WO2012126910A1 - Bauteil mit einem innendruckbelastbaren hohlkörper - Google Patents

Bauteil mit einem innendruckbelastbaren hohlkörper Download PDF

Info

Publication number
WO2012126910A1
WO2012126910A1 PCT/EP2012/054912 EP2012054912W WO2012126910A1 WO 2012126910 A1 WO2012126910 A1 WO 2012126910A1 EP 2012054912 W EP2012054912 W EP 2012054912W WO 2012126910 A1 WO2012126910 A1 WO 2012126910A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
hollow body
thermoplastic polymer
component according
component
Prior art date
Application number
PCT/EP2012/054912
Other languages
English (en)
French (fr)
Inventor
Andreas Radtke
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2012126910A1 publication Critical patent/WO2012126910A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • B29C51/004Textile or other fibrous material made from plastics fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0688Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polyquinolines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0694Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring, e.g. polyquinoxalines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the invention is based on a component comprising an inner pressure-loadable hollow body which is open at least on one side.
  • Internal pressure-loadable hollow body which are open at least on one side, find application for example in the automotive industry. Such hollow bodies are used for example for receiving airbags.
  • internal pressure-loadable hollow bodies which are open on one side and which are used for airbags or as cylinder head covers are generally produced as steel sheet constructions.
  • plastic components for example glass fiber reinforced polyamide or glass fiber reinforced polypropylene with wall thicknesses in the range of 2 to 5 mm.
  • the glass fibers used in the glass fiber reinforced plastics, for example in the glass fiber reinforced polyamide or glass fiber reinforced polypropylene, are generally short glass fibers or long glass fibers with a length of up to 10 mm.
  • the higher weight is undesirable in relation to desired savings in fuel consumption, since higher weight always leads to a more fuel consumption. For this reason, it is desired to manufacture the individual components of the vehicle as easily as possible.
  • a weight saving is difficult only due to the density of the material, because in general no additional material can be saved.
  • fiber-reinforced plastics an additional weight saving is difficult to achieve, since they must be stable enough, in particular in the case of internal pressure-loadable hollow bodies, in order to be able to withstand an occurring internal pressure.
  • cylinder head covers is also a constantly changing internal pressure, so that here also against the pressure fluctuations enough stability must be given.
  • Object of the present invention is therefore to provide a component with a hollow body capable of internal pressure, which has a lower weight than the components known from the prior art and provides sufficient stability against an occurring internal pressure.
  • the object is achieved by a component comprising an inner pressure-loadable hollow body, wherein the inner pressure-loadable hollow body is open at least on one side and extends at least one opening in the axial direction, wherein the hollow body is made of a continuous fiber-reinforced thermoplastic polymer and the continuous fibers are not circumferentially arranged in the hollow body ,
  • thermoplastic polymer makes it possible to produce inner pressure-loadable hollow bodies which have a wall thickness which is significantly below the wall thickness of currently used fiber-reinforced polymers. Due to the use of continuous fibers sufficient stability is already given with wall thicknesses of less than 2 mm.
  • thermoplastic polymer has the further advantage that it is possible in a simple manner to connect the hollow body open on one side with other components, for example covers. The connection can be made, for example, by a welding process. It is also possible to directly inject further elements, for example by an injection molding process, onto the hollow body of the continuous fiber-reinforced thermoplastic polymer which is capable of internal pressure. This allows the production of stable components and secure attachment of the attachments to inner pressure loadable hollow body.
  • the continuous fiber reinforced thermoplastic polymers which are used as components having a large length and width and a comparatively low height in comparison, are also referred to as organic sheets.
  • the continuous fibers in the organic sheet have a high degree of orientation.
  • a high degree of orientation in the context of the present invention means that the continuous fibers are arranged substantially parallel or intersecting at an arbitrary angle, preferably at a right angle. When the fibers cross each other, the individual fibers of a layer are also aligned substantially parallel.
  • internal pressure-loadable hollow bodies are produced as closed bodies, for example in the form of cylinders, in which the endless fibers are arranged circumferentially. However, such hollow bodies can not be used for all applications.
  • endless fibers are fibers which extend continuously from one end of the hollow body to the opposite end of the hollow body.
  • the hollow body is in the form of a hollow cylinder having an opening formed therein in the axial direction, at least a part of the fibers extends from one side of the axially extending opening through the hollow body to the opposite side in the axial direction extending opening. This results in a radial course of the fibers.
  • the hollow body can assume any other shape that is technically necessary.
  • a half-shell in any shape is to be understood as a hollow body which is open at least on one side, wherein at least one opening extends in the axial direction.
  • thermoplastic polymers that can be used to make the hollow body are polyolefins, for example polyethylene or polypropylene; Polyamides, for example polyamide 6, polyamide 6.6, polyamide 6.12; Polycarbonates, for example thermoplastic polyurethanes, polyoxymethylene, polyphenylene ethers; Styrene polymers, for example polystyrene and styrene-containing copolymers such as acrylonitrile-butadiene-styrene copolymers and styrene-acrylonitrile copolymers;
  • Suitable polymers are selected in accordance with the desired use of the inner pressure-loadable hollow body.
  • Preferred thermoplastic polymers are polyethylene, polypropylene, polyamides, polyethylene terephthalate, polybutylene terephthalate, polycarbonate and thermoplastic polyurethane.
  • polypropylene and polyamide are preferred for internal pressure-loadable hollow bodies which are used as airbag housings.
  • polyamides are preferred for cylinder head covers.
  • Fibers which can be used as continuous fibers for the inner pressure-loadable hollow body are, for example, glass fibers, carbon fibers, potassium titanate fibers, mineral fibers such as basalt fibers, boron fibers or aramid fibers.
  • the fibers are present as a woven, knitted, knitted or laid fabric, preferably in the form of long fibers oriented in parallel, in the continuous fiber-reinforced thermoplastic polymer. If the continuous fibers are contained as tissue, any tissue known to those skilled in the art can be used.
  • the continuous fibers are contained in multiple layers of parallel-arranged fibers, with the fibers of the individual layers being mutually rotated.
  • the individual layers can be arranged rotated at any angle to each other. It is preferred if the angle in which the individual layers are arranged rotated relative to one another is in the range from 45 to 90 °, preferably in the range from 80 to 90 ° and in particular at 90 °.
  • the proportion of fibers in the continuous fiber-reinforced thermoplastic polymer is preferably at least 30 wt .-%. In order to obtain sufficient stability of the continuous-fiber-reinforced thermoplastic polymer, the maximum proportion of fibers is 70% by weight.
  • the thickness of the continuous fiber-reinforced thermoplastic polymers is selected depending on the possible internal pressure occurring in the hollow body. The higher the internal pressure can be, the greater the load on the hollow body. With a correspondingly greater load, therefore, a greater thickness of the thermoplastic polymer is required. Also, the stress on the continuous fiber reinforced thermoplastic polymer is greater when subjected to a vibratory load. With only a single load, it is necessary to choose the wall thickness so that the hollow body survives the one-time load.
  • a suitable thickness of the continuous fiber-reinforced polymers is up to 5 mm, preferably in the range of 0.5 to 4 mm, in particular in the range of 1 to 3 mm.
  • the thermoplastic polymer for temperature stabilization suitable additives are added.
  • additives for temperature stabilization for example, iron powder or combinations of Cu-containing stabilizers with iron oxides can be used.
  • a polyamide When using a polyamide, it is particularly preferred to use a polyamide, the 10 to 99.999 wt .-% of a polyamide, 0.001 to 20 wt .-% iron powder having a particle size of at most 10 ⁇ (d 50 value) and 0 to 70 wt .-% of other additives.
  • the iron powder may be obtained, for example, by thermal decomposition of iron pentacarbonyl, preferably at temperatures of 150 to 350 ° C.
  • the particles thus obtained preferably have a spherical shape, i. they are spherical or nearly spherical.
  • the iron content is preferably from 97 to 99.8 g / 100 g, in particular from 97.5 to 99.6 g / 100 g.
  • the content of further metals is preferably less than 1000 ppm, more preferably less than 100 ppm and in particular less than 10 ppm.
  • the nitrogen content in the iron powder is preferably at most 1.5 g / 100 g, in particular 0.01 to 1.2 g / 100 g, and the oxygen content is preferably at most 1.3 g / 100 g, in particular 0.3 to 0.65 g / 100 g.
  • Preferred temperature-stabilized polyamides contain 20 to 98 wt .-%, in particular 25 to 94 wt .-% of a polyamide, for example PA 4, PA 6, PA 7, PA 8, PA 9, PA 1 1, PA 12, PA 46, PA 66, PA 69, PA 610, PA 612, PA 613, PA 1212, PA 1313, PA 6T, PA 9T, PA MXD6, PA 6I, PA 6-3-T, PA 6 / 6T, PA 6/66, PA 6/12, PA 66/6/610, PA 6I / 6T, PA PACM 12, PA 6I / 6T / PACM, PA 12 / MACMI, PA 12 / MACMT, PA PDA-T.
  • PA 4 PA 6, PA 7, PA 8, PA 9, PA 1 1, PA 12, PA 46, PA 66, PA 69, PA 610, PA 612, PA 613, PA 1212, PA 1313, PA 6T, PA 9T, PA MXD6, PA 6I, PA 6-3-T, PA 6
  • the proportion of iron powder is preferably in the range of 0.05 to 10 and in particular in the range of 0.1 to 5 wt .-%.
  • additives which may also be contained in the other polymers mentioned above, in addition to the continuous fibers and fibrous or particulate fillers, such as carbon fibers, glass fibers, glass beads, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica , Barium sulfate and / or feldspar in amounts of from 1 to 50 wt .-%, preferably from 5 to 40 wt .-%, in particular from 10 to 40 wt .-%.
  • the schwför- migen fillers in particular the continuous fibers, be pretreated with a silane compound on its surface.
  • Suitable silane compounds are those of the general formula
  • n an integer of 2 to 10, preferably 3 to 4
  • n an integer of 1 to 5, preferably 1 to 2
  • silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of from 0.01 to 2, preferably from 0.025 to 1, 0 and in particular from 0.05 to 0.5% by weight (based on the mass of the fibers) of the surface coating.
  • thermoplastic polymer is also preferably selected according to the temperature to which the component is exposed during operation.
  • Further additives which may be present in the polymer are kaolin, calcined kaolin, wollastonite, talc and chalk, acicular mineral fillers and / or platelet or needle-shaped nanofillers, preferably in amounts of 0.1 to 10% by weight.
  • Boehmite, bentonite, montmorillonite, vermiculite, hectorite and laponite are particularly suitable here.
  • the nanofillers can be organically modified.
  • thermoplastic polymer e.g., ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate, terpolymer, terpolymer graft copolymer, preferably ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dim
  • the component further comprises a lid of one thermoplastic polymers with which the hollow body is closed. If the hollow body identifies more than one opening, then all openings can be closed with a suitable lid. Furthermore, it is also possible that at least one opening is closed and at least one opening is not closed. In particular, even if components which are located in the interior of the hollow body must be accessible from outside, even after assembly and after closing, it is preferred if not all openings are closed with a lid. In one embodiment of the invention, a second inner pressure-loadable hollow body which is open on one side can be used as the lid.
  • a positive connection can be realized, for example, by an adhesive method or welding method. It is also particularly preferred to manufacture the lid from a thermoplastic polymer and to connect it to the hollow body by a welding process. Suitable welding methods for connecting the hollow body to the lid are, for example, ultrasonic welding methods. It is particularly preferred if the same thermoplastic polymer is used as the material for the lid as for the hollow body.
  • the lid In addition to the gluing or welding of the lid to the hollow body, it is alternatively also possible to inject the lid, for example directly on the hollow body by an injection molding process or by a pressing process, such as extrusion or compression molding, to connect with the hollow body.
  • Attaching the reinforcement ribs or attachments is also carried out preferably by an adhesive method, welding process, pressing process, such as extrusion or compression molding, or by injection molding in an injection molding process.
  • an adhesive method such as extrusion or compression molding
  • injection molding such as injection molding in an injection molding process.
  • the continuous fibers as described above, can be used as individual layers of parallel aligned fibers or as a woven, knitted or knitted fabric.
  • the mold is filled with the thermoplastic polymer. This is done, for example, by a casting process, for example by injection molding.
  • the internal pressure-loadable hollow body it is then possible to form the plate by a deep-drawing process to the hollow body.
  • the inner pressure-loadable hollow body with the at least one opening which extends in the axial direction may be, for example, an airbag housing, a cylinder head cover or a charge air box.
  • ribs on the inner pressure-loadable hollow body.
  • the ribs provided for reinforcement can be formed simultaneously with the shaping of the hollow body or, alternatively, can be applied after the molding of the hollow body.
  • the ribs can be formed by, for example, suitable pressing methods. It is also possible, during the formation of the hollow body by deep drawing to form the ribs by injection molding or injection compression molding. Subsequent attachment of the ribs is possible, for example, by welding. In this case, both the hollow body and the ribs are formed from a thermoplastic polymer.
  • the ribs are formed by injection molding or injection-compression molding, it is preferred to use an unreinforced polymer or an injection-moldable short-fiber reinforced polymer to form the ribs. If the ribs are first shaped and subsequently welded to the hollow body, it is also possible to use long-fiber-reinforced or endless-fiber-reinforced polymers as an alternative to short-fiber-reinforced polymers.
  • the polymer material from which the ribs are formed is preferably selected so that a connection with the polymer material of the hollow body by welding or injection molding or injection-embossing is possible. It is particularly preferred to use the same polymer material for the hollow body and for the ribs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein Bauteil, umfassend einen innendruckbelastbaren Hohlkörper, wobei der innendruckbelastbare Hohlkörper mindestens einseitig offen ist und sich mindestens eine Öffnung in axialer Richtung erstreckt. Der Hohlkörper ist aus einem endlosfaserverstärkten thermoplastischen Polymeren gefertigt, wobei die Endlosfasern einen hohen Orientierungsgrad aufweisen und nicht umlaufend im Hohlkörper ange- ordnet sind.

Description

Bauteil mit einem innendruckbelastbaren Hohlkörper Beschreibung Die Erfindung geht aus von einem Bauteil, umfassend einen innendruckbelastbaren Hohlkörper, der mindestens einseitig offen ist.
Innendruckbelastbare Hohlkörper, die mindestens einseitig offen sind, finden zum Beispiel Anwendung im Kraftfahrzeugbau. Derartige Hohlkörper dienen zum Beispiel zur Aufnahme von Airbags. Weitere innendruckbelastbare, einseitig offene Hohlkörper, die im Automobilbau eingesetzt werden, sind zum Beispiel Zylinderkopfhauben.
Derzeit werden innendruckbelastbare, einseitig offene Hohlkörper, die für Airbags oder als Zylinderkopfhauben eingesetzt werden, im Allgemeinen als Stahlblechkonstruktio- nen gefertigt. Alternativ ist es auch bekannt, Kunststoff bauteile, beispielsweise glasfaserverstärktes Polyamid oder glasfaserverstärktes Polypropylen mit Wandstärken im Bereich von 2 bis 5 mm einzusetzen. Die in den glasfaserverstärkten Kunststoffen, beispielsweise im glasfaserverstärkten Polyamid bzw. glasfaserverstärkten Polypropylen, eingesetzten Glasfasern sind im Allgemeinen Kurzglasfasern oder Lang- glasfasern mit einer Länge von bis zu 10 mm.
Aufgrund der Innendruckbelastbarkeit, insbesondere bei Einsatz von Kunststoffkör- pern, ist es notwendig, die Hohlkörper an der Außenseite zu verstärken. Die Verstärkung der Hohlkörper erfolgt dabei durch den Anbau von Verstärkungsrippen. Dies hat jedoch den Nachteil, dass zum Einen die Baugröße der Teile zunimmt und zum Anderen auch zusätzliches Gewicht eingebracht wird.
Insbesondere das höhere Gewicht ist jedoch in Bezug auf gewünschte Einsparungen im Kraftstoffverbrauch unerwünscht, da höheres Gewicht immer auch zu einem Kraft- Stoffmehrverbrauch führt. Aus diesem Grund ist es gewünscht, die einzelnen Bauteile des Fahrzeugs so leicht wie möglich zu fertigen. Insbesondere bei Stahlkonstruktionen ist jedoch eine Gewichtseinsparung allein auf Grund der Dichte des Materials nur schwer möglich, da im Allgemeinen kein zusätzliches Material mehr eingespart werden kann. Auch bei Einsatz von faserverstärkten Kunststoffen ist eine zusätzliche Ge- wichtseinsparung nur schwer möglich, da diese insbesondere bei innendruckbelastbaren Hohlkörpern stabil genug sein müssen, um einem auftretenden Innendruck stand halten zu können. Insbesondere bei Zylinderkopfhauben handelt es sich zudem um einen sich ständig ändernden Innendruck, so dass hier auch gegenüber den Druckschwankungen genug Stabilität gegeben sein muss. Bei Einsatz des innendruckbelastbaren Hohlkörpers zur Aufnahme eines Airbags wird der Hohlkörper zwar nur ein einziges Mal mit Innendruck belastet, wenn der Airbag auslöst, jedoch ist auch hier eine ausreichende Stabilität notwendig, um die volle Funktionsfähigkeit des Airbags zu gewährleisten.
Aufgabe der vorliegenden Erfindung ist es daher, ein Bauteil mit einem innendruckbelastbaren Hohlkörper bereit zu stellen, das ein geringeres Gewicht als die aus dem Stand der Technik bekannten Bauteile aufweist und eine ausreichende Stabilität gegen einen auftretenden Innendruck bietet.
Gelöst wird die Aufgabe durch ein Bauteil, umfassend einen innendruckbelastbaren Hohlkörper, wobei der innendruckbelastbare Hohlkörper mindestens einseitig offen ist und sich mindestens eine Öffnung in axialer Richtung erstreckt, wobei der Hohlkörper aus einem endlosfaserverstärkten thermoplastischen Polymeren gefertigt ist und die Endlosfasern nicht umlaufend im Hohlkörper angeordnet sind.
Der Einsatz eines endlosfaserverstärkten thermoplastischen Polymeren erlaubt es, innendruckbelastbare Hohlkörper herzustellen, die eine Wandstärke aufweisen, die deutlich unterhalb der Wandstärke von derzeit eingesetzten faserverstärkten Polyme- ren ist. Aufgrund des Einsatzes der Endlosfasern ist eine ausreichende Stabilität bereits bei Wandstärken von weniger als 2 mm gegeben. Der Einsatz eines thermoplastischen Polymeren hat weiterhin den Vorteil, dass es auf einfache Weise möglich ist, den einseitig offenen Hohlkörper mit weiteren Bauelementen, zum Beispiel Abdeckungen, zu verbinden. Die Verbindung kann dabei beispielsweise durch ein Schweißver- fahren erfolgen. Auch ist es möglich, an den innendruckbelastbaren Hohlkörper aus dem endlosfaserverstärkten thermoplastischen Polymeren auch weitere Elemente zum Beispiel durch ein Spritzgussverfahren direkt anzuspritzen. Dies erlaubt die Herstellung von stabilen Bauteilen und eine sichere Befestigung der Anbauteile an innendruckbelastbaren Hohlkörper.
Die endlosfaserverstärkten thermoplastischen Polymere, die als Bauteile mit einer großen Länge und Breite und einer im Vergleich dazu sehr geringen Höhe eingesetzt werden, werden auch als Organobleche bezeichnet. Im Unterschied zu herkömmlichen faserverstärkten Polymeren weisen die Endlosfasern im Organoblech einen hohen Orientierungsgrad auf. Ein hoher Orientierungsgrad im Rahmen der vorliegenden Erfindung bedeutet, dass die Endlosfasern im Wesentlichen parallel oder sich kreuzend in einem beliebigen Winkel, vorzugsweise in einem rechten Winkel angeordnet sind. Wenn sich die Fasern kreuzen, so sind jeweils die einzelnen Fasern einer Lage ebenfalls im Wesentlichen parallel ausgerichtet. Üblicherweise werden innendruckbelastbare Hohlkörper als geschlossene Körper, beispielsweise in Form von Zylindern, hergestellt, in denen die Endlosfasern umlaufend angeordnet sind. Solche Hohlkörper lassen sich jedoch nicht für alle Anwendungszwe- cke anwenden. So ist zum Beispiel insbesondere bei einem Airbagmodul eine Öffnung, die sich in axialer Richtung erstreckt, notwendig. Eine solche sich in axialer Richtung erstreckende Öffnung führt jedoch dazu, dass die eingesetzten Endlosfasern nicht umlaufend angeordnet sein können. Als Endlosfasern werden im Rahmen der vorliegenden Erfindung Fasern bezeichnet, die sich durchgehend von einem Ende des Hohlkörpers zum gegenüber liegenden Ende des Hohlkörpers erstrecken. Insbesondere wenn der Hohlkörper in Form eines Hohlzylinders mit einer darin ausgebildeten sich in axiale Richtung erstreckenden Öffnung ausgebildet ist, erstreckt sich zumindest ein Teil der Fasern von einer Seite der sich in axialer Richtung erstreckenden Öffnung durch den Hohlkörper zur gegenüber liegenden Seite der sich in axialer Richtung erstreckenden Öffnung. Dies ergibt einen radialen Verlauf der Fasern. Neben einer zylinderförmigen Gestaltung mit einer sich in axialer Richtung erstreckenden Öffnung kann der Hohlkörper jedoch jede beliebige andere Form annehmen, die technisch notwendig ist. So ist zum Beispiel auch eine Halbschale in einer beliebigen Form als ein Hohlkörper zu verstehen, der mindestens einseitig offen ist, wobei sich mindestens eine Öffnung in axialer Richtung erstreckt.
Geeignete thermoplastische Polymere, die eingesetzt werden können, um den Hohlkörper zu fertigen, sind Polyolefine, beispielsweise Polyethylen oder Polypropylen; Po- lyamide, beispielsweise Polyamid 6, Polyamid 6.6, Polyamid 6.12; Polycarbonate, beispielsweise thermoplastische Polyurethane, Polyoxymethylen, Polyphenylenether; Styrolpolymere, beispielsweise Polystyrol und Styrol enthaltende Copolymere wie Ac- rylnitril-Butadien-Styrol-Copolymere und Styrol-Acrylnitril-Copolymere;
Polytetrafluorethylen, Polyaromaten, beispielsweise Polyphenylensulfid, Polyethersulfon, Polysulfon, Polyetheretherketon, Polyetherimid, Polyacrylat oder Polyamidimid; Polychinoxaline, Polychinoline oder Polybenzimidazole; Polyester wie Polyethylenterephthalat oder Polybutylenterephthalat; Polyacrylnitril oder Polyvinylverbindungen wie Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylester, beispielsweise Polyvinylacetat, Polyvinylalkohole, Polyvinylacetale, Polyvinylether, Polyvinyllactame, Polyvinylamine sowie Mischungen daraus.
Geeignete Polymere werden dabei entsprechend des gewünschten Einsatzes des in- nendruckbelastbaren Hohlkörpers ausgewählt. Bevorzugt als thermoplastische Polymere sind Polyethylen, Polypropylen, Polyamide, Polyethylenterephthalat, Polybutylenterephthalat, Polycarbonat und thermoplastisches Polyurethan. So wird zum Beispiel für innendruckbelastbare Hohlkörper, die als Airbaggehäuse eingesetzt werden, zum Beispiel Polypropylen und Polyamid bevorzugt. Für Zylinderkopfabdeckungen sind beispielsweise Polyamide bevorzugt.
Fasern, die als Endlosfasern für den innendruckbelastbaren Hohlkörper eingesetzt werden können, sind zum Beispiel Glasfasern, Kohlenstofffasern, Kaliumtitanatfasern, Mineralfasern wie Basaltfasern, Borfasern oder Aramidfasern. Die Fasern sind als Gewebe, Gewirk, Gestrick oder Gelege, vorzugsweise in Form von langen parallel ausge- richteten Fasern, im endlosfaserverstärkten thermoplastischen Polymeren enthalten. Wenn die Endlosfasern als Gewebe enthalten sind, so ist jedes beliebige, dem Fachmann bekannte Gewebe einsetzbar.
Wenn die Fasern als Lagen parallel ausgerichteter Fasern im endlosfaserverstärkten thermoplastischen Polymeren enthalten sind, so ist es bevorzugt, wenn die Endlosfasern in mehreren Lagen aus parallel angeordneten Fasern enthalten sind, wobei die Fasern der einzelnen Lagen zueinander gedreht angeordnet sind. Hierbei können die einzelnen Lagen in jedem beliebigen Winkel zueinander gedreht angeordnet sein. Bevorzugt ist es, wenn der Wnkel, in dem die einzelnen Lagen zueinander gedreht ange- ordnet sind, im Bereich von 45 bis 90°, bevorzugt im Bereich von 80 bis 90° und insbesondere bei 90° liegt.
Um eine ausreichende Stabilität gegenüber einem auftretenden Innendruck zu erhalten, liegt der Anteil an Fasern im endlosfaserverstärkten thermoplastischen Polymeren bevorzugt bei mindestens 30 Gew.-%. Um eine ausreichende Stabilität des endlosfaserverstärkten thermoplastischen Polymeren zu erhalten, liegt der maximale Anteil an Fasern bei 70 Gew.-%.
Die Dicke der endlosfaserverstärkten thermoplastischen Polymeren wird abhängig von dem möglichen auftretenden Innendruck im Hohlkörper gewählt. Je höher der Innendruck werden kann, umso größer ist die Belastung auf den Hohlkörper. Bei einer entsprechend größeren Belastung ist daher auch eine größere Dicke des thermoplastischen Polymeren erforderlich. Auch ist die Beanspruchung des endlosfaserverstärkten thermoplastischen Polymeren größer, wenn dieses einer schwingenden Belastung ausgesetzt ist. Bei einer nur einmaligen Belastung ist es erforderlich, die Wandstärke so zu wählen, dass der Hohlkörper die einmalige Belastung übersteht.
Eine geeignete Dicke der endlosfaserverstärkten Polymeren liegt bei bis zu 5 mm, bevorzugt im Bereich von 0,5 bis 4 mm, insbesondere im Bereich von 1 bis 3 mm. Insbesondere, wenn das Bauteil mit dem innendruckbelastbaren Hohlkörper bei einer hohen Temperatur, insbesondere bei Temperaturen in der Nähe des Schmelzpunktes des eingesetzten thermoplastischen Polymeren eingesetzt wird, ist es bevorzugt, wenn dem thermoplastischen Polymeren zur Temperaturstabilisierung geeignete Addi- tive beigefügt werden. Als Additive zur Temperaturstabilisierung können zum Beispiel Eisenpulver oder Kombinationen aus Cu-haltigen Stabilisatoren mit Eisenoxiden eingesetzt werden. Bei Einsatz eines Polyamids ist es besonders bevorzugt, ein Polyamid einzusetzen, das 10 bis 99,999 Gew.-% eines Polyamides, 0,001 bis 20 Gew.-% Eisenpulver mit einer Teilchengröße von maximal 10 μηι (d50-Wert) und 0 bis 70 Gew.-% weiterer Zusatzstoffe enthält.
Das Eisenpulver kann zum Beispiel durch thermische Zersetzung von Eisenpentacarbonyl vorzugsweise bei Temperaturen von 150 bis 350°C erhalten werden. Die hierbei erhaltenen Partikel haben vorzugsweise eine sphärische Form, d.h. sie sind kugelförmig oder nahezu kugelförmig. Der Eisengehalt liegt vorzugsweise bei 97 bis 99,8 g/100g, insbesondere bei 97,5 bis 99,6 g/100g. Der Gehalt an weiteren Metallen beträgt vorzugsweise weniger als 1000 ppm, mehr bevorzugt weniger als 100 ppm und insbesondere weniger als 10 ppm. Der Stickstoffgehalt im Eisenpulver beträgt vorzugsweise maximal 1 ,5 g/100g, insbesondere 0,01 bis 1 ,2 g/100g und der Sauerstoffgehalt vorzugsweise maximal 1 ,3 g/100g, insbesondere 0,3 bis 0,65 g/100g.
Bevorzugte temperaturstabilisierte Polyamide enthalten 20 bis 98 Gew.-%, insbesondere 25 bis 94 Gew.-% eines Polyamids, beispielsweise PA 4, PA 6, PA 7, PA 8, PA 9, PA 1 1 , PA 12, PA 46, PA 66, PA 69, PA 610, PA 612, PA 613, PA 1212, PA 1313, PA 6T, PA 9T, PA MXD6, PA 6I, PA 6-3-T, PA 6/6T, PA 6/66, PA 6/12, PA 66/6/610, PA 6I/6T, PA PACM 12, PA 6I/6T/PACM, PA 12/MACMI, PA 12/MACMT, PA PDA-T.
Der Anteil an Eisenpulver liegt vorzugsweise im Bereich von 0,05 bis 10 und insbesondere im Bereich von 0,1 bis 5 Gew.-%.
Als Zusatzstoffe, die auch in den anderen vorstehend genannten Polymeren enthalten sein können, können neben den Endlosfasern auch faser- oder teilchenförmige Füllstoffe, beispielsweise Kohlenstofffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und/oder Feldspat in Mengen von 1 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-%, insbesondere von 10 bis 40 Gew.-% enthalten sein.
Um eine bessere Verträglichkeit der faserförmigen Füllstoffe und insbesondere der Endlosfasern mit dem thermoplastischen Polymeren zu erhalten, können die faserför- migen Füllstoffe, insbesondere die Endlosfasern, mit einer Silanverbindung an ihrer Oberfläche vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(CH2)n)k-Si-(0-CmH2m+l)4-k in der die Substituenten folgende Bedeutung haben:
X: NhL- CH^CH- , HO—
2 ' \ 2/
O
n: eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4
m: eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2
k: eine ganze Zahl von 1 bis 3, bevorzugt 1 Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth- oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten. Die Silanverbindungen werden im Allgemeinen in Mengen von 0,01 bis 2, vorzugsweise 0,025 bis 1 ,0 und insbesondere 0,05 bis 0,5 Gew.-% (bezogen auf die Masse der Fa- sern) zur Oberflächenbeschichtung eingesetzt.
Zusätzlich zur Zugabe von Additiven wird vorzugsweise auch das thermoplastische Polymere entsprechend der Temperatur, der das Bauteil im Betrieb ausgesetzt ist, ausgewählt.
Weitere Additive, die im Polymer enthalten sein können, sind Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide, nadeiförmige mineralische Füllstoffe und/oder plättchen- oder nadeiförmige Nanofüllstoffe, bevorzugt in Mengen von 0, 1 bis 10 Gew.- %. Hierbei eignen sich insbesondere Böhmit, Bentonit, Montmorillonit, Vermiculit, Hektorit und Laponit. Für eine gute Verträglichkeit mit dem thermoplastischen Polymer können die Nanofüllstoffe organisch modifiziert werden.
Weitere Additive, die in dem thermoplastischen Polymer enthalten sein können, sind Schmiermittel, Cu-Stabilisatoren, beispielsweise Cu-(l)-Halogenid, insbesondere in Mischung mit einem Alkalihalogenid oder einem sterisch gehinderten Phenol, Antioxidantien, Farbstoffe, vorzugsweise jeweils in Mengen von 0,05 bis 3 Gew.-%, bevorzugt 0,1 bis 1 ,5 Gew.-%. Weitere übliche Additive sind kautschukelastische Polymerisate, die auch als Schlagzähmodifier, Elastomere oder Kautschuke bezeichnet werden, mit einem Anteil von bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-%. Zudem können auch übliche Verarbeitungshilfsmittel enthalten sein. Hierbei handelt es sich zum Beispiel um Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, usw. In einer Ausführungsform der Erfindung umfasst das Bauteil weiterhin einen Deckel aus einem thermoplastischen Polymeren, mit dem der Hohlkörper verschlossen ist. Wenn der Hohlkörper mehr als eine Öffnung ausweist, so können alle Öffnungen mit einem jeweils geeigneten Deckel verschlossen werden. Weiterhin ist es aber auch möglich, dass mindestens eine Öffnung verschlossen wird und mindestens eine Öff- nung nicht verschlossen wird. Insbesondere dann, wenn auch nach der Montage und nach dem Verschließen Bauteile, die sich im Inneren des Hohlkörpers befinden, von außen zugänglich sein müssen, ist es bevorzugt, wenn nicht alle Öffnungen mit einem Deckel verschlossen werden. Als Deckel kann dabei in einer Ausführungsform der Erfindung ein zweiter innendruck- belastbarer, einseitig offener Hohlkörper eingesetzt werden.
Um die mindestens eine Öffnung mit einem Deckel zu verschließen, ist es insbesondere bevorzugt, den Deckel mit dem Hohlkörper formschlüssig zu verbinden. Eine form- schlüssige Verbindung kann zum Beispiel durch ein Klebeverfahren oder Schweißverfahren realisiert werden. Besonders bevorzugt ist es, den Deckel ebenfalls aus einem thermoplastischen Polymeren zu fertigen und mit dem Hohlkörper durch ein Schweißverfahren zu verbinden. Geeignete Schweißverfahren zur Verbindung des Hohlkörpers mit dem Deckel sind zum Beispiel Ultraschallschweißverfahren. Besonders bevorzugt ist es, wenn als Material für den Deckel das gleiche thermoplastische Polymere eingesetzt wird wie für den Hohlkörper.
Neben dem Verkleben oder Verschweißen des Deckels mit dem Hohlkörper ist es alternativ auch möglich, den Deckel zum Beispiel direkt am Hohlkörper durch einen Spritzgussprozess anzuspritzen oder durch einen Pressprozess, beispielsweise Fließpressen oder Formpressen, mit dem Hohlkörper zu verbinden.
Neben dem formschlüssigen Verbinden des Hohlkörpers mit einem Deckel ist es weiterhin auch möglich, weitere Anbauteile oder auch Verstärkungsrippen, sofern diese erforderlich sind, mit dem Hohlkörper zu verbinden. Das Anbringen der Verstärkungs- rippen oder der Anbauteile erfolgt dabei ebenfalls vorzugsweise durch ein Klebverfahren, Schweißverfahren, Pressverfahren, beispielsweise Fließpressen oder Formpressen, oder durch Anspritzen in einem Spritzgussprozess. Um einen innendruckbelastbaren Hohlkörper aus dem endlosfaserverstärkten thermoplastischen Polymeren herzustellen ist es zum Beispiel möglich, in einem ersten Arbeitsschritt eine Platte aus dem endlosfaserverstärkten thermoplastischen Polymeren zu fertigen, indem zunächst in einer geeigneten Form Lagen der Endlosfasern eingebracht werden. Hierbei können die Endlosfasern, wie zuvor bereits beschrieben, als einzelne Lagen parallel ausgerichteter Fasern oder als Gewebe, Gestrick oder Gewirk eingesetzt werden. Nach dem Einlegen der Fasern wird die Form mit dem thermoplastischen Polymeren gefüllt. Dies erfolgt zum Beispiel durch ein Gießverfahren, beispielsweise durch Spritzgießen. Zur Herstellung des innendruckbelastbaren Hohlkörpers ist es anschließend möglich, die Platte durch ein Tiefziehverfahren zum Hohlkörper zu formen.
Der innendruckbelastbare Hohlkörper mit der mindestens einen Öffnung, die sich in axialer Richtung erstreckt, kann zum Beispiel ein Airbaggehäuse, eine Zylinderkopfab- deckung oder ein Ladeluftkasten sein.
Zur Verstärkung ist es möglich, an dem innendruckbelastbaren Hohlkörper zusätzlich Rippen auszubilden. Die zur Verstärkung vorgesehenen Rippen können dabei gleichzeitig mit der Formung des Hohlkörpers geformt werden oder alternativ nach dem For- men des Hohlkörpers angebracht werden. Wenn die Rippen gleichzeitig mit der Formung des Hohlkörpers gebildet werden, können diese zum Beispiel durch geeignete Pressverfahren geformt werden. Auch ist es möglich, während der Formung des Hohlkörpers durch Tiefziehen die Rippen durch Spritzgießen oder Spritzprägen zu formen. Ein nachträgliches Anbringen der Rippen ist zum Beispiel durch Verschweißen mög- lieh. Hierbei werden sowohl der Hohlkörper als auch die Rippen aus einem thermoplastischen Polymeren gebildet.
Wenn die Rippen durch ein Spritzgießverfahren oder durch Spritzprägen geformt werden, ist es bevorzugt, zur Formung der Rippen ein unverstärktes Polymer oder ein spritzgießbares mit Kurzfasern verstärktes Polymer einzusetzen. Werden zuerst die Rippen geformt und anschließend an den Hohlkörper angeschweißt, ist es auch möglich, alternativ zu kurzfaserverstärkten Polymeren langfaserverstärkte oder endlosfaserverstärkte Polymere einzusetzen. Das Polymermaterial, aus dem die Rippen gebildet werden, wird vorzugsweise so ausgewählt, dass eine Verbindung mit dem Polymermaterial des Hohlkörpers durch Schweißen oder Anspritzen beziehungsweise spritzprägen möglich ist. Besonders bevorzugt ist es, für den Hohlkörper und für die Rippen das gleiche Polymermaterial ein- zusetzen.

Claims

Patentansprüche
Bauteil, umfassend einen innendruckbelastbaren Hohlkörper, wobei der innen- druckbelastbare Hohlkörper mindestens einseitig offen ist und sich mindestens eine Öffnung in axialer Richtung erstreckt, dadurch gekennzeichnet, dass der Hohlkörper aus einem endlosfaserverstärkten thermoplastischen Polymeren gefertigt ist, wobei die Endlosfasern einen hohen Orientierungsgrad aufweisen und nicht umlaufend im Hohlkörper angeordnet sind.
Bauteil gemäß Anspruch 1 , dadurch gekennzeichnet, dass das thermoplastische Polymere ausgewählt ist aus Polyolefinen, Polyamiden, Polycarbonaten, Styrolpolymeren, Polytetrafluorethylen, Polyaromaten, Polychinoxalinen, Polychinolinen oder Polybenzimidazolen, Polyestern, Polyacrylnitril oder Polyvinylverbindungen sowie Mischungen daraus.
Bauteil gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern Glasfasern, Kohlenstofffasern, Kaliumtitanatfasern, Basaltfasern, Borfasern oder Aramidfasern sind.
Bauteil gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Endlosfasern als Gewebe oder als Lagen parallel ausgerichteter Fasern im endlosfaserverstärkten thermoplastischen Polymeren enthalten sind.
Bauteil gemäß einem der Ansprüchel bis 4, dadurch gekennzeichnet, dass die Endlosfasern in mehreren Lagen aus parallel angeordneten Fasern im thermoplastischen Polymer enthalten sind, wobei die Fasern der einzelnen Lagen zueinander gedreht angeordnet sind.
Bauteil gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dicke des endlosfaserverstärkten thermoplastischen Polymeren maximal 5 mm beträgt.
Bauteil gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das thermoplastische Polymere temperaturstabilisiert ist.
Bauteil gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Bauteil einen Deckel aus einem thermopastischen Polymeren umfasst, mit dem der Hohlkörper verschlossen ist.
9. Bauteil gemäß Anspruch 8, dadurch gekennzeichnet, dass der Deckel mit dem Hohlkörper verschweißt ist.
10. Bauteil gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Deckel ein zweiter innendruckbelastbarer, einseitig offener Hohlkörper ist.
1 1. Bauteil gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Bauteil ein Airbaggehäuse, eine Zylinderkopfabdeckung oder ein Ladeluftkasten ist.
PCT/EP2012/054912 2011-03-22 2012-03-20 Bauteil mit einem innendruckbelastbaren hohlkörper WO2012126910A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11159144 2011-03-22
EP11159144.2 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012126910A1 true WO2012126910A1 (de) 2012-09-27

Family

ID=45872975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054912 WO2012126910A1 (de) 2011-03-22 2012-03-20 Bauteil mit einem innendruckbelastbaren hohlkörper

Country Status (1)

Country Link
WO (1) WO2012126910A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017003888U1 (de) 2017-07-21 2017-08-10 Lanxess Deutschland Gmbh Ölbehälter
WO2017207611A1 (de) 2016-06-03 2017-12-07 Covestro Deutschland Ag Mehrschichtverbundwerkstoff enthaltend spezielle copolycarbonate als matrixmaterial

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982856A (en) * 1989-06-23 1991-01-08 General Electric Company High temperature, high pressure continuous random glass fiber reinforced thermoplastic fluid vessel and method of making
WO1999002319A1 (en) * 1997-07-09 1999-01-21 Balmer, R., Charles Method of prepregging with resin and novel prepregs produced by such method
US6613423B1 (en) * 1989-10-03 2003-09-02 Mitsui Chemicals, Inc. Molded articles of fiber-reinforced plastic
EP2000288A1 (de) * 2007-06-06 2008-12-10 Covess Druckgefäß aus Kunststoff und das Verfahren zur Herstellung des Druckgefäß
CA2593519A1 (en) * 2006-07-14 2009-01-12 Marquez Transtech Ltee Novel thermoplastic part, tool and method for the manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982856A (en) * 1989-06-23 1991-01-08 General Electric Company High temperature, high pressure continuous random glass fiber reinforced thermoplastic fluid vessel and method of making
US6613423B1 (en) * 1989-10-03 2003-09-02 Mitsui Chemicals, Inc. Molded articles of fiber-reinforced plastic
WO1999002319A1 (en) * 1997-07-09 1999-01-21 Balmer, R., Charles Method of prepregging with resin and novel prepregs produced by such method
CA2593519A1 (en) * 2006-07-14 2009-01-12 Marquez Transtech Ltee Novel thermoplastic part, tool and method for the manufacturing thereof
EP2000288A1 (de) * 2007-06-06 2008-12-10 Covess Druckgefäß aus Kunststoff und das Verfahren zur Herstellung des Druckgefäß

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017207611A1 (de) 2016-06-03 2017-12-07 Covestro Deutschland Ag Mehrschichtverbundwerkstoff enthaltend spezielle copolycarbonate als matrixmaterial
US11130321B2 (en) 2016-06-03 2021-09-28 Covestro Deutschland Ag Multi-layer composite material containing special copolycarbonates as a matrix material
EP3950847A1 (de) 2016-06-03 2022-02-09 Covestro Intellectual Property GmbH & Co. KG Mehrschichtverbundwerkstoff enthaltend spezielle siloxan-blockcopolycarbonate als matrixmaterial
DE202017003888U1 (de) 2017-07-21 2017-08-10 Lanxess Deutschland Gmbh Ölbehälter

Similar Documents

Publication Publication Date Title
EP3126440B1 (de) Biomaterialverbundwerkstoff
DE102012213314B4 (de) Verbundwerkstoff zum Abschirmen breitbandiger elektromagnetischer Wellen und Verfahren zum Ausbilden des Verbundwerkstoffes
EP2748012A1 (de) Rad für ein kraftfahrzeug
EP2641786B1 (de) Innenausstattungsteil, insbesondere Instrumententafel mit einer Airbagklappe
EP2456619B1 (de) Bauteil umfassend ein einlegeteil sowie eine kunststoffummantelung sowie verfahren zu seiner herstellung
DE102009020090A1 (de) Reduktion des Einflusses der Wasseraufnahme auf die elektrische Leitfähigkeit von elektrisch leitfähigen Polyamid-Formmassen
DE102013104127A1 (de) Verfahren zur Herstellung eines Glasfaserprodukts und eines tragbaren elektronischen Geräts
DE102017117350A1 (de) Recycelte polypropylenzusammensetzungen und fahrzeugkomponenten
DE102015101564A1 (de) Verfahren zum Herstellen faserverstärkter Kunstharzmaterialien
WO2012126910A1 (de) Bauteil mit einem innendruckbelastbaren hohlkörper
EP3030405A2 (de) Verfahren zur herstellung eines verbundformteils, verbundformteil, sandwichbauteil und rotorblattelement und windenergieanlage
CH708727A2 (de) Kohlenstofffaser-verstärkte Kunststoff-Formmassen.
WO1995008592A1 (de) Faserenthaltender kunststoff, verfahren zu seiner herstellung, faserenthaltendes granulat, faserenthaltendes polymercompound
DE102012108882A1 (de) Kraftfahrzeugtürverschluss sowie zugehöriges Verfahren zu seiner Herstellung
DE102020115006A1 (de) Kern-Hülle-Stränge und deren Verwendung in 3D-Druckverfahren zur Herstellung von thermoplastischen Formkörpern
EP3036274A1 (de) Verfahren zur herstellung eines bauteils aus einem polymermaterial
DE102013001233A1 (de) Partikelschaum-Bauteil mit integrierter Befestigung und Verfahren zu seiner Herstellung
WO2016096093A1 (de) Profilteil mit einer mehrzahl von schichten
DE102015000947A1 (de) Verfahren zur Herstellung eines faserverstärkten Polymer-Formteils mit einer Mehrzahl an Verstärkungsfaserlagen und Vorformling eines solchen Polymer-Formteils
EP3374249B1 (de) Strukturbauteil für ein kraftfahrzeug
DE102013114200B4 (de) Schutzhülle
WO2014114759A1 (de) Barriereverbund für kunststoffbauteile
DE102012016729A1 (de) Bauteil sowie Verfahren zum Herstellen eines Bauteils
EP1424190B1 (de) Spritzguss- oder extrudiertes Formteil und Verfahren zu dessen Herstellung
DE102013002489A1 (de) Innenverkleidungsbauteil für ein Kraftfahrzeug aus Polypropylen und biobasierten Polymerfasern und Verfahren zur Herstellung eines solchen Innerverkleidungsbauteils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12709884

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12709884

Country of ref document: EP

Kind code of ref document: A1