WO2012127606A1 - Magnetic reproducing head - Google Patents

Magnetic reproducing head Download PDF

Info

Publication number
WO2012127606A1
WO2012127606A1 PCT/JP2011/056787 JP2011056787W WO2012127606A1 WO 2012127606 A1 WO2012127606 A1 WO 2012127606A1 JP 2011056787 W JP2011056787 W JP 2011056787W WO 2012127606 A1 WO2012127606 A1 WO 2012127606A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
head according
nonmagnetic
read head
Prior art date
Application number
PCT/JP2011/056787
Other languages
French (fr)
Japanese (ja)
Inventor
聡悟 西出
晋 小川
将貴 山田
山本 浩之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013505680A priority Critical patent/JP5624673B2/en
Priority to PCT/JP2011/056787 priority patent/WO2012127606A1/en
Publication of WO2012127606A1 publication Critical patent/WO2012127606A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Definitions

  • the present invention relates to a magnetic reproducing head including a magnetoresistive effect element.
  • CPP-GMR Current Perpendicular to Plane to Giant to Magneto Resistance
  • TMR Treatment to Magneto Resistance
  • the CPP-GMR or TMR head it is difficult to adapt the CPP-GMR or TMR head in terms of resolution in a Tbit-class magnetic recording / reproducing apparatus. This is due to the mechanism by which the CPP-GMR and TMR heads detect the leakage magnetic field from the magnetic recording medium and the size of the elements necessary to exhibit that capability.
  • a structure in which a magnetic material and a non-magnetic thin film are stacked as many as ten layers is required.
  • the film thickness of the laminated structure determines the track width of the read head.
  • an electrode layer such as a semi-ferromagnetic layer to make this laminated structure function as a magnetic field sensor, the film thickness corresponds to a terabit-class recording density. It cannot be the size you want.
  • a magnetically arranged planar magnetic reproducing head called a spin accumulation element
  • the advantage of the spin accumulation element is that two ferromagnets for magnetic detection can be arranged in a plane direction instead of a vertical direction. By arranging in a plane direction, only one layer of ferromagnetic material is arranged in the magnetic field detection part, so that the detection part can be made small. Moreover, it has the characteristic that the signal to be detected becomes larger as the part that senses the magnetic field is smaller.
  • the above-described planar arrangement type structure is called a non-local structure.
  • the spin accumulation element has a non-local structure.
  • a magnetic pinned layer made of a ferromagnetic material is arranged at one location on the nonmagnetic layer, and a magnetic free layer made of a ferromagnetic material is arranged at another location on the nonmagnetic layer away from the nonmagnetic layer.
  • the structure is such that the magnetic pinned layer and the magnetic free layer are electrically connected via a nonmagnetic layer.
  • a pair of electrodes form a circuit through a ferromagnetic pinned layer and a nonmagnetic layer
  • another pair of electrodes form a circuit through a ferromagnetic free layer and a nonmagnetic layer.
  • the ferromagnetic fixed layer and the ferromagnetic free layer are defined as a ferromagnetic material having a large coercive force and a small ferromagnetic material with respect to an external magnetic field, respectively. That is, the magnetization direction of the ferromagnetic free layer easily changes with respect to the external magnetic field.
  • the spin current is a flow of electron spin generated when electrons of upward spin and electrons of downward spin flow in the same amount in opposite directions. At this time, since the charge flow is canceled, no substantial current is generated.
  • Non-Patent Document 1 a phenomenon in which a spin current having a polarized spin polarizability is conducted over a long distance of 100 nm or more and a magnetic interaction is actually confirmed. They made Co wires with different thicknesses and Al wires perpendicular to them, and made a structure in which an alumina barrier layer was provided at the intersection of Co wires and Al wires.
  • the mechanism for generating the above-described spin current will be described.
  • the current is induced by the magnetization of the ferromagnetic pinned layer and flows into the nonmagnetic layer as spin-polarized electrons. Since only electrons in the same direction as the magnetization direction of the ferromagnetic pinned layer can enter the ferromagnetic pinned layer, spin-polarized electrons in the opposite direction to the magnetization direction accumulate in front of the ferromagnetic pinned layer, and the ferromagnetic pinned layer becomes ferromagnetic. In the nonmagnetic layer after the fixed layer, spin-polarized electrons having the same direction as the magnetization direction of the ferromagnetic fixed layer accumulate.
  • Non-Patent Document 2 When the spin-polarized electrons accumulated in the nonmagnetic layer diffuse into the nonmagnetic layer due to relaxation, a spin current is generated.
  • the spin-polarized electrons are accumulated in a wide region in the thin wire due to the effect of the spin-polarized electrons accumulated in the interface portion of the Al thin wire.
  • the nonmagnetic layer and the ferromagnetic free layer The potential difference between and changes. That is, a change in the relative angle between the magnetization directions of two magnetic bodies having different coercive forces with respect to an external magnetic field is detected as a voltage change.
  • One of the characteristics is that a change in potential of one magnetic body with respect to the conductor is generated as an output, and this potential has a characteristic that the polarities of the two magnetic bodies differ from each other when they are parallel and antiparallel.
  • the output voltage generally includes an offset, and the effective output is a voltage change amount ⁇ V due to an external magnetic field.
  • the theoretical limit is about 1 m ⁇ . Since the upper limit of the current value that can be energized is about 1 to 10 mA, the upper limit of the output is about 10 ⁇ V.
  • the output When used as a detector, the output may be buried in noise. When the spin-polarized current is actually applied to the head, it is important to reduce the noise associated with this device.
  • noise of a magnetic sensor includes Johnson noise caused by heat, shot noise generated when electrons tunnel through a barrier, and mag noise generated due to application of magnetization at a high frequency.
  • Johnson noise is related to element resistance and has a low frequency dependency and a small absolute value. Therefore, it is basically common to all devices as white noise. Since this device basically includes a barrier layer in the current path, it is presumed that there is an influence of shot noise like TMR.
  • Non-Patent Document 4 discloses theoretical handling of spin resistance. According to this, the spin resistance is different between the nonmagnetic material and the magnetic material, and the nonmagnetic material having a long spin diffusion length is said to have a high spin resistance. Only a part of the spin current is injected from a magnetic material having a low spin resistance to a nonmagnetic material having a high spin resistance. If an insulating layer is inserted at the interface and the resistance is made higher than the spin resistance of the nonmagnetic material, the spin current in the nonmagnetic material can be increased.
  • d indicates a distance between two columnar multilayer films including a ferromagnetic layer. That is, the output ⁇ V increases when the spin diffusion length is increased and the polarization rate of the injected spin-polarized electrons is increased. For this purpose, it is necessary to realize a nonmagnetic material and a barrier layer having appropriate flatness and crystallinity.
  • the output of the spin accumulation type magnetic sensor is desired to be further improved in practice. This is because, as can be seen from the above equation, the crystallinity of the nonmagnetic fine wire related to spin diffusion and the crystallinity of the insulator barrier layer related to the coherent tunnel are not sufficiently secured.
  • An object of the present invention is to provide a magnetic reproducing head having a larger output than the conventional one.
  • an insulator underlayer, a nonmagnetic thin wire made of a nonmagnetic material disposed on the insulator underlayer, and a first region of the nonmagnetic thin wire are disposed.
  • the non-magnetic thin wire has a body-centered cubic lattice or a face-centered cubic lattice crystal structure
  • the nonmagnetic wire and the barrier layer are all crystalline with the same plane orientation, and the voltage
  • Magnetic regeneration with a large output voltage ⁇ V is achieved by making the insulator underlayer, the nonmagnetic wire and the barrier layer all crystalline with the same plane orientation, thereby increasing the spin diffusion length and increasing the spin injection efficiency.
  • a head can be provided.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of an example of a spin accumulation element (magnetoresistance element) in a magnetic read head according to a first embodiment of the invention. It is a principal part cross-sectional schematic diagram which shows an example of the magnetic reproducing head based on the 2nd Example of this invention. It is a perspective view which shows the structure of an example of the magnetic reproducing head based on the 2nd Example of this invention. It is a principal part cross-sectional schematic diagram which shows an example of the magnetic reproducing head based on the 3rd Example of this invention. It is a perspective view which shows the structure of an example of the magnetic reproducing head based on the 3rd Example of this invention.
  • FIG. 1 is a schematic sectional view of a spin accumulation element (magnetoresistance element) in the magnetic reproducing head according to the first embodiment.
  • FIGS. 6A to 6J show manufacturing steps for manufacturing the spin accumulation element in the magnetic reproducing head according to the first embodiment.
  • a thin film is deposited in the order of the buffer layer 102, the insulator underlayer 103, the nonmagnetic layer 104, the barrier layer 105, the ferromagnetic layer 106, and the upper electrode layer.
  • a multilayer film 1000 was formed (FIG. 6A).
  • the upper electrode layer is a metal electrode layer made of Ta / Ru or the like.
  • the buffer layer 102 is used for the buffer layer 102.
  • the insulator underlayer 103 is made of MgO (film thickness: 3 nm), the structure is a rock salt structure, and the crystal orientation is (100).
  • the nonmagnetic layer 104 was made of a nonmagnetic metal such as Ag.
  • MgO film thickness: 0.9 nm to 1.2 nm
  • the ferromagnetic layer 106 was made of Co 20 Fe 60 B 20 .
  • the multilayer film 1000 was formed on the thermally oxidized Si substrate 101 using an RF sputtering method using Ar gas.
  • Ta of the buffer layer 102 is formed in an amorphous shape on the thermally oxidized Si substrate.
  • MgO of the insulator underlayer 103 is formed on amorphous Ta, MgO grows with a crystal orientation of (100).
  • Ag of the nonmagnetic layer 104 is formed on MgO (100), and when MgO of the barrier layer 105 is formed on the Ag, each crystal orientation is the (100) direction.
  • the nonmagnetic layer 104 has a body-centered cubic lattice structure or a face-centered cubic lattice structure.
  • Co 20 Fe 60 B 20 of the ferromagnetic layer 106 is formed on the MgO (100) of the barrier layer 105, it is formed in an amorphous state and crystallized by heat treatment, and its orientation is (100). Become. After the multilayer film 1000 is formed, a resist is applied and electron beam (EB) lithography is performed to form the resist. Thereafter, the multi-layer film 1000 was shaved to the top of the insulator base layer 103 using ion beam etching, and the portion covered with the resist remained, and processed into a thin wire 1002 of 0.2 ⁇ m ⁇ 1 ⁇ m (FIG. 6B).
  • EB electron beam
  • a resist is applied and electron beam (EB) lithography is performed to form a resist 1003 (FIG. 6B).
  • EB electron beam
  • the portion was covered to just above the nonmagnetic layer 104, and the portion covered with the resist 1003 remained to form a pillar 1005 (FIG. 6C).
  • an insulator layer 1004 was formed on the entire surface, and the insulator layer 1004 was processed by in-beam etching so that only the top of each pillar was shaved and the pillar with the upper electrode at the top was exposed. (FIG. 6D).
  • an electrode layer 1007 is formed, a resist is coated thereon, and electron beam (EB) lithography is performed to form a resist 1006 (FIG. 6E).
  • the electrode layer 1007 is removed leaving the portion covered with the resist 1006 to form the wiring 1009 (FIG. 6F).
  • a resist 1008 is formed, and the insulator layer 1004 is processed so that the nonmagnetic layer 104 of the thin wire 1002 is exposed (FIG. 6G).
  • the wiring 1010 is formed (FIG. 6H).
  • a metal electrode layer 1012 is formed, a resist 1011 is formed by lithography (FIG.
  • the pillar 1005 includes a barrier layer 105, a ferromagnetic layer 106, and an upper electrode layer.
  • the electrodes 107a, 107b, 108a, and 108b were composed of a wiring 1009 and an electrode 1014, a wiring 1010 and an electrode 1013, a wiring 1009 and an electrode 1015, and a wiring 1010 and an electrode 1016, respectively, and were formed in a Cr / Au laminated structure. After the device was fabricated, heat treatment was performed at 300 ° C.
  • a current is passed from the electrode 107a of the spin accumulation element toward the electrode 107b, and the voltage between the electrodes 108a and 108b is detected as a signal.
  • the direction of magnetization of the ferromagnetic layer 106b changes according to the direction of the leakage magnetic field from the magnetic recording medium 111 of the HDD.
  • the voltage between the electrodes 108a and 108b changes.
  • a low voltage is measured when the magnetization directions of the ferromagnetic layers 106a and 106b are parallel, and a high voltage is measured when the magnetization directions are antiparallel.
  • the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less.
  • the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved.
  • the spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased.
  • the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
  • Example 1 Ag is used for the nonmagnetic layer, but even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less.
  • As the barrier layer at least one of MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used.
  • a rock salt structure, a full whistler structure, a spinel structure Take one of the following.
  • For the ferromagnetic layer at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
  • the insulator underlayer, the nonmagnetic conductor layer, and the barrier layer are all made of crystalline material having the same plane orientation, and the nonmagnetic wire has a structure of a body-centered cubic lattice or a face-centered cubic lattice.
  • the second embodiment will be described with reference to FIGS. 2, 3, and 7A to 7L. Note that the matters described in the first embodiment and not described in the present embodiment can be applied to the present embodiment as long as there are no special circumstances.
  • FIG. 2 and 3 show a configuration example of a read head manufactured based on the principle of spin accumulation.
  • FIG. 2 is a cross-sectional view thereof
  • FIG. 3 is a schematic diagram of a configuration example.
  • 7A to 7L show the manufacturing process.
  • the film having a multilayer structure seen in the element cross section of FIG. 2 includes a magnesium oxide substrate, a GaAs substrate, an AlTiC substrate, a SiC substrate, an Al 2 O 3 substrate, etc. on a commonly used substrate such as a SiO 2 substrate or a glass substrate.
  • the HDD component was formed in a high vacuum using a film forming apparatus such as an RF sputtering method or a molecular beam epitaxy method.
  • a film forming apparatus such as an RF sputtering method or a molecular beam epitaxy method.
  • the film was formed directly on the substrate or formed with an appropriate underlayer or the like.
  • a film 201 having a lower magnetic shield and an electrode was formed on a substrate on which an element was formed, and this film was drawn by electron beam lithography. This film was milled using an ion milling device to form a pattern.
  • the first buffer layer 202, the second buffer layer 203, the insulator underlayer 204, the nonmagnetic layer 205, the barrier layer 206, the ferromagnetic layer 207, and the protective film were formed in this order.
  • Reference numeral 208 denotes a first electrode
  • reference numeral 209 denotes a second electrode
  • reference numeral 210 denotes an upper magnetic shield layer
  • reference numeral 211 denotes a magnetic recording medium.
  • the structure is SiO 2 / Ta / MgO / Ag / MgO / Co 20 Fe 60 B 20 / Ta / Ru, which is called a multilayer film 2001 here.
  • the insulator layer (first buffer layer) 202 may be in an amorphous shape, and for example, at least one of SiO 2 and Al 2 O 3 can be used.
  • the metal layer (second buffer layer) 203 may be any material that forms an amorphous shape on the amorphous insulator layer, and Ta is used here, but at least one of Ta, SiO 2 , and Al 2 O 3 may be used. That's fine.
  • the protective film was formed by a Ta / Ru layer structure. A resist was coated on the multilayer film 2001 and drawn into a fine line structure by electron beam lithography to form a resist 2004 (FIG. 7A).
  • Milling is performed up to the insulator underlayer 204 by an ion milling apparatus, and a portion covered with the resist 2004 forms a fine line pattern like the fine line 2002 in FIG. 7B.
  • a method of stopping etching when an element constituting the insulator underlayer 204 was detected by SIMS was used.
  • the insulating protective film 2003 was formed in vacuum without being exposed to the atmosphere. 2 and 3 are basically filled with an insulating protective film 2003.
  • the resist 2004 is lifted off, the resist is coated on the entire surface, and a pattern in which the resist 2005 becomes pillars is formed into two shapes by electron beam lithography (FIG. 7C).
  • the pillar A is close to the magnetic storage medium and is located at the end of the non-magnetic thin wire. Further, the pillar B is separated from the pillar A by a certain distance and is disposed on the nonmagnetic fine wire. In this arrangement, since the pillar A has the ferromagnetic free layer and the pillar B has the ferromagnetic free layer in the principle of spin accumulation, the pillar B is drawn larger in order to make a coercive force difference. Yes.
  • the volume of the ferromagnetic fixed layer in the pillar B is made larger than the volume of the ferromagnetic free layer in the pillar A.
  • an insulating protective film was formed in vacuum, and the insulating protective film 2003 was formed again.
  • the pillar A composed of the second barrier layer 206b, the second ferromagnetic free layer 207b, and the electrode layer, and the pillar B composed of the first barrier layer 206a, the first ferromagnetic fixed layer 207a, and the electrode layer are formed.
  • FIG. 7E shows the state after the resist 2005 is lifted off and the surface is cleaned by milling in a vacuum.
  • a pattern having the shape of the first electrode portion 308 and the second electrode portion 309 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.)
  • lithography photolithography, I-line stepper, electron beam lithography, etc.
  • a resist 2008 is formed.
  • FIG. 7F Thereafter, a milling process was performed by an ion milling apparatus, and the electrode layer was shaped like the electrode part 2009 to form a part of the first electrode part 308 and the second electrode part 309. At this time, the first electrode portion 308 has the same film thickness as the second electrode portion 309.
  • the first electrode portion 309 has a shape of a leader line for extracting a signal.
  • An insulating film is formed over the entire surface in order to electrically cut off part of the first electrode portion 308 and the second electrode portion 309. This state is shown in FIG. 7G.
  • FIG. 7H shows a state where the resist is peeled off after lift-off. Subsequently, a resist was applied to the entire surface, and then a resist remaining pattern in the shape of the first electrode portion 308 was drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.) to form a resist 2010. An insulating film 2011 was formed over the entire surface, and the second electrode portion 309 was covered with the insulating film. This state is shown in FIG.
  • An upper magnetic shield 310 is formed by lithography and milling (FIG. 3).
  • the first electrode portion 308 is a portion composed of the electrode portion 2009 and the electrode portion 2012.
  • the material used for the electrode parts 2009 and 2012 was Cr / Au. Thereafter, a heat treatment at 300 ° C. was performed.
  • a method for detecting a leakage magnetic field from a magnetic recording medium will be described.
  • the direction of the leakage magnetic field generated from the perpendicular magnetic recording type magnetic storage medium is relative to the magnetization direction of the ferromagnetic free layer 307b. Parallel or antiparallel.
  • a current is passed through a circuit formed via the pillar B between the end point of the nonmagnetic thin wire portion 305 opposite to the magnetic recording medium 311 and the upper magnetic shield 310, the leakage magnetic field of the magnetic recording medium 311 and ferromagnetic free
  • the voltage change between the lower magnetic shield and the electrode 309 occurs according to the relative angle with the magnetization direction of the layer 307b.
  • Reference numeral 301 denotes a lower magnetic shield layer
  • reference numeral 302 denotes a first buffer layer
  • reference numeral 303 denotes a second buffer layer
  • reference numeral 304 denotes an insulator underlayer
  • reference numeral 306a denotes a first barrier layer
  • 306b denotes a second buffer layer.
  • the barrier layer 307a is a first ferromagnetic layer (ferromagnetic pinned layer).
  • the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less.
  • the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved.
  • the spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased.
  • the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
  • Example 2 Ag is used for the nonmagnetic layer 104, but even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less.
  • the barrier layer MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used, and a rock salt structure, a full whistler structure, or a spinel structure is adopted depending on the structure of the insulator underlayer.
  • the ferromagnetic layer at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
  • the same effects as those of the first embodiment can be obtained. Further, since the buffer layer is composed of the first buffer layer made of an insulator and the second buffer layer made of a metal, the uniformity of crystal plane orientation can be further improved.
  • FIG. 4 is a sectional view thereof
  • FIG. 5 is a schematic diagram of a configuration example.
  • a commonly used substrate including a magnesium oxide substrate, a GaAs substrate, an AlTiC substrate, a SiC substrate, an Al 2 O 3 substrate, etc.
  • the film was formed in a high vacuum using a film forming apparatus such as an RF sputtering method or a molecular beam epitaxy method. At the time of film formation, the film was formed directly on the substrate or formed with an appropriate underlayer or the like.
  • a film 401 including a lower magnetic shield and an electrode was formed on a substrate on which an element was formed, and this film was drawn by electron beam lithography. This film was milled using an ion milling device to form a pattern and protected with an insulating film.
  • a film was formed with a structure of SiO 2 / Ta / MgO / Ag / MgO / Co 20 Fe 60 B 20 / MnIr / Ta / Ru.
  • the insulator layer (first buffer layer) 402 may be in an amorphous shape, for example, Al 2 O 3 .
  • the metal layer (second buffer layer) 403 may be any metal that forms an amorphous shape on the amorphous insulator layer, and Ta is used here.
  • the electrode layers (409, 410) were formed by a Ta / Ru layer structure.
  • a resist was applied to the multilayer film and drawn into a fine line structure by electron beam lithography. Using an ion milling apparatus, a fine line pattern covered with a resist is formed by milling up to just above the insulator base layer 404. At this time, a method of stopping etching when an element constituting the insulator base layer 404 was sensed by SIMS was used. After forming the fine wire, an insulating film protective film was formed in vacuum without exposure to the atmosphere.
  • pillar A and pillar B are basically filled with an insulating film protective film.
  • the pillar A is close to the magnetic storage medium and is located at the end of the non-magnetic thin wire.
  • the pillar B is separated from the pillar A by a certain distance and is disposed on the nonmagnetic fine wire.
  • the pillar B is drawn larger in order to make a coercive force difference. Yes.
  • the volume of the ferromagnetic fixed layer in the pillar B is made larger than the volume of the ferromagnetic free layer in the pillar A.
  • This pillar was milled to the position just above the non-magnetic fine wire layer by an ion milling apparatus, and a portion covered with the resist remained to form a pillar shape. Thereafter, an insulator protective film was formed in vacuum.
  • the second barrier layers 406b and 506b, the second ferromagnetic free layers 407b and 507b, the pillar A composed of the electrode layers, the first barrier layers 406a and 506a, the first ferromagnetic fixed layers 407a and 507a, A pillar B composed of ferromagnetic layers 408 and 508 and an electrode layer is formed.
  • Reference numeral 411 denotes an upper magnetic shield layer
  • reference numeral 413 denotes a magnetic recording medium.
  • a pattern having the shape of the second electrode portion 509 and the first electrode portion 510 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.). Thereafter, milling was performed by an ion milling apparatus to form electrode portions 509 and 510.
  • the electrode portion 509 forms a leader line for extracting a signal.
  • an insulating film is formed over the entire surface in order to electrically cut off the second electrode portion 509 and the first electrode portion 510.
  • a pattern in which the resist peels into the shape of the second electrode portion 509 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.).
  • the insulating film was removed in the shape of the second electrode portion 509 by an ion milling apparatus, and then an electrode layer and an upper magnetic shield layer were formed.
  • An upper magnetic shield 511 was formed by drawing in the shape of the upper magnetic shield 511 by a lithography method and performing a milling process with an ion milling apparatus.
  • Reference numeral 501 denotes a lower magnetic shield layer
  • reference numeral 502 denotes a first buffer layer
  • reference numeral 503 denotes a second buffer layer
  • reference numeral 504 denotes an insulator underlayer.
  • a method for detecting a leakage magnetic field from a magnetic recording medium will be described.
  • a current is passed through a circuit formed via the pillar B between the end point of the nonmagnetic thin wire portion 505 opposite to the magnetic recording medium 512 and the upper magnetic shield 511, the leakage magnetic field of the magnetic recording medium 512 and ferromagnetic free
  • the voltage change between the lower magnetic shield and the electrode 509 occurs according to the relative angle with the magnetization direction of the layer 507b.
  • Information written on the magnetic recording medium is read by processing the voltage change as a signal.
  • the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less.
  • the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved.
  • the spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased.
  • the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
  • Example 3 Ag was used for the nonmagnetic layer. However, even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less.
  • the barrier layer MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used, and a rock salt structure, a full whistler structure, or a spinel structure is adopted depending on the structure of the insulator underlayer.
  • the ferromagnetic layer at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
  • the same effects as those of the second embodiment can be obtained. Further, by arranging the antiferromagnetic layer above the ferromagnetic pinned layer, the resistance change in parallel and antiparallel can be increased.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • 101 thermally oxidized Si substrate, 102: buffer layer, 103: insulator underlayer, 104: nonmagnetic layer, 105: barrier layer, 106a: first ferromagnetic layer, 106b: second ferromagnetic layer, 107a: 1st electrode part, 107b: 2nd electrode part, 108a: 3rd electrode part, 108b: 4th electrode part, 111: Magnetic recording medium, 201: Lower magnetic shield layer, 202: 1st buffer layer, 203: second buffer layer, 204: insulator underlayer, 205: nonmagnetic layer, 206a: first barrier layer, 206b: second barrier layer, 207a: first ferromagnetic layer, 207b: second , 208: first electrode portion, 209: second electrode portion, 210: upper magnetic shield layer, 211: magnetic recording medium, 301: lower magnetic shield layer, 302: first buffer layer, 303 : Second buffer layer, 30 : Insulator underlayer, 305: nonmagnetic layer,

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

In order to provide a magnetic reproducing head of large output, this magnetic reproducing head has an insulator undercoating layer (103), a non-magnetic wire (104) comprising a non-magnetic material, a first element portion (105a, 106a, and 107a), and a second element portion (105b, 106b, and 108b). One end (107b) of the non-magnetic wire (104) as well as the first element portion form a portion of a current supply circuit, and the other end (108b) of the non-magnetic wire (104) as well as the second element portion form a portion of a voltage measurement circuit. The non-magnetic wire (104) has the crystal structure of a body-centered cubic lattice or a face-centered cubic lattice, and the insulator undercoating layer (103), the non-magnetic wire (104), and barrier layers (105a and 105b) are all of crystal quality of the same surface-orientation.

Description

磁気再生ヘッドMagnetic read head
 本発明は、磁気抵抗効果素子を備える磁気再生ヘッドに関する。 The present invention relates to a magnetic reproducing head including a magnetoresistive effect element.
 磁気記憶再生装置市場では、年率40%超の記録密度向上が要求されており、この磁気記録再生装置に対応した磁気記憶再生ヘッドにおいても、記録、再生の両特性に関し、高性能化が要求されている。このうち、磁気再生ヘッドに関しては、高感度化、トラック幅の狭小化、再生ギャップ間隔の狭小化という3つの技術課題を満足させることが重要である。 In the magnetic recording / reproducing apparatus market, an increase in recording density of 40% or more per year is required, and even in a magnetic recording / reproducing head corresponding to this magnetic recording / reproducing apparatus, high performance is required for both recording and reproducing characteristics. ing. Among these, regarding the magnetic reproducing head, it is important to satisfy the three technical problems of high sensitivity, narrowing of the track width, and narrowing of the reproducing gap interval.
 現行の磁気記録再生装置に関しては、その要素技術として、センス電流を素子の積層面に対して垂直に流すCPP-GMR(Current Perpendicular to Plane Giant Magneto Resistance)ヘッドやTMR(Tunneling Magneto Resistance)ヘッドが提案されている。これらスピンバルブタイプの再生装置は、磁気記録媒体からの漏洩磁場の検出方法として磁性導電体との相対的な磁化の向きに関して抵抗変化を示すものである。 For the current magnetic recording / reproducing apparatus, CPP-GMR (Current Perpendicular to Plane to Giant to Magneto Resistance) head and TMR (Tunneling to Magneto Resistance) head that cause a sense current to flow perpendicularly to the laminated surface of the elements are proposed as elemental technologies. Has been. These spin-valve type reproducing devices show a change in resistance with respect to the direction of magnetization relative to a magnetic conductor as a method for detecting a leakage magnetic field from a magnetic recording medium.
 しかしながら、テラビット(Tbit)級の磁気記録再生装置において、上記CPP-GMRやTMRヘッドは、分解能の面から適応が困難である。それはCPP-GMRやTMRヘッドが磁気記録媒体からの漏洩磁場を検出する機構とその能力を発揮する為に必要な素子の大きさに起因する。CPP-GMR素子、TMR素子が磁場を検出する機能を有する為には磁性体、非磁性体薄膜を十数層という積層した構造が必要となる。積層構造の膜厚が再生ヘッドのトラック幅を決めるが、この積層構造を磁場センサとして機能させる為の半強磁性体層等の電極層を合わせると、その膜厚はテラビット級の記録密度に対応する大きさに成りえない。 However, it is difficult to adapt the CPP-GMR or TMR head in terms of resolution in a Tbit-class magnetic recording / reproducing apparatus. This is due to the mechanism by which the CPP-GMR and TMR heads detect the leakage magnetic field from the magnetic recording medium and the size of the elements necessary to exhibit that capability. In order for the CPP-GMR element and the TMR element to have a function of detecting a magnetic field, a structure in which a magnetic material and a non-magnetic thin film are stacked as many as ten layers is required. The film thickness of the laminated structure determines the track width of the read head. When combined with an electrode layer such as a semi-ferromagnetic layer to make this laminated structure function as a magnetic field sensor, the film thickness corresponds to a terabit-class recording density. It cannot be the size you want.
 その為、超高分解能再生ヘッドとして、スピン蓄積素子という磁性体の平面配置型磁気再生ヘッドが提案されている。スピン蓄積素子の利点は磁気検出の為の二つの強磁性体が垂直方向ではなく平面方向に配置する事ができる所にある。平面方向に配置することで磁場の検出部分には強磁性体が一層のみ配置されるので、検出部分を小さくすることができる。また磁場を感知する部位を小さくする程、検出されるシグナルが大きくなるという特性を持ち合わせている。 For this reason, a magnetically arranged planar magnetic reproducing head called a spin accumulation element has been proposed as an ultra-high resolution reproducing head. The advantage of the spin accumulation element is that two ferromagnets for magnetic detection can be arranged in a plane direction instead of a vertical direction. By arranging in a plane direction, only one layer of ferromagnetic material is arranged in the magnetic field detection part, so that the detection part can be made small. Moreover, it has the characteristic that the signal to be detected becomes larger as the part that senses the magnetic field is smaller.
 前述の平面配置型の構造は非局所構造と呼ばれている。スピン蓄積素子は非局所構造をとる。非局所構造の素子は、非磁性層上の一箇所に強磁性体からなる磁性固定層を配置し、これから離れた非磁性層上の他の箇所に強磁性体からなる磁性自由層を配置した構造をとり、磁性固定層と磁性自由層は非磁性層を介して電気的に接続された機構を備えている。また二対の電極を備えており、一対の電極は強磁性固定層、非磁性層を介して回路を形成しており、もう一対の電極は強磁性自由層、非磁性層を介して回路を形成している。これにより非局在機構においては電流が流れる経路と、電圧を測定する経路が異なっており非磁性細線部を介して反対側の電極との間で電圧測定及び電流印加は行わない。電流は一対の電極の間を磁性固定層と非磁性金属層を介して流れ、電圧はもう一対の電極の間で非磁性層、強磁性自由層を介して測定される。強磁性固定層と強磁性自由層はそれぞれ外部磁場に対する保磁力の大きい強磁性体と小さい強磁性体と定義する。即ち、強磁性自由層は外部磁場に対して磁化方向が容易に変化する。 The above-described planar arrangement type structure is called a non-local structure. The spin accumulation element has a non-local structure. In a non-local structure element, a magnetic pinned layer made of a ferromagnetic material is arranged at one location on the nonmagnetic layer, and a magnetic free layer made of a ferromagnetic material is arranged at another location on the nonmagnetic layer away from the nonmagnetic layer. The structure is such that the magnetic pinned layer and the magnetic free layer are electrically connected via a nonmagnetic layer. In addition, two pairs of electrodes are provided, a pair of electrodes form a circuit through a ferromagnetic pinned layer and a nonmagnetic layer, and another pair of electrodes form a circuit through a ferromagnetic free layer and a nonmagnetic layer. Forming. As a result, in the delocalization mechanism, the path through which the current flows and the path through which the voltage is measured are different, and voltage measurement and current application are not performed between the opposite electrode via the nonmagnetic thin wire portion. A current flows between a pair of electrodes via a magnetic pinned layer and a nonmagnetic metal layer, and a voltage is measured between the other pair of electrodes via a nonmagnetic layer and a ferromagnetic free layer. The ferromagnetic fixed layer and the ferromagnetic free layer are defined as a ferromagnetic material having a large coercive force and a small ferromagnetic material with respect to an external magnetic field, respectively. That is, the magnetization direction of the ferromagnetic free layer easily changes with respect to the external magnetic field.
 ここでスピン流について説明する。スピン流とは上向きスピンの電子と下向きスピンの電子が互いに逆向きに同一量だけ流れているときに発生する電子スピンの流れである。この時、電荷の流れは相殺されているので実質的な電流は発生しない。実験の例として、非特許文献1に掲載されているように、スピン分極率が偏極したスピン流が100nm以上の長距離にわたって伝導し、磁気相互作用を生じる現象が実際に確認されている。彼らは、太さの異なるCo細線と、これと直交するAl細線を作成し、Co細線とAl細線の交叉した場所にアルミナの障壁層を設けた構造を作製した。このとき、太いCo線からAl線へ電流を流し、膜に磁場を印加したところ電流の流れていない他方のCo線とAl線との間に磁場依存する電位差が生じるというもので、細線の間隔が500nmを超えるにもかかわらず、磁気相互作用が確認されたというものである。 Here we explain the spin current. The spin current is a flow of electron spin generated when electrons of upward spin and electrons of downward spin flow in the same amount in opposite directions. At this time, since the charge flow is canceled, no substantial current is generated. As an example of an experiment, as disclosed in Non-Patent Document 1, a phenomenon in which a spin current having a polarized spin polarizability is conducted over a long distance of 100 nm or more and a magnetic interaction is actually confirmed. They made Co wires with different thicknesses and Al wires perpendicular to them, and made a structure in which an alumina barrier layer was provided at the intersection of Co wires and Al wires. At this time, when a current is passed from the thick Co line to the Al line and a magnetic field is applied to the film, a potential difference depending on the magnetic field is generated between the other Co line and the Al line where no current flows. The magnetic interaction was confirmed even though the thickness exceeded 500 nm.
 前述のスピン流が発生する機構を説明する。電流が強磁性固定層を流れたときに、その電流は強磁性固定層の磁化に誘起されてスピン偏極電子となって非磁性層に流れる。強磁性固定層には強磁性固定層の磁化の向きと同じ向きの電子しか侵入できないため、強磁性固定層の前では磁化の向きに対して逆向きのスピン偏極電子が蓄積し、強磁性固定層の後である非磁性層では強磁性固定層の磁化の向きと同じ向きのスピン偏極電子が蓄積する。この非磁性層に蓄積されたスピン偏極電子が緩和によって非磁性層内に拡散する際、スピン流が発生する。上記、実験例では、スピン偏極電子がAl細線の界面部分に蓄積された効果で、蓄積されたスピン偏極電子が細線中の広い領域に分布することによって生じる事が確認された。これらの現象は非特許文献2や非特許文献3に代表されるような形で理論的に理解されている。 The mechanism for generating the above-described spin current will be described. When a current flows through the ferromagnetic pinned layer, the current is induced by the magnetization of the ferromagnetic pinned layer and flows into the nonmagnetic layer as spin-polarized electrons. Since only electrons in the same direction as the magnetization direction of the ferromagnetic pinned layer can enter the ferromagnetic pinned layer, spin-polarized electrons in the opposite direction to the magnetization direction accumulate in front of the ferromagnetic pinned layer, and the ferromagnetic pinned layer becomes ferromagnetic. In the nonmagnetic layer after the fixed layer, spin-polarized electrons having the same direction as the magnetization direction of the ferromagnetic fixed layer accumulate. When the spin-polarized electrons accumulated in the nonmagnetic layer diffuse into the nonmagnetic layer due to relaxation, a spin current is generated. In the above experimental example, it has been confirmed that the spin-polarized electrons are accumulated in a wide region in the thin wire due to the effect of the spin-polarized electrons accumulated in the interface portion of the Al thin wire. These phenomena are theoretically understood in the form represented by Non-Patent Document 2 and Non-Patent Document 3.
 スピン流によって強磁性自由層と非磁性層の界面に蓄積したスピン偏極電子の磁気モーメントの向きと強磁性体自由層の磁化方向との相対角に応じて、非磁性層と強磁性自由層との間の電位差が変化する。つまり外部磁場に対して保磁力の異なる2つの磁性体の磁化の向きの相対角の変化を電圧変化として検出する。一方の磁性体の導電体に対する電位の変化が出力として生じる特徴があり、この電位は2つの磁性体の磁化が平行な時と反平行な時とで、それぞれ極性が異なるという特徴がある。 Depending on the relative angle between the direction of the magnetic moment of the spin-polarized electrons accumulated at the interface between the ferromagnetic free layer and the nonmagnetic layer by the spin current and the magnetization direction of the ferromagnetic free layer, the nonmagnetic layer and the ferromagnetic free layer The potential difference between and changes. That is, a change in the relative angle between the magnetization directions of two magnetic bodies having different coercive forces with respect to an external magnetic field is detected as a voltage change. One of the characteristics is that a change in potential of one magnetic body with respect to the conductor is generated as an output, and this potential has a characteristic that the polarities of the two magnetic bodies differ from each other when they are parallel and antiparallel.
 この非局在型の磁場センサにおいて、一般に出力電圧はオフセットを含んでおり、実効的な出力は外部磁場による電圧変化量ΔVである。ΔVに伴う磁気抵抗変化量ΔRについて、非特許文献4にあるように、非磁性層からなるスピン流伝搬層を短くしても理論的に1mΩ程度が限界である。通電可能な電流値の上限は1~10mA程度なので、出力の上限は10μV程度となる。検出器として用いる場合、出力がノイズに埋もれる場合がある。スピン偏極した電流が実際にヘッドに適用するにあたっては、本デバイスに係るノイズの低減が重要である。通常、磁気センサのノイズには、熱に起因するジョンソンノイズ、障壁を電子がトンネルするときに生じるショットノイズ、高周波での磁化印加に伴って生じるマグノイズがある。ジョンソンノイズは素子抵抗と関係し、周波数依存性が小さく絶対値も小さい為、基本的にホワイトノイズとしてどのデバイスにも共通である。本デバイスは基本的に電流パスに障壁層を備えるためTMRと同様、ショットノイズの影響があると推察される。 In this delocalized magnetic field sensor, the output voltage generally includes an offset, and the effective output is a voltage change amount ΔV due to an external magnetic field. Regarding the magnetoresistance change ΔR accompanying ΔV, as described in Non-Patent Document 4, even if the spin current propagation layer made of a nonmagnetic layer is shortened, the theoretical limit is about 1 mΩ. Since the upper limit of the current value that can be energized is about 1 to 10 mA, the upper limit of the output is about 10 μV. When used as a detector, the output may be buried in noise. When the spin-polarized current is actually applied to the head, it is important to reduce the noise associated with this device. Usually, noise of a magnetic sensor includes Johnson noise caused by heat, shot noise generated when electrons tunnel through a barrier, and mag noise generated due to application of magnetization at a high frequency. Johnson noise is related to element resistance and has a low frequency dependency and a small absolute value. Therefore, it is basically common to all devices as white noise. Since this device basically includes a barrier layer in the current path, it is presumed that there is an influence of shot noise like TMR.
 出力ΔVを増加させるために、スピン抵抗の差を利用する手段がある。スピン抵抗は、スピン流の流れやすさを定量的に示す量である。非特許文献4にはスピン抵抗の理論的な取り扱いが開示されている。それによれば、非磁性体と磁性体ではスピン抵抗が異なり、スピン拡散長の長い非磁性体はスピン抵抗が大きいとされている。スピン抵抗の小さい磁性体からスピン抵抗の大きい非磁性体へはスピン流の一部しか注入されない。界面に絶縁層を挿入し、その抵抗を非磁性体のスピン抵抗以上にすれば、非磁性体中のスピン流を大きくすることが可能である。この障壁層に適切な結晶質となる絶縁体を選び、TMR素子で実現されているようなコヒーレントトンネルを起こして出力ΔVを大きくするという事が理論的に予想されているが、実際には理論より小さな出力しか得られていない。一般的に出力ΔV、スピン拡散長λ、スピン偏極率Pの関係は、   There is a means of using the difference in spin resistance to increase the output ΔV. The spin resistance is a quantity that quantitatively indicates how easily the spin current flows. Non-Patent Document 4 discloses theoretical handling of spin resistance. According to this, the spin resistance is different between the nonmagnetic material and the magnetic material, and the nonmagnetic material having a long spin diffusion length is said to have a high spin resistance. Only a part of the spin current is injected from a magnetic material having a low spin resistance to a nonmagnetic material having a high spin resistance. If an insulating layer is inserted at the interface and the resistance is made higher than the spin resistance of the nonmagnetic material, the spin current in the nonmagnetic material can be increased. It is theoretically expected that an appropriate crystalline insulator will be selected for this barrier layer, causing a coherent tunnel as realized by the TMR element to increase the output ΔV. Only smaller output is obtained. In general, the relationship between output ΔV, spin diffusion length λ, and spin polarization P is
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
となっている。ここでdは強磁性層が含まれる二つの柱状多層膜間の距離を指す。つまりスピン拡散長を長くし、注入されるスピン偏極電子の偏極率を高くした時に、出力ΔVが大きくなるという事である。その為には適切な平坦性、結晶性を有する非磁性体と障壁層を実現する必要がある。 It has become. Here, d indicates a distance between two columnar multilayer films including a ferromagnetic layer. That is, the output ΔV increases when the spin diffusion length is increased and the polarization rate of the injected spin-polarized electrons is increased. For this purpose, it is necessary to realize a nonmagnetic material and a barrier layer having appropriate flatness and crystallinity.
 前述の磁性体と非磁性体の間にMgOを挿入した場合においても、スピン蓄積型磁気センサの出力は実用上さらなる改善が望まれる。これは、上記式から分かるように、スピン拡散に係わる非磁性細線の結晶性、コヒーレントトンネルに係わる絶縁体障壁層の結晶性が十分確保されていない為である。 Even when MgO is inserted between the magnetic material and the non-magnetic material, the output of the spin accumulation type magnetic sensor is desired to be further improved in practice. This is because, as can be seen from the above equation, the crystallinity of the nonmagnetic fine wire related to spin diffusion and the crystallinity of the insulator barrier layer related to the coherent tunnel are not sufficiently secured.
 本発明は、従来よりも出力の大きな磁気再生ヘッドを提供することを目的とする。 An object of the present invention is to provide a magnetic reproducing head having a larger output than the conventional one.
 上記目的を達成するための一実施形態として、絶縁体下地層と、前記絶縁体下地層上に配置された非磁性体からなる非磁性細線と、前記非磁性細線の第1領域上に配置され、障壁層と強磁性層と電極部とが順次積層された柱状構造の第1の素子部と、前記非磁性細線の前記第1領域とは異なる第2領域上に配置され、障壁層と強磁性層と電極部とが順次積層された柱状構造の第2の素子部とを有し、前記非磁性細線の一端と前記第1の素子部は電流供給回路の一部をなし、前記非磁性細線の他端と前記第2の素子部は電圧測定回路の一部をなしており、前記非磁性細線は、体心立方格子あるいは面心立方格子の結晶構造をとり、絶縁体下地層と前記非磁性細線と前記障壁層はすべて同一の面方位をとった結晶質であり、前記電圧測定回路の電圧変化をもって、外部磁場の変化を検出する機能を有することを特徴とする磁気再生ヘッドとする。 As an embodiment for achieving the above object, an insulator underlayer, a nonmagnetic thin wire made of a nonmagnetic material disposed on the insulator underlayer, and a first region of the nonmagnetic thin wire are disposed. A first element portion having a columnar structure in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked; and a second region different from the first region of the nonmagnetic thin wire, A second element portion having a columnar structure in which a magnetic layer and an electrode portion are sequentially stacked, and one end of the nonmagnetic thin wire and the first element portion form a part of a current supply circuit, and the nonmagnetic The other end of the thin wire and the second element portion form a part of a voltage measuring circuit, and the non-magnetic thin wire has a body-centered cubic lattice or a face-centered cubic lattice crystal structure, The nonmagnetic wire and the barrier layer are all crystalline with the same plane orientation, and the voltage measuring circuit With pressure changes, a magnetic reproducing head, characterized by having a function of detecting a change in the external magnetic field.
 絶縁体下地層、前記非磁性細線および前記障壁層をすべて同一の面方位の結晶質とすることにより、スピン拡散長を長くし、スピン注入効率を高くすることで、出力電圧ΔVの大きな磁気再生ヘッドを提供することができる。 Magnetic regeneration with a large output voltage ΔV is achieved by making the insulator underlayer, the nonmagnetic wire and the barrier layer all crystalline with the same plane orientation, thereby increasing the spin diffusion length and increasing the spin injection efficiency. A head can be provided.
本発明の第1の実施例に係る磁気再生ヘッドにおけるスピン蓄積素子(磁気抵抗素子)の一例の基本構造を示す断面模式図である。1 is a schematic cross-sectional view showing the basic structure of an example of a spin accumulation element (magnetoresistance element) in a magnetic read head according to a first embodiment of the invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例を示す要部断面模式図である。It is a principal part cross-sectional schematic diagram which shows an example of the magnetic reproducing head based on the 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の構造を示す斜視図である。It is a perspective view which shows the structure of an example of the magnetic reproducing head based on the 2nd Example of this invention. 本発明の第3の実施例に係る磁気再生ヘッドの一例を示す要部断面模式図である。It is a principal part cross-sectional schematic diagram which shows an example of the magnetic reproducing head based on the 3rd Example of this invention. 本発明の第3の実施例に係る磁気再生ヘッドの一例の構造を示す斜視図である。It is a perspective view which shows the structure of an example of the magnetic reproducing head based on the 3rd Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第1の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 1st Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention. 本発明の第2の実施例に係る磁気再生ヘッドの一例の製造工程を示す斜視図である。It is a perspective view which shows the manufacturing process of an example of the magnetic reproducing head based on 2nd Example of this invention.
 以下、実施例により図面を用いて詳細に説明する。 Hereinafter, the embodiment will be described in detail with reference to the drawings.
 第1の実施例について図1及び図6A~図6Jを用いて説明する。図1に、実施例1に係る磁気再生ヘッドにおけるスピン蓄積素子(磁気抵抗素子)の断面模式図を示す。また図6A~図6Jに実施例1係る磁気再生ヘッドにおけるスピン蓄積素子作製の製造工程を示す。熱酸化膜が形成されたSi基板101の上にバッファ層102、絶縁体下地層103、非磁性層104、障壁層105、強磁性層106、上部電極層の順で薄膜を積層して成膜し多層膜1000を形成した(図6A)。上部電極層はTa/Ru等の構成からなる金属電極層である。バッファ層102は例えばTaを用いた。絶縁体下地層103はMgO(膜厚:3nm)を用い、その構造は岩塩構造であり、結晶方位は(100)を向いている。非磁性層104はAgなどの非磁性金属を用いた。障壁層105はMgO(膜厚:0.9nm~1.2nm)を用いた。強磁性層106はCo20Fe6020を用いた。 A first embodiment will be described with reference to FIG. 1 and FIGS. 6A to 6J. FIG. 1 is a schematic sectional view of a spin accumulation element (magnetoresistance element) in the magnetic reproducing head according to the first embodiment. FIGS. 6A to 6J show manufacturing steps for manufacturing the spin accumulation element in the magnetic reproducing head according to the first embodiment. On the Si substrate 101 on which the thermal oxide film is formed, a thin film is deposited in the order of the buffer layer 102, the insulator underlayer 103, the nonmagnetic layer 104, the barrier layer 105, the ferromagnetic layer 106, and the upper electrode layer. A multilayer film 1000 was formed (FIG. 6A). The upper electrode layer is a metal electrode layer made of Ta / Ru or the like. For example, Ta is used for the buffer layer 102. The insulator underlayer 103 is made of MgO (film thickness: 3 nm), the structure is a rock salt structure, and the crystal orientation is (100). The nonmagnetic layer 104 was made of a nonmagnetic metal such as Ag. For the barrier layer 105, MgO (film thickness: 0.9 nm to 1.2 nm) was used. The ferromagnetic layer 106 was made of Co 20 Fe 60 B 20 .
 多層膜1000はArガスを用いたRFスパッタリング法を用いて熱酸化Si基板101の上に形成した。室温成膜において、バッファ層102のTaは熱酸化Si基板上でアモルファス形状に成膜される。アモルファス状のTaの上に絶縁体下地層103のMgOを成膜した場合、MgOは(100)という結晶方位有して成長する。MgO(100)上に非磁性層104のAgを成膜した場合、またそのAg上に障壁層105のMgOを成膜した場合、それぞれの結晶方位は(100)方向となる。非磁性層104は体心立方格子構造あるいは面心立方格子構造をなる。強磁性層106のCo20Fe6020は障壁層105のMgO(100)上に成膜した場合、アモルファス状に成膜され、加熱処理を施すことで結晶化し、その方位は(100)になる。多層膜1000を形成後、レジストを塗装し電子ビーム(EB)リソグラフィーを行ってレジストを形成する。その後、イオンビームエッチングを用いて多層膜1000を絶縁体下地層103の直上まで削り、レジストに被覆されている部分が残って、0.2μm×1μmの細線1002に加工した(図6B)。その後、レジストを塗装し電子ビーム(EB)リソグラフィーを行ってレジスト1003を形成する(図6B)。イオンビームエッチングを用いて、非磁性層104の直上まで削り、レジスト1003に被覆されている部分が残ってピラー1005を形成した(図6C)。その後、全面に絶縁体層1004を成膜し、インビームエッチングによって、絶縁体層1004をそれぞれのピラーの直上だけが削られて最上部に上部電極を備えたピラーが露になるように加工した(図6D)。その後、電極層1007を成膜し、その上にレジストを塗装し電子ビーム(EB)リソグラフィーを行ってレジスト1006を形成する(図6E)。レジスト1006に被覆された部分を残して電極層1007を削りとり配線1009を成形する(図6F)。その後、レジスト1008を形成し、絶縁体層1004を加工して細線1002の非磁性層104が露わになるように削る(図6G)。その上に電極材料を成膜してレジスト1008を取り除くと配線1010が成形される(図6H)。その後、金属電極層1012を成膜し、レジスト1011をリソグラフィーによって成形し(図6I)、金属電極層1012をレジストに被覆された部分を残して削りとり、電極1013、1014、1015、1016を成形した(図6J)。加工によって別れた二つの強磁性層をそれぞれ106aと106bとする。ピラー1005は障壁層105と強磁性層106と上部電極層からなる。電極107a、107b、108a、108bはそれぞれ配線1009と電極1014、配線1010と電極1013、配線1009と電極1015、配線1010と電極1016からなり、Cr/Au積層構造にて形成した。素子を作成後、300℃で加熱処理を行った。 The multilayer film 1000 was formed on the thermally oxidized Si substrate 101 using an RF sputtering method using Ar gas. In the room temperature film formation, Ta of the buffer layer 102 is formed in an amorphous shape on the thermally oxidized Si substrate. In the case where MgO of the insulator underlayer 103 is formed on amorphous Ta, MgO grows with a crystal orientation of (100). When Ag of the nonmagnetic layer 104 is formed on MgO (100), and when MgO of the barrier layer 105 is formed on the Ag, each crystal orientation is the (100) direction. The nonmagnetic layer 104 has a body-centered cubic lattice structure or a face-centered cubic lattice structure. When Co 20 Fe 60 B 20 of the ferromagnetic layer 106 is formed on the MgO (100) of the barrier layer 105, it is formed in an amorphous state and crystallized by heat treatment, and its orientation is (100). Become. After the multilayer film 1000 is formed, a resist is applied and electron beam (EB) lithography is performed to form the resist. Thereafter, the multi-layer film 1000 was shaved to the top of the insulator base layer 103 using ion beam etching, and the portion covered with the resist remained, and processed into a thin wire 1002 of 0.2 μm × 1 μm (FIG. 6B). Thereafter, a resist is applied and electron beam (EB) lithography is performed to form a resist 1003 (FIG. 6B). Using ion beam etching, the portion was covered to just above the nonmagnetic layer 104, and the portion covered with the resist 1003 remained to form a pillar 1005 (FIG. 6C). After that, an insulator layer 1004 was formed on the entire surface, and the insulator layer 1004 was processed by in-beam etching so that only the top of each pillar was shaved and the pillar with the upper electrode at the top was exposed. (FIG. 6D). Thereafter, an electrode layer 1007 is formed, a resist is coated thereon, and electron beam (EB) lithography is performed to form a resist 1006 (FIG. 6E). The electrode layer 1007 is removed leaving the portion covered with the resist 1006 to form the wiring 1009 (FIG. 6F). Thereafter, a resist 1008 is formed, and the insulator layer 1004 is processed so that the nonmagnetic layer 104 of the thin wire 1002 is exposed (FIG. 6G). When an electrode material is formed thereon and the resist 1008 is removed, the wiring 1010 is formed (FIG. 6H). Thereafter, a metal electrode layer 1012 is formed, a resist 1011 is formed by lithography (FIG. 6I), and the metal electrode layer 1012 is scraped off leaving a portion covered with the resist, thereby forming electrodes 1013, 1014, 1015, and 1016. (FIG. 6J). Two ferromagnetic layers separated by processing are designated as 106a and 106b, respectively. The pillar 1005 includes a barrier layer 105, a ferromagnetic layer 106, and an upper electrode layer. The electrodes 107a, 107b, 108a, and 108b were composed of a wiring 1009 and an electrode 1014, a wiring 1010 and an electrode 1013, a wiring 1009 and an electrode 1015, and a wiring 1010 and an electrode 1016, respectively, and were formed in a Cr / Au laminated structure. After the device was fabricated, heat treatment was performed at 300 ° C.
 次にスピン蓄積素子の動作について図1を用いて説明する。スピン蓄積素子の電極107aから電極107bに向かって電流を流し、電極108aと108bの間の電圧を信号として検出する。HDDの磁気記録媒体111からの漏洩磁場の向きに応じて強磁性層106bの磁化の向きが変化する。スピン蓄積素子の電極107aから107bに電流を流した状態で、漏洩磁場の向きが変化したとき、電極108aと108bの間の電圧は変化する。強磁性層106aと106bの磁化の向きが並行であるとき低電圧が測定され、磁化の向きが反平行の時、高電圧が測定される。 Next, the operation of the spin accumulation element will be described with reference to FIG. A current is passed from the electrode 107a of the spin accumulation element toward the electrode 107b, and the voltage between the electrodes 108a and 108b is detected as a signal. The direction of magnetization of the ferromagnetic layer 106b changes according to the direction of the leakage magnetic field from the magnetic recording medium 111 of the HDD. When the direction of the leakage magnetic field changes in a state where current flows from the electrodes 107a to 107b of the spin accumulation element, the voltage between the electrodes 108a and 108b changes. A low voltage is measured when the magnetization directions of the ferromagnetic layers 106a and 106b are parallel, and a high voltage is measured when the magnetization directions are antiparallel.
 本実施例において、絶縁体下地層/非磁性層/絶縁体障壁層/強磁性層のすべての層の格子定数の不整合を3%以下とすることができた。こうすることによって、非磁性層の平坦性と結晶性を良くすることができるのでスピン拡散長を長くすることができ、絶縁体障壁層の結晶性を良くすることができるので、強磁性層から絶縁体層を介して非磁性層にスピン注入する際のスピン注入効率を高めることができる。本実施例による素子を評価した結果、従来の構造と比べて出力信号が2倍程向上した。これにより、Tbit/inch級の記録密度に対応した再生ヘッドを実現することができる。 In this example, the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less. By doing so, the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved. The spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased. As a result of evaluating the device according to this example, the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
 実施例1では、非磁性層にAgを用いたが、V、Mg、Pd、Rhを用いてもMgO上にエピタキシャルに成長するため同様の効果が得られる。特に格子定数の不整合が3%以下であるAg、V、Mgを用いることが望ましい。また障壁層としては、MgO、MgZnO、FeVAl、MgAl、Geの少なくとも1種を用いることができ、絶縁体下地層及び非磁性細線の構造により、岩塩構造、フルホイスラ構造、スピネル構造のいずれかをとる。強磁性層に、CoFe、Fe、Ni、NiFe、CoFeBの少なくとも1種を用いても良い。 In Example 1, Ag is used for the nonmagnetic layer, but even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less. As the barrier layer, at least one of MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used. Depending on the structure of the insulator underlayer and the nonmagnetic thin wire, a rock salt structure, a full whistler structure, a spinel structure Take one of the following. For the ferromagnetic layer, at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
 以上、本実施例によれば、絶縁体下地層と非磁性導体層と障壁層をすべて同一の面方位の結晶質にすると共に、非磁性細線は体心立方格子あるいは面心立方格子の構造とすることにより、出力の大きな磁気再生ヘッドを提供することができる。 As described above, according to the present example, the insulator underlayer, the nonmagnetic conductor layer, and the barrier layer are all made of crystalline material having the same plane orientation, and the nonmagnetic wire has a structure of a body-centered cubic lattice or a face-centered cubic lattice. By doing so, a magnetic reproducing head having a large output can be provided.
 第2の実施例について、図2、図3及び図7A~図7Lを用いて説明する。なお、実施例1に記載され、本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 The second embodiment will be described with reference to FIGS. 2, 3, and 7A to 7L. Note that the matters described in the first embodiment and not described in the present embodiment can be applied to the present embodiment as long as there are no special circumstances.
 スピン蓄積の原理に基づいて作製した再生ヘッドの構成例を図2、図3に示す。図2はその断面図であり、図3は構成例の模式図である。また図7Aから図7Lはその製造工程である。図2の素子断面に見られる多層構造の膜は、SiO基板やガラス基板などの通常用いられる基板上、(酸化マグネシウム基板、GaAs基板、AlTiC基板、SiC基板、Al基板等を含む)また、HDDヘッドとなるチップの製造工程うちの一工程としてHDD部品にRFスパッタリング法、分子線エピタキシー法等の膜形成装置を用いて高真空中において成膜した。成膜の際は、上記基板上に直接成膜するか、適当な下地層などを形成したものに成膜した。素子作成する基板上に、下部磁気シールド及び電極を備える膜201を形成し、この膜を電子線リソグラフィーによって描画した。この膜を、イオンミリング装置を用いてミリング処理しパターンを形成した。この細線表面をクリーニング後に、第一のバッファ層202、第二のバッファ層203、絶縁体下地層204、非磁性体層205、障壁層206、強磁性体層207、保護膜という順で形成した。なお、符号208は第1の電極、符号209は第2の電極、符号210は上部磁気シールド層、符号211は磁気記録媒体である。この順に、SiO/Ta/MgO/Ag/MgO/Co20Fe6020/Ta/Ruという構成で、ここでは多層膜2001と呼ぶ。絶縁体層(第一のバッファ層)202はアモルファス形状であれば良く例えば、SiO、Alの少なくとも1種を用いることができる。金属層(第二のバッファ層)203はアモルファス絶縁体層上にアモルファス形状を形成する材料であればよくここではTaを用いたが、Ta、SiO、Alの少なくとも一種類であればよい。保護膜はTa/Ruの層構造によって形成した。この多層膜2001の上にレジストを塗装し、電子線リソグラフィーによって細線構造に描画して、レジスト2004を形成した(図7A)。イオンミリング装置によって、絶縁体下地層204までミリング処理し、レジスト2004に被覆された部分は図7Bの細線2002の様な細線パターンを形成する。この際SIMSによって絶縁体下地層204を構成する元素を感知した際にエッチングを停止するという手法を用いた。細線2002を形成後、大気暴露せずに真空中で絶縁保護膜2003を形成した。図2、3の空白部分は基本的に絶縁保護膜2003によって埋められている。レジスト2004をリフトオフした後、レジストを全面に塗装し、電子線リソグラフィーによってレジスト2005をピラーとなるパターンを2つの形状に成形する(図7C)。その後、イオンミリング装置によって非磁性細線層の直上までミリング処理をし、レジスト2005に被覆された部分がピラー2006を形成した(図7D)。この二つのピラーをそれぞれピラーA、ピラーBと名付けると、ピラーAは磁気記憶媒体に近接し、かつ非磁性細線の端部に位置する。またピラーBはピラーAから一定の間隔離れて非磁性細線上に配置される。この配置において、スピン蓄積の原理における強磁性自由層をピラーAが有し、強磁性固定層をピラーBが有することになるので保磁力差をつける為に、ピラーBの方が大きく描画されている。これにより、ピラーAにおける強磁性自由層の体積よりもピラーBにおける強磁性固定層の体積を大きくする。その後、真空中で、絶縁体保護膜を成膜して、絶縁保護膜2003を再度成形した。こうして第2の障壁層206b、第2の強磁性自由層207b、電極層からなるピラーAと、第1の障壁層206a、第1の強磁性固定層207a、電極層からなるピラーBが形成される。 2 and 3 show a configuration example of a read head manufactured based on the principle of spin accumulation. FIG. 2 is a cross-sectional view thereof, and FIG. 3 is a schematic diagram of a configuration example. 7A to 7L show the manufacturing process. The film having a multilayer structure seen in the element cross section of FIG. 2 includes a magnesium oxide substrate, a GaAs substrate, an AlTiC substrate, a SiC substrate, an Al 2 O 3 substrate, etc. on a commonly used substrate such as a SiO 2 substrate or a glass substrate. In addition, as one of the steps of manufacturing a chip to be an HDD head, the HDD component was formed in a high vacuum using a film forming apparatus such as an RF sputtering method or a molecular beam epitaxy method. At the time of film formation, the film was formed directly on the substrate or formed with an appropriate underlayer or the like. A film 201 having a lower magnetic shield and an electrode was formed on a substrate on which an element was formed, and this film was drawn by electron beam lithography. This film was milled using an ion milling device to form a pattern. After the surface of this thin wire was cleaned, the first buffer layer 202, the second buffer layer 203, the insulator underlayer 204, the nonmagnetic layer 205, the barrier layer 206, the ferromagnetic layer 207, and the protective film were formed in this order. . Reference numeral 208 denotes a first electrode, reference numeral 209 denotes a second electrode, reference numeral 210 denotes an upper magnetic shield layer, and reference numeral 211 denotes a magnetic recording medium. In this order, the structure is SiO 2 / Ta / MgO / Ag / MgO / Co 20 Fe 60 B 20 / Ta / Ru, which is called a multilayer film 2001 here. The insulator layer (first buffer layer) 202 may be in an amorphous shape, and for example, at least one of SiO 2 and Al 2 O 3 can be used. The metal layer (second buffer layer) 203 may be any material that forms an amorphous shape on the amorphous insulator layer, and Ta is used here, but at least one of Ta, SiO 2 , and Al 2 O 3 may be used. That's fine. The protective film was formed by a Ta / Ru layer structure. A resist was coated on the multilayer film 2001 and drawn into a fine line structure by electron beam lithography to form a resist 2004 (FIG. 7A). Milling is performed up to the insulator underlayer 204 by an ion milling apparatus, and a portion covered with the resist 2004 forms a fine line pattern like the fine line 2002 in FIG. 7B. At this time, a method of stopping etching when an element constituting the insulator underlayer 204 was detected by SIMS was used. After forming the thin wire 2002, the insulating protective film 2003 was formed in vacuum without being exposed to the atmosphere. 2 and 3 are basically filled with an insulating protective film 2003. After the resist 2004 is lifted off, the resist is coated on the entire surface, and a pattern in which the resist 2005 becomes pillars is formed into two shapes by electron beam lithography (FIG. 7C). Thereafter, milling was performed up to just above the nonmagnetic thin wire layer by an ion milling apparatus, and the portion covered with the resist 2005 formed the pillar 2006 (FIG. 7D). When these two pillars are named pillar A and pillar B, respectively, the pillar A is close to the magnetic storage medium and is located at the end of the non-magnetic thin wire. Further, the pillar B is separated from the pillar A by a certain distance and is disposed on the nonmagnetic fine wire. In this arrangement, since the pillar A has the ferromagnetic free layer and the pillar B has the ferromagnetic free layer in the principle of spin accumulation, the pillar B is drawn larger in order to make a coercive force difference. Yes. Thereby, the volume of the ferromagnetic fixed layer in the pillar B is made larger than the volume of the ferromagnetic free layer in the pillar A. Thereafter, an insulating protective film was formed in vacuum, and the insulating protective film 2003 was formed again. Thus, the pillar A composed of the second barrier layer 206b, the second ferromagnetic free layer 207b, and the electrode layer, and the pillar B composed of the first barrier layer 206a, the first ferromagnetic fixed layer 207a, and the electrode layer are formed. The
 レジスト2005をリフトオフした後、真空中で表面をミリング処理によって洗浄したその状態が図7Eである。電極層2007を成膜し、レジストを塗装後、第1の電極部308と第2の電極部309の形状をしたパターンをリソグラフィー(フォトリソグラフィー、I線ステッパ、電子線リソグラフィー等)によって描画して、レジスト2008を形成する。その状態が図7Fである。その後、イオンミリング装置によって、ミリング処理を施し、電極層は電極部2009の様に成形され、第1の電極部308の一部と第2の電極部309を形成した。この際、第一の電極部308は第2の電極部309と同一の膜厚となっている。第1の電極部309は信号を引き出す為の引出線の形状になっている。第1の電極部308の一部と第2の電極部309を電気的に遮断するために絶縁膜を全面に形成する。その状態が図7Gである。その後リフトオフしてレジストを剥離したその状態が図7Hである。続いて全面にレジストを塗装後、第1の電極部308の形状にレジスト残るパターンをリソグラフィー(フォトリソグラフィー、I線ステッパ、電子線リソグラフィー等)によって描画して、レジスト2010を成形した。絶縁膜2011を全面に形成し、第二の電極部309を絶縁膜で覆った。その状態が図7Iである。その後リフトオフして第一の電極部308上のレジスト2010を剥離した。イオンミリング装置によって第1の電極部308の一部分の上を洗浄し、全面に電極層2013を成膜した。その際、絶縁保護膜2003にある窪みは電極層で穴埋めされ、電極部2012が形成される。リソグラフィー法によって第一の電極部308の形状に描画してレジスト2014を成形した。その状態が図7Jである。イオンミリング装置によってミリング処理を施し成形すること、電極部2009と電極部2012から成る部分だけが、絶縁保護膜2003から出ている状態になる(図7K)。その後、上部シールド層2015を成膜した。リソグラフィーとミリング処理によって上部磁気シールド310が形成される(図3)。第一の電極部308は電極部2009と電極部2012から成る部分の事となる。電極部2009と2012に使用した材料はCr/Auを採用した。その後300℃での加熱処理を施した。 FIG. 7E shows the state after the resist 2005 is lifted off and the surface is cleaned by milling in a vacuum. After the electrode layer 2007 is formed and a resist is applied, a pattern having the shape of the first electrode portion 308 and the second electrode portion 309 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.) Then, a resist 2008 is formed. This state is shown in FIG. 7F. Thereafter, a milling process was performed by an ion milling apparatus, and the electrode layer was shaped like the electrode part 2009 to form a part of the first electrode part 308 and the second electrode part 309. At this time, the first electrode portion 308 has the same film thickness as the second electrode portion 309. The first electrode portion 309 has a shape of a leader line for extracting a signal. An insulating film is formed over the entire surface in order to electrically cut off part of the first electrode portion 308 and the second electrode portion 309. This state is shown in FIG. 7G. FIG. 7H shows a state where the resist is peeled off after lift-off. Subsequently, a resist was applied to the entire surface, and then a resist remaining pattern in the shape of the first electrode portion 308 was drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.) to form a resist 2010. An insulating film 2011 was formed over the entire surface, and the second electrode portion 309 was covered with the insulating film. This state is shown in FIG. Thereafter, lift-off was performed, and the resist 2010 on the first electrode portion 308 was peeled off. A part of the first electrode portion 308 was cleaned by an ion milling apparatus, and an electrode layer 2013 was formed on the entire surface. At that time, a depression in the insulating protective film 2003 is filled with an electrode layer, and an electrode portion 2012 is formed. A resist 2014 was formed by drawing in the shape of the first electrode portion 308 by lithography. This state is shown in FIG. 7J. Only the part composed of the electrode part 2009 and the electrode part 2012 is exposed from the insulating protective film 2003 by performing the milling process by the ion milling apparatus (FIG. 7K). Thereafter, an upper shield layer 2015 was formed. An upper magnetic shield 310 is formed by lithography and milling (FIG. 3). The first electrode portion 308 is a portion composed of the electrode portion 2009 and the electrode portion 2012. The material used for the electrode parts 2009 and 2012 was Cr / Au. Thereafter, a heat treatment at 300 ° C. was performed.
 磁気記録媒体からの漏洩磁場の検出方法について説明する。図3に示すように磁気記憶媒体311とスピン蓄積型の再生素子が配置されたとき、垂直磁気記録方式の磁気記憶媒体から生じる漏洩磁場の方向は、強磁性自由層307bの磁化方向に対して平行か反平行となる。磁気記録媒体311と反対側の非磁性細線部305の端点と上部磁気シールド310との間にピラーBを介して形成される回路に電流を流すと、磁気記録媒体311の漏洩磁場と強磁性自由層307bの磁化の向きとの相対角に応じて、下部磁気シールドと電極309の間の電圧変化が生じる。その電圧変化を信号として処理することで磁気記録媒体に書きこまれている情報を読み出す。なお、符号301は下部磁気シールド層、符号302は第1のバッファ層、符号303は第2のバッファ層、符号304は絶縁体下地層、符号306aは第1の障壁層、306bは第2の障壁層、307aは第1の強磁性層(強磁性固定層)である。 A method for detecting a leakage magnetic field from a magnetic recording medium will be described. As shown in FIG. 3, when the magnetic storage medium 311 and the spin accumulation type reproducing element are arranged, the direction of the leakage magnetic field generated from the perpendicular magnetic recording type magnetic storage medium is relative to the magnetization direction of the ferromagnetic free layer 307b. Parallel or antiparallel. When a current is passed through a circuit formed via the pillar B between the end point of the nonmagnetic thin wire portion 305 opposite to the magnetic recording medium 311 and the upper magnetic shield 310, the leakage magnetic field of the magnetic recording medium 311 and ferromagnetic free The voltage change between the lower magnetic shield and the electrode 309 occurs according to the relative angle with the magnetization direction of the layer 307b. Information written on the magnetic recording medium is read by processing the voltage change as a signal. Reference numeral 301 denotes a lower magnetic shield layer, reference numeral 302 denotes a first buffer layer, reference numeral 303 denotes a second buffer layer, reference numeral 304 denotes an insulator underlayer, reference numeral 306a denotes a first barrier layer, and 306b denotes a second buffer layer. The barrier layer 307a is a first ferromagnetic layer (ferromagnetic pinned layer).
 本実施例において、絶縁体下地層/非磁性層/絶縁体障壁層/強磁性層のすべての層の格子定数の不整合を3%以下とすることができた。こうすることによって、非磁性層の平坦性と結晶性を良くすることができるのでスピン拡散長を長くすることができ、絶縁体障壁層の結晶性を良くすることができるので、強磁性層から絶縁体層を介して非磁性層にスピン注入する際のスピン注入効率を高めることができる。本実施例による素子を評価した結果、従来の構造と比べて出力信号が2倍程向上した。これにより、Tbit/inch級の記録密度に対応した再生ヘッドを実現することができる。 In this example, the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less. By doing so, the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved. The spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased. As a result of evaluating the device according to this example, the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
 実施例2では、非磁性層104にAgを用いたがV、Mg、Pd、Rhを用いてもMgO上にエピタキシャルに成長するため同様の効果が得られる。特に格子定数の不整合が3%以下であるAg、V、Mgを用いることが望ましい。また障壁層としては、MgO、MgZnO、FeVAl、MgAl、Geを用いることができ、絶縁体下地層の構造により、岩塩構造、フルホイスラ構造、スピネル構造のいずれかをとる。強磁性層に、CoFe、Fe、Ni、NiFe、CoFeBの少なくとも1種を用いても良い。 In Example 2, Ag is used for the nonmagnetic layer 104, but even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less. As the barrier layer, MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used, and a rock salt structure, a full whistler structure, or a spinel structure is adopted depending on the structure of the insulator underlayer. For the ferromagnetic layer, at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
 以上、本実施例によれば、実施例1と同様の効果が得られる。また、バッファ層を絶縁体からなる第1のバッファ層と金属からなる第2のバッファ層で構成したことにより、より結晶の面方位の均一性を向上することができる。 As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, since the buffer layer is composed of the first buffer layer made of an insulator and the second buffer layer made of a metal, the uniformity of crystal plane orientation can be further improved.
 第3の実施例について、図3、図4を用いて説明する。なお、実施例1又は2に記載され、本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。 The third embodiment will be described with reference to FIGS. Note that matters described in the first or second embodiment and not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.
 強磁性固定層と強磁性自由層の磁化方向の相対角を大きくする方法には保磁力差を用いる方法以外に、反強磁性体による強磁性層のピン止め効果を用いる方法がある。その機構を取り入れた再生ヘッドの構成例を図4、図5に示す。図4はその断面図であり、図5は構成例の模式図である。図4の素子断面に見られる多層構造の膜は、SiO基板やガラス基板などの通常用いられる基板(酸化マグネシウム基板、GaAs基板、AlTiC基板、SiC基板、Al基板等を含む)上にRFスパッタリング法、分子線エピタキシー法等の膜形成装置を用いて高真空中において成膜した。成膜の際は、上記基板上に直接成膜するか、適当な下地層などを形成したものに成膜した。素子作成する基板上に、下部磁気シールド及び電極を備える膜401を形成し、この膜を電子線リソグラフィーによって描画した。この膜を、イオンミリング装置を用いてミリング処理しパターンを形成し、絶縁膜で保護した。この細線表面をクリーニング後に、第1のバッファ層402、第2のバッファ層403、絶縁体下地層404、非磁性体層405、障壁層406(406a、406b)、強磁性体層407(407a、407b)、反強磁性層408、電極層(409、410)という順で形成した。その順にSiO/Ta/MgO/Ag/MgO/Co20Fe6020/MnIr/Ta/Ruという構成で成膜した。絶縁体層(第1バッファ層)402はアモルファス形状であれば良く例えばAlでも良い。金属層(第2バッファ層)403はアモルファス絶縁体層上にアモルファス形状を形成する金属であればよくここではTaを用いた。電極層(409、410)はTa/Ruの層構造によって形成した。この多層膜にレジストを塗装し、電子線リソグラフィーによって細線構造に描画した。イオンミリング装置によって、絶縁体下地層404の直上までミリング処理しレジストに被覆された細線パターンに形成する。この際SIMSによって絶縁体下地層404を構成する元素を感知した際にエッチングを停止するという手法を用いた。細線を形成後、大気暴露せずに真空中で絶縁膜保護膜を形成した。図4、5の空白部分は基本的に絶縁膜保護膜によって埋められている。レジストをリフトオフした後、電子線リソグラフィーによってピラーとなるパターンを2つ描画する。この二つのピラーをそれぞれピラーA、ピラーBと名付けると、ピラーAは磁気記憶媒体に近接し、かつ非磁性細線の端部に位置する。またピラーBはピラーAから一定の間隔離れて非磁性細線上に配置される。この配置において、スピン蓄積の原理における強磁性自由層をピラーAが有し、強磁性固定層をピラーBが有することになるので保磁力差をつける為に、ピラーBの方が大きく描画されている。これにより、ピラーAにおける強磁性自由層の体積よりもピラーBにおける強磁性固定層の体積を大きくする。このピラーをイオンミリング装置によって非磁性細線層の直上までミリング処理をし、レジストに被覆された部分が残ってピラー形状に形成した。その後、真空中で、絶縁体保護膜を形成した。こうして第2の障壁層406b、506b、第2の強磁性自由層407b、507b、電極層からなるピラーAと、第1の障壁層406a、506a、第1の強磁性固定層407a、507a、反強磁性層408、508、電極層からなるピラーBが形成される。なお、符号411は上部磁気シールド層、符号413は磁気記録媒体である。 As a method for increasing the relative angle between the magnetization directions of the ferromagnetic pinned layer and the ferromagnetic free layer, there is a method using the pinning effect of the ferromagnetic layer by an antiferromagnetic material, in addition to the method using the coercive force difference. A configuration example of a reproducing head incorporating the mechanism is shown in FIGS. FIG. 4 is a sectional view thereof, and FIG. 5 is a schematic diagram of a configuration example. The multi-layered film shown in the element cross section of FIG. 4 is on a commonly used substrate (including a magnesium oxide substrate, a GaAs substrate, an AlTiC substrate, a SiC substrate, an Al 2 O 3 substrate, etc.) such as a SiO 2 substrate or a glass substrate. The film was formed in a high vacuum using a film forming apparatus such as an RF sputtering method or a molecular beam epitaxy method. At the time of film formation, the film was formed directly on the substrate or formed with an appropriate underlayer or the like. A film 401 including a lower magnetic shield and an electrode was formed on a substrate on which an element was formed, and this film was drawn by electron beam lithography. This film was milled using an ion milling device to form a pattern and protected with an insulating film. After cleaning the surface of the thin wire, the first buffer layer 402, the second buffer layer 403, the insulator underlayer 404, the nonmagnetic layer 405, the barrier layers 406 (406a, 406b), the ferromagnetic layer 407 (407a, 407b), an antiferromagnetic layer 408, and electrode layers (409, 410). In this order, a film was formed with a structure of SiO 2 / Ta / MgO / Ag / MgO / Co 20 Fe 60 B 20 / MnIr / Ta / Ru. The insulator layer (first buffer layer) 402 may be in an amorphous shape, for example, Al 2 O 3 . The metal layer (second buffer layer) 403 may be any metal that forms an amorphous shape on the amorphous insulator layer, and Ta is used here. The electrode layers (409, 410) were formed by a Ta / Ru layer structure. A resist was applied to the multilayer film and drawn into a fine line structure by electron beam lithography. Using an ion milling apparatus, a fine line pattern covered with a resist is formed by milling up to just above the insulator base layer 404. At this time, a method of stopping etching when an element constituting the insulator base layer 404 was sensed by SIMS was used. After forming the fine wire, an insulating film protective film was formed in vacuum without exposure to the atmosphere. 4 and 5 are basically filled with an insulating film protective film. After the resist is lifted off, two pillar patterns are drawn by electron beam lithography. When these two pillars are named pillar A and pillar B, respectively, the pillar A is close to the magnetic storage medium and is located at the end of the non-magnetic thin wire. Further, the pillar B is separated from the pillar A by a certain distance and is disposed on the nonmagnetic fine wire. In this arrangement, since the pillar A has the ferromagnetic free layer and the pillar B has the ferromagnetic free layer in the principle of spin accumulation, the pillar B is drawn larger in order to make a coercive force difference. Yes. Thereby, the volume of the ferromagnetic fixed layer in the pillar B is made larger than the volume of the ferromagnetic free layer in the pillar A. This pillar was milled to the position just above the non-magnetic fine wire layer by an ion milling apparatus, and a portion covered with the resist remained to form a pillar shape. Thereafter, an insulator protective film was formed in vacuum. Thus, the second barrier layers 406b and 506b, the second ferromagnetic free layers 407b and 507b, the pillar A composed of the electrode layers, the first barrier layers 406a and 506a, the first ferromagnetic fixed layers 407a and 507a, A pillar B composed of ferromagnetic layers 408 and 508 and an electrode layer is formed. Reference numeral 411 denotes an upper magnetic shield layer, and reference numeral 413 denotes a magnetic recording medium.
 次にピラーAの反強磁性層を取り除きそれぞれのピラーに電極層を形成する工程を説明する。レジストをリフトオフした後、真空中で表面をミリング処理によって洗浄し、電極層を成膜する。電極層の上にレジストを塗装後、ピラーAと同一の形状にレジストが剥離されるパターンをリソグラフィー(フォトリソグラフィー、I線ステッパ、電子線リソグラフィー等)によって描画する。その後、イオンミリング装置によって、ミリング処理を施し、ピラーAの電極層、反強磁性層を取り除き、真空中で電極層をピラーAに成膜した。ピラー表面を洗浄後、第2の電極部509と第1の電極部510の形状をしたパターンをリソグラフィー(フォトリソグラフィー、I線ステッパ、電子線リソグラフィー等)によって描画する。その後、イオンミリング装置によって、ミリング処理を施し電極部509と510を形成した。電極部509は信号を引き出す為の引出線を形成する。レジストをリフトオフした後、第2の電極部509と第1の電極部510を電気的に遮断するために絶縁膜を全面に形成する。レジストを塗装後、第2の電極部509の形状にレジストが剥離するパターンをリソグラフィー(フォトリソグラフィー、I線ステッパ、電子線リソグラフィー等)によって描画した。イオンミリング装置によって第2の電極部509の形状に絶縁膜を取り除き、その後、電極層と上部磁気シールド層を成膜した。リソグラフィー法によって上部磁気シールド511の形状に描画し、イオンミリング装置によってミリング処理を施し上部磁気シールド511が形成された。なお、符号501は下部磁気シールド層、符号502は第1のバッファ層、符号503は第2のバッファ層、符号504は絶縁体下地層である。 Next, a process of removing the antiferromagnetic layer of the pillar A and forming an electrode layer on each pillar will be described. After the resist is lifted off, the surface is cleaned by a milling process in vacuum to form an electrode layer. After coating a resist on the electrode layer, a pattern in which the resist is peeled off in the same shape as the pillar A is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.). Thereafter, milling was performed by an ion milling apparatus, the electrode layer and the antiferromagnetic layer of the pillar A were removed, and the electrode layer was formed on the pillar A in a vacuum. After cleaning the pillar surface, a pattern having the shape of the second electrode portion 509 and the first electrode portion 510 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.). Thereafter, milling was performed by an ion milling apparatus to form electrode portions 509 and 510. The electrode portion 509 forms a leader line for extracting a signal. After the resist is lifted off, an insulating film is formed over the entire surface in order to electrically cut off the second electrode portion 509 and the first electrode portion 510. After coating the resist, a pattern in which the resist peels into the shape of the second electrode portion 509 is drawn by lithography (photolithography, I-line stepper, electron beam lithography, etc.). The insulating film was removed in the shape of the second electrode portion 509 by an ion milling apparatus, and then an electrode layer and an upper magnetic shield layer were formed. An upper magnetic shield 511 was formed by drawing in the shape of the upper magnetic shield 511 by a lithography method and performing a milling process with an ion milling apparatus. Reference numeral 501 denotes a lower magnetic shield layer, reference numeral 502 denotes a first buffer layer, reference numeral 503 denotes a second buffer layer, and reference numeral 504 denotes an insulator underlayer.
 磁気記録媒体からの漏洩磁場の検出方法について説明する。磁気記録媒体512と反対側の非磁性細線部505の端点と上部磁気シールド511との間にピラーBを介して形成される回路に電流を流すと、磁気記録媒体512の漏洩磁場と強磁性自由層507bの磁化の向きとの相対角に応じて、下部磁気シールドと電極509の間の電圧変化が生じる。その電圧変化を信号として処理することで磁気記録媒体に書きこまれている情報を読み出す。 A method for detecting a leakage magnetic field from a magnetic recording medium will be described. When a current is passed through a circuit formed via the pillar B between the end point of the nonmagnetic thin wire portion 505 opposite to the magnetic recording medium 512 and the upper magnetic shield 511, the leakage magnetic field of the magnetic recording medium 512 and ferromagnetic free The voltage change between the lower magnetic shield and the electrode 509 occurs according to the relative angle with the magnetization direction of the layer 507b. Information written on the magnetic recording medium is read by processing the voltage change as a signal.
 本実施例において、絶縁体下地層/非磁性層/絶縁体障壁層/強磁性層のすべての層の格子定数の不整合を3%以下とすることができた。こうすることによって、非磁性層の平坦性と結晶性を良くすることができるのでスピン拡散長を長くすることができ、絶縁体障壁層の結晶性を良くすることができるので、強磁性層から絶縁体層を介して非磁性層にスピン注入する際のスピン注入効率を高めることができる。本実施例による素子を評価した結果、従来の構造と比べて出力信号が2倍程向上した。これにより、Tbit/inch級の記録密度に対応した再生ヘッドを実現することができる。 In this example, the lattice constant mismatch of all layers of the insulator underlayer / nonmagnetic layer / insulator barrier layer / ferromagnetic layer could be reduced to 3% or less. By doing so, the flatness and crystallinity of the nonmagnetic layer can be improved, so that the spin diffusion length can be increased, and the crystallinity of the insulator barrier layer can be improved. The spin injection efficiency when spin-injecting into the nonmagnetic layer through the insulator layer can be increased. As a result of evaluating the device according to this example, the output signal was improved by about twice as compared with the conventional structure. As a result, it is possible to realize a reproducing head corresponding to a recording density of Tbit / inch 2 class.
 実施例3では、非磁性層にAgを用いたが、V、Mg、Pd、Rhを用いてもMgO上にエピタキシャルに成長するため同様の効果が得られる。特に格子定数の不整合が3%以下であるAg、V、Mgを用いることが望ましい。また障壁層としては、MgO、MgZnO、FeVAl、MgAl、Geを用いることができ、絶縁体下地層の構造により、岩塩構造、フルホイスラ構造、スピネル構造のいずれかをとる。強磁性層に、CoFe、Fe、Ni、NiFe、CoFeBの少なくとも1種を用いても良い。 In Example 3, Ag was used for the nonmagnetic layer. However, even if V, Mg, Pd, or Rh is used, the same effect can be obtained because it grows epitaxially on MgO. In particular, it is desirable to use Ag, V, or Mg having a lattice constant mismatch of 3% or less. As the barrier layer, MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge can be used, and a rock salt structure, a full whistler structure, or a spinel structure is adopted depending on the structure of the insulator underlayer. For the ferromagnetic layer, at least one of CoFe, Fe, Ni, NiFe, and CoFeB may be used.
 以上、本実施例によれば、実施例2と同様の効果が得られる。また、強磁性固定層の上部に反強磁性層を配置することにより、平行、反平行時の抵抗変化を大きくできる。 As described above, according to the present embodiment, the same effects as those of the second embodiment can be obtained. Further, by arranging the antiferromagnetic layer above the ferromagnetic pinned layer, the resistance change in parallel and antiparallel can be increased.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101:熱酸化Si基板、102:バッファ層、103:絶縁体下地層、104:非磁性層、105:障壁層、106a:第1の強磁性層、106b:第2の強磁性層、107a:第1の電極部、107b:第2の電極部、108a:第3の電極部、108b:第4電極部、111:磁気記録媒体、201:下部磁気シールド層、202:第1のバッファ層、203:第2のバッファ層、204:絶縁体下地層、205:非磁性層、206a:第1の障壁層、206b:第2の障壁層、207a:第1の強磁性層、207b:第2の強磁性層、208:第一の電極部、209:第二の電極部、210:上部磁気シールド層、211:磁気記録媒体、301:下部磁気シールド層、302:第1のバッファ層、303:第2のバッファ層、304:絶縁体下地層、305:非磁性層、306a:第1の障壁層、306b:第2の障壁層、307a:第1の強磁性層、307b:第2の強磁性層、308:第1の電極部、309:第2の電極部、310:上部磁気シールド層、311:磁気記録媒体、401:下部磁気シールド層、402:第1のバッファ層、403:第2のバッファ層、405:非磁性層、406a:第1の障壁層、406b:第2の障壁層、407a:第1の強磁性層、407b:第2の強磁性層、408:反強磁性層、409:第1の電極部、410:第2の電極部、411:上部磁気シールド層、412:磁気記録媒体、501:下部磁気シールド層、502:第1のバッファ層、503:第2のバッファ層、505:非磁性層、506a:第1の障壁層、506b:第2の障壁層、507a:第1の強磁性層、507b:第2の強磁性層、508:反強磁性層、509:第2の電極部、510:第1の電極部、511:上部磁気シールド層、512:磁気記録媒体、1000:多層膜、1002:非磁性細線、1003:レジスト、1004:絶縁体層、1005:ピラー、1006:レジスト、1007:金属電極層、1008:レジスト、1009:配線、1010:配線、1011:レジスト、1012:金属電極層、1013:電極、1014:電極、1015:電極、1016:電極、2001:多層膜、2002:非磁性細線、2003:絶縁保護膜、2004:レジスト、2005:レジスト、2006:ピラー、2007:電極層、2008:レジスト、2009:電極部、2010:レジスト、2011:絶縁膜、2012:電極部、2013:電極層、2014:レジスト、2015:上部シールド層。 101: thermally oxidized Si substrate, 102: buffer layer, 103: insulator underlayer, 104: nonmagnetic layer, 105: barrier layer, 106a: first ferromagnetic layer, 106b: second ferromagnetic layer, 107a: 1st electrode part, 107b: 2nd electrode part, 108a: 3rd electrode part, 108b: 4th electrode part, 111: Magnetic recording medium, 201: Lower magnetic shield layer, 202: 1st buffer layer, 203: second buffer layer, 204: insulator underlayer, 205: nonmagnetic layer, 206a: first barrier layer, 206b: second barrier layer, 207a: first ferromagnetic layer, 207b: second , 208: first electrode portion, 209: second electrode portion, 210: upper magnetic shield layer, 211: magnetic recording medium, 301: lower magnetic shield layer, 302: first buffer layer, 303 : Second buffer layer, 30 : Insulator underlayer, 305: nonmagnetic layer, 306a: first barrier layer, 306b: second barrier layer, 307a: first ferromagnetic layer, 307b: second ferromagnetic layer, 308: first 309: second electrode part, 310: upper magnetic shield layer, 311: magnetic recording medium, 401: lower magnetic shield layer, 402: first buffer layer, 403: second buffer layer, 405: Nonmagnetic layer, 406a: first barrier layer, 406b: second barrier layer, 407a: first ferromagnetic layer, 407b: second ferromagnetic layer, 408: antiferromagnetic layer, 409: first Electrode unit, 410: second electrode unit, 411: upper magnetic shield layer, 412: magnetic recording medium, 501: lower magnetic shield layer, 502: first buffer layer, 503: second buffer layer, 505: non-magnetic Magnetic layer, 506a: first barrier layer, 5 6b: second barrier layer, 507a: first ferromagnetic layer, 507b: second ferromagnetic layer, 508: antiferromagnetic layer, 509: second electrode portion, 510: first electrode portion, 511 : Upper magnetic shield layer, 512: magnetic recording medium, 1000: multilayer film, 1002: nonmagnetic fine wire, 1003: resist, 1004: insulator layer, 1005: pillar, 1006: resist, 1007: metal electrode layer, 1008: resist , 1009: wiring, 1010: wiring, 1011: resist, 1012: metal electrode layer, 1013: electrode, 1014: electrode, 1015: electrode, 1016: electrode, 2001: multilayer film, 2002: non-magnetic thin wire, 2003: insulation protection Film: 2004: Resist, 2005: Resist, 2006: Pillar, 2007: Electrode layer, 2008: Resist, 2009: Electrode part, 201 0: resist, 2011: insulating film, 2012: electrode portion, 2013: electrode layer, 2014: resist, 2015: upper shield layer.

Claims (22)

  1.  絶縁体下地層と、
      前記絶縁体下地層上に配置された非磁性体からなる非磁性細線と、
      前記非磁性細線の第1領域上に配置され、障壁層と強磁性層と電極部とが順次積層された柱状構造の第1の素子部と、
      前記非磁性細線の前記第1領域とは異なる第2領域上に配置され、障壁層と強磁性層と電極部とが順次積層された柱状構造の第2の素子部とを有し、
      前記非磁性細線の一端と前記第1の素子部は電流供給回路の一部をなし、
      前記非磁性細線の他端と前記第2の素子部は電圧測定回路の一部をなしており、
      前記非磁性細線は、体心立方格子あるいは面心立方格子の結晶構造をとり、
      絶縁体下地層と前記非磁性細線と前記障壁層はすべて同一の面方位をとった結晶質であり、
      前記電圧測定回路の電圧変化をもって、外部磁場の変化を検出する機能を有することを特徴とする磁気再生ヘッド。
    An insulator underlayer;
    A nonmagnetic thin wire made of a nonmagnetic material disposed on the insulator underlayer;
    A first element portion having a columnar structure, which is disposed on the first region of the non-magnetic thin wire and in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked;
    A second element portion having a columnar structure, which is disposed on a second region different from the first region of the nonmagnetic thin wire, and in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked;
    One end of the non-magnetic thin wire and the first element part form a part of a current supply circuit,
    The other end of the nonmagnetic thin wire and the second element portion form part of a voltage measurement circuit,
    The nonmagnetic fine wire has a body-centered cubic lattice or a face-centered cubic lattice crystal structure,
    The insulator underlayer, the nonmagnetic fine wire, and the barrier layer are all crystalline having the same plane orientation,
    A magnetic reproducing head having a function of detecting a change in an external magnetic field with a voltage change of the voltage measuring circuit.
  2.  請求項1記載の磁気再生ヘッドにおいて、
      前記第1の素子部は、前記第2の素子部より検出される前記外部磁場の磁場発生源から遠くに配置されることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic read head according to claim 1, wherein the first element unit is disposed far from a magnetic field generation source of the external magnetic field detected by the second element unit.
  3.  請求項1記載の磁気再生ヘッドにおいて、
      前記絶縁体下地層は、(001)方向の面方位を持つことを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    2. The magnetic reproducing head according to claim 1, wherein the insulator underlayer has a (001) plane orientation.
  4.  請求項1記載の磁気再生ヘッドにおいて、
      前記絶縁体下地層を構成する材料は、MgOからなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic reproducing head according to claim 1, wherein the material constituting the insulator underlayer is made of MgO.
  5.  請求項1記載の磁気再生ヘッドにおいて、
      前記障壁層は、岩塩構造、フルホイスラ構造、スピネル構造のいずれかをとっていることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic reproducing head according to claim 1, wherein the barrier layer has a rock salt structure, a full whistler structure, or a spinel structure.
  6.  請求項1記載の磁気再生ヘッドにおいて、
      前記障壁層を構成する材料は、MgO、MgZnO、FeVAl、MgAl、Geの少なくとも一種類からなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic read head according to claim 1, wherein the material constituting the barrier layer is at least one of MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge.
  7.  請求項1記載の磁気再生ヘッドにおいて、
      前記非磁性細線を構成する材料は、V、Ag、Mg、Pd、Rhのいずれかからなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic read head according to claim 1, wherein the material constituting the nonmagnetic fine wire is any one of V, Ag, Mg, Pd, and Rh.
  8.  請求項1記載の磁気再生ヘッドにおいて、
      前記強磁性層を構成する材料が、Fe、Ni、NiFe、CoFe、CoFeBの少なくとも一種類からなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    2. A magnetic reproducing head according to claim 1, wherein the ferromagnetic layer is made of at least one of Fe, Ni, NiFe, CoFe, and CoFeB.
  9.  請求項1記載の磁気再生ヘッドにおいて、
      前記第1の素子部における強磁性層の体積が、前記第2の素子部における強磁性層の体積より大きいことを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    The magnetic read head according to claim 1, wherein the volume of the ferromagnetic layer in the first element portion is larger than the volume of the ferromagnetic layer in the second element portion.
  10.  請求項1記載の磁気再生ヘッドにおいて、
      2枚の並行する上部及び下部強磁性体磁気シールド層と、
      前記下部磁気シールド層上に順次積層された第一のバッファ層、第二のバッファ層、絶縁体下地層と、
      前記絶縁体下地層上に配置された非磁性体からなる非磁性細線と、
      前記非磁性細線上の第1の領域に配置され、障壁層、強磁性層、電極部が順次積層された柱状構造の第1の素子部と、
      前記非磁性細線の前記第1の領域とは異なる第2の領域に配置され、障壁層、強磁性層、電極部が順次積層された柱状構造の第2の素子部を有し、
      非磁性細線は体心立方格子あるいは面心立方格子の構造をとり、
      前記絶縁体下地層と前記非磁性細線と前記障壁層はすべて同一の面方位をとった結晶質であり、
      前記第1の素子部の電極部は前記上部磁気シールド層と結線されており、
      第2の素子部の電極部は前記上部磁気シールド層と絶縁がなされており、
      前記非磁性細線の一端から前記第1の素子部を介して前記上部磁気シールド層までの部位は電流供給回路の一部をなしており、
      前記非磁性細線の他端と前記第2の素子部は電圧測定回路の一部をなしており、
      前記電圧測定回路の電圧変化をもって、外部磁場の変化を検出する機能を有することを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 1.
    Two parallel upper and lower ferromagnetic magnetic shield layers;
    A first buffer layer, a second buffer layer, an insulator underlayer sequentially laminated on the lower magnetic shield layer;
    A nonmagnetic thin wire made of a nonmagnetic material disposed on the insulator underlayer;
    A first element portion having a columnar structure, which is disposed in a first region on the nonmagnetic thin wire and in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked;
    A second element portion having a columnar structure in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked, disposed in a second region different from the first region of the nonmagnetic thin wire;
    The nonmagnetic wire has a body-centered cubic lattice or a face-centered cubic lattice structure,
    The insulator underlayer, the nonmagnetic fine wire, and the barrier layer are all crystalline having the same plane orientation,
    The electrode part of the first element part is connected to the upper magnetic shield layer,
    The electrode part of the second element part is insulated from the upper magnetic shield layer,
    A portion from one end of the nonmagnetic thin wire to the upper magnetic shield layer through the first element portion forms a part of a current supply circuit,
    The other end of the nonmagnetic thin wire and the second element portion form part of a voltage measurement circuit,
    A magnetic reproducing head having a function of detecting a change in an external magnetic field with a voltage change of the voltage measuring circuit.
  11.  請求項10記載の磁気再生ヘッドにおいて、
      前記第一のバッファ層、前記第二のバッファ層はアモルファス形状をとり、一層もしくは多層からなる層構造を取ることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    3. The magnetic read head according to claim 1, wherein the first buffer layer and the second buffer layer are amorphous and have a single layer or a multilayer structure.
  12.  請求項11記載の磁気再生ヘッドにおいて、
      前記第一のバッファ層を構成する材料が、SiO、Alの少なくとも一種類から成ることを特徴とする磁気再生ヘッド。
    The magnetic reproducing head according to claim 11, wherein
    A magnetic reproducing head characterized in that the material constituting the first buffer layer is made of at least one of SiO 2 and Al 2 O 3 .
  13.  請求項11記載の磁気再生ヘッドにおいて、
      前記第二のバッファ層を構成する材料が、Ta、SiO、Alの少なくとも一種類から成る事を特徴とする磁気再生ヘッド。
    The magnetic reproducing head according to claim 11, wherein
    A magnetic reproducing head characterized in that the material constituting the second buffer layer comprises at least one of Ta, SiO 2 , and Al 2 O 3 .
  14.  請求項10記載の磁気再生ヘッドにおいて、
      前記第1の素子部における強磁性層の体積が、前記第2の素子部における強磁性層の体積より大きいことを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic read head according to claim 1, wherein the volume of the ferromagnetic layer in the first element portion is larger than the volume of the ferromagnetic layer in the second element portion.
  15.  請求項10記載の磁気再生ヘッドにおいて、
      前記第1の素子部が前記第2の素子部より検出される前記外部磁場の磁場発生源から遠くに配置されることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic read head according to claim 1, wherein the first element unit is arranged far from a magnetic field generation source of the external magnetic field detected by the second element unit.
  16.  請求項10記載の磁気再生ヘッドにおいて、
      前記絶縁体下地層が(001)方向の面方位を持つことを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic reproducing head characterized in that the insulator underlayer has a (001) plane orientation.
  17.  請求項10記載の磁気再生ヘッドにおいて、
      前記絶縁体下地層を構成する材料は、MgOからなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic reproducing head according to claim 1, wherein the material constituting the insulator underlayer is made of MgO.
  18.  請求項10記載の磁気再生ヘッドにおいて、
      前記障壁層は、岩塩構造、フルホイスラ構造、スピネル構造のいずれかをとっていることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic reproducing head according to claim 1, wherein the barrier layer has a rock salt structure, a full whistler structure, or a spinel structure.
  19.  請求項10記載の磁気再生ヘッドにおいて、
      前記障壁層を構成する材料は、MgO、MgZnO、FeVAl、MgAl、Geの少なくとも一種類からなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic read head according to claim 1, wherein the material constituting the barrier layer is at least one of MgO, MgZnO, Fe 2 VAl, MgAl 2 O 4 , and Ge.
  20.  請求項10記載の磁気再生ヘッドにおいて、
      前記非磁性細線を構成する材料は、V、Ag、Mg、Pd、Rhのいずれかからなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic reproducing head is characterized in that the material constituting the nonmagnetic fine wire is any one of V, Ag, Mg, Pd, and Rh.
  21.  請求項10記載の磁気再生ヘッドにおいて、
      前記強磁性層を構成する材料は、Fe、Ni、NiFe、CoFe、CoFeBの少なくとも一種類からなることを特徴とする磁気再生ヘッド。
    The magnetic read head according to claim 10.
    The magnetic read head according to claim 1, wherein the ferromagnetic layer is made of at least one of Fe, Ni, NiFe, CoFe, and CoFeB.
  22.  2枚の並行する上部及び下部強磁性体磁気シールド層と、
      前記下部磁気シールド層上に順次積層されたバッファ層、絶縁体下地層と、
      前記絶縁体下地層上に配置された非磁性体からなる非磁性細線と、
      前記非磁性細線上の第1の領域に配置され、障壁層、強磁性層、反強磁性層、電極部が順次積層された柱状構造の第1の素子部と、
      前記非磁性細線上の第1の領域とは異なる第2の領域に配置され、障壁層、強磁性層、電極部が順次積層された柱状構造の第2の素子部を有し、
      前記非磁性細線は体心立方格子あるいは面心立方格子の構造をとり、
      前記絶縁体下地層と前記非磁性細線と前記障壁層はすべて同一の面方位をとった結晶質であり、
      前記第1の素子部の電極部は上部磁気シールド層と結線されており、
      前記第2の素子部の電極部は上部磁気シールド層と絶縁がなされており、
      前記非磁性細線一端から前記第1の素子部を介して上部磁気シールド層までの部位は電流供給回路の一部をなし、
      前記非磁性細線の他端と前記第2の素子部は電圧測定回路の一部をなしており、
      前記電圧測定回路の電圧変化をもって、外部磁場の変化を検出する機能を有することを特徴とする磁気再生ヘッド。
    Two parallel upper and lower ferromagnetic magnetic shield layers;
    A buffer layer sequentially laminated on the lower magnetic shield layer, an insulator underlayer, and
    A nonmagnetic thin wire made of a nonmagnetic material disposed on the insulator underlayer;
    A first element portion having a columnar structure, which is disposed in a first region on the nonmagnetic thin wire and in which a barrier layer, a ferromagnetic layer, an antiferromagnetic layer, and an electrode portion are sequentially stacked;
    A second element portion having a columnar structure in which a barrier layer, a ferromagnetic layer, and an electrode portion are sequentially stacked, disposed in a second region different from the first region on the nonmagnetic thin wire;
    The nonmagnetic wire has a body-centered cubic lattice or a face-centered cubic lattice structure,
    The insulator underlayer, the nonmagnetic fine wire, and the barrier layer are all crystalline having the same plane orientation,
    The electrode part of the first element part is connected to the upper magnetic shield layer,
    The electrode part of the second element part is insulated from the upper magnetic shield layer,
    A portion from one end of the nonmagnetic thin wire to the upper magnetic shield layer through the first element portion forms a part of a current supply circuit,
    The other end of the nonmagnetic thin wire and the second element portion form part of a voltage measurement circuit,
    A magnetic reproducing head having a function of detecting a change in an external magnetic field with a voltage change of the voltage measuring circuit.
PCT/JP2011/056787 2011-03-22 2011-03-22 Magnetic reproducing head WO2012127606A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013505680A JP5624673B2 (en) 2011-03-22 2011-03-22 Magnetic read head
PCT/JP2011/056787 WO2012127606A1 (en) 2011-03-22 2011-03-22 Magnetic reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056787 WO2012127606A1 (en) 2011-03-22 2011-03-22 Magnetic reproducing head

Publications (1)

Publication Number Publication Date
WO2012127606A1 true WO2012127606A1 (en) 2012-09-27

Family

ID=46878802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056787 WO2012127606A1 (en) 2011-03-22 2011-03-22 Magnetic reproducing head

Country Status (2)

Country Link
JP (1) JP5624673B2 (en)
WO (1) WO2012127606A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147998A (en) * 2017-03-03 2018-09-20 Tdk株式会社 Magnetoresistance effect element
JP2018167557A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Laminate and thermoelectric conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303801A (en) * 2003-03-28 2004-10-28 Toshiba Corp Magnetic memory and its writing method therein
JP2007299467A (en) * 2006-04-28 2007-11-15 Hitachi Ltd Magnetic reproducing head
JP2008252037A (en) * 2007-03-30 2008-10-16 Toshiba Corp Magnetoresistive element, and magnetic memory
JP2011009531A (en) * 2009-06-26 2011-01-13 Tdk Corp Spin transport device
JP2011023729A (en) * 2009-07-17 2011-02-03 Magic Technologies Inc Mtj nanopillar structure and method for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303801A (en) * 2003-03-28 2004-10-28 Toshiba Corp Magnetic memory and its writing method therein
JP2007299467A (en) * 2006-04-28 2007-11-15 Hitachi Ltd Magnetic reproducing head
JP2008252037A (en) * 2007-03-30 2008-10-16 Toshiba Corp Magnetoresistive element, and magnetic memory
JP2011009531A (en) * 2009-06-26 2011-01-13 Tdk Corp Spin transport device
JP2011023729A (en) * 2009-07-17 2011-02-03 Magic Technologies Inc Mtj nanopillar structure and method for forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147998A (en) * 2017-03-03 2018-09-20 Tdk株式会社 Magnetoresistance effect element
JP2018167557A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Laminate and thermoelectric conversion element

Also Published As

Publication number Publication date
JPWO2012127606A1 (en) 2014-07-24
JP5624673B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
KR100917560B1 (en) Tunneling magnetoresistancetmr device, its manufacture mehtod, magnetic head and magnetic memory using tmr device
US7969692B2 (en) Magnetic reading head with first and second element units each including a ferromagnetic layer and each with a different spin-polarization
Childress et al. Magnetic recording read head sensor technology
US6353318B1 (en) Magnetoresistive sensor having hard biased current perpendicular to the plane sensor
US8437105B2 (en) Magnetic sensor with composite magnetic shield
US8379350B2 (en) CPP-type magnetoresistive element including spacer layer
US9437225B2 (en) Reader designs of shield to shield spacing improvement
JP4575396B2 (en) Magnetic head and magnetic recording / reproducing apparatus
JP2003264324A (en) Magnetic detecting element
US20110211272A1 (en) Magnetic field detecting device and methods of using the same
KR20080023619A (en) Tunnel magnetoresistive element and manufacturing method thereof
JP2010093157A (en) Magneto-resistance effect element, magnetic reproducing head, magnetoresistive device, and information storage device
JP2001006126A (en) Magneto-resistance effect head, magneto-resistance detection system incorporating the same, and magnetic storage system incorporating the same
JP2002280643A (en) Magnetic detection element and its manufacturing method
US6765767B2 (en) Magnetoresistive head on a side wall for increased recording densities
KR20000071790A (en) Magnetoresistive effect head and method for manufacturing same
US7336452B2 (en) Patterned exchange bias GMR using metallic buffer layer
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
JP2005109243A (en) Magnetoresistance effect element and magnetic head
JP5624673B2 (en) Magnetic read head
CN100367352C (en) Magnetoresistive head and magnetic recording-reproducing apparatus
JP2008227297A (en) Tunnel type magnetic detection element and its manufacturing method
JP2002329903A (en) Magnetism detecting element and method of manufacturing the same
JP2007164831A (en) Thin-film magnetic head and its manufacturing method
JPH1125428A (en) Magneto-resistance effect type head and its initialization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861681

Country of ref document: EP

Kind code of ref document: A1