application time acquisition unit 55 outputs the obtained maximum application time to the scanning time determination unit 56.
  • image input signal data gradient value
  • the scanning time determination unit 56 determines the scanning time in the corresponding scanning operation using the external image input signal and the maximum application time from the maximum application time acquisition unit 55. To do. Further, the scanning time determination unit 54 uses the image input signal and the maximum application time to apply a voltage application time for moving the polar liquid 16 for each pixel region P in the corresponding scanning operation (that is, for each pixel region P). The voltage application time of the signal voltage to the corresponding signal electrode 4) is determined.
  • the signal driver 7 ' is configured by using a general-purpose driver, and the signal driver 7' is provided with a shift register 74 and a level shifter 75 as shown in FIG.
  • the shift register 74 supplies the corresponding signal voltage Vd from the level shifter 75 to the plurality of signal electrodes 4 according to the scanning operation. More specifically, the shift register 74 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51.
  • the shift register 74 receives the input start pulse and Based on the clock signal, the level shifter 75 is operated in units of scanning operation for each line.
  • a plurality of (all) signal electrodes 4 are connected to the level shifter 75, and in response to an operation instruction from the shift register 74, an instruction signal from the image processing unit 51 is sent to all the signal electrodes 4.
  • the corresponding signal voltage Vd is applied to the corresponding signal electrodes 4 all at once.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the maximum application time acquisition unit 55 is provided in the display control unit 50 ′.
  • a general-purpose voltage application unit (driver) is used for the signal driver 7 ′.
  • FIG. 17 is an enlarged plan view showing a main configuration of the upper substrate side when viewed from the display surface side in the display element according to the third embodiment of the present invention.
  • FIG. 18 is an enlarged plan view showing the main configuration of the lower substrate side when viewed from the non-display surface side in the display element according to the third embodiment of the present invention.
  • FIG. 19A and FIG. 19B are cross-sectional views showing the main configuration of the display element according to the third embodiment of the present invention during non-CF color display and CF color display, respectively.
  • the main difference between the present embodiment and the second embodiment is that a display element in which the pixel region is not hermetically separated by ribs is supplied with a reset signal so that it is opposite to the scanning direction.
  • the polar liquid is moved to the initial position set to.
  • symbol is attached
  • the signal electrode 4 is provided on the upper substrate 2 side.
  • the pixel region P is divided into ribs 24 as partition walls in a state where gaps are provided at the four corners.
  • the rib 24 has ribs 24a and 24b provided so as to be parallel to the Y direction and the X direction, respectively.
  • the display space S of each pixel is partitioned by two ribs 24 a facing each other and two ribs 24 b facing each other.
  • the polar liquid 16 is prevented from flowing into the display space S of the adjacent pixel region P by the ribs 24a and 24b.
  • an epoxy resin resist material is used for the ribs 24a and 24b.
  • the dielectric layer 16 is prevented from flowing in and out of the polar liquid 16 between adjacent pixels.
  • the protruding height from 13 is determined.
  • the reset signal instruction unit 53 causes, for example, normally black, that is, each polar liquid 16 in all the pixel regions P to move to the effective display region P1 side as its initial position.
  • a reset signal is instructed.
  • the reset signal instructing unit 53 is an initial stage determined on the effective display region P1 side where the polar liquids 16 in all the pixel regions P are set on the side opposite to the scanning direction.
  • a predetermined reset signal is supplied from the signal driver 7, the scan driver 9, and the reference driver 8 to the signal electrode 4, the scan electrode 6, and the reference electrode 5, respectively, so as to move to the position.
  • FIG. 20A to 20C are waveform diagrams showing specific examples of reset signals respectively supplied to the signal electrode, the reference electrode, and the scan electrode shown in FIG. 19, and FIG. FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied.
  • the signal driver 7 performs the predetermined reset time from the time point Tr1 to the time point Tr2 with respect to all the signal electrodes 4 as shown in FIG.
  • an H voltage is applied.
  • the reference driver 8 applies, for example, an L voltage to all the reference electrodes 5 at a predetermined reset time as shown in FIG.
  • the scan driver 9 applies, for example, an H voltage to all the scan electrodes 6 at a predetermined reset time as shown in FIG. Accordingly, in the display element 10, as shown in FIG. 20D, the polar liquids 16 in all the pixel regions P are set on the side opposite to the scanning direction as shown by the arrows in the figure.
  • the effective display area (reference electrode 5) moves to the initial position (position at the leftmost end in the display space S) determined on the P1 side.
  • an L voltage, an H voltage, and an L voltage are applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively, and each polar liquid in all the pixel regions P is applied. 16 may be moved to the initial position on the effective display area P1 side.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment.
  • the reset signal instruction unit 53 moves the polar liquids 16 in all the pixel regions P to the effective display region P1 side set on the opposite side to the scanning direction before performing the scanning operation.
  • a predetermined reset signal is supplied from the signal driver 7, the scan driver 9, and the reference driver 8 to the signal electrode 4, the scan electrode 6, and the reference electrode 5, respectively, so as to move to a predetermined initial position.
  • the initial position is set on the side opposite to the scanning direction, it is possible to reliably prevent the display quality from being deteriorated even when the pixel region P is not hermetically partitioned.
  • FIGS. 21A to 21C are diagrams for explaining an operation example in the pixel region of the comparative example.
  • FIG. 21B three pixel regions P surrounded by dotted lines in FIG. 21B are set as scanning operation targets (selection lines), and the signal electrode 4, the reference electrode 5, and the scanning electrode. 6, when the L voltage, the L voltage, and the H voltage are respectively applied, the polar liquids 16 in these pixel regions P are on the initial position side as indicated by the arrows in FIG. It is maintained on the scanning electrode 6 side.
  • the oil 17 is inside the pixel region P (non-selected line) adjacent in the scanning direction as indicated by an oblique arrow in FIG. Get in.
  • the M voltage is applied to the reference electrode 5 and the scan electrode 6, but the polar liquid 16 is caused by the oil 17 that has entered, as indicated by the arrows in the figure.
  • a very small amount moves from the initial position to the reference electrode 5 side.
  • each pixel region P in each pixel region P is supplied.
  • the polar liquid 16 is moved to the initial position determined on the effective display area P1 side set on the opposite side to the scanning direction.
  • the polar liquid 16 can be prevented from moving unnecessarily in the pixel region P of the non-selected line after the scanning operation. In the display operation, the polar liquid 16 can be moved to a desired position with high accuracy.
  • a predetermined reset signal is used to move to an initial position determined on the effective display region P1 side that is set on the side opposite to the scanning direction. May be.
  • FIG. 22 is a plan view for explaining a display element and an image display apparatus according to the fourth embodiment of the present invention.
  • FIG. 23 is a block diagram showing a specific configuration of the display control unit shown in FIG.
  • FIG. 24 is a block diagram showing a specific configuration of the signal driver shown in FIG.
  • FIG. 25 is a block diagram showing a specific configuration of the reference driver shown in FIG.
  • FIG. 26 is a block diagram showing a specific configuration of the scan driver shown in FIG.
  • the main difference between the present embodiment and the third embodiment is that scanning that determines whether or not to perform a scanning operation in the display control unit based on the scanning time from the scanning time determination unit. This is the point that an operation determining unit is provided.
  • symbol is attached
  • a scanning operation determination unit 57 is provided inside the display control unit 50 ′′. It is configured to determine whether or not to perform a scanning operation based on the scanning time from the time determining unit 56. Specifically, the scanning operation determining unit 57 scans from the scanning time determining unit 56. Using the time, it is determined whether or not the scanning operation is performed, and the address of the line determined to perform the scanning operation is acquired.
  • the scanning operation determination unit 57 notifies the image processing unit 51 of the acquired address.
  • the image processing unit 51 performs scanning determined by the scanning time determination unit 56 for each instruction signal to the signal driver 7 ′′, the reference driver 8 ′′, and the scanning driver 9 ′′ that has been generated based on an image input signal from the outside.
  • the image processing unit 51 includes the address of the line determined to perform the scanning operation from the scanning operation determining unit 57 in each instruction signal described above, and the corresponding signal driver 7 ′′, Output to the reference driver 8 "and the scanning driver 9".
  • the signal driver 7 ′′ is configured by using a general-purpose driver, and the signal driver 7 ′′ is provided with a decoder 76 and a level shifter 77 as shown in FIG.
  • the decoder 76 extracts an address included in the instruction signal from the image processing unit 51 and determines a line on which a scanning operation is performed. Then, the decoder 76 instructs the level shifter 77 to apply the signal voltage Vd corresponding to the instruction signal from the image processing unit 51 to the corresponding signal electrode 4 for the determined line.
  • a plurality of (all) signal electrodes 4 are connected to the level shifter 77, and in accordance with an operation instruction from the decoder 76, an image processing unit is provided for all the signal electrodes 4 for each line in which a scanning operation is performed.
  • a signal voltage Vd corresponding to the instruction signal from 51 is applied.
  • the reference driver 8 ′′ is configured using a general-purpose driver, and the reference driver 8 ′′ is provided with a decoder 83 and a level shifter 84 as shown in FIG.
  • the decoder 83 extracts an address included in the instruction signal from the image processing unit 51 and discriminates a line on which a scanning operation is performed. Then, the decoder 83 instructs the level shifter 84 to apply the selection voltage as the reference voltage Vr to the corresponding reference electrode 5 so that the scanning operation is performed on the determined line.
  • a plurality of (all) reference electrodes 5 are connected to the level shifter 84, and the reference voltage Vr (selection) is applied only to the reference electrodes 5 included in the scanning line according to the operation instruction from the decoder 83. Voltage).
  • the scan driver 9 ′′ is configured by using a general-purpose driver, and the scan driver 9 ′′ is provided with a decoder 93 and a level shifter 94 as shown in FIG.
  • the decoder 93 extracts an address included in the instruction signal from the image processing unit 51 and determines a line on which a scanning operation is performed. Then, the decoder 93 instructs the level shifter 94 to apply the selection voltage as the scanning voltage Vs to the corresponding scanning electrode 6 so that the scanning operation is performed on the determined line.
  • a plurality of (all) scanning electrodes 6 are connected to the level shifter 94, and the scanning voltage Vs (selection) is applied only to the scanning electrodes 6 included in the line where the scanning operation is performed in accordance with the operation instruction from the decoder 93. Voltage).
  • the present embodiment can achieve the same operations and effects as the third embodiment.
  • the scanning operation determination unit 57 is provided in the display control unit 50 ′′, and the signal driver 7 ′′, the reference driver 8 ′′, and the scanning driver 9 ′′ correspond to the determination result of the scanning operation determination unit 57.
  • the voltage is applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively.
  • the present invention is an electric device provided with a display unit that displays information including characters and images.
  • the present invention is not limited in any way.
  • a portable information terminal such as a PDA such as an electronic notebook, a display device attached to a personal computer, a television, or the like, or an electronic paper or other electric device including various display units. it can.
  • the display element of the present invention is not limited to this. It is not limited as long as it is an electric field induction type display element that can change the display color on the display surface side by operating a polar liquid inside the display space using an external electric field. Instead, the present invention can be applied to other types of electric field induction display elements such as an electroosmosis method, an electrophoresis method, and a dielectrophoresis method.
  • the electrowetting type display element when configured as in the above embodiments, the polar liquid can be moved at a high speed with a low driving voltage. Further, in the electrowetting type display element, the display color is changed according to the movement of the polar liquid, and unlike a liquid crystal display device using a birefringent material such as a liquid crystal layer, it is used for information display. It is also preferable in that a high-luminance display element that is excellent in light utilization efficiency of light from the backlight and external light can be easily configured. Furthermore, since it is not necessary to provide a switching element for each pixel, it is also preferable in that a high-performance matrix driving display element having a simple structure can be configured at low cost.
  • a predetermined reset signal is applied so that each polar liquid in all the pixel regions moves to an initial position determined on the effective display region side or the non-effective display region side.
  • a reset signal indicating unit for instructing supply, a maximum application time acquiring unit for acquiring a maximum application time for each scanning operation using an external image input signal and an initial position, an external image input signal and a maximum A scanning time determination unit that determines the scanning time in the corresponding scanning operation using the maximum application time from the application time acquisition unit is provided, and the display control unit receives the image input signal from the outside and the scanning time determination unit from There is no limitation as long as each instruction signal to the signal voltage applying unit and the scanning voltage applying unit is generated using the scanning time and the scanning operation is performed according to the scanning time.
  • a plurality of signal electrodes and a plurality of scanning electrodes are provided in a matrix so as to cross each other, and for each of a plurality of pixel regions provided in units of intersections between the signal electrodes and the scanning electrodes, A switching element such as a thin film transistor (TFT) is installed.
  • TFT thin film transistor
  • the scanning electrode is connected to the gate of the thin film transistor, and the voltage is applied from the scanning voltage application unit.
  • the signal electrode is connected to the source of the thin film transistor and voltage is applied from the signal voltage application unit, and the drain of the thin film transistor is connected to the pixel electrode provided for each pixel region to supply the voltage from the signal electrode. In this way, the polar liquid is moved.
  • the display control is performed on the scanning operation determining unit that determines whether or not to perform the scanning operation based on the scanning time from the scanning time determining unit.
  • the provision in the unit is preferable in that the display operation can be performed at a higher speed while preventing deterioration in display quality even when gradation display is performed.
  • the display quality is improved even when the gradation display is performed without providing the switching element for each pixel region.
  • a matrix-driven display element capable of performing a display operation at a high speed while preventing a decrease in the above can be configured.
  • the present invention is not limited to this, and the reset signal instruction unit and the scanning operation time are provided.
  • Each determination unit may be provided outside the display control unit.
  • a transmissive display element including a backlight is configured.
  • the present invention is not limited to this, and a reflective type having a light reflecting portion such as a diffuse reflector.
  • the present invention can also be applied to a transflective display element in which the light reflecting portion and the backlight are used in combination.
  • polar liquids include zinc chloride, potassium hydroxide, sodium hydroxide, alkali metal hydroxide, zinc oxide, sodium chloride, lithium salt, phosphoric acid, alkali metal carbonate, oxygen ion conductivity.
  • polar liquids include zinc chloride, potassium hydroxide, sodium hydroxide, alkali metal hydroxide, zinc oxide, sodium chloride, lithium salt, phosphoric acid, alkali metal carbonate, oxygen ion conductivity.
  • Those containing an electrolyte such as ceramics can be used.
  • organic solvents such as alcohol, acetone, formamide, and ethylene glycol can also be used as the solvent.
  • the polar liquid of the present invention includes an ionic liquid containing a cation such as pyridine, alicyclic amine, or aliphatic amine, and an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
  • a cation such as pyridine, alicyclic amine, or aliphatic amine
  • an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
  • the polar liquid of the present invention includes a conductive liquid having conductivity and a liquid having a high dielectric constant having a specific dielectric constant of a predetermined value or higher, preferably 15 or higher.
  • the use of an aqueous solution in which a predetermined electrolyte is dissolved in a polar liquid is superior in handleability and can easily constitute a display element that is easy to manufacture. Is preferable.
  • the insulating fluid of the present invention includes a fluid having a relative dielectric constant of not more than a predetermined value, preferably not more than 5.
  • the use of nonpolar oil that is not compatible with polar liquid is more polar in the nonpolar oil than when air and polar liquid are used. It is preferable in that the liquid droplets can be moved more easily, the polar liquid can be moved at high speed, and the display color can be switched at high speed.
  • the signal electrode is provided on the upper substrate (first substrate) side or the lower substrate (second substrate) side and the reference electrode and the scanning electrode are provided on the lower substrate side has been described.
  • the scanning electrode and the reference electrode are connected to the first and second electrodes in a state in which the signal electrode is disposed inside the display space so as to be in contact with the polar liquid and electrically insulated from each other. What is necessary is just to provide in the one side of a 2nd board
  • the signal electrode may be provided in the middle portion of the first and second substrates, and the reference electrode and the scan electrode may be provided on the first substrate side.
  • the present invention is not limited to this, and the reference electrode and the scan electrode May be installed on the non-effective display area side and the effective display area side, respectively.
  • the present invention is not limited to this, and the insulating material It is also possible to use a reference electrode and a scan electrode embedded in the second substrate.
  • the second substrate can be used as a dielectric layer, and the installation of the dielectric layer can be omitted.
  • the signal electrode may be directly provided on the first and second substrates also serving as the dielectric layer, and the signal electrode may be installed inside the display space.
  • the present invention is installed so as to face the effective display area of the pixel among the reference electrode and the scan electrode. It is sufficient that only one of the electrodes is made of a transparent electrode material, and an opaque electrode material such as aluminum, silver, chromium, or other metal can be used for the other electrode that is not opposed to the effective display area. .
  • the shapes of the reference electrode and the scan electrode of the present invention are not limited to this.
  • the shape may be such that light loss such as a line shape or a net shape hardly occurs.
  • the signal electrode of the present invention is not limited to this, and wiring formed in other shapes such as a mesh wiring may also be used. Can be used.
  • the present invention is not limited to this.
  • the plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side.
  • a plurality of polar liquids colored in RGB, cyan (C), magenta (M), yellow (Y), CMY, or RGBYC can be used.
  • the color filter layer is formed on the non-display surface side of the upper substrate (first substrate).
  • the present invention is not limited to this, and the first substrate A color filter layer can be provided on the display surface side of the substrate or on the lower substrate (second substrate) side.
  • the color filter layer is preferable in that a display element which is easy to manufacture can be easily configured as compared with the case where a plurality of colors of polar liquids are prepared.
  • the color filter part (opening part) and the black matrix part (light-shielding film) included in the color filter layer appropriately and reliably provide an effective display area and an ineffective display area with respect to the display space. It is also preferable in that it can be set.
  • the present invention is useful for a display element capable of performing a display operation at high speed while preventing a deterioration in display quality even when gradation display is performed, and an electric device using the display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present invention is a display element (10) provided with an upper base plate (first base plate) (2), a lower base plate (second base plate) (3), and a polarized liquid (16) that is enclosed within a display space (S) formed between the upper base plate (2) and the lower base plate (3) such that the polarized liquid (16) can shift toward a valid display region (P1) or an invalid display region (P2), wherein the supplying of a prescribed reset signal causes all the polarized liquid (16) in the whole display region (P) to move to an initial position before a scan is performed. Moreover, the display element (10) is provided with a maximum application time acquisition unit (55) that acquires the maximum application time for each scan and a scan time determination unit (54) that determines the scan time for the corresponding scan using the maximum application time. A display control unit (50) performs a scan appropriate to the scan time using the determined scan time.

Description

表示素子、及びこれを用いた電気機器Display element and electric device using the same
 本発明は、極性液体を移動させることにより、画像や文字などの情報を表示する表示素子、及びこれを用いた電気機器に関する。 The present invention relates to a display element that displays information such as images and characters by moving a polar liquid, and an electrical device using the display element.
 近年、表示素子では、エレクトロウェッティング方式の表示素子に代表されるように、外部電界による極性液体の移動現象を利用して、情報の表示を行うものが開発され、実用化されている。 In recent years, as a display element represented by an electrowetting type display element, a display element has been developed and put into practical use by utilizing the phenomenon of polar liquid movement by an external electric field.
 具体的にいえば、上記のような従来の表示素子では、例えば下記特許文献1に記載されているように、第1及び第2の基板の間に表示用空間を形成するとともに、リブ(仕切壁)によって当該表示用空間の内部を複数の各画素領域に応じて区切っていた。また、この従来の表示素子では、上記の各画素領域において、導電性液体(極性液体)が封入されるとともに、信号電極と、互いに平行に設けられた走査電極及び基準電極(参照電極)とが交差するように設けられていた。そして、この従来の表示素子では、各画素領域において、信号電極、走査電極、及び基準電極に対し電圧印加を適宜行うことにより、導電性液体を走査電極側または基準電極側に移動させて、表示面側の表示色を変更するようになっていた。 Specifically, in the conventional display element as described above, for example, as described in Patent Document 1 below, a display space is formed between the first and second substrates, and ribs (partitions) are formed. The interior of the display space is partitioned according to a plurality of pixel regions by a wall. Further, in this conventional display element, in each of the pixel regions, a conductive liquid (polar liquid) is sealed, and a signal electrode, a scan electrode and a reference electrode (reference electrode) provided in parallel to each other are provided. It was provided to cross. In this conventional display element, in each pixel region, by appropriately applying a voltage to the signal electrode, the scan electrode, and the reference electrode, the conductive liquid is moved to the scan electrode side or the reference electrode side to display. The display color on the face side was changed.
国際公開第2010/016304号パンフレットInternational Publication No. 2010/016304 Pamphlet
 ところで、上記のような従来の表示素子では、信号電極への電圧の印加時間を調整することにより、導電性液体(極性液体)の移動量を変化させて、表示面側の表示色を中間調とする、いわゆる階調表示が行われていた。 By the way, in the conventional display element as described above, by adjusting the voltage application time to the signal electrode, the amount of movement of the conductive liquid (polar liquid) is changed to change the display color on the display surface side to a halftone. In other words, so-called gradation display is performed.
 ところが、上記のような従来の表示素子では、表示色の変更を高精度に行えなかったり、表示色の変更、つまり表示動作の高速化を図るのが難しかったりするという問題点を生じることがあった。特に、従来の表示素子では、上記階調表示を行うときに、前回の表示色(つまり、導電性液体の位置)によっては、導電性液体を所望の位置に精度よく移動させることができずに、微妙な色ずれが生じて、表示品位の低下を生じたり、表示動作を高速に行えなかったりするおそれがあった。 However, the conventional display elements as described above may cause problems that the display color cannot be changed with high accuracy, or that it is difficult to change the display color, that is, to speed up the display operation. It was. In particular, in the conventional display element, when the gradation display is performed, the conductive liquid cannot be accurately moved to a desired position depending on the previous display color (that is, the position of the conductive liquid). As a result, a subtle color misregistration may occur, resulting in a deterioration in display quality or a failure to perform a display operation at high speed.
 上記の課題を鑑み、本発明は、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子、及びこれを用いた電気機器を提供することを目的とする。 In view of the above problems, the present invention provides a display element capable of performing a display operation at high speed while preventing deterioration in display quality even when performing gradation display, and an electric device using the display element. With the goal.
 上記の目的を達成するために、本発明にかかる表示素子は、表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で前記有効表示領域側または前記非有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子であって、
 前記極性液体と接触するように、前記表示用空間の内部に設置されるとともに、所定の配列方向に沿って設けられた複数の信号電極、
 前記有効表示領域側及び前記非有効表示領域側の一方側に設置されるように、前記極性液体に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられるとともに、前記複数の信号電極と交差するように設けられた複数の走査電極、
 前記信号電極と前記走査電極との交差部単位に設けられた複数の画素領域、
 外部からの画像入力信号に基づいて、所定の走査方向に沿った走査動作が行われるように、前記信号電極、及び前記走査電極の各駆動制御を行う表示制御部、
 前記複数の信号電極及び前記表示制御部に接続されるとともに、前記表示制御部からの指示信号に従って、前記複数の各信号電極に対して、前記表示面側に表示される情報に応じた所定の電圧範囲内の信号電圧を印加する信号電圧印加部、
 前記複数の走査電極及び前記表示制御部に接続されるとともに、前記複数の各走査電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する走査電圧印加部を備え、
 前記信号電圧印加部及び前記走査電圧印加部からそれぞれ前記信号電極及び前記走査電極に対して、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示するリセット信号指示部と、
 外部からの画像入力信号と前記初期位置を用いて、前記走査動作毎の最大印加時間を取得する最大印加時間取得部と、
 外部からの画像入力信号と前記最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での走査時間を決定する走査時間決定部が設けられ、
 前記表示制御部は、外部からの画像入力信号と前記走査時間決定部からの走査時間を用いて、前記信号電圧印加部及び前記走査電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせることを特徴とするものである。
In order to achieve the above object, the display element according to the present invention is configured such that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. , The second substrate provided on the non-display surface side of the first substrate, the effective display area and the non-effective display area set for the display space, and the effective inside the display space. A display element configured to change a display color on the display surface side by moving the polar liquid, the polar liquid being movably sealed on the display area side or the ineffective display area side There,
A plurality of signal electrodes disposed in the display space so as to be in contact with the polar liquid and provided along a predetermined arrangement direction;
Provided on one side of the first and second substrates in a state of being electrically insulated from the polar liquid so as to be installed on one side of the effective display area side and the non-effective display area side. And a plurality of scanning electrodes provided to intersect with the plurality of signal electrodes,
A plurality of pixel regions provided in a unit of intersection between the signal electrode and the scanning electrode;
A display control unit that controls each drive of the signal electrode and the scanning electrode so that a scanning operation along a predetermined scanning direction is performed based on an image input signal from the outside;
Connected to the plurality of signal electrodes and the display control unit, and in accordance with an instruction signal from the display control unit, for each of the plurality of signal electrodes, a predetermined value corresponding to information displayed on the display surface side A signal voltage application unit for applying a signal voltage within a voltage range;
Connected to the plurality of scan electrodes and the display control unit, and allows the polar liquid to move inside the display space in accordance with the signal voltage with respect to the plurality of scan electrodes. A scanning voltage applying unit that applies one of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space;
Before performing the scanning operation on the signal electrode and the scanning electrode from the signal voltage applying unit and the scanning voltage applying unit, respectively, each polar liquid in all the pixel regions is on the effective display region side or the A reset signal instruction unit for instructing to supply a predetermined reset signal so as to move to an initial position determined on the non-effective display area side;
A maximum application time acquisition unit that acquires a maximum application time for each scanning operation using an image input signal from the outside and the initial position;
A scanning time determination unit that determines a scanning time in a corresponding scanning operation using an image input signal from the outside and a maximum application time from the maximum application time acquisition unit is provided,
The display control unit generates an instruction signal to the signal voltage applying unit and the scanning voltage applying unit using an image input signal from the outside and a scanning time from the scanning time determining unit, and at the scanning time, The scanning operation is performed accordingly.
 上記のように構成された表示素子では、リセット信号指示部が信号電圧印加部及び走査電圧印加部からそれぞれ信号電極及び走査電極に対して、走査動作を行う前に、全ての画素領域内の各極性液体が有効表示領域側または非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示する。これにより、走査動作を行う前に、全ての画素領域内の各極性液体を、上記初期位置に移動させることができ、次の表示動作の際に、極性液体を所望の位置に高精度に移動させることが可能となる。また、最大印加時間取得部が、外部からの画像入力信号と初期位置を用いて、走査動作毎の最大印加時間を取得し、走査時間決定部が、外部からの画像入力信号と最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での走査時間を決定する。さらに、表示制御部は、外部からの画像入力信号と走査時間決定部からの走査時間を用いて、信号電圧印加部及び走査電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせる。これにより、上記従来例と異なり、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子を構成することができる。 In the display element configured as described above, before the reset signal instruction unit performs the scanning operation on the signal electrode and the scanning electrode from the signal voltage applying unit and the scanning voltage applying unit, respectively, An instruction is given to supply a predetermined reset signal so that the polar liquid moves to the initial position determined on the effective display area side or the non-effective display area side. Thus, before performing the scanning operation, each polar liquid in all the pixel regions can be moved to the initial position, and the polar liquid is moved to a desired position with high accuracy in the next display operation. It becomes possible to make it. Further, the maximum application time acquisition unit acquires the maximum application time for each scanning operation using the external image input signal and the initial position, and the scanning time determination unit acquires the external image input signal and the maximum application time. The scanning time in the corresponding scanning operation is determined using the maximum application time from the unit. Further, the display control unit generates each instruction signal to the signal voltage applying unit and the scanning voltage applying unit using the image input signal from the outside and the scanning time from the scanning time determining unit, and according to the scanning time. A scanning operation is performed. Thus, unlike the conventional example, it is possible to configure a display element capable of performing a display operation at high speed while preventing a deterioration in display quality even when gradation display is performed.
 また、上記表示素子において、前記表示制御部には、前記走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部が設けられ、
 前記信号電圧印加部及び前記走査電圧印加部は、前記走査動作決定部の決定結果に応じて、前記信号電極及び前記走査電極に対し、それぞれ電圧印加を行うことが好ましい。
Further, in the display element, the display control unit is provided with a scanning operation determining unit that determines whether or not to perform a scanning operation based on a scanning time from the scanning time determining unit,
The signal voltage applying unit and the scanning voltage applying unit preferably apply voltage to the signal electrode and the scanning electrode, respectively, according to a determination result of the scanning operation determining unit.
 この場合、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作をより高速に行うことができる。 In this case, even when gradation display is performed, the display operation can be performed at a higher speed while preventing deterioration in display quality.
 また、上記表示素子において、前記有効表示領域側及び前記非有効表示領域側の他方側に設置されるように、前記極性液体及び前記走査電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられるとともに、前記複数の信号電極と交差するように設けられた複数の参照電極と、
 前記複数の参照電極及び前記表示制御部に接続されるとともに、前記複数の各参照電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する参照電圧印加部とが設けられ、
 前記リセット信号指示部は、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部からそれぞれ前記信号電極、前記走査電極、及び前記参照電極に対して、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示し、
 前記表示制御部は、外部からの画像入力信号に基づいて、所定の走査方向に沿った走査動作が行われるように、前記信号電極、前記走査電極、及び前記参照電極の各駆動制御を行うとともに、
 前記表示制御部は、外部からの画像入力信号と前記走査時間決定部からの走査時間を用いて、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせることが好ましい。
Further, in the display element, the first liquid electrode is electrically insulated from the polar liquid and the scan electrode so as to be installed on the other side of the effective display area side and the ineffective display area side. A plurality of reference electrodes provided on one side of the first and second substrates and provided to intersect with the plurality of signal electrodes;
The polar liquid is connected to the plurality of reference electrodes and the display control unit and allows the polar liquid to move in the display space according to the signal voltage with respect to the plurality of reference electrodes. A reference voltage applying unit that applies one voltage of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space;
The reset signal instruction unit performs the scanning operation on the signal electrode, the scanning electrode, and the reference electrode from the signal voltage applying unit, the scanning voltage applying unit, and the reference voltage applying unit, respectively. Instructing each polar liquid in all of the pixel regions to supply a predetermined reset signal so as to move to an initial position determined on the effective display region side or the non-effective display region side,
The display control unit performs drive control of the signal electrode, the scan electrode, and the reference electrode so that a scanning operation along a predetermined scanning direction is performed based on an external image input signal. ,
The display control unit outputs each instruction signal to the signal voltage applying unit, the scanning voltage applying unit, and the reference voltage applying unit using an image input signal from the outside and a scanning time from the scanning time determining unit. It is preferable to generate and perform a scanning operation according to the scanning time.
 この場合、スイッチング素子を画素領域毎に設けることなく、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことが可能なマトリクス駆動方式の表示素子を構成することができる。 In this case, a matrix drive type display element capable of performing a display operation at high speed while preventing a deterioration in display quality even when gradation display is performed without providing a switching element for each pixel region is configured. be able to.
 また、上記表示素子において、前記表示制御部には、前記走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部が設けられ、
 前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部は、前記走査動作決定部の決定結果に応じて、前記信号電極、前記走査電極、及び前記参照電極に対し、それぞれ電圧印加を行うことが好ましい。
Further, in the display element, the display control unit is provided with a scanning operation determining unit that determines whether or not to perform a scanning operation based on a scanning time from the scanning time determining unit,
The signal voltage application unit, the scan voltage application unit, and the reference voltage application unit apply voltages to the signal electrode, the scan electrode, and the reference electrode, respectively, according to the determination result of the scanning operation determination unit. It is preferable to carry out.
 この場合、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作をより高速に行うことができる。 In this case, even when gradation display is performed, the display operation can be performed at a higher speed while preventing deterioration in display quality.
 また、上記表示素子において、前記リセット信号指示部は、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記走査方向とは反対側に設定された前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部からそれぞれ前記信号電極、前記走査電極、及び前記参照電極に対して、所定のリセット信号を供給させてもよい。 In the display element, the reset signal indicating unit may be configured such that, before performing the scanning operation, the polar liquids in all the pixel regions are set on the side of the effective display region set on the side opposite to the scanning direction. The signal electrode, the scan electrode, and the reference electrode are respectively moved from the signal voltage application unit, the scan voltage application unit, and the reference voltage application unit so as to move to an initial position determined on the ineffective display region side. Alternatively, a predetermined reset signal may be supplied.
 この場合、初期位置が走査方向とは反対側に設定されているので、画素領域が気密に区切られていない場合でも、表示品位の低下を確実に防ぐことができる。 In this case, since the initial position is set on the side opposite to the scanning direction, it is possible to reliably prevent the display quality from being deteriorated even when the pixel region is not hermetically separated.
 また、上記表示素子において、前記リセット信号指示部は、前記信号電極に対するリセット信号の電圧として、前記信号電圧の最大の電圧または最小の電圧を選択し、前記参照電極に対するリセット信号の電圧として、前記選択電圧または前記非選択電圧を選択し、前記走査電極に対するリセット信号の電圧として、前記選択電圧または前記非選択電圧を選択することが好ましい。 In the display element, the reset signal instruction unit selects the maximum voltage or the minimum voltage of the signal voltage as the voltage of the reset signal for the signal electrode, and the voltage of the reset signal for the reference electrode as the voltage of the reset signal. Preferably, the selection voltage or the non-selection voltage is selected, and the selection voltage or the non-selection voltage is selected as the voltage of the reset signal for the scan electrode.
 この場合、走査動作の際に印加する電圧とリセット信号の電圧とを同じ電圧を用いることができるので、上記信号電圧印加部、参照電圧印加部、及び走査電圧印加部の各構成を簡単化することができる。 In this case, since the same voltage can be used as the voltage applied during the scanning operation and the voltage of the reset signal, each configuration of the signal voltage applying unit, the reference voltage applying unit, and the scanning voltage applying unit is simplified. be able to.
 また、上記表示素子において、前記参照電極及び前記走査電極の表面上には、誘電体層が積層されていることが好ましい。 In the display element, it is preferable that a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
 この場合、誘電体層が極性液体に印加する電界を確実に大きくして、当該極性液体の移動速度をより容易に向上することができる。 In this case, the electric field applied to the polar liquid by the dielectric layer can be reliably increased, and the moving speed of the polar liquid can be improved more easily.
 また、上記表示素子において、前記走査時間決定部は、外部からの画像入力信号と前記最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での画素領域毎の前記極性液体を移動させるための電圧印加時間を決定することが好ましい。 In the display element, the scanning time determination unit uses the image input signal from the outside and the maximum application time from the maximum application time acquisition unit to remove the polar liquid for each pixel region in the corresponding scanning operation. It is preferable to determine the voltage application time for movement.
 この場合、走査動作において、各画素領域の極性液体を適切に移動させることができ、高精度な階調表示を確実に行うことができる。 In this case, the polar liquid in each pixel region can be appropriately moved in the scanning operation, and high-accuracy gradation display can be reliably performed.
 また、上記表示素子において、前記表示制御部は、一つの走査動作の対称となる複数の画素領域において、前記極性液体を前記初期位置から移動させる必要がないことを判別した場合、その判別した画素領域に対応する信号電極に対して、前記所定の電圧範囲の中間の中間電圧を印加させることが好ましい。 In the display element, when the display control unit determines that it is not necessary to move the polar liquid from the initial position in a plurality of pixel regions that are symmetrical with respect to one scanning operation, the determined pixel It is preferable to apply an intermediate voltage in the middle of the predetermined voltage range to the signal electrode corresponding to the region.
 この場合、極性液体を上記初期位置から移動させる必要がない画素領域において、極性液体を確実に停止させることができ、表示素子の表示品位が低下するのを確実に防ぐことができる。 In this case, the polar liquid can be reliably stopped in the pixel region where the polar liquid does not need to be moved from the initial position, and the display quality of the display element can be reliably prevented from deteriorating.
 また、上記表示素子において、前記最大印加時間取得部には、少なくとも1つの走査動作分の画像入力信号のデータを記憶可能なメモリが用いられてもよい。 In the display element, a memory capable of storing data of image input signals for at least one scanning operation may be used for the maximum application time acquisition unit.
 この場合、走査動作毎の正確な最大印加時間を確実に、かつ、容易に得ることができる。 In this case, an accurate maximum application time for each scanning operation can be obtained reliably and easily.
 また、上記表示素子において、前記最大印加時間取得部が、前記表示制御部内に設けられていることが好ましい。 Moreover, in the display element, it is preferable that the maximum application time acquisition unit is provided in the display control unit.
 この場合、上記信号電圧印加部内に最大印加時間取得部を設けた場合と異なり、信号電圧印加部に汎用の電圧印加部(ドライバ)を使用することができる。また、表示制御部から信号電圧印加部等への指示信号を容易に出力することができる。 In this case, a general-purpose voltage application unit (driver) can be used for the signal voltage application unit, unlike the case where the maximum application time acquisition unit is provided in the signal voltage application unit. Further, it is possible to easily output an instruction signal from the display control unit to the signal voltage application unit or the like.
 また、上記表示素子において、前記第1及び第2の基板の少なくとも一方側には、前記複数の各画素領域に応じて、前記表示用空間の内部を区切るリブが設けられていることが好ましい。 In the display element, it is preferable that a rib for separating the inside of the display space is provided on at least one side of the first and second substrates according to the plurality of pixel regions.
 この場合、リブによって、隣接する画素領域の間で極性液体の合一が発生するのを容易に防止することができる。 In this case, it is possible to easily prevent the polar liquid from being coalesced between the adjacent pixel regions by the rib.
 また、上記表示素子において、前記複数の画素領域が、前記表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられていることが好ましい。 Further, in the display element, it is preferable that the plurality of pixel regions are respectively provided according to a plurality of colors capable of full color display on the display surface side.
 この場合、複数の各画素領域において、対応する極性液体が適切に移動されることにより、カラー画像表示を行うことができる。 In this case, a color image can be displayed by appropriately moving the corresponding polar liquid in each of the plurality of pixel regions.
 また、上記表示素子において、前記表示用空間の内部には、前記極性液体と混じり合わない絶縁性流体が当該表示用空間の内部を移動可能に封入されていることが好ましい。 In the display element, it is preferable that an insulating fluid that does not mix with the polar liquid is sealed in the display space so as to be movable in the display space.
 この場合、極性液体の移動速度の高速化を容易に図ることができる。 In this case, it is possible to easily increase the moving speed of the polar liquid.
 また、上記表示素子において、前記非有効表示領域は、前記第1及び第2の基板の一方側に設けられた遮光膜によって設定され、
 前記有効表示領域は、前記遮光膜に形成された開口部によって設定されていることが好ましい。
In the display element, the ineffective display area is set by a light shielding film provided on one side of the first and second substrates,
The effective display area is preferably set by an opening formed in the light shielding film.
 この場合、表示用空間に対し、有効表示領域及び非有効表示領域を適切に、かつ、確実に設定することができる。 In this case, it is possible to appropriately and reliably set the effective display area and the non-effective display area for the display space.
 また、本発明の電気機器は、文字及び画像を含んだ情報を表示する表示部を備えた電気機器であって、
 前記表示部に、上記いずれかの表示素子を用いたことを特徴とするものである。
The electrical device of the present invention is an electrical device including a display unit that displays information including characters and images,
Any one of the display elements described above is used for the display portion.
 上記のように構成された電気機器では、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子が表示部に用いられているので、表示情報を高速に変更可能で、優れた表示品位を有する表示部を備えた高性能な電気機器を容易に構成することができる。 In the electrical equipment configured as described above, a display element capable of performing a display operation at high speed while preventing deterioration in display quality even when performing gradation display is used for the display unit. Information can be changed at high speed, and a high-performance electric device including a display unit having excellent display quality can be easily configured.
 本発明によれば、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子、及びこれを用いた電気機器を提供することが可能となる。 According to the present invention, it is possible to provide a display element capable of performing a display operation at a high speed while preventing a deterioration in display quality even when gradation display is performed, and an electric apparatus using the display element. .
図1は、本発明の第1の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention. 図2は、図1に示した表示制御部の具体的な構成を示すブロック図である。FIG. 2 is a block diagram showing a specific configuration of the display control unit shown in FIG. 図3は、図1に示した信号ドライバの具体的な構成を示すブロック図である。FIG. 3 is a block diagram showing a specific configuration of the signal driver shown in FIG. 図4は、図1に示した参照ドライバの具体的な構成を示すブロック図である。4 is a block diagram showing a specific configuration of the reference driver shown in FIG. 図5は、図1に示した走査ドライバの具体的な構成を示すブロック図である。FIG. 5 is a block diagram showing a specific configuration of the scan driver shown in FIG. 図6は、表示面側から見た場合での図1に示した上部基板側の要部構成を示す拡大平面図である。FIG. 6 is an enlarged plan view showing a main configuration of the upper substrate side shown in FIG. 1 when viewed from the display surface side. 図7は、非表示面側から見た場合での図1に示した下部基板側の要部構成を示す拡大平面図である。FIG. 7 is an enlarged plan view showing the main configuration of the lower substrate side shown in FIG. 1 when viewed from the non-display surface side. 図8(a)は、上記表示素子の1つの画素領域での要部構成を示す拡大平面図であり、図8(b)は、図8(a)のVIIIb-VIIIb線断面図である。FIG. 8A is an enlarged plan view showing a main part configuration in one pixel region of the display element, and FIG. 8B is a sectional view taken along line VIIIb-VIIIb in FIG. 8A. 図9(a)及び図9(b)は、それぞれ非CF着色表示時及びCF着色表示時における、図1に示した表示素子の要部構成を示す断面図である。FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively. 図10は、上記画像表示装置の動作例を説明する図である。FIG. 10 is a diagram for explaining an operation example of the image display device. 図11(a)~図11(c)は、図1に示した信号電極、参照電極、及び走査電極にそれぞれ供給されるリセット信号の具体例を示す波形図であり、図11(d)は、上記リセット信号が供給された場合における、上記表示素子の画素領域での動作例を説明する図である。11 (a) to 11 (c) are waveform diagrams showing specific examples of reset signals supplied to the signal electrode, reference electrode, and scan electrode shown in FIG. 1, respectively. FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied. 図12は、上記表示制御部及び図3に示した最大印加時間取得部の具体的な動作例を説明する図である。FIG. 12 is a diagram for explaining a specific operation example of the display control unit and the maximum application time acquisition unit illustrated in FIG. 3. 図13(a)~図13(d)は、上記信号ドライバの具体的な電圧印加動作を説明する図である。FIGS. 13A to 13D are diagrams for explaining a specific voltage application operation of the signal driver. 図14は、本発明の第2の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。FIG. 14 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention. 図15は、図14に示した表示制御部の具体的な構成を示すブロック図である。FIG. 15 is a block diagram showing a specific configuration of the display control unit shown in FIG. 図16は、図14に示した信号ドライバの具体的な構成を示すブロック図である。FIG. 16 is a block diagram showing a specific configuration of the signal driver shown in FIG. 図17は、本発明の第3の実施形態にかかる表示素子における、表示面側から見た場合での上部基板側の要部構成を示す拡大平面図である。FIG. 17 is an enlarged plan view showing a main configuration of the upper substrate side when viewed from the display surface side in the display element according to the third embodiment of the present invention. 図18は、本発明の第3の実施形態にかかる表示素子における、非表示面側から見た場合での下部基板側の要部構成を示す拡大平面図である。FIG. 18 is an enlarged plan view showing the main configuration of the lower substrate side when viewed from the non-display surface side in the display element according to the third embodiment of the present invention. 図19(a)及び図19(b)は、それぞれ非CF着色表示時及びCF着色表示時における、本発明の第3の実施形態にかかる表示素子の要部構成を示す断面図である。FIG. 19A and FIG. 19B are cross-sectional views showing the main configuration of the display element according to the third embodiment of the present invention during non-CF color display and CF color display, respectively. 図20(a)~図20(c)は、図19に示した信号電極、参照電極、及び走査電極にそれぞれ供給されるリセット信号の具体例を示す波形図であり、図20(d)は、上記リセット信号が供給された場合における、上記表示素子の画素領域での動作例を説明する図である。20A to 20C are waveform diagrams showing specific examples of reset signals respectively supplied to the signal electrode, the reference electrode, and the scan electrode shown in FIG. 19, and FIG. FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied. 図21(a)~図21(c)は、比較例の画素領域での動作例を説明する図である。FIG. 21A to FIG. 21C are diagrams for explaining an operation example in the pixel region of the comparative example. 図22は、本発明の第4の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。FIG. 22 is a plan view for explaining a display element and an image display apparatus according to the fourth embodiment of the present invention. 図23は、図22に示した表示制御部の具体的な構成を示すブロック図である。FIG. 23 is a block diagram showing a specific configuration of the display control unit shown in FIG. 図24は、図22に示した信号ドライバの具体的な構成を示すブロック図である。FIG. 24 is a block diagram showing a specific configuration of the signal driver shown in FIG. 図25は、図22に示した参照ドライバの具体的な構成を示すブロック図である。FIG. 25 is a block diagram showing a specific configuration of the reference driver shown in FIG. 図26は、図22に示した走査ドライバの具体的な構成を示すブロック図である。FIG. 26 is a block diagram showing a specific configuration of the scan driver shown in FIG.
 以下、本発明の表示素子及び電気機器の好ましい実施形態について、図面を参照しながら説明する。尚、以下の説明では、カラー画像表示を表示可能な表示部を備えた画像表示装置に本発明を適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments of the display element and the electric device of the present invention will be described with reference to the drawings. In the following description, a case where the present invention is applied to an image display apparatus including a display unit capable of displaying a color image display will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。図1において、本実施形態の画像表示装置1では、本実施形態の表示素子10を用いた表示部が設けられており、この表示部には矩形状の表示面が構成されている。また、表示素子10には、表示制御部50と、この表示制御部50に接続された信号ドライバ7、参照ドライバ8、及び走査ドライバ9が設けられており、表示制御部50が信号ドライバ7、参照ドライバ8、及び走査ドライバ9の各駆動制御を行うようになっている。すなわち、表示制御部50には、外部からの画像入力信号が入力されるようになっており、表示制御部50は、入力された画像入力信号に基づいて、信号ドライバ7、参照ドライバ8、及び走査ドライバ9への各指示信号を作成して出力するよう構成されている。これにより、表示素子10では、画像入力信号に応じて、文字及び画像を含んだ情報が表示されるようになっている。
[First Embodiment]
FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention. In FIG. 1, the image display apparatus 1 according to the present embodiment is provided with a display unit using the display element 10 according to the present embodiment, and a rectangular display surface is configured in the display unit. Further, the display element 10 is provided with a display control unit 50, a signal driver 7, a reference driver 8, and a scanning driver 9 connected to the display control unit 50, and the display control unit 50 includes the signal driver 7, Each drive control of the reference driver 8 and the scanning driver 9 is performed. That is, an image input signal from the outside is input to the display control unit 50, and the display control unit 50 receives the signal driver 7, the reference driver 8, and the like based on the input image input signal. Each instruction signal to the scanning driver 9 is generated and output. Thereby, the display element 10 displays information including characters and images according to the image input signal.
 また、表示素子10は、図1の紙面に垂直な方向で互いに重ね合うように配置された上部基板2及び下部基板3を備えており、これらの上部基板2と下部基板3との重なり部分によって上記表示面の有効表示領域が形成されている(詳細は後述。)。 In addition, the display element 10 includes an upper substrate 2 and a lower substrate 3 which are arranged so as to overlap each other in a direction perpendicular to the paper surface of FIG. 1, and the above-described overlapping portion of the upper substrate 2 and the lower substrate 3 causes the above-described portion. An effective display area on the display surface is formed (details will be described later).
 また、表示素子10では、複数の信号電極4が互いに所定の間隔をおいて、かつ、X方向に沿ってストライプ状に設けられている。また、表示素子10では、複数の参照電極5及び複数の走査電極6が、互いに交互に、かつ、Y方向に沿ってストライプ状に設けられている。これら複数の信号電極4と、複数の参照電極5及び複数の走査電極6とは、互いに交差するように設けられており、表示素子10では、信号電極4と走査電極6との交差部単位に、複数の各画素領域が設定されている。 Further, in the display element 10, a plurality of signal electrodes 4 are provided in stripes along the X direction at a predetermined interval from each other. In the display element 10, a plurality of reference electrodes 5 and a plurality of scanning electrodes 6 are provided alternately in a stripe pattern along the Y direction. The plurality of signal electrodes 4, the plurality of reference electrodes 5, and the plurality of scan electrodes 6 are provided so as to intersect with each other. In the display element 10, the signal electrodes 4 and the scan electrodes 6 are in units of intersections. A plurality of pixel areas are set.
 また、これら複数の信号電極4、複数の参照電極5、及び複数の走査電極6は、互いに独立して、第1の電圧としてのHigh電圧(以下、“H電圧”という。)と、第2の電圧としてのLow電圧(以下、“L電圧”という。)との間の所定の電圧範囲内の電圧が印加可能に構成されている(詳細は後述。)。 The plurality of signal electrodes 4, the plurality of reference electrodes 5, and the plurality of scan electrodes 6 are independently of each other a high voltage (hereinafter referred to as “H voltage”) as a first voltage and a second voltage. A voltage within a predetermined voltage range between the low voltage and the low voltage (hereinafter referred to as “L voltage”) can be applied (details will be described later).
 さらに、表示素子10では、後に詳述するように、上記複数の各画素領域が仕切壁にて区切られるとともに、複数の画素領域が、上記表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられている。そして、表示素子10では、マトリクス状に設けられた複数の画素(表示セル)毎に、エレクトロウェッティング現象にて後述の極性液体を移動させ、表示面側での表示色を変更するようになっている。 Further, in the display element 10, as described in detail later, the plurality of pixel regions are partitioned by a partition wall, and the plurality of pixel regions correspond to a plurality of colors capable of full color display on the display surface side. Are provided respectively. In the display element 10, a polar liquid described later is moved by an electrowetting phenomenon for each of a plurality of pixels (display cells) provided in a matrix, and the display color on the display surface side is changed. ing.
 尚、上記の説明以外に、複数の画素領域が、表示面側でモノクロ表示が可能なように構成されてもよい。 In addition to the above description, the plurality of pixel regions may be configured to be capable of monochrome display on the display surface side.
 また、複数の信号電極4、複数の参照電極5、及び複数の走査電極6では、各々一端部側が表示面の有効表示領域の外側に引き出されて、端子部4a、5a、及び6aが形成されている。 Further, in the plurality of signal electrodes 4, the plurality of reference electrodes 5, and the plurality of scanning electrodes 6, one end side is drawn out to the outside of the effective display area of the display surface to form terminal portions 4a, 5a, and 6a. ing.
 複数の信号電極4の各端子部4aには、配線7aを介して信号ドライバ7が接続されている。信号ドライバ7は、信号電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、表示制御部50からの指示信号に従って、複数の各信号電極4に対して、情報に応じた信号電圧Vdを印加するように構成されている。また、信号ドライバ7は、1フレーム分の情報表示が行われた後、次の情報表示を行う前(すなわち、後述の走査動作を行う前)に、表示制御部50からの指示信号に従って、複数の各信号電極4に対して、所定のリセット信号の電圧を印加するようになっている(詳細は後述。)。 A signal driver 7 is connected to each terminal portion 4a of the plurality of signal electrodes 4 via a wiring 7a. The signal driver 7 constitutes a signal voltage application unit. When the image display device 1 displays information including characters and images on the display surface, a plurality of each of the plurality of signal drivers 7 are in accordance with an instruction signal from the display control unit 50. A signal voltage Vd corresponding to information is applied to the signal electrode 4. In addition, after the information display for one frame is performed, the signal driver 7 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later). A voltage of a predetermined reset signal is applied to each of the signal electrodes 4 (details will be described later).
 また、複数の参照電極5の各端子部5aには、配線8aを介して参照ドライバ8が接続されている。参照ドライバ8は、参照電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、表示制御部50からの指示信号に従って、複数の各参照電極5に対して、参照電圧Vrを印加するように構成されている。また、参照ドライバ8は、1フレーム分の情報表示が行われた後、次の情報表示を行う前(すなわち、後述の走査動作を行う前)に、表示制御部50からの指示信号に従って、複数の各参照電極5に対して、所定のリセット信号の電圧を印加するようになっている(詳細は後述。)。 Further, a reference driver 8 is connected to each terminal portion 5a of the plurality of reference electrodes 5 via a wiring 8a. The reference driver 8 constitutes a reference voltage applying unit. When the image display device 1 displays information including characters and images on the display surface, a plurality of each of the reference drivers 8 is provided according to an instruction signal from the display control unit 50. A reference voltage Vr is applied to the reference electrode 5. In addition, after the information display for one frame is performed, the reference driver 8 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later). A predetermined reset signal voltage is applied to each of the reference electrodes 5 (details will be described later).
 また、複数の走査電極6の各端子部6aには、配線9aを介して走査ドライバ9が接続されている。走査ドライバ9は、走査電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、表示制御部50からの指示信号に従って、複数の各走査電極6に対して、走査電圧Vsを印加するように構成されている。また、走査ドライバ9は、1フレーム分の情報表示が行われた後、次の情報表示を行う前(すなわち、後述の走査動作を行う前)に、表示制御部50からの指示信号に従って、複数の各走査電極6に対して、所定のリセット信号の電圧を印加するようになっている(詳細は後述。)。 Further, a scanning driver 9 is connected to each terminal portion 6a of the plurality of scanning electrodes 6 via a wiring 9a. The scanning driver 9 constitutes a scanning voltage application unit. When the image display device 1 displays information including characters and images on the display surface, each of the plurality of scanning drivers 9 is in accordance with an instruction signal from the display control unit 50. A scanning voltage Vs is applied to the scanning electrode 6. In addition, after the information display for one frame is performed, the scanning driver 9 performs a plurality of operations according to an instruction signal from the display control unit 50 before performing the next information display (that is, before performing a scanning operation described later). A predetermined reset signal voltage is applied to each of the scanning electrodes 6 (details will be described later).
 また、走査ドライバ9では、複数の各走査電極6に対して、上記極性液体が移動するのを阻止する非選択電圧と、極性液体が信号電圧Vdに応じて移動するのを許容する選択電圧との一方の電圧を走査電圧Vsとして印加するようになっている。また、参照ドライバ8は、走査ドライバ9の動作を参照して動作するように構成されており、参照ドライバ8は、複数の各参照電極5に対して、上記極性液体が移動するのを阻止する非選択電圧と、極性液体が信号電圧Vdに応じて移動するのを許容する選択電圧との一方の電圧を参照電圧Vrとして印加するようになっている。 In the scan driver 9, a non-selection voltage that prevents the polar liquid from moving with respect to each of the plurality of scan electrodes 6, and a selection voltage that allows the polar liquid to move according to the signal voltage Vd. One of the voltages is applied as the scanning voltage Vs. The reference driver 8 is configured to operate with reference to the operation of the scanning driver 9, and the reference driver 8 prevents the polar liquid from moving with respect to each of the plurality of reference electrodes 5. One voltage of the non-selection voltage and the selection voltage that allows the polar liquid to move according to the signal voltage Vd is applied as the reference voltage Vr.
 そして、画像表示装置1では、走査ドライバ9が例えば図1の左側から右側の各走査電極6に対し、選択電圧を順次印加し、かつ、参照ドライバ8が走査ドライバ9の動作に同期して図1の左側から右側の各参照電極5に対し、選択電圧を順次印加することにより、ライン毎の走査動作が行われるように構成されている(詳細は後述。)。また、このライン毎の走査動作では、信号ドライバ7は、全ての各信号電極4に対して、情報に応じた対応する信号電圧Vdを一斉に印加するように構成されている。 In the image display device 1, the scanning driver 9 sequentially applies the selection voltage to the scanning electrodes 6 from the left side to the right side of FIG. 1, for example, and the reference driver 8 is synchronized with the operation of the scanning driver 9. The scanning operation is performed for each line by sequentially applying a selection voltage to the reference electrodes 5 from the left side to the right side of 1 (details will be described later). In the scanning operation for each line, the signal driver 7 is configured to apply the corresponding signal voltage Vd corresponding to the information to all the signal electrodes 4 all at once.
 また、信号ドライバ7、参照ドライバ8、及び走査ドライバ9には、直流電源または交流電源が含まれており、対応する信号電圧Vd、参照電圧Vr、及び走査電圧Vsを供給するようになっている。 The signal driver 7, the reference driver 8, and the scanning driver 9 include a DC power supply or an AC power supply, and supply corresponding signal voltage Vd, reference voltage Vr, and scanning voltage Vs. .
 また、参照ドライバ8は、参照電圧Vrの極性を所定の時間(例えば、1フレーム)毎に切り替えるように構成されている。さらに、走査ドライバ9は、参照電圧Vrの極性の切り替えに対応して、走査電圧Vsの各極性を切り替えるように構成されている。このように、参照電圧Vr及び走査電圧Vsの各極性が所定の時間毎に切り替えられるので、参照電極5及び走査電極6に対して常時同じ極性の電圧を印加するときに比べて、これらの参照電極5及び走査電極6での電荷の局在化を防ぐことができる。さらに、電荷の局在化に起因する表示不良(残像現象)や信頼性(寿命低下)の悪影響を防止することができる。 Further, the reference driver 8 is configured to switch the polarity of the reference voltage Vr every predetermined time (for example, one frame). Further, the scanning driver 9 is configured to switch each polarity of the scanning voltage Vs in response to switching of the polarity of the reference voltage Vr. Thus, since the polarities of the reference voltage Vr and the scanning voltage Vs are switched every predetermined time, the reference voltages Vr and the scanning electrode 6 are compared with the reference electrode 5 and the scanning electrode 6 when the same polarity voltage is always applied. It is possible to prevent localization of electric charges at the electrode 5 and the scanning electrode 6. Furthermore, it is possible to prevent adverse effects of display defects (afterimage phenomenon) and reliability (lifetime reduction) due to charge localization.
 次に、図2~図5を参照して、本実施形態の表示制御部50、信号ドライバ7、参照ドライバ8、及び走査ドライバ9の具体的な構成について説明する。 Next, specific configurations of the display control unit 50, the signal driver 7, the reference driver 8, and the scanning driver 9 according to the present embodiment will be described with reference to FIGS.
 図2は、図1に示した表示制御部の具体的な構成を示すブロック図である。図3は、図1に示した信号ドライバの具体的な構成を示すブロック図である。図4は、図1に示した参照ドライバの具体的な構成を示すブロック図である。図5は、図1に示した走査ドライバの具体的な構成を示すブロック図である。 FIG. 2 is a block diagram showing a specific configuration of the display control unit shown in FIG. FIG. 3 is a block diagram showing a specific configuration of the signal driver shown in FIG. 4 is a block diagram showing a specific configuration of the reference driver shown in FIG. FIG. 5 is a block diagram showing a specific configuration of the scan driver shown in FIG.
 図2に示すように、本実施形態の表示制御部50には、画像処理部51、フレームバッファ52、リセット信号指示部53、及び走査時間決定部54が設けられている。また、この表示制御部50には、画像表示装置1の外部から画像入力信号が入力されるようになっており、表示制御部50は、外部からの画像入力信号に基づいて、所定の走査方向に沿った上記走査動作が行われるように、信号電極4、走査電極6、及び参照電極5の各駆動制御を行うように構成されている。 As shown in FIG. 2, the display control unit 50 according to the present embodiment includes an image processing unit 51, a frame buffer 52, a reset signal instruction unit 53, and a scanning time determination unit 54. In addition, an image input signal is input to the display control unit 50 from the outside of the image display device 1, and the display control unit 50 performs a predetermined scanning direction based on the image input signal from the outside. The drive operation of the signal electrode 4, the scan electrode 6, and the reference electrode 5 is performed so that the above-described scanning operation is performed.
 また、表示制御部50は、後に詳述するように、外部からの画像入力信号と走査時間決定部53からの走査時間を用いて、信号ドライバ7、走査ドライバ9、及び参照ドライバ8への各指示信号を生成し、当該走査時間に応じた走査動作を行わせるようになっている。 Further, as will be described in detail later, the display control unit 50 uses the image input signal from the outside and the scanning time from the scanning time determining unit 53 to send signals to the signal driver 7, the scanning driver 9, and the reference driver 8. An instruction signal is generated, and a scanning operation corresponding to the scanning time is performed.
 さらに、表示制御部50は、一つの走査動作の対称となる複数の画素領域において、極性液体を後述の初期位置から移動させる必要がないことを判別した場合、その判別した画素領域に対応する信号電極4に対して、上記所定の電圧範囲の中間の電圧(すなわち、H電圧とL電圧の中間の電圧である後述のM電圧)を印加させるようになっている。これにより、本実施形態の表示素子10では、極性液体を上記初期位置から移動させる必要がない画素領域において、極性液体を確実に停止させることができ、表示素子10の表示品位が低下するのを確実に防ぐことができるようになっている(詳細は後述。)。 Further, when the display control unit 50 determines that it is not necessary to move the polar liquid from an initial position described later in a plurality of pixel regions that are symmetrical with one scanning operation, the signal corresponding to the determined pixel region. An intermediate voltage in the predetermined voltage range (that is, an M voltage described later, which is an intermediate voltage between the H voltage and the L voltage) is applied to the electrode 4. Thereby, in the display element 10 of the present embodiment, the polar liquid can be reliably stopped in the pixel region where the polar liquid does not need to be moved from the initial position, and the display quality of the display element 10 is reduced. This can be surely prevented (details will be described later).
 画像処理部51は、外部からの画像入力信号に対して、所定の画像処理を行うように構成されている。そして、画像処理部51は、画像処理の結果に基づき、信号ドライバ7、参照ドライバ8、及び走査ドライバ9に対する各指示信号を生成する。また、画像処理部51は、上記画像入力信号と走査時間決定部54で決定された走査時間を用いて、生成した上述の各指示信号を修正し、修正した後の各指示信号を対応する信号ドライバ7、参照ドライバ8、及び走査ドライバ9に出力するようになっている。これにより、信号ドライバ7、参照ドライバ8、及び走査ドライバ9は、それぞれ上記信号電圧Vd、参照電圧Vr、及び走査電圧Vsを出力して、画像入力信号に応じた画像(情報)が上記表示面に表示される。 The image processing unit 51 is configured to perform predetermined image processing on an external image input signal. Then, the image processing unit 51 generates instruction signals for the signal driver 7, the reference driver 8, and the scanning driver 9 based on the result of the image processing. In addition, the image processing unit 51 corrects each of the generated instruction signals using the image input signal and the scanning time determined by the scanning time determination unit 54, and a signal corresponding to each of the corrected instruction signals. The data is output to the driver 7, the reference driver 8, and the scanning driver 9. Thereby, the signal driver 7, the reference driver 8, and the scanning driver 9 output the signal voltage Vd, the reference voltage Vr, and the scanning voltage Vs, respectively, and an image (information) corresponding to the image input signal is displayed on the display surface. Is displayed.
 フレームバッファ52は、少なくとも1フレーム分の画像入力信号のデータを記憶可能に構成されている。 The frame buffer 52 is configured to be able to store image input signal data for at least one frame.
 リセット信号指示部53は、1フレーム分の情報表示が行われた後、次のフレームでの走査動作を行う前に、信号ドライバ7、参照ドライバ8、及び走査ドライバ9からそれぞれ信号電極4、参照電極5、及び走査電極6に対して、所定のリセット信号を供給させることを指示する。具体的には、リセット信号指示部53は、信号電極4に対するリセット信号の電圧として、信号電圧Vdの最大の電圧(上記H電圧)または最小の電圧(上記L電圧)を選択して、信号ドライバ7に指示するようになっている。また、リセット信号指示部53は、参照電極5に対するリセット信号の電圧として、上記選択電圧または上記非選択電圧を選択して、参照ドライバ8に指示するようになっている。さらには、リセット信号指示部53は、走査電極6に対するリセット信号の電圧として、上記選択電圧または上記非選択電圧を選択して、走査ドライバ9に指示するようになっている。 The reset signal instruction unit 53 displays the signal electrode 4 and the reference from the signal driver 7, the reference driver 8, and the scanning driver 9, respectively, after the information display for one frame is performed and before the scanning operation is performed in the next frame. Instructing the electrode 5 and the scanning electrode 6 to supply a predetermined reset signal. Specifically, the reset signal instructing unit 53 selects the maximum voltage (the H voltage) or the minimum voltage (the L voltage) of the signal voltage Vd as the voltage of the reset signal for the signal electrode 4, and the signal driver 7 is instructed. Further, the reset signal instruction unit 53 selects the selection voltage or the non-selection voltage as the voltage of the reset signal for the reference electrode 5 and instructs the reference driver 8. Further, the reset signal instruction unit 53 selects the selection voltage or the non-selection voltage as the voltage of the reset signal for the scanning electrode 6 and instructs the scanning driver 9.
 また、上記のようなリセット信号が、信号電極4、参照電極5、及び走査電極6に供給されることにより、全ての画素領域内の各極性液体は、後述の有効表示領域側または非有効表示領域側に定められた上記初期位置に移動するようになっている(詳細は後述。)。 Further, when the reset signal as described above is supplied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, each polar liquid in all the pixel regions is displayed on the effective display region side or ineffective display described later. It moves to the initial position determined on the region side (details will be described later).
 走査時間決定部54は、外部からの画像入力信号と後述の最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での走査時間を決定する。また、走査時間決定部54は、後に詳述するように、上記画像入力信号と最大印加時間を用いて、対応する走査動作での画素領域毎の極性液体を移動させるための電圧印加時間(つまり、画素領域毎の対応する信号電極4への信号電圧の電圧印加時間)を決定するようになっている。 The scanning time determination unit 54 determines the scanning time in the corresponding scanning operation using the image input signal from the outside and the maximum application time from the maximum application time acquisition unit described later. Further, as will be described in detail later, the scanning time determination unit 54 uses the image input signal and the maximum application time to apply a voltage application time for moving the polar liquid for each pixel region in the corresponding scanning operation (that is, The voltage application time of the signal voltage to the corresponding signal electrode 4 for each pixel area) is determined.
 また、図3に示すように、信号ドライバ7には、最大印加時間取得部71、シフトレジスタ72、及びレベルシフタ73が設けられている。最大印加時間取得部71には、メモリとしてのラインメモリ71aが設けられている。このラインメモリ71aは、少なくとも1つの走査動作分の画像入力信号のデータを記憶可能に構成されている。また、最大印加時間取得部71は、ラインメモリ71aに記憶されている、外部からの画像入力信号と、上記リセット信号にて規定される初期位置を用いて、走査動作毎の最大印加時間を取得するように構成されている。そして、最大印加時間取得部71は、表示制御部50の走査時間決定部54に対して、取得した最大印加時間を出力する。 Further, as shown in FIG. 3, the signal driver 7 is provided with a maximum application time acquisition unit 71, a shift register 72, and a level shifter 73. The maximum application time acquisition unit 71 is provided with a line memory 71a as a memory. The line memory 71a is configured to be able to store image input signal data for at least one scanning operation. The maximum application time acquisition unit 71 acquires the maximum application time for each scanning operation using an external image input signal stored in the line memory 71a and an initial position defined by the reset signal. Is configured to do. Then, the maximum application time acquisition unit 71 outputs the acquired maximum application time to the scanning time determination unit 54 of the display control unit 50.
 シフトレジスタ72は、画像処理部51からの指示信号に基づいて、上記走査動作に応じて、複数の信号電極4に対して、レベルシフタ73から対応する信号電圧Vdを供給させるようになっている。具体的にいえば、シフトレジスタ72には、画像処理部51からの指示信号に含まれたスタートパルスやクロック信号が入力されるようになっており、シフトレジスタ72は、入力されたスタートパルスやクロック信号に基づき、レベルシフタ73をライン毎の走査動作単位で動作させる。また、レベルシフタ73には、複数の(全ての)信号電極4が接続されており、シフトレジスタ72からの動作指示に従って、全ての各信号電極4に対して、画像処理部51からの指示信号に応じた信号電圧Vdを対応する信号電極4に一斉に印加するようになっている。 The shift register 72 is configured to supply the corresponding signal voltage Vd from the level shifter 73 to the plurality of signal electrodes 4 according to the scanning operation based on the instruction signal from the image processing unit 51. Specifically, the shift register 72 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51, and the shift register 72 receives the input start pulse and Based on the clock signal, the level shifter 73 is operated in units of scanning operation for each line. In addition, a plurality of (all) signal electrodes 4 are connected to the level shifter 73, and in response to an operation instruction from the shift register 72, an instruction signal from the image processing unit 51 is sent to all the signal electrodes 4. The corresponding signal voltage Vd is applied to the corresponding signal electrodes 4 all at once.
 また、参照ドライバ8は、汎用のドライバを用いて構成されており、この参照ドライバ8には、図4に示すように、シフトレジスタ81、及びレベルシフタ82が設けられている。シフトレジスタ81は、画像処理部51からの指示信号に基づいて、上記走査動作に応じて、複数の参照電極5に対して、レベルシフタ82から対応する参照電圧Vrを供給させるようになっている。具体的にいえば、シフトレジスタ81には、画像処理部51からの指示信号に含まれたスタートパルスやクロック信号が入力されるようになっており、シフトレジスタ81は、入力されたスタートパルスやクロック信号に基づき、レベルシフタ82を動作させる。また、レベルシフタ82には、複数の(全ての)参照電極5が接続されており、シフトレジスタ81からの動作指示に従って、画像処理部51からの指示信号に応じて、参照電圧Vrとして選択電圧または非選択電圧を参照電極5に印加するようになっている。 Further, the reference driver 8 is configured using a general-purpose driver, and the reference driver 8 is provided with a shift register 81 and a level shifter 82 as shown in FIG. Based on the instruction signal from the image processing unit 51, the shift register 81 supplies the corresponding reference voltage Vr from the level shifter 82 to the plurality of reference electrodes 5 in accordance with the scanning operation. Specifically, the shift register 81 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51. The shift register 81 receives the input start pulse and The level shifter 82 is operated based on the clock signal. In addition, a plurality of (all) reference electrodes 5 are connected to the level shifter 82, and according to an operation instruction from the shift register 81, a selection voltage or a reference voltage Vr according to an instruction signal from the image processing unit 51. A non-selection voltage is applied to the reference electrode 5.
 また、走査ドライバ9は、参照ドライバ8と同様に、汎用のドライバを用いて構成されており、この走査ドライバ9には、図5に示すように、シフトレジスタ91、及びレベルシフタ92が設けられている。シフトレジスタ91は、画像処理部51からの指示信号に基づいて、上記走査動作に応じて、複数の走査電極6に対して、レベルシフタ92から対応する走査電圧Vsを供給させるようになっている。具体的にいえば、シフトレジスタ91には、画像処理部51からの指示信号に含まれたスタートパルスやクロック信号が入力されるようになっており、シフトレジスタ91は、入力されたスタートパルスやクロック信号に基づき、レベルシフタ92を動作させる。また、レベルシフタ92には、複数の(全ての)走査電極6が接続されており、シフトレジスタ91からの動作指示に従って、画像処理部51からの指示信号に応じて、走査電圧Vsとして選択電圧または非選択電圧を走査電極6に印加するようになっている。 Similarly to the reference driver 8, the scan driver 9 is configured by using a general-purpose driver. The scan driver 9 is provided with a shift register 91 and a level shifter 92 as shown in FIG. Yes. Based on the instruction signal from the image processing unit 51, the shift register 91 supplies a corresponding scanning voltage Vs from the level shifter 92 to the plurality of scanning electrodes 6 in accordance with the scanning operation. Specifically, the shift register 91 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51. The shift register 91 receives the input start pulse and The level shifter 92 is operated based on the clock signal. In addition, a plurality of (all) scanning electrodes 6 are connected to the level shifter 92, and according to an operation instruction from the shift register 91, a selection voltage or a scanning voltage Vs is selected according to an instruction signal from the image processing unit 51. A non-selection voltage is applied to the scan electrode 6.
 ここで、図6~図9も参照して、表示素子10の画素構造について具体的に説明する。 Here, the pixel structure of the display element 10 will be specifically described with reference to FIGS.
 図6は、表示面側から見た場合での図1に示した上部基板側の要部構成を示す拡大平面図である。図7は、非表示面側から見た場合での図1に示した下部基板側の要部構成を示す拡大平面図である。図8(a)は、上記表示素子の1つの画素領域での要部構成を示す拡大平面図であり、図8(b)は、図8(a)のVIIIb-VIIIb線断面図である。図9(a)及び図9(b)は、それぞれ非CF着色表示時及びCF着色表示時における、図1に示した表示素子の要部構成を示す断面図である。なお、図6及び図7では、図面の簡略化のために、上記表示面に設けられた複数の画素のうち、図1の左上端部に配設された12個の画素を図示している。また、図6では、図面の明瞭化のために、非表示面側に設けられた後述のレール部材及び平板部材の図示は省略している。 FIG. 6 is an enlarged plan view showing a main part configuration on the upper substrate side shown in FIG. 1 when viewed from the display surface side. FIG. 7 is an enlarged plan view showing the main configuration of the lower substrate side shown in FIG. 1 when viewed from the non-display surface side. FIG. 8A is an enlarged plan view showing a main part configuration in one pixel region of the display element, and FIG. 8B is a sectional view taken along line VIIIb-VIIIb in FIG. 8A. FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively. 6 and 7, for the sake of simplification of the drawing, twelve pixels arranged at the upper left end portion of FIG. 1 among the plurality of pixels provided on the display surface are illustrated. . Further, in FIG. 6, a rail member and a flat plate member which will be described later provided on the non-display surface side are omitted for the sake of clarity.
 図6~図9において、表示素子10は、表示面側に設けられた第1の基板としての上記上部基板2と、上部基板2の背面側(非表示面側)に設けられた第2の基板としての上記下部基板3とを備えている。また、表示素子10では、上部基板2と下部基板3が互いに所定の間隔をおいて配置されることにより、これら上部基板2及び下部基板3の間に所定の表示用空間Sが形成されている。また、この表示用空間Sの内部には、上記極性液体16及びこの極性液体16と混じり合わない絶縁性のオイル17が当該表示用空間Sの内部で上記X方向(図6の左右方向)に移動可能に封入されており、極性液体16は後述の有効表示領域P1側または非有効表示領域P2側に移動できるようになっている。 6 to 9, the display element 10 includes the upper substrate 2 as the first substrate provided on the display surface side and the second substrate provided on the back side (non-display surface side) of the upper substrate 2. The lower substrate 3 as a substrate is provided. In the display element 10, the upper substrate 2 and the lower substrate 3 are arranged at a predetermined distance from each other, so that a predetermined display space S is formed between the upper substrate 2 and the lower substrate 3. . Further, in the display space S, the polar liquid 16 and the insulating oil 17 not mixed with the polar liquid 16 are arranged in the X direction (left and right direction in FIG. 6) in the display space S. The polar liquid 16 can be moved to the later-described effective display area P1 side or the non-effective display area P2 side.
 さらに、表示用空間Sの内部には、後に詳述するように、上記画素領域P毎に絶縁性流体としてのオイル17を移動させるための移動用空間Kが設けられており、極性液体16の移動に応じて、オイル17を有効表示領域P1側または非有効表示領域P2側に円滑に、かつ、適切に移動させることができるようになっている。 Further, inside the display space S, as will be described in detail later, there is provided a movement space K for moving the oil 17 as the insulating fluid for each of the pixel regions P. According to the movement, the oil 17 can be smoothly and appropriately moved to the effective display area P1 side or the non-effective display area P2 side.
 極性液体16には、例えば溶媒としての水と、溶質としての所定の電解質を含んだ水溶液が用いられている。具体的には、例えば1mmol/Lの塩化カリウム(KCl)の水溶液が極性液体16に用いられている。また、極性液体16には、所定色、例えば自己分散型顔料によって黒色に着色されたものが使用されている。 As the polar liquid 16, for example, an aqueous solution containing water as a solvent and a predetermined electrolyte as a solute is used. Specifically, for example, an aqueous solution of 1 mmol / L potassium chloride (KCl) is used for the polar liquid 16. In addition, the polar liquid 16 is a predetermined color, for example, a color colored black with a self-dispersing pigment.
 また、極性液体16は黒色に着色されているので、当該極性液体16は、各画素において、光の透過を許容または阻止するシャッターとして機能するようになっている。つまり、表示素子10の各画素では、後に詳述するように、極性液体16が表示用空間Sの内部を参照電極5側(有効表示領域P1側)または走査電極6側(非有効表示領域P2側)にスライド移動することによって表示色が黒色またはRGBのいずれかの色に変更されるよう構成されている。 Also, since the polar liquid 16 is colored black, the polar liquid 16 functions as a shutter that allows or blocks light transmission in each pixel. That is, in each pixel of the display element 10, as will be described in detail later, the polar liquid 16 moves inside the display space S on the reference electrode 5 side (effective display region P1 side) or on the scanning electrode 6 side (non-effective display region P2). The display color is changed to either black or RGB by sliding to the side).
 また、オイル17には、例えば側鎖高級アルコール、側鎖高級脂肪酸、アルカン炭化水素、シリコーンオイル、マッチングオイルから選択された1種または複数種からなる無極性で、かつ、無色透明なオイルが用いられている。また、このオイル17は、極性液体16のスライド移動に伴って、表示用空間Sの内部で上部基板2側に区画された移動用区空間Kの内部を移動するようになっている。 The oil 17 is a non-polar, colorless and transparent oil composed of one or more selected from, for example, side chain higher alcohol, side chain higher fatty acid, alkane hydrocarbon, silicone oil, and matching oil. It has been. Further, the oil 17 moves in the moving space K partitioned on the upper substrate 2 side in the display space S as the polar liquid 16 slides.
 上部基板2には、無アルカリガラス基板などの透明なガラス材またはアクリル系樹脂などの透明な合成樹脂等の透明な透明シート材が用いられている。また、上部基板2の非表示面側の表面には、カラーフィルタ層11が形成されている。また、上部基板2の非表示面側の表面には、2本のレール部材21a及び平板部材21bを有するガイド部21がカラーフィルタ層11上に形成されており、表示用空間Sの内部に移動用空間Kを区画するようになっている(詳細は後述。)。さらに、上部基板2の非表示面側の表面では、カラーフィルタ層11、レール部材21a、及び平板部材21bを覆うように撥水膜12が設けられている。 For the upper substrate 2, a transparent glass material such as a non-alkali glass substrate or a transparent transparent sheet material such as a transparent synthetic resin such as an acrylic resin is used. A color filter layer 11 is formed on the surface of the upper substrate 2 on the non-display surface side. A guide portion 21 having two rail members 21 a and a flat plate member 21 b is formed on the color filter layer 11 on the non-display surface side surface of the upper substrate 2, and moves into the display space S. The work space K is partitioned (details will be described later). Further, a water repellent film 12 is provided on the surface of the upper substrate 2 on the non-display surface side so as to cover the color filter layer 11, the rail member 21a, and the flat plate member 21b.
 また、下部基板3には、上部基板2と同様に、無アルカリガラス基板などの透明なガラス材またはアクリル系樹脂などの透明な合成樹脂等の透明な透明シート材が用いられている。また、下部基板3の表示面側の表面には、上記参照電極5及び上記走査電極6が設けられており、さらに、これらの参照電極5及び走査電極6を覆うように、誘電体層13が形成されている。また、この誘電体層13の表示面側の表面には、Y方向及びX方向にそれぞれ平行となるように設けられたリブ14a及び14bを有するリブ14が設けられている。このリブ14は、画素領域Pに応じて、表示用空間Sの内部を気密に区切るように設けられており、図7に例示するように、画素領域P毎に枠状に構成されている。 The lower substrate 3 is made of a transparent glass material such as a transparent glass material such as a non-alkali glass substrate or a transparent synthetic resin such as an acrylic resin, like the upper substrate 2. Further, the reference electrode 5 and the scan electrode 6 are provided on the surface of the lower substrate 3 on the display surface side, and a dielectric layer 13 is formed so as to cover the reference electrode 5 and the scan electrode 6. Is formed. Further, a rib 14 having ribs 14a and 14b provided in parallel to the Y direction and the X direction is provided on the surface of the dielectric layer 13 on the display surface side. The ribs 14 are provided so as to hermetically divide the inside of the display space S in accordance with the pixel area P, and are configured in a frame shape for each pixel area P as illustrated in FIG.
 また、下部基板3では、信号電極4が誘電体層13の表面上でリブ14aを貫通するように形成されている。さらに、下部基板3では、信号電極4、誘電体層13、及びリブ14a、14bを覆うように、撥水膜15が設けられている。 In the lower substrate 3, the signal electrode 4 is formed so as to penetrate the rib 14 a on the surface of the dielectric layer 13. Further, in the lower substrate 3, a water repellent film 15 is provided so as to cover the signal electrode 4, the dielectric layer 13, and the ribs 14a and 14b.
 また、下部基板3の背面側(非表示面側)には、例えば白色の照明光を発光するバックライト18が一体的に組み付けられており、透過型の表示素子10が構成されている。尚、バックライト18には、冷陰極蛍光管やLEDなどの光源が用いられている。 Also, for example, a backlight 18 that emits white illumination light is integrally assembled on the back side (non-display surface side) of the lower substrate 3, and the transmissive display element 10 is configured. The backlight 18 uses a light source such as a cold cathode fluorescent tube or an LED.
 カラーフィルタ(Color Filter)層11には、赤色(R)、緑色(G)、及び青色(B)のカラーフィルタ部11r、11g、及び11bと、遮光膜としてのブラックマトリクス部11sとが設けられており、RGBの各色の画素を構成するようになっている。つまり、カラーフィルタ層11では、図6に例示するように、RGBのカラーフィルタ部11r、11g、11bがX方向に沿って順次設けられるとともに、各々4つのカラーフィルタ部11r、11g、11bがY方向に沿って設けられており、X方向及びY方向にそれぞれ3個及び4個、合計12個の画素が配設されている。 The color filter layer 11 includes red (R), green (G), and blue (B) color filter portions 11r, 11g, and 11b, and a black matrix portion 11s as a light shielding film. The pixels of each color of RGB are configured. That is, in the color filter layer 11, as illustrated in FIG. 6, RGB color filter portions 11 r, 11 g, and 11 b are sequentially provided along the X direction, and each of the four color filter portions 11 r, 11 g, and 11 b is Y A total of 12 pixels are arranged in the X direction and the Y direction, respectively, 3 pixels and 4 pixels.
 また、表示素子10では、図6に例示するように、各画素領域Pにおいて、画素の有効表示領域P1に対応する箇所にRGBのいずれかのカラーフィルタ部11r、11g、及び11bが設けられ、非有効表示領域P2に対応する箇所にブラックマトリクス部11sが設けられている。つまり、表示素子10では、上記表示用空間Sに対し、ブラックマトリクス部(遮光膜)11sによって非有効表示領域P2(非開口部)が設定され、そのブラックマトリクス部11sに形成された開口部(つまり、いずれかのカラーフィルタ部11r、11g、及び11b)によって有効表示領域P1が設定されている。 In the display element 10, as illustrated in FIG. 6, in each pixel region P, any one of RGB color filter portions 11 r, 11 g, and 11 b is provided at a location corresponding to the effective display region P 1 of the pixel. A black matrix portion 11s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 10, an ineffective display region P2 (non-opening portion) is set for the display space S by the black matrix portion (light-shielding film) 11s, and an opening portion (non-opening portion) formed in the black matrix portion 11s ( That is, the effective display area P1 is set by any one of the color filter portions 11r, 11g, and 11b).
 また、表示素子10では、カラーフィルタ部11r、11g、11bの各面積は、有効表示領域P1の面積に対し、同一または若干小さい値が選択されている。一方、ブラックマトリクス部11sの面積は、非有効表示領域P2の面積に対し、同一または若干大きい値が選択されている。尚、図6では、隣接する画素の境界部を明確にするために、隣接する画素に応じた2つのブラックマトリクス部11s間の境界線を点線にて示しているが、実際のカラーフィルタ層11では、ブラックマトリクス部11s間の境界線は存在しない。 In the display element 10, the area of the color filter portions 11r, 11g, and 11b is selected to be the same or slightly smaller than the area of the effective display area P1. On the other hand, the area of the black matrix portion 11s is selected to be the same or slightly larger than the area of the ineffective display area P2. In FIG. 6, in order to clarify the boundary portion between adjacent pixels, the boundary line between two black matrix portions 11 s corresponding to the adjacent pixels is indicated by a dotted line. Then, there is no boundary line between the black matrix portions 11s.
 また、表示素子10では、上記仕切壁としてのリブ14により表示用空間Sが画素領域P単位に区切られている。すなわち、表示素子10では、各画素の表示用空間Sは、図7に例示するように、互いに対向する2つのリブ14aと、互いに対向する2つのリブ14bとによって区画されており、画素領域P毎に枠状のリブ14が設けられている。さらに、表示素子10では、リブ14a、14bはその先端部が上部基板2に当接するように設けられており、リブ14は、画素領域Pに応じて、表示用空間Sの内部を気密に区切るように構成されている。また、これらのリブ14a、14bには、例えばエポキシ樹脂系レジスト材料が用いられている。 Further, in the display element 10, the display space S is divided in units of pixel areas P by the ribs 14 as the partition walls. That is, in the display element 10, the display space S of each pixel is partitioned by two ribs 14a facing each other and two ribs 14b facing each other as illustrated in FIG. A frame-like rib 14 is provided for each. Further, in the display element 10, the ribs 14 a and 14 b are provided so that the tip portions thereof are in contact with the upper substrate 2, and the rib 14 partitions the inside of the display space S in an airtight manner according to the pixel region P. It is configured as follows. Further, for example, an epoxy resin resist material is used for the ribs 14a and 14b.
 撥水膜12、15には、透明な合成樹脂、好ましくは電圧印加時に極性液体16に対し親水層となる、例えばフッ素系樹脂が使用されている。これにより、表示素子10では、上部基板2及び下部基板3の表示用空間S側の各表面側での極性液体16との間の濡れ性(接触角)を大きく変化させることができ、極性液体16の移動速度の高速化を図ることができる。また、誘電体層13は、例えばパリレンや窒化シリコン、酸化ハフニウム、酸化亜鉛、二酸化チタン、あるいは酸化アルミニウムを含有した透明な誘電体膜によって構成されている。尚、各撥水膜12、15の具体的な厚さ寸法は、数十nm~数μmであり、誘電体層13の具体的な厚さ寸法は、数百nmである。また、撥水膜15は、信号電極4と極性液体16とを電気的に絶縁することはなく、極性液体16の応答性向上を阻害しないようになっている。 The water- repellent films 12 and 15 are made of a transparent synthetic resin, preferably, for example, a fluorine resin that becomes a hydrophilic layer with respect to the polar liquid 16 when a voltage is applied. Thereby, in the display element 10, the wettability (contact angle) between the polar liquid 16 on each surface side on the display space S side of the upper substrate 2 and the lower substrate 3 can be greatly changed. The moving speed of 16 can be increased. The dielectric layer 13 is made of a transparent dielectric film containing, for example, parylene, silicon nitride, hafnium oxide, zinc oxide, titanium dioxide, or aluminum oxide. The specific thickness dimension of each of the water repellent films 12 and 15 is several tens of nm to several μm, and the specific thickness dimension of the dielectric layer 13 is several hundred nm. Further, the water repellent film 15 does not electrically insulate the signal electrode 4 from the polar liquid 16 and does not hinder the improvement of the response of the polar liquid 16.
 参照電極5及び走査電極6には、酸化インジウム系(ITO)、酸化スズ系(SnO2)、または酸化亜鉛系(AZO、GZO、あるいはIZO)などの透明な電極材料が用いられている。これらの各参照電極5及び各走査電極6は、スパッタ法等の公知の成膜方法により、下部基板3上に帯状に形成されている。 For the reference electrode 5 and the scanning electrode 6, a transparent electrode material such as indium oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (AZO, GZO, or IZO) is used. Each of these reference electrodes 5 and each scanning electrode 6 is formed in a strip shape on the lower substrate 3 by a known film forming method such as sputtering.
 信号電極4には、X方向に平行となるように配置された線状配線が用いられている。また、この信号電極4には、ITO等の透明電極材料が用いられている。さらに、信号電極4は、誘電体層13上で、リブ14aを貫通した状態で、各画素領域PのY方向でのほぼ中心部を通るように設置されており、撥水膜15を介して極性液体16に電気的に接触するように構成されている。これにより、表示素子10では、表示動作時での極性液体16の応答性の向上が図られている。 The signal electrode 4 uses a linear wiring arranged so as to be parallel to the X direction. The signal electrode 4 is made of a transparent electrode material such as ITO. Further, the signal electrode 4 is disposed on the dielectric layer 13 so as to pass through the rib 14 a so as to pass through substantially the center of each pixel region P in the Y direction. It is configured to be in electrical contact with the polar liquid 16. Thereby, in the display element 10, the response of the polar liquid 16 during the display operation is improved.
 また、図8(a)~図9(b)に示すように、本実施形態の表示素子10では、ガイド部21が上部基板2の非表示面側に設けられている。このガイド部21には、上部基板2の非表示面側の表面上で互いに所定の間隔をおいて設けられた複数、例えば2本のレール部材21aと、上部基板2と対向するように2本のレール部材21aの各先端部に接続されるとともに、表示用空間Sの内部で極性液体16に接触するように平面状に構成された平板部材21bとが含まれている。 Further, as shown in FIGS. 8A to 9B, in the display element 10 of the present embodiment, the guide portion 21 is provided on the non-display surface side of the upper substrate 2. The guide portion 21 includes a plurality of, for example, two rail members 21 a provided at a predetermined interval on the surface of the upper substrate 2 on the non-display surface side, and two so as to face the upper substrate 2. And a flat plate member 21b that is connected to each tip portion of the rail member 21a and is formed in a planar shape so as to come into contact with the polar liquid 16 inside the display space S.
 ガイド部21は、移動用空間Kの内部において、一端部側及び他端部側がそれぞれ有効表示領域P1側及び非有効表示領域P2側に設けられるとともに、極性液体16の移動に応じて、オイル17を有効表示領域P1側または非有効表示領域P2側に案内するよう構成されている。そして、本実施形態の表示素子10では、例えば図8(b)に示すように、各画素領域Pにおいて、オイル(絶縁性流体)17を移動させるための移動用空間Kが、表示用空間Sの内部において、極性液体16が移動する空間の上部基板2側に形成される。 In the movement space K, the guide portion 21 is provided with one end portion side and the other end portion side on the effective display region P1 side and the non-effective display region P2 side, respectively, and oil 17 according to the movement of the polar liquid 16. Is guided to the effective display area P1 side or the non-effective display area P2 side. In the display element 10 of the present embodiment, for example, as shown in FIG. 8B, the movement space K for moving the oil (insulating fluid) 17 in each pixel region P is the display space S. Is formed on the upper substrate 2 side of the space in which the polar liquid 16 moves.
 また、各レール部材21aは、上部基板2側から表示用空間Sの内部側に突出するように、かつ、当該上部基板2側で有効表示領域P1と非有効表示領域P2とを接続するように直線状に設けられている。また、平板部材21bは、2本のレール部材21a及び上部基板2との間に、トンネル状の移動用空間Kが形成されるように、これらの2本のレール部材21aの先端部に接続されている。また、各レール部材21a及び平板部材21bには、例えばエポキシ樹脂系レジスト材料が用いられている。また、各レール部材21a及び平板部材21bは、信号電極4、参照電極5、走査電極6、及び誘電体層13が設置された下部基板3側に設けられていないので、各レール部材21a及び平板部材21bは、エレクトロウェッティング現象による極性液体16の移動を阻害しないように構成されている。 Each rail member 21a protrudes from the upper substrate 2 side to the inside of the display space S, and connects the effective display area P1 and the ineffective display area P2 on the upper substrate 2 side. It is provided in a straight line. Further, the flat plate member 21b is connected to the tip portions of the two rail members 21a so that a tunnel-like movement space K is formed between the two rail members 21a and the upper substrate 2. ing. For example, an epoxy resin resist material is used for each rail member 21a and flat plate member 21b. Further, since each rail member 21a and the flat plate member 21b are not provided on the lower substrate 3 side where the signal electrode 4, the reference electrode 5, the scanning electrode 6, and the dielectric layer 13 are installed, each rail member 21a and the flat plate member 21b are provided. The member 21b is configured not to inhibit the movement of the polar liquid 16 due to the electrowetting phenomenon.
 また、2本のレール部材21a及び平板部材21bでは、図8(a)及び図8(b)に示すように、リブ14aと当該リブ14aに隣接するレール部材21a及び平板部材21bとの間の寸法h2、及びリブ14bと当該リブ14bに隣接するレール部材21a及び平板部材21bとの間の寸法h3が、各々上部基板2及び下部基板3と垂直な方向での極性液体16の寸法Hよりも小さい寸法に設定されている。具体的にいえば、本実施形態では、寸法h2及びh3は各々例えば10μmに設定され、寸法Hは例えば40μmに設定されている。なお、隣接する2本のレール部材21aの間の寸法h1は、例えば50μmに設定されているが、これら2本のレール部材21aの間の間隙は平板部材21bによって覆われているため、極性液体16が侵入しないようになっている。 Further, in the two rail members 21a and the flat plate member 21b, as shown in FIGS. 8A and 8B, between the rib member 14a and the rail member 21a and the flat plate member 21b adjacent to the rib 14a. The dimension h2 and the dimension h3 between the rib 14b and the rail member 21a and the flat plate member 21b adjacent to the rib 14b are larger than the dimension H of the polar liquid 16 in the direction perpendicular to the upper substrate 2 and the lower substrate 3, respectively. Small dimensions are set. Specifically, in the present embodiment, the dimensions h2 and h3 are each set to 10 μm, for example, and the dimension H is set to 40 μm, for example. The dimension h1 between the two adjacent rail members 21a is set to 50 μm, for example, but the gap between the two rail members 21a is covered with the flat plate member 21b, so that the polar liquid 16 does not enter.
 以上のように、寸法Hよりも小さい寸法の寸法h2及びh3を用いることにより、本実施形態では、極性液体16の動作(移動)が不安定になるのを防止することができる。すなわち、本願発明の発明者等による実験によれば、極性液体16が、リブ14aと当該リブ14aに隣接するレール部材21a及び平板部材21bとの間、及びリブ14bと当該リブ14bに隣接するレール部材21a及び平板部材21bとの間の各間に入り込むのを防ぐことができる。この結果、本実施形態では、極性液体16の動作が不安定になるのを防止することができる。尚、本願発明の発明者等による実験によれば、例えばリブ14aと当該リブ14aに隣接するレール部材21a及び平板部材21bとの間の寸法h2を、極性液体16の寸法H以上とした場合、極性液体16が当該リブ14aと当該リブ14aに隣接するレール部材21a及び平板部材21bとの間に入り込んで、極性液体16の動作が安定しなかった。 As described above, by using the dimensions h2 and h3 smaller than the dimension H, in this embodiment, it is possible to prevent the operation (movement) of the polar liquid 16 from becoming unstable. That is, according to the experiment by the inventors of the present invention, the polar liquid 16 is applied between the rib 14a and the rail member 21a and the flat plate member 21b adjacent to the rib 14a, and between the rib 14b and the rib 14b. It can prevent entering between each between the member 21a and the flat plate member 21b. As a result, in this embodiment, it is possible to prevent the operation of the polar liquid 16 from becoming unstable. According to an experiment by the inventors of the present invention, for example, when the dimension h2 between the rib 14a and the rail member 21a and the flat plate member 21b adjacent to the rib 14a is equal to or larger than the dimension H of the polar liquid 16, The polar liquid 16 entered between the rib 14a and the rail member 21a and the flat plate member 21b adjacent to the rib 14a, and the operation of the polar liquid 16 was not stable.
 尚、上記の説明では、リブ14によって画素領域Pを気密に区切るとともに、ガイド部21を設置することで移動用空間Kを設けてオイル(絶縁性流体)17を円滑に移動させる構成について説明した。しかしながら、本実施形態の表示素子10はこれに限定されるものではなく、上部基板2及び下部基板3(第1及び第2の基板の少なくとも一方側)に、複数の各画素領域Pに応じて、表示用空間Sの内部を区切るリブを設けることにより、隣接する画素領域Pの間で極性液体16の合一が発生するのを容易に防止することができるものであればよい。 In the above description, the pixel region P is hermetically separated by the ribs 14 and the moving space K is provided by installing the guide portion 21 to smoothly move the oil (insulating fluid) 17. . However, the display element 10 according to the present embodiment is not limited to this, and the upper substrate 2 and the lower substrate 3 (at least one side of the first and second substrates) are provided in accordance with the plurality of pixel regions P. Any rib that can easily prevent the polar liquid 16 from being coalesced between the adjacent pixel regions P by providing ribs that divide the interior of the display space S may be used.
 具体的にいえば、例えば上部基板2の非表示面側の表面との間に隙間が生じるように、リブ14a、14bを下部基板3側に設けたり、画素領域Pの四隅部に隙間が生じるように、リブ14a、14bの端部を互いに離間させた状態で下部基板3側に設けたりする構成でもよい。このような隙間を設けた場合には、絶縁性流体用の上記移動用空間Kの設置を省略することもできる(後述の第3の実施形態を参照。)。 Specifically, for example, ribs 14a and 14b are provided on the lower substrate 3 side so that a gap is generated between the upper substrate 2 and the non-display surface side, or gaps are generated at the four corners of the pixel region P. As described above, the configuration may be such that the ends of the ribs 14a and 14b are provided on the lower substrate 3 side in a state of being separated from each other. When such a gap is provided, the installation of the moving space K for the insulating fluid can be omitted (see the third embodiment described later).
 次に、上記のように構成された本実施形態の画像表示装置1の表示動作について、図10~図13も参照して具体的に説明する。 Next, the display operation of the image display device 1 of the present embodiment configured as described above will be specifically described with reference to FIGS.
 図10は、上記画像表示装置の動作例を説明する図である。図11(a)~図11(c)は、図1に示した信号電極、参照電極、及び走査電極にそれぞれ供給されるリセット信号の具体例を示す波形図であり、図11(d)は、上記リセット信号が供給された場合における、上記表示素子の画素領域での動作例を説明する図である。図12は、上記表示制御部及び図3に示した最大印加時間取得部の具体的な動作例を説明する図である。図13(a)~図13(d)は、上記信号ドライバの具体的な電圧印加動作を説明する図である。 FIG. 10 is a diagram for explaining an operation example of the image display device. 11 (a) to 11 (c) are waveform diagrams showing specific examples of reset signals supplied to the signal electrode, reference electrode, and scan electrode shown in FIG. 1, respectively. FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied. FIG. 12 is a diagram for explaining a specific operation example of the display control unit and the maximum application time acquisition unit illustrated in FIG. 3. FIGS. 13A to 13D are diagrams for explaining a specific voltage application operation of the signal driver.
 まず図10を参照して、本実施形態の画像表示装置1の基本的な表示動作について具体的に説明する。 First, with reference to FIG. 10, the basic display operation of the image display apparatus 1 of the present embodiment will be specifically described.
 図10において、参照ドライバ8及び走査ドライバ9は、例えば同図の左側から右側に向かう所定の走査方向で、参照電極5及び走査電極6に対して、それぞれ参照電圧Vr及び走査電圧Vsとして上記選択電圧を順次印加する。具体的には、参照ドライバ8及び走査ドライバ9は、参照電極5及び走査電極6に対して、選択電圧としてH電圧(第1の電圧)及びL電圧(第2の電圧)をそれぞれ順次印加して選択ラインとする走査動作を行う。また、この選択ラインでは、信号ドライバ7は外部からの画像入力信号に応じて、対応する信号電極4に対して、H電圧またはL電圧を信号電圧Vdとして印加する。これにより、選択ラインの各画素では、極性液体16が有効表示領域P1側または非有効表示領域P2側に移動されて、表示面側の表示色が変更される。また、このとき、オイル17は、極性液体16の移動に応じて、移動用空間Kの内部を通って、当該極性液体16の移動先とは反対側の非有効表示領域P2側または有効表示領域P1側に移動される。 In FIG. 10, the reference driver 8 and the scanning driver 9 select the reference voltage Vr and the scanning voltage Vs as the reference voltage Vr and the scanning voltage Vs, respectively, for the reference electrode 5 and the scanning electrode 6 in a predetermined scanning direction from the left side to the right side in FIG. Apply voltage sequentially. Specifically, the reference driver 8 and the scan driver 9 sequentially apply an H voltage (first voltage) and an L voltage (second voltage) as selection voltages to the reference electrode 5 and the scan electrode 6, respectively. The scanning operation for selecting the line is performed. In this selection line, the signal driver 7 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 4 according to the image input signal from the outside. Thereby, in each pixel of the selection line, the polar liquid 16 is moved to the effective display area P1 side or the non-effective display area P2 side, and the display color on the display surface side is changed. At this time, the oil 17 passes through the inside of the movement space K in accordance with the movement of the polar liquid 16, and the ineffective display area P2 side or the effective display area on the side opposite to the movement destination of the polar liquid 16. Moved to the P1 side.
 一方、非選択ライン、つまり残り全ての参照電極5及び走査電極6に対しては、参照ドライバ8及び走査ドライバ9は、それぞれ参照電圧Vr及び走査電圧Vsとして上記非選択電圧を印加する。具体的には、参照ドライバ8及び走査ドライバ9は、残り全ての参照電極5及び走査電極6に対して、非選択電圧として、例えば上記H電圧とL電圧の中間の電圧である中間電圧(Middle電圧、以下、“M電圧”という。)を印加する。これにより、非選択ラインの各画素では、極性液体16が有効表示領域P1側または非有効表示領域P2側で不必要な変動を生じることなく静止され、表示面側の表示色が変更されない。 On the other hand, the reference driver 8 and the scan driver 9 apply the non-selection voltage as the reference voltage Vr and the scan voltage Vs to the non-selected lines, that is, all the remaining reference electrodes 5 and scan electrodes 6, respectively. Specifically, the reference driver 8 and the scan driver 9 apply an intermediate voltage (Middle) that is, for example, an intermediate voltage between the H voltage and the L voltage to the remaining reference electrodes 5 and scan electrodes 6 as non-selection voltages. Voltage, hereinafter referred to as “M voltage”). Thereby, in each pixel of the non-selected line, the polar liquid 16 is stopped without causing unnecessary fluctuation on the effective display region P1 side or the non-effective display region P2 side, and the display color on the display surface side is not changed.
 上記のような表示動作を行う場合、参照電極5、走査電極6、及び信号電極4への印加電圧の組み合わせは、表1に示されるものとなる。さらに、極性液体16の挙動及び表示面側の表示色は、表1に示すように、印加電圧に応じたものとなる。なお、表1では、H電圧、L電圧、及びM電圧をそれぞれ“H”、“L”、及び“M”にて略記している(後掲の表2でも同様。)。また、H電圧、L電圧、及びM電圧の具体的な値は、それぞれ例えば+16V、0V、及び+8Vである。 When performing the display operation as described above, combinations of voltages applied to the reference electrode 5, the scan electrode 6, and the signal electrode 4 are as shown in Table 1. Further, as shown in Table 1, the behavior of the polar liquid 16 and the display color on the display surface side are in accordance with the applied voltage. In Table 1, the H voltage, L voltage, and M voltage are abbreviated as “H”, “L”, and “M”, respectively (the same applies to Table 2 described later). Specific values of the H voltage, the L voltage, and the M voltage are, for example, + 16V, 0V, and + 8V, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <選択ラインでの動作>
 選択ラインでは、信号電極4に対して例えばH電圧が印加されているときでは、参照電極5と信号電極4との間では、共にH電圧が印加されているので、これらの参照電極5と信号電極4との間には、電位差が生じていない。一方、信号電極4と走査電極6との間では、走査電極6に対して、L電圧が印加されているので、電位差が生じている状態となる。このため、極性液体16は、信号電極4に対して、電位差が生じている走査電極6側に表示用空間Sの内部を移動する。この結果、極性液体16は、図9(b)に例示したように、非有効表示領域P2側に移動した状態となり、オイル17を参照電極5側に移動させて、バックライト18からの照明光がカラーフィルタ部11rに達するのを許容する。これにより、表示面側での表示色は、カラーフィルタ部11rによる赤色表示(CF着色表示)の状態となる。また、画像表示装置1では、隣接するRGBの3つの全画素において、それらの極性液体16が非有効表示領域P2側に移動して、CF着色表示が行われたときに、当該RGBの画素からの赤色光、緑色光、及び青色光が白色光に混色して、白色表示が行われる。
<Operation on selected line>
In the selection line, for example, when an H voltage is applied to the signal electrode 4, an H voltage is applied between the reference electrode 5 and the signal electrode 4. There is no potential difference with the electrode 4. On the other hand, since the L voltage is applied to the scan electrode 6 between the signal electrode 4 and the scan electrode 6, a potential difference is generated. Therefore, the polar liquid 16 moves in the display space S toward the scanning electrode 6 where a potential difference is generated with respect to the signal electrode 4. As a result, as illustrated in FIG. 9B, the polar liquid 16 is moved to the ineffective display area P <b> 2 side, and the oil 17 is moved to the reference electrode 5 side to illuminate light from the backlight 18. Is allowed to reach the color filter portion 11r. As a result, the display color on the display surface side is in a red display (CF color display) state by the color filter unit 11r. In the image display device 1, in all three adjacent RGB pixels, when the polar liquid 16 moves to the ineffective display area P <b> 2 side and CF colored display is performed, from the RGB pixels. The red light, green light, and blue light are mixed with white light, and white display is performed.
 一方、選択ラインにおいて、信号電極4に対してL電圧が印加されているときでは、参照電極5と信号電極4との間では、電位差が生じ、信号電極4と走査電極6との間には、電位差が生じていない。従って、極性液体16は、信号電極4に対して、電位差が生じている参照電極5側に表示用空間Sの内部を移動する。この結果、極性液体16は、図9(a)に例示したように、有効表示領域P1側に移動した状態となり、バックライト18からの照明光がカラーフィルタ部11rに達するのを阻止する。これにより、表示面側での表示色は、極性液体16による黒色表示(非CF着色表示)の状態となる。 On the other hand, when the L voltage is applied to the signal electrode 4 in the selection line, a potential difference is generated between the reference electrode 5 and the signal electrode 4, and between the signal electrode 4 and the scanning electrode 6. No potential difference has occurred. Accordingly, the polar liquid 16 moves in the display space S toward the reference electrode 5 where a potential difference is generated with respect to the signal electrode 4. As a result, as illustrated in FIG. 9A, the polar liquid 16 is moved to the effective display area P1 side, and the illumination light from the backlight 18 is prevented from reaching the color filter unit 11r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 16.
 <非選択ラインでの動作>
 非選択ラインでは、信号電極4に対して例えばH電圧が印加されているときでは、極性液体16は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極5及び走査電極6の双方に対して、M電圧が印加されているので、参照電極5と信号電極4との間の電位差及び走査電極6と信号電極4との間の電位差は、共に同じ電位差が生じるからである。この結果、表示色は、現状の黒色表示またはCF着色表示から変更されずに維持される。
<Operation on unselected lines>
In the non-selected line, for example, when the H voltage is applied to the signal electrode 4, the polar liquid 16 is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases. As a result, the display color is maintained unchanged from the current black display or CF color display.
 同様に、非選択ラインにおいて、信号電極4に対してL電圧が印加されているときでも、極性液体16は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極5及び走査電極6の双方に対して、M電圧が印加されているので、参照電極5と信号電極4との間の電位差及び走査電極6と信号電極4との間の電位差は、共に同じ電位差が生じるからである。 Similarly, even when the L voltage is applied to the signal electrode 4 in the non-selected line, the polar liquid 16 is maintained in a stationary state at the current position and is maintained in the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases.
 以上のように、非選択ラインにおいては、信号電極4がH電圧及びL電圧のいずれかの電圧であっても、極性液体16は移動せずに、静止して、表示面側での表示色は変化しない。 As described above, in the non-selected line, even if the signal electrode 4 is at either the H voltage or the L voltage, the polar liquid 16 does not move but remains stationary and the display color on the display surface side. Does not change.
 一方、選択ラインにおいては、信号電極4への印加電圧に応じて、上述のように、極性液体16を移動させることができ、表示面側での表示色を変更させることができる。 On the other hand, in the selection line, the polar liquid 16 can be moved according to the voltage applied to the signal electrode 4 as described above, and the display color on the display surface side can be changed.
 また、画像表示装置1では、表1に示した印加電圧の組み合わせによって、選択ライン上の各画素での表示色は、例えば図10に示すように、各画素に対応する信号電極4への印加電圧に応じて、カラーフィルタ部11r、11g、11bによるCF着色(赤色、緑色、あるいは青色)または極性液体16による非CF着色(黒色)となる。また、参照ドライバ8及び走査ドライバ9が、それぞれ参照電極5及び走査電極6の選択ラインを、例えば図10の左から右へ走査動作を行う場合、画像表示装置1の表示部での各画素の表示色もまた同図10の左から右に向かって順次変化することとなる。したがって、参照ドライバ8及び走査ドライバ9による選択ラインの走査動作を高速で行うことにより、画像表示装置1において、表示部での各画素の表示色も高速に変化させることが可能となる。さらに、選択ラインの走査動作に同期させて信号電極4への信号電圧Vdの印加を行うことにより、画像表示装置1では、外部からの画像入力信号に基づいて、動画像を含んだ種々の情報を表示することが可能となる。 Further, in the image display device 1, the display color at each pixel on the selected line is applied to the signal electrode 4 corresponding to each pixel, for example, as shown in FIG. 10 by the combination of applied voltages shown in Table 1. Depending on the voltage, the color filter portions 11r, 11g, and 11b are CF colored (red, green, or blue) or the non-CF colored (black) by the polar liquid 16. Further, when the reference driver 8 and the scanning driver 9 perform the scanning operation of the selection lines of the reference electrode 5 and the scanning electrode 6 from the left to the right in FIG. 10, for example, The display color also changes sequentially from left to right in FIG. Therefore, by performing the scanning operation of the selected line by the reference driver 8 and the scanning driver 9 at high speed, the display color of each pixel on the display unit can be changed at high speed in the image display device 1. Furthermore, by applying the signal voltage Vd to the signal electrode 4 in synchronization with the scanning operation of the selected line, the image display apparatus 1 can perform various information including moving images based on an external image input signal. Can be displayed.
 また、参照電極5、走査電極6、及び信号電極4への印加電圧の組み合わせは、表1に限定されるものではなく、表2に示すものでもよい。 Further, the combinations of voltages applied to the reference electrode 5, the scan electrode 6, and the signal electrode 4 are not limited to Table 1 but may be those shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 すなわち、参照ドライバ8及び走査ドライバ9は、例えば同図の左側から右側に向かう所定の走査方向で、参照電極5及び走査電極6に対して、選択電圧としてL電圧(第2の電圧)及びH電圧(第1の電圧)をそれぞれ順次印加して選択ラインとする走査動作を行う。また、この選択ラインでは、信号ドライバ7は外部からの画像入力信号に応じて、対応する信号電極4に対して、H電圧またはL電圧を信号電圧Vdとして印加する。 That is, the reference driver 8 and the scan driver 9 are, for example, in a predetermined scanning direction from the left side to the right side in the figure, with respect to the reference electrode 5 and the scan electrode 6 as L voltage (second voltage) and H as selection voltages. A scanning operation is performed in which a voltage (first voltage) is sequentially applied to select lines. In this selection line, the signal driver 7 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 4 according to the image input signal from the outside.
 一方、非選択ライン、つまり残り全ての参照電極5及び走査電極6に対しては、参照ドライバ8及び走査ドライバ9は、非選択電圧としてM電圧を印加する。 On the other hand, the reference driver 8 and the scan driver 9 apply the M voltage as the non-selection voltage to the non-selected lines, that is, all the remaining reference electrodes 5 and scan electrodes 6.
 <選択ラインでの動作>
 選択ラインでは、信号電極4に対して例えばL電圧が印加されているときでは、参照電極5と信号電極4との間では、共にL電圧が印加されているので、これらの参照電極5と信号電極4との間には、電位差が生じていない。一方、信号電極4と走査電極6との間では、走査電極6に対して、H電圧が印加されているので、電位差が生じている状態となる。従って、極性液体16は、信号電極4に対して、電位差が生じている走査電極6側に表示用空間Sの内部を移動する。この結果、極性液体16は、図9(b)に例示したように、非有効表示領域P2側に移動した状態となり、オイル17を参照電極5側に移動させて、バックライト18からの照明光がカラーフィルタ部11rに達するのを許容する。これにより、表示面側での表示色は、カラーフィルタ部11rによる赤色表示(CF着色表示)の状態となる。また、表1に示した場合と同様に、隣接するRGBの3つの全画素において、CF着色表示が行われたときには、白色表示が行われる。
<Operation on selected line>
In the selection line, for example, when the L voltage is applied to the signal electrode 4, the L voltage is applied between the reference electrode 5 and the signal electrode 4. There is no potential difference with the electrode 4. On the other hand, since the H voltage is applied to the scanning electrode 6 between the signal electrode 4 and the scanning electrode 6, a potential difference is generated. Accordingly, the polar liquid 16 moves in the display space S toward the scanning electrode 6 where a potential difference is generated with respect to the signal electrode 4. As a result, as illustrated in FIG. 9B, the polar liquid 16 is moved to the ineffective display area P <b> 2 side, and the oil 17 is moved to the reference electrode 5 side to illuminate light from the backlight 18. Is allowed to reach the color filter portion 11r. As a result, the display color on the display surface side is in a red display (CF color display) state by the color filter unit 11r. Similarly to the case shown in Table 1, when CF colored display is performed on all three adjacent RGB pixels, white display is performed.
 一方、選択ラインにおいて、信号電極4に対してH電圧が印加されているときでは、参照電極5と信号電極4との間では、電位差が生じ、信号電極4と走査電極6との間には、電位差が生じていない。従って、極性液体16は、信号電極4に対して、電位差が生じている参照電極5側に表示用空間Sの内部を移動する。この結果、極性液体16は、図9(a)に例示したように、有効表示領域P1側に移動した状態となり、バックライト18からの照明光がカラーフィルタ部11rに達するのを阻止する。これにより、表示面側での表示色は、極性液体16による黒色表示(非CF着色表示)の状態となる。 On the other hand, when the H voltage is applied to the signal electrode 4 in the selection line, a potential difference is generated between the reference electrode 5 and the signal electrode 4, and between the signal electrode 4 and the scanning electrode 6. No potential difference has occurred. Accordingly, the polar liquid 16 moves in the display space S toward the reference electrode 5 where a potential difference is generated with respect to the signal electrode 4. As a result, as illustrated in FIG. 9A, the polar liquid 16 is moved to the effective display area P1 side, and the illumination light from the backlight 18 is prevented from reaching the color filter unit 11r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 16.
 <非選択ラインでの動作>
 非選択ラインでは、信号電極4に対して例えばL電圧が印加されているときでは、極性液体16は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極5及び走査電極6の双方に対して、M電圧が印加されているので、参照電極5と信号電極4との間の電位差及び走査電極6と信号電極4との間の電位差は、共に同じ電位差が生じるからである。この結果、表示色は、現状の黒色表示またはCF着色表示から変更されずに維持される。
<Operation on unselected lines>
In the non-selected line, for example, when the L voltage is applied to the signal electrode 4, the polar liquid 16 is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases. As a result, the display color is maintained unchanged from the current black display or CF color display.
 同様に、非選択ラインにおいて、信号電極4に対してH電圧が印加されているときでも、極性液体16は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極5及び走査電極6の双方に対して、M電圧が印加されているので、参照電極5と信号電極4との間の電位差及び走査電極6と信号電極4との間の電位差は、共に同じ電位差が生じるからである。 Similarly, even when the H voltage is applied to the signal electrode 4 in the non-selected line, the polar liquid 16 is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 5 and the scan electrode 6, the potential difference between the reference electrode 5 and the signal electrode 4 and the potential difference between the scan electrode 6 and the signal electrode 4 are This is because the same potential difference occurs in both cases.
 以上のように、表2に示した場合でも、表1に示した場合と同様に、非選択ラインにおいては、信号電極4がH電圧及びL電圧のいずれかの電圧であっても、極性液体16は移動せずに、静止して、表示面側での表示色は変化しない。 As described above, even in the case shown in Table 2, as in the case shown in Table 1, in the non-selected line, even if the signal electrode 4 is either the H voltage or the L voltage, the polar liquid 16 does not move and is stationary, and the display color on the display surface side does not change.
 一方、選択ラインにおいては、信号電極4への印加電圧に応じて、上述のように、極性液体16を移動させることができ、表示面側での表示色を変更させることができる。 On the other hand, in the selection line, the polar liquid 16 can be moved according to the voltage applied to the signal electrode 4 as described above, and the display color on the display surface side can be changed.
 また、本実施形態の画像表示装置1では、表1及び表2に示した印加電圧の組み合わせ以外に、信号電極4への印加電圧を、H電圧またはL電圧の2値だけではなく、これらのH電圧とL電圧との間の電圧を、表示面側に表示される情報に応じて変化させることもできる。すなわち、画像表示装置1では、信号電圧Vdを制御することにより、階調表示が可能となる。これにより、表示性能に優れた表示素子10を構成することができる。 Further, in the image display device 1 of the present embodiment, in addition to the combinations of applied voltages shown in Tables 1 and 2, the applied voltage to the signal electrode 4 is not limited to the binary value of the H voltage or the L voltage. The voltage between the H voltage and the L voltage can be changed according to information displayed on the display surface side. In other words, the image display device 1 can perform gradation display by controlling the signal voltage Vd. Thereby, the display element 10 excellent in display performance can be configured.
 次に、図11(a)~図11(d)を用いて、上記所定のリセット信号による動作例について、具体的に説明する。 Next, an example of operation using the predetermined reset signal will be described in detail with reference to FIGS. 11 (a) to 11 (d).
 本実施形態の画像表示装置1では、リセット信号指示部53が、上述したように、1フレーム分の情報表示が行われた後、次のフレームでの走査動作を行う前に、信号ドライバ7、参照ドライバ8、及び走査ドライバ9に対して、上記所定のリセット信号の供給(電圧印加)を行うことを指示する。 In the image display apparatus 1 according to the present embodiment, the reset signal instruction unit 53 performs the signal driver 7 before performing the scanning operation in the next frame after the information display for one frame is performed as described above. The reference driver 8 and the scan driver 9 are instructed to supply the predetermined reset signal (voltage application).
 また、本実施形態の画像表示装置1では、リセット信号指示部53は、例えばノーマリホワイト、つまり全ての画素領域P内の各極性液体16がその初期位置として非有効表示領域P2側に移動するように、リセット信号を指示するようになっている。 In the image display device 1 of the present embodiment, the reset signal instruction unit 53 is, for example, normally white, that is, each polar liquid 16 in all the pixel regions P moves to the ineffective display region P2 side as its initial position. Thus, a reset signal is instructed.
 この指示動作により、信号ドライバ7は、時点Tr1から時点Tr2までの所定のリセット時間において、全ての信号電極4に対して、図11(a)に示すように、例えばH電圧を印加する。また、参照ドライバ8は、所定のリセット時間において、全ての参照電極5に対して、図11(b)に示すように、例えばH電圧を印加する。また、走査ドライバ9は、所定のリセット時間において、全ての走査電極6に対して、図11(c)に示すように、例えばL電圧を印加する。これにより、表示素子10では、図11(d)に示すように、全ての画素領域P内の各極性液体16は、同図の矢印にて示すように、走査方向とは同じ側に設定された非有効表示領域(走査電極6)P2側に定められた初期位置(表示用空間Sでの最も右端部に位置)に移動する。 By this instruction operation, the signal driver 7 applies, for example, an H voltage to all the signal electrodes 4 in a predetermined reset time from the time point Tr1 to the time point Tr2, as shown in FIG. Further, the reference driver 8 applies, for example, an H voltage to all the reference electrodes 5 at a predetermined reset time, as shown in FIG. Further, the scan driver 9 applies, for example, an L voltage to all the scan electrodes 6 at a predetermined reset time as shown in FIG. As a result, in the display element 10, as shown in FIG. 11D, the polar liquids 16 in all the pixel regions P are set on the same side as the scanning direction as indicated by the arrows in the figure. The ineffective display area (scanning electrode 6) moves to the initial position (position at the rightmost end in the display space S) determined on the P2 side.
 また、上記所定のリセット時間は、極性液体16を最大限に移動させるのに要する時間、つまり極性液体16が画素領域Pの表示用空間Sでの最も左端部に位置している状態(図9(a)参照)と極性液体16が画素領域Pの表示用空間Sでの最も右端部に位置している状態(図9(b)参照)との間でいずれか一方の状態から他方の状態に移動させるのに必要な電圧印加時間で規定されている。 The predetermined reset time is the time required to move the polar liquid 16 to the maximum, that is, the state where the polar liquid 16 is located at the leftmost end in the display space S of the pixel region P (FIG. 9). (See (a)) and the state in which the polar liquid 16 is located at the rightmost end in the display space S of the pixel region P (see FIG. 9B) from one state to the other state. It is defined by the voltage application time required to move to.
 尚、上記の説明以外に、例えば信号電極4、参照電極5、及び走査電極6に対して、それぞれL電圧、L電圧、及びH電圧を印加して、全ての画素領域P内の各極性液体16を非有効表示領域P2側の上記初期位置に移動させる構成でもよい。 In addition to the above description, for example, an L voltage, an L voltage, and an H voltage are applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively. 16 may be moved to the initial position on the non-effective display area P2 side.
 次に、図12~図13を参照して、本実施形態の画像表示装置1における、表示制御部50及び最大印加時間取得部71の具体的な動作例について、主に説明する。 Next, specific operation examples of the display control unit 50 and the maximum application time acquisition unit 71 in the image display apparatus 1 of the present embodiment will be mainly described with reference to FIGS.
 尚、図12において、左斜め下のハッチングの部分は非CF着色表示、つまり黒色表示(完全な黒色表示以外の階調表示も含む。)が行われることを示し、ハッチングなしの部分はCF着色表示(つまり、ノーマリホワイトでのホワイト表示)、例えば完全な赤色表示が行われることを示している。また、これら完全な黒色表示及び完全な赤色表示では、画像入力信号に含まれた画素領域P毎の階調値の値がそれぞれ最小値及び最大値(例えば、256階調の階調表示を行う場合には、階調値が“0”及び“255”の値)である場合とする。さらに、図12では、図の上側から下側に向かって、上記ライン毎の走査動作が行われるものとする。 In FIG. 12, the hatched portion on the lower left diagonal indicates non-CF color display, that is, black display (including gradation display other than complete black display) is performed, and the non-hatched portion is CF colored. This indicates that display (that is, white display in normally white), for example, complete red display is performed. In the complete black display and the complete red display, the gradation value for each pixel region P included in the image input signal is displayed as a minimum value and a maximum value (for example, 256 gradation display). In this case, the gradation value is “0” and “255”). Further, in FIG. 12, it is assumed that the scanning operation for each line is performed from the upper side to the lower side of the drawing.
 図12において、上記表示面の領域A及び領域Cに含まれた複数の各ラインでは、表示面の左端部の画素領域LEから右端部の画素領域REの全ての画素領域Pにおいて、完全な赤色表示が行われる。また、これらの各ラインに含まれた全ての画素領域Pでは、リセット信号による初期位置から極性液体16を移動させる必要がない。つまり、これらの領域A及び領域Cに含まれた複数の各ラインでは、走査動作が実施されないように、なっている。 In FIG. 12, in each of the plurality of lines included in the area A and the area C on the display surface, the red color is completely red in all the pixel areas P from the left end pixel area LE to the right end pixel area RE. Display is performed. Further, in all the pixel regions P included in these lines, it is not necessary to move the polar liquid 16 from the initial position by the reset signal. That is, the scanning operation is not performed on each of the plurality of lines included in the region A and the region C.
 具体的にいえば、領域Aでは、例えばラインaにおいて、走査動作を行わさずに、参照ドライバ8及び走査ドライバ9からそれぞれ対応する参照電極5及び走査電極6に対し、選択電圧を印加させずに、非選択電圧の印加を維持するように決定するようになっている。詳細にいえば、最大印加時間取得部71は、ラインメモリ71aに記憶されている、ラインaに含まれた全ての画素領域Pでの画像入力信号のデータ(階調値)が全て“255”の値であることを判別すると、このラインaに含まれた全ての各画素領域Pにおいて、信号電極4に対して電圧印加を行う必要がないことを判別する。そして、最大印加時間取得部71は、このラインaでの最大印加時間は“0”の値であることを取得して、走査時間決定部54に通知する。 Specifically, in the region A, for example, in the line a, the scanning operation is not performed, and the selection voltage is not applied from the reference driver 8 and the scanning driver 9 to the corresponding reference electrode 5 and scanning electrode 6, respectively. In addition, it is determined to maintain the application of the non-selection voltage. Specifically, the maximum application time acquisition unit 71 stores all the data (tone values) of the image input signals in all the pixel regions P included in the line a stored in the line memory 71a as “255”. If it is discriminated that the value is, it is discriminated that it is not necessary to apply voltage to the signal electrode 4 in all the pixel regions P included in the line a. Then, the maximum application time acquisition unit 71 acquires that the maximum application time in the line a is “0” and notifies the scanning time determination unit 54 of it.
 走査時間決定部54は、フレームバッファ52に記憶されている、ラインaに含まれた全ての画素領域Pでの画像入力信号のデータ(階調値)と、最大印加時間取得部71からの最大印加時間を用いて、ラインaの走査動作での走査時間を決定する。すなわち、走査時間決定部54は、ラインaに含まれた全ての画素領域Pでの画像入力信号のデータ(階調値)が全て“255”の値であること及び最大印加時間取得部71からの最大印加時間の値が“0”であることに基づき、このラインaに含まれた全ての各画素領域Pでは、極性液体16を初期位置から全く移動させる必要がないことと判別して、当該ラインaでの走査動作の走査時間を“0”の値とする。そして、走査時間決定部54は、決定したラインaの走査時間を画像処理部51に通知する。 The scanning time determination unit 54 stores data (tone values) of image input signals in all the pixel regions P included in the line a stored in the frame buffer 52 and the maximum application time from the maximum application time acquisition unit 71. The scanning time in the scanning operation for line a is determined using the application time. That is, the scanning time determination unit 54 determines that all the image input signal data (gradation values) in all the pixel regions P included in the line a are “255” and the maximum application time acquisition unit 71. Based on the fact that the value of the maximum application time of “0” is “0”, it is determined that it is not necessary to move the polar liquid 16 from the initial position in all the pixel regions P included in the line a. The scanning time of the scanning operation on the line a is set to “0”. Then, the scanning time determination unit 54 notifies the image processing unit 51 of the determined scanning time of the line a.
 その後、画像処理部51が、外部からの画像入力信号を基に生成済みの信号ドライバ7、参照ドライバ8、及び走査ドライバ9への各指示信号について、走査時間決定部54で決定された走査時間を用いて修正し、修正した後の各指示信号を対応する信号ドライバ7、参照ドライバ8、及び走査ドライバ9に出力する。すなわち、ラインaでは、走査時間決定部54で決定された走査時間の値が“0”の値であるので、画像処理部51は、ラインaにおいて、走査動作が行わさずに、参照ドライバ8及び走査ドライバ9からそれぞれ対応する参照電極5及び走査電極6に対し、選択電圧を印加させずに、非選択電圧の印加を維持するように指示する。また、画像処理部51は、信号ドライバ4に対して、信号電極4に電圧印加を行わないことを指示する。これにより、信号ドライバ7、参照ドライバ8、及び走査ドライバ9は、そのシフトレジスタ72、81、及び91だけをそれぞれ動作して、走査動作を行わさずに、次のラインを選択する動作を行う。 Thereafter, the scanning time determined by the scanning time determination unit 54 for each instruction signal to the signal driver 7, the reference driver 8, and the scanning driver 9 generated by the image processing unit 51 based on an image input signal from the outside. The instruction signals after correction are output to the corresponding signal driver 7, reference driver 8, and scan driver 9. That is, in line a, since the value of the scanning time determined by the scanning time determination unit 54 is “0”, the image processing unit 51 does not perform the scanning operation in line a, and the reference driver 8 The scan driver 9 instructs the corresponding reference electrode 5 and scan electrode 6 to maintain the application of the non-selection voltage without applying the selection voltage. Further, the image processing unit 51 instructs the signal driver 4 not to apply a voltage to the signal electrode 4. Thereby, the signal driver 7, the reference driver 8, and the scanning driver 9 operate only the shift registers 72, 81, and 91, respectively, and perform an operation of selecting the next line without performing the scanning operation. .
 同様に、領域Cに含まれた複数の各ライン、例えばラインcにおいても、ラインaと同様な動作が行われる。つまり、信号ドライバ7、参照ドライバ8、及び走査ドライバ9は、そのシフトレジスタ72、81、及び91だけをそれぞれ動作して、走査動作を行わさずに、次のラインを選択する動作を行う。 Similarly, in each of a plurality of lines included in the region C, for example, the line c, the same operation as that of the line a is performed. That is, the signal driver 7, the reference driver 8, and the scanning driver 9 operate only the shift registers 72, 81, and 91, respectively, and perform an operation of selecting the next line without performing the scanning operation.
 一方、図12に示す領域Bでは、その領域Bに含まれた複数の各ラインにおいて、完全な赤色表示と黒色表示(階調表示を含む。)を行う画素領域Pが混在している。具体的には、例えばラインbでは、表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの画素領域Pにおいて、完全な赤色表示が行われる。一方、画素領域Dから画素領域Eまでの画素領域と、画素領域Fから画素領域Gまでの画素領域において、黒色表示(階調表示を含む。)が行われる。 On the other hand, in the region B shown in FIG. 12, pixel regions P that perform complete red display and black display (including gradation display) are mixed in each of the plurality of lines included in the region B. Specifically, for example, in the line b, the pixel region P from the pixel region LE at the left end of the display surface to the pixel region adjacent to the left of the pixel region D, and the pixel region F from the pixel region right adjacent to the pixel region E Complete red display is performed in the pixel region P up to the pixel region P on the left side and the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface. On the other hand, black display (including gradation display) is performed in the pixel region from the pixel region D to the pixel region E and the pixel region from the pixel region F to the pixel region G.
 ここで、以下の説明において、画素領域E及びGでは、画像入力信号のデータ(階調値)が各々ラインbにおいて最も小さい、例えば“50”の値、すなわち完全な黒色表示に比較的近い階調表示が行われるものとする。また、画素領域Dから画素領域Eの左隣の画素領域までの画素領域Pでは、画像入力信号のデータ(階調値)がそれぞれ例えば“150”の値の階調表示が行われるものとする。さらに、画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pでは、例えば“120”の値の階調表示が行われるものとする。 Here, in the following description, in the pixel regions E and G, the data (tone value) of the image input signal is the smallest in the line b, for example, a value of “50”, that is, a floor relatively close to perfect black display. It is assumed that the key is displayed. In addition, in the pixel area P from the pixel area D to the pixel area adjacent to the left of the pixel area E, the image input signal data (gradation value) is, for example, displayed with a gradation value of “150”. . Furthermore, in the pixel area P from the pixel area F to the pixel area adjacent to the left of the pixel area G, for example, gradation display with a value of “120” is performed.
 最大印加時間取得部71は、ラインメモリ71aに記憶されている、ラインbに含まれた全ての画素領域Pでの画像入力信号のデータ(階調値)を用いて、当該ラインbにおける、走査動作での最大印加時間を求める。つまり、最大印加時間取得部71は、ラインメモリ71aに記憶されているデータのうち、階調値の値が小さい“50”の値を抽出し、この抽出した最小値に基づき、このラインbでの最大印加時間を求める。具体的には、最大印加時間取得部71は、初期位置に対応する階調値の値(つまり、“255”)から抽出した最小値の差の値、“205”(=255-50)を求め、この差の値と、差の値の絶対的な最大値、“255”(つまり、初期位置と当該初期位置から最大限に離れた位置に対応する階調値の値“0”との差の値)との比率を求めるとともに、その比率に対して極性液体16を初期位置から最大限に移動させるのに要する時間TWを乗算した積の値TW1(=TW×205÷255)を求めて、その積の値TW1をラインbでの最大印加時間として取得する。そして、最大印加時間取得部71は、取得した最大印加時間を走査時間決定部54に通知する。 The maximum application time acquisition unit 71 uses the image input signal data (gradation values) stored in the line memory 71a for all the pixel regions P included in the line b to scan the line b. Find the maximum application time in operation. That is, the maximum application time acquisition unit 71 extracts a value of “50” having a small gradation value from the data stored in the line memory 71a, and on this line b based on the extracted minimum value. The maximum application time is obtained. Specifically, the maximum application time acquisition unit 71 obtains a difference value “205” (= 255-50) between the minimum values extracted from the value of the gradation value corresponding to the initial position (ie, “255”). The difference value and the absolute maximum value of the difference value “255” (that is, the gradation value “0” corresponding to the initial position and the position farthest from the initial position) And a product value TW1 (= TW × 205 ÷ 255) obtained by multiplying the ratio by the time TW required to move the polar liquid 16 from the initial position to the maximum. Then, the product value TW1 is acquired as the maximum application time in the line b. The maximum application time acquisition unit 71 notifies the scanning time determination unit 54 of the acquired maximum application time.
 走査時間決定部54は、フレームバッファ52に記憶されている、ラインbに含まれた全ての画素領域Pでの画像入力信号のデータ(階調値)と、最大印加時間取得部71からの最大印加時間を用いて、ラインbの走査動作での走査時間を決定する。また、走査時間決定部54は、ラインbに含まれた画素領域Pでの画像入力信号のデータが全て同一の値でないことを判別して、走査時間決定部54は、当該画像入力信号のデータと最大印加時間取得部71からの最大印加時間を用いて、ラインbの走査動作での画素領域P毎の極性液体16を移動させるための電圧印加時間を決定する。 The scanning time determination unit 54 stores data (tone values) of image input signals in all the pixel regions P included in the line b stored in the frame buffer 52 and the maximum from the maximum application time acquisition unit 71. The scanning time in the scanning operation of the line b is determined using the application time. The scanning time determination unit 54 determines that the image input signal data in the pixel region P included in the line b are not all the same value, and the scanning time determination unit 54 determines the data of the image input signal. The voltage application time for moving the polar liquid 16 for each pixel region P in the scanning operation of the line b is determined using the maximum application time from the maximum application time acquisition unit 71.
 具体的には、走査時間決定部54は、最大印加時間取得部71からの最大印加時間(つまり、TW1)を、画素領域E及びGでの電圧印加時間と決定するとともに、この電圧印加時間をラインbの走査動作での走査時間と決定する。その後、走査時間決定部54は、定めた走査時間を基準として、画素領域Dから画素領域Eの左隣の画素領域までの画素領域Pと、画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pにおいて、極性液体16を移動させるための電圧印加時間を決定する。 Specifically, the scanning time determination unit 54 determines the maximum application time (that is, TW1) from the maximum application time acquisition unit 71 as the voltage application time in the pixel regions E and G, and uses this voltage application time. The scanning time in the scanning operation for line b is determined. After that, the scanning time determination unit 54 uses the determined scanning time as a reference, the pixel region P from the pixel region D to the pixel region on the left side of the pixel region E, and the pixel region on the left side of the pixel region G from the pixel region F. The voltage application time for moving the polar liquid 16 in the pixel region P up to is determined.
 すなわち、走査時間決定部54は、初期位置に対応する階調値の値(つまり、“255”)から画素領域Dから画素領域Eの左隣の画素領域までの画素領域Pでの階調値の値(つまり、“150”)の差の値、“105”(=255-150)を求め、この差の値と、ラインbの走査時間(TW1)を用いて、画素領域Dから画素領域Eの左隣の画素領域までの画素領域Pでの極性液体16を移動させるための電圧印加時間を決定する。具体的には、走査時間決定部54は、画素領域Dから画素領域Eの左隣の画素領域までの各画素領域Pにおいて、極性液体16を移動させるための電圧印加時間として、TW1×105÷205の式から定める。 That is, the scanning time determination unit 54 determines the gradation value in the pixel region P from the pixel region D to the pixel region adjacent to the left of the pixel region E from the value of the gradation value corresponding to the initial position (that is, “255”). Is obtained from the pixel region D to the pixel region using the difference value and the scanning time (TW1) of the line b. A voltage application time for moving the polar liquid 16 in the pixel region P up to the pixel region on the left side of E is determined. Specifically, the scanning time determination unit 54 sets TW1 × 105 ÷ as the voltage application time for moving the polar liquid 16 in each pixel region P from the pixel region D to the pixel region adjacent to the left of the pixel region E. It is determined from the formula 205.
 また、走査時間決定部54は、初期位置に対応する階調値の値(つまり、“255”)から画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pでの階調値の値(つまり、“120”)の差の値、“135”(=255-120)を求め、この差の値と、ラインbの走査時間(TW1)を用いて、画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pでの極性液体16を移動させるための電圧印加時間を決定する。具体的には、走査時間決定部54は、画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pにおいて、極性液体16を移動させるための電圧印加時間として、TW1×135÷205の式から定める。 In addition, the scanning time determination unit 54 determines the gradation value in the pixel region P from the pixel region F to the pixel region on the left side of the pixel region G from the value of the gradation value corresponding to the initial position (that is, “255”). The difference value between the pixel values (that is, “120”), “135” (= 255−120) is obtained, and the pixel value is changed from the pixel region F to the pixel region using the difference value and the scanning time (TW1) of the line b. A voltage application time for moving the polar liquid 16 in the pixel region P up to the pixel region on the left side of G is determined. Specifically, the scanning time determination unit 54 sets TW1 × 135 ÷ 205 as a voltage application time for moving the polar liquid 16 in the pixel region P from the pixel region F to the pixel region adjacent to the left of the pixel region G. Determined from the formula of
 さらに、走査時間決定部54は、表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの画素領域Pにおいて、画像入力信号のデータ(階調値)が全て“255”の値であることを判別することにより、これらの各画素領域Pでは、極性液体16を初期位置から移動させる必要がないと判断する。言い換えれば、走査時間決定部54は、初期位置に対応する階調値の値(つまり、“255”)からこれらの画素領域Pでの階調値の値(つまり、“255”)の差の値、“0”(=255-255)を求め、この差の値と、ラインbの走査時間(TW1)を用いて、これら画素領域Pでの極性液体16を移動させるための電圧印加時間を決定する。具体的には、走査時間決定部54は、表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの画素領域Pにおいて、極性液体16を移動させるための電圧印加時間として、TW1×0÷205の式から定める。すなわち、走査時間決定部54は、これらの各画素領域Pでは極性液体16を移動させるための電圧印加を行わずに、上述したように、ラインbの走査時間(TW1)の間、M電圧を印加させる。 Further, the scanning time determination unit 54 includes a pixel region P from the pixel region LE at the left end of the display surface to the pixel region on the left side of the pixel region D, and a pixel region on the right side of the pixel region E to the left of the pixel region F. In the pixel region P up to the adjacent pixel region and the pixel region P from the pixel region right next to the pixel region G to the pixel region RE at the right end of the display surface, all the data (tone values) of the image input signal are “ By determining that the value is 255 ″, it is determined that it is not necessary to move the polar liquid 16 from the initial position in each of the pixel regions P. In other words, the scanning time determination unit 54 calculates the difference between the gradation value value (that is, “255”) corresponding to the initial position and the gradation value value (that is, “255”) in these pixel regions P. A value “0” (= 255-255) is obtained, and the voltage application time for moving the polar liquid 16 in the pixel region P is calculated using the difference value and the scanning time (TW1) of the line b. decide. Specifically, the scanning time determination unit 54 includes a pixel area P from the pixel area LE at the left end of the display surface to the pixel area on the left side of the pixel area D, and a pixel area from the pixel area on the right side of the pixel area E to the pixel area. Voltage application for moving the polar liquid 16 in the pixel region P to the pixel region P to the left of F and the pixel region P from the pixel region to the right of the pixel region G to the pixel region RE at the right end of the display surface The time is determined from the formula of TW1 × 0 ÷ 205. That is, the scanning time determination unit 54 does not apply a voltage for moving the polar liquid 16 in each of the pixel regions P, and the M voltage is applied during the scanning time (TW1) of the line b as described above. Apply.
 そして、走査時間決定部54は、決定した電圧印加時間を画像処理部51に通知する。その後、画像処理部51が、信号ドライバ7に対して、画素領域E及びGでのH電圧を印加する電圧印加時間(TW1)を指示信号に含めて指示する。これにより、信号ドライバ7は、図13(a)に示すように、画素領域E及びGでは、信号ドライバ7は、その画素領域E及びGにそれぞれ対応する信号電極4に対して、時点T1から時点T3までの間、H電圧を印加させて、極性液体16を移動させる。また、図において、時点T1から時点T2は、極性液体16を初期位置から最大限に移動させるのに要する時間(つまり、完全な赤色表示(図9(b)参照)から完全な黒色表示(図9(a)参照)とするのに要する時間)である。 The scanning time determination unit 54 notifies the image processing unit 51 of the determined voltage application time. Thereafter, the image processing unit 51 instructs the signal driver 7 by including the voltage application time (TW1) during which the H voltage is applied in the pixel regions E and G in the instruction signal. As a result, as shown in FIG. 13A, the signal driver 7 applies the signal driver 7 to the signal electrodes 4 corresponding to the pixel regions E and G from the time point T1 in the pixel regions E and G, respectively. The H liquid is applied to move the polar liquid 16 until time T3. Also, in the figure, from time T1 to time T2, the time required to move the polar liquid 16 to the maximum from the initial position (that is, complete red display (see FIG. 9B)) to complete black display (FIG. 9). 9 (see (a))).
 また、画像処理部51は、信号ドライバ7に対して、画素領域Dから画素領域Eの左隣の画素領域までの画素領域PでのH電圧を印加する電圧印加時間(=TW1×105÷205)と、極性液体16を静止させるM電圧を印加する電圧印加時間(=TW1-H電圧を印加する電圧印加時間(TW1×105÷205))を指示信号に含めて指示する。これにより、信号ドライバ7は、図13(b)に示すように、画素領域Dから画素領域Eの左隣の画素領域までの画素領域Pでは、信号ドライバ7は、その画素領域Dから画素領域Eの左隣の画素領域までの各画素領域Pに対応する信号電極4に対して、時点T1から時点T3までの時間のうち、時点T1から時点T4までの間、H電圧を印加させて、極性液体16を移動させた後、時点T4から時点T3までの間、M電圧を印加させて、極性液体16を移動させた位置で停止させる。 Further, the image processing unit 51 applies a voltage application time (= TW1 × 105 ÷ 205) for applying the H voltage in the pixel region P from the pixel region D to the pixel region adjacent to the left of the pixel region E to the signal driver 7. ) And a voltage application time for applying the M voltage for stopping the polar liquid 16 (= TW1-H voltage application time (TW1 × 105 ÷ 205)) are included in the instruction signal. As a result, the signal driver 7 in the pixel region P from the pixel region D to the pixel region on the left side of the pixel region E as shown in FIG. For the signal electrode 4 corresponding to each pixel region P up to the pixel region adjacent to the left of E, an H voltage is applied from the time T1 to the time T4 during the time from the time T1 to the time T3. After the polar liquid 16 is moved, M voltage is applied from time T4 to time T3, and the polar liquid 16 is stopped at the moved position.
 また、画像処理部51は、信号ドライバ7に対して、画素領域Fから画素領域Gの左隣の画素領域までの画素領域PでのH電圧を印加する電圧印加時間(=TW1×135÷205)と、極性液体16を静止させるM電圧を印加する電圧印加時間(=TW1-H電圧を印加する電圧印加時間(TW1×135÷205))を指示信号に含めて指示する。これにより、信号ドライバ7は、図13(c)に示すように、画素領域Fから画素領域Gの左隣の画素領域までの画素領域Pでは、信号ドライバ7は、その画素領域Fから画素領域Gの左隣の画素領域までの各画素領域Pに対応する信号電極4に対して、時点T1から時点T5までの間、H電圧を印加させて、極性液体16を移動させた後、時点T5から時点T3までの間、M電圧を印加させて、極性液体16を移動させた位置で停止させる。 Further, the image processing unit 51 applies a voltage application time (= TW1 × 135 ÷ 205) for applying the H voltage in the pixel region P from the pixel region F to the pixel region on the left side of the pixel region G to the signal driver 7. ) And a voltage application time for applying the M voltage to stop the polar liquid 16 (= TW1-H voltage application time (TW1 × 135 ÷ 205)) is included in the instruction signal. Accordingly, as shown in FIG. 13C, the signal driver 7 in the pixel area P from the pixel area F to the pixel area on the left side of the pixel area G is changed from the pixel area F to the pixel area. After the polar liquid 16 is moved by applying an H voltage from the time point T1 to the time point T5 to the signal electrode 4 corresponding to each pixel region P up to the pixel region on the left side of G, the time point T5 From time to time T3, the M voltage is applied, and the polar liquid 16 is stopped at the position where it has moved.
 また、画像処理部51は、信号ドライバ7に対して、表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの画素領域PでのM電圧を印加する時間を指示信号に含めて指示する。これにより、信号ドライバ7は、図13(d)に示すように、表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの画素領域Pでは、信号ドライバ7は、その表示面の左端部の画素領域LEから画素領域Dの左隣の画素領域までの各画素領域Pと、画素領域Eの右隣の画素領域から画素領域Fの左隣の画素領域までの各画素領域Pと、画素領域Gの右隣の画素領域から表示面の右端部の画素領域REまでの各画素領域Pに対応する信号電極4に対して、時点T1から時点T3までの間、M電圧を印加させて、極性液体16を移動させない。 In addition, the image processing unit 51 provides the signal driver 7 with a pixel area P from a pixel area LE at the left end of the display surface to a pixel area to the left of the pixel area D, and a pixel area to the right of the pixel area E. To the pixel region P from the pixel region F to the pixel region F on the left side of the pixel region F, and the time for applying the M voltage in the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface. Instructions are included in the instruction signal. As a result, the signal driver 7 causes the pixel region P from the pixel region LE at the left end portion of the display surface to the pixel region adjacent to the left of the pixel region D and the pixel region E to the right as shown in FIG. In the pixel region P from the pixel region to the pixel region P on the left side of the pixel region F and the pixel region P from the pixel region on the right side of the pixel region G to the pixel region RE on the right end of the display surface, the signal driver 7 , Each pixel region P from the pixel region LE at the left end of the display surface to the pixel region to the left of the pixel region D, and from the pixel region to the right of the pixel region E to the pixel region to the left of the pixel region F. For each pixel region P and the signal electrode 4 corresponding to each pixel region P from the pixel region right next to the pixel region G to the pixel region RE at the right end of the display surface, from time T1 to time T3, The polar liquid 16 is not moved by applying the M voltage.
 尚、上記の説明以外に、電圧印加時間において、極性液体16を移動させないM電圧を先に印加した後、極性液体16を移動させるH電圧を印加したり、M電圧を印加する時間及びH電圧を印加する印加時間を各々複数に分割して、所定の走査時間内にM電圧及びH電圧を印加する時間を交互に設けたりする構成でもよい。 In addition to the above description, after applying the M voltage that does not move the polar liquid 16 in the voltage application time, the H voltage that moves the polar liquid 16 is applied first, the time during which the M voltage is applied, and the H voltage. The application time for applying the voltage may be divided into a plurality of times, and the time for applying the M voltage and the H voltage may be alternately provided within a predetermined scanning time.
 以上のように構成された本実施形態の表示素子10では、リセット信号指示部53が信号ドライバ(信号電圧印加部)7、走査ドライバ(走査電圧印加部)9、及び参照ドライバ(参照電圧印加部)8からそれぞれ信号電極4、走査電極6、及び参照電極5に対して、走査動作を行う前に、全ての画素領域P内の各極性液体16が非有効表示領域P2側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示する。これにより、本実施形態の表示素子10では、走査動作を行う前に、全ての画素領域P内の各極性液体16を、上記初期位置に移動させることができ、次の表示動作の際に、極性液体16を所望の位置に高精度に移動させることが可能となる。 In the display element 10 of the present embodiment configured as described above, the reset signal instruction unit 53 includes the signal driver (signal voltage application unit) 7, the scan driver (scan voltage application unit) 9, and the reference driver (reference voltage application unit). ) Before the scanning operation is performed on the signal electrode 4, the scanning electrode 6, and the reference electrode 5 from 8, the polar liquids 16 in all the pixel regions P are initially set to the ineffective display region P 2 side. It is instructed to supply a predetermined reset signal so as to move to the position. Thereby, in the display element 10 of this embodiment, before performing a scanning operation | movement, each polar liquid 16 in all the pixel areas P can be moved to the said initial position, and in the case of the next display operation | movement, It becomes possible to move the polar liquid 16 to a desired position with high accuracy.
 また、本実施形態の表示素子10では、最大印加時間取得部71が、外部からの画像入力信号と初期位置を用いて、走査動作毎の最大印加時間を取得し、走査時間決定部54が、外部からの画像入力信号と最大印加時間取得部71からの最大印加時間を用いて、対応する走査動作での走査時間を決定する。さらに、表示制御部50は、外部からの画像入力信号と走査時間決定部54からの走査時間を用いて、信号ドライバ7、走査ドライバ9、及び参照ドライバ8への各指示信号を生成し、当該走査時間に応じた走査動作を行わせる。これにより、本実施形態では、上記従来例と異なり、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子10を構成することができる。 Further, in the display element 10 of the present embodiment, the maximum application time acquisition unit 71 acquires the maximum application time for each scanning operation using the image input signal from the outside and the initial position, and the scanning time determination unit 54 The scanning time in the corresponding scanning operation is determined using the external image input signal and the maximum application time from the maximum application time acquisition unit 71. Furthermore, the display control unit 50 generates each instruction signal to the signal driver 7, the scan driver 9, and the reference driver 8 using the image input signal from the outside and the scan time from the scan time determination unit 54. A scanning operation corresponding to the scanning time is performed. Thus, in the present embodiment, unlike the conventional example, it is possible to configure the display element 10 that can perform a display operation at high speed while preventing deterioration of display quality even when performing gradation display.
 また、本実施形態の画像表示装置(電気機器)1では、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子10が表示部に用いられているので、表示情報を高速に変更可能で、優れた表示品位を有する表示部を備えた高性能な画像表示装置(電気機器)1を容易に構成することができる。 Further, in the image display device (electrical device) 1 according to the present embodiment, the display element 10 that can perform display operation at high speed while preventing deterioration in display quality is used for the display unit even when gradation display is performed. Therefore, it is possible to easily configure a high-performance image display device (electrical device) 1 including a display unit that can change display information at high speed and has excellent display quality.
 また、本実施形態の表示素子10では、リセット信号指示部53は信号電極4に対するリセット信号の電圧として、信号電圧Vdの最大の電圧または最小の電圧を選択し、参照電極5に対するリセット信号の電圧として、選択電圧及び非選択電圧の一方の電圧を選択し、走査電極6に対するリセット信号の電圧として、選択電圧及び非選択電圧の他方の電圧を選択している。これにより、本実施形態の表示素子10では、走査動作の際に印加する電圧とリセット信号の電圧とを同じ電圧を用いることができるので、信号ドライバ7、参照ドライバ8、及び走査ドライバ9の各構成を簡単化することができる。 In the display element 10 of the present embodiment, the reset signal instruction unit 53 selects the maximum voltage or the minimum voltage of the signal voltage Vd as the voltage of the reset signal for the signal electrode 4, and the voltage of the reset signal for the reference electrode 5. As described above, one of the selection voltage and the non-selection voltage is selected, and the other of the selection voltage and the non-selection voltage is selected as the voltage of the reset signal for the scan electrode 6. Thereby, in the display element 10 of the present embodiment, the same voltage can be used as the voltage applied during the scanning operation and the voltage of the reset signal, so that each of the signal driver 7, the reference driver 8, and the scanning driver 9 can be used. The configuration can be simplified.
 また、本実施形態の表示素子10では、走査時間決定部54は、外部からの画像入力信号と最大印加時間取得部71からの最大印加時間を用いて、対応する走査動作での画素領域P毎の極性液体16を移動させるための電圧印加時間を決定している。これにより、本実施形態の表示素子10では、走査動作において、各画素領域Pの極性液体16を適切に移動させることができ、高精度な階調表示を確実に行うことができる。 In the display element 10 of the present embodiment, the scanning time determination unit 54 uses the image input signal from the outside and the maximum application time from the maximum application time acquisition unit 71 for each pixel region P in the corresponding scanning operation. The voltage application time for moving the polar liquid 16 is determined. Thereby, in the display element 10 of the present embodiment, the polar liquid 16 in each pixel region P can be appropriately moved in the scanning operation, and high-precision gradation display can be reliably performed.
 また、本実施形態の表示素子10では、最大印加時間取得部71には、少なくとも1つの走査動作分の画像入力信号のデータを記憶可能なラインメモリ71aが用いられているので、走査動作毎の正確な最大印加時間を確実に、かつ、容易に得ることができる。 In the display element 10 of the present embodiment, the maximum application time acquisition unit 71 uses a line memory 71a capable of storing image input signal data for at least one scanning operation. An accurate maximum application time can be obtained reliably and easily.
 [第2の実施形態]
 図14は、本発明の第2の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。図15は、図14に示した表示制御部の具体的な構成を示すブロック図である。図16は、図14に示した信号ドライバの具体的な構成を示すブロック図である。図において、本実施形態と上記第1の実施形態との主な相違点は、表示制御部内に最大印加時間取得部を設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Second Embodiment]
FIG. 14 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention. FIG. 15 is a block diagram showing a specific configuration of the display control unit shown in FIG. FIG. 16 is a block diagram showing a specific configuration of the signal driver shown in FIG. In the figure, the main difference between the present embodiment and the first embodiment is that a maximum application time acquisition unit is provided in the display control unit. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図14~図16に示すように、本実施形態の表示素子10では、表示制御部50’の内部に、最大印加時間取得部55が設けられている。また、表示制御部50’では、フレームバッファ52は、第1の実施形態のものと同様に、少なくとも1フレーム分の画像入力信号のデータを記憶可能に構成されており、かつ、少なくとも1つの走査動作分の画像入力信号のデータを記憶可能なメモリを兼用している。 That is, as shown in FIGS. 14 to 16, in the display element 10 of the present embodiment, the maximum application time acquisition unit 55 is provided inside the display control unit 50 '. In the display control unit 50 ′, the frame buffer 52 is configured to be able to store image input signal data for at least one frame, as in the first embodiment, and at least one scan. It also serves as a memory that can store image input signal data for operation.
 最大印加時間取得部55は、第1の実施形態のものと同様に、走査動作毎の最大印加時間を取得する。具体的には、最大印加時間取得部55は、メモリとしてのフレームバッファ52に記憶されている、1つの走査動作分の画像入力信号のデータ(階調値)と上記リセット信号にて規定される初期位置を用いて、走査動作毎の最大印加時間を求める。そして、最大印加時間取得部55は、求めた最大印加時間を走査時間決定部56に出力する。 The maximum application time acquisition unit 55 acquires the maximum application time for each scanning operation, as in the first embodiment. Specifically, the maximum application time acquisition unit 55 is defined by image input signal data (gradation value) for one scanning operation stored in the frame buffer 52 as a memory and the reset signal. The maximum application time for each scanning operation is obtained using the initial position. Then, the maximum application time acquisition unit 55 outputs the obtained maximum application time to the scanning time determination unit 56.
 走査時間決定部56は、第1の実施形態のものと同様に、外部からの画像入力信号と最大印加時間取得部55からの最大印加時間を用いて、対応する走査動作での走査時間を決定する。また、走査時間決定部54は、上記画像入力信号と最大印加時間を用いて、対応する走査動作での画素領域P毎の極性液体16を移動させるための電圧印加時間(つまり、画素領域P毎の対応する信号電極4への信号電圧の電圧印加時間)を決定する。 Similar to the first embodiment, the scanning time determination unit 56 determines the scanning time in the corresponding scanning operation using the external image input signal and the maximum application time from the maximum application time acquisition unit 55. To do. Further, the scanning time determination unit 54 uses the image input signal and the maximum application time to apply a voltage application time for moving the polar liquid 16 for each pixel region P in the corresponding scanning operation (that is, for each pixel region P). The voltage application time of the signal voltage to the corresponding signal electrode 4) is determined.
 一方、信号ドライバ7’は、汎用のドライバを用いて構成されており、この信号ドライバ7’には、図16に示すように、シフトレジスタ74、及びレベルシフタ75が設けられている。シフトレジスタ74は、画像処理部51からの指示信号に基づいて、上記走査動作に応じて、複数の信号電極4に対して、レベルシフタ75から対応する信号電圧Vdを供給させるようになっている。具体的にいえば、シフトレジスタ74には、画像処理部51からの指示信号に含まれたスタートパルスやクロック信号が入力されるようになっており、シフトレジスタ74は、入力されたスタートパルスやクロック信号に基づき、レベルシフタ75をライン毎の走査動作単位で動作させる。また、レベルシフタ75には、複数の(全ての)信号電極4が接続されており、シフトレジスタ74からの動作指示に従って、全ての各信号電極4に対して、画像処理部51からの指示信号に応じた信号電圧Vdを対応する信号電極4に一斉に印加するようになっている。 On the other hand, the signal driver 7 'is configured by using a general-purpose driver, and the signal driver 7' is provided with a shift register 74 and a level shifter 75 as shown in FIG. Based on the instruction signal from the image processing unit 51, the shift register 74 supplies the corresponding signal voltage Vd from the level shifter 75 to the plurality of signal electrodes 4 according to the scanning operation. More specifically, the shift register 74 is supplied with a start pulse and a clock signal included in the instruction signal from the image processing unit 51. The shift register 74 receives the input start pulse and Based on the clock signal, the level shifter 75 is operated in units of scanning operation for each line. In addition, a plurality of (all) signal electrodes 4 are connected to the level shifter 75, and in response to an operation instruction from the shift register 74, an instruction signal from the image processing unit 51 is sent to all the signal electrodes 4. The corresponding signal voltage Vd is applied to the corresponding signal electrodes 4 all at once.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、最大印加時間取得部55が、表示制御部50’内に設けられている。これにより、本実施形態では、上記信号ドライバ(信号電圧印加部)7内に最大印加時間取得部71を設けた場合と異なり、信号ドライバ7’に汎用の電圧印加部(ドライバ)を使用することができる。また、表示制御部50’から信号ドライバ7’、参照ドライバ8、及び走査ドライバ9への指示信号を容易に出力することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, the maximum application time acquisition unit 55 is provided in the display control unit 50 ′. Thus, in this embodiment, unlike the case where the maximum application time acquisition unit 71 is provided in the signal driver (signal voltage application unit) 7, a general-purpose voltage application unit (driver) is used for the signal driver 7 ′. Can do. Further, it is possible to easily output instruction signals from the display control unit 50 ′ to the signal driver 7 ′, the reference driver 8, and the scanning driver 9.
 [第3の実施形態]
 図17は、本発明の第3の実施形態にかかる表示素子における、表示面側から見た場合での上部基板側の要部構成を示す拡大平面図である。図18は、本発明の第3の実施形態にかかる表示素子における、非表示面側から見た場合での下部基板側の要部構成を示す拡大平面図である。図19(a)及び図19(b)は、それぞれ非CF着色表示時及びCF着色表示時における、本発明の第3の実施形態にかかる表示素子の要部構成を示す断面図である。図において、本実施形態と上記第2の実施形態との主な相違点は、画素領域がリブにより気密に区切られていない表示素子において、リセット信号を供給することによって、走査方向とは反対側に設定された初期位置に極性液体を移動させる点である。なお、上記第2の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Third Embodiment]
FIG. 17 is an enlarged plan view showing a main configuration of the upper substrate side when viewed from the display surface side in the display element according to the third embodiment of the present invention. FIG. 18 is an enlarged plan view showing the main configuration of the lower substrate side when viewed from the non-display surface side in the display element according to the third embodiment of the present invention. FIG. 19A and FIG. 19B are cross-sectional views showing the main configuration of the display element according to the third embodiment of the present invention during non-CF color display and CF color display, respectively. In the figure, the main difference between the present embodiment and the second embodiment is that a display element in which the pixel region is not hermetically separated by ribs is supplied with a reset signal so that it is opposite to the scanning direction. The polar liquid is moved to the initial position set to. In addition, about the element which is common in the said 2nd Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図17~図19に示すように、本実施形態の表示素子10では、信号電極4が上部基板2側に設けられている。また、画素領域Pは、その四隅部に隙間が設けられた状態で、仕切壁としてのリブ24に区切られている。具体的には、リブ24は、Y方向及びX方向にそれぞれ平行となるように設けられたリブ24a及び24bを有している。また、各画素の表示用空間Sは、図18に例示するように、互いに対向する2つのリブ24aと、互いに対向する2つのリブ24bとによって区画されている。さらに、本実施形態の表示素子10では、リブ24a、24bによって極性液体16が隣接する画素領域Pの表示用空間Sの内部に流入するのが防がれている。すなわち、リブ24a、24bには、例えばエポキシ樹脂系レジスト材料が用いられており、これらのリブ24a、24bでは、隣接する画素間で極性液体16の流入出が防止されるように、誘電体層13からの突出高さ(リブ高さ)が決定されている。 That is, as shown in FIGS. 17 to 19, in the display element 10 of the present embodiment, the signal electrode 4 is provided on the upper substrate 2 side. Further, the pixel region P is divided into ribs 24 as partition walls in a state where gaps are provided at the four corners. Specifically, the rib 24 has ribs 24a and 24b provided so as to be parallel to the Y direction and the X direction, respectively. Further, as illustrated in FIG. 18, the display space S of each pixel is partitioned by two ribs 24 a facing each other and two ribs 24 b facing each other. Furthermore, in the display element 10 of the present embodiment, the polar liquid 16 is prevented from flowing into the display space S of the adjacent pixel region P by the ribs 24a and 24b. That is, for example, an epoxy resin resist material is used for the ribs 24a and 24b. In these ribs 24a and 24b, the dielectric layer 16 is prevented from flowing in and out of the polar liquid 16 between adjacent pixels. The protruding height from 13 (rib height) is determined.
 また、本実施形態の画像表示装置1では、リセット信号指示部53は、例えばノーマリブラック、つまり全ての画素領域P内の各極性液体16がその初期位置として有効表示領域P1側に移動するように、リセット信号を指示するようになっている。言い換えれば、リセット信号指示部53は、走査動作を行う前に、全ての前記画素領域P内の各極性液体16が走査方向とは反対側に設定された有効表示領域P1側に定められた初期位置に移動するように、信号ドライバ7、走査ドライバ9、及び参照ドライバ8からそれぞれ信号電極4、走査電極6、及び参照電極5に対して、所定のリセット信号を供給させるようになっている。 Further, in the image display device 1 of the present embodiment, the reset signal instruction unit 53 causes, for example, normally black, that is, each polar liquid 16 in all the pixel regions P to move to the effective display region P1 side as its initial position. In addition, a reset signal is instructed. In other words, before performing the scanning operation, the reset signal instructing unit 53 is an initial stage determined on the effective display region P1 side where the polar liquids 16 in all the pixel regions P are set on the side opposite to the scanning direction. A predetermined reset signal is supplied from the signal driver 7, the scan driver 9, and the reference driver 8 to the signal electrode 4, the scan electrode 6, and the reference electrode 5, respectively, so as to move to the position.
 ここで、図20(a)~図20(d)を用いて、本実施形態の表示素子10での上記所定のリセット信号による動作例について、具体的に説明する。 Here, with reference to FIG. 20A to FIG. 20D, an example of the operation by the predetermined reset signal in the display element 10 of the present embodiment will be specifically described.
 図20(a)~図20(c)は、図19に示した信号電極、参照電極、及び走査電極にそれぞれ供給されるリセット信号の具体例を示す波形図であり、図20(d)は、上記リセット信号が供給された場合における、上記表示素子の画素領域での動作例を説明する図である。 20A to 20C are waveform diagrams showing specific examples of reset signals respectively supplied to the signal electrode, the reference electrode, and the scan electrode shown in FIG. 19, and FIG. FIG. 10 is a diagram illustrating an operation example in the pixel region of the display element when the reset signal is supplied.
 リセット信号指示部53がリセット信号の指示動作を行うことにより、信号ドライバ7は、時点Tr1から時点Tr2までの所定のリセット時間において、全ての信号電極4に対して、図20(a)に示すように、例えばH電圧を印加する。また、参照ドライバ8は、所定のリセット時間において、全ての参照電極5に対して、図20(b)に示すように、例えばL電圧を印加する。また、走査ドライバ9は、所定のリセット時間において、全ての走査電極6に対して、図20(c)に示すように、例えばH電圧を印加する。これにより、表示素子10では、図20(d)に示すように、全ての画素領域P内の各極性液体16は、同図の矢印にて示すように、走査方向とは反対側に設定された有効表示領域(参照電極5)P1側に定められた初期位置(表示用空間Sでの最も左端部に位置)に移動する。 When the reset signal instruction unit 53 performs a reset signal instruction operation, the signal driver 7 performs the predetermined reset time from the time point Tr1 to the time point Tr2 with respect to all the signal electrodes 4 as shown in FIG. For example, an H voltage is applied. Further, the reference driver 8 applies, for example, an L voltage to all the reference electrodes 5 at a predetermined reset time as shown in FIG. Further, the scan driver 9 applies, for example, an H voltage to all the scan electrodes 6 at a predetermined reset time as shown in FIG. Accordingly, in the display element 10, as shown in FIG. 20D, the polar liquids 16 in all the pixel regions P are set on the side opposite to the scanning direction as shown by the arrows in the figure. The effective display area (reference electrode 5) moves to the initial position (position at the leftmost end in the display space S) determined on the P1 side.
 尚、上記の説明以外に、例えば信号電極4、参照電極5、及び走査電極6に対して、それぞれL電圧、H電圧、及びL電圧を印加して、全ての画素領域P内の各極性液体16を有効表示領域P1側の上記初期位置に移動させる構成でもよい。 In addition to the above description, for example, an L voltage, an H voltage, and an L voltage are applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively, and each polar liquid in all the pixel regions P is applied. 16 may be moved to the initial position on the effective display area P1 side.
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、リセット信号指示部53は、走査動作を行う前に、全ての前記画素領域P内の各極性液体16が走査方向とは反対側に設定された有効表示領域P1側に定められた初期位置に移動するように、信号ドライバ7、走査ドライバ9、及び参照ドライバ8からそれぞれ信号電極4、走査電極6、及び参照電極5に対して、所定のリセット信号を供給させている。このように、本実施形態では、初期位置が走査方向とは反対側に設定されているので、画素領域Pが気密に区切られていない場合でも、表示品位の低下を確実に防ぐことができる。 With the above configuration, the present embodiment can achieve the same operations and effects as those of the second embodiment. Further, in the present embodiment, the reset signal instruction unit 53 moves the polar liquids 16 in all the pixel regions P to the effective display region P1 side set on the opposite side to the scanning direction before performing the scanning operation. A predetermined reset signal is supplied from the signal driver 7, the scan driver 9, and the reference driver 8 to the signal electrode 4, the scan electrode 6, and the reference electrode 5, respectively, so as to move to a predetermined initial position. . Thus, in this embodiment, since the initial position is set on the side opposite to the scanning direction, it is possible to reliably prevent the display quality from being deteriorated even when the pixel region P is not hermetically partitioned.
 ここで、図21を参照して、上記初期位置が走査方向とは反対側に設定された有効表示領域P1側に定められている効果について具体的に説明する。尚、以下の説明では、本実施形態品とは異なり、初期位置が走査方向とは同じ側に設定された非有効表示領域P2側に定められた比較例での動作を説明することにより、本実施形態品の上記効果を示す。 Here, with reference to FIG. 21, the effect determined on the effective display area P1 side in which the initial position is set on the side opposite to the scanning direction will be specifically described. In the following description, unlike the present embodiment product, the operation in the comparative example in which the initial position is set on the non-effective display area P2 side set on the same side as the scanning direction will be described. The said effect of embodiment goods is shown.
 図21(a)~図21(c)は、比較例の画素領域での動作例を説明する図である。 FIGS. 21A to 21C are diagrams for explaining an operation example in the pixel region of the comparative example.
 図21(a)に示すように、比較例では、1フレーム分の情報表示が行われた後、次のフレームでの走査動作を行う前に、全ての信号電極4、全ての参照電極5、及び全ての走査電極6に対して、例えばL電圧、L電圧、及びH電圧がそれぞれ印加されることにより、全ての画素領域Pでは、各極性液体16は、非有効表示領域P2側に定められた初期位置に移動する。 As shown in FIG. 21A, in the comparative example, after the information display for one frame is performed and before the scanning operation in the next frame is performed, all the signal electrodes 4, all the reference electrodes 5, For example, by applying an L voltage, an L voltage, and an H voltage to each of the scanning electrodes 6, the polar liquids 16 are determined on the ineffective display region P 2 side in all the pixel regions P. Move to the initial position.
 続いて、図21(b)に示すように、同図に点線にて囲んだ3つの画素領域Pが走査動作の対象(選択ライン)とされて、信号電極4、参照電極5、及び走査電極6に対して、それぞれL電圧、L電圧、及びH電圧が印加されると、これらの画素領域P内の各極性液体16は、同図の矢印にて示すように、初期位置側である、走査電極6側で維持される。 Subsequently, as shown in FIG. 21B, three pixel regions P surrounded by dotted lines in FIG. 21B are set as scanning operation targets (selection lines), and the signal electrode 4, the reference electrode 5, and the scanning electrode. 6, when the L voltage, the L voltage, and the H voltage are respectively applied, the polar liquids 16 in these pixel regions P are on the initial position side as indicated by the arrows in FIG. It is maintained on the scanning electrode 6 side.
 その後、図21(c)に点線にて示すように、走査動作の対象(選択ライン)の画素領域Pが、左側の3つの画素領域Pから右側の3つの画素領域Pに変更されると、非選択ラインとされた左側の3つの画素領域Pでは、参照電極5及び走査電極6に対して、M電圧が印加される。一方、選択ラインとされた右側の3つの画素領域Pにおいて、信号電極4、参照電極5、及び走査電極6に対して、例えばH電圧、L電圧、及びH電圧がそれぞれ印加されると、これらの画素領域P内の各極性液体16は、同図の矢印にて示すように、初期位置から参照電極5側に移動される。この結果、これら3つの画素領域での極性液体16の移動に伴って、オイル17が同図の斜め方向の矢印にて示すように、走査方向で隣接する画素領域P(非選択ライン)の内部に入り込む。この非選択ラインの画素領域Pでは、参照電極5及び走査電極6に対して、M電圧が印加されているが、入り込んだオイル17によって、極性液体16が、図の矢印にて示すように、初期位置から参照電極5側に極僅か量だけ移動する。これにより、図の左側の3つの画素領域Pでは、走査動作を終えた後に、極性液体16の不必要な移動を発生する。従って、この比較例では、微妙な色ずれが生じて、表示品位の低下を生じる。 After that, as shown by a dotted line in FIG. 21C, when the pixel area P of the scanning operation target (selection line) is changed from the left three pixel areas P to the right three pixel areas P, In the three pixel regions P on the left side which are non-selected lines, the M voltage is applied to the reference electrode 5 and the scan electrode 6. On the other hand, when, for example, an H voltage, an L voltage, and an H voltage are respectively applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6 in the three pixel regions P on the right side that are selected lines, Each of the polar liquids 16 in the pixel region P is moved from the initial position to the reference electrode 5 side as indicated by an arrow in FIG. As a result, along with the movement of the polar liquid 16 in these three pixel regions, the oil 17 is inside the pixel region P (non-selected line) adjacent in the scanning direction as indicated by an oblique arrow in FIG. Get in. In the pixel region P of the non-selected line, the M voltage is applied to the reference electrode 5 and the scan electrode 6, but the polar liquid 16 is caused by the oil 17 that has entered, as indicated by the arrows in the figure. A very small amount moves from the initial position to the reference electrode 5 side. Thereby, in the three pixel regions P on the left side of the figure, unnecessary movement of the polar liquid 16 occurs after the scanning operation is finished. Therefore, in this comparative example, a subtle color shift occurs and the display quality is lowered.
 これに対して、本実施形態の表示素子10では、図20(d)に示したように、走査動作を行う前に、所定のリセット信号を供給することにより、全ての画素領域P内の各極性液体16が走査方向とは反対側に設定された有効表示領域P1側に定められた初期位置に移動させている。この結果、本実施形態の表示素子10では、比較例と異なり、走査動作後の非選択ラインの画素領域P内において、極性液体16が、不必要に移動するのを防ぐことができ、次の表示動作の際に、極性液体16を所望の位置に高精度に移動させることができる。 On the other hand, in the display element 10 of the present embodiment, as shown in FIG. 20D, by supplying a predetermined reset signal before performing the scanning operation, each pixel region P in each pixel region P is supplied. The polar liquid 16 is moved to the initial position determined on the effective display area P1 side set on the opposite side to the scanning direction. As a result, in the display element 10 of the present embodiment, unlike the comparative example, the polar liquid 16 can be prevented from moving unnecessarily in the pixel region P of the non-selected line after the scanning operation. In the display operation, the polar liquid 16 can be moved to a desired position with high accuracy.
 尚、上記第1及び第2の各実施形態のように、画素領域Pがリブ14によって気密に区切られている場合においては、図7(d)に示したように、所定のリセット信号によって、非有効表示領域P2側に定められた初期位置に移動させた場合でも、図21に示したような微妙な色ずれを生じることはない。また、第1及び第2の各実施形態において、本実施形態と同様に、所定のリセット信号によって、走査方向とは反対側に設定された有効表示領域P1側に定められた初期位置に移動させてもよい。 In the case where the pixel region P is airtightly separated by the rib 14 as in the first and second embodiments, as shown in FIG. Even when moved to the initial position determined on the non-effective display area P2 side, the subtle color shift as shown in FIG. 21 does not occur. Further, in each of the first and second embodiments, as in the present embodiment, a predetermined reset signal is used to move to an initial position determined on the effective display region P1 side that is set on the side opposite to the scanning direction. May be.
 [第4の実施形態]
 図22は、本発明の第4の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。図23は、図22に示した表示制御部の具体的な構成を示すブロック図である。図24は、図22に示した信号ドライバの具体的な構成を示すブロック図である。図25は、図22に示した参照ドライバの具体的な構成を示すブロック図である。図26は、図22に示した走査ドライバの具体的な構成を示すブロック図である。図において、本実施形態と上記第3の実施形態との主な相違点は、表示制御部内に、走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部を設けた点である。なお、上記第3の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Fourth Embodiment]
FIG. 22 is a plan view for explaining a display element and an image display apparatus according to the fourth embodiment of the present invention. FIG. 23 is a block diagram showing a specific configuration of the display control unit shown in FIG. FIG. 24 is a block diagram showing a specific configuration of the signal driver shown in FIG. FIG. 25 is a block diagram showing a specific configuration of the reference driver shown in FIG. FIG. 26 is a block diagram showing a specific configuration of the scan driver shown in FIG. In the figure, the main difference between the present embodiment and the third embodiment is that scanning that determines whether or not to perform a scanning operation in the display control unit based on the scanning time from the scanning time determination unit. This is the point that an operation determining unit is provided. In addition, about the element which is common in the said 3rd Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図22~図26に示すように、本実施形態の表示素子10では、表示制御部50”の内部に、走査動作決定部57が設けられている。この走査動作決定部57は、走査時間決定部56からの走査時間に基づいて、走査動作を行わせるか否かを決定するように構成されている。具体的には、走査動作決定部57は、走査時間決定部56からの走査時間を用いて、走査動作を行うか否かどうかについて判別し、さらに走査動作を行うと判別したラインのアドレスを取得する。 That is, as shown in FIGS. 22 to 26, in the display element 10 of the present embodiment, a scanning operation determination unit 57 is provided inside the display control unit 50 ″. It is configured to determine whether or not to perform a scanning operation based on the scanning time from the time determining unit 56. Specifically, the scanning operation determining unit 57 scans from the scanning time determining unit 56. Using the time, it is determined whether or not the scanning operation is performed, and the address of the line determined to perform the scanning operation is acquired.
 そして、走査動作決定部57は、取得したアドレスを画像処理部51に通知する。画像処理部51は、外部からの画像入力信号を基に生成済みの信号ドライバ7”、参照ドライバ8”、及び走査ドライバ9”への各指示信号について、走査時間決定部56で決定された走査時間を用いて修正する。また、画像処理部51は、上述の各指示信号に、走査動作決定部57からの走査動作を行うと判別したラインのアドレスを含めて、対応する信号ドライバ7”、参照ドライバ8”、及び走査ドライバ9”に出力する。 Then, the scanning operation determination unit 57 notifies the image processing unit 51 of the acquired address. The image processing unit 51 performs scanning determined by the scanning time determination unit 56 for each instruction signal to the signal driver 7 ″, the reference driver 8 ″, and the scanning driver 9 ″ that has been generated based on an image input signal from the outside. The image processing unit 51 includes the address of the line determined to perform the scanning operation from the scanning operation determining unit 57 in each instruction signal described above, and the corresponding signal driver 7 ″, Output to the reference driver 8 "and the scanning driver 9".
 また、信号ドライバ7”は、汎用のドライバを用いて構成されており、この信号ドライバ7”には、図24に示すように、デコーダ76及びレベルシフタ77が設けられている。デコーダ76は、画像処理部51からの指示信号に含まれたアドレスを抽出して、走査動作を行うラインを判別するようになっている。そして、デコーダ76は、レベルシフタ77に対し、判別したラインについて、画像処理部51からの指示信号に応じた信号電圧Vdを対応する信号電極4に印加するように指示する。また、レベルシフタ77には、複数の(全ての)信号電極4が接続されており、デコーダ76からの動作指示に従って、走査動作を行うライン単位で全ての各信号電極4に対して、画像処理部51からの指示信号に応じた信号電圧Vdを印加する。 Further, the signal driver 7 ″ is configured by using a general-purpose driver, and the signal driver 7 ″ is provided with a decoder 76 and a level shifter 77 as shown in FIG. The decoder 76 extracts an address included in the instruction signal from the image processing unit 51 and determines a line on which a scanning operation is performed. Then, the decoder 76 instructs the level shifter 77 to apply the signal voltage Vd corresponding to the instruction signal from the image processing unit 51 to the corresponding signal electrode 4 for the determined line. In addition, a plurality of (all) signal electrodes 4 are connected to the level shifter 77, and in accordance with an operation instruction from the decoder 76, an image processing unit is provided for all the signal electrodes 4 for each line in which a scanning operation is performed. A signal voltage Vd corresponding to the instruction signal from 51 is applied.
 また、参照ドライバ8”は、汎用のドライバを用いて構成されており、この参照ドライバ8”には、図25に示すように、デコーダ83及びレベルシフタ84が設けられている。デコーダ83は、画像処理部51からの指示信号に含まれたアドレスを抽出して、走査動作を行うラインを判別するようになっている。そして、デコーダ83は、レベルシフタ84に対し、判別したラインについて、走査動作が行われるように、参照電圧Vrとしての選択電圧を対応する参照電極5に印加するように指示する。また、レベルシフタ84には、複数の(全ての)参照電極5が接続されており、デコーダ83からの動作指示に従って、走査動作を行うラインに含まれた参照電極5だけに、参照電圧Vr(選択電圧)を印加する。 Further, the reference driver 8 ″ is configured using a general-purpose driver, and the reference driver 8 ″ is provided with a decoder 83 and a level shifter 84 as shown in FIG. The decoder 83 extracts an address included in the instruction signal from the image processing unit 51 and discriminates a line on which a scanning operation is performed. Then, the decoder 83 instructs the level shifter 84 to apply the selection voltage as the reference voltage Vr to the corresponding reference electrode 5 so that the scanning operation is performed on the determined line. In addition, a plurality of (all) reference electrodes 5 are connected to the level shifter 84, and the reference voltage Vr (selection) is applied only to the reference electrodes 5 included in the scanning line according to the operation instruction from the decoder 83. Voltage).
 また、走査ドライバ9”は、汎用のドライバを用いて構成されており、この走査ドライバ9”には、図26に示すように、デコーダ93及びレベルシフタ94が設けられている。デコーダ93は、画像処理部51からの指示信号に含まれたアドレスを抽出して、走査動作を行うラインを判別するようになっている。そして、デコーダ93は、レベルシフタ94に対し、判別したラインについて、走査動作が行われるように、走査電圧Vsとしての選択電圧を対応する走査電極6に印加するように指示する。また、レベルシフタ94には、複数の(全ての)走査電極6が接続されており、デコーダ93からの動作指示に従って、走査動作を行うラインに含まれた走査電極6だけに、走査電圧Vs(選択電圧)を印加する。 Further, the scan driver 9 ″ is configured by using a general-purpose driver, and the scan driver 9 ″ is provided with a decoder 93 and a level shifter 94 as shown in FIG. The decoder 93 extracts an address included in the instruction signal from the image processing unit 51 and determines a line on which a scanning operation is performed. Then, the decoder 93 instructs the level shifter 94 to apply the selection voltage as the scanning voltage Vs to the corresponding scanning electrode 6 so that the scanning operation is performed on the determined line. Further, a plurality of (all) scanning electrodes 6 are connected to the level shifter 94, and the scanning voltage Vs (selection) is applied only to the scanning electrodes 6 included in the line where the scanning operation is performed in accordance with the operation instruction from the decoder 93. Voltage).
 以上の構成により、本実施形態では、上記第3の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、走査動作決定部57が表示制御部50”に設けられるとともに、信号ドライバ7”、参照ドライバ8”、及び走査ドライバ9”が走査動作決定部57の決定結果に応じて、信号電極4、参照電極5、及び走査電極6に対し、それぞれ電圧印加を行う。これにより、本実施形態では、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作をより高速に行うことができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the third embodiment. In the present embodiment, the scanning operation determination unit 57 is provided in the display control unit 50 ″, and the signal driver 7 ″, the reference driver 8 ″, and the scanning driver 9 ″ correspond to the determination result of the scanning operation determination unit 57. The voltage is applied to the signal electrode 4, the reference electrode 5, and the scanning electrode 6, respectively. Thereby, in this embodiment, even when performing gradation display, the display operation can be performed at a higher speed while preventing the display quality from being deteriorated.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、表示部を備えた画像表示装置に本発明を適用した場合について説明したが、本発明は文字及び画像を含んだ情報を表示する表示部が設けられた電気機器であれば何等限定されるものではなく、例えば電子手帳等のPDAなどの携帯情報端末、パソコンやテレビなどに付随する表示装置、あるいは電子ペーパーその他、各種表示部を備えた電気機器に好適に用いることができる。 For example, in the above description, the case where the present invention is applied to an image display apparatus provided with a display unit has been described. However, the present invention is an electric device provided with a display unit that displays information including characters and images. The present invention is not limited in any way. For example, it can be suitably used for a portable information terminal such as a PDA such as an electronic notebook, a display device attached to a personal computer, a television, or the like, or an electronic paper or other electric device including various display units. it can.
 また、上記の説明では、極性液体への電界印加に応じて、当該極性液体を移動させるエレクトロウェッティング方式の表示素子を構成した場合について説明したが、本発明の表示素子は、これに限定されるものではなく、外部電界を利用して、表示用空間の内部で極性液体を動作させることにより、表示面側の表示色を変更可能な電界誘導型の表示素子であれば何等限定されるものではなく、電気浸透方式、電気泳動方式、誘電泳動方式などの他の方式の電界誘導型表示素子に適用することができる。 In the above description, the case where an electrowetting type display element that moves the polar liquid in accordance with the application of an electric field to the polar liquid has been described. However, the display element of the present invention is not limited to this. It is not limited as long as it is an electric field induction type display element that can change the display color on the display surface side by operating a polar liquid inside the display space using an external electric field. Instead, the present invention can be applied to other types of electric field induction display elements such as an electroosmosis method, an electrophoresis method, and a dielectrophoresis method.
 但し、上記各実施形態のように、エレクトロウェッティング方式の表示素子を構成する場合の方が、極性液体を低い駆動電圧で高速に移動させることが可能となる。また、エレクトロウェッティング方式の表示素子では、極性液体の移動に応じて表示色が変更されており、液晶層などの複屈折材料を用いた液晶表示装置等と異なり、情報表示に使用される、バックライトからの光や外光の光利用効率に優れた高輝度な表示素子を容易に構成できる点でも好ましい。さらには、画素毎にスイッチング素子を設ける必要がないので、構造簡単で高性能なマトリクス駆動方式の表示素子を低コストで構成できる点でも好ましい。 However, when the electrowetting type display element is configured as in the above embodiments, the polar liquid can be moved at a high speed with a low driving voltage. Further, in the electrowetting type display element, the display color is changed according to the movement of the polar liquid, and unlike a liquid crystal display device using a birefringent material such as a liquid crystal layer, it is used for information display. It is also preferable in that a high-luminance display element that is excellent in light utilization efficiency of light from the backlight and external light can be easily configured. Furthermore, since it is not necessary to provide a switching element for each pixel, it is also preferable in that a high-performance matrix driving display element having a simple structure can be configured at low cost.
 また、上記の説明では、信号電極、走査電極、及び参照電極と、信号ドライバ(信号電圧印加部)、走査ドライバ(走査電圧印加部)、及び参照ドライバ(参照電圧印加部)とを用いた構成について説明した。しかしながら、本発明は、走査動作を行う前に、全ての画素領域内の各極性液体が有効表示領域側または非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示するリセット信号指示部と、外部からの画像入力信号と初期位置を用いて、走査動作毎の最大印加時間を取得する最大印加時間取得部と、外部からの画像入力信号と最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での走査時間を決定する走査時間決定部を設けるとともに、表示制御部が、外部からの画像入力信号と走査時間決定部からの走査時間を用いて、信号電圧印加部及び走査電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせるものであれば何等限定されない。 Further, in the above description, the configuration using the signal electrode, the scan electrode, and the reference electrode, the signal driver (signal voltage application unit), the scan driver (scan voltage application unit), and the reference driver (reference voltage application unit). Explained. However, according to the present invention, before performing the scanning operation, a predetermined reset signal is applied so that each polar liquid in all the pixel regions moves to an initial position determined on the effective display region side or the non-effective display region side. A reset signal indicating unit for instructing supply, a maximum application time acquiring unit for acquiring a maximum application time for each scanning operation using an external image input signal and an initial position, an external image input signal and a maximum A scanning time determination unit that determines the scanning time in the corresponding scanning operation using the maximum application time from the application time acquisition unit is provided, and the display control unit receives the image input signal from the outside and the scanning time determination unit from There is no limitation as long as each instruction signal to the signal voltage applying unit and the scanning voltage applying unit is generated using the scanning time and the scanning operation is performed according to the scanning time.
 具体的にいえば、複数の信号電極と複数の走査電極とを互いに交差するように、マトリクス状に設けるとともに、信号電極と走査電極との交差部単位に設けられた複数の画素領域毎に、スイッチング素子、例えば薄膜トランジスタ(TFT)を設置する。そして、薄膜トランジスタのゲートに走査電極を接続して走査電圧印加部から電圧印加を行うよう構成する。さらに、薄膜トランジスタのソースに信号電極を接続して信号電圧印加部から電圧印加を行うよう構成するとともに、画素領域毎に設けた画素電極に薄膜トランジスタのドレインを接続して信号電極からの電圧を供給することで極性液体の移動動作を行わせるよう構成する。 Specifically, a plurality of signal electrodes and a plurality of scanning electrodes are provided in a matrix so as to cross each other, and for each of a plurality of pixel regions provided in units of intersections between the signal electrodes and the scanning electrodes, A switching element such as a thin film transistor (TFT) is installed. Then, the scanning electrode is connected to the gate of the thin film transistor, and the voltage is applied from the scanning voltage application unit. Further, the signal electrode is connected to the source of the thin film transistor and voltage is applied from the signal voltage application unit, and the drain of the thin film transistor is connected to the pixel electrode provided for each pixel region to supply the voltage from the signal electrode. In this way, the polar liquid is moved.
 また、このように構成した場合には、第4の実施形態と同様に、走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部を表示制御部内に設ける場合の方が、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作をより高速に行うことができる点で好ましい。 Further, in the case of such a configuration, as in the fourth embodiment, the display control is performed on the scanning operation determining unit that determines whether or not to perform the scanning operation based on the scanning time from the scanning time determining unit. The provision in the unit is preferable in that the display operation can be performed at a higher speed while preventing deterioration in display quality even when gradation display is performed.
 但し、上記の各実施形態のように、参照電極及び参照ドライバ(参照電圧印加部)を設ける場合の方が、スイッチング素子を画素領域毎に設けることなく、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことが可能なマトリクス駆動方式の表示素子を構成することができる点で好ましい。 However, in the case where the reference electrode and the reference driver (reference voltage application unit) are provided as in the above-described embodiments, the display quality is improved even when the gradation display is performed without providing the switching element for each pixel region. This is preferable in that a matrix-driven display element capable of performing a display operation at a high speed while preventing a decrease in the above can be configured.
 また、上記の説明では、表示制御部内にリセット信号指示部及び走査動作時間決定部を設けた場合について説明したが、本発明はこれに限定されるものではなく、リセット信号指示部及び走査動作時間決定部を各々表示制御部の外部に設けてもよい。 In the above description, the case where the reset signal instruction unit and the scanning operation time determination unit are provided in the display control unit has been described. However, the present invention is not limited to this, and the reset signal instruction unit and the scanning operation time are provided. Each determination unit may be provided outside the display control unit.
 また、上記の説明では、バックライトを備えた透過型の表示素子を構成した場合について説明したが、本発明はこれに限定されるものではなく、拡散反射板などの光反射部を有する反射型や、前記光反射部とバックライトとを併用した半透過型の表示素子にも適用することができる。 In the above description, the case where a transmissive display element including a backlight is configured has been described. However, the present invention is not limited to this, and a reflective type having a light reflecting portion such as a diffuse reflector. In addition, the present invention can also be applied to a transflective display element in which the light reflecting portion and the backlight are used in combination.
 また、上記の説明では、塩化カリウムの水溶液を極性液体に用いた場合について説明したが、本発明の極性液体はこれに限定されるものではない。具体的にいえば、極性液体には、塩化亜鉛、水酸化カリウム、水酸化ナトリウム、アルカリ金属水酸化物、酸化亜鉛、塩化ナトリウム、リチウム塩、リン酸、アルカリ金属炭酸塩、酸素イオン伝導性を有するセラミックスなどの電解質を含んだものを使用することができる。また、溶媒には、水以外に、アルコール、アセトン、ホルムアミド、エチレングリコールなどの有機溶媒を使用することもできる。さらに、本発明の極性液体には、ピリジン系、脂環族アミン系、または脂肪族アミン系などの陽イオンと、フッ化物イオンやトリフラート等のフッ素系などの陰イオンとを含んだイオン液体(常温溶融塩)を使用することもできる。 In the above description, the case where an aqueous solution of potassium chloride is used as a polar liquid has been described, but the polar liquid of the present invention is not limited to this. Specifically, polar liquids include zinc chloride, potassium hydroxide, sodium hydroxide, alkali metal hydroxide, zinc oxide, sodium chloride, lithium salt, phosphoric acid, alkali metal carbonate, oxygen ion conductivity. Those containing an electrolyte such as ceramics can be used. In addition to water, organic solvents such as alcohol, acetone, formamide, and ethylene glycol can also be used as the solvent. Furthermore, the polar liquid of the present invention includes an ionic liquid containing a cation such as pyridine, alicyclic amine, or aliphatic amine, and an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
 また、本発明の極性液体には、導電性を有する導電性液体と、所定以上の比誘電率、好ましくは15以上の比誘電率を有する高誘電性を有する液体が含まれている。 The polar liquid of the present invention includes a conductive liquid having conductivity and a liquid having a high dielectric constant having a specific dielectric constant of a predetermined value or higher, preferably 15 or higher.
 但し、上記の各実施形態のように、所定の電解質を溶かした水溶液を極性液体に使用する場合の方が、取扱性に優れるとともに、製造が簡単な表示素子を容易に構成することができる点で好ましい。 However, as in each of the above embodiments, the use of an aqueous solution in which a predetermined electrolyte is dissolved in a polar liquid is superior in handleability and can easily constitute a display element that is easy to manufacture. Is preferable.
 また、上記の説明では、無極性のオイルを用いた場合について説明したが、本発明はこれに限定されるものではなく、極性液体と混じり合わない絶縁性流体であればよく、例えばオイルに代えて、空気を使用してもよい。また、オイルとして、シリコーンオイル、脂肪系炭化水素などを使用することができる。また、本発明の絶縁性流体には、所定以下の比誘電率、好ましくは5以下の比誘電率を有する流体が含まれている。 In the above description, the case where nonpolar oil is used has been described. However, the present invention is not limited to this, and any insulating fluid that does not mix with polar liquid may be used. Air may be used. Moreover, silicone oil, aliphatic hydrocarbons, etc. can be used as oil. The insulating fluid of the present invention includes a fluid having a relative dielectric constant of not more than a predetermined value, preferably not more than 5.
 但し、上記の各実施形態のように、極性液体と相溶性がない無極性のオイルを用いた場合の方が、空気と極性液体とを用いる場合よりは、無極性のオイル中で極性液体の液滴がより移動し易くなって、当該極性液体を高速移動させることが可能となり、表示色を高速に切り換えられる点で好ましい。 However, as in each of the above-described embodiments, the use of nonpolar oil that is not compatible with polar liquid is more polar in the nonpolar oil than when air and polar liquid are used. It is preferable in that the liquid droplets can be moved more easily, the polar liquid can be moved at high speed, and the display color can be switched at high speed.
 また、上記の説明では、信号電極を上部基板(第1の基板)側または下部基板(第2の基板)側に設け、参照電極及び走査電極を下部基板側に設けた場合について説明した。しかしながら、本発明は、極性液体と接触するように、表示用空間の内部に信号電極を設置し、かつ、極性液体及び互いに電気的に絶縁された状態で、走査電極及び参照電極を第1及び第2の基板の一方側に設けるものであればよい。具体的にいえば、例えば信号電極を第1及び第2の基板の中間部分に設けるとともに、参照電極及び走査電極を第1の基板側に設けてもよい。 In the above description, the case where the signal electrode is provided on the upper substrate (first substrate) side or the lower substrate (second substrate) side and the reference electrode and the scanning electrode are provided on the lower substrate side has been described. However, in the present invention, the scanning electrode and the reference electrode are connected to the first and second electrodes in a state in which the signal electrode is disposed inside the display space so as to be in contact with the polar liquid and electrically insulated from each other. What is necessary is just to provide in the one side of a 2nd board | substrate. Specifically, for example, the signal electrode may be provided in the middle portion of the first and second substrates, and the reference electrode and the scan electrode may be provided on the first substrate side.
 また、上記の説明では、参照電極及び走査電極を有効表示領域側及び非有効表示領域側にそれぞれ設置した場合について説明したが、本発明はこれに限定されるものではなく、参照電極及び走査電極を非有効表示領域側及び有効表示領域側にそれぞれ設置してもよい。 Further, in the above description, the case where the reference electrode and the scan electrode are respectively installed on the effective display area side and the non-effective display area side has been described, but the present invention is not limited to this, and the reference electrode and the scan electrode May be installed on the non-effective display area side and the effective display area side, respectively.
 また、上記の説明では、参照電極及び走査電極を下部基板(第2の基板)の表示面側の表面に設けた場合について説明したが、本発明はこれに限定されるものではなく、絶縁材料からなる上記第2の基板の内部に埋設した参照電極及び走査電極を用いることもできる。このように構成した場合には、第2の基板を誘電体層として兼用させることができ、当該誘電体層の設置を省略することができる。さらに、誘電体層を兼用した第1及び第2の基板上に信号電極を直接的に設け、表示用空間の内部に当該信号電極を設置する構成でもよい。 In the above description, the case where the reference electrode and the scanning electrode are provided on the display surface side surface of the lower substrate (second substrate) has been described. However, the present invention is not limited to this, and the insulating material It is also possible to use a reference electrode and a scan electrode embedded in the second substrate. In such a configuration, the second substrate can be used as a dielectric layer, and the installation of the dielectric layer can be omitted. Furthermore, the signal electrode may be directly provided on the first and second substrates also serving as the dielectric layer, and the signal electrode may be installed inside the display space.
 また、上記の説明では、透明な電極材料を用いて参照電極及び走査電極を構成した場合について説明したが、本発明は参照電極及び走査電極のうち、画素の有効表示領域に対向するように設置される一方の電極だけを透明な電極材料によって構成すればよく、有効表示領域に対向されない他方の電極には、アルミニウム、銀、クロム、その他の金属などの不透明な電極材料を使用することができる。 Further, in the above description, the case where the reference electrode and the scan electrode are configured using a transparent electrode material has been described, but the present invention is installed so as to face the effective display area of the pixel among the reference electrode and the scan electrode. It is sufficient that only one of the electrodes is made of a transparent electrode material, and an opaque electrode material such as aluminum, silver, chromium, or other metal can be used for the other electrode that is not opposed to the effective display area. .
 また、上記の説明では、帯状の参照電極及び走査電極を用いた場合について説明したが、本発明の参照電極及び走査電極の各形状はこれに何等限定されない。例えば透過型に比べて、情報表示に用いられる光の利用効率が低下する反射型の表示素子では、線状や網状などの光ロスが生じ難い形状としてもよい。 In the above description, the case where the belt-like reference electrode and the scan electrode are used has been described. However, the shapes of the reference electrode and the scan electrode of the present invention are not limited to this. For example, in a reflective display element in which the use efficiency of light used for information display is lower than that of a transmissive type, the shape may be such that light loss such as a line shape or a net shape hardly occurs.
 また、上記の説明では、信号電極に線状配線を用いた場合について説明したが、本発明の信号電極はこれに限定されるものではなく、網状配線などの他の形状に形成された配線も使用することができる。 In the above description, the case where a linear wiring is used for the signal electrode has been described. However, the signal electrode of the present invention is not limited to this, and wiring formed in other shapes such as a mesh wiring may also be used. Can be used.
 また、上記の説明では、黒色に着色された極性液体及びカラーフィルタ層を用いて、RGBの各色の画素を表示面側に設けた場合について説明したが、本発明はこれに限定されるものではなく、複数の画素領域が、表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられているものであればよい。具体的には、RGB、シアン(C)、マゼンタ(M)、及びイエロー(Y)のCMY、またはRGBYCなどに着色された複数色の極性液体を用いることもできる。 In the above description, the case where the pixels of each color of RGB are provided on the display surface side using the polar liquid colored in black and the color filter layer is described, but the present invention is not limited to this. Alternatively, it is only necessary that the plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side. Specifically, a plurality of polar liquids colored in RGB, cyan (C), magenta (M), yellow (Y), CMY, or RGBYC can be used.
 また、上記の説明では、カラーフィルタ層を上部基板(第1の基板)の非表示面側の表面に形成した場合について説明したが、本発明はこれに限定されるものではなく、第1の基板の表示面側の表面や下部基板(第2の基板)側にカラーフィルタ層を設置することもできる。このように、カラーフィルタ層を用いる場合の方が、複数色の極性液体を用意する場合に比べて、製造簡単な表示素子を容易に構成できる点で好ましい。また、このカラーフィルタ層に含まれたカラーフィルタ部(開口部)及びブラックマトリクス部(遮光膜)により、表示用空間に対し、有効表示領域及び非有効表示領域をそれぞれ適切に、かつ、確実に設定することができる点でも好ましい。 In the above description, the color filter layer is formed on the non-display surface side of the upper substrate (first substrate). However, the present invention is not limited to this, and the first substrate A color filter layer can be provided on the display surface side of the substrate or on the lower substrate (second substrate) side. Thus, the case where the color filter layer is used is preferable in that a display element which is easy to manufacture can be easily configured as compared with the case where a plurality of colors of polar liquids are prepared. In addition, the color filter part (opening part) and the black matrix part (light-shielding film) included in the color filter layer appropriately and reliably provide an effective display area and an ineffective display area with respect to the display space. It is also preferable in that it can be set.
 本発明は、階調表示を行うときでも、表示品位の低下を防止しつつ、表示動作を高速に行うことができる表示素子、及びこれを用いた電気機器に対して有用である。 The present invention is useful for a display element capable of performing a display operation at high speed while preventing a deterioration in display quality even when gradation display is performed, and an electric device using the display element.
 1 画像表示装置(電気機器)
 2 上部基板(第1の基板)
 3 下部基板(第2の基板)
 4 信号電極
 5 参照電極
 6 走査電極
 7、7’、7” 信号ドライバ(信号電圧印加部)
 8、8” 参照ドライバ(参照電圧印加部)
 9、9” 走査ドライバ(走査電圧印加部)
 10 表示素子
 11 カラーフィルタ層
 11r、11g、11b カラーフィルタ部(開口部)
 11s ブラックマトリクス部(遮光膜)
 13 誘電体層
 14、14a、14b、24、24a、24b リブ(仕切壁)
 16 極性液体
 17 オイル(絶縁性流体)
 50、50’、50” 表示制御部
 52 フレームバッファ(メモリ)
 53 リセット信号指示部
 54、56 走査時間決定部
 55 最大印加時間取得部
 57 走査動作決定部
 71 最大印加時間取得部
 71a ラインメモリ(メモリ)
 S 表示用空間
 P 画素領域
 P1 有効表示領域
 P2 非有効表示領域
1 Image display device (electric equipment)
2 Upper substrate (first substrate)
3 Lower substrate (second substrate)
4 Signal electrode 5 Reference electrode 6 Scan electrode 7, 7 ', 7 "Signal driver (signal voltage application unit)
8, 8 "reference driver (reference voltage application unit)
9, 9 "scan driver (scan voltage application unit)
DESCRIPTION OF SYMBOLS 10 Display element 11 Color filter layer 11r, 11g, 11b Color filter part (opening part)
11s Black matrix (light shielding film)
13 Dielectric layer 14, 14a, 14b, 24, 24a, 24b Rib (partition wall)
16 Polar liquid 17 Oil (insulating fluid)
50, 50 ', 50 "display control unit 52 frame buffer (memory)
53 Reset signal instruction unit 54, 56 Scanning time determination unit 55 Maximum application time acquisition unit 57 Scanning operation determination unit 71 Maximum application time acquisition unit 71a Line memory (memory)
S display space P pixel area P1 effective display area P2 non-effective display area

Claims (15)

  1. 表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で前記有効表示領域側または前記非有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子であって、
     前記極性液体と接触するように、前記表示用空間の内部に設置されるとともに、所定の配列方向に沿って設けられた複数の信号電極、
     前記有効表示領域側及び前記非有効表示領域側の一方側に設置されるように、前記極性液体に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられるとともに、前記複数の信号電極と交差するように設けられた複数の走査電極、
     前記信号電極と前記走査電極との交差部単位に設けられた複数の画素領域、
     外部からの画像入力信号に基づいて、所定の走査方向に沿った走査動作が行われるように、前記信号電極、及び前記走査電極の各駆動制御を行う表示制御部、
     前記複数の信号電極及び前記表示制御部に接続されるとともに、前記表示制御部からの指示信号に従って、前記複数の各信号電極に対して、前記表示面側に表示される情報に応じた所定の電圧範囲内の信号電圧を印加する信号電圧印加部、
     前記複数の走査電極及び前記表示制御部に接続されるとともに、前記複数の各走査電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する走査電圧印加部を備え、
     前記信号電圧印加部及び前記走査電圧印加部からそれぞれ前記信号電極及び前記走査電極に対して、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示するリセット信号指示部と、
     外部からの画像入力信号と前記初期位置を用いて、前記走査動作毎の最大印加時間を取得する最大印加時間取得部と、
     外部からの画像入力信号と前記最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での走査時間を決定する走査時間決定部が設けられ、
     前記表示制御部は、外部からの画像入力信号と前記走査時間決定部からの走査時間を用いて、前記信号電圧印加部及び前記走査電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせる、
     ことを特徴とする表示素子。
    A second substrate provided on the non-display surface side of the first substrate so that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. The effective display area and the ineffective display area that are set with respect to the display space, and the display space, and are movably enclosed in the effective display area side or the ineffective display area side within the display space. A display element configured to change a display color on the display surface side by moving the polar liquid.
    A plurality of signal electrodes disposed in the display space so as to be in contact with the polar liquid and provided along a predetermined arrangement direction;
    Provided on one side of the first and second substrates in a state of being electrically insulated from the polar liquid so as to be installed on one side of the effective display area side and the non-effective display area side. And a plurality of scanning electrodes provided to intersect with the plurality of signal electrodes,
    A plurality of pixel regions provided in a unit of intersection between the signal electrode and the scanning electrode;
    A display control unit that controls each drive of the signal electrode and the scanning electrode so that a scanning operation along a predetermined scanning direction is performed based on an image input signal from the outside;
    Connected to the plurality of signal electrodes and the display control unit, and in accordance with an instruction signal from the display control unit, for each of the plurality of signal electrodes, a predetermined value corresponding to information displayed on the display surface side A signal voltage application unit for applying a signal voltage within a voltage range;
    Connected to the plurality of scan electrodes and the display control unit, and allows the polar liquid to move inside the display space in accordance with the signal voltage with respect to the plurality of scan electrodes. A scanning voltage applying unit that applies one of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space;
    Before performing the scanning operation on the signal electrode and the scanning electrode from the signal voltage applying unit and the scanning voltage applying unit, respectively, each polar liquid in all the pixel regions is on the effective display region side or the A reset signal instruction unit for instructing to supply a predetermined reset signal so as to move to an initial position determined on the ineffective display area side;
    A maximum application time acquisition unit that acquires a maximum application time for each scanning operation using an image input signal from the outside and the initial position;
    A scanning time determination unit that determines a scanning time in a corresponding scanning operation using an image input signal from the outside and a maximum application time from the maximum application time acquisition unit is provided,
    The display control unit generates an instruction signal to the signal voltage application unit and the scan voltage application unit using an image input signal from the outside and a scan time from the scan time determination unit, and at the scan time To perform the corresponding scanning operation,
    A display element characterized by the above.
  2. 前記表示制御部には、前記走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部が設けられ、
     前記信号電圧印加部及び前記走査電圧印加部は、前記走査動作決定部の決定結果に応じて、前記信号電極及び前記走査電極に対し、それぞれ電圧印加を行う請求項1に記載の表示素子。
    The display control unit is provided with a scanning operation determining unit that determines whether to perform a scanning operation based on the scanning time from the scanning time determining unit,
    The display element according to claim 1, wherein the signal voltage application unit and the scanning voltage application unit apply voltage to the signal electrode and the scanning electrode, respectively, according to a determination result of the scanning operation determination unit.
  3. 前記有効表示領域側及び前記非有効表示領域側の他方側に設置されるように、前記極性液体及び前記走査電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられるとともに、前記複数の信号電極と交差するように設けられた複数の参照電極と、
     前記複数の参照電極及び前記表示制御部に接続されるとともに、前記複数の各参照電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する参照電圧印加部とが設けられ、
     前記リセット信号指示部は、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部からそれぞれ前記信号電極、前記走査電極、及び前記参照電極に対して、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、所定のリセット信号を供給させることを指示し、
     前記表示制御部は、外部からの画像入力信号に基づいて、所定の走査方向に沿った走査動作が行われるように、前記信号電極、前記走査電極、及び前記参照電極の各駆動制御を行うとともに、
     前記表示制御部は、外部からの画像入力信号と前記走査時間決定部からの走査時間を用いて、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部への各指示信号を生成し、当該走査時間に応じた走査動作を行わせる請求項1に記載の表示素子。
    The first and second substrates are electrically insulated from the polar liquid and the scan electrode so as to be installed on the other side of the effective display area side and the non-effective display area side. A plurality of reference electrodes provided on one side and provided to intersect with the plurality of signal electrodes;
    The polar liquid is connected to the plurality of reference electrodes and the display control unit and allows the polar liquid to move in the display space according to the signal voltage with respect to the plurality of reference electrodes. A reference voltage applying unit that applies one voltage of a selection voltage and a non-selection voltage that prevents the polar liquid from moving inside the display space;
    The reset signal instruction unit performs the scanning operation on the signal electrode, the scanning electrode, and the reference electrode from the signal voltage applying unit, the scanning voltage applying unit, and the reference voltage applying unit, respectively. Instructing each polar liquid in all of the pixel regions to supply a predetermined reset signal so as to move to an initial position determined on the effective display region side or the non-effective display region side,
    The display control unit performs drive control of the signal electrode, the scan electrode, and the reference electrode so that a scanning operation along a predetermined scanning direction is performed based on an external image input signal. ,
    The display control unit uses the image input signal from the outside and the scanning time from the scanning time determination unit to send each instruction signal to the signal voltage application unit, the scanning voltage application unit, and the reference voltage application unit. The display element according to claim 1, wherein the display element is generated and performs a scanning operation according to the scanning time.
  4. 前記表示制御部には、前記走査時間決定部からの走査時間に基づいて、走査動作を行わせるか否かを決定する走査動作決定部が設けられ、
     前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部は、前記走査動作決定部の決定結果に応じて、前記信号電極、前記走査電極、及び前記参照電極に対し、それぞれ電圧印加を行う請求項3に記載の表示素子。
    The display control unit is provided with a scanning operation determining unit that determines whether to perform a scanning operation based on the scanning time from the scanning time determining unit,
    The signal voltage application unit, the scan voltage application unit, and the reference voltage application unit apply voltages to the signal electrode, the scan electrode, and the reference electrode, respectively, according to the determination result of the scanning operation determination unit. The display element according to claim 3 which performs.
  5. 前記リセット信号指示部は、前記走査動作を行う前に、全ての前記画素領域内の各極性液体が前記走査方向とは反対側に設定された前記有効表示領域側または前記非有効表示領域側に定められた初期位置に移動するように、前記信号電圧印加部、前記走査電圧印加部、及び前記参照電圧印加部からそれぞれ前記信号電極、前記走査電極、及び前記参照電極に対して、所定のリセット信号を供給させる請求項3または4に記載の表示素子。 Before performing the scanning operation, the reset signal instruction unit sets the polar liquids in all the pixel regions to the effective display region side or the non-effective display region side set to the side opposite to the scanning direction. A predetermined reset is performed on the signal electrode, the scan electrode, and the reference electrode from the signal voltage application unit, the scan voltage application unit, and the reference voltage application unit, respectively, so as to move to a predetermined initial position. The display element according to claim 3, wherein a signal is supplied.
  6. 前記リセット信号指示部は、前記信号電極に対するリセット信号の電圧として、前記信号電圧の最大の電圧または最小の電圧を選択し、前記参照電極に対するリセット信号の電圧として、前記選択電圧または前記非選択電圧を選択し、前記走査電極に対するリセット信号の電圧として、前記選択電圧または前記非選択電圧を選択する請求項3~5のいずれか1項に記載の表示素子。 The reset signal instruction unit selects a maximum voltage or a minimum voltage of the signal voltage as a voltage of a reset signal for the signal electrode, and selects the selection voltage or the non-selection voltage as a voltage of the reset signal for the reference electrode. 6. The display element according to claim 3, wherein the selection voltage or the non-selection voltage is selected as a voltage of a reset signal for the scan electrode.
  7. 前記参照電極及び前記走査電極の表面上には、誘電体層が積層されている請求項3~6のいずれか1項に記載の表示素子。 7. The display element according to claim 3, wherein a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
  8. 前記走査時間決定部は、外部からの画像入力信号と前記最大印加時間取得部からの最大印加時間を用いて、対応する走査動作での画素領域毎の前記極性液体を移動させるための電圧印加時間を決定する請求項1~7のいずれか1項に記載の表示素子。 The scanning time determination unit uses the image input signal from the outside and the maximum application time from the maximum application time acquisition unit to apply the voltage application time for moving the polar liquid for each pixel region in the corresponding scanning operation. The display element according to any one of claims 1 to 7, wherein:
  9. 前記表示制御部は、一つの走査動作の対称となる複数の画素領域において、前記極性液体を前記初期位置から移動させる必要がないことを判別した場合、その判別した画素領域に対応する信号電極に対して、前記所定の電圧範囲の中間の中間電圧を印加させる請求項1~8のいずれか1項に記載の表示素子。 When the display control unit determines that it is not necessary to move the polar liquid from the initial position in a plurality of pixel regions that are symmetrical with one scanning operation, the display control unit applies signal signals corresponding to the determined pixel region. 9. The display element according to claim 1, wherein an intermediate voltage intermediate between the predetermined voltage ranges is applied.
  10. 前記最大印加時間取得部には、少なくとも1つの走査動作分の画像入力信号のデータを記憶可能なメモリが用いられている請求項1~9のいずれか1項に記載の表示素子。 10. The display element according to claim 1, wherein the maximum application time acquisition unit uses a memory capable of storing image input signal data for at least one scanning operation.
  11. 前記最大印加時間取得部が、前記表示制御部内に設けられている請求項1~10のいずれか1項に記載の表示素子。 The display element according to claim 1, wherein the maximum application time acquisition unit is provided in the display control unit.
  12. 前記第1及び第2の基板の少なくとも一方側には、前記複数の各画素領域に応じて、前記表示用空間の内部を区切るリブが設けられている請求項1~11のいずれか1項に記載の表示素子。 The rib for separating the inside of the display space is provided on at least one side of the first and second substrates according to each of the plurality of pixel regions. The display element as described.
  13. 前記複数の画素領域が、前記表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられている請求項1~12のいずれか1項に記載の表示素子。 The display element according to any one of claims 1 to 12, wherein the plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side.
  14. 前記表示用空間の内部には、前記極性液体と混じり合わない絶縁性流体が当該表示用空間の内部を移動可能に封入されている請求項1~13のいずれか1項に記載の表示素子。 The display element according to any one of claims 1 to 13, wherein an insulating fluid that does not mix with the polar liquid is sealed in the display space so as to be movable in the display space.
  15. 文字及び画像を含んだ情報を表示する表示部を備えた電気機器であって、
     前記表示部に、請求項1~14のいずれか1項に記載の表示素子を用いたことを特徴とする電気機器。
    An electrical device having a display unit for displaying information including characters and images,
    15. An electric device using the display element according to claim 1 for the display portion.
PCT/JP2012/056662 2011-03-22 2012-03-15 Display element and electrical device using same WO2012128170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011062298 2011-03-22
JP2011-062298 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012128170A1 true WO2012128170A1 (en) 2012-09-27

Family

ID=46879320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056662 WO2012128170A1 (en) 2011-03-22 2012-03-15 Display element and electrical device using same

Country Status (1)

Country Link
WO (1) WO2012128170A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508576A (en) * 2003-10-08 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrowetting display device
WO2010012831A1 (en) * 2008-08-01 2010-02-04 Liquavista B.V. Electrowetting system
WO2010016309A1 (en) * 2008-08-05 2010-02-11 シャープ株式会社 Display element and electric device using the same
JP2010169806A (en) * 2009-01-21 2010-08-05 Sharp Corp Display element and electric equipment using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508576A (en) * 2003-10-08 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrowetting display device
WO2010012831A1 (en) * 2008-08-01 2010-02-04 Liquavista B.V. Electrowetting system
WO2010016309A1 (en) * 2008-08-05 2010-02-11 シャープ株式会社 Display element and electric device using the same
JP2010169806A (en) * 2009-01-21 2010-08-05 Sharp Corp Display element and electric equipment using the same

Similar Documents

Publication Publication Date Title
JPWO2009078194A1 (en) Display element and electric device using the same
WO2011111263A1 (en) Display element, and electrical device using same
WO2012026161A1 (en) Display element and electrical apparatus using same
JP5113938B2 (en) Display element and electric device using the same
JP2009162927A (en) Display element and electric equipment using the same
WO2011074304A1 (en) Display element and electrical device using the same
WO2010016309A1 (en) Display element and electric device using the same
WO2010095301A1 (en) Display element and electric device using same
WO2012066970A1 (en) Display element and electrical appliance using same
WO2011092892A1 (en) Display element and electric device equipped with same
WO2010095302A1 (en) Display element and electric device using same
JP2010072482A (en) Display element and electronic equipment using the same
JP2009151244A (en) Display element, and electrical equipment using the same
WO2012002013A1 (en) Display element and electric apparatus using same
WO2012128170A1 (en) Display element and electrical device using same
WO2013027626A1 (en) Display element and electric apparatus employing same
WO2010016304A1 (en) Display element and electric instrument using the same
JP2010072483A (en) Display element and electronic equipment using the same
WO2012121089A1 (en) Display element and electric device using same
WO2011033802A1 (en) Display element and electric apparatus using same
WO2011138875A1 (en) Display element and electronic device using same
WO2012098987A1 (en) Display element and electrical device using same
WO2013108851A1 (en) Display element and electrical device using the same
WO2013024670A1 (en) Display element, and electric apparatus using same
WO2012081509A1 (en) Display element and electrical apparatus employing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP