WO2012127602A1 - Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method - Google Patents

Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method Download PDF

Info

Publication number
WO2012127602A1
WO2012127602A1 PCT/JP2011/056753 JP2011056753W WO2012127602A1 WO 2012127602 A1 WO2012127602 A1 WO 2012127602A1 JP 2011056753 W JP2011056753 W JP 2011056753W WO 2012127602 A1 WO2012127602 A1 WO 2012127602A1
Authority
WO
WIPO (PCT)
Prior art keywords
unevenness
measurement result
internal deformation
deformation detection
measurement
Prior art date
Application number
PCT/JP2011/056753
Other languages
French (fr)
Japanese (ja)
Inventor
満明 内間
秀樹 島村
山本 耕平
陽一 杉本
Original Assignee
株式会社パスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パスコ filed Critical 株式会社パスコ
Priority to PCT/JP2011/056753 priority Critical patent/WO2012127602A1/en
Publication of WO2012127602A1 publication Critical patent/WO2012127602A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0066Radiation pyrometry, e.g. infrared or optical thermometry for hot spots detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present invention relates to an internal deformation detection support device, an internal deformation detection support program, and an internal deformation detection support method.
  • the conventional technique has a problem that it cannot be identified whether the measured temperature distribution is based on internal deformation or surface irregularities.
  • An object of the present invention is to provide an internal deformation detection support device, an internal deformation detection support program, and an internal deformation detection support method that can identify temperature distribution based on surface irregularities and assist in detecting an internal deformation location. It is to provide.
  • a first embodiment of the present invention is an internal deformation detection support device, which measures unevenness on an object surface and measures the temperature of the object surface.
  • the image processing apparatus includes: association means for associating based on a measurement position with the unevenness measuring means; image display means for displaying the image data and unevenness data associated with the association means.
  • the internal deformation detection support device further receives a deformed portion receiving means for receiving a deformed portion in the input image of the infrared heat measurement result and the deformed portion receiving means. And an unevenness determining means for determining the size of the unevenness of the deformed portion.
  • the conversion means expresses the temperature level of the surface of the object by changing or the presence or absence of the density, color, figure, or pattern of the image.
  • the unevenness data is a numerical value of the difference between the concave portion and the convex portion, or a numerical value of the difference between the average value of the concave and convex portions and the convex portion.
  • the fifth embodiment is an internal deformation detection support program, in which a computer acquires unevenness measurement result acquisition means for acquiring the unevenness measurement result of the object surface, and acquires the measurement result of the temperature of the object surface.
  • Temperature measurement result acquisition means conversion means for converting the temperature measurement result into image data
  • association means for associating the image data and the data of the unevenness measurement result based on the temperature measurement position and the unevenness measurement position, the image It is made to function as an image display means which displays data and the data of the unevenness measurement result matched by the matching means.
  • the sixth embodiment is an internal deformation detection support method that acquires a measurement result of unevenness on the surface of an object, acquires a measurement result of a temperature of the object surface, and uses the temperature measurement result as image data.
  • the image data and the unevenness measurement result data are associated with each other based on the temperature measurement position and the unevenness measurement position, and the image data and the associated unevenness measurement result data are displayed. It is characterized by that.
  • the present invention it is possible to identify the temperature distribution based on the unevenness of the surface and assist the user in accurately detecting the internal deformation location.
  • FIG. 1 It is a figure which shows the example of the vehicle carrying the internal deformation detection assistance apparatus concerning embodiment. It is a figure which shows the example of the hardware constitutions of the computer which comprises the control apparatus shown by FIG. It is a functional block diagram of a control device concerning an embodiment. It is a figure which shows the example of the thermal image of the measurement result of the road surface temperature by an infrared heat measuring device. It is a figure which shows the example of the uneven
  • FIG. 1 shows an example of a vehicle equipped with the internal deformation detection support device according to the embodiment.
  • the internal deformation detection support device mounted on a vehicle 100 includes an infrared heat measurement device 10, a laser scanner 12, a coordinate measurement device 14, a distance generation unit 15, and a control device 16.
  • the infrared heat measuring device 10 includes an infrared camera, and measures the temperature of the surface of an object such as a road surface or a building wall.
  • an object such as a road surface or a building wall.
  • a deformation such as a crack, a gap, or a separation occurs inside the object that changes the object from the original state
  • the components of the object such as asphalt and the air inside the crack Due to the different heat capacities, when heated by sunlight or cooled by cold air at night, the surface of the target object is different between the part where the internal deformation is present and the part where the deformation is not present.
  • the temperature is different and a temperature distribution occurs.
  • the surface temperature of the portion where the deformation is present is higher during the day than the portion where the deformation is not present, and the temperature is low at night.
  • the heat capacity of the water is large.
  • the surface temperature of the part where the deformation exists is lower than the part where there is no change, and the temperature is higher at night.
  • the surface temperature of the object is measured by the infrared heat measuring device 10. By doing so, the occurrence of internal deformation can be detected.
  • the infrared camera preferably uses intermediate infrared light having a wavelength of 3 to 8 ⁇ m. This is because the sensitivity can be improved by using infrared rays in the above wavelength range, and the resolution can be improved by increasing the shutter speed by the electronic shutter method. Further, in order to avoid noise caused by reflection of sunlight from the surface of the object, it is preferable that the infrared camera be photographed at a predetermined angle with respect to the object surface.
  • the laser scanner 12 is a device that measures the distance between each point on the surface of an object such as a road surface and itself, emits laser light to the surface of the object, receives a reflected wave from the surface of the object, and receives the surface of the object. It is the structure which detects the distance.
  • the laser scanner 12 measures the distance between each point on the surface of the object and itself, the laser scanner 12 scans with a laser beam in a direction orthogonal to the traveling direction of the vehicle, and the vehicle advances while repeating this. Then, the distance to itself is calculated for each point on the surface of the object from the data of the reflected wave obtained in this way.
  • the unevenness of the surface of the object can be known from the change in the distance between each point on the surface of the object thus obtained and the laser scanner 12. Although it is affected by weather conditions (sunlight irradiation angle, temperature, etc.) and object conditions (surface area, thickness, etc.), in general, if the unevenness of the surface of the object is large, compared to the flat part in the daytime due to sunlight irradiation
  • the temperature distribution on the surface of the object due to the unevenness is due to the fact that the temperature of the convex part tends to rise and the heat dissipation becomes large at night and the temperature of the uneven part tends to decrease compared to the flat part. appear.
  • the unevenness on the surface of the object is measured by the laser scanner 12, and the temperature distribution caused by the unevenness included in the temperature distribution on the surface of the object measured by the infrared heat measurement apparatus 10 is identified. Deformation can be detected accurately.
  • the coordinate measuring device 14 includes a GPS (Global Positioning System) receiver, and measures coordinate values (for example, longitude, latitude, altitude) of measurement positions of the infrared thermal measurement device 10 and the laser scanner 12. Note that the coordinate measuring device 14 preferably includes a gyro for complementing the GPS data.
  • GPS Global Positioning System
  • the distance generating means 15 generates a pulse signal for each predetermined traveling distance of the vehicle.
  • the infrared heat measuring device 10 and the laser scanner 12 are configured to perform respective measurements in synchronization with the pulse signal generated by the distance generating means 15.
  • the coordinate measuring device 14 also measures coordinate values in synchronization with the pulse signal. With such a configuration, even if the vehicle speed of the vehicle 100 according to the present embodiment fluctuates, the infrared heat measurement device 10 and the laser scanner 12 can always perform measurements at constant distance intervals.
  • the distance generating means 15 for example, a non-contact type speed / distance meter using the principle of a spatial filter can be used.
  • the control device 16 is configured by an appropriate computer and performs imaging of the measurement result of the infrared heat measurement device 10.
  • the control device 16 may be configured not to be mounted on the vehicle 100 but to acquire measurement data of the infrared heat measurement device 10 and the laser scanner 12 via an appropriate communication unit or storage medium. Further, the infrared heat measurement device 10 and the laser scanner 12 may be mounted on different vehicles, and the control device 16 may integrate the measurement data later.
  • FIG. 2 shows an example of a hardware configuration of a computer constituting the control device 16 shown in FIG.
  • the control device 16 includes a central processing unit (for example, a CPU such as a microprocessor can be used) 18, a random access memory (RAM) 20, a read-only memory (ROM) 22, an input device 24, a display device. 26, a communication device 28, and a storage device 30, and these components are connected to each other by a bus 32.
  • the input device 24, the display device 26, the communication device 28, and the storage device 30 are each connected to the bus 32 via the input / output interface 34.
  • the CPU 18 controls the operation of each unit described later based on a control program stored in the RAM 20 or the ROM 22.
  • the RAM 20 mainly functions as a work area for the CPU 18, and the ROM 22 stores a control program such as BIOS and other data used by the CPU 18.
  • the input device 24 includes a keyboard, a pointing device, and the like, and is used by a user to input operation instructions and the like.
  • the display device 26 is composed of a liquid crystal display or the like, and displays an image or the like of the measurement result of the infrared heat measurement device 10.
  • the display device 26 may be provided in another computer or the like.
  • the communication device 28 includes a USB (Universal Serial Bus) port, a network port, and other appropriate interfaces, and is used by the CPU 18 to exchange data with an external device via a communication means such as a network. Further, the measurement results of the infrared heat measurement device 10 and the laser scanner 12 may be transmitted to an external device via the communication device 28.
  • USB Universal Serial Bus
  • the storage device 30 is a storage device such as a hard disk, and stores various data necessary for processing to be described later.
  • the storage device 30 can be a digital versatile disk (DVD), a compact disk (CD), a magneto-optical disk (MO), a flexible disk (FD), a magnetic tape, an electrical erasure, and an erasable and rewritable instead of a hard disk.
  • DVD digital versatile disk
  • CD compact disk
  • MO magneto-optical disk
  • FD flexible disk
  • magnetic tape an electrical erasure
  • EEPROM read-only memory
  • flash memory or the like may be used.
  • FIG. 3 shows a functional block diagram of the control device 16 according to the embodiment.
  • the control device 16 includes a measurement result acquisition unit 36, a conversion unit 38, an association unit 40, a deformed part reception unit 42, an unevenness determination unit 44, a display control unit 46, and a communication unit 48. These functions are realized by, for example, the CPU 18 and a program for controlling the processing operation of the CPU 18.
  • the measurement result acquisition unit 36 acquires the measurement results of the infrared heat measurement device 10, the laser scanner 12, and the coordinate measurement device 14. The acquired measurement result is output to the conversion unit 38, the association unit 40, and the unevenness determination unit 44.
  • the conversion unit 38 converts the measurement result of the infrared heat measurement device 10 into image data (thermal image).
  • image data thermal image
  • the level of the temperature of the object surface which is a measurement result of the infrared heat measurement apparatus 10
  • the conversion unit 38 may convert the height data of the unevenness from the measurement result of the laser scanner 12 into an image of a projection such as a quadrangular prism or a cylinder.
  • the height data of the unevenness is made to correspond to the height of the protrusion.
  • the associating unit 40 includes the infrared thermal measurement device 10 and the laser in which the coordinate measurement device 14 measures the thermal image that is the result of the conversion process of the conversion unit 38 and the unevenness data of the object surface that is the measurement result of the laser scanner 12.
  • the correspondence is made based on the coordinate value of the measurement position of the scanner 12.
  • the relative position between the GPS receiver constituting the coordinate measuring device 14, the infrared heat measuring device 10 and the laser scanner 12, and the measurement direction of the infrared heat measuring device 10 and the laser scanner 12 (the shooting direction of the infrared camera and the laser scanner 12).
  • the coordinate value of the surface of the object measured by the infrared thermal measurement device 10 and the laser scanner 12 can be determined based on the laser irradiation direction).
  • the associating unit 40 performs asperity data associating processing for each pixel of the thermal image or for each predetermined range composed of a plurality of pixels according to the determined coordinate value of the object surface. Or you may match the said uneven
  • the deformed portion receiving unit 42 It is received as a deformed portion in the thermal image of the infrared thermal measurement result converted by the conversion unit 38.
  • the unevenness determination unit 44 determines the size of the unevenness of the deformed portion received by the deformed portion reception unit 42 based on the measurement result of the laser scanner 12.
  • the conversion unit 38 converts the measurement result of the infrared heat measurement device 10 based on the numerical value of the difference between the concave portion and the convex portion, or the numerical value of the difference between the average value of the concave and convex portions and the convex portion, and a preset threshold value.
  • the size of the unevenness is determined to be large, medium, or small for each pixel or a plurality of pixels of the thermal image obtained as described above. In this case, the correspondence between the measurement result of the laser scanner 12 and the pixel of the thermal image can be determined by the association unit 40.
  • the user determines that the irregularity of the portion designated as the deformed portion is “small”, and determines that the portion is not internally deformed when “large”, In the case of “medium”, it is possible to easily make a judgment such as conducting a more precise investigation.
  • the display control unit 46 causes the display device 26 to display the thermal image of the conversion result of the conversion unit 38.
  • a line drawing such as a circle surrounding the deformed portion received by the deformed portion receiving unit 42 and information on the size of the concavities and convexities determined by the concavity and convexity determining unit 44 (large, medium and small display or projection image) are also displayed. 26 is preferable.
  • the communication unit 48 exchanges the measurement results of the infrared heat measurement device 10, the laser scanner 12, and the coordinate measurement device 14, the processing results of the control device 16, and the like with an external device via the communication device 28.
  • FIG. 4 (a), (b), and (c) show examples of thermal images of road surface temperature measurement results by the infrared thermal measurement device 10.
  • FIG. 4 (a) shows the daytime measurement results of three locations on the road
  • FIG. 4 (a) is an example where the unevenness of the road surface is large and a temperature distribution based on the unevenness occurs.
  • 4 (b) and 4 (c) are examples in which the unevenness of the road surface is small
  • FIG. 4 (b) is an example in which a temperature distribution based on the air gap inside the road is generated
  • FIG. This is an example in which a temperature distribution based on stagnant water is generated.
  • 4A, 4 ⁇ / b> B, and 4 ⁇ / b> C the higher the temperature due to the processing of the conversion unit 38, the more white the image is displayed.
  • the high temperature part is only displayed in white and the low temperature part is only displayed in black. It is impossible to distinguish between the temperature distribution on the road surface due to the unevenness and the temperature distribution based on the internal deformation. Therefore, in the present embodiment, based on the measurement result of the laser scanner 12, information regarding road surface unevenness is displayed together with the thermal image.
  • the location indicated by the arrow I in FIG. 4A is a convex portion and the temperature is high. Therefore, the numerical value of the unevenness is displayed at the location of the convex portion indicated by the arrow I or the location where the letter “I” is written.
  • the display control unit 46 calculates the numerical value of the difference between the concave portion and the convex portion, or the difference between the average value of the concave and convex portions and the difference between the convex portions based on the pixel of the thermal image and the road surface unevenness data associated with the association unit 40. Numerical values and the like can be displayed.
  • the unevenness height data may be displayed as protrusions for each pixel, and the unevenness of the road surface may be visually displayed.
  • 5 (a) and 5 (b) show a concavo-convex image (a) representing the measurement result of the laser scanner 12 and a thermal image of the road surface temperature measurement result by the infrared thermal measurement device 10 that captures a portion corresponding to a part thereof.
  • An example of b) is shown.
  • These images are associated by the association unit 40.
  • 5A and 5B the locations indicated by the arrows A correspond to each other and are convex portions.
  • the road surface unevenness image illustrated in FIG. 5A is displayed as an image different from the thermal image in FIG.
  • a projection corresponding to a numerical value such as a difference between a concave portion and a convex portion or height data of the concave and convex portions may be displayed together with the concave and convex image.
  • the deformed portion receiving unit 42 receives the deformed portion specified by the user using the input device 24, and the size of the unevenness determined by the unevenness determining unit 44 is, for example, “large”, “medium”, “small”, or the like. May be displayed at the location indicated by the arrow I or at the location where the “I” character is written.
  • the deformation inside the object can be identified based on the measurement result of the laser scanner 12. . That is, the user excludes a portion having large unevenness as shown in FIG. 4A from the thermal image, and detects only the portions shown in FIGS. 4B and 4C having small unevenness as internal deformed portions. be able to.
  • FIG. 4B is a temperature distribution based on the space inside the road, and the temperature of the road surface corresponding to the space indicated by the arrow II is high (displayed in white).
  • FIG. 4C shows a temperature distribution based on the water stagnating inside the road, and the temperature of the road surface corresponding to the water stagnating point indicated by the arrow III is low (displayed in black).
  • FIG. 6 shows a flow of an operation example of the internal deformation detection support apparatus according to the embodiment.
  • the measurement result acquisition part 36 acquires the measurement result of the laser scanner 12 (S1). Moreover, the measurement result acquisition part 36 also acquires the measurement result of the infrared thermal measurement apparatus 10 (S2).
  • the conversion unit 38 converts the measurement result of the infrared thermal measurement apparatus 10 acquired by the measurement result acquisition unit 36 into image data, and generates a thermal image (S3).
  • the associating unit 40 is a measurement result of the laser scanner 12 based on the coordinate values of the measurement positions of the infrared thermal measurement device 10 and the laser scanner 12 measured by the coordinate measurement device 14 for the thermal image generated by the conversion unit 38.
  • the unevenness data may be associated with each predetermined range consisting of each pixel or a plurality of pixels of the thermal image, or the unevenness is described for each thermal image acquired by one imaging of the infrared camera of the infrared thermal measurement device 10.
  • the data may be associated with the projection image converted by the conversion unit 38.
  • the display control unit 46 displays the thermal image and the uneven data corresponding thereto on the display device 26, and supports the user's internal deformation detection task by the user (S5).
  • the above-described program for executing each step of FIG. 6 can be stored in a recording medium, and the program may be provided by communication means.
  • the above-described program may be regarded as an invention of a “computer-readable recording medium on which a program is recorded” or an invention of a “data signal”.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

[Problem] To provide an internal deformation detection assistance device, an internal deformation detection assistance program, and an internal deformation detection assistance method capable of assisting the detection of the locations of internal deformations by identifying heat distribution on the basis of surface irregularities. [Solution] When a measurement result acquisition unit (36) obtains measurement results from a laser scanner and an infrared heat measurement device, a conversion unit (38) converts the measurement result obtained by the measurement result acquisition unit (36) from the infrared heat measurement device into image data and generates a thermal image. On the basis of measurement position coordinate values of the infrared heat measurement device and the laser scanner as measured by a coordinate measurement device, a mapping unit (40) maps the thermal image generated by the conversion unit (38) to the irregularity data of the measurement results from the laser scanner. A display control unit (46) displays the thermal image and the corresponding irregularity data, assisting the user to inspect for internal deformations in the object under inspection.

Description

内部変状検出支援装置、内部変状検出支援プログラム及び内部変状検出支援方法Internal change detection support device, internal change detection support program, and internal change detection support method
 本発明は、内部変状検出支援装置、内部変状検出支援プログラム及び内部変状検出支援方法に関する。 The present invention relates to an internal deformation detection support device, an internal deformation detection support program, and an internal deformation detection support method.
 従来、赤外線カメラにより道路等の構造物の表面の温度分布を計測し、この温度分布に基づいて道路等の内部の亀裂、剥離等の異常点(変状)を検出する技術が提案されている(例えば、下記特許文献1)。これは、内部の変状箇所の表面温度が、健全部の表面温度よりも高くなる、あるいは低くなることを利用して内部変状をとらえるものである。 Conventionally, a technique has been proposed in which the temperature distribution of the surface of a structure such as a road is measured with an infrared camera, and abnormal points (deformations) such as cracks and separation inside the road are detected based on this temperature distribution. (For example, the following patent document 1). This is to capture the internal deformation by utilizing the fact that the surface temperature of the internal deformation portion is higher or lower than the surface temperature of the healthy part.
特開平11-337493号公報JP 11-337493 A
 しかし、一般に道路等の構造物の表面に凹凸がある場合にも、表面に温度分布が発生する。従って、上記従来の技術においては、計測した温度分布が内部変状に基づくものであるか、表面の凹凸に基づくものであるかを識別することができないという問題があった。 However, in general, even when the surface of a structure such as a road is uneven, a temperature distribution is generated on the surface. Therefore, the conventional technique has a problem that it cannot be identified whether the measured temperature distribution is based on internal deformation or surface irregularities.
 本発明の目的は、表面の凹凸に基づく温度分布を識別して、内部変状箇所を検出することを支援できる内部変状検出支援装置、内部変状検出支援プログラム及び内部変状検出支援方法を提供することにある。 An object of the present invention is to provide an internal deformation detection support device, an internal deformation detection support program, and an internal deformation detection support method that can identify temperature distribution based on surface irregularities and assist in detecting an internal deformation location. It is to provide.
 上記目的を達成するために、本発明の第1の実施形態は、内部変状検出支援装置であって、対象物表面の凹凸を計測するための凹凸計測手段と、対象物表面の温度を計測するための赤外線熱計測手段と、前記赤外線熱計測手段の計測結果を画像データに変換する変換手段と、前記画像データと前記凹凸計測手段が計測した凹凸のデータとを、前記赤外線熱計測手段と凹凸計測手段との計測位置に基づいて対応付ける対応付け手段と、前記画像データと、前記対応付け手段により対応付けされた凹凸のデータとを表示する画像表示手段と、を備えることを特徴とする。 In order to achieve the above object, a first embodiment of the present invention is an internal deformation detection support device, which measures unevenness on an object surface and measures the temperature of the object surface. Infrared heat measurement means for converting, conversion means for converting the measurement result of the infrared heat measurement means into image data, the image data and unevenness data measured by the unevenness measurement means, the infrared heat measurement means The image processing apparatus includes: association means for associating based on a measurement position with the unevenness measuring means; image display means for displaying the image data and unevenness data associated with the association means.
 また、第2の実施形態は、上記内部変状検出支援装置が、さらに入力された前記赤外線熱計測結果の画像における変状箇所を受け付ける変状箇所受付手段と、前記変状箇所受付手段が受け付けた変状箇所の凹凸の大きさを判定する凹凸判定手段と、を備えることを特徴とする。 In the second embodiment, the internal deformation detection support device further receives a deformed portion receiving means for receiving a deformed portion in the input image of the infrared heat measurement result and the deformed portion receiving means. And an unevenness determining means for determining the size of the unevenness of the deformed portion.
 また、第3の実施形態は、上記内部変状検出支援装置において、前記変換手段が、対象物表面の温度の高低を、画像の濃度、色、図形、模様の変更または有無により表現することを特徴とする。 According to a third embodiment, in the internal deformation detection support device, the conversion means expresses the temperature level of the surface of the object by changing or the presence or absence of the density, color, figure, or pattern of the image. Features.
 また、第4の実施形態は、上記内部変状検出支援装置において、前記凹凸のデータが、凹部と凸部の差の数値、または凹凸の平均値と凸部との差の数値であることを特徴とする。 Further, in the fourth embodiment, in the internal deformation detection support device, the unevenness data is a numerical value of the difference between the concave portion and the convex portion, or a numerical value of the difference between the average value of the concave and convex portions and the convex portion. Features.
 また、第5の実施形態は、内部変状検出支援プログラムであって、コンピュータを、対象物表面の凹凸の計測結果を取得する凹凸計測結果取得手段、対象物表面の温度の計測結果を取得する温度計測結果取得手段、前記温度計測結果を画像データに変換する変換手段、前記画像データと前記凹凸計測結果のデータとを、温度計測位置と凹凸計測位置とに基づいて対応付ける対応付け手段、前記画像データと、前記対応付け手段により対応付けされた凹凸計測結果のデータとを表示する画像表示手段、として機能させることを特徴とする。 Further, the fifth embodiment is an internal deformation detection support program, in which a computer acquires unevenness measurement result acquisition means for acquiring the unevenness measurement result of the object surface, and acquires the measurement result of the temperature of the object surface. Temperature measurement result acquisition means, conversion means for converting the temperature measurement result into image data, association means for associating the image data and the data of the unevenness measurement result based on the temperature measurement position and the unevenness measurement position, the image It is made to function as an image display means which displays data and the data of the unevenness measurement result matched by the matching means.
 また、第6の実施形態は、内部変状検出支援方法であって、対象物表面の凹凸の計測結果を取得し、対象物表面の温度の計測結果を取得し、前記温度計測結果を画像データに変換し、前記画像データと前記凹凸計測結果のデータとを、温度計測位置と凹凸計測位置とに基づいて対応付け、前記画像データと、前記対応付けされた凹凸計測結果のデータとを表示することを特徴とする。 In addition, the sixth embodiment is an internal deformation detection support method that acquires a measurement result of unevenness on the surface of an object, acquires a measurement result of a temperature of the object surface, and uses the temperature measurement result as image data. The image data and the unevenness measurement result data are associated with each other based on the temperature measurement position and the unevenness measurement position, and the image data and the associated unevenness measurement result data are displayed. It is characterized by that.
 本発明によれば、表面の凹凸に基づく温度分布を識別して、利用者が内部変状箇所を正確に検出することを支援できる。 According to the present invention, it is possible to identify the temperature distribution based on the unevenness of the surface and assist the user in accurately detecting the internal deformation location.
実施形態にかかる内部変状検出支援装置を搭載した車両の例を示す図である。It is a figure which shows the example of the vehicle carrying the internal deformation detection assistance apparatus concerning embodiment. 図1に示された制御装置を構成するコンピュータのハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of the computer which comprises the control apparatus shown by FIG. 実施形態にかかる制御装置の機能ブロック図である。It is a functional block diagram of a control device concerning an embodiment. 赤外線熱計測装置による路面温度の計測結果の熱画像の例を示す図である。It is a figure which shows the example of the thermal image of the measurement result of the road surface temperature by an infrared heat measuring device. レーザスキャナの計測結果を表す凹凸画像及び赤外線熱計測装置による路面温度の計測結果の熱画像の例を示す図である。It is a figure which shows the example of the uneven | corrugated image showing the measurement result of a laser scanner, and the thermal image of the measurement result of the road surface temperature by an infrared thermal measurement apparatus. 実施形態にかかる内部変状検出支援装置の動作例のフロー図である。It is a flowchart of the example of operation | movement of the internal deformation detection assistance apparatus concerning embodiment.
 以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
 図1には、実施形態にかかる内部変状検出支援装置を搭載した車両の例が示される。図1において、車両100に搭載された内部変状検出支援装置は、赤外線熱計測装置10、レーザスキャナ12、座標計測装置14、距離発生手段15及び制御装置16を含んで構成されている。 FIG. 1 shows an example of a vehicle equipped with the internal deformation detection support device according to the embodiment. In FIG. 1, the internal deformation detection support device mounted on a vehicle 100 includes an infrared heat measurement device 10, a laser scanner 12, a coordinate measurement device 14, a distance generation unit 15, and a control device 16.
 赤外線熱計測装置10は、赤外線カメラを含んで構成され、道路の路面、建造物の壁面等の対象物の表面の温度を計測する。一般に、対象物の内部に亀裂、空隙、剥離等の、対象物が当初の状態から変化した状態となる変状が発生すると、アスファルト等の対象物の構成要素と亀裂等の内部の空気とで熱容量が異なるため、太陽光で加熱され、あるいは夜間の冷気で冷却された場合に、上記内部の変状が存在している部分と変状が存在していない部分とで、対象物の表面の温度が異なり、温度分布が発生する。通常空気は対象物の構成要素より熱容量が小さいため、昼間は変状が存在していない部分より変状が存在している部分の表面温度が高温になり、夜間は低温になる。ただし、上記亀裂等の変状部分に雨水等が浸入し、内部滞水となっている場合には、水の熱容量が大きいので、空気の場合とは逆に、昼間は変状が存在していない部分より変状が存在している部分の表面温度が低温になり、夜間は高温になる。いずれの場合にも、内部に変状が存在している部分と存在していない部分とで対象物の表面に温度分布が発生するので、赤外線熱計測装置10により、対象物の表面温度を測定することにより、内部の変状の発生を検出することができる。なお、上記赤外線カメラは、波長が3~8μmの中間赤外線を使用するのが好適である。上記波長範囲の赤外線を使用することにより、感度を向上でき、また、電子シャッター方式によりシャッター速度を高速化して解像度を向上できるからである。また、赤外線カメラは、太陽光の対象物表面からの反射によるノイズをさけるため、対象物表面に対して所定角度傾けて撮影を行うのが好適である。 The infrared heat measuring device 10 includes an infrared camera, and measures the temperature of the surface of an object such as a road surface or a building wall. In general, when a deformation such as a crack, a gap, or a separation occurs inside the object that changes the object from the original state, the components of the object such as asphalt and the air inside the crack Due to the different heat capacities, when heated by sunlight or cooled by cold air at night, the surface of the target object is different between the part where the internal deformation is present and the part where the deformation is not present. The temperature is different and a temperature distribution occurs. Since air usually has a smaller heat capacity than components of the object, the surface temperature of the portion where the deformation is present is higher during the day than the portion where the deformation is not present, and the temperature is low at night. However, if rainwater or the like has entered the deformed part such as the above cracks and the water is stagnant, the heat capacity of the water is large. The surface temperature of the part where the deformation exists is lower than the part where there is no change, and the temperature is higher at night. In any case, since the temperature distribution is generated on the surface of the object in the portion where the deformation is present and the portion where the deformation is not present, the surface temperature of the object is measured by the infrared heat measuring device 10. By doing so, the occurrence of internal deformation can be detected. The infrared camera preferably uses intermediate infrared light having a wavelength of 3 to 8 μm. This is because the sensitivity can be improved by using infrared rays in the above wavelength range, and the resolution can be improved by increasing the shutter speed by the electronic shutter method. Further, in order to avoid noise caused by reflection of sunlight from the surface of the object, it is preferable that the infrared camera be photographed at a predetermined angle with respect to the object surface.
 レーザスキャナ12は、路面等の対象物表面上の各点と自分との距離を測定する装置であり、対象物表面にレーザ光を発射し、対象物表面からの反射波を受け取って対象物表面との距離を検出する構成となっている。レーザスキャナ12が対象物表面上の各点と自分との距離を測定する際には、レーザスキャナ12が車両の進行方向に直交する方向にレーザ光によるスキャンを行い、これを繰り返しながら車両を進行させ、これによって得られた反射波のデータから対象物表面上の地点ごとに自分との距離を演算する。このようにして得た対象物表面上の各点とレーザスキャナ12との距離の変化により、対象物表面の凹凸を知ることができる。気象条件(太陽光照射角度、気温等)や対象物条件(表面積、厚み等)に影響されるが、一般に、対象物表面の凹凸が大きいと、太陽光の照射により昼間に平坦部に比べて凸部の温度が上昇しやすく、夜間には放熱が大きくなって平坦部に比べて凹凸部の温度が下降しやすい傾向にある等の理由により、凹凸に起因して対象物表面に温度分布が発生する。本実施形態では、レーザスキャナ12により対象物表面の凹凸を計測し、赤外線熱計測装置10により計測した対象物表面の温度分布に含まれる、上記凹凸に起因した温度分布を識別することにより、内部変状を正確に検出することができる。 The laser scanner 12 is a device that measures the distance between each point on the surface of an object such as a road surface and itself, emits laser light to the surface of the object, receives a reflected wave from the surface of the object, and receives the surface of the object. It is the structure which detects the distance. When the laser scanner 12 measures the distance between each point on the surface of the object and itself, the laser scanner 12 scans with a laser beam in a direction orthogonal to the traveling direction of the vehicle, and the vehicle advances while repeating this. Then, the distance to itself is calculated for each point on the surface of the object from the data of the reflected wave obtained in this way. The unevenness of the surface of the object can be known from the change in the distance between each point on the surface of the object thus obtained and the laser scanner 12. Although it is affected by weather conditions (sunlight irradiation angle, temperature, etc.) and object conditions (surface area, thickness, etc.), in general, if the unevenness of the surface of the object is large, compared to the flat part in the daytime due to sunlight irradiation The temperature distribution on the surface of the object due to the unevenness is due to the fact that the temperature of the convex part tends to rise and the heat dissipation becomes large at night and the temperature of the uneven part tends to decrease compared to the flat part. appear. In the present embodiment, the unevenness on the surface of the object is measured by the laser scanner 12, and the temperature distribution caused by the unevenness included in the temperature distribution on the surface of the object measured by the infrared heat measurement apparatus 10 is identified. Deformation can be detected accurately.
 座標計測装置14は、GPS(全地球測位システム)受信機を含んで構成され、赤外線熱計測装置10、レーザスキャナ12の計測位置の座標値(例えば、経度、緯度、標高)を計測する。なお、座標計測装置14は、GPSデータを補完するためのジャイロ等を備えているのが好適である。 The coordinate measuring device 14 includes a GPS (Global Positioning System) receiver, and measures coordinate values (for example, longitude, latitude, altitude) of measurement positions of the infrared thermal measurement device 10 and the laser scanner 12. Note that the coordinate measuring device 14 preferably includes a gyro for complementing the GPS data.
 距離発生手段15は、車両の所定の走行距離ごとにパルス信号を発生する。赤外線熱計測装置10及びレーザスキャナ12は、距離発生手段15が発生するパルス信号に同期して、それぞれの計測を行う構成となっている。また、座標計測装置14も上記パルス信号に同期して座標値を計測する。このような構成により、本実施形態にかかる車両100の車速が変動しても、常に一定の距離間隔で赤外線熱計測装置10及びレーザスキャナ12が計測を行うことができる。なお、上記距離発生手段15としては、例えば空間フィルタの原理を用いた非接触型速度・距離計を使用することができる。 The distance generating means 15 generates a pulse signal for each predetermined traveling distance of the vehicle. The infrared heat measuring device 10 and the laser scanner 12 are configured to perform respective measurements in synchronization with the pulse signal generated by the distance generating means 15. The coordinate measuring device 14 also measures coordinate values in synchronization with the pulse signal. With such a configuration, even if the vehicle speed of the vehicle 100 according to the present embodiment fluctuates, the infrared heat measurement device 10 and the laser scanner 12 can always perform measurements at constant distance intervals. As the distance generating means 15, for example, a non-contact type speed / distance meter using the principle of a spatial filter can be used.
 制御装置16は、適宜なコンピュータにより構成され、赤外線熱計測装置10の計測結果の画像化等を行う。なお、制御装置16は、車両100に搭載せず、赤外線熱計測装置10及びレーザスキャナ12の計測データを適宜な通信手段または記憶媒体を介して取得する構成でもよい。また、赤外線熱計測装置10及びレーザスキャナ12を異なる車両に搭載し、制御装置16が後で計測データを統合してもよい。 The control device 16 is configured by an appropriate computer and performs imaging of the measurement result of the infrared heat measurement device 10. The control device 16 may be configured not to be mounted on the vehicle 100 but to acquire measurement data of the infrared heat measurement device 10 and the laser scanner 12 via an appropriate communication unit or storage medium. Further, the infrared heat measurement device 10 and the laser scanner 12 may be mounted on different vehicles, and the control device 16 may integrate the measurement data later.
 図2には、図1に示された制御装置16を構成するコンピュータのハードウェア構成の例が示される。図2において、制御装置16は、中央処理装置(例えばマイクロプロセッサ等のCPUを使用することができる)18、ランダムアクセスメモリ(RAM)20、読み出し専用メモリ(ROM)22、入力装置24、表示装置26、通信装置28及び記憶装置30を含んで構成されており、これらの構成要素は、バス32により互いに接続されている。また、入力装置24、表示装置26、通信装置28及び記憶装置30は、それぞれ入出力インターフェース34を介してバス32に接続されている。 FIG. 2 shows an example of a hardware configuration of a computer constituting the control device 16 shown in FIG. In FIG. 2, the control device 16 includes a central processing unit (for example, a CPU such as a microprocessor can be used) 18, a random access memory (RAM) 20, a read-only memory (ROM) 22, an input device 24, a display device. 26, a communication device 28, and a storage device 30, and these components are connected to each other by a bus 32. In addition, the input device 24, the display device 26, the communication device 28, and the storage device 30 are each connected to the bus 32 via the input / output interface 34.
 CPU18は、RAM20またはROM22に格納されている制御プログラムに基づいて、後述する各部の動作を制御する。RAM20は主としてCPU18の作業領域として機能し、ROM22にはBIOS等の制御プログラムその他のCPU18が使用するデータが格納されている。 The CPU 18 controls the operation of each unit described later based on a control program stored in the RAM 20 or the ROM 22. The RAM 20 mainly functions as a work area for the CPU 18, and the ROM 22 stores a control program such as BIOS and other data used by the CPU 18.
 また、入力装置24は、キーボード、ポインティングデバイス等により構成され、使用者が動作指示等を入力するために使用する。 The input device 24 includes a keyboard, a pointing device, and the like, and is used by a user to input operation instructions and the like.
 また、表示装置26は、液晶ディスプレイ等により構成され、赤外線熱計測装置10の計測結果の画像等を表示する。なお、表示装置26は、他のコンピュータ等に設けてもよい。 The display device 26 is composed of a liquid crystal display or the like, and displays an image or the like of the measurement result of the infrared heat measurement device 10. The display device 26 may be provided in another computer or the like.
 また、通信装置28は、USB(ユニバーサルシリアルバス)ポート、ネットワークポートその他の適宜なインターフェースにより構成され、CPU18がネットワーク等の通信手段を介して外部の装置とデータをやり取りするために使用する。また、赤外線熱計測装置10及びレーザスキャナ12の計測結果を、通信装置28を介して外部の装置に送信してもよい。 The communication device 28 includes a USB (Universal Serial Bus) port, a network port, and other appropriate interfaces, and is used by the CPU 18 to exchange data with an external device via a communication means such as a network. Further, the measurement results of the infrared heat measurement device 10 and the laser scanner 12 may be transmitted to an external device via the communication device 28.
 また、記憶装置30は、ハードディスク等の記憶装置であり、後述する処理に必要となる種々のデータを記憶する。なお、記憶装置30としては、ハードディスクの代わりに、デジタル・バーサタイル・ディスク(DVD)、コンパクトディスク(CD)、光磁気ディスク(MO)、フレキシブルディスク(FD)、磁気テープ、電気的消去および書換可能な読出し専用メモリ(EEPROM)、フラッシュ・メモリ等を使用してもよい。 The storage device 30 is a storage device such as a hard disk, and stores various data necessary for processing to be described later. The storage device 30 can be a digital versatile disk (DVD), a compact disk (CD), a magneto-optical disk (MO), a flexible disk (FD), a magnetic tape, an electrical erasure, and an erasable and rewritable instead of a hard disk. A read-only memory (EEPROM), flash memory or the like may be used.
 図3には、実施形態にかかる制御装置16の機能ブロック図が示される。図3において、制御装置16は、計測結果取得部36、変換部38、対応付け部40、変状箇所受付部42、凹凸判定部44、表示制御部46及び通信部48を含んで構成されており、これらの機能は、例えばCPU18とCPU18の処理動作を制御するプログラムとにより実現される。 FIG. 3 shows a functional block diagram of the control device 16 according to the embodiment. In FIG. 3, the control device 16 includes a measurement result acquisition unit 36, a conversion unit 38, an association unit 40, a deformed part reception unit 42, an unevenness determination unit 44, a display control unit 46, and a communication unit 48. These functions are realized by, for example, the CPU 18 and a program for controlling the processing operation of the CPU 18.
 計測結果取得部36は、赤外線熱計測装置10、レーザスキャナ12及び座標計測装置14の計測結果を取得する。取得した計測結果は、変換部38、対応付け部40及び凹凸判定部44に出力する。 The measurement result acquisition unit 36 acquires the measurement results of the infrared heat measurement device 10, the laser scanner 12, and the coordinate measurement device 14. The acquired measurement result is output to the conversion unit 38, the association unit 40, and the unevenness determination unit 44.
 変換部38は、赤外線熱計測装置10の計測結果を画像データ(熱画像)に変換する。この場合、赤外線熱計測装置10の計測結果である対象物表面の温度の高低を、画像の濃度、色、図形、模様の変更または有無等により表現する。また、変換部38は、レーザスキャナ12の計測結果から、凹凸の高さデータを四角柱、円柱等の突起物の画像に変換してもよい。この場合、凹凸の高さデータの値と突起物の高さを対応させ、例えば凹部と凸部の差の数値、または凹凸の平均値と凸部との差の数値が大きいほど突起物も高く表示する。 The conversion unit 38 converts the measurement result of the infrared heat measurement device 10 into image data (thermal image). In this case, the level of the temperature of the object surface, which is a measurement result of the infrared heat measurement apparatus 10, is expressed by changing or the presence or absence of the density, color, figure, or pattern of the image. Further, the conversion unit 38 may convert the height data of the unevenness from the measurement result of the laser scanner 12 into an image of a projection such as a quadrangular prism or a cylinder. In this case, the height data of the unevenness is made to correspond to the height of the protrusion.For example, the larger the numerical value of the difference between the concave portion and the convex portion, or the average value of the unevenness and the difference value of the convex portion, the higher the protrusion. indicate.
 対応付け部40は、変換部38の変換処理の結果である熱画像とレーザスキャナ12の計測結果である対象物表面の凹凸データとを、座標計測装置14が計測した赤外線熱計測装置10及びレーザスキャナ12の計測位置の座標値に基づいて対応付ける。この場合、座標計測装置14を構成するGPS受信機と赤外線熱計測装置10及びレーザスキャナ12との相対位置並びに赤外線熱計測装置10及びレーザスキャナ12の計測方向(赤外線カメラの撮影方向及びレーザスキャナ12のレーザ照射方向)に基づいて、上記赤外線熱計測装置10及びレーザスキャナ12により計測される対象物表面の座標値を決定することができる。対応付け部40は、決定した対象物表面の座標値により、上記熱画像の画素ごとにまたは複数画素からなる所定範囲ごとに凹凸データの対応付け処理を行う。あるいは、赤外線熱計測装置10の赤外線カメラの一回の撮影範囲の熱画ごとに、上記凹凸データを変換部38が変換した突起物の画像に対応付けてもよい。 The associating unit 40 includes the infrared thermal measurement device 10 and the laser in which the coordinate measurement device 14 measures the thermal image that is the result of the conversion process of the conversion unit 38 and the unevenness data of the object surface that is the measurement result of the laser scanner 12. The correspondence is made based on the coordinate value of the measurement position of the scanner 12. In this case, the relative position between the GPS receiver constituting the coordinate measuring device 14, the infrared heat measuring device 10 and the laser scanner 12, and the measurement direction of the infrared heat measuring device 10 and the laser scanner 12 (the shooting direction of the infrared camera and the laser scanner 12). The coordinate value of the surface of the object measured by the infrared thermal measurement device 10 and the laser scanner 12 can be determined based on the laser irradiation direction). The associating unit 40 performs asperity data associating processing for each pixel of the thermal image or for each predetermined range composed of a plurality of pixels according to the determined coordinate value of the object surface. Or you may match the said uneven | corrugated data with the image of the protrusion which the conversion part 38 converted for every thermal image of the imaging | photography range of the infrared camera of the infrared thermal measurement apparatus 10 once.
 変状箇所受付部42は、利用者が赤外線熱計測装置10の計測結果の画像を利用者が表示装置26で確認し、入力装置24により変状箇所を指定したときに、当該指定箇所を、変換部38が変換した赤外線熱計測結果の熱画像における変状箇所として受け付ける。 When the user confirms the image of the measurement result of the infrared heat measuring device 10 on the display device 26 and designates the deformed portion with the input device 24, the deformed portion receiving unit 42 It is received as a deformed portion in the thermal image of the infrared thermal measurement result converted by the conversion unit 38.
 凹凸判定部44は、変状箇所受付部42が受け付けた変状箇所の凹凸の大きさを、レーザスキャナ12の計測結果に基づいて判定する。この判定では、例えば凹部と凸部の差の数値、または凹凸の平均値と凸部との差の数値と予め設定した閾値とに基づき、変換部38が赤外線熱計測装置10の計測結果を変換して得た熱画像の画素ごとまたは複数画素ごとに、凹凸の大きさを大、中、小のように決定する。この場合、レーザスキャナ12の計測結果と熱画像の画素との対応は、対応付け部40の対応付けにより決定できる。これにより、利用者は、変状箇所として指定された箇所の凹凸が「小」の場合には内部変状であると判定し、「大」の場合には内部変状ではないと判定し、「中」の場合には、さらに精密な調査を行う等の判断を容易に行うことができる。 The unevenness determination unit 44 determines the size of the unevenness of the deformed portion received by the deformed portion reception unit 42 based on the measurement result of the laser scanner 12. In this determination, for example, the conversion unit 38 converts the measurement result of the infrared heat measurement device 10 based on the numerical value of the difference between the concave portion and the convex portion, or the numerical value of the difference between the average value of the concave and convex portions and the convex portion, and a preset threshold value. The size of the unevenness is determined to be large, medium, or small for each pixel or a plurality of pixels of the thermal image obtained as described above. In this case, the correspondence between the measurement result of the laser scanner 12 and the pixel of the thermal image can be determined by the association unit 40. As a result, the user determines that the irregularity of the portion designated as the deformed portion is “small”, and determines that the portion is not internally deformed when “large”, In the case of “medium”, it is possible to easily make a judgment such as conducting a more precise investigation.
 表示制御部46は、変換部38の変換結果の熱画像を表示装置26に表示させる。また、変状箇所受付部42が受け付けた変状箇所を囲む円形等の線画、及び凹凸判定部44が判定した凹凸の大きさに関する情報(大中小の表示等または突起物の画像)も表示装置26に表示させるのが好適である。 The display control unit 46 causes the display device 26 to display the thermal image of the conversion result of the conversion unit 38. In addition, a line drawing such as a circle surrounding the deformed portion received by the deformed portion receiving unit 42 and information on the size of the concavities and convexities determined by the concavity and convexity determining unit 44 (large, medium and small display or projection image) are also displayed. 26 is preferable.
 通信部48は、通信装置28を介して赤外線熱計測装置10、レーザスキャナ12及び座標計測装置14の計測結果、並びに制御装置16の処理結果等を外部の装置とやり取りする。 The communication unit 48 exchanges the measurement results of the infrared heat measurement device 10, the laser scanner 12, and the coordinate measurement device 14, the processing results of the control device 16, and the like with an external device via the communication device 28.
 図4(a),(b),(c)には、赤外線熱計測装置10による路面温度の計測結果の熱画像の例が示される。本例は、道路の3つの箇所の昼間の測定結果を示しており、図4(a)が、路面の凹凸が大きい箇所であって、凹凸に基づく温度分布が発生している例であり、図4(b),(c)は、路面の凹凸は小さいが、図4(b)が道路の内部の空隙に基づく温度分布が発生している例であり、図4(c)が、道路の内部の滞水に基づく温度分布が発生している例である。なお、図4(a),(b),(c)では、変換部38の処理により温度が高い部分ほど白く表示されている。 4 (a), (b), and (c) show examples of thermal images of road surface temperature measurement results by the infrared thermal measurement device 10. FIG. This example shows the daytime measurement results of three locations on the road, and FIG. 4 (a) is an example where the unevenness of the road surface is large and a temperature distribution based on the unevenness occurs. 4 (b) and 4 (c) are examples in which the unevenness of the road surface is small, but FIG. 4 (b) is an example in which a temperature distribution based on the air gap inside the road is generated, and FIG. This is an example in which a temperature distribution based on stagnant water is generated. 4A, 4 </ b> B, and 4 </ b> C, the higher the temperature due to the processing of the conversion unit 38, the more white the image is displayed.
 図4(a)に示された例と図4(b),(c)に示された例では、高温部が白く、低温部が黒く表示されるだけであるので、熱画像だけでは路面の凹凸による路面の温度分布と内部変状に基づく温度分布とを区別することはできない。そこで、本実施形態では、レーザスキャナ12の計測結果に基づいて、路面の凹凸に関する情報を熱画像とともに表示する。 In the example shown in FIG. 4 (a) and the examples shown in FIGS. 4 (b) and 4 (c), the high temperature part is only displayed in white and the low temperature part is only displayed in black. It is impossible to distinguish between the temperature distribution on the road surface due to the unevenness and the temperature distribution based on the internal deformation. Therefore, in the present embodiment, based on the measurement result of the laser scanner 12, information regarding road surface unevenness is displayed together with the thermal image.
 例えば、図4(a)の矢印Iで指示された箇所は凸部であって温度も高い。そこで、上記矢印Iで指示された凸部の箇所または「I」の文字が記載されている箇所等に、凹凸の数値を表示する。この場合、表示制御部46が、対応付け部40が対応付けた熱画像の画素と路面の凹凸データに基づき、凹部と凸部の差の数値、または凹凸の平均値と凸部との差の数値等を表示することができる。あるいは、画素ごとに凹凸の高さデータを突起物として表示し、視覚的に路面の凹凸を表示してもよい。 For example, the location indicated by the arrow I in FIG. 4A is a convex portion and the temperature is high. Therefore, the numerical value of the unevenness is displayed at the location of the convex portion indicated by the arrow I or the location where the letter “I” is written. In this case, the display control unit 46 calculates the numerical value of the difference between the concave portion and the convex portion, or the difference between the average value of the concave and convex portions and the difference between the convex portions based on the pixel of the thermal image and the road surface unevenness data associated with the association unit 40. Numerical values and the like can be displayed. Alternatively, the unevenness height data may be displayed as protrusions for each pixel, and the unevenness of the road surface may be visually displayed.
 図5(a),(b)には、レーザスキャナ12の計測結果を表す凹凸画像(a)及びその一部分に相当する箇所を撮影した赤外線熱計測装置10による路面温度の計測結果の熱画像(b)の例が示されている。これらの画像は、対応付け部40により対応付けられている。図5(a),(b)において、矢印Aで指示された箇所が互いに対応しており、凸部となっている。図5(a)に例示した路面の凹凸画像は、図5(b)の熱画像とは別の画像として表示される。なお、凹凸画像と共に、凹部と凸部の差等の数値や凹凸の高さデータに相当する突起物を表示してもよい。 5 (a) and 5 (b) show a concavo-convex image (a) representing the measurement result of the laser scanner 12 and a thermal image of the road surface temperature measurement result by the infrared thermal measurement device 10 that captures a portion corresponding to a part thereof. An example of b) is shown. These images are associated by the association unit 40. 5A and 5B, the locations indicated by the arrows A correspond to each other and are convex portions. The road surface unevenness image illustrated in FIG. 5A is displayed as an image different from the thermal image in FIG. A projection corresponding to a numerical value such as a difference between a concave portion and a convex portion or height data of the concave and convex portions may be displayed together with the concave and convex image.
 さらに、利用者が入力装置24により指定した変状箇所を変状箇所受付部42が受け付け、凹凸判定部44が判定した凹凸の大きさを、例えば「大」、「中」、「小」等の文字として、上記矢印Iで指示された箇所または「I」の文字が記載されている箇所等に表示してもよい。 Furthermore, the deformed portion receiving unit 42 receives the deformed portion specified by the user using the input device 24, and the size of the unevenness determined by the unevenness determining unit 44 is, for example, “large”, “medium”, “small”, or the like. May be displayed at the location indicated by the arrow I or at the location where the “I” character is written.
 本実施例では、上述したように熱画像上または熱画像とは別の画像に凹凸の程度を表示できるので、レーザスキャナ12の計測結果に基づいて対象物内部の変状を識別することができる。すなわち、利用者は、熱画像のうち、図4(a)のような凹凸の大きい箇所を除外し、凹凸が小さい図4(b),(c)の箇所のみを内部変状箇所として検出することができる。なお、上述したように、図4(b)は、道路の内部の空隙に基づく温度分布であり、矢印IIで指示された空隙箇所に対応する路面の温度が高くなっている(白く表示されている)。また、図4(c)が、道路の内部の滞水に基づく温度分布であり、矢印IIIで指示された滞水箇所に対応する路面の温度が低くなっている(黒く表示されている)。 In the present embodiment, as described above, since the degree of unevenness can be displayed on the thermal image or on an image different from the thermal image, the deformation inside the object can be identified based on the measurement result of the laser scanner 12. . That is, the user excludes a portion having large unevenness as shown in FIG. 4A from the thermal image, and detects only the portions shown in FIGS. 4B and 4C having small unevenness as internal deformed portions. be able to. Note that, as described above, FIG. 4B is a temperature distribution based on the space inside the road, and the temperature of the road surface corresponding to the space indicated by the arrow II is high (displayed in white). ) FIG. 4C shows a temperature distribution based on the water stagnating inside the road, and the temperature of the road surface corresponding to the water stagnating point indicated by the arrow III is low (displayed in black).
 図6には、実施形態にかかる内部変状検出支援装置の動作例のフローが示される。図6において、計測結果取得部36が、レーザスキャナ12の計測結果を取得する(S1)。また、計測結果取得部36は、赤外線熱計測装置10の計測結果も取得する(S2)。 FIG. 6 shows a flow of an operation example of the internal deformation detection support apparatus according to the embodiment. In FIG. 6, the measurement result acquisition part 36 acquires the measurement result of the laser scanner 12 (S1). Moreover, the measurement result acquisition part 36 also acquires the measurement result of the infrared thermal measurement apparatus 10 (S2).
 変換部38は、計測結果取得部36が取得した赤外線熱計測装置10の計測結果を画像データに変換し、熱画像を生成する(S3)。対応付け部40は、変換部38が生成した熱画像を、座標計測装置14が計測した赤外線熱計測装置10及びレーザスキャナ12の計測位置の座標値に基づいて、レーザスキャナ12の計測結果である凹凸データに対応付ける(S4)。この場合、熱画像の各画素または複数画素からなる所定範囲ごとに凹凸データを対応付けてもよいし、赤外線熱計測装置10の赤外線カメラの一回の撮影で取得した熱画像ごとに、上記凹凸データを変換部38が変換した突起物の画像に対応付けてもよい。 The conversion unit 38 converts the measurement result of the infrared thermal measurement apparatus 10 acquired by the measurement result acquisition unit 36 into image data, and generates a thermal image (S3). The associating unit 40 is a measurement result of the laser scanner 12 based on the coordinate values of the measurement positions of the infrared thermal measurement device 10 and the laser scanner 12 measured by the coordinate measurement device 14 for the thermal image generated by the conversion unit 38. Corresponding to the unevenness data (S4). In this case, the unevenness data may be associated with each predetermined range consisting of each pixel or a plurality of pixels of the thermal image, or the unevenness is described for each thermal image acquired by one imaging of the infrared camera of the infrared thermal measurement device 10. The data may be associated with the projection image converted by the conversion unit 38.
 表示制御部46は、上記熱画像と、これに対応する凹凸データとを表示装置26に表示させ、利用者による対象物の内部変状検出業務を支援する(S5)。 The display control unit 46 displays the thermal image and the uneven data corresponding thereto on the display device 26, and supports the user's internal deformation detection task by the user (S5).
 上述した、図6の各ステップを実行するためのプログラムは、記録媒体に格納することも可能であり、また、そのプログラムを通信手段によって提供しても良い。その場合、例えば、上記説明したプログラムについて、「プログラムを記録したコンピュータ読み取り可能な記録媒体」の発明または「データ信号」の発明としてとらえてもよい。 The above-described program for executing each step of FIG. 6 can be stored in a recording medium, and the program may be provided by communication means. In this case, for example, the above-described program may be regarded as an invention of a “computer-readable recording medium on which a program is recorded” or an invention of a “data signal”.
 10 赤外線熱計測装置、12 レーザスキャナ、14 座標計測装置、15 距離発生手段、16 制御装置、18 CPU、20 RAM、22 ROM、24 入力装置、26 表示装置、28 通信装置、30 記憶装置、32 バス、34 入出力インターフェース、36 計測結果取得部、38 変換部、40 対応付け部、42 変状箇所受付部、44 凹凸判定部、46 表示制御部、48 通信部、100 車両。 10 infrared thermal measurement device, 12 laser scanner, 14 coordinate measurement device, 15 distance generation means, 16 control device, 18 CPU, 20 RAM, 22 ROM, 24 input device, 26 display device, 28 communication device, 30 storage device, 32 Bus, 34 input / output interface, 36 measurement result acquisition unit, 38 conversion unit, 40 association unit, 42 deformation location reception unit, 44 unevenness determination unit, 46 display control unit, 48 communication unit, 100 vehicle.

Claims (6)

  1.  対象物表面の凹凸を計測するための凹凸計測手段と、
     対象物表面の温度を計測するための赤外線熱計測手段と、
     前記赤外線熱計測手段の計測結果を画像データに変換する変換手段と、
     前記画像データと前記凹凸計測手段が計測した凹凸のデータとを、前記赤外線熱計測手段と凹凸計測手段との計測位置に基づいて対応付ける対応付け手段と、
     前記画像データと、前記対応付け手段により対応付けされた凹凸のデータとを表示する画像表示手段と、
    を備えることを特徴とする内部変状検出支援装置。
    Unevenness measuring means for measuring unevenness on the surface of the object;
    An infrared heat measuring means for measuring the temperature of the surface of the object;
    Conversion means for converting the measurement result of the infrared heat measurement means into image data;
    An associating means for associating the image data with the unevenness data measured by the unevenness measuring means based on the measurement positions of the infrared heat measuring means and the unevenness measuring means;
    Image display means for displaying the image data and unevenness data associated by the association means;
    An internal deformation detection support device comprising:
  2.  請求項1に記載の内部変状検出支援装置が、さらに入力された前記赤外線熱計測結果の画像における変状箇所を受け付ける変状箇所受付手段と、前記変状箇所受付手段が受け付けた変状箇所の凹凸の大きさを判定する凹凸判定手段と、を備えることを特徴とする内部変状検出支援装置。 The internal deformation detection support device according to claim 1 further includes a deformed portion receiving means for receiving a deformed portion in the image of the input infrared heat measurement result, and a deformed portion received by the deformed portion receiving means. An internal deformation detection support device comprising: unevenness determination means for determining the size of the unevenness of the internal deformation.
  3.  請求項1または請求項2に記載の内部変状検出支援装置において、前記変換手段は、対象物表面の温度の高低を、画像の濃度、色、図形、模様の変更または有無により表現することを特徴とする内部変状検出支援装置。 3. The internal deformation detection support device according to claim 1 or 2, wherein the conversion means expresses the level of the temperature of the object surface by changing or the presence or absence of the density, color, figure, or pattern of the image. A featured internal deformation detection support device.
  4.  請求項1から請求項3のいずれか一項に記載の内部変状検出支援装置において、前記凹凸のデータは、凹部と凸部の差の数値、または凹凸の平均値と凸部との差の数値であることを特徴とする内部変状検出支援装置。 The internal deformation detection support device according to any one of claims 1 to 3, wherein the unevenness data includes a numerical value of a difference between a concave portion and a convex portion, or an average value of the concave and convex portions and a difference between the convex portions. An internal deformation detection support device characterized by being a numerical value.
  5.  コンピュータを、
     対象物表面の凹凸の計測結果を取得する凹凸計測結果取得手段、
     対象物表面の温度の計測結果を取得する温度計測結果取得手段、
     前記温度計測結果を画像データに変換する変換手段、
     前記画像データと前記凹凸計測結果のデータとを、温度計測位置と凹凸計測位置とに基づいて対応付ける対応付け手段、
     前記画像データと、前記対応付け手段により対応付けされた凹凸計測結果のデータとを表示する画像表示手段、
    として機能させることを特徴とする内部変状検出支援プログラム。
    Computer
    Concavity and convexity measurement result acquisition means for acquiring the measurement result of the unevenness on the surface of the object,
    Temperature measurement result acquisition means for acquiring the measurement result of the temperature of the object surface;
    Conversion means for converting the temperature measurement result into image data;
    Corresponding means for associating the image data with the unevenness measurement result data based on the temperature measurement position and the unevenness measurement position
    Image display means for displaying the image data and the data of the unevenness measurement result associated by the association means;
    An internal deformation detection support program characterized by functioning as
  6.  対象物表面の凹凸の計測結果を取得し、
     対象物表面の温度の計測結果を取得し、
     前記温度計測結果を画像データに変換し、
     前記画像データと前記凹凸計測結果のデータとを、温度計測位置と凹凸計測位置とに基づいて対応付け、
     前記画像データと、前記対応付けされた凹凸計測結果のデータとを表示する
    ことを特徴とする内部変状検出支援方法。
    Acquire the measurement results of unevenness on the surface of the object,
    Obtain the measurement result of the temperature of the object surface,
    Converting the temperature measurement result into image data;
    The image data and the unevenness measurement result data are associated based on the temperature measurement position and the unevenness measurement position,
    An internal deformation detection support method, comprising: displaying the image data and the associated unevenness measurement result data.
PCT/JP2011/056753 2011-03-22 2011-03-22 Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method WO2012127602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056753 WO2012127602A1 (en) 2011-03-22 2011-03-22 Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056753 WO2012127602A1 (en) 2011-03-22 2011-03-22 Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method

Publications (1)

Publication Number Publication Date
WO2012127602A1 true WO2012127602A1 (en) 2012-09-27

Family

ID=46878799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056753 WO2012127602A1 (en) 2011-03-22 2011-03-22 Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method

Country Status (1)

Country Link
WO (1) WO2012127602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839954A (en) * 2017-03-17 2017-06-13 蔡永峰 A kind of automobile case male and fomale(M&F) repairs measuring instrument
JP2022042409A (en) * 2020-09-02 2022-03-14 株式会社テナーク Method for comparing continuous temperature, method for assaying specific temperature region, information processor, continuous temperature comparison system, specific temperature region assay system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337493A (en) * 1998-05-28 1999-12-10 Nikon Corp Detecting system for position of abnormal point by image processing
JP2006234383A (en) * 2005-02-22 2006-09-07 Urban Sekkei:Kk Method of diagnosing deterioration in concrete structure
JP4598881B1 (en) * 2010-05-17 2010-12-15 エヌ・ティ・ティジーピー・エコ株式会社 Crack investigation device, crack investigation method and crack investigation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337493A (en) * 1998-05-28 1999-12-10 Nikon Corp Detecting system for position of abnormal point by image processing
JP2006234383A (en) * 2005-02-22 2006-09-07 Urban Sekkei:Kk Method of diagnosing deterioration in concrete structure
JP4598881B1 (en) * 2010-05-17 2010-12-15 エヌ・ティ・ティジーピー・エコ株式会社 Crack investigation device, crack investigation method and crack investigation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839954A (en) * 2017-03-17 2017-06-13 蔡永峰 A kind of automobile case male and fomale(M&F) repairs measuring instrument
JP2022042409A (en) * 2020-09-02 2022-03-14 株式会社テナーク Method for comparing continuous temperature, method for assaying specific temperature region, information processor, continuous temperature comparison system, specific temperature region assay system, and program

Similar Documents

Publication Publication Date Title
JP5275968B2 (en) Internal change detection support device and internal change detection support program
Ribeiro et al. Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system
JP5347006B2 (en) Defect location detection support apparatus accompanying liquefaction and deformation location detection support program accompanying liquefaction
CN102549374B (en) A method and apparatus of a portable imaging-based measurement with self calibration
JP6589926B2 (en) Object detection device
US8384783B2 (en) Infrared camera and method for calculating output power value indicative of an amount of energy dissipated in an image view
JP6708163B2 (en) Mobile flaw detector
KR101033167B1 (en) Device, system and method for calibration of camera and laser range finder
Joubert et al. Pothole tagging system
US8643716B1 (en) Method and system for mobile steam leak detection
CN101044390B (en) Sight distance measuring device and uses
CN101720476B (en) Feature detection apparatus and metod for measuring object distances
CN105203030B (en) Engineering ground micro-displacement quantity monitoring method
JP2015059768A (en) Level difference measuring device, level difference measuring method and program
Alhaddad et al. A new photogrammetric system for high-precision monitoring of tunnel deformations
JP2023029441A (en) Measuring device, measuring system, and vehicle
WO2012127602A1 (en) Internal deformation detection assistance device, internal deformation detection assistance program, and internal deformation detection assistance method
JPH1019562A (en) Surveying equipment and surveying method
KR101231007B1 (en) Apparatus for mosaicking sea floor image using sea floor topography information and method thereof
JP5102181B2 (en) Deformed part detection method, deformed part detection device and deformed part detection program for building wall surface
JP2007212238A (en) Water level detector and water level detection method using it
JP5230354B2 (en) POSITIONING DEVICE AND CHANGED BUILDING DETECTION DEVICE
JP2005315728A (en) Apparatus and method for measuring surface profile
Bahnsen et al. Measuring the interior of in-use sewage pipes using 3D vision
CN110930447A (en) Android-based unattended snow depth measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP