WO2012126365A1 - 一种反向镀抗反射膜的方法 - Google Patents

一种反向镀抗反射膜的方法 Download PDF

Info

Publication number
WO2012126365A1
WO2012126365A1 PCT/CN2012/072706 CN2012072706W WO2012126365A1 WO 2012126365 A1 WO2012126365 A1 WO 2012126365A1 CN 2012072706 W CN2012072706 W CN 2012072706W WO 2012126365 A1 WO2012126365 A1 WO 2012126365A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent material
reflection film
reverse
optically transparent
electronic
Prior art date
Application number
PCT/CN2012/072706
Other languages
English (en)
French (fr)
Inventor
吕兴增
Original Assignee
南京炫视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京炫视界光电科技有限公司 filed Critical 南京炫视界光电科技有限公司
Priority to EP12761418.8A priority Critical patent/EP2690469A4/en
Publication of WO2012126365A1 publication Critical patent/WO2012126365A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer

Definitions

  • the present invention relates to a coating technique, and more particularly to a reverse coating method, and more particularly to a method of eliminating a reverse plating anti-reflection film for optical interference images in optical imaging. Background technique
  • the first reflection occurs, and when the reflected light encounters the optically transparent material, as shown in the figure, in the case of glass, the splitting occurs on both sides of the glass. Reflection and refraction, the distance between the splitting points is equal to the thickness of the glass, due to the interference of the reflected and refracted light, the interference; the reflected light a, a2 produces glare; entering the human field of view; glare will enhance the brightness, reduce the color saturation, so that The outline of the object is blurred.
  • the refracted lights bl, b2 produce a superimposed image of double overlap A bl and A b2 near the image A' of the main transmitted light, that is, ghost.
  • double projection that is, ghosting
  • ghosting occurs when the angle of projection is not at a positive 90 degree angle with the glass.
  • ghosting is caused by the fact that light splits into different media and produces refracting splitting.
  • the light travels to the surface of the glass, which produces a refracting spectroscopic image with a weaker illuminance than the main image, which appears in front of or behind the original reflected subject image, which forms a double superimposition (commonly known as ghost).
  • the object of the present invention is to propose a double image, that is, ghosting problem, which exists in the interference image of light, that is, the light interference.
  • a method for eliminating a reverse-plated anti-reflection film for optical interference images in optical imaging In the process of plating an anti-reflection film on an optically transparent material by an electronic coating machine, the particle gun electrode of the electronic coating machine is polarized on the chamber The positive and negative charges are reversed, and the anti-reflection film is reverse-plated to form a reverse anti-reflection film on the surface of the optically transparent material.
  • the optically transparent material of the present invention is a high temperature resistant transparent material.
  • the high temperature resistant transparent material of the present invention is a high temperature resistant glass.
  • the optically transparent material of the present invention is reverse-plated with an anti-reflection film, that is, a reverse anti-reflection film, on the side of the light source image, that is, the object.
  • the active surface of the reverse anti-reflection film of the present invention faces the optically transparent material.
  • the reverse anti-reflection film of the present invention has a thickness of 0.1 to 2.5 nm.
  • the electronic coating machine of the invention adopts a high temperature electronic vapor deposition machine or an electronic coating machine at a normal temperature.
  • the invention uses an ion plating method to plate an anti-reflection film.
  • the positive and negative charges on the electrode polarizer of the particle gun are reversed, and the coating surface is reversed inward, facing the optics.
  • transparent materials it can effectively eliminate ghosts, so that the imaged objects have no obvious chromatic aberration, and no additional objects are visible; at the same time, the sharpness of the image is enhanced, the light reflection effect is reduced, and the light characteristics of the imaged object are increased. And applicability.
  • the new technical method proposed by the invention can improve the effect that the general color difference method can not achieve, is superior and does not sacrifice the visual effect, and at the same time increases the sharpness, and is beneficial to optically increasing the visual effect of the anti-reflection film (light penetration is nearly 99%)
  • the coating characteristics - the forward surface reduces the scattering of light to increase the light penetration, and the reverse surface is the surface with the folding and reflection.
  • the anti-reflective coating has a special feature, which is characterized by non-equal single-sided action, one side (positive acting surface) being penetrating or anti-reflective, and the other side (reverse surface) being semi-permeable.
  • the so-called semi-penetration refers to the characteristic effect of polarizing (reflection and refraction), but it has the effect of partial light reflection or partial light refraction at zero angle of the polarizer, and almost full penetration of positive action. Transmission effect.
  • This special feature can be applied to the optical design to help design the optical path for optical projection, angiography, etc., to help achieve a clearer image; more optical refraction, the light that is easily caused by the light source itself Interference images are resolved.
  • the invention can be applied to the automotive industry, the aviation industry, the liquid crystal industry, the display industry and the communication industry.
  • Fig. 1 is a schematic diagram showing the principle of interference image generation, that is, double layering.
  • FIG. 2 is a schematic diagram of the principle of eliminating interference images of the present invention.
  • a method for eliminating the reverse plating anti-reflection film of the optical interference image in optical imaging in the process of plating the anti-reflection film on the optical transparent material 2 by the electronic coating machine, the electronic coating machine can be The positive and negative charge reversed on the particle gun electrode polarized chamber of the model DVE-240-PVD produced by Texas Instruments Technology Co., Ltd., and the anti-reflection film is reverse-plated on the surface of the optical transparent material 2 A reverse anti-reflection film 1 is formed.
  • the optically transparent material 2 of the present invention is a high temperature resistant transparent material, and a high temperature resistant glass can be used.
  • the optically transparent material 2 of the present invention faces the light source image, that is, the opposite side of the object, which is a reverse anti-reflection film, that is, a reverse anti-reflection film 1.
  • the anti-reflective film 1 has an action surface facing inward and faces the optically transparent material 2; the surface is more reflective; the non-active surface faces outward and faces the object, and the surface has increased penetration.
  • the anti-reflection film 1 is reverse-plated on the side of the optically transparent material 2 facing the light source image, that is, the object, and the polarizing film is coated on the other side.
  • a reverse anti-reflection film is further plated on the polarizing film as needed.
  • a reverse anti-reflection film may also be plated on both sides of the optically transparent material as needed.
  • the reverse anti-reflection film 1 of the present invention has a thickness of 0.1 to 2.5 nm.
  • the electronic coating machine of the invention adopts a high temperature electronic vapor deposition machine or an electronic coating machine at a normal temperature.
  • the glass is taken as an example, on both sides of the glass.
  • the reflection and refraction of the splitting occurs, since the action surface of the reverse anti-reflection film 1 faces inward and faces the glass, the surface increases the reflectivity; the non-acting surface faces outward, facing the object, the penetration of the surface is increased; Gradually weakened.
  • the reflected light a1, a2 gradually weakens, the reflection angle gradually becomes larger, and the reflected image is far away from the human field of view; the glare phenomenon is weakened.
  • the action surface of the reverse anti-reflection film 1 faces inward and faces the glass, the surface is more reflective, and the light b2 refracted by the main penetration light is reflected on the glass surface, and then sequentially on the active surface of the reverse anti-reflection film 1. Reflecting between the non-film surface of the glass; refracted light bl, b2, reflected light b3, b4 after refraction produces Abl, Ab2, Ab3, Ab4 of the image, and the brightness gradually becomes weaker. At the same time: the reflection angle of the main penetrating light is gradually increased.
  • the distances of the images Abl, Ab2, Ab3 and Ab4 become far away from the human field of view.
  • the image of the main penetrating light A' has high definition and reduces the light reflection effect; it can effectively eliminate ghosts, so that the imaged object has no obvious chromatic aberration, and no additional objects are visible, so that the optical characteristics of the imaged object are increased. And applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

说明书
一种反向镀抗反射膜的方法
技术领域
本发明涉及一种镀膜技术, 尤其是一种反向镀膜方法, 具体地说是一种能消除光学成像 中光干涉影像的反向镀抗反射膜的方法。 背景技术
当太阳光照射到物体表面时, 光从一个介质进入到另一个介质, 因不同介质面而产生的 光分子和光波长同时发生, 产生光的反射和折射, 分别造成眩光和鬼影。
如图 1所示, 入射光线照射到光源影像即实物 A后, 发生第一次反射, 反射光遇到光学 透明材料时, 如图所示, 以玻璃为例, 在玻璃的两面均发生分光的反射和折射, 分光点之间 的距离等于玻璃的厚度, 由于反射光和折射光的干涉即干扰; 反射光 al、 a2产生眩光; 进入 人的视野; 眩光会增强亮度, 减弱色彩饱和度, 使物体轮廓模糊不清。 折射光 bl、 b2在主穿 透光的影像 A' 附近产生双重迭影 Abl、 Ab2的重叠影像即鬼影。
一般在常态下, 在一片厚度为 0.1mm以上的玻璃上进行投影时, 若投影的角度与玻璃不 在正 90度角时就会产生双重迭影即鬼影。鬼影的生成原因是光在穿透不同介质时会产生折射 分光分光。 在折射分光的作用下, 光行进至玻璃表面此会产生一个较主体影像弱光度的折射 分光影像, 在原反射主体影像前方或者后方出现,这就形成双重迭影 (俗称鬼影)。 例如: 一般, 当人们站在大型玻璃窗框前, 人从侧面看向窗框时, 尝尝看到自己的影像成双重即 (鬼影)。 同 时, 该影像成像模糊、 不清楚, 影像视觉效果, 容易产生视觉疲劳,混淆。
在实际使用中, 我们为了消除鬼影, 一般使用色差法: 贴一层薄膜或涂布一层半透漆, (此 贴膜或漆毕须是有穿透性并且较原呈像物深色的对象) ; 例如: 在汽车的前挡风玻璃上贴附 一层与挡风玻璃相比颜色较深的具有穿透性的贴膜来消除鬼影, 能达到一定效果。 但是, 由 于新的贴膜较原对象颜色深, 会有色差, 影响视觉清晰度, 影响驾驶员视线。 所以色差法不 是很好的方法。 发明内容
本发明的目的是针对光的干涉影像中即光干扰中所存在的双重迭影即鬼影问题, 提出一 种能消除光学成像中光干涉影像的反向镀抗反射膜的方法。
本发明的技术方案是:
一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 在电子镀膜机对光学透明 材料进行镀抗反射膜的过程中, 将电子镀膜机的粒子枪电极极化仓上的正、 负电荷反向, 进 行反向镀抗反射膜, 在光学透明材料表面形成反向抗反射膜。
本发明的光学透明材料为耐高温的透明材料。
本发明的耐高温的透明材料为耐高温的玻璃。
本发明的光学透明材料面向光源影像即实物的一面反向镀抗反射膜即反向抗反射膜。 本发明的反向抗反射膜的作用面面向光学透明材料。
本发明的反向抗反射膜的厚度为 0.1-2.5nm。
本发明的电子镀膜机选用高温的电子蒸镀机或选用常温的电子镀膜机。
本发明的有益效果:
本发明是使用电离子镀膜方法镀抗反射膜, 当我们在使用电子镀膜机时, 将粒子枪的电 极极化仓上的正负电荷反向, 镀膜会产生作用面反向朝内, 面向光学透明材料的情形; 能够 有效消除鬼影, 使得成像物体没有明显色差, 看不出有附加物; 同时, 增强了影像的清晰度, 减少了光反射效应, 使得呈像物体的光特性增加了效果及应用性。
本发明提出的新技术作法能改善一般色差法达不到的效果,较优良而且不牺牲视觉效果, 同时增加清晰度, 利于光学上增加视觉效果的抗反射膜(光穿透性近 99%)的镀膜特性- -正向 面减少光的散射增加光线穿透度 , 反向面则是具有折、 反射的作用面。 该抗反射镀膜有一特 殊性, 它是不对等单面作用的特点, 其一面 (正作用面)为穿透性即抗反射性, 另一面 (反向作 用面)为半穿透性。 所谓半穿透性是指其具有偏光 (反射及折射作用)的特性效果, 但是, 它具 有偏光片没有的零角度的部分光反射作用或部分光折射作用的效果,和正向作用近乎全穿透 的透射效果。 此特殊的特点可应用在光学设计上 , 帮助对光学投影、 造影等等进行光路径的 设计, 帮助取得更清晰的影像; 更多的光学折反射作用中, 光源本身所容易造成的各种光干 涉影像, 均得到解决。
本发明可应用于汽车行业、 航空行业、 液晶行业、 显示器行业和通讯行业。 附图说明
图 1是干涉影像即双重迭影产生的原理示意图。
图 2是本发明的消除干涉影像的原理示意图。 图中: 1、 反向抗反射膜; 2、 光学透明材料。 具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图 2所示, 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 在电子镀膜 机对光学透明材料 2进行镀抗反射膜的过程中, 将电子镀膜机 (可采用德仪科技有限公司生 产的型号为 DVE-240-PVD 的蒸镀机) 的粒子枪电极极化仓上的正、 负电荷反向, 进行反向镀 抗反射膜, 在光学透明材料 2表面形成反向抗反射膜 1。
本发明的光学透明材料 2为耐高温的透明材料, 可采用耐高温的玻璃。
本发明的光学透明材料 2面向光源影像即实物的一面反向镀抗反射膜即反向抗反射膜 1。 反向抗反射膜 1的作用面朝内, 面向光学透明材料 2; 该面加大了反射性; 非作用面朝外, 面向实物, 该面的穿透性加大。
通常, 在光学透明材料 2面向光源影像即实物的一面反向镀抗反射膜即反向抗反射膜 1, 另一面镀偏光膜。 或者, 根据需要在该偏光膜上再镀反向抗反射膜。 也可以根据需要, 在光 学透明材料的两面均镀反向抗反射膜。
本发明的反向抗反射膜 1的厚度为 0.1-2.5nm。
本发明的电子镀膜机选用高温的电子蒸镀机或选用常温的电子镀膜机。
如图 2所示, 入射光线照射到光源影像即实物 A后, 发生第一次反射, 反射光遇到镀有 反向抗反射膜的光学透明材料时, 以玻璃为例, 在玻璃的两面均发生分光的反射和折射, 由 于反向抗反射膜 1的作用面朝内, 面向玻璃, 该面加大了反射性; 非作用面朝外, 面向实物, 该面的穿透性加大; 分光逐渐变弱。
反射光 al、 a2逐渐变弱, 反射角逐渐变大, 反射影像远离人的视野; 眩光现象减弱。 由于反向抗反射膜 1的作用面朝内, 面向玻璃, 该面加大了反射性, 主穿透光折射后的 光线 b2在玻璃面反射,之后依次在反向抗反射膜 1的作用面和玻璃的非贴膜面之间反射; 折 射光 bl、 b2、 折射后的反射光 b3、 b4产生影像的 Abl 、 Ab2、 Ab3、 Ab4 , 亮度逐渐变弱。 同时: 主穿透光折射后的反射角逐渐增大, 如图 2所示, Θ 1< Θ 2< Θ 3, 影像 Abl 、 Ab2、 Ab3、 Ab4距离变远, 远离人的视野。 主穿透光的影像 A' 的清晰度高, 同时减少了光反射效 应; 能够有效消除鬼影, 使得成像物体没有明显色差, 看不出有附加物, 使得呈像物体的光 特性增加了效果及应用性。
本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims

权利要求书
1. 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是在电子镀膜机 对光学透明材料(2)进行镀抗反射膜的过程中, 将电子镀膜机的粒子枪电极极化仓上 的正、 负电荷反向, 进行反向镀抗反射膜, 在光学透明材料 (2)表面形成反向抗反射 膜 (1 )。
2. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的光学透明材料 (2) 为耐高温的透明材料。
3. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的耐高温的透明材料为耐高温的玻璃。
4. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的光学透明材料(2)面向光源影像即实物的一面反向镀抗反射膜即反向 抗反射膜 (1 )。
5. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的反向抗反射膜 (1 ) 的作用面面向光学透明材料 (2)。
6. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的反向抗反射膜 (1 ) 的厚度为 0.1-2.5nm。
7. 根据权利要求 1 所述的一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法, 其特征是所述的电子镀膜机选用高温的电子蒸镀机或选用常温的电子镀膜机。
PCT/CN2012/072706 2011-03-22 2012-03-21 一种反向镀抗反射膜的方法 WO2012126365A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12761418.8A EP2690469A4 (en) 2011-03-22 2012-03-21 REVERSE COATING PROCESS FOR AN ANTI-REFLECTION FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100691186A CN102122009B (zh) 2011-03-22 2011-03-22 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法
CN201110069118.6 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012126365A1 true WO2012126365A1 (zh) 2012-09-27

Family

ID=44250599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072706 WO2012126365A1 (zh) 2011-03-22 2012-03-21 一种反向镀抗反射膜的方法

Country Status (3)

Country Link
EP (1) EP2690469A4 (zh)
CN (1) CN102122009B (zh)
WO (1) WO2012126365A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554780B (zh) * 2015-06-05 2016-10-21 國立成功大學 抗反射膜之製備方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122009B (zh) * 2011-03-22 2013-04-24 南京炫视界光电科技有限公司 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207109A (ja) * 2001-10-26 2002-07-26 Dainippon Printing Co Ltd 防眩フィルム、偏光フィルム及び透過型表示装置
JP2005070435A (ja) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd 防眩性反射防止膜の製造方法
KR20050111037A (ko) * 2004-05-20 2005-11-24 광주과학기술원 콜로이드 다중 입자층 구조를 이용한 반사 방지막과 이의제조방법
US20060061868A1 (en) * 2004-07-28 2006-03-23 Dai Nippon Printing Co., Ltd. Antireflection structure and optical material comprising the same
JP2006091174A (ja) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd 液晶表示素子の製造方法
CN1877369A (zh) * 2005-04-26 2006-12-13 住友化学株式会社 防反射层叠体的制备方法
CN101042442A (zh) * 2006-03-20 2007-09-26 日产自动车株式会社 防反射结构、防反射模制体及其制造方法
CN102122009A (zh) * 2011-03-22 2011-07-13 南京炫视界光电科技有限公司 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207109A (ja) * 2001-10-26 2002-07-26 Dainippon Printing Co Ltd 防眩フィルム、偏光フィルム及び透過型表示装置
JP2005070435A (ja) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd 防眩性反射防止膜の製造方法
KR20050111037A (ko) * 2004-05-20 2005-11-24 광주과학기술원 콜로이드 다중 입자층 구조를 이용한 반사 방지막과 이의제조방법
US20060061868A1 (en) * 2004-07-28 2006-03-23 Dai Nippon Printing Co., Ltd. Antireflection structure and optical material comprising the same
JP2006091174A (ja) * 2004-09-21 2006-04-06 Victor Co Of Japan Ltd 液晶表示素子の製造方法
CN1877369A (zh) * 2005-04-26 2006-12-13 住友化学株式会社 防反射层叠体的制备方法
CN101042442A (zh) * 2006-03-20 2007-09-26 日产自动车株式会社 防反射结构、防反射模制体及其制造方法
CN102122009A (zh) * 2011-03-22 2011-07-13 南京炫视界光电科技有限公司 一种能消除光学成像中光干涉影像的反向镀抗反射膜的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554780B (zh) * 2015-06-05 2016-10-21 國立成功大學 抗反射膜之製備方法

Also Published As

Publication number Publication date
EP2690469A1 (en) 2014-01-29
EP2690469A4 (en) 2015-07-29
CN102122009A (zh) 2011-07-13
CN102122009B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
CN104267498B (zh) 一种抬头显示系统
WO2016058474A2 (zh) 一种抬头显示系统
US10609363B2 (en) Method and system for display device with integrated polarizer
JP6790831B2 (ja) 光学フィルタ及び撮像装置
JP6786248B2 (ja) 光学素子およびその製造方法
US9019175B2 (en) Optical device for virtual image display with unequal focal length and high magnification
JP2013127606A (ja) レンズと前記レンズ上にパターンコーティングを形成する方法
CN107045203A (zh) 一种抬头显示系统
WO2015141170A1 (ja) レンズアッシー
TW421722B (en) Electronic projection system with polymeric film optical components
TW201312195A (zh) 鏡頭模組
TWI474058B (zh) 圖案化阻滯劑積層複合偏光板及使用該板之顯示裝置
US6522468B2 (en) Light-polarizing film
TW201727283A (zh) 偏光板、防反射積層體及影像顯示系統
CN206618874U (zh) 一种防蓝光膜结构和防蓝光镜片
WO2012126365A1 (zh) 一种反向镀抗反射膜的方法
TWI422860B (zh) 顯示系統
CN209070122U (zh) 复合镀膜层、镜筒、镜头和拍摄设备
CN109270602A (zh) 复合镀膜层、镜筒、镜头和拍摄设备
KR101249807B1 (ko) 입체감을 가지도록 하는 평판
CN220872694U (zh) P偏振光增反膜、前挡玻璃及平视显示系统
TW201825323A (zh) 防疊影的反射裝置及其顯示系統
WO2024066880A1 (zh) S偏振光透反膜、挡风窗、显示装置和交通设备
TWI572884B (zh) A method for manufacturing a lens and a pattern coating thereof
Seder et al. Minimizing HUD ghost images from glare trap lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012761418

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE