WO2012128137A1 - Voltage rise suppression device and distributed power supply interconnection system - Google Patents

Voltage rise suppression device and distributed power supply interconnection system Download PDF

Info

Publication number
WO2012128137A1
WO2012128137A1 PCT/JP2012/056506 JP2012056506W WO2012128137A1 WO 2012128137 A1 WO2012128137 A1 WO 2012128137A1 JP 2012056506 W JP2012056506 W JP 2012056506W WO 2012128137 A1 WO2012128137 A1 WO 2012128137A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
reactive power
distributed power
distributed
Prior art date
Application number
PCT/JP2012/056506
Other languages
French (fr)
Japanese (ja)
Inventor
大類正洋
河▲崎▼吉則
西村荘治
羽田儀宏
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN2012800135722A priority Critical patent/CN103444040A/en
Publication of WO2012128137A1 publication Critical patent/WO2012128137A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a voltage rise suppression device that controls a distributed power supply of a distributed power supply facility connected to a distribution system and suppresses a voltage increase of the distribution system. Furthermore, the present invention relates to a distributed power supply interconnection system in which a plurality of distributed power supply facilities each having the voltage rise suppression device are connected to a power distribution system.
  • a distributed power supply facility having a distributed power source such as a photovoltaic power generation system (abbreviated as PV) and having a reverse power flow (that is, a flow of effective power from the distributed power source to the system side) is provided in the distribution system.
  • a distributed power source such as a photovoltaic power generation system (abbreviated as PV)
  • a reverse power flow that is, a flow of effective power from the distributed power source to the system side
  • a plurality of (for example, many) connections are used to form a distributed power supply interconnection system.
  • FIG. 1 An example is shown in FIG.
  • a distribution system 2 having a high-voltage distribution line 10, a transformer 14, and a low-voltage distribution line 16 is connected to the host system 1, and further, a distributed power supply (for example, FIG. A plurality of distributed power supply facilities 200 having a distributed power supply 202 in FIG. 4 are connected. A place where each of the distributed power supply facilities 200 is connected to the power distribution system 2 (in this example, the low voltage distribution line 16) is referred to as a connection point 18.
  • One of the main problems in such a distributed power supply interconnection system is that the voltage at the interconnection point 18 increases due to reverse power flow, and the voltage is a predetermined upper limit value (for example, 107 V) defined by the Electricity Business Law or the like. ).
  • Non-Patent Document 1 proposes to provide a distributed power supply facility 200 with a voltage increase suppressing device having a function as shown in FIG. 2 (for example, page 99). reference).
  • This voltage rise suppression device measures a voltage (specifically, a fundamental wave voltage) at the interconnection point 18 (step 301), and determines whether or not the voltage is higher than a predetermined upper limit value (for example, 107V) (Ste 302). If it is higher, it is further determined whether or not the driving power factor is equal to or higher than a predetermined lower limit value (for example, 0.85) (step 303).
  • the phase advance reactive power Q to be output is increased in accordance with the difference between the voltage and the upper limit value (step 304). If the operating power factor is smaller than the lower limit value, the distributed power supply of the own equipment is controlled and the active power P output therefrom is decreased according to the difference between the voltage and the upper limit value (step 305). As a result, the voltage at the interconnection point 18 can be suppressed to an upper limit value or less.
  • the active power flowing from the distributed power supply facility 200 (or 20, which will be described later, the same applies hereinafter) to the power distribution system 2 is P
  • the phase reactive power is Q
  • the voltage increase value ⁇ V due to the flow of the active power P and the phase reactive power Q is expressed by the following equation. .
  • the impedance of the upper system 1 is much smaller than the impedance of the power distribution system 2, and is ignored in this application for the sake of simplicity.
  • the voltage increase value ⁇ V can be reduced by increasing the fast reactive power Q (step 304) or decreasing the active power P (step 305). The voltage rise can be suppressed.
  • steps 306 to 309 in FIG. 2 is performed when the voltage is equal to or lower than the upper limit value, and thus detailed description thereof is omitted here.
  • Patent Document 1 and Non-Patent Document 2 describe a control parameter ⁇ represented by the number 3 of the distribution system 2 (that is, reactance of the resistance r of the distribution system 2).
  • the ratio to x) is determined by measuring the change in voltage of the fundamental wave (for example, 60 Hz, the same applies hereinafter) at the interconnection point 18 due to the change in the output current, and using that, the output from the distributed power source holding facility 200 is calculated.
  • Patent Document 2 and Non-Patent Document 3 will be referred to later.
  • JP 2006-158179 A (paragraphs 0008-0009, 0016) JP 2001-128366 A
  • the position where the distributed power supply facilities 200 are connected to the distribution system (that is, the upstream side)
  • the position where the distributed power supply facilities 200 are connected to the distribution system (that is, the upstream side)
  • the power output from the distributed power supply of its own equipment there is a difference in the amount of increase in the fast reactive power Q or the amount of decrease in the active power P necessary for suppressing voltage rise, resulting in inequality
  • upstream side refers to the side closer to the upper system 1 (in other words, the system power supply, upper transformer)
  • downstream side refers to the opposite side.
  • the voltage at the interconnection point 18 of the own equipment is added to the secondary voltage of the transformer 14 by adding the voltage increase value ⁇ V on the upstream side of the own equipment. This is because the voltage at the interconnection point 18 increases as it approaches the side end.
  • the downstream distributed power supply facility 200 is more likely to exceed the upper limit value in the upstream distributed power supply facility 200, the voltage at the connection point 18 is suppressed.
  • the phase advance reactive power Q increases the loss in the distributed power supply, the phase advance reactive power Q is limited from the viewpoint of power supply capacity.
  • the difference as described above occurs depending on the position where the distributed power supply facility 200 is connected to the power distribution system 2.
  • the distributed power supply facility 200 sells power (sells the active power P to an electric power company)
  • a difference occurs in the income from the power sale.
  • the voltage has already risen to the upper limit value on the upstream side of the own facility. In this case, no matter how hard the own facility works, the voltage at the interconnection point 18 cannot be suppressed below the upper limit value. Therefore, it is possible that almost no power can be sold.
  • the distributed power source is a solar power generation system
  • the power that can be used in the downstream distributed power source decreases and the utilization rate decreases. Can happen.
  • Patent Literature 1 and Non-Patent Literature 2 Since the technology described in Patent Literature 1 and Non-Patent Literature 2 outputs each phased reactive power Q in proportion to the active power P output from the own equipment, each of the distributed power source possessing equipment 200, roughly speaking, Although the problem of inequality occurrence like the technique described in Non-Patent Document 1 can be solved, there are the following problems with respect to obtaining the control parameter ⁇ .
  • Patent Literature 1 artificially changes the active power (specifically, the fundamental wave active current) and the reactive power (specifically, the fundamental wave reactive current) output from its own equipment, and controls the control parameter ⁇ . Ask for. An outline of this principle will be described with reference to FIG.
  • Variation .DELTA.V p of the fundamental wave voltage of the connecting point 18 due to the change [Delta] I p of the fundamental wave active current I p, the variation .DELTA.V q of the fundamental wave voltage of the connecting point 18 due to the change [Delta] I q of the fundamental wave reactive current I q Has the following relationship: r and x are the resistance and reactance of the distribution system 2 described above, respectively.
  • Patent Document 1 has a problem that artificial disturbance is given to the fundamental wave power of the distribution system.
  • Non-Patent Document 2 obtains the control parameter ⁇ based on substantially the same principle as described above, the active power (specifically, fundamental wave active current) and reactive power (specifically, output from the own equipment) Since the control parameter ⁇ is obtained by utilizing the natural variation of the fundamental wave reactive current), it is not necessary to give artificial disturbance to the distribution system. However, there are cases where the control parameter ⁇ cannot be calculated correctly. This will be described below.
  • Such a situation can generally occur not only in the solar power generation system but also in other renewable energy-based power generation such as adjacent wind power generation facilities.
  • the possibility of such a situation is further increased when a mass interconnection to a power system of a renewable energy power source such as solar light, which is expected in the future, is realized.
  • a change ⁇ V q1 of the connection point voltage of the own facility 200a due to a change in the fundamental wave reactive current is expressed by the following equation.
  • Equation 6 Similar to the case of Equation 6, the following equation is calculated using ⁇ V p1 and ⁇ V q1 of Equations 7 and 8, and the control parameter ⁇ m is obtained.
  • the phase reactive power Q is output, and an extra reactive power burden is borne.
  • the operating power factor of the distributed power source 202 in the own facility 200a is extremely deteriorated. If the amount of the phase advance reactive power Q cannot be output, the voltage increase value ⁇ V at the interconnection point 18 cannot be suppressed to a predetermined upper limit value (for example, 107 V) or less.
  • Non-Patent Document 2 is actually a slightly modified version of the above principle, but the principle is the same, so a detailed description thereof is omitted here.
  • the present invention can reduce inequalities due to the position where the distributed power supply facility is connected to the power distribution system in the voltage rise suppression control of the interconnection point, and control parameters without causing disturbance to the power distribution system.
  • the main object is to provide a voltage rise suppression device capable of correctly calculating and outputting appropriate phase advance reactive power from a distributed power source.
  • the voltage rise suppression device is a voltage rise suppression device that controls a distributed power supply of a distributed power supply facility connected to a distribution system and suppresses a voltage increase of the distribution system, Fundamental wave voltage determining means for determining whether a fundamental wave voltage at a connection point between the distribution system and the distributed power supply facility is higher than a predetermined voltage upper limit value; Driving power factor determining means for determining whether or not the operating power factor of the distributed power source is equal to or higher than a predetermined power factor lower limit when the determination result in the fundamental wave voltage determining means is affirmative; First reactive power calculation means for calculating and outputting a first phase reactive power according to a difference between the fundamental voltage and the voltage upper limit value when the determination result in the driving power factor determination means is affirmative When, When the determination result by the driving power factor determination means is negative, the effective power that controls the distributed power source and outputs from the distributed power source is reduced according to the difference between the fundamental voltage and the voltage upper limit value.
  • the correction coefficient ⁇ may be set in the range of 0.5 to 0.8.
  • an injection current having an injection order of a non-integer multiple of the fundamental wave, which does not naturally exist in the distribution system is transferred from the current injection means to the distribution system. Since the injection is performed, the injection current may be small, so that the distribution system is not disturbed.
  • the ratio ⁇ 1 is obtained by measuring the voltage and current of the injection order of the own equipment by the ratio calculation means, another distributed power source is provided near the own equipment having the voltage rise suppressing device according to the present invention. Even if owned facilities exist, for example, even if there are other distributed power owned facilities that perform 100% power factor operation as described above, the ratio ⁇ 1 can be calculated correctly without being affected by it. it can. Even if another distributed power source possessing equipment having the voltage rise suppressing device according to the present invention exists near its own equipment, there are several countermeasures for it.
  • the injection order can be selected from a number of orders, unlike the only order (ie primary, eg 60 Hz) as in the case of the fundamental of the distribution system. It is easy to use different injection orders from each other, thereby eliminating the mutual interference and correctly calculating the ratio ⁇ 1 . Therefore, in any case, appropriate phase advance reactive power can be output from the distributed power supply.
  • the system voltage increases due to the output (active power) of the other distributed power sources.
  • the fast reactive power Q becomes smaller than the value of Q expressed by the above equation 4 due to the correction coefficient ⁇ of 0 ⁇ ⁇ 1
  • the system voltage also increases due to the output of the own equipment (active power P). Voltage rises due to these may be added, and an event may occur in which the fundamental voltage at the interconnection point of the own equipment exceeds a predetermined voltage upper limit value.
  • a means for determining the fundamental wave voltage at the interconnection point and the operating power factor of the distributed power source and controlling the increase in the first phase reactive power or the decrease in the active power is provided.
  • the means performs measurement and control by measuring the fundamental voltage and controlling the fundamental output current, and therefore does not interfere with the current injection and the voltage measurement for measuring the ratio ⁇ 1 .
  • the operating power factor of the distributed power supply is reliably prevented from falling below a predetermined power factor lower limit value. can do.
  • the invention according to claim 2 has the following further effects. That is, since the correction coefficient ⁇ is set in the above range, the output amount of the second phase reactive power can be appropriately suppressed, and the decrease in the driving power factor can be reduced. Moreover, even in such a case, since the fundamental wave voltage at the interconnection point and the operating power factor of the distributed power source are determined, a means for controlling the increase in the first phase reactive power or the decrease in the active power is provided. It is possible to prevent the fundamental wave voltage at the interconnection point from exceeding a predetermined voltage upper limit value, or the operating power factor of the distributed power source from falling below a predetermined power factor lower limit value.
  • FIG. 10 is a flowchart illustrating an example of a function of the voltage rise suppression device described in Non-Patent Document 1. It is a figure for demonstrating the prior art example of the method of measuring a fundamental wave voltage and a fundamental wave current, and calculating
  • 1 is a single line connection diagram illustrating an example of a distributed power interconnection system according to the present invention.
  • FIG. 1 It is a figure which shows an example of a structure of each distributed power supply equipment and the voltage rise suppression apparatus which comprises it. It is a flowchart which shows an example of operation
  • FIG. 2 is used when the resistance of the distribution line is large
  • FIG. 6 shows an example of the simulation result of a rate. It is a figure for demonstrating the voltage which generate
  • FIG. 5 shows an example of a distributed power supply interconnection system according to the present invention.
  • a plurality of distributed power supply holding facilities 20 each having a distributed power supply are connected to the power distribution system 2 (in this embodiment, to the low voltage distribution line 16, the same applies hereinafter). It has a configuration.
  • This connection point is called a connection point 18.
  • the distribution system 2 has a configuration in which a high-voltage distribution line 10 is connected to the higher-level system 1 and a low-voltage distribution line 16 is connected to the high-voltage distribution line 10 via a transformer 14.
  • a plurality of distributed power source holding facilities 20 are connected to the low voltage distribution line 16.
  • a large number of low-voltage interconnection distributed power holding facilities 20 that have contracts with reverse power flow are connected at a high density (this is called low-voltage high-density interconnection).
  • the transformer 14 is, for example, a 6600V / 200V single-phase three-wire pole transformer.
  • Each distributed power supply facility 20 is, for example, a power generation facility having a distributed power source, a home, a supermarket, a factory, or other facilities.
  • the distributed power source possessing facility 20 includes a distributed power source 30 connected to the interconnection point 18 and a voltage increase suppressing device 50 that controls the distributed power source 30.
  • the voltage V d at the interconnection point 18 is measured by the instrument transformer 40 and is given to the voltage rise suppression device 50.
  • the current I d flowing through the interconnection point 18 is measured by the instrument current transformer 42 and is given to the voltage rise suppression device 50.
  • the distributed power supply 30 includes a solar cell 32 and an inverter (inverse conversion device) 34 that converts the output into AC power. That is, it is a photovoltaic power generation system (abbreviated as PV).
  • PV photovoltaic power generation system
  • the present invention is not limited to this, and other examples will be described later.
  • inverter 34 a known inverter (for example, refer to pages 16 to 17 of the non-patent document 1) can be used. Active power P and phase reactive power Q output from the inverter 34 can be controlled by external control signals (specifically, an active power command value P com and a phase reactive power command value Q com described later).
  • the technique is publicly known (see, for example, Patent Document 2 above).
  • the voltage rise suppressing device 50 includes a measuring unit 52, a fundamental wave voltage determining unit 54 constituting a fundamental wave voltage judging unit, a driving power factor judging unit 56 constituting a driving power factor judging unit, and a first invalidity.
  • the first reactive power calculation unit 58 constituting the power calculation means, the active power control unit 60 constituting the active power control means, the ratio calculation unit 62 constituting the ratio calculation means, and the total reactive power constituting the total reactive power calculation means
  • a calculation unit 66, a limit reactive power calculation unit 68 constituting limit reactive power calculation means, a reactive power control unit 70 constituting reactive power control means, and a current injection unit 72 constituting current injection means are provided.
  • An example of the operation of the voltage rise suppressing device 50 is shown in FIG. 7, and the description of each control unit and the like will be given below with reference to this. A specific example of the configuration of each control unit will be described later.
  • the measuring unit 52 calculates the active power P output from the distributed power source 30 and the operating power factor Pf of the distributed power source 30 using the voltage V d and the current I d , and sends it to other control units that need it. A function of giving (steps 401 and 402). However, instead of providing the measurement unit 52 in a lump, another control unit that requires the active power P and the driving power factor Pf may have a function of calculating it.
  • the fundamental wave voltage determination unit 54 measures the fundamental wave voltage (voltage of the fundamental wave frequency (for example, 60 Hz) of the distribution system 2) at the interconnection point 18 of the own equipment (step 405), and this is a predetermined voltage upper limit value. It is determined whether the voltage is higher than (eg, 107 V) (step 406).
  • the driving power factor determination unit 56 determines whether or not the measured value of the driving power factor Pf of the distributed power source 30 is equal to or greater than a predetermined power factor lower limit value (for example, 0.85) when the determination result in the fundamental wave voltage determination unit 54 is positive. (Step 407).
  • the first reactive power calculation unit 58 calculates the first phase reactive power Q a according to the difference between the fundamental voltage and the voltage upper limit value when the determination result in the driving power factor determination unit 56 is affirmative. Calculation and output (step 408).
  • the active power control unit 60 controls the distributed power source 30 to output the active power P output from the distributed power source 30 as the fundamental voltage and the voltage upper limit value. (Step 409). Specifically, the active power command value P com is given to the inverter 34 for control.
  • Current injection unit 72 a non-integer multiples of the fundamental wave of the distribution system 2 (i.e. bands decimal times) order m injected current I m outputs to the power distribution it system 2 (specifically, the low-voltage distribution line 16) (Step 403).
  • the injection order m is, for example, 2.2 order, 2.4 order, 2.6 order, 2.8 order, etc., but is not limited thereto.
  • a voltage V m of the injection order m is generated at the interconnection point 18 in proportion to the impedance Z m of the injection order m of the distribution system 2 as shown in FIG. . This is included in the connection point voltage V d .
  • Ratio calculation unit 62 a voltage V m and current I m of the injection order m in its own equipment interconnection point 18 is measured, using the measurement results, the fundamental wave of the power distribution system 2 viewed from the connecting point 18 A ratio ⁇ 1 expressed by the following equation is calculated (part of step 404) for the component resistance r 1 , reactance x 1 and the former latter.
  • the second reactive power calculation unit 64 multiplies the measured value of the active power P output from the distributed power source 30 with the ratio ⁇ 1 and the correction coefficient ⁇ of 0 ⁇ ⁇ 1, and is expressed by the following equation. the second phase advancing reactive power Q b a and calculates and outputs (step 404) is intended.
  • steps 403 and 404 are not necessarily limited to the positions shown in FIG. 7, and may be provided at other positions, for example, immediately before step 410. This is because it is only necessary to calculate the second phase advance reactive power Q b before calculating the total phase advance reactive power Q t in step 410.
  • the total reactive power calculation unit 66 adds the first advanced reactive power Q a and the second advanced reactive power Q b to each other to calculate a total advanced reactive power Q t expressed by the following equation. Is output (step 410).
  • the limit reactive power calculation unit 68 uses the measured value of the active power P output from the distributed power supply 30 and the power factor lower limit value to limit the phase advance invalidity that realizes the power factor lower limit value at the active power P.
  • the power Q lim is calculated and output (part of step 411).
  • the reactive power control unit 70 suppresses the upper limit of the total advanced reactive power Q t to the value of the limit advanced reactive power Q lim and uses it as the advanced reactive power command value Q com as the distributed power supply 30 (specifically, Is supplied to the inverter 34), and the phase reactive power Q output from the distributed power source 30 is controlled to the phase reactive power command value Q com (step 411).
  • steps 413 to 416 in FIG. 7 corresponds to the processing in steps 306 to 309 in FIG. 2, and is performed when the fundamental wave voltage is equal to or lower than the upper limit value.
  • Such processing functions are not essential to the present invention, and thus detailed description thereof is omitted here.
  • the process may proceed to step 410.
  • the fundamental voltage determination unit 54 includes a subtractor 80 and a comparator 82.
  • the driving power factor determination unit 56 includes a comparator 84, a NOT circuit 86, and AND circuits 88 and 89.
  • the control units are configured below for the sake of convenience. It is described as a thing.
  • the subtracter 80 subtracts a voltage upper limit value V lim (for example, 107 V ) from the voltage V d at the interconnection point 18 and outputs a difference voltage DV expressed by the following equation.
  • V lim is set and stored in the voltage rise suppression device 50. Since the harmonic voltage included in the voltage V d is smaller than the fundamental voltage, the voltage V d is used instead of the fundamental voltage in the following embodiments. .
  • the comparator 82 determines whether or not the differential voltage DV is greater than 0V (corresponding to step 406 in FIG. 7), and outputs a signal having a logical value of 1 when the difference voltage DV is greater than 0V. 88 and 89.
  • the comparator 84 determines whether or not the operating power factor Pf of the distributed power supply 30 of its own equipment is equal to or higher than the power factor lower limit value Pf lim (for example, 0.85) (corresponding to step 407), and the power factor lower limit value Pf lim. At this time, a signal having a logical value of 1 is output and applied to the AND circuit 88 and the NOT circuit 86. Therefore, when the determination in step 407 is Yes, a signal of logical value 1 is output from the AND circuit 88.
  • the power factor lower limit value Pf lim is set and stored in the voltage rise suppression device 50.
  • the NOT circuit 86 inverts the logical value of the signal from the comparator 84 and supplies it to the AND circuit 89. Therefore, when the determination in step 407 is No, the AND circuit 89 outputs a signal having a logical value of 1.
  • the first reactive power calculation unit 58 includes a multiplier 90 and a PI control unit 91.
  • the multiplier 90 multiplies the difference voltage DV from the subtractor 80 and the signal from the AND circuit 88 and outputs the result. That is, when the signal output from the AND circuit 88 is a logical value 1, the difference voltage DV is output.
  • the PI control unit 91 multiplies the difference voltage DV from the multiplier 90 by coefficients K p1 and K i1 and outputs them, an integrator 94 that integrates and outputs the output from the amplifier 93, and this by adding the outputs of the amplifier 92 of the integrator 94 and an adder 95 to output as the first phase advancing reactive power Q a.
  • the active power control unit 60 includes a multiplier 96, a PI control unit 97, and a subtracter 102.
  • the multiplier 96 multiplies the difference voltage DV from the subtractor 80 and the signal from the AND circuit 89 and outputs the result. That is, when the signal output from the AND circuit 89 is a logical value 1, the difference voltage DV is output.
  • the PI control unit 97 multiplies the difference voltage DV from the multiplier 96 by the coefficients K p2 and K i2 and outputs them, an integrator 100 that integrates and outputs the output from the amplifier 99, and this An adder 101 that adds the output of the integrator 100 and the output of the amplifier 98 to output the effective power reduction amount P dn is provided.
  • the subtracter 102 subtracts the effective power decrease amount P dn from the maximum active power output P max of the distributed power supply 30 of its own equipment (that is, the maximum active power that can be output when there is no active power suppression), and The active power command value P com represented is output. More specifically, this active power command value P com is given to the distributed power source 30 (specifically, to the inverter 34), and the active power P output from the distributed power source 30 is controlled to that value.
  • the inverter 34 When the distributed power source 30 is a solar power generation system, the inverter 34 usually controls the output voltage of the solar cell 32 so that the effective power output from the solar cell 32 is maximized (this is (Abbreviated as P max control).
  • P max control When the distributed power source 30 is a photovoltaic power generation system, it can be said that the active power by the P max control is the maximum active power output P max .
  • the ratio calculation unit 62 includes discrete Fourier transformers 104 and 105, a divider 106, a separator 108, an amplifier 110, and a divider 112.
  • the discrete Fourier transformers 104 and 105 perform discrete Fourier transform on the voltage V d and current I d (both vector quantities) of the interconnection point, respectively, and the voltage V m of the injection order m at the interconnection point 18 of the own equipment. , Current I m (both vector quantities) are extracted and output.
  • the divider 106 divides the following equation to calculate and output the impedance Z m (vector quantity) of the injection order m of the power distribution system 2 as viewed from the interconnection point 18 of its own equipment.
  • the impedance Z m can be expressed by the following equation, where r m is the resistance of the injection order m of the distribution system 2 viewed from the interconnection point 18 of the own equipment, and x m is reactance. .
  • the separator 108 separates the real part (resistance component) and the imaginary part (reactance component) from the calculation result of Equation 15, and outputs the resistance r m and reactance x m of the injection order m separately. Since the resistance does not depend on the frequency, the resistance r m is equal to the resistance r 1 of the fundamental wave component.
  • the amplifier 110 multiplies the reactance x m by 1 / m (in other words, divides the reactance x m by the injection order m), and calculates and outputs the reactance x 1 of the fundamental wave component.
  • the divider 112 performs the calculation shown in Equation 10 above using the resistance r 1 and reactance x 1 of the fundamental wave component, and outputs the ratio ⁇ 1 . Incidentally, by providing the averaging filter at the output of the divider 112, through which may be output ratio alpha 1.
  • the second reactive power calculation unit 64 includes an amplifier 114 and a multiplier 116.
  • the amplifier 114 multiplies the ratio ⁇ 1 from the ratio calculator 62 by the correction coefficient ⁇ and outputs ⁇ 1 ⁇ ⁇ .
  • Multiplier 116 multiplies active power P output from its own distributed power supply 30 and ⁇ 1 ⁇ ⁇ to calculate and output second phase reactive power Q b shown in Equation 11 above. .
  • the total reactive power calculation unit 66 is an adder, and calculates the first advanced phase reactive power Q a given from the reactive power computation unit 58 and the second advanced phase reactive power Q b given from the multiplier 116. By adding together, the total advanced reactive power Q t shown in the above equation 12 is calculated and output.
  • the reactive power control unit 70 suppresses the total advanced reactive power Q t given from the total reactive power computing unit 66 to the value of the critical advanced reactive power Q lim given by the limit reactive power computing unit 68.
  • a limiter circuit that outputs the phase advance reactive power command value Q com is provided.
  • the phase reactive power command value Q com is supplied to the distributed power supply 30 (specifically, the inverter 34) of its own equipment, and the phase reactive power Q output from the distributed power supply 30 is converted into the phase advanced reactive power command value. Control to Q com .
  • the current injection unit 72 As the current injection unit 72 , a known current injection device, for example, a current injection device as described in Non-Patent Document 3 can be used.
  • the inverter 34 may have the same function as the current injection unit 72 so that the inverter 34 also serves as the current injection unit 72.
  • a known technique as described in Patent Document 2 can be used.
  • the coefficient ⁇ 1 corresponds to the control parameter ⁇ described above.
  • the upstream distributed power source possessing facility 200 is connected to the interconnection point 18 of its own facility. Since the voltage rise value ⁇ V of V is small, it is not necessary to output the phase-advanced reactive power Q so much (in the opposite case, the reverse case), but when this voltage rise suppression device 50 is used, it is used. All the distributed power supply facilities 20 are proportional to the active power P of their own equipment regardless of the voltage rise value ⁇ V of the interconnection point 18 of the own equipment, in other words, regardless of the position connected to the distribution system 2. thereby outputting phase lead reactive power Q in consideration of the above second phase advancing reactive power Q b.
  • the first phase advance reactive power Q a is the same as in the case of the technique described in Non-Patent Document 1, but the voltage rise suppression device 50 uses the second phase advance reactive power for the phase advance reactive power control.
  • Q b the above-described inequality caused by the position connected to the power distribution system 2 can be reduced.
  • the voltage of the non-integer multiple order component naturally existing in the distribution system 2 is the basic voltage.
  • 0.01% or less of the wave components, in the voltage increase suppressing device 50 may be implanted injection current I m to generate a voltage V m to the extent that can be distinguished from this voltage.
  • the low-voltage distribution line 16 is 200V system, it may be implanted injection current I m of about 0.4 A.
  • the voltage V m of the injection order m appearing at the interconnection point 18 becomes about 0.04 V (0.02%). With recent measurement techniques, this level of voltage V m can be measured sufficiently. Even if such an injection current Im is injected, the distribution system 2 is not disturbed.
  • a ratio calculation unit 62 so by measuring the voltage V m and current I m of the injection order m of the own equipment 20 obtains the ratio alpha 1, the self equipment having the voltage rise suppression unit 50 Even if there is another distributed power supply facility near 20, for example, there is another distributed power supply facility that performs 100% power factor operation (see the distributed power supply facility 200 b in FIG. 4). However, the ratio ⁇ 1 can be calculated correctly without being affected by the above. This is because, as described above, the voltage V m of the injection order m naturally does not substantially exist. This is because the other distributed power supply facility (200b) does not inject an injection current of the injection order m. Therefore, it is possible to output appropriate phase advance reactive power Q from the distributed power supply 30.
  • the injection order m can be selected from a number of orders, unlike the only order (ie, first order, for example, 60 Hz) as in the case of the fundamental wave of the distribution system 2. It is easy to make the injection orders m used by other equipment different from each other, thereby eliminating the mutual interference and correctly calculating the ratio ⁇ 1 . Further, as will be described later, when a transformer is interposed, the large impedance is interposed, so that mutual interference can be eliminated even in the case of the same injection order m. Accordingly, in this case as well, an appropriate phase advance reactive power Q can be output from the distributed power source 30.
  • an integral multiple orders of the fundamental wave of the distribution system 2 (e.g., 2, fourth, fifth, etc.) be used are not preferred . This is because there are a number of harmonic sources of integer multiple orders at various locations in the power distribution system 2, so that it is difficult to accurately measure the voltage of the order injected by the own equipment. In addition, since the number of integer multiple orders that can be practically used is limited, the injection orders used by the own equipment and other equipment are the same, and mutual interference is likely to occur.
  • the system voltage rises due to the output (active power) of the other distributed power sources. Further, because the phase advance reactive power Q becomes smaller than the value of Q expressed by the above equation 4 due to the correction coefficient ⁇ of 0 ⁇ ⁇ 1, the system voltage also increases due to the output of the own facility 20 (active power P). . An increase in voltage due to these may be added, and an event may occur in which the fundamental voltage at the interconnection point 18 of the own facility 20 exceeds a predetermined voltage upper limit value. In view of this, the voltage rise suppression device 50 further determines the fundamental wave voltage at the interconnection point 18 and the operating power factor Pf of the distributed power source 30 to determine the first phase reactive power Q a .
  • the connection point It is possible to prevent the 18 fundamental wave voltages from exceeding a predetermined voltage upper limit value V lim . Further, it is possible to prevent the operating power factor Pf of the distributed power source 30 from falling below a predetermined power factor lower limit value Pf lim .
  • the means performs measurement and control by measuring the fundamental voltage and controlling the fundamental output current, and therefore does not interfere with the current injection and the voltage measurement for measuring the ratio ⁇ 1 .
  • the voltage rise suppression device 50 limits the phase advance reactive power Q output from the distributed power supply 30 to the value of the limit advance reactive power Q lim (limit reactive power calculation unit 68 and reactive power control unit 70). Therefore, it is possible to reliably prevent the operating power factor Pf of the distributed power source 30 from falling below a predetermined power factor lower limit value Pf lim .
  • the correction coefficient ⁇ is more preferably in the range of 0.5 to 0.8 even when 0 ⁇ ⁇ 1. The reason for deriving this will be described below.
  • the operating power factor Pf of the distributed power source 30 in this ⁇ 1 range is 0.67 to 0.82 from the following equation.
  • Non-Patent Document 1 when the lower limit of the driving power factor Pf is 0.85, the ratio ⁇ 1 at that time is 0.62.
  • the range of the correction coefficient ⁇ that multiplies the ratio ⁇ 1 in the above range by the correction coefficient ⁇ to make the driving power factor Pf 0.85 or more is expressed by the following equation.
  • an intermediate value of 0.8 in the range of Equation 19 is set to be a correction coefficient. It is preferable to set the upper limit of ⁇ . From the simulation results described below, it has been confirmed that even if the lower limit of the correction coefficient ⁇ is 0.5, it is effective in suppressing voltage rise. Therefore, the correction coefficient ⁇ is preferably in the range of 0.5 to 0.8.
  • the fundamental wave voltage at interconnection point 18 is a predetermined voltage upper limit value. It is possible to prevent V lim from being exceeded or the operating power factor Pf of the distributed power source 30 to fall below a predetermined power factor lower limit value Pf lim .
  • each voltage rise suppression device 50 is the same transformer.
  • the injection current Im of the non-integer multiple order and different orders m is injected, and the voltage and current of the injection order m are measured.
  • the injection order m is set to different orders such as 2.2 order, 2.4 order, 2.6 order, 2.8 order, etc.
  • the injection order m to be used is the voltage rise of each equipment. Since the suppression devices 50 are different from each other, the above-mentioned ratio ⁇ 1 can be calculated correctly without the voltage increase suppression devices 50 of the plurality of distributed power supply equipment 20 interfering with each other. Therefore, appropriate phase advance reactive power Q can be output from each distributed power supply 30.
  • each voltage increase suppression device 50 is the non-integral multiple a order injecting the injection current I m of the same order m from each other and shall measure the voltage and current of the injection order, and each voltage rise suppression unit 50, in the example shown in FIG. 13
  • the duplication prevention unit 124 serving as an anti-duplication unit for preventing the injection current Im from being injected and the voltage and current measurement timings of the injection order m from overlapping each other among the voltage rise suppression devices 50 is provided. It may be provided.
  • the overlap prevention unit 124 controls the current injection unit 72 and the ratio calculation unit 62 to prevent the injection and measurement timings from overlapping each other between the voltage rise suppression devices 50.
  • the duplication prevention unit 124 may include, for example, a random number generation unit, and determine the injection and measurement timing by a random number.
  • the duplication prevention unit 124 monitors the collision of data on the CSMA / CD system (in short, the network is used for access control in the information communication field such as LAN, and detects a collision.
  • the device that sent the data waits for a certain period of time and then retransmits the data) or the token ring method (in simple terms, it circulates special data called a token, and the device that acquired the token sends the data It may have the same function as the system capable of transmission.
  • a plurality of distributed power owned equipment 20, each having the voltage rise suppression unit 50 be connected to the secondary side of the distribution lines of the same transformer, injection as well as infusion of injection current I m Since the timing of measuring the voltage and current of the order m is different from each other in the voltage increase suppressing device 50 of each facility, the voltage ⁇ suppressing device 50 of the plurality of distributed power source possessing facilities 20 does not interfere with each other, and the ratio ⁇ 1 is correctly set. Can be calculated. Therefore, appropriate phase advance reactive power Q can be output from each distributed power supply 30.
  • the voltage V d at the connection point 18 can be measured. It can be difficult.
  • the impedance of the power distribution system 2 side as viewed from the measurement point 36 is measured, when measuring the ratio alpha 2 of the resistance / reactance, the impedance r t + jx t of interconnection transformer 126 is applied, the ratio alpha 2 is The value is shown by the following formula.
  • the overall impedance (r + r t ) + j (x + x t ) and its resistance component and reactance component as seen from the measurement point 36 when the distribution system 2 is viewed are measured by the method described above. can do.
  • the resistance r t and the reactance x t of the interconnection transformer 126 are known.
  • the conversion coefficient ⁇ can be calculated according to the above equation (21).
  • the above-described second phase reactive power Q b (see Equation 11) can be calculated by the following equation. Therefore, this calculation may be performed in the second reactive power calculation unit 64 (step 404 in FIG. 7).
  • the model shown in FIG. 15 includes a distributed power source holding facility 20 having a distributed power source 30 having a rated output of 5 kW on a secondary low voltage distribution line 16 of a 20 kVA single-phase three-wire transformer (columnar transformer) 14. This is an example in which the units are connected.
  • the impedance Z t of the transformer 14 was set to 0.016 + j0.021 ⁇ .
  • the impedance Z d of the low-voltage distribution line 16 was 0.011 + j0.012 ⁇ , and 0.017 + j0.013 ⁇ when the line resistance was large.
  • Each distributed power supply facility 20 increased the output (active power P) at 1 kW / second from time 2 seconds, and fixed the output at 5 kW after time 7 seconds. This is a simulation of the case where the distributed power source 30 of each distributed power source possessing facility 20 is a solar power generation system, and the amount of solar radiation increases rapidly in 5 seconds due to clear clouds.
  • Table 1 shows the voltage at the transformer closest point 17 and each interconnection point 18 under the above conditions (this is 100V class between grounds), the active power P output from each facility 20, the phase reactive power Q and the operating power factor Pf.
  • FIG. 16 to FIG. 27 show the results of measurement divided into the methods shown in FIG.
  • the specific configuration of each part of the voltage rise suppressing device 50 shown in FIG. 6 is the same as that described with reference to FIGS.
  • the fast reactive power Q is displayed as a negative value in this simulation.
  • the driving power factor Pf rapidly increases in the initial stage, but this is a phenomenon only at the beginning of the control, and there is no particular problem.
  • the voltages V d1 to V d3 at each interconnection point 18 are suppressed to the voltage upper limit value of 107 V or less as shown in FIGS. .
  • the voltage V d3 reaches the voltage upper limit value 107V at time t 1 , and in response thereto, the phase advance reactive power Q 3 increases, and at time t 2 , the driving power factor Pf 3 becomes the power factor lower limit. The value 0.85 is reached, and in response, the active power P 3 starts to decrease.
  • the effective power P from the terminal equipment 20 is only about 2 kW, and the effective power depends on the position connected to the low voltage distribution line 16 as the voltage rise is suppressed. There is inequality in P etc.
  • the voltages V d1 to V d3 at each interconnection point 18 are the voltage upper limit value 107V. It is suppressed to the following. If attention is paid to the terminal equipment 20, the voltage V d3 reaches the voltage upper limit value 107V at time t 3 , and in response thereto, the phase advance reactive power Q 3 increases. At time t 4 , the driving power factor Pf 3 becomes the power factor lower limit. The value 0.85 is reached, and in response, the active power P 3 starts to decrease. In this method, as shown in FIG.
  • the effective power P 3 of the terminal equipment 20 is almost zero, and the effective power P or the like depends on the position connected to the low-voltage distribution line 16 as the voltage rise is suppressed. There is great inequality. This is because the voltage increase value ⁇ V becomes larger when the line resistance is large.
  • the voltage V d3 reaches the voltage upper limit value 107V at time t 5 , and in response thereto, the phase advance reactive power Q 3 increases (this is the first phase advance reactive power Q a described above).
  • the driving power factor Pf 3 reaches the power factor lower limit value 0.85 at time t 6 , and the increase of the active power P 3 stops in response thereto.
  • the driving power factor Pf is about 0.95 to 0.85. Range and pretty good. Therefore, there is little decrease in the system power factor of the three units.
  • the line resistance is large and the voltage increase value ⁇ V tends to increase, it has been confirmed that the effect is obtained even if the correction coefficient ⁇ is set to 0.5.
  • the distributed power supply 30 may be other than the solar power generation system of the above example.
  • the distributed power source 30 may be a fuel cell power generation facility having a fuel cell and an inverter such as the inverter 34.
  • the distributed power source 30 may be a cogeneration power generation facility, a wind power generation facility, or the like.
  • the active power and / or reactive power output from the AC generator in response to a command signal from the voltage rise suppression device 50 (specifically, the active power command value P com and the phase advance reactive power command value Q com ).
  • a known technique can be used as the technique for controlling the value to the command value.
  • the active power can be controlled by controlling the phase of the output voltage of the AC generator.
  • the reactive power can be controlled by controlling the field of the AC generator to control the magnitude of the output voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The purpose of the invention is to reduce an inequality caused by a position where a facility having a distributed power supply is connected to a distribution system and allow the distributed power supply to output an appropriate phase-advanced reactive power by correctly calculating a control parameter without giving disturbance to the distribution system. A voltage rise suppression device (50) comprises: a fundamental wave voltage determination unit (54) for determining a fundamental wave voltage at an interconnection point (18); an operational power factor determination unit (56) for determining the operational power factor of a distributed power supply (30); a reactive power calculation unit (58) for calculating a first phase-advanced reactive power corresponding to the difference between the fundamental wave voltage and a voltage upper limit value; and an active power control unit (60) for reducing the active power output from the distributed power supply (30). The voltage rise suppression device (50) further comprises: a current injection unit (72) for injecting injection current (Im) of non-integral multiple orders (m); a ratio calculation unit (62) for, using voltage and current having an injection order (m), calculating the resistance and reactance of the fundamental wave component of a distribution system and the ratio (α1) of the former to the latter; a reactive power calculation unit (64) for calculating a second phase-advanced reactive power by multiplying the active power output from the distributed power supply (30), the ratio (α1), and a correction coefficient (β) to each other; a total reactive power calculation unit (66) for calculating a total phase-advanced reactive power by adding the first and second phase-advanced reactive powers to each other; a limiting reactive power calculation unit (68) for, using the active power output from the distributed power supply (30) and a power factor lower limit value, calculating a limiting phase-advanced reactive power for obtaining the power factor lower limit value when the active power is output; and a reactive power control unit (70) for suppressing the total phase-advanced reactive power and supplying to the distributed power supply (30) as a phase-advanced reactive power command value.

Description

電圧上昇抑制装置および分散電源連系システムVoltage rise suppression device and distributed power interconnection system
 この発明は、配電系統に接続された分散電源保有設備の分散電源を制御して、当該配電系統の電圧上昇を抑制する電圧上昇抑制装置に関する。更に、当該電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が配電系統に接続された分散電源連系システムに関する。 The present invention relates to a voltage rise suppression device that controls a distributed power supply of a distributed power supply facility connected to a distribution system and suppresses a voltage increase of the distribution system. Furthermore, the present invention relates to a distributed power supply interconnection system in which a plurality of distributed power supply facilities each having the voltage rise suppression device are connected to a power distribution system.
 例えば太陽光発電システム(略称PV)等の分散電源であって、逆潮流有り(即ち、分散電源から系統側へ向かう有効電力の流れ有り)の分散電源を有する分散電源保有設備を、配電系統に複数(例えば多数)接続して、分散電源連系システムを構成することが従来から行われている。 For example, a distributed power supply facility having a distributed power source such as a photovoltaic power generation system (abbreviated as PV) and having a reverse power flow (that is, a flow of effective power from the distributed power source to the system side) is provided in the distribution system. Conventionally, a plurality of (for example, many) connections are used to form a distributed power supply interconnection system.
 その一例を図1に示す。この分散電源連系システムは、上位系統1に、高圧配電線10、変圧器14および低圧配電線16を有する配電系統2が接続され、更にこの低圧配電線16に、分散電源(例えば図3、図4の分散電源202参照)を有する複数の分散電源保有設備200が接続された構成をしている。各分散電源保有設備200が配電系統2(この例では低圧配電線16)に接続されている箇所を連系点18と呼ぶ。 An example is shown in FIG. In this distributed power supply interconnection system, a distribution system 2 having a high-voltage distribution line 10, a transformer 14, and a low-voltage distribution line 16 is connected to the host system 1, and further, a distributed power supply (for example, FIG. A plurality of distributed power supply facilities 200 having a distributed power supply 202 in FIG. 4 are connected. A place where each of the distributed power supply facilities 200 is connected to the power distribution system 2 (in this example, the low voltage distribution line 16) is referred to as a connection point 18.
 このような分散電源連系システムにおける主要な課題の一つに、逆潮流によって連系点18の電圧が上昇して、当該電圧が電気事業法等で定められている所定の上限値(例えば107V)を超える恐れがあるという課題がある。 One of the main problems in such a distributed power supply interconnection system is that the voltage at the interconnection point 18 increases due to reverse power flow, and the voltage is a predetermined upper limit value (for example, 107 V) defined by the Electricity Business Law or the like. ).
 そこで、上記電圧上昇を抑制するために、非特許文献1には、例えば図2に示すような機能を有する電圧上昇抑制装置を分散電源保有設備200に設けることが提案されている(例えば99頁参照)。 Therefore, in order to suppress the above voltage increase, Non-Patent Document 1 proposes to provide a distributed power supply facility 200 with a voltage increase suppressing device having a function as shown in FIG. 2 (for example, page 99). reference).
 この電圧上昇抑制装置は、連系点18における電圧(具体的には基本波電圧)を測定し(ステップ301)、当該電圧が所定の上限値(例えば107V)より高いか否かを判断する(ステップ302)。高ければ、更に運転力率が所定の下限値(例えば0.85)以上か否かを判断し(ステップ303)、運転力率が下限値以上の場合は自設備の分散電源を制御してそれから出力する進相無効電力Qを、上記電圧とその上限値との差に応じて増加させる(ステップ304)。運転力率が下限値よりも小さければ自設備の分散電源を制御してそれから出力する有効電力Pを、上記電圧とその上限値との差に応じて減少させる(ステップ305)。これによって、連系点18の電圧を上限値以下に抑えることができる。 This voltage rise suppression device measures a voltage (specifically, a fundamental wave voltage) at the interconnection point 18 (step 301), and determines whether or not the voltage is higher than a predetermined upper limit value (for example, 107V) ( Step 302). If it is higher, it is further determined whether or not the driving power factor is equal to or higher than a predetermined lower limit value (for example, 0.85) (step 303). The phase advance reactive power Q to be output is increased in accordance with the difference between the voltage and the upper limit value (step 304). If the operating power factor is smaller than the lower limit value, the distributed power supply of the own equipment is controlled and the active power P output therefrom is decreased according to the difference between the voltage and the upper limit value (step 305). As a result, the voltage at the interconnection point 18 can be suppressed to an upper limit value or less.
 その原理の要点を説明すると次のとおりである。なお、この出願では、分散電源保有設備200(または後述する20。以下同様)から配電系統2へ流れる有効電力をP、進相無効電力をQとしている。 The main points of the principle are explained as follows. In this application, the active power flowing from the distributed power supply facility 200 (or 20, which will be described later, the same applies hereinafter) to the power distribution system 2 is P, and the phase reactive power is Q.
 配電系統2のインピーダンスをr+jx(rは抵抗、xはリアクタンス。図3等を参照)とすると、上記有効電力Pおよび進相無効電力Qが流れることによる電圧上昇値ΔVは次式で表される。なお、上位系統1のインピーダンスは、配電系統2のインピーダンスに比べて遥かに小さいので、説明を簡略化するために、この出願では無視している。 Assuming that the impedance of the distribution system 2 is r + jx (r is resistance, x is reactance, see FIG. 3 and the like), the voltage increase value ΔV due to the flow of the active power P and the phase reactive power Q is expressed by the following equation. . The impedance of the upper system 1 is much smaller than the impedance of the power distribution system 2, and is ignored in this application for the sake of simplicity.
 [数1]
  ΔV=P・r-Q・x
[Equation 1]
ΔV = P · r−Q · x
 これを電流で表現すると、分散電源保有設備200から配電系統2へ流れる有効電流をI、進相無効電力をIとすると、電圧上昇値ΔVは次式で表される。 Expressing this in terms of current, assuming that the effective current flowing from the distributed power supply facility 200 to the power distribution system 2 is I p and the phase advance reactive power is I q , the voltage increase value ΔV is expressed by the following equation.
 [数2]
  ΔV=I・r-I・x
[Equation 2]
ΔV = I p · r−I q · x
 上記数1から分かるように、進相無効電力Qの増加(ステップ304)または有効電力Pの減少(ステップ305)を行うことによって、電圧上昇値ΔVを小さくすることができるので、連系点18の電圧上昇を抑えることができる。 As can be seen from Equation 1, the voltage increase value ΔV can be reduced by increasing the fast reactive power Q (step 304) or decreasing the active power P (step 305). The voltage rise can be suppressed.
 なお、図2におけるステップ306~309の処理は、電圧が上限値以下の場合のものであるので、ここではその詳しい説明を省略する。 Note that the processing in steps 306 to 309 in FIG. 2 is performed when the voltage is equal to or lower than the upper limit value, and thus detailed description thereof is omitted here.
 連系点18の電圧上昇を抑制する他の技術として、特許文献1および非特許文献2には、配電系統2の数3で表される制御パラメータα(即ち、配電系統2の抵抗rのリアクタンスxに対する比率)を、出力電流の変化による連系点18の基本波(例えば60Hz。以下同様)電圧の変化分を測定することによって求め、それを用いて、分散電源保有設備200から出力する進相無効電力Qを数4となるように制御する技術が記載されている(後でもう少し詳しく説明する)。この数4は、簡単に言えば、上記数1のΔV=0と置いたものに等しい。 As another technique for suppressing the voltage increase at the interconnection point 18, Patent Document 1 and Non-Patent Document 2 describe a control parameter α represented by the number 3 of the distribution system 2 (that is, reactance of the resistance r of the distribution system 2). The ratio to x) is determined by measuring the change in voltage of the fundamental wave (for example, 60 Hz, the same applies hereinafter) at the interconnection point 18 due to the change in the output current, and using that, the output from the distributed power source holding facility 200 is calculated. A technique for controlling the phase reactive power Q so that it becomes Equation 4 is described (will be described in more detail later). In short, this equation 4 is equal to the equation 1 above where ΔV = 0.
 [数3]
  α=r/x
[Equation 3]
α = r / x
 [数4]
  Q=(r/x)P=α・P
[Equation 4]
Q = (r / x) P = α · P
 特許文献2および非特許文献3は、後で参照する。 Patent Document 2 and Non-Patent Document 3 will be referred to later.
特開2006-158179号公報(段落0008-0009、0016)JP 2006-158179 A (paragraphs 0008-0009, 0016) 特開2001-128366号公報JP 2001-128366 A
 複数の分散電源保有設備200が上記非特許文献1に記載の機能を有する電圧上昇抑制装置をそれぞれ備えている場合、当該分散電源保有設備200が配電系統に接続されている位置(即ち上流側か下流側か)によって、自設備の分散電源から出力する電力に関して、電圧上昇抑制のために必要な進相無効電力Qの増加量または有効電力Pの減少量に差が生じて不平等になるという課題がある。この出願において、「上流側」とは上位系統1(換言すれば系統電源、上位の変圧器)に近い側を言い、「下流側」とはその反対側を言う。 When the plurality of distributed power supply facilities 200 are each provided with the voltage rise suppression device having the function described in Non-Patent Document 1, the position where the distributed power supply facilities 200 are connected to the distribution system (that is, the upstream side) Depending on whether it is downstream or not, regarding the power output from the distributed power supply of its own equipment, there is a difference in the amount of increase in the fast reactive power Q or the amount of decrease in the active power P necessary for suppressing voltage rise, resulting in inequality There are challenges. In this application, “upstream side” refers to the side closer to the upper system 1 (in other words, the system power supply, upper transformer), and “downstream side” refers to the opposite side.
 これは、簡単に言えば、自設備の連系点18の電圧は、変圧器14の2次電圧に、自設備よりも上流側の電圧上昇値ΔVを合計した電圧が加算されるので、下流側端に近づくほど連系点18の電圧が高くなるからである。 Simply put, the voltage at the interconnection point 18 of the own equipment is added to the secondary voltage of the transformer 14 by adding the voltage increase value ΔV on the upstream side of the own equipment. This is because the voltage at the interconnection point 18 increases as it approaches the side end.
 従って、下流側の分散電源保有設備200ほど、上流側の分散電源保有設備200に比べて、その連系点18の電圧が上限値を超えやすくなるので、連系点18の電圧上昇抑制のために、自設備内の分散電源から進相無効電力Qを多く出力したり、有効電力Pを大きく減少させたりしなければならない。ちなみに、進相無効電力Qは分散電源におけるロスを増加させるので、進相無効電力Qを増加させるのには電源容量の観点から限りがある。 Therefore, since the downstream distributed power supply facility 200 is more likely to exceed the upper limit value in the upstream distributed power supply facility 200, the voltage at the connection point 18 is suppressed. In addition, it is necessary to output a large amount of the phase reactive power Q from the distributed power source in the own facility or to greatly reduce the active power P. Incidentally, since the phase advance reactive power Q increases the loss in the distributed power supply, the phase advance reactive power Q is limited from the viewpoint of power supply capacity.
 このように、分散電源保有設備200が配電系統2に接続されている位置によって、上記のような差が生じるのは不平等である。例えば、分散電源保有設備200が売電(有効電力Pを電力会社に売ること)をしている場合には、売電による収入に差が生じてしまう。自設備よりも上流側で既に電圧がほぼ上限値まで上昇している場合もあり、その場合はいくら自設備で頑張っても、連系点18の電圧を上限値以下に抑えることはできない。従って殆ど売電できないことも起こり得る。 Thus, it is unequal that the difference as described above occurs depending on the position where the distributed power supply facility 200 is connected to the power distribution system 2. For example, when the distributed power supply facility 200 sells power (sells the active power P to an electric power company), a difference occurs in the income from the power sale. In some cases, the voltage has already risen to the upper limit value on the upstream side of the own facility. In this case, no matter how hard the own facility works, the voltage at the interconnection point 18 cannot be suppressed below the upper limit value. Therefore, it is possible that almost no power can be sold.
 例えば分散電源が太陽光発電システムの場合、同一地域ではほぼ同様の日射量があり、ほぼ同量の発電ができるのに、下流側の分散電源ほど活用できる電力が減り、利用率が低下することが起こり得る。 For example, if the distributed power source is a solar power generation system, there is almost the same amount of solar radiation in the same region, and although almost the same amount of power can be generated, the power that can be used in the downstream distributed power source decreases and the utilization rate decreases. Can happen.
 特許文献1および非特許文献2に記載の技術は、各分散電源保有設備200がそれぞれ、自設備が出力する有効電力Pに比例させて進相無効電力Qを出力するので、大まかに言えば、非特許文献1に記載の技術のような不平等発生の課題は解決することができるけれども、制御パラメータαを求めることに関してそれぞれ次の課題がある。 Since the technology described in Patent Literature 1 and Non-Patent Literature 2 outputs each phased reactive power Q in proportion to the active power P output from the own equipment, each of the distributed power source possessing equipment 200, roughly speaking, Although the problem of inequality occurrence like the technique described in Non-Patent Document 1 can be solved, there are the following problems with respect to obtaining the control parameter α.
 特許文献1に記載の技術は、自設備から出力する有効電力(具体的には基本波有効電流)および無効電力(具体的には基本波無効電流)を人為的に変化させて上記制御パラメータαを求める。この原理の概略を図3を参照して説明する。 The technique described in Patent Literature 1 artificially changes the active power (specifically, the fundamental wave active current) and the reactive power (specifically, the fundamental wave reactive current) output from its own equipment, and controls the control parameter α. Ask for. An outline of this principle will be described with reference to FIG.
 基本波有効電流Iの変化ΔIによる連系点18の基本波電圧の変化分δV、基本波無効電流Iの変化ΔIによる連系点18の基本波電圧の変化分δVには、次式の関係がある。r、xは、それぞれ、前述した配電系統2の抵抗、リアクタンスである。 Variation .DELTA.V p of the fundamental wave voltage of the connecting point 18 due to the change [Delta] I p of the fundamental wave active current I p, the variation .DELTA.V q of the fundamental wave voltage of the connecting point 18 due to the change [Delta] I q of the fundamental wave reactive current I q Has the following relationship: r and x are the resistance and reactance of the distribution system 2 described above, respectively.
 [数5]
  δV=ΔI・r
  δV=ΔI・x
[Equation 5]
δV p = ΔI p · r
δV q = ΔI q · x
 この両者を用いて次式の演算を行って、制御パラメータαを求める。 Using both of these, the following equation is calculated to obtain the control parameter α m .
 [数6]
  α=(δV/ΔI)/(δV/ΔI)=r/x
[Equation 6]
α m = (δV p / ΔI p ) / (δV q / ΔI q ) = r / x
 このようにして算出された制御パラメータα=r/xは、数3に示した真の制御パラメータα=r/xと同じであるので、上記方法によって制御パラメータαを正しく算出することができる。 Since the control parameter α m = r / x calculated in this way is the same as the true control parameter α = r / x shown in Equation 3, the control parameter α can be correctly calculated by the above method. .
 しかし、この特許文献1に記載の技術には、配電系統の基本波電力に人為的な擾乱を与えることになるという課題がある。 However, the technique described in Patent Document 1 has a problem that artificial disturbance is given to the fundamental wave power of the distribution system.
 非特許文献2に記載の技術は、上記とほぼ同様の原理によって上記制御パラメータαを求めるけれども、自設備から出力する有効電力(具体的には基本波有効電流)および無効電力(具体的には基本波無効電流)の自然の変動を利用して制御パラメータαを求めるので、配電系統に人為的な擾乱を与えずに済む。しかし、制御パラメータαを正しく算出することができない場合がある。これを以下に説明する。 Although the technique described in Non-Patent Document 2 obtains the control parameter α based on substantially the same principle as described above, the active power (specifically, fundamental wave active current) and reactive power (specifically, output from the own equipment) Since the control parameter α is obtained by utilizing the natural variation of the fundamental wave reactive current), it is not necessary to give artificial disturbance to the distribution system. However, there are cases where the control parameter α cannot be calculated correctly. This will be described below.
 図4に示す例のように、非特許文献2に記載の技術を採用している分散電源保有設備200a(これを自設備200aと呼ぶ)に着目すると、その近くに、通常の(即ち、上記非特許文献1の29頁にも記載されているように、力率100%運転を行う)分散電源保有設備200bが接続されている場合を取り上げる。両設備200a、200bの容量は、ここでは説明を簡単にするために、同一容量とする。両設備200a、200bの分散電源202が太陽光発電システムの場合、両方の太陽光発電システムは日射を同様に浴びるため、有効電流Ip1とIp2とは互いに同じように変化する。即ち両者の変化分ΔIp1=ΔIp2となる。自設備200aの無効電流の変化をΔIq1とする。 As in the example illustrated in FIG. 4, when attention is paid to the distributed power source possessing facility 200a (which is referred to as the own facility 200a) adopting the technology described in Non-Patent Document 2, a normal (that is, the above-described) A case where a distributed power source possessing facility 200b (operating at a power factor of 100% as described in Non-Patent Document 1 page 29) is connected will be taken up. The capacity of both the facilities 200a and 200b is assumed to be the same capacity here for the sake of simplicity. When the distributed power source 202 of both facilities 200a and 200b is a solar power generation system, both solar power generation systems are similarly exposed to solar radiation, so that the effective currents I p1 and I p2 change in the same manner. That is, the change ΔI p1 = ΔI p2 of both. A change in reactive current of the own facility 200a is assumed to be ΔI q1 .
 このような事態は、太陽光発電システムに限らず、近接する風力発電設備同士など、他の再生可能エネルギー利用発電でも一般に起こり得る。また、今後予想される、太陽光等の再生可能エネルギー電源の電力系統への大量連系が実現すると、このような事態が発生する可能性はより高まる。 Such a situation can generally occur not only in the solar power generation system but also in other renewable energy-based power generation such as adjacent wind power generation facilities. In addition, the possibility of such a situation is further increased when a mass interconnection to a power system of a renewable energy power source such as solar light, which is expected in the future, is realized.
 このような場合、基本波有効電流の変化による自設備200aの連系点電圧の変化分δVp1は次式となる。上記のようにΔIp2=ΔIp1だからである。 In such a case, the change δV p1 of the interconnection point voltage of the own facility 200a due to the change of the fundamental wave active current is expressed by the following equation. This is because ΔI p2 = ΔI p1 as described above.
 [数7]
  δVp1=(ΔIp2による電圧上昇)+(ΔIp1による電圧上昇)
     =ΔIp1・r+ΔIp1・r
     =ΔIp1・2r
[Equation 7]
δV p1 = (Voltage increase due to ΔI p2 ) + (Voltage increase due to ΔI p1 )
= ΔI p1 · r + ΔI p1 · r
= ΔI p1 · 2r
 基本波無効電流の変化による自設備200aの連系点電圧の変化分δVq1は次式となる。 A change δV q1 of the connection point voltage of the own facility 200a due to a change in the fundamental wave reactive current is expressed by the following equation.
 [数8]
  δVq1=ΔIq1・x
[Equation 8]
δV q1 = ΔI q1 · x
 上記数6の場合と同様に、数7、数8のδVp1、δVq1を用いて次式の演算を行って、制御パラメータαを求める。 Similar to the case of Equation 6, the following equation is calculated using δV p1 and δV q1 of Equations 7 and 8, and the control parameter α m is obtained.
 [数9]
  α=(δVp1/ΔIp1)/(δVq1/ΔIq1)=2(r/x)
[Equation 9]
α m = (δV p1 / ΔI p1 ) / (δV q1 / ΔI q1 ) = 2 (r / x)
 このようにして算出された制御パラメータα=2(r/x)は、数3に示した真の制御パラメータα=r/xの2倍となっている。つまりこの場合は、制御パラメータαを正しく算出することができない。 The control parameter α m = 2 (r / x) calculated in this way is twice the true control parameter α = r / x shown in Equation 3. That is, in this case, the control parameter α cannot be calculated correctly.
 従ってこの場合は、非特許文献2に記載の技術を採用している自設備200aは、Q=α・Pという前述した(数4参照)無効電力制御を行うに当たり、本来の2倍の量の進相無効電力Qを出力することになり、余計な無効電力負担を背負ってしまうことになる。それによって様々な不都合が生じる。例えば、自設備200a内の分散電源202の運転力率が非常に悪化する。また、上記量の進相無効電力Qを出力することができなければ、連系点18の電圧上昇値ΔVを所定の上限値(例えば107V)以下に抑制することができなくなる。 Therefore, in this case, the own equipment 200a that employs the technique described in Non-Patent Document 2 performs twice the amount of the original power when performing the reactive power control (see Equation 4) Q = α · P. The phase reactive power Q is output, and an extra reactive power burden is borne. This causes various inconveniences. For example, the operating power factor of the distributed power source 202 in the own facility 200a is extremely deteriorated. If the amount of the phase advance reactive power Q cannot be output, the voltage increase value ΔV at the interconnection point 18 cannot be suppressed to a predetermined upper limit value (for example, 107 V) or less.
 近在の分散電源保有設備200bの容量が自設備200aの容量と異なっていても、上記と同様の事象が発生する。 Even if the capacity of the nearby distributed power supply facility 200b is different from the capacity of the own facility 200a, an event similar to the above occurs.
 なお、非特許文献2記載の技術は、実際は上記原理を少し変形して応用したものであるが、原理は同じであるので、ここではその詳細説明を省略する。 Note that the technology described in Non-Patent Document 2 is actually a slightly modified version of the above principle, but the principle is the same, so a detailed description thereof is omitted here.
 そこでこの発明は、連系点の電圧上昇抑制制御において、分散電源保有設備が配電系統に接続されている位置による不平等を軽減することができ、しかも、配電系統に擾乱を与えることなく制御パラメータを正しく算出して、分散電源から適正な進相無効電力を出力させることができる電圧上昇抑制装置を提供することを主たる目的としている。 Therefore, the present invention can reduce inequalities due to the position where the distributed power supply facility is connected to the power distribution system in the voltage rise suppression control of the interconnection point, and control parameters without causing disturbance to the power distribution system. The main object is to provide a voltage rise suppression device capable of correctly calculating and outputting appropriate phase advance reactive power from a distributed power source.
 この発明に係る電圧上昇抑制装置は、配電系統に接続された分散電源保有設備の分散電源を制御して、当該配電系統の電圧上昇を抑制する電圧上昇抑制装置であって、
 前記配電系統と前記分散電源保有設備との連系点における基本波電圧が所定の電圧上限値よりも高いか否かを判断する基本波電圧判断手段と、
 前記基本波電圧判断手段における判断結果が肯定の場合に、前記分散電源の運転力率が所定の力率下限値以上か否かを判断する運転力率判断手段と、
 前記運転力率判断手段における判断結果が肯定の場合に、前記基本波電圧と前記電圧上限値との差に応じた第1の進相無効電力を演算して出力する第1の無効電力演算手段と、
 前記運転力率判断手段における判断結果が否定の場合に、前記分散電源を制御して当該分散電源から出力する有効電力を、前記基本波電圧と前記電圧上限値との差に応じて減少させる有効電力制御手段と、
 前記配電系統の基本波の非整数倍次数の注入電流を前記配電系統に注入する電流注入手段と、
 前記連系点における前記注入次数の電圧および電流を用いて、前記連系点から見た前記配電系統の基本波成分の抵抗(r)、リアクタンス(x)および前者の後者に対する比率(α=r/x)を演算する比率演算手段と、
 前記分散電源から出力される有効電力、前記比率および0<β<1なる補正係数βを互いに掛け合わせて、第2の進相無効電力を演算して出力する第2の無効電力演算手段と、
 前記第1および第2の進相無効電力を互いに加算して、合計進相無効電力を演算して出力する合計無効電力演算手段と、
 前記分散電源から出力される有効電力および前記力率下限値を用いて、当該有効電力のときに前記力率下限値を実現する限界進相無効電力を演算する限界無効電力演算手段と、
 前記合計進相無効電力を、その上限を前記限界進相無効電力の値に抑制して進相無効電力指令値として前記分散電源に供給して、前記分散電源から出力する進相無効電力を当該進相無効電力指令値に制御する無効電力制御手段とを備えている、ことを特徴としている。
The voltage rise suppression device according to the present invention is a voltage rise suppression device that controls a distributed power supply of a distributed power supply facility connected to a distribution system and suppresses a voltage increase of the distribution system,
Fundamental wave voltage determining means for determining whether a fundamental wave voltage at a connection point between the distribution system and the distributed power supply facility is higher than a predetermined voltage upper limit value;
Driving power factor determining means for determining whether or not the operating power factor of the distributed power source is equal to or higher than a predetermined power factor lower limit when the determination result in the fundamental wave voltage determining means is affirmative;
First reactive power calculation means for calculating and outputting a first phase reactive power according to a difference between the fundamental voltage and the voltage upper limit value when the determination result in the driving power factor determination means is affirmative When,
When the determination result by the driving power factor determination means is negative, the effective power that controls the distributed power source and outputs from the distributed power source is reduced according to the difference between the fundamental voltage and the voltage upper limit value. Power control means;
Current injection means for injecting an injection current of a non-integer multiple order of the fundamental wave of the power distribution system into the power distribution system;
Using the voltage and current of the injection order at the interconnection point, the fundamental wave component resistance (r 1 ), reactance (x 1 ) and ratio of the former to the latter (α 1 = r 1 / x 1 ) Ratio calculating means for calculating
A second reactive power calculation means for calculating and outputting a second phase reactive power by multiplying the active power output from the distributed power source, the ratio, and a correction coefficient β of 0 <β <1;
Total reactive power calculation means for adding the first and second phase reactive power to each other to calculate and output a total phase reactive power;
Using the active power output from the distributed power source and the power factor lower limit value, limit reactive power calculation means for calculating limit advanced reactive power that realizes the power factor lower limit value at the time of the active power, and
The total advanced phase reactive power is supplied to the distributed power source as an advanced phase reactive power command value with the upper limit suppressed to the value of the limit advanced phase reactive power, and the advanced phase reactive power output from the distributed power source is Reactive power control means for controlling to a phase advance reactive power command value is provided.
 上記補正係数βは0.5~0.8の範囲に設定しておいても良い。 The correction coefficient β may be set in the range of 0.5 to 0.8.
 この発明に係る電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が、同じ変圧器の二次側の配電線に接続された分散電源連系システムの場合は、各電圧上昇抑制装置間で、注入次数を互いに異ならせるか、または、注入および測定のタイミングを互いに異ならせるのが好ましい。 In the case of a distributed power interconnection system in which a plurality of distributed power supply holding facilities each having a voltage rise suppression device according to the present invention are connected to a secondary distribution line of the same transformer, between each voltage rise suppression device, It is preferable to make the injection orders different from each other or to make the injection and measurement timing different from each other.
 請求項1に記載の発明によれば次の効果を奏する。 According to the first aspect of the invention, the following effects can be obtained.
 前述した制御パラメータαに相当する比率αを用いて、Q=α・β・Pなる演算を行って第2の進相無効電力Qを求めて、それを進相無効電力制御の一部に用いるので、進相無効電力制御に、自設備の分散電源から出力する有効電力Pに比例させて第2の進相無効電力Qを出力させる制御が加味されることになり、それによって非特許文献1に記載の技術のような不平等発生を軽減することができる。 Using the ratio α 1 corresponding to the control parameter α described above, the calculation of Q b = α 1 · β · P is performed to obtain the second advanced reactive power Q b , which is used for the advanced reactive power control. Since it is used for a part, the control to output the second phase reactive power Q b in proportion to the active power P output from the distributed power source of the own equipment is added to the phase reactive power control, Therefore, the occurrence of inequality as in the technique described in Non-Patent Document 1 can be reduced.
 上記比率αを求めるために、この発明に係る電圧上昇抑制装置では、配電系統に自然には殆ど存在しない、基本波の非整数倍次数の注入次数の注入電流を電流注入手段から配電系統に注入するので、この注入電流は小さなもので良く、従って配電系統に擾乱を与えずに済む。 In order to obtain the ratio α 1 , in the voltage rise suppressing device according to the present invention, an injection current having an injection order of a non-integer multiple of the fundamental wave, which does not naturally exist in the distribution system, is transferred from the current injection means to the distribution system. Since the injection is performed, the injection current may be small, so that the distribution system is not disturbed.
 比率演算手段によって、自設備の上記注入次数の電圧および電流を測定して上記比率αを求めるので、この発明に係る電圧上昇抑制装置を有している自設備の近くに、他の分散電源保有設備が存在していても、例えば上述した力率100%運転を行う他の分散電源保有設備が存在していても、それの影響を受けることなく、上記比率αを正しく算出することができる。また仮に、自設備の近くに、この発明に係る電圧上昇抑制装置を有している他の分散電源保有設備が存在している場合でも、それの対策方法は幾つかある。例えば、注入次数は、配電系統の基本波の場合のような唯一の次数(即ち1次。例えば60Hz)とは違って、多数の次数の内から選択することができるので、自設備と他設備とが使用する注入次数を互いに異ならせることは容易であり、それによって相互の干渉を排除して、上記比率αを正しく算出することができる。従っていずれの場合も、分散電源から適正な進相無効電力を出力させることができる。 Since the ratio α 1 is obtained by measuring the voltage and current of the injection order of the own equipment by the ratio calculation means, another distributed power source is provided near the own equipment having the voltage rise suppressing device according to the present invention. Even if owned facilities exist, for example, even if there are other distributed power owned facilities that perform 100% power factor operation as described above, the ratio α 1 can be calculated correctly without being affected by it. it can. Even if another distributed power source possessing equipment having the voltage rise suppressing device according to the present invention exists near its own equipment, there are several countermeasures for it. For example, the injection order can be selected from a number of orders, unlike the only order (ie primary, eg 60 Hz) as in the case of the fundamental of the distribution system. It is easy to use different injection orders from each other, thereby eliminating the mutual interference and correctly calculating the ratio α 1 . Therefore, in any case, appropriate phase advance reactive power can be output from the distributed power supply.
 また、分散電源が配電系統に複数連系されていると、他の分散電源の出力(有効電力)によって系統電圧が上昇する。また、0<β<1の補正係数βにより、進相無効電力Qが上記数4で示されるQの値より小さくなるため、自設備の出力(有効電力P)によっても系統電圧が上昇する。これらによる電圧上昇が加算され、自設備の連系点の基本波電圧が所定の電圧上限値を超える事象が起こりうる。そこでこのことを考慮して、更に、連系点の基本波電圧および分散電源の運転力率を判断して、第1の進相無効電力の増加または有効電力の減少を制御する手段を備えているので、連系点の基本波電圧が所定の電圧上限値を超えることを防止することができる。また、分散電源の運転力率が所定の力率下限値より低下することを防止することができる。上記手段は、基本波電圧の測定、基本波出力電流の制御によって測定、制御を実施するため、上記比率αの測定のための電流注入および電圧測定に対して、相互に干渉しない。 In addition, when a plurality of distributed power sources are connected to the distribution system, the system voltage increases due to the output (active power) of the other distributed power sources. Further, since the fast reactive power Q becomes smaller than the value of Q expressed by the above equation 4 due to the correction coefficient β of 0 <β <1, the system voltage also increases due to the output of the own equipment (active power P). Voltage rises due to these may be added, and an event may occur in which the fundamental voltage at the interconnection point of the own equipment exceeds a predetermined voltage upper limit value. In view of this, a means for determining the fundamental wave voltage at the interconnection point and the operating power factor of the distributed power source and controlling the increase in the first phase reactive power or the decrease in the active power is provided. Therefore, it is possible to prevent the fundamental wave voltage at the interconnection point from exceeding a predetermined voltage upper limit value. Further, it is possible to prevent the operating power factor of the distributed power source from falling below a predetermined power factor lower limit value. The means performs measurement and control by measuring the fundamental voltage and controlling the fundamental output current, and therefore does not interfere with the current injection and the voltage measurement for measuring the ratio α 1 .
 更に、分散電源から出力させる進相無効電力を限界進相無効電力の値に制限する手段を備えているので、分散電源の運転力率が所定の力率下限値より低下することを確実に防止することができる。 In addition, since the phase reactive power output from the distributed power supply is limited to the value of the critical phase reactive power, the operating power factor of the distributed power supply is reliably prevented from falling below a predetermined power factor lower limit value. can do.
 請求項2に記載の発明によれば次の更なる効果を奏する。即ち、補正係数βを上記範囲に設定しているので、第2の進相無効電力の出力量を適度に抑制して、運転力率の低下を小さくすることができる。しかもそのようにしても、連系点の基本波電圧および分散電源の運転力率を判断して、第1の進相無効電力の増加または有効電力の減少を制御する手段を備えているので、連系点の基本波電圧が所定の電圧上限値を超えたり、分散電源の運転力率が所定の力率下限値より低下したりすることを防止することができる。 The invention according to claim 2 has the following further effects. That is, since the correction coefficient β is set in the above range, the output amount of the second phase reactive power can be appropriately suppressed, and the decrease in the driving power factor can be reduced. Moreover, even in such a case, since the fundamental wave voltage at the interconnection point and the operating power factor of the distributed power source are determined, a means for controlling the increase in the first phase reactive power or the decrease in the active power is provided. It is possible to prevent the fundamental wave voltage at the interconnection point from exceeding a predetermined voltage upper limit value, or the operating power factor of the distributed power source from falling below a predetermined power factor lower limit value.
 請求項3に記載の発明によれば、請求項1、2に記載の発明の効果に加えて、次の更なる効果を奏する。即ち、請求項1または2に記載の電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が、同じ変圧器の二次側の配電線に接続されていても、用いる注入次数が各設備の電圧上昇抑制装置で互いに異なるので、複数の分散電源保有設備の電圧上昇抑制装置が互いに干渉することなく、上記比率αを正しく算出することができる。従って、各分散電源から適正な進相無効電力を出力させることができる。 According to invention of Claim 3, in addition to the effect of invention of Claim 1, 2, there exists the following further effect. That is, even when a plurality of distributed power source holding facilities each having the voltage rise suppression device according to claim 1 or 2 are connected to a distribution line on the secondary side of the same transformer, the injection order to be used is the voltage of each facility. Since the increase suppression devices are different from each other, the above-mentioned ratio α 1 can be correctly calculated without interference of the voltage increase suppression devices of the plurality of distributed power supply facilities. Therefore, appropriate phase advance reactive power can be output from each distributed power source.
 請求項4に記載の発明によれば、請求項1、2に記載の発明の効果に加えて、次の更なる効果を奏する。即ち、請求項1または2に記載の電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が、同じ変圧器の二次側の配電線に接続されていても、注入電流の注入ならびにその注入次数の電圧および電流の測定のタイミングが各設備の電圧上昇抑制装置で互いに異なるので、複数の分散電源保有設備の電圧上昇抑制装置が互いに干渉することなく、上記比率αを正しく算出することができる。従って、各分散電源から適正な進相無効電力を出力させることができる。 According to invention of Claim 4, in addition to the effect of invention of Claim 1, 2, there exists the following further effect. That is, even when a plurality of distributed power source holding facilities each having the voltage rise suppression device according to claim 1 or 2 are connected to a secondary distribution line of the same transformer, injection of injected current and its injection order The voltage and current measurement timings of the respective facilities are different from each other in the voltage increase suppressing device of each facility, so that the above-mentioned ratio α 1 can be calculated correctly without interfering with the voltage increase suppressing devices of the plurality of distributed power supply owned facilities. . Therefore, appropriate phase advance reactive power can be output from each distributed power source.
複数の分散電源保有設備が配電系統に接続された従来の分散電源連系システムの一例を示す単線接続図である。It is a single line connection figure which shows an example of the conventional distributed power supply interconnection system with which the some distributed power supply possession equipment was connected to the power distribution system. 非特許文献1に記載の電圧上昇抑制装置の機能の一例を示すフローチャートである。10 is a flowchart illustrating an example of a function of the voltage rise suppression device described in Non-Patent Document 1. 基本波電圧および基本波電流を測定して制御パラメータαを求める方法の従来例を説明するための図である。It is a figure for demonstrating the prior art example of the method of measuring a fundamental wave voltage and a fundamental wave current, and calculating | requiring the control parameter (alpha). 基本波電圧および基本波電流を測定して制御パラメータαを求める従来例の課題を説明するための図である。It is a figure for demonstrating the subject of the prior art example which measures a fundamental wave voltage and a fundamental wave current, and calculates | requires control parameter (alpha). この発明に係る分散電源連系システムの一例を示す単線接続図である。1 is a single line connection diagram illustrating an example of a distributed power interconnection system according to the present invention. 各分散電源保有設備およびそれを構成する電圧上昇抑制装置の構成の一例を示す図である。It is a figure which shows an example of a structure of each distributed power supply equipment and the voltage rise suppression apparatus which comprises it. 図6中の電圧上昇抑制装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the voltage rise suppression apparatus in FIG. 基本波電圧判断部および運転力率判断部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a fundamental wave voltage judgment part and a driving power factor judgment part. 第1の無効電力演算部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a 1st reactive power calculating part. 有効電力制御部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of an active power control part. 比率演算部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a ratio calculating part. 第2の無効電力演算部、合計無効電力演算部、限界無効電力演算部および無効電力制御部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a 2nd reactive power calculating part, a total reactive power calculating part, a limit reactive power calculating part, and a reactive power control part. 各分散電源保有設備およびそれを構成する電圧上昇抑制装置の構成の他の例を示す図である。It is a figure which shows the other example of a structure of each distributed power supply possession installation and the voltage rise suppression apparatus which comprises it. 分散電源保有設備が高圧連系用の連系変圧器を有する場合の例を示す図である。It is a figure which shows the example in case a distributed power supply possession facility has the interconnection transformer for high voltage | pressure interconnection. シミュレーションに用いた分散電源連系システムのモデルを示す図である。It is a figure which shows the model of the distributed power supply interconnection system used for simulation. 図2に示す機能を有する従来の電圧上昇抑制装置を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of a transformer near voltage and each interconnection point voltage when the conventional voltage rise suppression apparatus which has a function shown in FIG. 2 is used. 図2に示す機能を有する従来の電圧上昇抑制装置を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of the active power output from each distributed power supply when using the conventional voltage rise suppression apparatus which has a function shown in FIG. 2, a phase reactive power, and a driving power factor. 図6に示す例の電圧上昇抑制装置(但しβ=1とした)を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of a transformer near voltage and each interconnection point voltage when the voltage rise suppression apparatus (however, it was set as (beta) = 1) of the example shown in FIG. 図6に示す例の電圧上昇抑制装置(但しβ=1とした)を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。FIG. 7 is a diagram showing an example of simulation results of active power, phase reactive power, and driving power factor output from each distributed power source when using the voltage rise suppression device of the example shown in FIG. 6 (where β = 1). . 図6に示す例の電圧上昇抑制装置(但しβ=0.5とした)を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of a transformer near voltage and each interconnection point voltage when the voltage rise suppression apparatus (however, it was set as (beta) = 0.5) of the example shown in FIG. 図6に示す例の電圧上昇抑制装置(但しβ=0.5とした)を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。The figure which shows an example of the simulation result of the active power output from each distributed power supply when using the voltage rise suppression apparatus of the example shown in FIG. It is. 配電線の抵抗が大きい場合に、図2に示す機能を有する従来の電圧上昇抑制装置を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the simulation result of a transformer near voltage and each interconnection point voltage when the conventional voltage rise suppression apparatus which has a function shown in FIG. 2 is used when resistance of a distribution line is large. 配電線の抵抗が大きい場合に、図2に示す機能を有する従来の電圧上昇抑制装置を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。An example of simulation results of active power, phase reactive power, and driving power factor output from each distributed power source when the conventional voltage rise suppression device having the function shown in FIG. 2 is used when the resistance of the distribution line is large FIG. 配電線の抵抗が大きい場合に、図6に示す例の電圧上昇抑制装置(但しβ=1とした)を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。The figure which shows an example of the simulation result of a transformer near voltage and each interconnection point voltage when the voltage rise suppression apparatus (however, it is set as (beta) = 1) of the example shown in FIG. 6 when resistance of a distribution line is large. It is. 配電線の抵抗が大きい場合に、図6に示す例の電圧上昇抑制装置(但しβ=1とした)を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。When the resistance of the distribution line is large, the active power, the fast reactive power, and the driving power factor output from each distributed power source when using the voltage rise suppression device of the example shown in FIG. 6 (where β = 1) are used. It is a figure which shows an example of a simulation result. 配電線の抵抗が大きい場合に、図6に示す例の電圧上昇抑制装置(但しβ=0.5とした)を用いたときの変圧器至近電圧および各連系点電圧のシミュレーション結果の一例を示す図である。An example of the simulation result of the voltage close to the transformer and each interconnection point voltage when using the voltage rise suppression device of the example shown in FIG. 6 (where β = 0.5) when the resistance of the distribution line is large FIG. 配電線の抵抗が大きい場合に、図6に示す例の電圧上昇抑制装置(但しβ=0.5とした)を用いたときの各分散電源から出力する有効電力、進相無効電力および運転力率のシミュレーション結果の一例を示す図である。When the resistance of the distribution line is large, the active power, the fast reactive power and the driving power output from each distributed power source when the voltage rise suppression device of the example shown in FIG. 6 (where β = 0.5) is used It is a figure which shows an example of the simulation result of a rate. 配電系統に注入電流を注入したときに連系点に発生する電圧を説明するための図である。It is a figure for demonstrating the voltage which generate | occur | produces in a connection point when injecting injection current into a power distribution system.
 (1)電圧上昇抑制装置50および分散電源連系システムの一実施形態
 図5に、この発明に係る分散電源連系システムの一例を示す。この分散電源連系システムは、分散電源(図6の分散電源30参照)をそれぞれ有する複数の分散電源保有設備20が配電系統2に(この実施形態では低圧配電線16に。以下同様)接続された構成をしている。その接続箇所を連系点18と呼ぶ。
(1) One Embodiment of Voltage Increase Suppression Device 50 and Distributed Power Supply Interconnection System FIG. 5 shows an example of a distributed power supply interconnection system according to the present invention. In this distributed power supply interconnection system, a plurality of distributed power supply holding facilities 20 each having a distributed power supply (see the distributed power supply 30 in FIG. 6) are connected to the power distribution system 2 (in this embodiment, to the low voltage distribution line 16, the same applies hereinafter). It has a configuration. This connection point is called a connection point 18.
 配電系統2は、この例では、上位系統1に高圧配電線10が接続され、その高圧配電線10に変圧器14を介して低圧配電線16が接続された構成をしている。 In this example, the distribution system 2 has a configuration in which a high-voltage distribution line 10 is connected to the higher-level system 1 and a low-voltage distribution line 16 is connected to the high-voltage distribution line 10 via a transformer 14.
 低圧配電線16に、複数の分散電源保有設備20が接続されている。より具体例を挙げると、逆潮流有りの契約をしている低圧連系の分散電源保有設備20が多数高い密度で接続されている(これを低圧高密度連系と言う)。変圧器14は、例えば、6600V/200Vの単相3線式の柱上変圧器である。 A plurality of distributed power source holding facilities 20 are connected to the low voltage distribution line 16. To give a more specific example, a large number of low-voltage interconnection distributed power holding facilities 20 that have contracts with reverse power flow are connected at a high density (this is called low-voltage high-density interconnection). The transformer 14 is, for example, a 6600V / 200V single-phase three-wire pole transformer.
 各分散電源保有設備20は、例えば、分散電源を有する発電設備、家庭、スーパーマーケット、工場、その他の設備である。 Each distributed power supply facility 20 is, for example, a power generation facility having a distributed power source, a home, a supermarket, a factory, or other facilities.
 各分散電源保有設備20の構成の一例を図6に示す。この分散電源保有設備20は、連系点18に接続された分散電源30と、この分散電源30を制御する電圧上昇抑制装置50とを備えている。連系点18の電圧Vは計器用変圧器40によって測定されて電圧上昇抑制装置50に与えられる。連系点18を流れる電流Iは計器用変流器42によって測定されて電圧上昇抑制装置50に与えられる。 An example of the configuration of each distributed power supply facility 20 is shown in FIG. The distributed power source possessing facility 20 includes a distributed power source 30 connected to the interconnection point 18 and a voltage increase suppressing device 50 that controls the distributed power source 30. The voltage V d at the interconnection point 18 is measured by the instrument transformer 40 and is given to the voltage rise suppression device 50. The current I d flowing through the interconnection point 18 is measured by the instrument current transformer 42 and is given to the voltage rise suppression device 50.
 分散電源30は、この実施形態では、太陽電池32と、その出力を交流電力に変換するインバータ(逆変換装置)34とを有している。即ち、太陽光発電システム(略称PV)である。但しこれに限られるものではなく、他の例は後述する。 In this embodiment, the distributed power supply 30 includes a solar cell 32 and an inverter (inverse conversion device) 34 that converts the output into AC power. That is, it is a photovoltaic power generation system (abbreviated as PV). However, the present invention is not limited to this, and other examples will be described later.
 インバータ34には、公知のインバータ(例えば上記非特許文献1の16-17頁参照)を利用することができる。外部からの制御信号(具体的には後述する有効電力指令値Pcom および進相無効電力指令値Qcom )によって、インバータ34から出力する有効電力Pおよび進相無効電力Qを制御することができ、その技術は公知である(例えば上記特許文献2参照)。 As the inverter 34, a known inverter (for example, refer to pages 16 to 17 of the non-patent document 1) can be used. Active power P and phase reactive power Q output from the inverter 34 can be controlled by external control signals (specifically, an active power command value P com and a phase reactive power command value Q com described later). The technique is publicly known (see, for example, Patent Document 2 above).
 電圧上昇抑制装置50は、この実施形態では、測定部52、基本波電圧判断手段を構成する基本波電圧判断部54、運転力率判断手段を構成する運転力率判断部56、第1の無効電力演算手段を構成する第1の無効電力演算部58、有効電力制御手段を構成する有効電力制御部60、比率演算手段を構成する比率演算部62、合計無効電力演算手段を構成する合計無効電力演算部66、限界無効電力演算手段を構成する限界無効電力演算部68、無効電力制御手段を構成する無効電力制御部70および電流注入手段を構成する電流注入部72を備えている。この電圧上昇抑制装置50における動作の一例を図7に示し、これも参照しながら、各制御部等の説明を以下に行う。なお、各制御部等の構成の具体例は後述する。 In this embodiment, the voltage rise suppressing device 50 includes a measuring unit 52, a fundamental wave voltage determining unit 54 constituting a fundamental wave voltage judging unit, a driving power factor judging unit 56 constituting a driving power factor judging unit, and a first invalidity. The first reactive power calculation unit 58 constituting the power calculation means, the active power control unit 60 constituting the active power control means, the ratio calculation unit 62 constituting the ratio calculation means, and the total reactive power constituting the total reactive power calculation means A calculation unit 66, a limit reactive power calculation unit 68 constituting limit reactive power calculation means, a reactive power control unit 70 constituting reactive power control means, and a current injection unit 72 constituting current injection means are provided. An example of the operation of the voltage rise suppressing device 50 is shown in FIG. 7, and the description of each control unit and the like will be given below with reference to this. A specific example of the configuration of each control unit will be described later.
 測定部52は、上記電圧Vおよび電流Iを用いて、分散電源30から出力する有効電力Pおよび分散電源30の運転力率Pfを算出して、それを必要とする他の制御部に与える機能を有している(ステップ401、402)。但し、このような測定部52を一括して設ける代わりに、上記有効電力P、運転力率Pfを必要とする他の制御部に、それを算出する機能を持たせても良い。 The measuring unit 52 calculates the active power P output from the distributed power source 30 and the operating power factor Pf of the distributed power source 30 using the voltage V d and the current I d , and sends it to other control units that need it. A function of giving (steps 401 and 402). However, instead of providing the measurement unit 52 in a lump, another control unit that requires the active power P and the driving power factor Pf may have a function of calculating it.
 基本波電圧判断部54は、自設備の連系点18における基本波電圧(配電系統2の基本波周波数(例えば60Hz)の電圧)を測定して(ステップ405)、それが所定の電圧上限値(例えば107V)よりも高いか否かを判断する(ステップ406)ものである。 The fundamental wave voltage determination unit 54 measures the fundamental wave voltage (voltage of the fundamental wave frequency (for example, 60 Hz) of the distribution system 2) at the interconnection point 18 of the own equipment (step 405), and this is a predetermined voltage upper limit value. It is determined whether the voltage is higher than (eg, 107 V) (step 406).
 運転力率判断部56は、基本波電圧判断部54における判断結果が肯定の場合に、分散電源30の運転力率Pfの測定値が所定の力率下限値(例えば0.85)以上か否かを判断する(ステップ407)ものである。 The driving power factor determination unit 56 determines whether or not the measured value of the driving power factor Pf of the distributed power source 30 is equal to or greater than a predetermined power factor lower limit value (for example, 0.85) when the determination result in the fundamental wave voltage determination unit 54 is positive. (Step 407).
 第1の無効電力演算部58は、運転力率判断部56における判断結果が肯定の場合に、前記基本波電圧と前記電圧上限値との差に応じた第1の進相無効電力Qを演算して出力する(ステップ408)ものである。 The first reactive power calculation unit 58 calculates the first phase reactive power Q a according to the difference between the fundamental voltage and the voltage upper limit value when the determination result in the driving power factor determination unit 56 is affirmative. Calculation and output (step 408).
 有効電力制御部60は、運転力率判断部56における判断結果が否定の場合に、分散電源30を制御して当該分散電源30から出力する有効電力Pを、前記基本波電圧と前記電圧上限値との差に応じて減少させる(ステップ409)ものである。具体的には、有効電力指令値Pcom をインバータ34に与えて制御する。 When the determination result in the driving power factor determination unit 56 is negative, the active power control unit 60 controls the distributed power source 30 to output the active power P output from the distributed power source 30 as the fundamental voltage and the voltage upper limit value. (Step 409). Specifically, the active power command value P com is given to the inverter 34 for control.
 電流注入部72は、配電系統2の基本波の非整数倍(即ち帯小数倍)次数mの注入電流Iを出力してそれを配電系統2(具体的にはその低圧配電線16)に注入する(ステップ403)ものである。注入次数mは、例えば、2.2次、2.4次、2.6次、2.8次等であるが、これに限られるものではない。 Current injection unit 72, a non-integer multiples of the fundamental wave of the distribution system 2 (i.e. bands decimal times) order m injected current I m outputs to the power distribution it system 2 (specifically, the low-voltage distribution line 16) (Step 403). The injection order m is, for example, 2.2 order, 2.4 order, 2.6 order, 2.8 order, etc., but is not limited thereto.
 上記注入電流Iを注入すると、図28に示すように、連系点18には、配電系統2の注入次数mのインピーダンスZに比例して、上記注入次数mの電圧Vが発生する。これが連系点電圧Vに含まれている。比率演算部62は、自設備の連系点18における前記注入次数mの電圧Vおよび電流Iを測定し、当該測定結果を用いて、連系点18から見た配電系統2の基本波成分の抵抗r、リアクタンスxおよび前者の後者に対する、次式で表される比率αを演算する(ステップ404の一部)ものである。 When the injection current Im is injected, a voltage V m of the injection order m is generated at the interconnection point 18 in proportion to the impedance Z m of the injection order m of the distribution system 2 as shown in FIG. . This is included in the connection point voltage V d . Ratio calculation unit 62, a voltage V m and current I m of the injection order m in its own equipment interconnection point 18 is measured, using the measurement results, the fundamental wave of the power distribution system 2 viewed from the connecting point 18 A ratio α 1 expressed by the following equation is calculated (part of step 404) for the component resistance r 1 , reactance x 1 and the former latter.
 [数10]
  α=r/x
[Equation 10]
α 1 = r 1 / x 1
 第2の無効電力演算部64は、分散電源30から出力される有効電力Pの測定値、前記比率αおよび0<β<1なる補正係数βを互いに掛け合わせて、次式で表される第2の進相無効電力Qを演算して出力する(ステップ404)ものである。 The second reactive power calculation unit 64 multiplies the measured value of the active power P output from the distributed power source 30 with the ratio α 1 and the correction coefficient β of 0 <β <1, and is expressed by the following equation. the second phase advancing reactive power Q b a and calculates and outputs (step 404) is intended.
 [数11]
  Q=α・β・P
[Equation 11]
Q b = α 1・ β ・ P
 なお、ステップ403および404のフローチャート上での位置は、必ずしも図7に示す位置に限られるものではなく、他の位置に、例えばステップ410の直前に設けても良い。ステップ410における合計進相無効電力Qの演算を行う前に、第2の進相無効電力Qが算出できていれば良いからである。 Note that the positions on the flowchart of steps 403 and 404 are not necessarily limited to the positions shown in FIG. 7, and may be provided at other positions, for example, immediately before step 410. This is because it is only necessary to calculate the second phase advance reactive power Q b before calculating the total phase advance reactive power Q t in step 410.
 合計無効電力演算部66は、第1の進相無効電力Qおよび第2の進相無効電力Qを互いに加算して、次式で表される合計進相無効電力Qを演算して出力する(ステップ410)ものである。 The total reactive power calculation unit 66 adds the first advanced reactive power Q a and the second advanced reactive power Q b to each other to calculate a total advanced reactive power Q t expressed by the following equation. Is output (step 410).
 [数12]
  Q=Q+Q
[Equation 12]
Q t = Q a + Q b
 限界無効電力演算部68は、分散電源30から出力される有効電力Pの測定値および前記力率下限値を用いて、当該有効電力Pのときに前記力率下限値を実現する限界進相無効電力Qlim を演算して出力する(ステップ411の一部)ものである。 The limit reactive power calculation unit 68 uses the measured value of the active power P output from the distributed power supply 30 and the power factor lower limit value to limit the phase advance invalidity that realizes the power factor lower limit value at the active power P. The power Q lim is calculated and output (part of step 411).
 無効電力制御部70は、前記合計進相無効電力Qを、その上限を前記限界進相無効電力Qlim の値に抑制して進相無効電力指令値Qcom として分散電源30(具体的にはそのインバータ34)に供給して、分散電源30から出力する進相無効電力Qを当該進相無効電力指令値Qcom に制御する(ステップ411)ものである。 The reactive power control unit 70 suppresses the upper limit of the total advanced reactive power Q t to the value of the limit advanced reactive power Q lim and uses it as the advanced reactive power command value Q com as the distributed power supply 30 (specifically, Is supplied to the inverter 34), and the phase reactive power Q output from the distributed power source 30 is controlled to the phase reactive power command value Q com (step 411).
 なお、図7中のステップ413~416の処理は、図2中のステップ306~309の処理に相当しており、基本波電圧が上限値以下の場合のものである。このような処理機能は、本発明に必須のものではないので、ここではその詳しい説明を省略する。要は、ステップ406における判断が否定の場合に、ステップ410へ進めば良い。 Note that the processing in steps 413 to 416 in FIG. 7 corresponds to the processing in steps 306 to 309 in FIG. 2, and is performed when the fundamental wave voltage is equal to or lower than the upper limit value. Such processing functions are not essential to the present invention, and thus detailed description thereof is omitted here. In short, if the determination in step 406 is negative, the process may proceed to step 410.
 次に、上記各制御部等の構成の具体例を説明する。 Next, a specific example of the configuration of each control unit will be described.
 図8に示すように、基本波電圧判断部54は、減算器80および比較器82を備えている。運転力率判断部56は、比較器84、NOT回路86およびAND回路88、89を備えている。なお、複数の制御部に兼用する要素があるが(例えば、減算器80、AND回路88、89)、説明を簡単にするために便宜的に、以下においてはどれか一つの制御部を構成するものとして説明している。 As shown in FIG. 8, the fundamental voltage determination unit 54 includes a subtractor 80 and a comparator 82. The driving power factor determination unit 56 includes a comparator 84, a NOT circuit 86, and AND circuits 88 and 89. In addition, although there are elements shared by a plurality of control units (for example, subtractor 80 and AND circuits 88 and 89), for convenience of explanation, one of the control units is configured below for the sake of convenience. It is described as a thing.
 減算器80は、上記連系点18の電圧Vから電圧上限値Vlim (例えば107V)を減算して次式で表される差電圧DVを出力する。電圧上限値Vlim は電圧上昇抑制装置50に設定、保存される。なお、電圧Vに含まれる高調波電圧は基本波電圧に比べれば小さいので、以下の実施例では基本波電圧の代わりに電圧Vを用いており、このようにしても実用上差し支えはない。 The subtracter 80 subtracts a voltage upper limit value V lim (for example, 107 V ) from the voltage V d at the interconnection point 18 and outputs a difference voltage DV expressed by the following equation. The voltage upper limit value V lim is set and stored in the voltage rise suppression device 50. Since the harmonic voltage included in the voltage V d is smaller than the fundamental voltage, the voltage V d is used instead of the fundamental voltage in the following embodiments. .
 [数13]
  DV=V-Vlim 
[Equation 13]
DV = V d −V lim
 比較器82は、上記差電圧DVが0Vより大きいか否かを判断して(図7中のステップ406に相当)、0Vよりも大きいときに論理値1の信号を出力してそれをAND回路88および89に与える。 The comparator 82 determines whether or not the differential voltage DV is greater than 0V (corresponding to step 406 in FIG. 7), and outputs a signal having a logical value of 1 when the difference voltage DV is greater than 0V. 88 and 89.
 比較器84は、自設備の分散電源30の運転力率Pfが力率下限値Pflim (例えば0.85)以上か否かを判断して(ステップ407に相当)、力率下限値Pflim 以上のときに論理値1の信号を出力してそれをAND回路88およびNOT回路86に与える。従って、ステップ407における判断がYesのときに、AND回路88から論理値1の信号が出力される。力率下限値Pflim は電圧上昇抑制装置50に設定、保存される。 The comparator 84 determines whether or not the operating power factor Pf of the distributed power supply 30 of its own equipment is equal to or higher than the power factor lower limit value Pf lim (for example, 0.85) (corresponding to step 407), and the power factor lower limit value Pf lim. At this time, a signal having a logical value of 1 is output and applied to the AND circuit 88 and the NOT circuit 86. Therefore, when the determination in step 407 is Yes, a signal of logical value 1 is output from the AND circuit 88. The power factor lower limit value Pf lim is set and stored in the voltage rise suppression device 50.
 NOT回路86は、比較器84からの信号の論理値を反転させてそれをAND回路89に与える。従って、ステップ407における判断がNoのときにAND回路89から論理値1の信号が出力される。 The NOT circuit 86 inverts the logical value of the signal from the comparator 84 and supplies it to the AND circuit 89. Therefore, when the determination in step 407 is No, the AND circuit 89 outputs a signal having a logical value of 1.
 図9に示すように、第1の無効電力演算部58は、掛算器90およびPI制御部91を備えている。 As shown in FIG. 9, the first reactive power calculation unit 58 includes a multiplier 90 and a PI control unit 91.
 掛算器90は、上記減算器80からの差電圧DVと上記AND回路88からの信号とを掛け算して出力する。即ち、AND回路88から出力される信号が論理値1のときに、差電圧DVを出力する。 The multiplier 90 multiplies the difference voltage DV from the subtractor 80 and the signal from the AND circuit 88 and outputs the result. That is, when the signal output from the AND circuit 88 is a logical value 1, the difference voltage DV is output.
 PI制御部91は、掛算器90からの差電圧DVに係数Kp1、Ki1をそれぞれ掛けて出力する増幅器92、93と、増幅器93からの出力を積分して出力する積分器94と、この積分器94の出力と増幅器92の出力とを加算して上記第1の進相無効電力Qとして出力する加算器95とを有している。例えばKp1=2×1014、Ki1=4×10であるが、これに限られるものではない。 The PI control unit 91 multiplies the difference voltage DV from the multiplier 90 by coefficients K p1 and K i1 and outputs them, an integrator 94 that integrates and outputs the output from the amplifier 93, and this by adding the outputs of the amplifier 92 of the integrator 94 and an adder 95 to output as the first phase advancing reactive power Q a. For example, K p1 = 2 × 10 14 and K i1 = 4 × 10 5 , but not limited thereto.
 図10に示すように、有効電力制御部60は、掛算器96、PI制御部97および減算器102を備えている。 As shown in FIG. 10, the active power control unit 60 includes a multiplier 96, a PI control unit 97, and a subtracter 102.
 掛算器96は、上記減算器80からの差電圧DVと上記AND回路89からの信号とを掛け算して出力する。即ち、AND回路89から出力される信号が論理値1のときに、差電圧DVを出力する。 The multiplier 96 multiplies the difference voltage DV from the subtractor 80 and the signal from the AND circuit 89 and outputs the result. That is, when the signal output from the AND circuit 89 is a logical value 1, the difference voltage DV is output.
 PI制御部97は、掛算器96からの差電圧DVに係数Kp2、Ki2をそれぞれ掛けて出力する増幅器98、99と、増幅器99からの出力を積分して出力する積分器100と、この積分器100の出力と増幅器98の出力とを加算して有効電力減少量Pdnを出力する加算器101とを有している。例えばKp2=2×1013、Ki2=4×10であるが、これに限られるものではない。 The PI control unit 97 multiplies the difference voltage DV from the multiplier 96 by the coefficients K p2 and K i2 and outputs them, an integrator 100 that integrates and outputs the output from the amplifier 99, and this An adder 101 that adds the output of the integrator 100 and the output of the amplifier 98 to output the effective power reduction amount P dn is provided. For example, K p2 = 2 × 10 13 and K i2 = 4 × 10 4 , but not limited thereto.
 減算器102は、自設備の分散電源30の最大有効電力出力Pmax (即ち有効電力抑制がない場合に出力可能な最大有効電力)から上記有効電力減少量Pdnを減算して、次式で表される有効電力指令値Pcom を出力する。より具体的には、この有効電力指令値Pcom を分散電源30に(具体的にはそのインバータ34に)与えて、当該分散電源30から出力する有効電力Pをその値に制御する。 The subtracter 102 subtracts the effective power decrease amount P dn from the maximum active power output P max of the distributed power supply 30 of its own equipment (that is, the maximum active power that can be output when there is no active power suppression), and The active power command value P com represented is output. More specifically, this active power command value P com is given to the distributed power source 30 (specifically, to the inverter 34), and the active power P output from the distributed power source 30 is controlled to that value.
 [数14]
  Pcom =Pmax -Pdn
[Formula 14]
P com = P max -P dn
 なお、分散電源30が太陽光発電システムの場合は、そのインバータ34は通常、太陽電池32の出力電圧を制御して当該太陽電池32が出力する有効電力が最大になるように制御する(これはPmax 制御と略称されている)。分散電源30が太陽光発電システムの場合は、このPmax 制御による有効電力が上記最大有効電力出力Pmax であると言うことができる。 When the distributed power source 30 is a solar power generation system, the inverter 34 usually controls the output voltage of the solar cell 32 so that the effective power output from the solar cell 32 is maximized (this is (Abbreviated as P max control). When the distributed power source 30 is a photovoltaic power generation system, it can be said that the active power by the P max control is the maximum active power output P max .
 図11に示すように、比率演算部62は、離散フーリエ変換器104、105、割算器106、分離器108、増幅器110および割算器112を備えている。 11, the ratio calculation unit 62 includes discrete Fourier transformers 104 and 105, a divider 106, a separator 108, an amplifier 110, and a divider 112.
 離散フーリエ変換器104、105は、上記連系点の電圧V、電流I(共にベクトル量)をそれぞれ離散フーリエ変換して、自設備の連系点18における上記注入次数mの電圧V、電流I(共にベクトル量)をそれぞれ抽出して出力する。 The discrete Fourier transformers 104 and 105 perform discrete Fourier transform on the voltage V d and current I d (both vector quantities) of the interconnection point, respectively, and the voltage V m of the injection order m at the interconnection point 18 of the own equipment. , Current I m (both vector quantities) are extracted and output.
 割算器106は、次式の割算を行って、自設備の連系点18から見た配電系統2の上記注入次数mのインピーダンスZ(ベクトル量)を演算して出力する。 The divider 106 divides the following equation to calculate and output the impedance Z m (vector quantity) of the injection order m of the power distribution system 2 as viewed from the interconnection point 18 of its own equipment.
 [数15]
  Z=V/I
[Equation 15]
Z m = V m / I m
 図28も参照して、自設備の連系点18から見た配電系統2の上記注入次数mの抵抗をr、リアクタンスをxとすると、上記インピーダンスZは次式で表すことができる。 Referring also to FIG. 28, the impedance Z m can be expressed by the following equation, where r m is the resistance of the injection order m of the distribution system 2 viewed from the interconnection point 18 of the own equipment, and x m is reactance. .
 [数16]
  Z=r+jx
[Equation 16]
Z m = r m + jx m
 そこで分離器108は、数15の演算結果から実数部(抵抗分)と虚数部(リアクタンス分)とを分離して、上記注入次数mの抵抗rおよびリアクタンスxを分けて出力する。抵抗は周波数に依存しないので、この抵抗rは、基本波成分の抵抗rと等しい。 Therefore, the separator 108 separates the real part (resistance component) and the imaginary part (reactance component) from the calculation result of Equation 15, and outputs the resistance r m and reactance x m of the injection order m separately. Since the resistance does not depend on the frequency, the resistance r m is equal to the resistance r 1 of the fundamental wave component.
 増幅器110は、上記リアクタンスxに1/mを掛けて(換言すれば、上記リアクタンスxを注入次数mで割って)、基本波成分のリアクタンスxを演算して出力する。 The amplifier 110 multiplies the reactance x m by 1 / m (in other words, divides the reactance x m by the injection order m), and calculates and outputs the reactance x 1 of the fundamental wave component.
 割算器112は、上記基本波成分の抵抗rおよびリアクタンスxを用いて、上記数10に示した演算を行って、上記比率αを出力する。なお、この割算器112の出力部に平均化フィルタを設けて、それを通して比率αを出力するようにしても良い。 The divider 112 performs the calculation shown in Equation 10 above using the resistance r 1 and reactance x 1 of the fundamental wave component, and outputs the ratio α 1 . Incidentally, by providing the averaging filter at the output of the divider 112, through which may be output ratio alpha 1.
 図12に示すように、第2の無効電力演算部64は、増幅器114および掛算器116を備えている。 As shown in FIG. 12, the second reactive power calculation unit 64 includes an amplifier 114 and a multiplier 116.
 増幅器114は、上記比率演算部62からの比率αに上記補正係数βを掛けてα・βを出力する。 The amplifier 114 multiplies the ratio α 1 from the ratio calculator 62 by the correction coefficient β and outputs α 1 · β.
 掛算器116は、自設備の分散電源30から出力する有効電力Pと上記α・βとを掛け合わせて、上記数11に示した第2の進相無効電力Qを演算して出力する。 Multiplier 116 multiplies active power P output from its own distributed power supply 30 and α 1 · β to calculate and output second phase reactive power Q b shown in Equation 11 above. .
 合計無効電力演算部66は、加算器であり、上記無効電力演算部58から与えられる第1の進相無効電力Qと上記掛算器116から与えられる第2の進相無効電力Qとを互いに加算して、上記数12に示した合計進相無効電力Qを演算して出力する。 The total reactive power calculation unit 66 is an adder, and calculates the first advanced phase reactive power Q a given from the reactive power computation unit 58 and the second advanced phase reactive power Q b given from the multiplier 116. By adding together, the total advanced reactive power Q t shown in the above equation 12 is calculated and output.
 限界無効電力演算部68は、上記有効電力Pおよび上記力率下限値Pflim を用いて、次式の演算を行って、上記限界進相無効電力Qlim を出力する。例えば、力率下限値Pflim =0.85のときは、Qlim =0.62Pなる演算を行う。このとき、限界無効電力演算部68は単なる増幅器で良い。 The limit reactive power calculation unit 68 calculates the following equation using the active power P and the power factor lower limit value Pf lim , and outputs the limit advanced reactive power Q lim . For example, when the power factor lower limit value Pf lim = 0.85, the calculation of Q lim = 0.62P is performed. At this time, the limit reactive power calculation unit 68 may be a simple amplifier.
 [数17]
  Qlim =tan{cos-1(Pflim )}・P
[Equation 17]
Q lim = tan {cos −1 (Pf lim )} · P
 無効電力制御部70は、上記合計無効電力演算部66から与えられる合計進相無効電力Qを、その上限を上記限界無効電力演算部68から与えられる限界進相無効電力Qlim の値に抑制して上記進相無効電力指令値Qcom として出力するリミッタ回路を有している。そしてこの進相無効電力指令値Qcom を自設備の分散電源30(具体的にはそのインバータ34)に供給して、分散電源30から出力する進相無効電力Qを当該進相無効電力指令値Qcom に制御する。 The reactive power control unit 70 suppresses the total advanced reactive power Q t given from the total reactive power computing unit 66 to the value of the critical advanced reactive power Q lim given by the limit reactive power computing unit 68. Thus, a limiter circuit that outputs the phase advance reactive power command value Q com is provided. Then, the phase reactive power command value Q com is supplied to the distributed power supply 30 (specifically, the inverter 34) of its own equipment, and the phase reactive power Q output from the distributed power supply 30 is converted into the phase advanced reactive power command value. Control to Q com .
 電流注入部72には、公知の電流注入装置、例えば上記非特許文献3に記載のような電流注入装置を用いることができる。 As the current injection unit 72, a known current injection device, for example, a current injection device as described in Non-Patent Document 3 can be used.
 また、電流注入部72を独立して設ける代わりに、インバータ34に電流注入部72と同じ機能を持たせて、インバータ34に電流注入部72を兼ねさせても良い。インバータから基本波電力と共に高調波電流を出力させることは、例えば上記特許文献2に記載のような公知の技術を用いることができる。 Further, instead of providing the current injection unit 72 independently, the inverter 34 may have the same function as the current injection unit 72 so that the inverter 34 also serves as the current injection unit 72. For outputting the harmonic current together with the fundamental wave power from the inverter, for example, a known technique as described in Patent Document 2 can be used.
 この電圧上昇抑制装置50を用いることによる効果は次のとおりである。 The effect of using this voltage rise suppression device 50 is as follows.
 (a)上記係数αは、前述した制御パラメータαに相当する。この電圧上昇抑制装置50では、当該比率αを用いて、Q=α・β・Pなる演算を行って第2の進相無効電力Qを求めて、それを進相無効電力制御の一部に用いるので、進相無効電力制御に、自設備20の分散電源30から出力する有効電力Pに比例させて第2の進相無効電力Qを出力させる制御が加味されることになり、それによって非特許文献1に記載の技術のような、配電系統2に接続されている位置による不平等発生を軽減することができる。 (A) The coefficient α 1 corresponds to the control parameter α described above. In this voltage rise suppression device 50, using the ratio α 1 , the calculation of Q b = α 1 · β · P is performed to obtain the second advanced reactive power Q b , which is used for advanced reactive power control. Therefore, control for outputting the second phase reactive power Q b in proportion to the active power P output from the distributed power source 30 of the own facility 20 is added to the phase reactive power control. Accordingly, it is possible to reduce the occurrence of inequality due to the position connected to the power distribution system 2 as in the technique described in Non-Patent Document 1.
 これをより詳しく説明すると、前述したように、非特許文献1に記載の機能を有する電圧上昇抑制装置を用いている場合は、上流側の分散電源保有設備200は、自設備の連系点18の電圧上昇値ΔVが小さいのであまり進相無効電力Qを出力せずに済むのに対して(逆の場合は逆)、この電圧上昇抑制装置50を用いている場合は、それを用いている全ての分散電源保有設備20が、自設備の連系点18の電圧上昇値ΔVに関係なく、換言すれば配電系統2に接続されている位置に関係なく、自設備の有効電力Pに比例した上記第2の進相無効電力Qを加味した進相無効電力Qを出力することになる。この第2の進相無効電力Qによって、この電圧上昇抑制装置50を有している全ての分散電源保有設備20が協力して電圧上昇を抑制することができる。上記第1の進相無効電力Qは、非特許文献1に記載の技術の場合と同様であるけれども、この電圧上昇抑制装置50では、進相無効電力制御にこの第2の進相無効電力Qを加味するぶん、配電系統2に接続されている位置による前述した不平等発生を軽減することができる。 This will be described in more detail. As described above, when the voltage rise suppressing device having the function described in Non-Patent Document 1 is used, the upstream distributed power source possessing facility 200 is connected to the interconnection point 18 of its own facility. Since the voltage rise value ΔV of V is small, it is not necessary to output the phase-advanced reactive power Q so much (in the opposite case, the reverse case), but when this voltage rise suppression device 50 is used, it is used. All the distributed power supply facilities 20 are proportional to the active power P of their own equipment regardless of the voltage rise value ΔV of the interconnection point 18 of the own equipment, in other words, regardless of the position connected to the distribution system 2. thereby outputting phase lead reactive power Q in consideration of the above second phase advancing reactive power Q b. With this second phase advance reactive power Q b , all the distributed power supply facilities 20 having this voltage rise suppression device 50 can cooperate to suppress the voltage rise. The first phase advance reactive power Q a is the same as in the case of the technique described in Non-Patent Document 1, but the voltage rise suppression device 50 uses the second phase advance reactive power for the phase advance reactive power control. Considering Q b , the above-described inequality caused by the position connected to the power distribution system 2 can be reduced.
 (b)上記比率αを求めるために、この電圧上昇抑制装置50では、配電系統2に自然には殆ど存在しない、基本波の非整数倍次数の注入次数mの注入電流Iを電流注入部72から配電系統2に注入するので、この注入電流Iは小さなもので良く、従って配電系統2に擾乱を与えずに済む。 (B) to determine the ratio alpha 1, in the voltage increase suppressing device 50, does not exist almost spontaneously distribution system 2, current injection the injection current I m of the injection order m of non-integer multiple orders of the fundamental wave Since the power is injected from the section 72 into the power distribution system 2, the injection current Im may be small, so that the power distribution system 2 is not disturbed.
 これをより詳しく説明すると、上記非特許文献3にも記載されているように(例えば994(58)頁右欄参照)、配電系統2に自然に存在する非整数倍次数成分の電圧は、基本波成分の0.01%以下であり、この電圧上昇抑制装置50では、この電圧と区別できる程度の電圧Vを発生させる注入電流Iを注入すれば良い。例えば、低圧配電線16が200V系の場合は、0.4A程度の注入電流Iを注入すれば良い。これによって、連系点18に表れる注入次数mの電圧Vは、0.04V(0.02%)程度になる。近年の測定技術では、この程度の電圧Vも十分に測定することができる。この程度の注入電流Iを注入しても、配電系統2に擾乱を与えることはない。 In more detail, as described in Non-Patent Document 3 (see, for example, the right column on page 994 (58)), the voltage of the non-integer multiple order component naturally existing in the distribution system 2 is the basic voltage. 0.01% or less of the wave components, in the voltage increase suppressing device 50 may be implanted injection current I m to generate a voltage V m to the extent that can be distinguished from this voltage. For example, if the low-voltage distribution line 16 is 200V system, it may be implanted injection current I m of about 0.4 A. As a result, the voltage V m of the injection order m appearing at the interconnection point 18 becomes about 0.04 V (0.02%). With recent measurement techniques, this level of voltage V m can be measured sufficiently. Even if such an injection current Im is injected, the distribution system 2 is not disturbed.
 (c)比率演算部62によって、自設備20の上記注入次数mの電圧Vおよび電流Iを測定して上記比率αを求めるので、この電圧上昇抑制装置50を有している自設備20の近くに、他の分散電源保有設備が存在していても、例えば上述した力率100%運転を行う他の分散電源保有設備(図4の分散電源保有設備200b参照)が存在していても、それの影響を受けることなく、上記比率αを正しく算出することができる。これは、上述したように、注入次数mの電圧Vは自然には殆ど存在しないからである。また他の分散電源保有設備(200b)は、注入次数mの注入電流を注入するものではないからである。従って、分散電源30から適正な進相無効電力Qを出力させることができる。 By (c) a ratio calculation unit 62, so by measuring the voltage V m and current I m of the injection order m of the own equipment 20 obtains the ratio alpha 1, the self equipment having the voltage rise suppression unit 50 Even if there is another distributed power supply facility near 20, for example, there is another distributed power supply facility that performs 100% power factor operation (see the distributed power supply facility 200 b in FIG. 4). However, the ratio α 1 can be calculated correctly without being affected by the above. This is because, as described above, the voltage V m of the injection order m naturally does not substantially exist. This is because the other distributed power supply facility (200b) does not inject an injection current of the injection order m. Therefore, it is possible to output appropriate phase advance reactive power Q from the distributed power supply 30.
 仮に、自設備20の近くに、この電圧上昇抑制装置50を有している他の分散電源保有設備20が存在している場合でも、それの対策方法は幾つかある。例えば、注入次数mは、配電系統2の基本波の場合のような唯一の次数(即ち1次。例えば60Hz)とは違って、多数の次数の内から選択することができるので、自設備と他設備とが使用する注入次数mを互いに異ならせることは容易であり、それによって相互の干渉を排除して、上記比率αを正しく算出することができる。また、後でも説明するけれども、変圧器を介在している場合は、その大きなインピーダンスが介在することになるので、同じ注入次数mの場合でも相互の干渉を排除することができる。従ってこの場合も、分散電源30から適正な進相無効電力Qを出力させることができる。 Even if another distributed power source possessing facility 20 having this voltage rise suppression device 50 exists near the own facility 20, there are several countermeasures for it. For example, the injection order m can be selected from a number of orders, unlike the only order (ie, first order, for example, 60 Hz) as in the case of the fundamental wave of the distribution system 2. It is easy to make the injection orders m used by other equipment different from each other, thereby eliminating the mutual interference and correctly calculating the ratio α 1 . Further, as will be described later, when a transformer is interposed, the large impedance is interposed, so that mutual interference can be eliminated even in the case of the same injection order m. Accordingly, in this case as well, an appropriate phase advance reactive power Q can be output from the distributed power source 30.
 なお、注入電流Iの次数として、上記特許文献2に記載のような、配電系統2の基本波の整数倍次数(例えば、2次、4次、5次等)を用いることは、好ましくない。これは、整数倍次数の高調波源は配電系統2の各所に幾つも存在するので、自設備が注入した次数の電圧を正確に測定することが困難になるからである。また、現実的に使用できる整数倍次数の数は限られているので、自設備と他設備とが使用する注入次数が同じになって、相互の干渉が起こりやすくなる。 As orders of the injection current I m, as described in Patent Document 2, an integral multiple orders of the fundamental wave of the distribution system 2 (e.g., 2, fourth, fifth, etc.) be used are not preferred . This is because there are a number of harmonic sources of integer multiple orders at various locations in the power distribution system 2, so that it is difficult to accurately measure the voltage of the order injected by the own equipment. In addition, since the number of integer multiple orders that can be practically used is limited, the injection orders used by the own equipment and other equipment are the same, and mutual interference is likely to occur.
 (d)また、分散電源が配電系統2に複数連系されていると、他の分散電源の出力(有効電力)によって系統電圧が上昇する。また、0<β<1の補正係数βにより、進相無効電力Qが上記数4で示されるQの値より小さくなるため、自設備20の出力(有効電力P)によっても系統電圧が上昇する。これらによる電圧上昇が加算され、自設備20の連系点18の基本波電圧が所定の電圧上限値を超える事象が起こりうる。そこでこのことを考慮して、この電圧上昇抑制装置50は、更に、連系点18の基本波電圧および分散電源30の運転力率Pfを判断して、第1の進相無効電力Qの増加または有効電力Pの減少を制御する手段(基本波電圧判断部54、運転力率判断部56、第1の無効電力演算部58および有効電力制御部60)を備えているので、連系点18の基本波電圧が所定の電圧上限値Vlim を超えることを防止することができる。また、分散電源30の運転力率Pfが所定の力率下限値Pflim より低下することを防止することができる。上記手段は、基本波電圧の測定、基本波出力電流の制御によって測定、制御を実施するため、上記比率αの測定のための電流注入および電圧測定に対して、相互に干渉しない。 (D) When a plurality of distributed power sources are connected to the distribution system 2, the system voltage rises due to the output (active power) of the other distributed power sources. Further, because the phase advance reactive power Q becomes smaller than the value of Q expressed by the above equation 4 due to the correction coefficient β of 0 <β <1, the system voltage also increases due to the output of the own facility 20 (active power P). . An increase in voltage due to these may be added, and an event may occur in which the fundamental voltage at the interconnection point 18 of the own facility 20 exceeds a predetermined voltage upper limit value. In view of this, the voltage rise suppression device 50 further determines the fundamental wave voltage at the interconnection point 18 and the operating power factor Pf of the distributed power source 30 to determine the first phase reactive power Q a . Since it includes means for controlling increase or decrease of active power P (fundamental wave voltage determination unit 54, driving power factor determination unit 56, first reactive power calculation unit 58 and active power control unit 60), the connection point It is possible to prevent the 18 fundamental wave voltages from exceeding a predetermined voltage upper limit value V lim . Further, it is possible to prevent the operating power factor Pf of the distributed power source 30 from falling below a predetermined power factor lower limit value Pf lim . The means performs measurement and control by measuring the fundamental voltage and controlling the fundamental output current, and therefore does not interfere with the current injection and the voltage measurement for measuring the ratio α 1 .
 (e)この電圧上昇抑制装置50は、分散電源30から出力させる進相無効電力Qを限界進相無効電力Qlim の値に制限する手段(限界無効電力演算部68および無効電力制御部70)を備えているので、分散電源30の運転力率Pfが所定の力率下限値Pflim より低下することを確実に防止することができる。 (E) The voltage rise suppression device 50 limits the phase advance reactive power Q output from the distributed power supply 30 to the value of the limit advance reactive power Q lim (limit reactive power calculation unit 68 and reactive power control unit 70). Therefore, it is possible to reliably prevent the operating power factor Pf of the distributed power source 30 from falling below a predetermined power factor lower limit value Pf lim .
 なお、上記補正係数βを大きくすると、第2の進相無効電力Qが大きくなり、分散電源30の運転力率Pfが低下する恐れがある。補正係数βを小さくすると、第2の進相無効電力Qが小さくなり、上記不平等発生抑制の効果が小さくなる恐れがある。従って、補正係数βは、0<β<1の内でも、0.5~0.8の範囲がより好ましい。これの導出根拠を以下に説明する。 When the correction coefficient β is increased, the second phase reactive power Q b increases and the operating power factor Pf of the distributed power source 30 may decrease. If the correction coefficient β is decreased, the second phase reactive power Q b is decreased, and the effect of suppressing the occurrence of inequality may be reduced. Therefore, the correction coefficient β is more preferably in the range of 0.5 to 0.8 even when 0 <β <1. The reason for deriving this will be described below.
 一般的な低圧配電系統2の比率α(=r/x)は、概ね0.7~1.1である。このα範囲での分散電源30の運転力率Pfは、次式より0.67~0.82となる。 The ratio α 1 (= r / x) of the general low-voltage distribution system 2 is approximately 0.7 to 1.1. The operating power factor Pf of the distributed power source 30 in this α 1 range is 0.67 to 0.82 from the following equation.
 [数18]
  Pf=tan-1(Q/P)=tan-1α
[Equation 18]
Pf = tan −1 (Q / P) = tan −1 α 1
 上記非特許文献1に記載されているように(例えば96頁参照)、運転力率Pfの下限を0.85とすると、そのときの比率αは0.62となる。 As described in Non-Patent Document 1 (see page 96, for example), when the lower limit of the driving power factor Pf is 0.85, the ratio α 1 at that time is 0.62.
 従って、上記範囲の比率αに補正係数βを掛けて、運転力率Pfを0.85以上にする補正係数βの範囲は次式となる。 Therefore, the range of the correction coefficient β that multiplies the ratio α 1 in the above range by the correction coefficient β to make the driving power factor Pf 0.85 or more is expressed by the following equation.
 [数19]
  (0.62/1.1)<β<(0.62/0.7)
  ∴0.56<β<0.89
[Equation 19]
(0.62 / 1.1) <β <(0.62 / 0.7)
∴0.56 <β <0.89
 補正係数βを大きくしておく方が、出力不平等軽減に対する大きな効果が得られるが、運転力率Pfの低下を極力防ぐ目的で、数19の範囲の概ね中間値の0.8を補正係数βの上限にするのが好ましい。また、以下に述べるシミュレーション結果から、補正係数βの下限は0.5でも、電圧上昇抑制に効果のあることが確かめられている。従って、補正係数βは0.5~0.8の範囲が好ましい。 Increasing the correction coefficient β has a great effect on reducing the output inequality, but for the purpose of preventing a decrease in the driving power factor Pf as much as possible, an intermediate value of 0.8 in the range of Equation 19 is set to be a correction coefficient. It is preferable to set the upper limit of β. From the simulation results described below, it has been confirmed that even if the lower limit of the correction coefficient β is 0.5, it is effective in suppressing voltage rise. Therefore, the correction coefficient β is preferably in the range of 0.5 to 0.8.
 補正係数βを上記範囲に設定しておくと、第2の進相無効電力Qの出力量を適度に抑制して、運転力率Pfの低下を小さくすることができる。しかもそのようにしても、連系点18の基本波電圧および分散電源30の運転力率Pfを判断して、第1の進相無効電力Qの増加または有効電力Pの減少を制御する手段(基本波電圧判断部54、運転力率判断部56、第1の無効電力演算部58および有効電力制御部60)を備えているので、連系点18の基本波電圧が所定の電圧上限値Vlim を超えたり、分散電源30の運転力率Pfが所定の力率下限値Pflim より低下したりすることを防止することができる。 When the correction coefficient β is set in the above range, the output of the second phase advancing reactive power Q b moderately suppressed, it is possible to reduce the decrease in the operating power factor Pf. Moreover Even so, to determine the fundamental wave voltage and the operating power factor of the distributed power 30 Pf interconnection node 18, means for controlling the increase or decrease of the active power P of the first phase advancing reactive power Q a (Fundamental wave voltage judgment unit 54, driving power factor judgment unit 56, first reactive power calculation unit 58 and active power control unit 60), the fundamental wave voltage at interconnection point 18 is a predetermined voltage upper limit value. It is possible to prevent V lim from being exceeded or the operating power factor Pf of the distributed power source 30 to fall below a predetermined power factor lower limit value Pf lim .
 (2)電圧上昇抑制装置50および分散電源連系システムの他の実施形態
 図5に示す例のように、上記電圧上昇抑制装置50をそれぞれ有する複数の分散電源保有設備20が、同じ変圧器の二次側の配電線(図5の例では同じ変圧器14の二次側の低圧配電線16。以下同様)に接続された分散電源連系システムの場合は、例えば、各電圧上昇抑制装置50は、上記非整数倍次数であって互いに異なる次数mの注入電流Iを注入しかつ当該注入次数mの電圧および電流を測定するものにするのが好ましい。例えば、注入次数mを2.2次、2.4次、2.6次、2.8次・・・などと、互いに異なる次数にする。
(2) Other Embodiments of Voltage Rise Suppression Device 50 and Distributed Power Supply Interconnection System As in the example shown in FIG. 5, a plurality of distributed power source possessing facilities 20 each having the voltage rise suppression device 50 are the same transformer. In the case of a distributed power interconnection system connected to the secondary distribution line (in the example of FIG. 5, the secondary low voltage distribution line 16 of the same transformer 14, the same applies hereinafter), for example, each voltage rise suppression device 50 Preferably, the injection current Im of the non-integer multiple order and different orders m is injected, and the voltage and current of the injection order m are measured. For example, the injection order m is set to different orders such as 2.2 order, 2.4 order, 2.6 order, 2.8 order, etc.
 そのようにすると、上記電圧上昇抑制装置50をそれぞれ有する複数の分散電源保有設備20が、同じ変圧器の二次側の配電線に接続されていても、用いる注入次数mが各設備の電圧上昇抑制装置50で互いに異なるので、複数の分散電源保有設備20の電圧上昇抑制装置50が互いに干渉することなく、上記比率αを正しく算出することができる。従って、各分散電源30から適正な進相無効電力Qを出力させることができる。 If it does so, even if the some distributed power supply possession equipment 20 which each has the said voltage rise suppression apparatus 50 is connected to the distribution line of the secondary side of the same transformer, the injection order m to be used is the voltage rise of each equipment. Since the suppression devices 50 are different from each other, the above-mentioned ratio α 1 can be calculated correctly without the voltage increase suppression devices 50 of the plurality of distributed power supply equipment 20 interfering with each other. Therefore, appropriate phase advance reactive power Q can be output from each distributed power supply 30.
 同じ変圧器の二次側でない場合は、間に変圧器を介在させることになり、当該変圧器の大きなインピーダンスを介在させることになるので、上記のように注入次数mを互いに異ならせなくても、複数の分散電源保有設備20の電圧上昇抑制装置50が互いに干渉するのを防止することができる。 If it is not the secondary side of the same transformer, a transformer will be interposed between them, and a large impedance of the transformer will be interposed. Therefore, it is not necessary to make the injection orders m different from each other as described above. In addition, it is possible to prevent the voltage rise suppression devices 50 of the plurality of distributed power source holding facilities 20 from interfering with each other.
 あるいは、上記電圧上昇抑制装置50をそれぞれ有する複数の分散電源保有設備20が、同じ変圧器の二次側の配電線に接続された分散電源連系システムの場合は、各電圧上昇抑制装置50は、上記非整数倍次数であって互いに同じ次数mの注入電流Iを注入しかつ当該注入次数の電圧および電流を測定するものとし、かつ各電圧上昇抑制装置50は、図13に示す例のように、上記注入電流Iの注入ならびに上記注入次数mの電圧および電流の測定のタイミングが、各電圧上昇抑制装置50間で互いに重複することを防止する重複防止手段としての重複防止部124を備えているものにしても良い。 Alternatively, when the plurality of distributed power supply holding facilities 20 each having the voltage increase suppression device 50 is a distributed power supply interconnection system connected to a secondary distribution line of the same transformer, each voltage increase suppression device 50 is the non-integral multiple a order injecting the injection current I m of the same order m from each other and shall measure the voltage and current of the injection order, and each voltage rise suppression unit 50, in the example shown in FIG. 13 As described above, the duplication prevention unit 124 serving as an anti-duplication unit for preventing the injection current Im from being injected and the voltage and current measurement timings of the injection order m from overlapping each other among the voltage rise suppression devices 50 is provided. It may be provided.
 重複防止部124は、電流注入部72および比率演算部62を制御して、上記注入および測定のタイミングが各電圧上昇抑制装置50間で互いに重複することを防止する。 The overlap prevention unit 124 controls the current injection unit 72 and the ratio calculation unit 62 to prevent the injection and measurement timings from overlapping each other between the voltage rise suppression devices 50.
 重複防止部124は、例えば、乱数発生手段を有していて、上記注入および測定のタイミングを、乱数によって決めるものでも良い。 The duplication prevention unit 124 may include, for example, a random number generation unit, and determine the injection and measurement timing by a random number.
 あるいは、重複防止部124は、LANのような情報通信分野におけるアクセス制御に用いられている、CSMA/CD方式(簡単に言うと、ネットワーク上でデータの衝突を監視し、衝突が検出されると、データを送信した機器は、一定時間を待ってからデータを再送信するという方式)やトークンリング方式(簡単に言うと、トークンと呼ばれる特殊なデータを巡回させ、トークンを取得した機器がデータの送信ができるという方式)と同様の機能を有するものでも良い。 Alternatively, the duplication prevention unit 124 monitors the collision of data on the CSMA / CD system (in short, the network is used for access control in the information communication field such as LAN, and detects a collision. The device that sent the data waits for a certain period of time and then retransmits the data) or the token ring method (in simple terms, it circulates special data called a token, and the device that acquired the token sends the data It may have the same function as the system capable of transmission.
 上記のようにすると、上記電圧上昇抑制装置50をそれぞれ有する複数の分散電源保有設備20が、同じ変圧器の二次側の配電線に接続されていても、注入電流Iの注入ならびにその注入次数mの電圧および電流の測定のタイミングが各設備の電圧上昇抑制装置50で互いに異なるので、複数の分散電源保有設備20の電圧上昇抑制装置50が互いに干渉することなく、上記比率αを正しく算出することができる。従って、各分散電源30から適正な進相無効電力Qを出力させることができる。 When as described above, a plurality of distributed power owned equipment 20, each having the voltage rise suppression unit 50, be connected to the secondary side of the distribution lines of the same transformer, injection as well as infusion of injection current I m Since the timing of measuring the voltage and current of the order m is different from each other in the voltage increase suppressing device 50 of each facility, the voltage α suppressing device 50 of the plurality of distributed power source possessing facilities 20 does not interfere with each other, and the ratio α 1 is correctly set. Can be calculated. Therefore, appropriate phase advance reactive power Q can be output from each distributed power supply 30.
 図14に示す例のように、分散電源保有設備20が連系変圧器126を有していて高圧配電線10に連系している場合、連系点18の電圧Vを測定することが難しい場合がある。この場合、測定点36から見た配電系統2側のインピーダンスを測定し、その抵抗/リアクタンスの比率αを測定すると、連系変圧器126のインピーダンスr+jxが加わるため、比率αは次式で示す値となる。 As in the example shown in FIG. 14, when the distributed power supply facility 20 has the interconnection transformer 126 and is connected to the high voltage distribution line 10, the voltage V d at the connection point 18 can be measured. It can be difficult. In this case, the impedance of the power distribution system 2 side as viewed from the measurement point 36 is measured, when measuring the ratio alpha 2 of the resistance / reactance, the impedance r t + jx t of interconnection transformer 126 is applied, the ratio alpha 2 is The value is shown by the following formula.
 [数20]
  α=(r+r)/(x+x
[Equation 20]
α 2 = (r + r t ) / (x + x t )
 そこで、上記比率αから、連系変圧器126の一次側すなわち連系点18から見た配電系統2の比率α(=r/x)への変換係数として、次式で示す変換係数γを考える。 Therefore, from the ratio alpha 2, as the conversion factor to the primary side, i.e., the ratio of the power distribution system 2 viewed from the connecting point 18 α 1 (= r / x ) of interconnection transformer 126, transform coefficients shown by the following expression γ think of.
 [数21]
  γ=α/α
   ={r/x}/{(r+r)/(x+x)}
   =(1+x/x)/(1+r/r)
[Equation 21]
γ = α 1 / α 2
= {R / x} / {(r + r t ) / (x + x t )}
= (1 + x t / x) / (1 + r t / r)
 測定点36における二次側電圧Vt2を用いて、前述した方法によって、測定点36から配電系統2を見た全体のインピーダンス(r+r)+j(x+x)ならびにその抵抗成分およびリアクタンス成分を測定することができる。かつ、連系変圧器126の抵抗rおよびリアクタンスxは既知である。これらを用いて、上記数21に従って、変換係数γを算出することができる。 Using the secondary voltage V t2 at the measurement point 36, the overall impedance (r + r t ) + j (x + x t ) and its resistance component and reactance component as seen from the measurement point 36 when the distribution system 2 is viewed are measured by the method described above. can do. The resistance r t and the reactance x t of the interconnection transformer 126 are known. Using these, the conversion coefficient γ can be calculated according to the above equation (21).
 その結果、上記比率αおよび変換係数γを用いて、前述した(数11参照)第2の進相無効電力Qは、次式により算出することができる。従ってこの演算を、上記第2の無効電力演算部64(図7中のステップ404)において行えば良い。 As a result, using the ratio α 2 and the conversion coefficient γ, the above-described second phase reactive power Q b (see Equation 11) can be calculated by the following equation. Therefore, this calculation may be performed in the second reactive power calculation unit 64 (step 404 in FIG. 7).
 [数22]
  Q=α・β・P=γ・α・β・P
[Equation 22]
Q b = α 1 · β · P = γ · α 2 · β · P
 (3)電圧上昇抑制のシミュレーション結果
 図5に示した分散電源連系システムを模した図15のモデルを用いて、電圧上昇抑制制御のシミュレーションを行った結果を説明する。
(3) Simulation Result of Voltage Rise Suppression The result of simulation of voltage rise suppression control will be described using the model of FIG. 15 simulating the distributed power supply interconnection system shown in FIG.
 図15に示すモデルは、20kVAの単相3線式の変圧器(柱状変圧器)14の二次側の低圧配電線16に、定格出力5kWの分散電源30を有する分散電源保有設備20を3台接続した例である。変圧器14のインピーダンスZは、0.016+j0.021Ωとした。低圧配電線16のインピーダンスZは、0.011+j0.012Ωとし、線路抵抗が大のときは、0.017+j0.013Ωとした。 The model shown in FIG. 15 includes a distributed power source holding facility 20 having a distributed power source 30 having a rated output of 5 kW on a secondary low voltage distribution line 16 of a 20 kVA single-phase three-wire transformer (columnar transformer) 14. This is an example in which the units are connected. The impedance Z t of the transformer 14 was set to 0.016 + j0.021Ω. The impedance Z d of the low-voltage distribution line 16 was 0.011 + j0.012Ω, and 0.017 + j0.013Ω when the line resistance was large.
 各分散電源保有設備20は、時刻2秒から1kW/秒で出力(有効電力P)を増加させ、時刻7秒以降は出力を5kWに固定した。これは、各分散電源保有設備20の分散電源30が太陽光発電システムであって、雲が晴れて日射量が5秒間で急増した場合を模擬したものである。 Each distributed power supply facility 20 increased the output (active power P) at 1 kW / second from time 2 seconds, and fixed the output at 5 kW after time 7 seconds. This is a simulation of the case where the distributed power source 30 of each distributed power source possessing facility 20 is a solar power generation system, and the amount of solar radiation increases rapidly in 5 seconds due to clear clouds.
 上記条件における変圧器至近点17および各連系点18の電圧(これは接地間で100V級)、各設備20から出力する有効電力P、進相無効電力Qおよび運転力率Pfを、表1に示す各方式に分けて測定した結果を、図16~図27に示す。図6に示す電圧上昇抑制装置50の各部の具体的構成は、図8~図12を参照して説明したものを採用した。なお、進相無効電力Qはこのシミュレーションでは負の値で表示している。また初期に運転力率Pfが急増しているが、これは制御開始当初だけの現象であり、特に支障はない。 Table 1 shows the voltage at the transformer closest point 17 and each interconnection point 18 under the above conditions (this is 100V class between grounds), the active power P output from each facility 20, the phase reactive power Q and the operating power factor Pf. FIG. 16 to FIG. 27 show the results of measurement divided into the methods shown in FIG. The specific configuration of each part of the voltage rise suppressing device 50 shown in FIG. 6 is the same as that described with reference to FIGS. The fast reactive power Q is displayed as a negative value in this simulation. In addition, the driving power factor Pf rapidly increases in the initial stage, but this is a phenomenon only at the beginning of the control, and there is no particular problem.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2に示す機能の従来の電圧上昇抑制装置使用の場合、図16、図17に示すように、各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に抑えられている。末端の設備20に着目すると、時刻tで電圧Vd3が電圧上限値107Vに達し、それに応答して進相無効電力Qが増大し、時刻tで運転力率Pfが力率下限値0.85に達し、それに応答して有効電力Pが減少を開始している。この方式では、図17に示すように、末端の設備20からの有効電力Pは約2kWしか出ておらず、電圧上昇抑制に伴って、低圧配電線16に接続されている位置によって、有効電力P等に不平等が生じている。 In the case of using the conventional voltage rise suppressing device having the function shown in FIG. 2, the voltages V d1 to V d3 at each interconnection point 18 are suppressed to the voltage upper limit value of 107 V or less as shown in FIGS. . Focusing on the terminal equipment 20, the voltage V d3 reaches the voltage upper limit value 107V at time t 1 , and in response thereto, the phase advance reactive power Q 3 increases, and at time t 2 , the driving power factor Pf 3 becomes the power factor lower limit. The value 0.85 is reached, and in response, the active power P 3 starts to decrease. In this method, as shown in FIG. 17, the effective power P from the terminal equipment 20 is only about 2 kW, and the effective power depends on the position connected to the low voltage distribution line 16 as the voltage rise is suppressed. There is inequality in P etc.
 図6に示す電圧上昇抑制装置使用(β=1)の場合は、図18、図19に示すように、有効電力Pの増大が始まると、それに伴って進相無効電力Qも増大を始めている。これは、前述した第2の進相無効電力Qが寄与しているからである。各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に余裕を持って抑えられている。この方式では、有効電力Pの不平等は解消されているけれども、電圧上昇抑制に伴って、運転力率Pfが3台とも力率下限値0.85まで低下している。従って、3台合わせた系統力率の低下も大きい。これは、補正係数β=1の場合、有効電力Pの増大に伴う第2の進相無効電力Qの増大が大きいからである。 In the case of using the voltage rise suppression device (β = 1) shown in FIG. 6, as shown in FIGS. 18 and 19, when the active power P starts to increase, the phase advance reactive power Q starts to increase accordingly. . This is because the above-described second phase reactive power Q b contributes. The voltages V d1 to V d3 at each interconnection point 18 are suppressed with a margin below the voltage upper limit 107V. In this method, the inequality of the active power P is eliminated, but the driving power factor Pf 3 is reduced to the power factor lower limit value 0.85 with the suppression of the voltage rise. Therefore, the system power factor of the three units is greatly reduced. This is because when the correction coefficient β = 1, the increase in the second phase reactive power Q b accompanying the increase in the active power P is large.
 図6に示す電圧上昇抑制装置使用(β=0.5)の場合は、図20、図21に示すように、有効電力Pの増大が始まると、それに伴って進相無効電力Qも増大を始めている。これは、前述した第2の進相無効電力Qが寄与しているからである。しかし、進相無効電力Qの増大は緩やかである。β=0.5としたからである。各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に抑えられている。この方式では、電圧上昇抑制に伴う有効電力Pの不平等は解消されており、しかも有効電力Pの増大に伴う進相無効電力Qの増大は緩やかで、運転力率Pfは3台とも約0.95に良くなっている。従って、3台合わせた系統力率の低下も少ない。 In the case of using the voltage rise suppression device (β = 0.5) shown in FIG. 6, as shown in FIGS. 20 and 21, when the active power P starts to increase, the phase reactive power Q also increases accordingly. I'm starting. This is because the above-described second phase reactive power Q b contributes. However, the increase in the phase reactive power Q is moderate. This is because β = 0.5. The voltages V d1 to V d3 at each interconnection point 18 are suppressed to a voltage upper limit value of 107 V or less. In this method, the inequality of the active power P accompanying the suppression of the voltage rise is eliminated, and the increase of the phase reactive power Q accompanying the increase of the active power P is moderate, and the driving power factor Pf is about 0 for all three units. .95 is getting better. Therefore, there is little decrease in the system power factor of the three units.
 図2に示す機能の従来の電圧上昇抑制装置使用(線路抵抗大)の場合は、図22、図23に示すように、各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に抑えられている。末端の設備20に着目すると、時刻tで電圧Vd3が電圧上限値107Vに達し、それに応答して進相無効電力Qが増大し、時刻tで運転力率Pfが力率下限値0.85に達し、それに応答して有効電力Pが減少を開始している。この方式では、図23に示すように、末端の設備20の有効電力Pはほぼ0であり、電圧上昇抑制に伴って、低圧配電線16に接続されている位置によって、有効電力P等に大きな不平等が生じている。これは、線路抵抗が大きい場合に、電圧上昇値ΔVがより大きくなるからである。 In the case of using the conventional voltage rise suppression device having the function shown in FIG. 2 (large line resistance), as shown in FIGS. 22 and 23, the voltages V d1 to V d3 at each interconnection point 18 are the voltage upper limit value 107V. It is suppressed to the following. If attention is paid to the terminal equipment 20, the voltage V d3 reaches the voltage upper limit value 107V at time t 3 , and in response thereto, the phase advance reactive power Q 3 increases. At time t 4 , the driving power factor Pf 3 becomes the power factor lower limit. The value 0.85 is reached, and in response, the active power P 3 starts to decrease. In this method, as shown in FIG. 23, the effective power P 3 of the terminal equipment 20 is almost zero, and the effective power P or the like depends on the position connected to the low-voltage distribution line 16 as the voltage rise is suppressed. There is great inequality. This is because the voltage increase value ΔV becomes larger when the line resistance is large.
 図6に示す電圧上昇抑制装置使用(線路抵抗大、β=1)の場合は、図24、図25に示すように、有効電力Pの増大が始まると、それに伴って進相無効電力Qも増大を始めている。これは、前述した第2の進相無効電力Qが寄与しているからである。各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に余裕を持って抑えられている。この方式では、有効電力Pの不平等は解消されているけれども、電圧上昇抑制に伴って、運転力率Pfが3台とも力率下限値0.85まで低下している。従って、3台合わせた系統力率の低下も大きい。これは、補正係数β=1の場合、有効電力Pの増大に伴う第2の進相無効電力Qの増大が大きいからである。 In the case of using the voltage rise suppression device shown in FIG. 6 (large line resistance, β = 1), as shown in FIGS. 24 and 25, when the active power P starts to increase, the phase reactive power Q is also increased accordingly. It is starting to increase. This is because the above-described second phase reactive power Q b contributes. The voltages V d1 to V d3 at each interconnection point 18 are suppressed with a margin below the voltage upper limit 107V. In this method, the inequality of the active power P is eliminated, but the driving power factor Pf is reduced to the power factor lower limit value 0.85 as the voltage rise is suppressed. Therefore, the system power factor of the three units is greatly reduced. This is because when the correction coefficient β = 1, the increase in the second phase reactive power Q b accompanying the increase in the active power P is large.
 図6に示す電圧上昇抑制装置使用(線路抵抗大、β=0.5)の場合、図26、図27に示すように、有効電力Pの増大が始まると、それに伴って進相無効電力Qも増大を始めている。これは、前述した第2の進相無効電力Qが寄与しているからである。しかし、進相無効電力Qの増大は緩やかである。β=0.5としたからである。各連系点18の電圧Vd1~Vd3は、電圧上限値107V以下に抑えられている。末端の設備20に着目すると、時刻tで電圧Vd3が電圧上限値107Vに達し、それに応答して進相無効電力Qが増大し(これは前述した第1の進相無効電力Qが増大するからである)、時刻tで運転力率Pfが力率下限値0.85に達し、それに応答して有効電力Pの増大も止まっている。この場合も、線路抵抗が大きくて電圧上昇値ΔVが大きくなりやすいけれども、電圧上昇抑制に伴う有効電力Pの不平等は解消されており、しかも運転力率Pfは約0.95~0.85の範囲と、かなり良い。従って、3台合わせた系統力率の低下も少ない。このように、線路抵抗が大きくて、電圧上昇値ΔVが大きくなりやすい場合でも、補正係数βを0.5にしても効果のあることが確かめられた。 When the voltage rise suppression device shown in FIG. 6 is used (large line resistance, β = 0.5), as shown in FIGS. 26 and 27, when the active power P starts to increase, the phase advance reactive power Q is accordingly increased. Has also begun to increase. This is because the above-described second phase reactive power Q b contributes. However, the increase in the phase reactive power Q is moderate. This is because β = 0.5. The voltages V d1 to V d3 at each interconnection point 18 are suppressed to a voltage upper limit value of 107 V or less. Focusing on the terminal equipment 20, the voltage V d3 reaches the voltage upper limit value 107V at time t 5 , and in response thereto, the phase advance reactive power Q 3 increases (this is the first phase advance reactive power Q a described above). The driving power factor Pf 3 reaches the power factor lower limit value 0.85 at time t 6 , and the increase of the active power P 3 stops in response thereto. Also in this case, although the line resistance is large and the voltage increase value ΔV is likely to increase, the inequality of the active power P accompanying the voltage increase suppression is eliminated, and the driving power factor Pf is about 0.95 to 0.85. Range and pretty good. Therefore, there is little decrease in the system power factor of the three units. Thus, even when the line resistance is large and the voltage increase value ΔV tends to increase, it has been confirmed that the effect is obtained even if the correction coefficient β is set to 0.5.
 (4)分散電源30の他の例
 分散電源30は、上記例の太陽光発電システム以外のものでも良い。例えば、インバータを用いる例を挙げると、分散電源30は、燃料電池と上記インバータ34のようなインバータとを有する燃料電池発電設備等でも良い。あるいは、交流発電機を有していてインバータを用いない例を挙げると、分散電源30は、コージェネレーション発電設備、風力発電設備等でも良い。上記電圧上昇抑制装置50からの指令信号(具体的には上記有効電力指令値Pcom 、進相無効電力指令値Qcom )に応答して、交流発電機から出力する有効電力および/または無効電力を指令値に制御する技術は、公知の技術を利用することができる。簡単に説明すれば、交流発電機の出力電圧の位相を制御することによって、有効電力を制御することができる。交流発電機の界磁を制御して出力電圧の大きさを制御することによって、無効電力を制御することができる。
(4) Other Examples of Distributed Power Supply 30 The distributed power supply 30 may be other than the solar power generation system of the above example. For example, as an example using an inverter, the distributed power source 30 may be a fuel cell power generation facility having a fuel cell and an inverter such as the inverter 34. Alternatively, as an example of having an AC generator and not using an inverter, the distributed power source 30 may be a cogeneration power generation facility, a wind power generation facility, or the like. The active power and / or reactive power output from the AC generator in response to a command signal from the voltage rise suppression device 50 (specifically, the active power command value P com and the phase advance reactive power command value Q com ). A known technique can be used as the technique for controlling the value to the command value. In brief, the active power can be controlled by controlling the phase of the output voltage of the AC generator. The reactive power can be controlled by controlling the field of the AC generator to control the magnitude of the output voltage.
 2 配電系統
 16 低圧配電線
 18 連系点
 20 分散電源保有設備
 30 分散電源
 50 電圧上昇抑制装置
 54 基本波電圧判断部
 56 運転力率判断部
 58 第1の無効電力演算部
 60 有効電力制御部
 62 比率演算部
 64 第2の無効電力演算部
 66 合計無効電力演算部
 68 限界無効電力演算部
 70 無効電力制御部
 72 電流注入部
 124 重複防止部
 P 有効電力
 Q 進相無効電力
 α、α 比率
2 Distribution System 16 Low Voltage Distribution Line 18 Interconnection Point 20 Distributed Power Supply Equipment 30 Distributed Power Supply 50 Voltage Increase Suppressor 54 Fundamental Voltage Determination Unit 56 Driving Power Factor Determination Unit 58 First Reactive Power Calculation Unit 60 Active Power Control Unit 62 Ratio calculation unit 64 Second reactive power calculation unit 66 Total reactive power calculation unit 68 Limit reactive power calculation unit 70 Reactive power control unit 72 Current injection unit 124 Duplication prevention unit P Active power Q Advanced phase reactive power α 1 , α 2 ratio

Claims (4)

  1.  配電系統に接続された分散電源保有設備の分散電源を制御して、当該配電系統の電圧上昇を抑制する電圧上昇抑制装置であって、
     前記配電系統と前記分散電源保有設備との連系点における基本波電圧が所定の電圧上限値よりも高いか否かを判断する基本波電圧判断手段と、
     前記基本波電圧判断手段における判断結果が肯定の場合に、前記分散電源の運転力率が所定の力率下限値以上か否かを判断する運転力率判断手段と、
     前記運転力率判断手段における判断結果が肯定の場合に、前記基本波電圧と前記電圧上限値との差に応じた第1の進相無効電力を演算して出力する第1の無効電力演算手段と、
     前記運転力率判断手段における判断結果が否定の場合に、前記分散電源を制御して当該分散電源から出力する有効電力を、前記基本波電圧と前記電圧上限値との差に応じて減少させる有効電力制御手段と、
     前記配電系統の基本波の非整数倍次数の注入電流を前記配電系統に注入する電流注入手段と、
     前記連系点における前記注入次数の電圧および電流を用いて、前記連系点から見た前記配電系統の基本波成分の抵抗(r)、リアクタンス(x)および前者の後者に対する比率(α=r/x)を演算する比率演算手段と、
     前記分散電源から出力される有効電力、前記比率および0<β<1なる補正係数βを互いに掛け合わせて、第2の進相無効電力を演算して出力する第2の無効電力演算手段と、
     前記第1および第2の進相無効電力を互いに加算して、合計進相無効電力を演算して出力する合計無効電力演算手段と、
     前記分散電源から出力される有効電力および前記力率下限値を用いて、当該有効電力のときに前記力率下限値を実現する限界進相無効電力を演算する限界無効電力演算手段と、
     前記合計進相無効電力を、その上限を前記限界進相無効電力の値に抑制して進相無効電力指令値として前記分散電源に供給して、前記分散電源から出力する進相無効電力を当該進相無効電力指令値に制御する無効電力制御手段とを備えている、ことを特徴とする電圧上昇抑制装置。
    A voltage rise suppression device that controls the distributed power supply of the distributed power supply facility connected to the power distribution system and suppresses the voltage rise of the power distribution system,
    Fundamental wave voltage determining means for determining whether a fundamental wave voltage at a connection point between the distribution system and the distributed power supply facility is higher than a predetermined voltage upper limit value;
    Driving power factor determining means for determining whether or not the operating power factor of the distributed power source is equal to or higher than a predetermined power factor lower limit when the determination result in the fundamental wave voltage determining means is affirmative;
    First reactive power calculation means for calculating and outputting a first phase reactive power according to a difference between the fundamental voltage and the voltage upper limit value when the determination result in the driving power factor determination means is affirmative When,
    When the determination result by the driving power factor determination means is negative, the effective power that controls the distributed power source and outputs from the distributed power source is reduced according to the difference between the fundamental voltage and the voltage upper limit value. Power control means;
    Current injection means for injecting an injection current of a non-integer multiple order of the fundamental wave of the power distribution system into the power distribution system;
    Using the voltage and current of the injection order at the interconnection point, the fundamental wave component resistance (r 1 ), reactance (x 1 ) and ratio of the former to the latter (α 1 = r 1 / x 1 ) Ratio calculating means for calculating
    A second reactive power calculation means for calculating and outputting a second phase reactive power by multiplying the active power output from the distributed power source, the ratio, and a correction coefficient β of 0 <β <1;
    Total reactive power calculation means for adding the first and second phase reactive power to each other to calculate and output a total phase reactive power;
    Using the active power output from the distributed power source and the power factor lower limit value, limit reactive power calculation means for calculating limit advanced reactive power that realizes the power factor lower limit value at the time of the active power, and
    The total advanced phase reactive power is supplied to the distributed power source as an advanced phase reactive power command value with the upper limit suppressed to the value of the limit advanced phase reactive power, and the advanced phase reactive power output from the distributed power source is A voltage rise suppression device comprising: a reactive power control means for controlling to a phase advance reactive power command value.
  2.  前記補正係数βを0.5~0.8の範囲に設定している請求項1記載の電圧上昇抑制装置。 The voltage rise suppressing device according to claim 1, wherein the correction coefficient β is set in a range of 0.5 to 0.8.
  3.  請求項1または2に記載の電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が、同じ変圧器の二次側の配電線に接続された分散電源連系システムであって、
     前記各電圧上昇抑制装置は、前記非整数倍次数であって互いに異なる次数の注入電流を注入しかつ当該注入次数の電圧および電流を測定するものである、ことを特徴とする分散電源連系システム。
    A plurality of distributed power supply holding facilities each having the voltage rise suppression device according to claim 1 or 2 is a distributed power supply interconnection system connected to a secondary distribution line of the same transformer,
    Each of the voltage rise suppression devices is configured to inject injection currents of orders different from each other in the non-integer multiple order and to measure the voltage and current of the injection order. .
  4.  請求項1または2に記載の電圧上昇抑制装置をそれぞれ有する複数の分散電源保有設備が、同じ変圧器の二次側の配電線に接続された分散電源連系システムであって、
     前記各電圧上昇抑制装置は、前記非整数倍次数であって互いに同じ次数の注入電流を注入しかつ当該注入次数の電圧および電流を測定するものであり、
     更に前記各電圧上昇抑制装置は、前記注入電流の注入ならびに前記注入次数の電圧および電流の測定のタイミングが、各電圧上昇抑制装置間で互いに重複することを防止する重複防止手段を備えている、ことを特徴とする分散電源連系システム。
    A plurality of distributed power supply holding facilities each having the voltage rise suppression device according to claim 1 or 2 is a distributed power supply interconnection system connected to a secondary distribution line of the same transformer,
    Each of the voltage rise suppression devices is a non-integer multiple order injection of the same order injection current and measures the injection order voltage and current,
    Furthermore, each of the voltage rise suppression devices includes an anti-duplication means for preventing the injection current injection and the measurement of the injection order voltage and current from overlapping each other between the voltage rise suppression devices. A distributed power interconnection system characterized by that.
PCT/JP2012/056506 2011-03-23 2012-03-14 Voltage rise suppression device and distributed power supply interconnection system WO2012128137A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800135722A CN103444040A (en) 2011-03-23 2012-03-14 Voltage rise suppression device and distributed power supply interconnection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011063776A JP5705606B2 (en) 2011-03-23 2011-03-23 Voltage rise suppression device and distributed power interconnection system
JP2011-063776 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128137A1 true WO2012128137A1 (en) 2012-09-27

Family

ID=46879289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056506 WO2012128137A1 (en) 2011-03-23 2012-03-14 Voltage rise suppression device and distributed power supply interconnection system

Country Status (3)

Country Link
JP (1) JP5705606B2 (en)
CN (1) CN103444040A (en)
WO (1) WO2012128137A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743129A (en) * 2016-05-03 2016-07-06 北京森源东标电气有限公司 Phase discrimination method of high-voltage frequency converter
CN113839391A (en) * 2021-08-16 2021-12-24 国网河北省电力有限公司电力科学研究院 Reactive power distribution method and device for multi-machine phase-advancing operation and terminal
EP4224658A4 (en) * 2020-09-30 2024-04-10 Daikin Ind Ltd Power control system, device, and information processing system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480533B1 (en) * 2013-06-28 2015-01-08 한국전력공사 Apparatus and method for interconnecting distributed generations into power grid
US9728974B2 (en) * 2013-10-10 2017-08-08 Tmeic Corporation Renewable energy site reactive power control
JP6281742B2 (en) * 2014-01-14 2018-02-21 富士電機株式会社 Inverter system
JP5766322B1 (en) * 2014-03-14 2015-08-19 通研電気工業株式会社 System control system, apparatus, and method for interconnecting distributed power systems
KR101423212B1 (en) * 2014-05-22 2014-07-24 전북대학교산학협력단 Voltage control system and method at the point of common coupling of wind power plant
JP2016025693A (en) * 2014-07-17 2016-02-08 通研電気工業株式会社 System control system, apparatus and method at dispersed power supply system interconnection
JP6502787B2 (en) * 2015-08-20 2019-04-17 東北電力株式会社 Distributed power supply device and distributed power interconnection system
US10581246B2 (en) 2015-09-03 2020-03-03 Kabushiki Kaisha Toshiba Voltage-fluctuation suppression device and method
JP6925123B2 (en) * 2016-12-22 2021-08-25 株式会社日立製作所 How to control renewable energy power generation system, reactive power controller or renewable energy power generation system
CN110678824B (en) * 2017-05-30 2022-05-27 大金工业株式会社 Power quality management system and air conditioner
JP7198578B2 (en) * 2017-12-05 2023-01-04 株式会社日立製作所 rolling system
CN109713711B (en) * 2018-04-02 2022-07-26 河海大学 Voltage drop distributed photovoltaic inverter reactive power coordination control strategy
JP6783826B2 (en) * 2018-07-11 2020-11-11 愛知電機株式会社 Self-excited reactive power compensator
JP6879652B1 (en) * 2019-12-25 2021-06-02 愛知電機株式会社 Self-excited electrostatic compensator
JP7069257B2 (en) * 2020-07-20 2022-05-17 エナジーサポート株式会社 Control circuit of static VAR compensator
CN112751370B (en) * 2020-12-23 2022-03-29 国网浙江海盐县供电有限公司 Distributed photovoltaic multi-source reactive power absorption power factor control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
JP2009177882A (en) * 2008-01-22 2009-08-06 Hitachi Ltd Distributed power supply system and method of controlling the same
JP2010166759A (en) * 2009-01-19 2010-07-29 Kansai Electric Power Co Inc:The Distributed power supply interconnection system and system interconnection protective device
JP2011036066A (en) * 2009-08-04 2011-02-17 Kansai Electric Power Co Inc:The Injection current synchronizing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944338B2 (en) * 1999-10-26 2007-07-11 株式会社日立製作所 Power conversion system
JP4852898B2 (en) * 2004-10-29 2012-01-11 東京電力株式会社 Distributed power supply, distribution facility, and power supply method
CN101807799B (en) * 2010-04-27 2012-05-02 天津大学 Super capacitor energy storage type power quality compensator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017758A (en) * 2007-07-09 2009-01-22 Toshiba Corp Distributed power supply and method of suppressing increase in voltage of low-voltage distribution system linked to the distributed power supply
JP2009177882A (en) * 2008-01-22 2009-08-06 Hitachi Ltd Distributed power supply system and method of controlling the same
JP2010166759A (en) * 2009-01-19 2010-07-29 Kansai Electric Power Co Inc:The Distributed power supply interconnection system and system interconnection protective device
JP2011036066A (en) * 2009-08-04 2011-02-17 Kansai Electric Power Co Inc:The Injection current synchronizing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105743129A (en) * 2016-05-03 2016-07-06 北京森源东标电气有限公司 Phase discrimination method of high-voltage frequency converter
EP4224658A4 (en) * 2020-09-30 2024-04-10 Daikin Ind Ltd Power control system, device, and information processing system
CN113839391A (en) * 2021-08-16 2021-12-24 国网河北省电力有限公司电力科学研究院 Reactive power distribution method and device for multi-machine phase-advancing operation and terminal
CN113839391B (en) * 2021-08-16 2023-08-04 国网河北省电力有限公司电力科学研究院 Reactive power distribution method, device and terminal for multi-machine phase advance operation

Also Published As

Publication number Publication date
JP5705606B2 (en) 2015-04-22
JP2012200111A (en) 2012-10-18
CN103444040A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5705606B2 (en) Voltage rise suppression device and distributed power interconnection system
Zhang et al. Resonance issues and damping techniques for grid-connected inverters with long transmission cable
Jin et al. Autonomous operation of hybrid AC-DC microgrids
Papathanassiou A technical evaluation framework for the connection of DG to the distribution network
JP4306760B2 (en) Distributed power supply
WO2012063800A1 (en) Electrical power control system and method for electrical power control
Meral et al. Mitigation of DC-link voltage oscillations to reduce size of DC-side capacitor and improve lifetime of power converter
Zhang et al. Study of resonance issues between DFIG-based offshore wind farm and HVDC transmission
Sahoo et al. A novel sensorless current shaping control approach for SVPWM inverter with voltage disturbance rejection in a dc grid–based wind power generation system
Brandao et al. Coordinated control of three-and single-phase inverters coexisting in low-voltage microgrids
Hsu et al. Power quality analysis for the distribution systems with a wind power generation system
Kou et al. A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems
Miret et al. PI‐based controller for low‐power distributed inverters to maximise reactive current injection while avoiding over voltage during voltage sags
Benyamina et al. Online current limiting-based control to improve fault ride-through capability of grid-feeding inverters
Esmaeili et al. Power quality improvement of multimicrogrid using improved custom power device called as distributed power condition controller
Karrari et al. Adaptive droop control strategy for flywheel energy storage systems: A power hardware-in-the-loop validation
Khidrani et al. A hybrid voltage‐current compensator using a synchronous reference frame technique for grid‐connected microgrid under nonlinear load conditions
Modi et al. F-lms adaptive filter based control algorithm with power management strategy for grid integrated rooftop spv-bes system
Lee et al. Inertia-free stand-alone microgrid—Part I: Analysis on synchronized GPS time-based control and operation
Peters et al. Static VAR compensation of a fixed speed stall control wind turbine during start-up
Zhou et al. Novel optimal control strategy for power fluctuation and current harmonic suppression of a three‐phase photovoltaic inverter under unbalanced grid faults
Usunariz et al. A modified control scheme of droop-based converters for power stability analysis in microgrids
Pippi et al. Transient performance of a unified control system for the provision of ancillary services in low-voltage distribution networks
Khodadoost Arani et al. Decentralised primary and secondary control strategies for islanded microgrids considering energy storage systems characteristics
Ghorbani et al. A new method to point of common coupling voltage control in distribution grid‐connected photovoltaic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760046

Country of ref document: EP

Kind code of ref document: A1