WO2012124620A1 - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
WO2012124620A1
WO2012124620A1 PCT/JP2012/056070 JP2012056070W WO2012124620A1 WO 2012124620 A1 WO2012124620 A1 WO 2012124620A1 JP 2012056070 W JP2012056070 W JP 2012056070W WO 2012124620 A1 WO2012124620 A1 WO 2012124620A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
chuck
optical connector
hole
optical
Prior art date
Application number
PCT/JP2012/056070
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 等
小林 武
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Publication of WO2012124620A1 publication Critical patent/WO2012124620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3853Lens inside the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3887Anchoring optical cables to connector housings, e.g. strain relief features
    • G02B6/3888Protection from over-extension or over-compression
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to an optical connector using an optical collimator.
  • Optical connectors used for applications that combine optical fibers with various optical devices have small dimensions on the shape surface, and maintain the positional relationship between the optical fiber and the collimator lens even if the device is repeatedly inserted and removed. Is required.
  • the present invention has been made in view of the above points, and an object thereof is to provide an optical connector capable of aligning a collimator lens and an optical fiber with high accuracy without requiring a complicated assembly process.
  • the optical connector of the present invention has a metal holding member in which a receiving portion for receiving a collimator lens is formed at one end, an insertion hole into which an optical fiber is inserted is formed at the other end, and the holding member is inserted at one end.
  • a resin joint having a second insertion hole into which the optical fiber is inserted at the other end, a gripping portion for the optical fiber, and a through hole of the resin joint.
  • An optical connector comprising: a chuck to be inserted, wherein positioning is performed by bringing at least one of the collimator lens and the end face of the optical fiber into contact with a depressed portion formed in the vicinity of the holding portion of the holding member At the same time, the chuck inserted into the through hole is elastically deformed radially inward to fix the optical fiber by the grip portion.
  • the collimator lens and / or the optical fiber are positioned with reference to the depressed portion since the collimator lens and the optical fiber are positioned in contact with the depressed portion provided in the holding member. Therefore, it is possible to improve the working efficiency compared to the case where another part is inserted into the holding member as in the prior art, and to easily position the collimator lens and the optical fiber while suppressing an increase in cost. Can be performed. Further, since the chuck inserted into the through hole of the resin joint is elastically deformed inward in the radial direction, the optical fiber is fixed by the grip portion, so that the positioned optical fiber can be firmly fixed. As a result, the collimator lens and the optical fiber can be aligned with high accuracy without requiring a complicated assembly process.
  • the chuck has a cylindrical shape in which a front end portion in an insertion direction with respect to the through hole is provided with a smaller diameter than a rear end portion, and a slit is provided along the insertion direction.
  • the optical fiber is fixed by the grip portion by abutting with a taper surface provided on the inner wall and elastically deforming radially inward.
  • the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible.
  • the chuck has a cylindrical shape formed of an elastic material, and abuts on the inner wall of the through hole and elastically deforms radially inward to fix the optical fiber at the grip portion. It may be.
  • the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible.
  • the chuck is formed of an elastic material, it is not necessary to provide a configuration such as a slit for elastic deformation, and the cost required for manufacturing the chuck can be reduced.
  • the chuck has a cylindrical shape in which a large diameter portion and a small diameter portion are connected in the insertion direction with respect to the through hole, and a slit is provided along the insertion direction.
  • the outer surface of the diameter portion may contact the inner wall of the through hole and elastically deform inward in the radial direction, whereby the optical fiber may be fixed by the grip portion provided on the inner surface of the small diameter portion.
  • the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible.
  • the optical fiber can be held by the grip portion provided on the inner surface of the small diameter portion different from the large diameter portion that is in contact with the through hole of the resin joint, it is possible to prevent an excessive pressing force from being applied to the optical fiber. It becomes possible to fix the optical fiber without damaging it.
  • the chuck has a cylindrical shape in which a small diameter portion and a large diameter portion are connected in the insertion direction with respect to the through hole, and a plurality of chucks are provided in the large diameter portion along the insertion direction.
  • a slit is provided, and the outer surface of the large-diameter portion abuts against the inner wall of the through hole and elastically deforms radially inward, thereby fixing the optical fiber with the grip portion provided on the inner surface of the large-diameter portion. You may do it.
  • the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible.
  • the optical connector may include a presser piece that contacts the end of the chuck and fixes the chuck.
  • the chuck can be prevented from being displaced by fixing the chuck with the pressing piece, so that the optical fiber can be fixed securely.
  • the optical connector preferably includes a cover that covers the second insertion hole and the optical fiber exposed from the second insertion hole. In this case, by fixing the chuck and the optical fiber by the cover, it is possible to prevent the positional deviation of the chuck and the optical fiber, so that the optical fiber can be securely fixed.
  • the optical connector it is preferable that a plurality of convex portions are provided in a portion of the cover that covers the optical fiber.
  • the jacket can be held by a part of the cover, the jacket covering the optical fiber can be effectively fixed without increasing the number of parts.
  • the optical connector it is preferable to provide an engaged portion that engages with the engaging portion on the device side when connected to the device on the outer periphery of the resin joint.
  • the engaged portion provided in a part of the resin joint can prevent the optical connector inserted in the device from being displaced, so that the connection between the optical connector and the device can be improved.
  • the optical connector it is preferable to provide an annular projecting flange on the outer periphery of the resin joint so that it can be inserted into the connection position with respect to the device.
  • the optical connector can be positioned at a predetermined position in the device.
  • the collimator lens and the optical fiber can be aligned with high accuracy without requiring a complicated assembly process.
  • FIG. 6 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 7 is an enlarged view within a two-dot chain line B shown in FIG. 6.
  • FIG. 1 is a side sectional view schematically showing a state in which an optical connector according to the present invention is connected to a device.
  • a device including a light receiving / light emitting element will be described.
  • the configuration of the device is not limited to this and can be appropriately changed.
  • a device 100 to which an optical connector 10 according to the present invention is connected has a light receiving / light emitting element 101 disposed inside a case 102 and is not shown on the optical axis of the light receiving / light emitting element 101.
  • the condensing lens 103 and the oblique polishing surface 104 supported by the supporting means are arranged.
  • An opening 105 for inserting the optical connector 10 is provided on the side surface of the case 102 of the device 100.
  • the laser light emitted from the light emitting element 101 is reflected by the oblique polishing surface 104 through the condenser lens 103 and guided to the opening 105.
  • the light reflected by the oblique polishing surface 104 is collected by the collimator lens 12 of the optical connector 10 and enters the optical fiber 13. Then, the incident light propagates in the optical fiber 13.
  • the optical path of the laser light emitted from the light emitting element 101 is indicated by a dotted line.
  • the light propagating through the optical fiber 13 is collimated by passing through the collimator lens 12.
  • the laser light emitted from the optical fiber 13 is reflected by the oblique polishing surface 104 and guided to the light receiving element 101 via the condenser lens 103.
  • the optical path of the laser beam emitted from the optical fiber 13 is indicated by a dotted line.
  • the optical connector 10 when the optical connector 10 is inserted to a predetermined position in the case 102, the laser light transmitted between the light receiving / light emitting element 101 and the optical fiber 13 is reflected by the condenser lens 103 and the oblique direction. It is designed so that it can enter and exit appropriately through the polishing surface 104.
  • the configuration of the optical connector 10 according to the present invention connected to such a device 100 will be described.
  • FIG. 2 is a side sectional view of the optical connector 10 according to the first embodiment of the present invention.
  • the optical connector 10 is provided at a holder 11 as a holding member having a generally cylindrical shape, a collimator lens 12 held at one end of the holder 11, and the other end of the holder 11.
  • Optical fiber 13 inserted through insertion hole 11a, resin joint 14 holding holder 11 and optical fiber 13, chuck 15 for fixing optical fiber 13, cover 16 covering resin joint 14 and chuck 15, and optical fiber 13, and a metal member 18 having a generally cylindrical shape for fixing the jacket 17.
  • a plastic optical fiber is preferably inserted as the optical fiber 13.
  • the holder 11, the collimator lens 12 and the optical fiber 13 constitute an optical collimator 10a. Details of the optical collimator 10a will be described later.
  • FIG. 3 is a side sectional view of the resin joint 14.
  • the resin joint 14 has a generally cylindrical shape, and an insertion hole 14 a into which the holder 11 is inserted is provided at one end of the through hole along the longitudinal direction of the resin joint 14. Is provided with an opening 14b into which the optical fiber 13 is inserted.
  • the insertion hole 14a constitutes a first insertion hole, and the opening 14b constitutes a second insertion hole.
  • a flange 14 c is provided near the center of the resin joint 14.
  • first cylindrical portion 14d a portion from the flange 14c to the insertion hole 14a is referred to as a first cylindrical portion 14d, and a portion from the flange 14c to the opening portion 14b is referred to as a second cylindrical portion 14e.
  • the engaged portion 14f is provided in the center of the first cylindrical portion 14d in a groove shape.
  • the first cylindrical portion 14d is configured to have a smaller diameter than the second cylindrical portion 14e.
  • a positioning portion 14g is provided at the boundary between the flange 14c and the second cylindrical portion 14e in the through hole of the resin joint 14, and a grip region 14h and an opening portion are provided in a portion of the second cylindrical portion 14e adjacent to the flange 14c.
  • a tapered region 14i is provided in a portion adjacent to 14b.
  • the inner diameter from the positioning portion 14 g to the insertion hole 14 a is substantially the same as the outer diameter of the holder 11, and the inner diameter of the gripping region 14 h is configured to be substantially the same as the outer diameter of the optical fiber 13.
  • the inner diameter of the tapered region 14i is configured to have a tapered shape that decreases as it goes from the opening 14b side to the flange 14c side.
  • a notch 14j is provided along the inner periphery thereof.
  • the outer diameter of the flange 14c is configured to be larger than the inner diameter of the opening 105 in the device 100 to which the optical connector 10 is connected. Therefore, when the optical connector 10 is inserted into the device 100, the flange 14 c is always inserted into the device 100, and the optical connector 10 can be positioned at a predetermined position in the case 102. Further, the engaged portion 14f of the resin joint 14 is engaged with an engaging portion 105a provided on the inner periphery of the opening 105 in the device 100 (see FIG. 1), so that the position of the optical connector 10 inserted into the device 100 is reached. It is provided in order to prevent misalignment and improve the connection between the optical connector 10 and the device 100.
  • FIG. 4A is a perspective view of the chuck 15, and FIG.
  • the chuck 15 has a front end in the insertion direction with respect to the tapered region 14i in the through hole of the resin joint 14 (lower left side in FIG. 4A), and a rear end (upper right in FIG. 4A).
  • a slit 15a is provided along the insertion direction with respect to the tapered region 14i.
  • the chuck 15 is provided with a locking portion 15b on the outer periphery in the vicinity of the rear end portion in the insertion direction with respect to the tapered region 14i, and a flange 15c on the outer periphery of the rear end portion.
  • an optical fiber gripping portion 15 d is provided on the inner periphery on the front end side of the chuck 15.
  • the inner diameter of the optical fiber gripping portion 15 d is configured to be substantially the same as the outer diameter of the optical fiber 13.
  • the chuck 15 is only required to exhibit elasticity in terms of structure, and as a material, resin, rubber, elastomer, metal, or the like can be used.
  • the cover 16 is provided to prevent the chuck 15 inserted into the resin joint 14 from coming out.
  • the second cylindrical portion 14 e and the opening 14 b of the resin joint 14 and the resin joint 14 are provided. A part of the optical fiber 13 exposed from the opening 14b is covered.
  • the second cylindrical portion 14e to which the cover 16 is attached has substantially the same diameter as the flange 14c.
  • a jacket holding portion 16b in which a plurality of convex portions 16a are provided at intervals is formed on the outer periphery of the portion of the cover 16 that covers the optical fiber 13.
  • the jacket 17 is formed of, for example, an elastic material or a tensile fiber, and covers the entire optical fiber 13 along the longitudinal direction of the optical fiber 13 exposed from the jacket holding portion 16b of the cover 16 or the cover 16.
  • the jacket 17 and the optical fiber 13 are not in close contact with each other and are mounted with a gap. Therefore, even if the jacket 17 is pulled, no force is applied to the optical fiber 13, and disconnection of the optical fiber 13 can be prevented.
  • the metal member 18 has slits formed in a zigzag shape in the longitudinal direction.
  • the metal member 18 is fixed so as to cover the jacket 17 attached to the jacket holding portion 16 b of the cover 16.
  • FIG. 5 is a side view of the optical collimator 10a according to the first embodiment of the present invention.
  • 6 is a cross-sectional view taken along the line AA shown in FIG.
  • the holder 11 is formed of, for example, a metal material such as stainless steel.
  • the holder 11 is preferably formed of austenitic stainless steel.
  • an opening 11 b is provided at the end of the holder 11 on the collimator lens 12 side.
  • a housing portion 11c for housing the collimator lens 12 is provided inside the opening portion 11b.
  • the accommodating portion 11c is provided with a size that allows the entire collimator lens 12 to be accommodated therein, and the collimator lens 12 can be press-fitted.
  • a through hole 11 d having a diameter slightly larger than the outer diameter of the optical fiber 13 is provided inside the holder 11.
  • the through hole 11d communicates with the insertion hole 11a and is provided in communication with the accommodating portion 11c. Furthermore, the holder 11 is provided with a plurality of depressions 11e formed by pressing from the outer peripheral portion with a tool or the like. These depressed portions 11e are provided between the accommodating portion 11c and the through hole 11d, and are used for positioning the collimator lens 12 and the optical fiber 13 as will be described in detail later.
  • the collimator lens 12 is made of, for example, a glass material, and is composed of a ball lens having a spherical shape. As shown in FIG. 6, the collimator lens 12 is disposed so as to face the distal end portion of the optical fiber 13 inserted into the through hole 11 d in the state of being accommodated in the accommodating portion 11 c of the holder 11.
  • the optical fiber 13 includes a core 13a provided through the center thereof, a clad 13b that covers the core 13a, and a reinforcing layer 13c that covers and reinforces the clad 13b.
  • the core 13a, the clad 13b and the reinforcing layer 13c are arranged on the same plane. That is, the core 13a, the clad 13b, and the reinforcing layer 13c are arranged on the end face facing the collimator lens 12.
  • optical fiber 13 is inserted into the through hole 11d through the insertion hole 11a, and is fixed in a state where the tip portion thereof is disposed in the vicinity of the collimator lens 12 so as to face the spherical surface.
  • the optical fiber 13 is composed of, for example, a graded index (GI) optical fiber so that the refractive index continuously changes in a cross section perpendicular to the fiber axis. It is configured.
  • the core 13a and the cladding 13b are made of, for example, an all-fluorine-substituted optical resin in which H of C—H bond is substituted with F.
  • GI graded index
  • the holder 11 is provided to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost.
  • the depressed portion 11e is used. Specifically, by positioning the collimator lens 12 and part of the optical fiber 13 in contact with the depressed portion 11e provided in the holder 11, the configuration of these positioning spacers and the like is unnecessary, and the cost is reduced. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing the rise of the above.
  • FIG. 7 is a diagram within the two-dot chain line B shown in FIG. FIG.
  • a part of the collimator lens 12 abuts against a portion of the depressed portion 11 e that faces the collimator lens 12, while an optical fiber 13 is configured at a portion that faces the optical fiber 13.
  • the clad 13b or the reinforcing layer 13c other than the core 13a, or a part of the clad 13b and the reinforcing layer 13c abut.
  • the collimator lens 12 and the optical fiber 13 are each positioned at a predetermined position of the holder 11 in such a state of contact.
  • the depressed portion 11e is a plane perpendicular to the insertion direction of the optical fiber 13 (for example, a plane C that is arranged in parallel with the end surface of the optical fiber 13 shown in FIG. 7 and passes through the center of the depressed portion 11e. ),
  • the angle of the portion facing the collimator lens 12 and the angle of the portion facing the optical fiber 13 are different from each other.
  • Such a depressed portion 11e is provided by, for example, pressing using a tapered tool having a different tip shape. By pressing with such a tool, the depressed portion 11e is different from the angle of the portion facing the collimator lens 12 and the angle of the portion facing the optical fiber 13 with reference to the central axis at the time of pressing. By setting the angle, it is possible to effectively position the collimator lens 12 and the optical fiber 13 having different shapes.
  • a plurality (three in the present embodiment) of such depressed portions 11e are provided on the same circumference of the holder 11.
  • the formation of the depressed portion 11e on the same circumference can be considered, for example, by simultaneously pressing the outer circumference of the holder 11 with the tool having the different tip shape described above.
  • the collimator lens 12 and the optical fiber 13 can be brought into contact with each other at a plurality of positions, so that the collimator lens 12 and the optical fiber 13 can be more accurately arranged. Positioning can be performed.
  • the inclined surface 11e 1 is a plane orthogonal to the insertion direction of the optical fiber 13 indicated by an arrow in FIG. 7 (for example, is disposed in parallel with the end surface of the optical fiber 13 shown in FIG. 7, and passes through the base end of the depressed portion 11e. angle theta 1 with respect to the plane D) which is provided so as to be 0 ° to 45 °.
  • the optical fiber 13 in the collimator lens 12 is set. Since it can position in the state which supported a part of side, the positional accuracy of the collimator lens 12 can be improved.
  • the inclined surface 11e 2 has an angle ⁇ 2 with respect to a plane orthogonal to the insertion direction of the optical fiber 13 (for example, a plane E arranged parallel to the end face of the optical fiber 13 shown in FIG. 7) of 0 ° or more and 20 ° or less. It is provided as follows. Thus, by providing the angle of the inclined surface 11e 2 to 0 ° or more and 20 ° or less with respect to the plane E, the optical fiber 13 has the core 13a, the clad 13b, and the reinforcing layer 13c on the same plane as described above. In the case where the optical fiber 13 is arranged, the end face of the optical fiber 13 is brought into contact with the depressed portion 11e, so that the positional accuracy can be easily ensured.
  • the collimator lens 12 and the optical fiber 13 are brought into contact with the depressed portion 11e provided in the holder 11 for positioning.
  • the collimator lens 12 and the optical fiber 13 can be positioned with reference to the depressed portion 11e, so that the working efficiency can be improved as compared with the case where another part is inserted into the holder 11 as in the prior art. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost.
  • FIGS. 8 to 12 are explanatory views sequentially showing the assembly process of the optical connector 10.
  • the assembly process of the optical connector 10 includes the step (a) of press-fitting the holder 11 into the resin joint 14, the step (b) of inserting the optical fiber 13, the step (c) of inserting the chuck 15, and the mounting of the cover 16.
  • each step will be described in detail.
  • Step (a) First, as shown in FIG. 8, the holder 11 is press-fitted from the insertion hole 14 a of the resin joint 14.
  • the collimator lens 12 is positioned and accommodated in the accommodating portion 11c of the holder 11 while being in contact with the depressed portion 11e.
  • the holder 11 press-fitted from the insertion hole 14a stops when the insertion hole 11a of the holder 11 comes into contact with the positioning portion 14g. At this time, the holder 11 is positioned at a predetermined position.
  • Step (b) Next, as shown in FIG. 9, the optical fiber 13 is inserted from the opening 14 b of the resin joint 14.
  • the optical fiber 13 is guided by the inner diameter of the resin joint 14 and reaches the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 and reaches the depressed portion 11e.
  • the insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e. At this time, the optical fiber 13 is positioned at a predetermined position.
  • Step (c) Next, as shown in FIG. 10, the chuck 15 is inserted into the opening 14 b of the resin joint 14 from the front end side with a small diameter and pushed. The chuck 15 stops when the front end portion of the chuck 15 comes into contact with the boundary between the tapered region 14 i and the gripping region 14 h of the resin joint 14. At this time, the flange 15 c of the chuck 15 engages with a notch portion 14 j provided in the tapered region 14 i of the resin joint 14, and an end portion thereof does not protrude from the end surface of the resin joint 14. Further, the locking portion 15 b of the chuck 15 is engaged with the inner peripheral surface of the resin joint 14 by elastically deforming the inner peripheral surface of the resin joint 14.
  • the chuck 15 is less likely to fall off the resin joint 14.
  • the slit 15a of the chuck 15 is tightened as the taper region 14i of the resin joint 14 is advanced, and the optical fiber 13 is gripped and fixed at the optical fiber gripping portion 15d of the chuck 15 by elastic deformation of the chuck 15 radially inward. .
  • the cover 16 is attached so as to cover the second cylindrical portion 14e and the opening 14b of the resin joint 14 and a part of the optical fiber 13 exposed from the opening 14b.
  • the jacket 17 is attached so as to cover the entire optical fiber 13 along the longitudinal direction of the optical fiber 13 exposed from the jacket holding portion 16 b or the cover 16 of the cover 16. Since the jacket 17 is fixed to the jacket holding portion 16b by the convex portion 16a provided on the jacket holding portion 16b of the cover 16, the jacket 17 covering the optical fiber 13 can be effectively fixed without increasing the number of parts. Is possible.
  • the optical member 10 shown in FIG. 2 is obtained by attaching the metal member 18 so as to cover the jacket 17 attached to the jacket holding portion 16b of the cover 16.
  • the metal member 18 can be mounted by widening the slit of the metal member 18 to sandwich the cover 16 and the jacket 17 and then closing the slit of the metal member 18.
  • the metal member 18 is mounted to secure the cover 16 and the jacket 17 more securely.
  • the cover 16 may be fixed by bonding the cover 16 itself to the resin joint 14 or the optical fiber 13 with an adhesive.
  • the collimator lens 12 and the optical fiber 13 are brought into contact with the depressed portion 11e provided in the holder 11 for positioning.
  • the collimator lens 12 and the optical fiber 13 can be positioned with reference to the depressed portion 11e, so that the working efficiency is improved as compared with the case where another part is inserted into the holder 11 as in the prior art. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost.
  • the chuck 15 can be deformed only by being inserted into the through hole of the resin joint 14, and the optical fiber 13 is attached by the optical fiber gripping portion 15d accordingly. Since it can be fixed, assembly work can be easily performed.
  • a partition wall (spacer portion) is formed for positioning the optical fiber and a collimator lens as in the conventional art.
  • processing such as cutting on a holding member (holder) made of a metal material or the like.
  • the machining accuracy of the cutting process is lowered, and the cost associated with the machining process (for example, the cost due to the occurrence of a defective product). The increase is significant.
  • the partition 11 (spacer portion) is not formed by cutting the holder 11 that is the holding member, but plastic processing is performed.
  • the depressed portion 11e is formed, the cost associated with the processing can be significantly reduced.
  • the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 14 is used.
  • the optical fiber 13 is fixed by an optical fiber gripping portion 15 d formed on the chuck 15. In this case, the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
  • the positioning method of the collimator lens 12 and the optical fiber 13 is not limited to this, and can be appropriately changed.
  • both the collimator lens 12 and the optical fiber 13 are not brought into contact with the depressed portion 11e, but one of the collimator lens 12 and the optical fiber 13 is brought into contact with the other, and the holder 11 other than the depressed portion 11e is brought into contact with the other.
  • Positioning may be performed at the part.
  • the optical connector 10 includes an idea of bringing one of the collimator lens 12 or the optical fiber 13 into contact with the depressed portion 11e.
  • FIG. 13 is a side sectional view of the optical connector 20 according to the second embodiment.
  • FIG. 14 is a (a) perspective view and (b) side sectional view of the chuck 25.
  • 2nd Embodiment about the structure which is common in the optical connector 10 which concerns on 1st Embodiment, the same code
  • a gripping region 14h is provided in a portion close to the flange 14c in the second cylindrical portion 14e, and a cylinder portion 24a is provided in a portion close to the opening 14b.
  • the inner diameter of the cylindrical portion 24a is configured to be equal from the opening 14b side to the gripping region 14h.
  • the chuck 25 has a cylindrical shape formed of an elastic material.
  • the elastic material is preferably rubber or elastomer.
  • the outer diameter of the chuck 25 decreases from the intermediate portion to the front end portion 25a in the insertion direction with respect to the cylindrical portion 24a in the through hole of the resin joint 24, and becomes smaller in taper.
  • the intermediate end to the rear end portion 25b extends from the intermediate portion to the cylindrical portion of the resin joint 24.
  • the inner diameter of 24a is substantially the same.
  • An optical fiber gripping portion 25 c having an inner diameter that is substantially the same as the outer diameter of the optical fiber 13 is provided on the inner periphery of the chuck 25 on the front end side.
  • the assembly process of the optical connector 20 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
  • the optical fiber 13 to which the chuck 25 is fixed is inserted from the opening 14 b of the resin joint 24.
  • the optical fiber 13 is guided by the inner diameter of the resin joint 24 to reach the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 to reach the depressed portion 11e.
  • the insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e.
  • the chuck 25 abuts against the inner wall of the cylindrical portion 24 a of the resin joint 24 and elastically deforms radially inward, whereby the optical fiber 13 is gripped and fixed at the optical fiber gripping portion 25 c of the chuck 25.
  • the optical fiber 13 is positioned at a predetermined position, and the chuck 25 is held by friction in the cylindrical portion 24a.
  • the chuck 25 can be deformed simply by being inserted into the through hole of the resin joint 24, and the optical fiber 13 can be fixed by the optical fiber gripping portion 25c. It becomes possible.
  • the chuck 25 is formed of an elastic material, it is not necessary to provide a configuration such as a slit for elastic deformation, and the cost required for manufacturing the chuck 25 can be reduced.
  • the collimator lens 12 and the optical fiber 13 are positioned by the recessed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 24 and the chuck
  • the optical fiber 13 is fixed by an optical fiber gripping portion 25 c formed in 25.
  • the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
  • FIG. 15 is a side sectional view of the optical connector 30 according to the third embodiment.
  • FIG. 16 is a (a) perspective view and (b) side sectional view of the chuck 35. Note that, in the third embodiment, the same reference numerals are given to the same components as those of the optical connector 10 according to the first embodiment, and the description thereof is omitted.
  • the gripping region 14h is located in the portion of the second cylindrical portion 14e adjacent to the flange 14c, the second cylindrical portion 34b, the gripping region 14h and the second cylindrical portion 34b in the portion adjacent to the opening 14b.
  • the 1st cylinder part 34a is provided between these.
  • the inner diameter of the first cylinder part 34a is configured to be larger than the inner diameter of the gripping area 14h and smaller than the inner diameter of the second cylinder part 34b.
  • the notch part 34c is provided along the inner periphery in the vicinity of the opening part 14b in the 2nd cylinder part 34b.
  • the chuck 35 has a thin plate spring action, and is a cylinder provided by connecting a large diameter portion 35 a and a small diameter portion 35 b in the insertion direction with respect to the first tube portion 34 a in the through hole of the resin joint 34.
  • a slit 35c is provided along the insertion direction with respect to the first cylindrical portion 34a, and a flange 35d is provided at the rear end portion.
  • the outer diameter of the large diameter portion 35 a is configured to be substantially the same as the inner diameter of the first tube portion 34 a of the resin joint 34.
  • an optical fiber gripping portion 35e including a radially inwardly bulging portion is provided on the inner periphery of the small diameter portion 35b.
  • the chuck 35 is made of a thin plate metal having a plate thickness of about 0.1 mm, and is formed into a cylindrical shape by bending the thin plate metal.
  • the chuck 35 is preferably made of metal. This is because if resin, rubber, elastomer, or the like is used as a material, the strength may be insufficient.
  • the pressing piece 36 has a generally cylindrical shape and is provided with a flange 36a at one end.
  • the outer diameter of the pressing piece 36 is configured to be substantially the same as the inner diameter of the second cylindrical portion 34 b of the resin joint 34.
  • the assembly process of the optical connector 30 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
  • the optical fiber 13 to which the chuck 35 is fixed is inserted from the opening 14 b of the resin joint 34.
  • the chuck 35 stops when the flange 35d abuts on the boundary between the first cylinder part 34a and the second cylinder part 34b.
  • the slit 35c of the chuck 35 is tightened in the first cylindrical portion 34a, and the diameter of the entire chuck 35 is reduced.
  • the optical fiber 13 is guided by the inner diameter of the resin joint 34 to reach the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 to reach the depressed portion 11e.
  • the insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e.
  • the optical fiber 13 is positioned at a predetermined position, and the chuck 35 is stuck to the inner wall of the first cylindrical portion 34a by an elastic biasing force that is radially outward in the first cylindrical portion 34a.
  • the outer surface of the large-diameter portion 35a abuts against the inner wall of the first cylindrical portion 34a and elastically deforms radially inward, so that the optical fiber 13 can be fixed by the optical fiber gripping portion 35e provided on the inner surface of the small-diameter portion 35b.
  • the chuck 35 holds the optical fiber 13 with the optical fiber gripping portion 35e that is not in contact with the inner wall of the first cylindrical portion 34a, it is possible to prevent an excessive pressing force from being applied to the optical fiber 13.
  • the fiber 13 can be fixed without being damaged.
  • the flange 35d of the chuck 35 exhibits an elastic biasing force toward the radially outer side in the second cylindrical portion 34b.
  • the pressing piece 36 After positioning the optical fiber 13, the pressing piece 36 is inserted and pushed in from the opening 14 b of the resin joint 34. When the end of the pressing piece 36 comes into contact with the boundary between the first cylindrical portion 34 a and the second cylindrical portion 34 b, the pressing piece 36 stops and fixes the chuck 35. The flange 36 a of the presser piece 36 engages with a notch 34 c provided in the second cylindrical portion 34 b of the resin joint 34.
  • the pressing piece 36 is not fixed after the chuck 35 is fixed to the first cylindrical portion 34a, but is fixed to the optical fiber 13 in the same manner as the chuck 35 when the optical fiber 13 is positioned. It is good also as a structure which pushes in 36. FIG. In this case, by pushing the pressing piece 36 into the second cylinder part 34b, the chuck 35 is also pushed into the first cylinder part 34a and can be respectively fixed at a predetermined position.
  • the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 34 and the chuck
  • the optical fiber 13 is fixed by an optical fiber gripping portion 35 e formed on the optical fiber 35.
  • the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
  • FIG. 17 is a side sectional view of an optical connector 40 according to the fourth embodiment.
  • 18A is a perspective view of the chuck 45
  • FIG. 18B is a side view thereof.
  • symbol is provided and the description is abbreviate
  • a gripping region 14h is located in the portion of the second cylindrical portion 14e adjacent to the flange 14c, a second cylindrical portion 44b, a gripping region 14h, and a second cylindrical portion 44b in the portion adjacent to the opening 14b.
  • the 1st cylinder part 44a is provided between these.
  • the inner diameter of the first cylinder part 44a is configured to be larger than the inner diameter of the gripping area 14h and smaller than the inner diameter of the second cylinder part 44b.
  • the taper part 44c is provided in the boundary of the 1st cylinder part 44a and the 2nd cylinder part 44b.
  • a notch 44d is provided in the vicinity of the opening 14b in the second cylindrical portion 44b along the inner periphery thereof.
  • the chuck 45 has a cylindrical shape in which a small diameter portion 45a and a large diameter portion 45b are connected in the insertion direction with respect to the first cylindrical portion 44a and the second cylindrical portion 44b in the through hole of the resin joint 44. And a plurality (three in the present embodiment) of slits 45c are provided in the large-diameter portion 45b along this insertion direction.
  • the outer diameter of the small diameter part 45a is configured to be substantially the same as the inner diameter of the first cylinder part 44a.
  • the outer diameter of the large diameter portion 45b is configured to be substantially the same as the inner diameter of the second cylindrical portion 44b.
  • An optical fiber gripping part 45d is provided on the inner periphery of the large diameter part 45b.
  • a tapered portion that matches the shape of the tapered portion 44 c of the resin joint 44 is provided at the connecting portion of the large diameter portion 45 b.
  • the assembly process of the optical connector 40 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
  • the optical fiber 13 to which the chuck 45 is fixed is inserted from the opening 14b of the resin joint 44.
  • the chuck 45 is inserted into the through hole of the resin joint 44 with the small diameter portion 45a as the front end side, and the slit 45c is tightened as it advances through the through hole.
  • the optical fiber 13 is guided by the inner diameter of the resin joint 44 and reaches the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 and reaches the depressed portion 11e.
  • the insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e.
  • the optical fiber 13 is positioned at a predetermined position.
  • the chuck 45 is in a state in which the tapered portion of the large diameter portion 45 b is in contact with the tapered portion 44 c of the resin joint 44, and the outer surface of the large diameter portion 45 b is in contact with the inner wall of the second cylindrical portion 44 b in the through hole of the resin joint 44.
  • the optical fiber 13 is held and fixed by the optical fiber holding portion 45d provided on the inner surface of the large diameter portion 45b.
  • the optical fiber 13 can be held by applying an even force to the optical fiber 13.
  • the optical fiber 13 can be fixed in a stable state.
  • the pressing piece 36 After positioning the optical fiber 13, the pressing piece 36 is inserted and pushed in from the opening 14 b of the resin joint 44. When the end of the pressing piece 36 comes into contact with the end of the large-diameter portion 45 b of the chuck 45, the pressing piece 36 stops and fixes the chuck 45. The flange 36 a of the pressing piece 36 engages with a notch 44 d provided in the second cylindrical portion 44 b of the resin joint 44. The pressing piece 36 is not pushed after the chuck 45 is fixed, but is fixed to the optical fiber 13 in the same manner as the chuck 45 when the optical fiber 13 is positioned, and the holding piece 36 is pushed in this state. Good. In this case, by pushing the pressing piece 36 into the second cylinder portion 44b, the chuck 45 is also pushed into the first cylinder portion 44a, and can be respectively fixed at predetermined positions.
  • the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 44 and the chuck
  • the optical fiber 13 is fixed by an optical fiber gripping part 45 d formed in 45.
  • the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
  • the plastic optical fiber was demonstrated as an example of the optical fiber 13
  • the optical fiber 13 applied with the optical connector 10 which concerns on the said embodiment is limited to a plastic optical fiber.
  • glass fiber can be applied.
  • the present invention is not limited to this configuration.
  • a configuration may be adopted in which the optical fiber 13 is fixed by inserting a chuck 15 and a pressing piece into the resin joint 14.
  • the second embodiment is not limited to the configuration in which only the chuck 25 is inserted into the resin joint 24 and the optical fiber 13 is fixed, and the chuck 25 and the pressing piece are inserted into the resin joint 24.
  • the optical fiber 13 may be fixed.
  • the configuration is not limited to the configuration in which the optical fiber 13 is fixed by inserting the chuck 35 and the holding piece 36 into the resin joint 34, and only the chuck 35 is inserted into the resin joint 34.
  • the optical fiber 13 may be fixed.
  • the fourth embodiment is not limited to the configuration in which the chuck 45 and the pressing piece 36 are inserted into the resin joint 44 to fix the optical fiber 13, and only the chuck 45 is inserted into the resin joint 44.
  • the optical fiber 13 may be fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

The purpose of the present invention is to provide an optical connector capable of positioning a collimator lens and an optical fiber with a high degree of accuracy without a cumbersome assembly process. The optical connector is provided with a metal-made holding member (11) which has a compartment formed at one end for receiving a collimator lens (12) and has an insertion hole formed at the other end into which an optical fiber (13) is inserted, a resin joint (14) which has a first insertion hole formed at one end into which said holding member (11) is inserted and has a second insertion hole formed at the other end into which said optical fiber (13) is inserted, and a chuck (15) which has a gripper for said optical fiber (13) and is inserted into a through-hole of said resin joint (14), wherein positioning is performed by at least one of said collimator lens (12) and the end face of said optical fiber (13) coming into contact with a depressed portion formed near the compartment of said holding member (11) while said optical fiber (13) is fixed with said gripper by said chuck (15) which was inserted into said through-hole being elastically deformed inwardly in a radial direction.

Description

光コネクタOptical connector
 本発明は、光コリメータを用いた光コネクタに関する。 The present invention relates to an optical connector using an optical collimator.
 光コネクタを用いて光ファイバと各種光デバイスを結合する場合に、レンズを用いて結合効率を向上させる技術が提案され、単数あるいは複数の光ファイバを結合させる光コリメータが適用されている。 In a case where an optical fiber and various optical devices are coupled using an optical connector, a technique for improving coupling efficiency using a lens has been proposed, and an optical collimator for coupling one or a plurality of optical fibers is applied.
 このような光コリメータにおいては、光ファイバの端面とコリメータレンズとの位置決めを行う必要がある。従来、このような光ファイバの端面とコリメータレンズとの位置決めを行う方法として、別部品のスペーサを保持部材内に挿入する方法が知られている(例えば、特許文献1参照)。 In such an optical collimator, it is necessary to position the end face of the optical fiber and the collimator lens. Conventionally, as a method of positioning the end face of the optical fiber and the collimator lens, a method of inserting a separate spacer into the holding member is known (see, for example, Patent Document 1).
特開2007-241094号公報JP 2007-244104 A
 光ファイバと各種光デバイスを結合する用途で使用される光コネクタにおいては、形状面においてその寸法が小さいこと、機器面において抜き差しが繰り返されても光ファイバとコリメータレンズとの位置関係が維持されることが要求される。 Optical connectors used for applications that combine optical fibers with various optical devices have small dimensions on the shape surface, and maintain the positional relationship between the optical fiber and the collimator lens even if the device is repeatedly inserted and removed. Is required.
 しかし、特許文献1に開示された技術のように、光ファイバの端面とコリメータレンズとの位置決めに、別部品を用いると、部品点数が増加するとともに、組立工程が複雑になるという問題がある。また、別部品を保持部材内に挿入する作業は、光コネクタの寸法が小さくなるほど困難となり、その作業に要するコストが上昇するという問題がある。 However, as in the technique disclosed in Patent Document 1, when separate parts are used for positioning the end face of the optical fiber and the collimator lens, there are problems that the number of parts increases and the assembly process becomes complicated. Further, the operation of inserting another part into the holding member becomes more difficult as the size of the optical connector becomes smaller, and there is a problem that the cost required for the operation increases.
 本発明は、かかる点に鑑みてなされたものであり、煩雑な組立工程を必要とすることなく、高精度にコリメータレンズと光ファイバを位置合わせできる光コネクタを提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide an optical connector capable of aligning a collimator lens and an optical fiber with high accuracy without requiring a complicated assembly process.
 本発明の光コネクタは、一端にコリメータレンズを収容する収容部が形成され、他端に光ファイバが挿入される挿入孔が形成された金属製の保持部材と、一端に前記保持部材が挿入される第1の挿入孔が形成され、他端に前記光ファイバが挿入される第2の挿入孔が形成された樹脂継手と、前記光ファイバの把持部を有し、前記樹脂継手の通孔に挿入されるチャックと、を備えた光コネクタであって、前記保持部材の収容部近傍に形成された陥没部に、前記コリメータレンズおよび前記光ファイバの端面の少なくとも一方を当接させて位置決めを行うとともに、前記通孔に挿入された前記チャックが半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定することを特徴とする。 The optical connector of the present invention has a metal holding member in which a receiving portion for receiving a collimator lens is formed at one end, an insertion hole into which an optical fiber is inserted is formed at the other end, and the holding member is inserted at one end. A resin joint having a second insertion hole into which the optical fiber is inserted at the other end, a gripping portion for the optical fiber, and a through hole of the resin joint. An optical connector comprising: a chuck to be inserted, wherein positioning is performed by bringing at least one of the collimator lens and the end face of the optical fiber into contact with a depressed portion formed in the vicinity of the holding portion of the holding member At the same time, the chuck inserted into the through hole is elastically deformed radially inward to fix the optical fiber by the grip portion.
 上記光コネクタによれば、保持部材に設けた陥没部にコリメータレンズおよび光ファイバの少なくとも一方を当接させて位置決めするようにしたことから、陥没部を基準としてコリメータレンズおよび/または光ファイバを位置決めすることができるので、従来のように別部品を保持部材内に挿入する場合と比べて作業効率を向上することができ、コストの上昇を抑制しつつ、簡単にコリメータレンズと光ファイバとの位置決めを行うことが可能となる。また、樹脂継手の通孔に挿入されたチャックが半径方向内側へ弾性変形することにより把持部で光ファイバを固定するので、位置決めされた光ファイバを堅固に固定することが可能となる。この結果、煩雑な組立工程を必要とすることなく、高精度にコリメータレンズと光ファイバを位置合わせすることができる。 According to the optical connector, the collimator lens and / or the optical fiber are positioned with reference to the depressed portion since the collimator lens and the optical fiber are positioned in contact with the depressed portion provided in the holding member. Therefore, it is possible to improve the working efficiency compared to the case where another part is inserted into the holding member as in the prior art, and to easily position the collimator lens and the optical fiber while suppressing an increase in cost. Can be performed. Further, since the chuck inserted into the through hole of the resin joint is elastically deformed inward in the radial direction, the optical fiber is fixed by the grip portion, so that the positioned optical fiber can be firmly fixed. As a result, the collimator lens and the optical fiber can be aligned with high accuracy without requiring a complicated assembly process.
 例えば、上記光コネクタにおいて、前記チャックは、前記通孔に対する挿入方向の前端部を後端部よりも小径に設けた円筒形状を有するとともに、前記挿入方向に沿ってスリットが設けられ、前記通孔の内壁に設けられたテーパー面と当接して半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定することが考えられる。この場合には、樹脂継手の通孔に対して挿入するだけでチャックを変形させることができ、これに伴って把持部で光ファイバを固定することができるので、簡単に光コネクタを組み立てることが可能となる。 For example, in the optical connector, the chuck has a cylindrical shape in which a front end portion in an insertion direction with respect to the through hole is provided with a smaller diameter than a rear end portion, and a slit is provided along the insertion direction. It is conceivable that the optical fiber is fixed by the grip portion by abutting with a taper surface provided on the inner wall and elastically deforming radially inward. In this case, the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible.
 上記光コネクタにおいて、前記チャックは、弾性材料で形成された円筒形状を有し、前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定するようにしてもよい。この場合には、樹脂継手の通孔に対して挿入するだけでチャックを変形させることができ、これに伴って把持部で光ファイバを固定することができるので、簡単に光コネクタを組み立てることが可能となる。特に、チャックを弾性材料で形成していることから、弾性変形をさせるためのスリットなどの構成を設ける必要がなく、チャックの製造に要するコストを低減することが可能となる。 In the optical connector, the chuck has a cylindrical shape formed of an elastic material, and abuts on the inner wall of the through hole and elastically deforms radially inward to fix the optical fiber at the grip portion. It may be. In this case, the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible. In particular, since the chuck is formed of an elastic material, it is not necessary to provide a configuration such as a slit for elastic deformation, and the cost required for manufacturing the chuck can be reduced.
 また、上記光コネクタにおいて、前記チャックは、前記通孔に対する挿入方向に大径部と小径部とを連結して設けた円筒形状を有するとともに、前記挿入方向に沿ってスリットが設けられ、前記大径部の外面が前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記小径部の内面に設けられた前記把持部で前記光ファイバを固定するようにしてもよい。この場合には、樹脂継手の通孔に対して挿入するだけでチャックを変形させることができ、これに伴って把持部で光ファイバを固定することができるので、簡単に光コネクタを組み立てることが可能となる。また、樹脂継手の通孔との当接を受ける大径部とは異なる小径部の内面に設けられた把持部で光ファイバを保持できるため、過度の押圧力が光ファイバに加わるのを防止でき、光ファイバを傷つけずに固定することが可能となる。 In the optical connector, the chuck has a cylindrical shape in which a large diameter portion and a small diameter portion are connected in the insertion direction with respect to the through hole, and a slit is provided along the insertion direction. The outer surface of the diameter portion may contact the inner wall of the through hole and elastically deform inward in the radial direction, whereby the optical fiber may be fixed by the grip portion provided on the inner surface of the small diameter portion. In this case, the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible. In addition, since the optical fiber can be held by the grip portion provided on the inner surface of the small diameter portion different from the large diameter portion that is in contact with the through hole of the resin joint, it is possible to prevent an excessive pressing force from being applied to the optical fiber. It becomes possible to fix the optical fiber without damaging it.
 さらに、上記光コネクタにおいて、前記チャックは、前記通孔に対する挿入方向に小径部と大径部とを連結して設けた円筒形状を有するとともに、前記挿入方向に沿って前記大径部に複数のスリットが設けられ、前記大径部の外面が前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記大径部の内面に設けられた前記把持部で前記光ファイバを固定するようにしてもよい。この場合には、樹脂継手の通孔に対して挿入するだけでチャックを変形させることができ、これに伴って把持部で光ファイバを固定することができるので、簡単に光コネクタを組み立てることが可能となる。また、大径部に複数のスリットを設けていることから、大径部が半径方向内側へ弾性変形した際に、光ファイバに均等に力をかけて光ファイバを保持できるため、光ファイバを安定した状態で固定することが可能となる。 Furthermore, in the optical connector, the chuck has a cylindrical shape in which a small diameter portion and a large diameter portion are connected in the insertion direction with respect to the through hole, and a plurality of chucks are provided in the large diameter portion along the insertion direction. A slit is provided, and the outer surface of the large-diameter portion abuts against the inner wall of the through hole and elastically deforms radially inward, thereby fixing the optical fiber with the grip portion provided on the inner surface of the large-diameter portion. You may do it. In this case, the chuck can be deformed simply by being inserted into the through hole of the resin joint, and the optical fiber can be fixed by the gripping part accordingly, so that the optical connector can be easily assembled. It becomes possible. In addition, since a plurality of slits are provided in the large-diameter portion, when the large-diameter portion is elastically deformed radially inward, it is possible to hold the optical fiber evenly by applying force to the optical fiber, thereby stabilizing the optical fiber. It becomes possible to fix in the state.
 上記光コネクタにおいては、前記チャックの端部に接触して前記チャックを固定する押えコマを備えるようにしてもよい。この場合には、押さえコマによりチャックを固定することによって、チャックの位置ずれを防止できるため、光ファイバを確実に固定することが可能となる。 The optical connector may include a presser piece that contacts the end of the chuck and fixes the chuck. In this case, the chuck can be prevented from being displaced by fixing the chuck with the pressing piece, so that the optical fiber can be fixed securely.
 上記光コネクタにおいては、前記第2の挿入孔および前記第2の挿入孔から露出する前記光ファイバを覆うカバーを備えることが好ましい。この場合には、カバーによりチャックおよび光ファイバを固定することによって、チャックおよび光ファイバの位置ずれを防止できるため、光ファイバを確実に固定することが可能となる。 The optical connector preferably includes a cover that covers the second insertion hole and the optical fiber exposed from the second insertion hole. In this case, by fixing the chuck and the optical fiber by the cover, it is possible to prevent the positional deviation of the chuck and the optical fiber, so that the optical fiber can be securely fixed.
 上記光コネクタにおいては、前記カバーの前記光ファイバを覆う部分には、複数の凸部が設けられていることが好ましい。この場合には、カバーの一部でジャケットを保持できるので、部品点数を増やすことなく光ファイバを被覆するジャケットを効果的に固定することが可能となる。 In the optical connector, it is preferable that a plurality of convex portions are provided in a portion of the cover that covers the optical fiber. In this case, since the jacket can be held by a part of the cover, the jacket covering the optical fiber can be effectively fixed without increasing the number of parts.
 上記光コネクタにおいては、前記樹脂継手の外周に、デバイスと接続した際に前記デバイス側の係合部と係合する被係合部を設けることが好ましい。この場合には、樹脂継手の一部に設けた被係合部により、デバイスに挿入した光コネクタの位置ずれを防止できるので、光コネクタとデバイスとの接続を良好なものとすることが可能となる。 In the optical connector, it is preferable to provide an engaged portion that engages with the engaging portion on the device side when connected to the device on the outer periphery of the resin joint. In this case, the engaged portion provided in a part of the resin joint can prevent the optical connector inserted in the device from being displaced, so that the connection between the optical connector and the device can be improved. Become.
 上記光コネクタにおいては、前記樹脂継手の外周に、デバイスに対して接続位置まで挿入可能とする環状に突出したフランジを設けることが好ましい。この場合には、フランジによりデバイスに対して接続位置まで挿入可能となるため、デバイスにおける所定位置に光コネクタを位置決めすることが可能となる。 In the above optical connector, it is preferable to provide an annular projecting flange on the outer periphery of the resin joint so that it can be inserted into the connection position with respect to the device. In this case, since the flange can be inserted to the connection position with respect to the device, the optical connector can be positioned at a predetermined position in the device.
 本発明によれば、煩雑な組立工程を必要とすることなく、高精度にコリメータレンズと光ファイバを位置合わせすることが可能となる。 According to the present invention, the collimator lens and the optical fiber can be aligned with high accuracy without requiring a complicated assembly process.
本発明に係る光コネクタをデバイスに接続した状態を模式的に示す側断面図である。It is a sectional side view which shows typically the state which connected the optical connector which concerns on this invention to the device. 第1の実施の形態に係る光コネクタの側断面図である。It is a sectional side view of the optical connector which concerns on 1st Embodiment. 第1の実施の形態における樹脂継手の側断面図である。It is a sectional side view of the resin joint in 1st Embodiment. 第1の実施の形態におけるチャックの(a)斜視図、(b)側断面図である。It is (a) perspective view of the chuck | zipper in 1st Embodiment, (b) It is side sectional drawing. 第1の実施の形態における光コリメータの側面図である。It is a side view of the optical collimator in a 1st embodiment. 図5に示すA-Aにおける断面図である。FIG. 6 is a cross-sectional view taken along the line AA shown in FIG. 図6に示す2点鎖線B内の拡大図である。FIG. 7 is an enlarged view within a two-dot chain line B shown in FIG. 6. 第1の実施の形態に係る光コネクタの組み立て工程を示す説明図である。It is explanatory drawing which shows the assembly process of the optical connector which concerns on 1st Embodiment. 第1の実施の形態に係る光コネクタの組み立て工程を示す説明図である。It is explanatory drawing which shows the assembly process of the optical connector which concerns on 1st Embodiment. 第1の実施の形態に係る光コネクタの組み立て工程を示す説明図である。It is explanatory drawing which shows the assembly process of the optical connector which concerns on 1st Embodiment. 第1の実施の形態に係る光コネクタの組み立て工程を示す説明図である。It is explanatory drawing which shows the assembly process of the optical connector which concerns on 1st Embodiment. 第1の実施の形態に係る光コネクタの組み立て工程を示す説明図である。It is explanatory drawing which shows the assembly process of the optical connector which concerns on 1st Embodiment. 第2の実施の形態に係る光コネクタの側断面図である。It is a sectional side view of the optical connector which concerns on 2nd Embodiment. 第2の実施の形態におけるチャックの(a)斜視図、(b)側断面図である。It is the (a) perspective view of the chuck | zipper in 2nd Embodiment, (b) It is a sectional side view. 第3の実施の形態に係る光コネクタの側断面図である。It is a sectional side view of the optical connector which concerns on 3rd Embodiment. 第3の実施の形態におけるチャックの(a)斜視図、(b)側断面図である。It is the (a) perspective view and (b) side sectional view of the chuck in a 3rd embodiment. 第4の実施の形態に係る光コネクタの側断面図である。It is a sectional side view of the optical connector which concerns on 4th Embodiment. 第4の実施の形態におけるチャックの(a)斜視図、(b)側断面図である。It is the (a) perspective view of the chuck | zipper in 4th Embodiment, (b) It is a sectional side view.
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 まず、本発明に係る光コネクタをデバイスに接続した状態について説明する。図1は、本発明に係る光コネクタをデバイスに接続した状態を模式的に示す側断面図である。なお、図1においては、説明の便宜上、受光/発光素子を備えるデバイスについて説明するが、デバイスの構成については、これに限定されるものではなく適宜変更が可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, a state where the optical connector according to the present invention is connected to a device will be described. FIG. 1 is a side sectional view schematically showing a state in which an optical connector according to the present invention is connected to a device. In FIG. 1, for convenience of explanation, a device including a light receiving / light emitting element will be described. However, the configuration of the device is not limited to this and can be appropriately changed.
 図1に示すように、本発明に係る光コネクタ10が接続されるデバイス100は、受光/発光素子101をケース102の内部に配置するとともに、この受光/発光素子101の光軸上に図示しない支持手段によって支持された集光レンズ103および斜め研磨面104を配置して構成される。また、デバイス100のケース102の側面には、光コネクタ10を挿入する開口部105が設けられている。 As shown in FIG. 1, a device 100 to which an optical connector 10 according to the present invention is connected has a light receiving / light emitting element 101 disposed inside a case 102 and is not shown on the optical axis of the light receiving / light emitting element 101. The condensing lens 103 and the oblique polishing surface 104 supported by the supporting means are arranged. An opening 105 for inserting the optical connector 10 is provided on the side surface of the case 102 of the device 100.
 デバイス100において、発光素子101から出射されるレーザ光は、集光レンズ103を介して斜め研磨面104によって反射され、開口部105に導かれる。そして、斜め研磨面104によって反射された光は、光コネクタ10のコリメータレンズ12により集光され、光ファイバ13に入射する。そして、このように入射された光が、光ファイバ13内を伝搬する。なお、図1においては、点線で発光素子101から出射されたレーザ光の光路を表示している。 In the device 100, the laser light emitted from the light emitting element 101 is reflected by the oblique polishing surface 104 through the condenser lens 103 and guided to the opening 105. The light reflected by the oblique polishing surface 104 is collected by the collimator lens 12 of the optical connector 10 and enters the optical fiber 13. Then, the incident light propagates in the optical fiber 13. In FIG. 1, the optical path of the laser light emitted from the light emitting element 101 is indicated by a dotted line.
 また、デバイス100において、光ファイバ13を伝搬する光は、コリメータレンズ12を経由することによりコリメートされる。そして、光ファイバ13から出射されたレーザ光は、斜め研磨面104によって反射され、集光レンズ103を介して受光素子101に導かれる。なお、図1においては、点線で光ファイバ13から出射されたレーザ光の光路を表示している。 In the device 100, the light propagating through the optical fiber 13 is collimated by passing through the collimator lens 12. The laser light emitted from the optical fiber 13 is reflected by the oblique polishing surface 104 and guided to the light receiving element 101 via the condenser lens 103. In FIG. 1, the optical path of the laser beam emitted from the optical fiber 13 is indicated by a dotted line.
 本実施の形態に係るデバイス100においては、ケース102内の所定位置まで光コネクタ10が挿入されると、受光/発光素子101と光ファイバ13との間を伝わるレーザ光が集光レンズ103および斜め研磨面104を介して適切に出入射できるように設計されている。以下、このようなデバイス100に接続される本発明に係る光コネクタ10の構成について説明する。 In the device 100 according to the present embodiment, when the optical connector 10 is inserted to a predetermined position in the case 102, the laser light transmitted between the light receiving / light emitting element 101 and the optical fiber 13 is reflected by the condenser lens 103 and the oblique direction. It is designed so that it can enter and exit appropriately through the polishing surface 104. Hereinafter, the configuration of the optical connector 10 according to the present invention connected to such a device 100 will be described.
(第1の実施の形態)
 図2は、本発明の第1の実施の形態に係る光コネクタ10の側断面図である。図2に示すように、光コネクタ10は、概して円筒形状を有する保持部材としてのホルダ11と、このホルダ11の一端部に保持されるコリメータレンズ12と、ホルダ11の他端部に設けられた挿入孔11aから挿入される光ファイバ13と、ホルダ11および光ファイバ13を保持する樹脂継手14と、光ファイバ13を固定するチャック15と、樹脂継手14およびチャック15を覆うカバー16と、光ファイバ13を被覆するジャケット17と、ジャケット17を固定するための概して円筒形状を有する金属部材18と、を含んで構成されている。なお、第1の実施の形態に係る光コネクタ10においては、光ファイバ13としてプラスチック光ファイバが好適に挿入される。
(First embodiment)
FIG. 2 is a side sectional view of the optical connector 10 according to the first embodiment of the present invention. As shown in FIG. 2, the optical connector 10 is provided at a holder 11 as a holding member having a generally cylindrical shape, a collimator lens 12 held at one end of the holder 11, and the other end of the holder 11. Optical fiber 13 inserted through insertion hole 11a, resin joint 14 holding holder 11 and optical fiber 13, chuck 15 for fixing optical fiber 13, cover 16 covering resin joint 14 and chuck 15, and optical fiber 13, and a metal member 18 having a generally cylindrical shape for fixing the jacket 17. In the optical connector 10 according to the first embodiment, a plastic optical fiber is preferably inserted as the optical fiber 13.
 ホルダ11、コリメータレンズ12および光ファイバ13は、光コリメータ10aを構成している。この光コリメータ10aについての詳細は後述する。 The holder 11, the collimator lens 12 and the optical fiber 13 constitute an optical collimator 10a. Details of the optical collimator 10a will be described later.
 図3は、樹脂継手14の側断面図である。図3に示すように、樹脂継手14は、概して円筒形状を有し、樹脂継手14の長手方向に沿った通孔の一端にはホルダ11が挿入される挿入孔14aが設けられ、他端には光ファイバ13が挿入される開口部14bが設けられている。なお、挿入孔14aは、第1の挿入孔を構成し、開口部14bは、第2の挿入孔を構成する。また、樹脂継手14の中央付近にフランジ14cが設けられている。樹脂継手14において、フランジ14cから挿入孔14aまでの部分を第1円筒部14d、フランジ14cから開口部14bまでの部分を第2円筒部14eと称する。第1円筒部14dには、中央に被係合部14fが溝状に設けられている。また、第1円筒部14dは、第2円筒部14eより小径に構成されている。 FIG. 3 is a side sectional view of the resin joint 14. As shown in FIG. 3, the resin joint 14 has a generally cylindrical shape, and an insertion hole 14 a into which the holder 11 is inserted is provided at one end of the through hole along the longitudinal direction of the resin joint 14. Is provided with an opening 14b into which the optical fiber 13 is inserted. The insertion hole 14a constitutes a first insertion hole, and the opening 14b constitutes a second insertion hole. A flange 14 c is provided near the center of the resin joint 14. In the resin joint 14, a portion from the flange 14c to the insertion hole 14a is referred to as a first cylindrical portion 14d, and a portion from the flange 14c to the opening portion 14b is referred to as a second cylindrical portion 14e. The engaged portion 14f is provided in the center of the first cylindrical portion 14d in a groove shape. The first cylindrical portion 14d is configured to have a smaller diameter than the second cylindrical portion 14e.
 また、樹脂継手14の通孔には、フランジ14cと第2円筒部14eとの境界に位置決め部14gが設けられ、第2円筒部14eのうちフランジ14cに近接する部分に把持領域14h、開口部14bに近接する部分にテーパー領域14iが設けられている。ここで、位置決め部14gから挿入孔14aまでの内径はホルダ11の外径とほぼ同径となり、把持領域14hの内径は光ファイバ13の外径とほぼ同径となるように構成されている。テーパー領域14iの内径は、開口部14b側からフランジ14c側へ行くほど小さくなるテーパー形状に構成されている。また、テーパー領域14iにおける開口部14b近傍には、その内周に沿って切り欠き部14jが設けられている。 In addition, a positioning portion 14g is provided at the boundary between the flange 14c and the second cylindrical portion 14e in the through hole of the resin joint 14, and a grip region 14h and an opening portion are provided in a portion of the second cylindrical portion 14e adjacent to the flange 14c. A tapered region 14i is provided in a portion adjacent to 14b. Here, the inner diameter from the positioning portion 14 g to the insertion hole 14 a is substantially the same as the outer diameter of the holder 11, and the inner diameter of the gripping region 14 h is configured to be substantially the same as the outer diameter of the optical fiber 13. The inner diameter of the tapered region 14i is configured to have a tapered shape that decreases as it goes from the opening 14b side to the flange 14c side. Further, in the vicinity of the opening 14b in the tapered region 14i, a notch 14j is provided along the inner periphery thereof.
 フランジ14cの外径は、光コネクタ10が接続されるデバイス100における開口部105の内径よりも大きく構成される。そのため、光コネクタ10をデバイス100に挿入する際には、常にフランジ14cまでがデバイス100内に挿入されることとなり、ケース102内の所定位置に光コネクタ10を位置決めすることが可能となる。また、樹脂継手14の被係合部14fは、デバイス100における開口部105の内周に設けられた係合部105aと噛み合うことにより(図1参照)、デバイス100に挿入した光コネクタ10の位置ずれを防止し、光コネクタ10とデバイス100との接続を良好なものとするために設けられている。 The outer diameter of the flange 14c is configured to be larger than the inner diameter of the opening 105 in the device 100 to which the optical connector 10 is connected. Therefore, when the optical connector 10 is inserted into the device 100, the flange 14 c is always inserted into the device 100, and the optical connector 10 can be positioned at a predetermined position in the case 102. Further, the engaged portion 14f of the resin joint 14 is engaged with an engaging portion 105a provided on the inner periphery of the opening 105 in the device 100 (see FIG. 1), so that the position of the optical connector 10 inserted into the device 100 is reached. It is provided in order to prevent misalignment and improve the connection between the optical connector 10 and the device 100.
 図4は、チャック15の(a)斜視図、(b)側断面図である。図4に示すように、チャック15は、樹脂継手14の通孔におけるテーパー領域14iに対する挿入方向の前端部(図4(a)における左下側)が、後端部(図4(a)における右上側)よりも小径に設けられた円筒形状を有するとともに、テーパー領域14iに対する挿入方向に沿ってスリット15aが設けられている。また、チャック15は、テーパー領域14iに対する挿入方向の後端部近傍の外周に係止部15bが設けられ、後端部の外周にフランジ15cが設けられている。また、チャック15の前端部側の内周には、光ファイバ把持部15dが設けられている。この光ファイバ把持部15dの内径は、光ファイバ13の外径とほぼ同径となるように構成されている。チャック15は、構造上弾性が発現すればよく、材料としては樹脂、ゴム、エラストマー、金属などが使用可能である。 4A is a perspective view of the chuck 15, and FIG. As shown in FIG. 4, the chuck 15 has a front end in the insertion direction with respect to the tapered region 14i in the through hole of the resin joint 14 (lower left side in FIG. 4A), and a rear end (upper right in FIG. 4A). And a slit 15a is provided along the insertion direction with respect to the tapered region 14i. The chuck 15 is provided with a locking portion 15b on the outer periphery in the vicinity of the rear end portion in the insertion direction with respect to the tapered region 14i, and a flange 15c on the outer periphery of the rear end portion. Further, an optical fiber gripping portion 15 d is provided on the inner periphery on the front end side of the chuck 15. The inner diameter of the optical fiber gripping portion 15 d is configured to be substantially the same as the outer diameter of the optical fiber 13. The chuck 15 is only required to exhibit elasticity in terms of structure, and as a material, resin, rubber, elastomer, metal, or the like can be used.
 カバー16は、樹脂継手14内に挿入されたチャック15が外に出るのを防ぐために設けられ、図2に示すように、樹脂継手14の第2円筒部14eおよび開口部14bならびに樹脂継手14の開口部14bから露出する光ファイバ13の一部を覆っている。カバー16が装着された第2円筒部14eは、フランジ14cとほぼ同径となる。また、カバー16の光ファイバ13を覆う部分の外周には、複数の凸部16aが間隔をおいて設けられたジャケット保持部16bを構成している。 The cover 16 is provided to prevent the chuck 15 inserted into the resin joint 14 from coming out. As shown in FIG. 2, the second cylindrical portion 14 e and the opening 14 b of the resin joint 14 and the resin joint 14 are provided. A part of the optical fiber 13 exposed from the opening 14b is covered. The second cylindrical portion 14e to which the cover 16 is attached has substantially the same diameter as the flange 14c. In addition, a jacket holding portion 16b in which a plurality of convex portions 16a are provided at intervals is formed on the outer periphery of the portion of the cover 16 that covers the optical fiber 13.
 ジャケット17は、例えば、弾性素材や抗張力繊維で形成され、カバー16のジャケット保持部16bないしカバー16から露出する光ファイバ13の長手方向に沿って、光ファイバ13すべてを覆っている。ジャケット17と光ファイバ13とは密着しておらず、隙間を空けて装着されている。そのため、ジャケット17が引っ張られても光ファイバ13には力が加わらず、光ファイバ13の断線を防ぐことができる。 The jacket 17 is formed of, for example, an elastic material or a tensile fiber, and covers the entire optical fiber 13 along the longitudinal direction of the optical fiber 13 exposed from the jacket holding portion 16b of the cover 16 or the cover 16. The jacket 17 and the optical fiber 13 are not in close contact with each other and are mounted with a gap. Therefore, even if the jacket 17 is pulled, no force is applied to the optical fiber 13, and disconnection of the optical fiber 13 can be prevented.
 金属部材18は、長手方向にスリットがジグザグ状に形成されている。金属部材18は、カバー16のジャケット保持部16bに装着されたジャケット17を覆って固定されている。 The metal member 18 has slits formed in a zigzag shape in the longitudinal direction. The metal member 18 is fixed so as to cover the jacket 17 attached to the jacket holding portion 16 b of the cover 16.
 続いて、本発明の第1の実施の形態に係る光コネクタ10に用いる、ホルダ11、コリメータレンズ12および光ファイバ13から構成される光コリメータ10aについて詳細に説明する。図5は、本発明の第1の実施の形態に係る光コリメータ10aの側面図である。図6は、図5に示すA-A矢視断面図である。 Subsequently, the optical collimator 10a composed of the holder 11, the collimator lens 12 and the optical fiber 13 used in the optical connector 10 according to the first embodiment of the present invention will be described in detail. FIG. 5 is a side view of the optical collimator 10a according to the first embodiment of the present invention. 6 is a cross-sectional view taken along the line AA shown in FIG.
 ホルダ11は、例えば、ステンレス等の金属材料で形成される。特に加工性の点から、ホルダ11は、オーステナイト系ステンレスで形成されることが好ましい。図6に示すように、ホルダ11におけるコリメータレンズ12側の端部には、開口部11bが設けられている。この開口部11bの内側には、コリメータレンズ12を収容する収容部11cが設けられている。この収容部11cは、コリメータレンズ12の表面の損傷を防止するためにコリメータレンズ12全体をその内側に収容可能な寸法に設けられ、コリメータレンズ12が圧入可能に構成されている。また、ホルダ11の内部には、光ファイバ13の外径よりもわずかに大径の貫通孔11dが設けられている。この貫通孔11dは、挿入孔11aに連通するとともに、収容部11cに連通して設けられている。さらに、ホルダ11には、その外周部から工具等により押圧加工を施すことで形成される複数の陥没部11eが設けられている。これらの陥没部11eは、収容部11cと貫通孔11dとの間に設けられ、詳細について後述するように、コリメータレンズ12および光ファイバ13の位置決めに利用される。 The holder 11 is formed of, for example, a metal material such as stainless steel. In particular, from the viewpoint of workability, the holder 11 is preferably formed of austenitic stainless steel. As shown in FIG. 6, an opening 11 b is provided at the end of the holder 11 on the collimator lens 12 side. A housing portion 11c for housing the collimator lens 12 is provided inside the opening portion 11b. In order to prevent damage to the surface of the collimator lens 12, the accommodating portion 11c is provided with a size that allows the entire collimator lens 12 to be accommodated therein, and the collimator lens 12 can be press-fitted. In addition, a through hole 11 d having a diameter slightly larger than the outer diameter of the optical fiber 13 is provided inside the holder 11. The through hole 11d communicates with the insertion hole 11a and is provided in communication with the accommodating portion 11c. Furthermore, the holder 11 is provided with a plurality of depressions 11e formed by pressing from the outer peripheral portion with a tool or the like. These depressed portions 11e are provided between the accommodating portion 11c and the through hole 11d, and are used for positioning the collimator lens 12 and the optical fiber 13 as will be described in detail later.
 コリメータレンズ12は、例えば、ガラス材料で形成され、球形状を有するボールレンズで構成されている。図6に示すように、コリメータレンズ12は、ホルダ11の収容部11c内に収容された状態において、貫通孔11dに挿入された光ファイバ13の先端部に臨むように配置されている。 The collimator lens 12 is made of, for example, a glass material, and is composed of a ball lens having a spherical shape. As shown in FIG. 6, the collimator lens 12 is disposed so as to face the distal end portion of the optical fiber 13 inserted into the through hole 11 d in the state of being accommodated in the accommodating portion 11 c of the holder 11.
 光ファイバ13は、その中心を貫通して設けられるコア13aと、このコア13aを被覆するクラッド13bと、このクラッド13bを被覆して補強する補強層13cとから構成されている。光ファイバ13のコリメータレンズ12に対向する端面においては、コア13a、クラッド13bおよび補強層13cが同一平面上に配置されている。すなわち、コリメータレンズ12に対向する端面において、コア13a、クラッド13bおよび補強層13cが揃って配置されている。 The optical fiber 13 includes a core 13a provided through the center thereof, a clad 13b that covers the core 13a, and a reinforcing layer 13c that covers and reinforces the clad 13b. On the end face of the optical fiber 13 facing the collimator lens 12, the core 13a, the clad 13b and the reinforcing layer 13c are arranged on the same plane. That is, the core 13a, the clad 13b, and the reinforcing layer 13c are arranged on the end face facing the collimator lens 12.
 また、光ファイバ13は、挿入孔11aを介して貫通孔11dに挿入され、その先端部がコリメータレンズ12の近傍でその球面に対向するように配置した状態で固定されている。 Further, the optical fiber 13 is inserted into the through hole 11d through the insertion hole 11a, and is fixed in a state where the tip portion thereof is disposed in the vicinity of the collimator lens 12 so as to face the spherical surface.
 第1の実施の形態に係る光コリメータ10aにおいて、光ファイバ13は、例えば、グレーデッドインデックス(GI)型光ファイバで構成され、ファイバ軸に垂直な断面で屈折率が連続的に変化するように構成されている。また、コア13aおよびクラッド13bは、例えば、C-H結合のHをFに置換した全フッ素置換光学樹脂で構成されている。このように、光ファイバ13を全フッ素置換光学樹脂で構成するとともに、GI型光ファイバで構成することにより、高速かつ大容量通信を実現することができる。 In the optical collimator 10a according to the first embodiment, the optical fiber 13 is composed of, for example, a graded index (GI) optical fiber so that the refractive index continuously changes in a cross section perpendicular to the fiber axis. It is configured. The core 13a and the cladding 13b are made of, for example, an all-fluorine-substituted optical resin in which H of C—H bond is substituted with F. Thus, high-speed and large-capacity communication can be realized by configuring the optical fiber 13 with a perfluorinated optical resin and a GI-type optical fiber.
 このような構成を有し、第1の実施の形態に係る光コリメータ10aにおいては、コストの上昇を抑制しつつ、簡便にコリメータレンズ12と光ファイバ13との位置決めを行うためにホルダ11に設けた陥没部11eを利用する。具体的には、ホルダ11に設けた陥没部11eに、コリメータレンズ12および光ファイバ13の一部を当接させて位置決めを行うことにより、これらの位置決め用のスペーサなどの構成を不要とし、コストの上昇を抑制しつつ、簡便にコリメータレンズ12と光ファイバ13との位置決めを可能とするものである。 In the optical collimator 10a according to the first embodiment having such a configuration, the holder 11 is provided to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost. The depressed portion 11e is used. Specifically, by positioning the collimator lens 12 and part of the optical fiber 13 in contact with the depressed portion 11e provided in the holder 11, the configuration of these positioning spacers and the like is unnecessary, and the cost is reduced. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing the rise of the above.
 ここで、第1の実施の形態に係る光コリメータ10aのホルダ11におけるコリメータレンズ12および光ファイバ13の位置決め方法について図7を用いて説明する、図7は、図6に示す2点鎖線B内の拡大図である。図7に示すように、陥没部11eのうち、コリメータレンズ12に対向する部分には、コリメータレンズ12の一部が当接する一方、光ファイバ13に対向する部分には、光ファイバ13を構成するコア13a以外のクラッド13bまたは補強層13c、あるいはクラッド13bおよび補強層13cの一部が当接する。このように当接した状態でコリメータレンズ12および光ファイバ13がそれぞれホルダ11の所定位置に位置決めされる。 Here, the positioning method of the collimator lens 12 and the optical fiber 13 in the holder 11 of the optical collimator 10a according to the first embodiment will be described with reference to FIG. 7. FIG. 7 is a diagram within the two-dot chain line B shown in FIG. FIG. As shown in FIG. 7, a part of the collimator lens 12 abuts against a portion of the depressed portion 11 e that faces the collimator lens 12, while an optical fiber 13 is configured at a portion that faces the optical fiber 13. The clad 13b or the reinforcing layer 13c other than the core 13a, or a part of the clad 13b and the reinforcing layer 13c abut. The collimator lens 12 and the optical fiber 13 are each positioned at a predetermined position of the holder 11 in such a state of contact.
 図7に示すように、陥没部11eは、光ファイバ13の挿入方向と直交する平面(例えば、図7に示す光ファイバ13の端面と平行に配置され、陥没部11eの中心を通過する平面C)に対して、コリメータレンズ12に対向する部分の角度と、光ファイバ13に対向する部分の角度とが異なる角度に設けられている。このような陥没部11eは、例えば、先端部の形状が異なる先細の工具を用いて押圧加工を施すことにより設けられる。このような工具で押圧加工することにより、陥没部11eは、その押圧加工時における中心軸を基準として、コリメータレンズ12に対向する部分の角度と、光ファイバ13に対向する部分の角度とを異なる角度とすることで、形状の異なるコリメータレンズ12と光ファイバ13とを効果的に位置決めすることが可能となる。 As shown in FIG. 7, the depressed portion 11e is a plane perpendicular to the insertion direction of the optical fiber 13 (for example, a plane C that is arranged in parallel with the end surface of the optical fiber 13 shown in FIG. 7 and passes through the center of the depressed portion 11e. ), The angle of the portion facing the collimator lens 12 and the angle of the portion facing the optical fiber 13 are different from each other. Such a depressed portion 11e is provided by, for example, pressing using a tapered tool having a different tip shape. By pressing with such a tool, the depressed portion 11e is different from the angle of the portion facing the collimator lens 12 and the angle of the portion facing the optical fiber 13 with reference to the central axis at the time of pressing. By setting the angle, it is possible to effectively position the collimator lens 12 and the optical fiber 13 having different shapes.
 また、第1の実施の形態に係る光コリメータ10aにおいては、このような陥没部11eがホルダ11の同一周上に複数(本実施の形態においては、3つ)設けられている。同一周上への陥没部11eの形成は、例えば、上述した先端形状の異なる工具によりホルダ11の外周から同時に押圧加工を施すことが考えられる。このように同一周上に複数の陥没部11eを設けることにより、コリメータレンズ12および光ファイバ13をそれぞれ複数の位置で当接させることができるので、より高精度にコリメータレンズ12および光ファイバ13の位置決めを行うことが可能となる。 Further, in the optical collimator 10a according to the first embodiment, a plurality (three in the present embodiment) of such depressed portions 11e are provided on the same circumference of the holder 11. The formation of the depressed portion 11e on the same circumference can be considered, for example, by simultaneously pressing the outer circumference of the holder 11 with the tool having the different tip shape described above. By providing the plurality of depressions 11e on the same circumference as described above, the collimator lens 12 and the optical fiber 13 can be brought into contact with each other at a plurality of positions, so that the collimator lens 12 and the optical fiber 13 can be more accurately arranged. Positioning can be performed.
 陥没部11eにおけるコリメータレンズ12に対向する部分は、傾斜面11eを構成する。この傾斜面11eは、図7に矢印で示す光ファイバ13の挿入方向と直交する平面(例えば、図7に示す光ファイバ13の端面と平行に配置され、陥没部11eの基端部を通過する平面D)に対する角度θが0°以上45°以下となるように設けられている。このようにコリメータレンズ12側の傾斜面11eの角度θを光ファイバ13の挿入方向と直交する平面Dに対して0°以上45°以下に設定することにより、コリメータレンズ12における光ファイバ13側の一部を支持した状態で位置決めすることができるので、コリメータレンズ12の位置精度を高めることができる。 Portion facing the collimator lens 12 in the recess 11e constitutes an inclined surface 11e 1. The inclined surface 11e 1 is a plane orthogonal to the insertion direction of the optical fiber 13 indicated by an arrow in FIG. 7 (for example, is disposed in parallel with the end surface of the optical fiber 13 shown in FIG. 7, and passes through the base end of the depressed portion 11e. angle theta 1 with respect to the plane D) which is provided so as to be 0 ° to 45 °. Thus, by setting the angle θ 1 of the inclined surface 11e 1 on the collimator lens 12 side to 0 ° or more and 45 ° or less with respect to the plane D orthogonal to the insertion direction of the optical fiber 13, the optical fiber 13 in the collimator lens 12 is set. Since it can position in the state which supported a part of side, the positional accuracy of the collimator lens 12 can be improved.
 一方、陥没部11eにおける光ファイバ13に対向する部分は、傾斜面11eを構成する。傾斜面11eは、光ファイバ13の挿入方向と直交する平面(例えば、図7に示す光ファイバ13の端面と平行に配置される平面E)に対する角度θが0°以上20°以下となるように設けられている。このように傾斜面11eの角度を平面Eに対して0°以上20°以下に設けることにより、光ファイバ13が、上述したように、コア13a、クラッド13bおよび補強層13cが同一平面上に配置される光ファイバで構成される場合に、当該光ファイバ13の端面を陥没部11eに当接させることにより、これらの位置精度を確保し易くすることができる。 Meanwhile, the portion facing the optical fiber 13 in the recess 11e constitutes an inclined surface 11e 2. The inclined surface 11e 2 has an angle θ 2 with respect to a plane orthogonal to the insertion direction of the optical fiber 13 (for example, a plane E arranged parallel to the end face of the optical fiber 13 shown in FIG. 7) of 0 ° or more and 20 ° or less. It is provided as follows. Thus, by providing the angle of the inclined surface 11e 2 to 0 ° or more and 20 ° or less with respect to the plane E, the optical fiber 13 has the core 13a, the clad 13b, and the reinforcing layer 13c on the same plane as described above. In the case where the optical fiber 13 is arranged, the end face of the optical fiber 13 is brought into contact with the depressed portion 11e, so that the positional accuracy can be easily ensured.
 以上説明したように、第1の実施の形態に係る光コリメータ10aにおいては、ホルダ11に設けた陥没部11eにコリメータレンズ12の一部および光ファイバ13の一部を当接させて位置決めするようにしたことから、陥没部11eを基準としてコリメータレンズ12および光ファイバ13を位置決めすることができるので、従来のように、別部品をホルダ11に挿入する場合と比べて、作業効率を向上させることができ、コストの上昇を抑制しつつ、簡単にコリメータレンズ12と光ファイバ13との位置決めを行うことが可能となる。 As described above, in the optical collimator 10a according to the first embodiment, a part of the collimator lens 12 and a part of the optical fiber 13 are brought into contact with the depressed portion 11e provided in the holder 11 for positioning. As a result, the collimator lens 12 and the optical fiber 13 can be positioned with reference to the depressed portion 11e, so that the working efficiency can be improved as compared with the case where another part is inserted into the holder 11 as in the prior art. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost.
 続いて、第1の実施の形態に係る光コネクタ10の組み立て工程について、図8~図12に基づいて説明する。図8~図12は、光コネクタ10の組み立て工程を順に示す説明図である。光コネクタ10の組み立て工程は、樹脂継手14にホルダ11を圧入する工程(a)と、光ファイバ13を挿入する工程(b)と、チャック15を挿入する工程(c)と、カバー16を装着する工程(d)と、ジャケット17を装着する工程(e)と、金属部材18を装着する工程(f)と、を含んでいる。以下、各工程について詳細に説明する。 Subsequently, an assembly process of the optical connector 10 according to the first embodiment will be described with reference to FIGS. 8 to 12 are explanatory views sequentially showing the assembly process of the optical connector 10. The assembly process of the optical connector 10 includes the step (a) of press-fitting the holder 11 into the resin joint 14, the step (b) of inserting the optical fiber 13, the step (c) of inserting the chuck 15, and the mounting of the cover 16. A step (d), a step (e) for mounting the jacket 17, and a step (f) for mounting the metal member 18. Hereinafter, each step will be described in detail.
[工程(a)]
 まず、図8に示すように、樹脂継手14の挿入孔14aから、ホルダ11を圧入する。ホルダ11の収容部11cには、陥没部11eに当接した状態でコリメータレンズ12が位置決めされて収容されている。挿入孔14aから圧入されたホルダ11は、ホルダ11の挿入孔11aが位置決め部14gに当接すると静止する。このとき、ホルダ11は所定の位置に位置決めされた状態となる。
[Step (a)]
First, as shown in FIG. 8, the holder 11 is press-fitted from the insertion hole 14 a of the resin joint 14. The collimator lens 12 is positioned and accommodated in the accommodating portion 11c of the holder 11 while being in contact with the depressed portion 11e. The holder 11 press-fitted from the insertion hole 14a stops when the insertion hole 11a of the holder 11 comes into contact with the positioning portion 14g. At this time, the holder 11 is positioned at a predetermined position.
[工程(b)]
 次に、図9に示すように、樹脂継手14の開口部14bから光ファイバ13を挿入する。光ファイバ13は、樹脂継手14の内径に案内されてホルダ11の挿入孔11aに至り、ホルダ11の内径に案内されて陥没部11eに至る。光ファイバ13が、陥没部11eに当接したところで挿入作業が終了する。このとき、光ファイバ13は所定の位置に位置決めされた状態となる。
[Step (b)]
Next, as shown in FIG. 9, the optical fiber 13 is inserted from the opening 14 b of the resin joint 14. The optical fiber 13 is guided by the inner diameter of the resin joint 14 and reaches the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 and reaches the depressed portion 11e. The insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e. At this time, the optical fiber 13 is positioned at a predetermined position.
[工程(c)]
 次に、図10に示すように、樹脂継手14の開口部14bにチャック15を小径の前端部側から挿入して押し込む。チャック15は、チャック15の前端部が樹脂継手14のテーパー領域14iと把持領域14hとの境界に当接すると静止する。このとき、チャック15のフランジ15cは、樹脂継手14のテーパー領域14iに設けられた切り欠き部14jに係合し、その端部は樹脂継手14の端面から出ていない。また、チャック15の係止部15bは、樹脂継手14の内周面を弾性変形させて樹脂継手14の内周面に係合する。これにより、チャック15は樹脂継手14から脱落しにくくなる。チャック15のスリット15aは、樹脂継手14のテーパー領域14iを進むにつれ締め付けられ、チャック15が半径方向内側へ弾性変形することにより、チャック15の光ファイバ把持部15dにおいて光ファイバ13が把持固定される。
[Step (c)]
Next, as shown in FIG. 10, the chuck 15 is inserted into the opening 14 b of the resin joint 14 from the front end side with a small diameter and pushed. The chuck 15 stops when the front end portion of the chuck 15 comes into contact with the boundary between the tapered region 14 i and the gripping region 14 h of the resin joint 14. At this time, the flange 15 c of the chuck 15 engages with a notch portion 14 j provided in the tapered region 14 i of the resin joint 14, and an end portion thereof does not protrude from the end surface of the resin joint 14. Further, the locking portion 15 b of the chuck 15 is engaged with the inner peripheral surface of the resin joint 14 by elastically deforming the inner peripheral surface of the resin joint 14. As a result, the chuck 15 is less likely to fall off the resin joint 14. The slit 15a of the chuck 15 is tightened as the taper region 14i of the resin joint 14 is advanced, and the optical fiber 13 is gripped and fixed at the optical fiber gripping portion 15d of the chuck 15 by elastic deformation of the chuck 15 radially inward. .
[工程(d)]
 次に、図11に示すように、樹脂継手14の第2円筒部14eおよび開口部14bならびに開口部14bから露出する光ファイバ13の一部を覆うようにカバー16を装着する。カバー16により、チャック15および光ファイバ13を固定することによって、チャック15および光コネクタ13の位置ずれを防止でき、光ファイバ13を確実に固定することが可能となる。
[Step (d)]
Next, as shown in FIG. 11, the cover 16 is attached so as to cover the second cylindrical portion 14e and the opening 14b of the resin joint 14 and a part of the optical fiber 13 exposed from the opening 14b. By fixing the chuck 15 and the optical fiber 13 with the cover 16, it is possible to prevent the positional deviation of the chuck 15 and the optical connector 13, and it is possible to securely fix the optical fiber 13.
[工程(e)]
 次に、図12に示すように、カバー16のジャケット保持部16bないしカバー16から露出する光ファイバ13の長手方向に沿って、光ファイバ13すべてを覆うようにジャケット17を装着する。ジャケット17は、カバー16のジャケット保持部16bに設けられた凸部16aによってジャケット保持部16bに固定されるため、部品点数を増やすことなく光ファイバ13を被覆するジャケット17を効果的に固定することが可能となる。
[Step (e)]
Next, as shown in FIG. 12, the jacket 17 is attached so as to cover the entire optical fiber 13 along the longitudinal direction of the optical fiber 13 exposed from the jacket holding portion 16 b or the cover 16 of the cover 16. Since the jacket 17 is fixed to the jacket holding portion 16b by the convex portion 16a provided on the jacket holding portion 16b of the cover 16, the jacket 17 covering the optical fiber 13 can be effectively fixed without increasing the number of parts. Is possible.
[工程(f)]
 最後に、カバー16のジャケット保持部16bに装着されたジャケット17を覆うように金属部材18を装着することで、図2に示す光コネクタ10が得られる。金属部材18は、金属部材18のスリットを大きく開いてカバー16およびジャケット17を挟み込み、その後金属部材18のスリットを閉じることにより装着できる。金属部材18は、カバー16およびジャケット17の固定をより確実なものとするために装着する。ただし、カバー16自体を樹脂継手14や光ファイバ13に接着剤で接合することにより、カバー16を固定する構成とすることもできる。
[Step (f)]
Finally, the optical member 10 shown in FIG. 2 is obtained by attaching the metal member 18 so as to cover the jacket 17 attached to the jacket holding portion 16b of the cover 16. The metal member 18 can be mounted by widening the slit of the metal member 18 to sandwich the cover 16 and the jacket 17 and then closing the slit of the metal member 18. The metal member 18 is mounted to secure the cover 16 and the jacket 17 more securely. However, the cover 16 may be fixed by bonding the cover 16 itself to the resin joint 14 or the optical fiber 13 with an adhesive.
 以上説明したように、第1の実施の形態に係る光コネクタ10においては、ホルダ11に設けた陥没部11eにコリメータレンズ12の一部および光ファイバ13の一部を当接させて位置決めするようにしたことから、陥没部11eを基準としてコリメータレンズ12および光ファイバ13を位置決めすることができるので、従来のように、別部品をホルダ11内に挿入する場合と比べて、作業効率を向上することができ、コストの上昇を抑制しつつ、簡単にコリメータレンズ12と光ファイバ13との位置決めを行うことが可能となる。また、第1の実施の形態に係る光コネクタ10においては、樹脂継手14の通孔に挿入するだけでチャック15を変形させることができ、これに伴って光ファイバ把持部15dで光ファイバ13を固定することができるので、簡単に組み立て作業を行うことが可能となる。 As described above, in the optical connector 10 according to the first embodiment, a part of the collimator lens 12 and a part of the optical fiber 13 are brought into contact with the depressed portion 11e provided in the holder 11 for positioning. As a result, the collimator lens 12 and the optical fiber 13 can be positioned with reference to the depressed portion 11e, so that the working efficiency is improved as compared with the case where another part is inserted into the holder 11 as in the prior art. It is possible to easily position the collimator lens 12 and the optical fiber 13 while suppressing an increase in cost. In addition, in the optical connector 10 according to the first embodiment, the chuck 15 can be deformed only by being inserted into the through hole of the resin joint 14, and the optical fiber 13 is attached by the optical fiber gripping portion 15d accordingly. Since it can be fixed, assembly work can be easily performed.
 例えば、光ファイバを用いて機器間もしくは機器内での大容量通信を行うために用いられる光コネクタにおいて、従来のように、光ファイバとコリメータレンズとの位置決め用に隔壁(スペーサ部)を形成する場合には、金属材料などで構成される保持部材(ホルダ)に対して切削加工などの加工処理を施す必要がある。しかしながら、上記用途で使用される光コネクタの保持部材においては、その寸法が小さくなることから、切削加工の加工精度が低下し、加工処理に伴うコスト(例えば、寸法不良製品の発生によるコスト)の増大が顕著となる。これに対し、第1の実施の形態に係る光コネクタ10のホルダ11においては、保持部材であるホルダ11に切削加工を施すことで隔壁(スペーサ部)を形成するのではなく、塑性加工を施すことで陥没部11eを形成することから、加工処理に伴うコストを大幅に低減することができる。 For example, in an optical connector used for performing large-capacity communication between devices or within devices using an optical fiber, a partition wall (spacer portion) is formed for positioning the optical fiber and a collimator lens as in the conventional art. In some cases, it is necessary to perform processing such as cutting on a holding member (holder) made of a metal material or the like. However, since the dimension of the optical connector holding member used in the above-mentioned application is reduced, the machining accuracy of the cutting process is lowered, and the cost associated with the machining process (for example, the cost due to the occurrence of a defective product). The increase is significant. In contrast, in the holder 11 of the optical connector 10 according to the first embodiment, the partition 11 (spacer portion) is not formed by cutting the holder 11 that is the holding member, but plastic processing is performed. Thus, since the depressed portion 11e is formed, the cost associated with the processing can be significantly reduced.
 また、第1の実施の形態に係る光コネクタ10においては、ホルダ11に形成された陥没部11eによりコリメータレンズ12と光ファイバ13との位置決めを行う一方、樹脂継手14に形成された把持領域14hおよびチャック15に形成された光ファイバ把持部15dにより光ファイバ13を固定している。この場合において、光ファイバ13は、位置決めした状態で堅固に固定されている。このため、光ファイバ13を用いて機器間もしくは機器内での大容量通信を行うための用途において、抜き差しが繰り返し行われた場合においても、光ファイバ13とコリメータレンズ12との位置関係を維持することができる。 In the optical connector 10 according to the first embodiment, the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 14 is used. The optical fiber 13 is fixed by an optical fiber gripping portion 15 d formed on the chuck 15. In this case, the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
 なお、以上の説明においては、ホルダ11に設けた陥没部11eにコリメータレンズ12の一部および光ファイバ13の一部を当接させてコリメータレンズ12と光ファイバ13との位置決めを行う場合について説明している。しかしながら、コリメータレンズ12と光ファイバ13との位置決め方法については、これに限定されるものではなく適宜変更が可能である。例えば、コリメータレンズ12および光ファイバ13の双方を陥没部11eに当接させるのではなく、コリメータレンズ12または光ファイバ13の一方を当接させるようにし、他方については陥没部11e以外のホルダ11の部分で位置決めを行うようにしてもよい。ただし、この場合には、他方を位置決めするための部分が、陥没部11eとの関係で一定の位置関係に設計されることを前提とする。すなわち、本発明に係る光コネクタ10においては、コリメータレンズ12または光ファイバ13の一方を陥没部11eに当接させる着想も含まれる。 In the above description, a case where the collimator lens 12 and the optical fiber 13 are positioned by bringing a part of the collimator lens 12 and a part of the optical fiber 13 into contact with the depressed portion 11e provided in the holder 11 will be described. is doing. However, the positioning method of the collimator lens 12 and the optical fiber 13 is not limited to this, and can be appropriately changed. For example, both the collimator lens 12 and the optical fiber 13 are not brought into contact with the depressed portion 11e, but one of the collimator lens 12 and the optical fiber 13 is brought into contact with the other, and the holder 11 other than the depressed portion 11e is brought into contact with the other. Positioning may be performed at the part. However, in this case, it is assumed that the portion for positioning the other is designed in a fixed positional relationship with the depressed portion 11e. That is, the optical connector 10 according to the present invention includes an idea of bringing one of the collimator lens 12 or the optical fiber 13 into contact with the depressed portion 11e.
(第2の実施の形態)
 第1の実施の形態で示した光コネクタ10とは異なる構造の光コネクタ20について説明する。光コネクタ20は、樹脂継手24の一部の構造およびチャック25の構造が、光コネクタ10と相違する。以下、第2の実施の形態に係る光コネクタ20について、図13,図14に基づいて説明する。図13は、第2の実施の形態に係る光コネクタ20の側断面図である。図14は、チャック25の(a)斜視図、(b)側断面図である。なお、第2の実施の形態において、第1の実施の形態に係る光コネクタ10と共通する構成については同一の符号を付与してその説明を省略する。
(Second Embodiment)
An optical connector 20 having a structure different from that of the optical connector 10 shown in the first embodiment will be described. The optical connector 20 is different from the optical connector 10 in the structure of a part of the resin joint 24 and the structure of the chuck 25. Hereinafter, the optical connector 20 according to the second embodiment will be described with reference to FIGS. FIG. 13 is a side sectional view of the optical connector 20 according to the second embodiment. FIG. 14 is a (a) perspective view and (b) side sectional view of the chuck 25. In addition, in 2nd Embodiment, about the structure which is common in the optical connector 10 which concerns on 1st Embodiment, the same code | symbol is provided and the description is abbreviate | omitted.
 樹脂継手24の内周には、第2円筒部14eのうちフランジ14cに近接する部分に把持領域14h、開口部14bに近接する部分に筒部24aが設けられている。筒部24aの内径は、開口部14b側から把持領域14hまで等しく構成されている。このように、樹脂継手24は簡単な構造であるため、低コストで作製することが可能である。 In the inner periphery of the resin joint 24, a gripping region 14h is provided in a portion close to the flange 14c in the second cylindrical portion 14e, and a cylinder portion 24a is provided in a portion close to the opening 14b. The inner diameter of the cylindrical portion 24a is configured to be equal from the opening 14b side to the gripping region 14h. Thus, since the resin joint 24 has a simple structure, it can be manufactured at low cost.
 図14に示すように、チャック25は、弾性材料で形成された円筒形状を有している。なお、弾性材料としては、ゴム、エラストマーが好ましい。チャック25の外径は、中間部から樹脂継手24の通孔における筒部24aに対する挿入方向の前端部25aへ行くほどテーパー状に小径となり、中間部から後端部25bは樹脂継手24の筒部24aの内径とほぼ同径に構成されている。また、チャック25の前端部側の内周には、内径が光ファイバ13の外径とほぼ同径となる光ファイバ把持部25cが設けられている。 As shown in FIG. 14, the chuck 25 has a cylindrical shape formed of an elastic material. The elastic material is preferably rubber or elastomer. The outer diameter of the chuck 25 decreases from the intermediate portion to the front end portion 25a in the insertion direction with respect to the cylindrical portion 24a in the through hole of the resin joint 24, and becomes smaller in taper. The intermediate end to the rear end portion 25b extends from the intermediate portion to the cylindrical portion of the resin joint 24. The inner diameter of 24a is substantially the same. An optical fiber gripping portion 25 c having an inner diameter that is substantially the same as the outer diameter of the optical fiber 13 is provided on the inner periphery of the chuck 25 on the front end side.
 続いて、第2の実施の形態に係る光コネクタ20の組み立て工程について説明する。光コネクタ20の組み立て工程は、第1の実施の形態に係る光コネクタ10の組み立て工程と、[工程(b)]および[工程(c)]が相違する。 Subsequently, an assembly process of the optical connector 20 according to the second embodiment will be described. The assembly process of the optical connector 20 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
 光コネクタ20の組み立て工程においては、ホルダ11を樹脂継手24内に位置決めした後、チャック25を固定した光ファイバ13を樹脂継手24の開口部14bから挿入する。光ファイバ13は、樹脂継手24の内径に案内されてホルダ11の挿入孔11aに至り、ホルダ11の内径に案内されて陥没部11eに至る。光ファイバ13が、陥没部11eに当接したところで挿入作業が終了する。また、チャック25は、樹脂継手24の筒部24aの内壁と当接して半径方向内側へ弾性変形することにより、チャック25の光ファイバ把持部25cにおいて光ファイバ13が把持固定される。このとき、光ファイバ13は所定の位置に位置決めされた状態となり、チャック25は筒部24a内において摩擦により保持された状態となる。このように樹脂継手24の通孔に挿入するだけでチャック25を変形させることができ、これに伴って光ファイバ把持部25cで光ファイバ13を固定することができるので、簡単に組み立て作業を行うことが可能となる。特に、チャック25を弾性材料で形成していることから、弾性変形をさせるためのスリットなどの構成を設ける必要がなく、チャック25の製造に要するコストを低減することが可能となる。 In the assembly process of the optical connector 20, after positioning the holder 11 in the resin joint 24, the optical fiber 13 to which the chuck 25 is fixed is inserted from the opening 14 b of the resin joint 24. The optical fiber 13 is guided by the inner diameter of the resin joint 24 to reach the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 to reach the depressed portion 11e. The insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e. The chuck 25 abuts against the inner wall of the cylindrical portion 24 a of the resin joint 24 and elastically deforms radially inward, whereby the optical fiber 13 is gripped and fixed at the optical fiber gripping portion 25 c of the chuck 25. At this time, the optical fiber 13 is positioned at a predetermined position, and the chuck 25 is held by friction in the cylindrical portion 24a. As described above, the chuck 25 can be deformed simply by being inserted into the through hole of the resin joint 24, and the optical fiber 13 can be fixed by the optical fiber gripping portion 25c. It becomes possible. In particular, since the chuck 25 is formed of an elastic material, it is not necessary to provide a configuration such as a slit for elastic deformation, and the cost required for manufacturing the chuck 25 can be reduced.
 第2の実施の形態に係る光コネクタ20においては、ホルダ11に形成された陥没部11eによりコリメータレンズ12と光ファイバ13との位置決めを行う一方、樹脂継手24に形成された把持領域14hおよびチャック25に形成された光ファイバ把持部25cにより光ファイバ13を固定している。この場合において、光ファイバ13は、位置決めした状態で堅固に固定されている。このため、光ファイバ13を用いて機器間もしくは機器内での大容量通信を行うための用途において、抜き差しが繰り返し行われた場合においても、光ファイバ13とコリメータレンズ12との位置関係を維持することができる。 In the optical connector 20 according to the second embodiment, the collimator lens 12 and the optical fiber 13 are positioned by the recessed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 24 and the chuck The optical fiber 13 is fixed by an optical fiber gripping portion 25 c formed in 25. In this case, the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
(第3の実施の形態)
 第1の実施の形態で示した光コネクタ10とは異なる構造の光コネクタ30について説明する。光コネクタ30は、樹脂継手34の一部の構造およびチャック35の構造ならびに押さえコマ36を用いる点が、光コネクタ10と相違する。以下、第3の実施の形態に係る光コネクタ30について、図15,図16に基づいて説明する。図15は、第3の実施の形態に係る光コネクタ30の側断面図である。図16は、チャック35の(a)斜視図、(b)側断面図である。なお、第3の実施の形態において、第1の実施の形態に係る光コネクタ10と共通する構成については同一の符号を付与してその説明を省略する。
(Third embodiment)
An optical connector 30 having a structure different from that of the optical connector 10 shown in the first embodiment will be described. The optical connector 30 is different from the optical connector 10 in that a part of the resin joint 34, a structure of the chuck 35, and a pressing piece 36 are used. Hereinafter, an optical connector 30 according to a third embodiment will be described with reference to FIGS. 15 and 16. FIG. 15 is a side sectional view of the optical connector 30 according to the third embodiment. FIG. 16 is a (a) perspective view and (b) side sectional view of the chuck 35. Note that, in the third embodiment, the same reference numerals are given to the same components as those of the optical connector 10 according to the first embodiment, and the description thereof is omitted.
 樹脂継手34の内周には、第2円筒部14eのうちフランジ14cに近接する部分に把持領域14h、開口部14bに近接する部分に第2筒部34b、把持領域14hと第2筒部34bとの間に第1筒部34aが設けられている。第1筒部34aの内径は、把持領域14hの内径より大きく、かつ、第2筒部34bの内径より小さく構成されている。また、第2筒部34bにおける開口部14b近傍には、その内周に沿って切り欠き部34cが設けられている。 On the inner periphery of the resin joint 34, the gripping region 14h is located in the portion of the second cylindrical portion 14e adjacent to the flange 14c, the second cylindrical portion 34b, the gripping region 14h and the second cylindrical portion 34b in the portion adjacent to the opening 14b. The 1st cylinder part 34a is provided between these. The inner diameter of the first cylinder part 34a is configured to be larger than the inner diameter of the gripping area 14h and smaller than the inner diameter of the second cylinder part 34b. Moreover, the notch part 34c is provided along the inner periphery in the vicinity of the opening part 14b in the 2nd cylinder part 34b.
 図16に示すように、チャック35は、薄板ばねの作用を備え、樹脂継手34の通孔における第1筒部34aに対する挿入方向に大径部35aと小径部35bとを連結して設けた円筒形状を有するとともに、第1筒部34aに対する挿入方向に沿ってスリット35cが設けられ、後端部にフランジ35dが設けられている。大径部35aの外径は、樹脂継手34の第1筒部34aの内径とほぼ同径に構成されている。また、小径部35bの内周には、半径方向内側への膨出部からなる光ファイバ把持部35eが設けられている。なお、例えば、チャック35は板厚が0.1mm程度の薄板金属で構成され、この薄板金属に曲げ加工を施して円筒形状に構成されている。チャック35は、金属で形成されることが好ましい。樹脂、ゴム、エラストマーなどを材料とすると、強度が不足する場合が考えられるためである。 As shown in FIG. 16, the chuck 35 has a thin plate spring action, and is a cylinder provided by connecting a large diameter portion 35 a and a small diameter portion 35 b in the insertion direction with respect to the first tube portion 34 a in the through hole of the resin joint 34. In addition to having a shape, a slit 35c is provided along the insertion direction with respect to the first cylindrical portion 34a, and a flange 35d is provided at the rear end portion. The outer diameter of the large diameter portion 35 a is configured to be substantially the same as the inner diameter of the first tube portion 34 a of the resin joint 34. In addition, an optical fiber gripping portion 35e including a radially inwardly bulging portion is provided on the inner periphery of the small diameter portion 35b. For example, the chuck 35 is made of a thin plate metal having a plate thickness of about 0.1 mm, and is formed into a cylindrical shape by bending the thin plate metal. The chuck 35 is preferably made of metal. This is because if resin, rubber, elastomer, or the like is used as a material, the strength may be insufficient.
 押さえコマ36は、概して円筒形状を有し、一端にフランジ36aが設けられている。押さえコマ36の外径は、樹脂継手34の第2筒部34bの内径とほぼ同径に構成されている。 The pressing piece 36 has a generally cylindrical shape and is provided with a flange 36a at one end. The outer diameter of the pressing piece 36 is configured to be substantially the same as the inner diameter of the second cylindrical portion 34 b of the resin joint 34.
 続いて、第3の実施の形態に係る光コネクタ30の組み立て工程について説明する。光コネクタ30の組み立て工程は、第1の実施の形態に係る光コネクタ10の組み立て工程と、[工程(b)]および[工程(c)]が相違する。 Subsequently, an assembly process of the optical connector 30 according to the third embodiment will be described. The assembly process of the optical connector 30 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
 光コネクタ30の組み立て工程においては、ホルダ11を樹脂継手34内に位置決めした後、チャック35を固定した光ファイバ13を樹脂継手34の開口部14bから挿入する。チャック35は、フランジ35dが第1筒部34aと第2筒部34bとの境界に当接すると静止する。チャック35のスリット35cは、第1筒部34a内において締め付けられて、チャック35全体の径が縮小する。光ファイバ13は、樹脂継手34の内径に案内されてホルダ11の挿入孔11aに至り、ホルダ11の内径に案内されて陥没部11eに至る。光ファイバ13が、陥没部11eに当接したところで挿入作業が終了する。このとき、光ファイバ13は所定の位置に位置決めされた状態となり、チャック35は第1筒部34a内において半径方向外側に向かう弾性付勢力により第1筒部34aの内壁に張り付いた状態となり、大径部35aの外面が第1筒部34aの内壁と当接して半径方向内側へ弾性変形することにより、小径部35bの内面に設けられた光ファイバ把持部35eで光ファイバ13を固定できる。このように、チャック35は、第1筒部34aの内壁に接触していない光ファイバ把持部35eで光ファイバ13を保持するため、過度の押圧力が光ファイバ13に加わるのを防止でき、光ファイバ13を傷つけずに固定することができる。なお、チャック35のフランジ35dは第2筒部34bにおいて、半径方向外側に向かう弾性付勢力を発揮している。 In the assembly process of the optical connector 30, after positioning the holder 11 in the resin joint 34, the optical fiber 13 to which the chuck 35 is fixed is inserted from the opening 14 b of the resin joint 34. The chuck 35 stops when the flange 35d abuts on the boundary between the first cylinder part 34a and the second cylinder part 34b. The slit 35c of the chuck 35 is tightened in the first cylindrical portion 34a, and the diameter of the entire chuck 35 is reduced. The optical fiber 13 is guided by the inner diameter of the resin joint 34 to reach the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 to reach the depressed portion 11e. The insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e. At this time, the optical fiber 13 is positioned at a predetermined position, and the chuck 35 is stuck to the inner wall of the first cylindrical portion 34a by an elastic biasing force that is radially outward in the first cylindrical portion 34a. The outer surface of the large-diameter portion 35a abuts against the inner wall of the first cylindrical portion 34a and elastically deforms radially inward, so that the optical fiber 13 can be fixed by the optical fiber gripping portion 35e provided on the inner surface of the small-diameter portion 35b. Thus, since the chuck 35 holds the optical fiber 13 with the optical fiber gripping portion 35e that is not in contact with the inner wall of the first cylindrical portion 34a, it is possible to prevent an excessive pressing force from being applied to the optical fiber 13. The fiber 13 can be fixed without being damaged. The flange 35d of the chuck 35 exhibits an elastic biasing force toward the radially outer side in the second cylindrical portion 34b.
 光ファイバ13を位置決めした後、樹脂継手34の開口部14bから押さえコマ36を挿入して押し込む。押さえコマ36は、その端部が第1筒部34aと第2筒部34bとの境界に当接すると静止し、チャック35を固定する。押さえコマ36のフランジ36aは、樹脂継手34の第2筒部34bに設けられた切り欠き部34cに係合する。なお、押さえコマ36は、チャック35を第1筒部34aに固定してから押し込むのではなく、光ファイバ13を位置決めする際にチャック35と同様に光ファイバ13に固定し、この状態で押さえコマ36を押し込む構成としてもよい。この場合は、押さえコマ36を第2筒部34bに押し込むことにより、チャック35も第1筒部34aに押し込まれ、それぞれ所定の位置に固定することができる。 After positioning the optical fiber 13, the pressing piece 36 is inserted and pushed in from the opening 14 b of the resin joint 34. When the end of the pressing piece 36 comes into contact with the boundary between the first cylindrical portion 34 a and the second cylindrical portion 34 b, the pressing piece 36 stops and fixes the chuck 35. The flange 36 a of the presser piece 36 engages with a notch 34 c provided in the second cylindrical portion 34 b of the resin joint 34. The pressing piece 36 is not fixed after the chuck 35 is fixed to the first cylindrical portion 34a, but is fixed to the optical fiber 13 in the same manner as the chuck 35 when the optical fiber 13 is positioned. It is good also as a structure which pushes in 36. FIG. In this case, by pushing the pressing piece 36 into the second cylinder part 34b, the chuck 35 is also pushed into the first cylinder part 34a and can be respectively fixed at a predetermined position.
 第3の実施の形態に係る光コネクタ30においては、ホルダ11に形成された陥没部11eによりコリメータレンズ12と光ファイバ13との位置決めを行う一方、樹脂継手34に形成された把持領域14hおよびチャック35に形成された光ファイバ把持部35eにより光ファイバ13を固定している。この場合において、光ファイバ13は、位置決めした状態で堅固に固定されている。このため、光ファイバ13を用いて機器間もしくは機器内での大容量通信を行うための用途において、抜き差しが繰り返し行われた場合においても、光ファイバ13とコリメータレンズ12との位置関係を維持することができる。 In the optical connector 30 according to the third embodiment, the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 34 and the chuck The optical fiber 13 is fixed by an optical fiber gripping portion 35 e formed on the optical fiber 35. In this case, the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
(第4の実施の形態)
 第1の実施の形態で示した光コネクタ10とは異なる構造の光コネクタ40について説明する。光コネクタ40は、樹脂継手44の一部の構造およびチャック45の構造ならびに押さえコマ36を用いる点が、光コネクタ10と相違する。以下、第4の実施の形態に係る光コネクタ40について、図17,図18に基づいて説明する。図17は、第4の実施の形態に係る光コネクタ40の側断面図である。図18は、チャック45の(a)斜視図、(b)側面図である。なお、第4の実施の形態において、第1の実施の形態に係る光コネクタ10と共通する構成については同一の符号を付与してその説明を省略する。
(Fourth embodiment)
An optical connector 40 having a structure different from that of the optical connector 10 shown in the first embodiment will be described. The optical connector 40 is different from the optical connector 10 in that a partial structure of the resin joint 44, a structure of the chuck 45, and a pressing piece 36 are used. Hereinafter, an optical connector 40 according to the fourth embodiment will be described with reference to FIGS. 17 and 18. FIG. 17 is a side sectional view of an optical connector 40 according to the fourth embodiment. 18A is a perspective view of the chuck 45, and FIG. 18B is a side view thereof. In addition, in 4th Embodiment, about the structure which is common in the optical connector 10 which concerns on 1st Embodiment, the same code | symbol is provided and the description is abbreviate | omitted.
 樹脂継手44の内周には、第2円筒部14eのうちフランジ14cに近接する部分に把持領域14h、開口部14bに近接する部分に第2筒部44b、把持領域14hと第2筒部44bとの間に第1筒部44aが設けられている。第1筒部44aの内径は、把持領域14hの内径より大きく、かつ、第2筒部44bの内径より小さく構成されている。また、第1筒部44aと第2筒部44bとの境界は、テーパー部44cが設けられている。さらに、第2筒部44bにおける開口部14b近傍には、その内周に沿って切り欠き部44dが設けられている。 On the inner periphery of the resin joint 44, a gripping region 14h is located in the portion of the second cylindrical portion 14e adjacent to the flange 14c, a second cylindrical portion 44b, a gripping region 14h, and a second cylindrical portion 44b in the portion adjacent to the opening 14b. The 1st cylinder part 44a is provided between these. The inner diameter of the first cylinder part 44a is configured to be larger than the inner diameter of the gripping area 14h and smaller than the inner diameter of the second cylinder part 44b. Moreover, the taper part 44c is provided in the boundary of the 1st cylinder part 44a and the 2nd cylinder part 44b. Further, a notch 44d is provided in the vicinity of the opening 14b in the second cylindrical portion 44b along the inner periphery thereof.
 図18に示すように、チャック45は、樹脂継手44の通孔における第1筒部44aおよび第2筒部44bに対する挿入方向に小径部45aと大径部45bとを連結して設けた円筒形状を有するとともに、この挿入方向に沿って大径部45bに複数(本実施の形態においては、3本)のスリット45cが設けられている。小径部45aの外径は、第1筒部44aの内径とほぼ同径に構成されている。また、大径部45bの外径は、第2筒部44bの内径とほぼ同径に構成されている。また、大径部45bの内周には、光ファイバ把持部45dが設けられている。さらに、大径部45bの連結部分には、樹脂継手44のテーパー部44cの形状と一致するテーパー部が設けられている。 As shown in FIG. 18, the chuck 45 has a cylindrical shape in which a small diameter portion 45a and a large diameter portion 45b are connected in the insertion direction with respect to the first cylindrical portion 44a and the second cylindrical portion 44b in the through hole of the resin joint 44. And a plurality (three in the present embodiment) of slits 45c are provided in the large-diameter portion 45b along this insertion direction. The outer diameter of the small diameter part 45a is configured to be substantially the same as the inner diameter of the first cylinder part 44a. Further, the outer diameter of the large diameter portion 45b is configured to be substantially the same as the inner diameter of the second cylindrical portion 44b. An optical fiber gripping part 45d is provided on the inner periphery of the large diameter part 45b. Further, a tapered portion that matches the shape of the tapered portion 44 c of the resin joint 44 is provided at the connecting portion of the large diameter portion 45 b.
 続いて、第4の実施の形態に係る光コネクタ40の組み立て工程について説明する。光コネクタ40の組み立て工程は、第1の実施の形態に係る光コネクタ10の組み立て工程と、[工程(b)]および[工程(c)]が相違する。 Subsequently, an assembly process of the optical connector 40 according to the fourth embodiment will be described. The assembly process of the optical connector 40 is different from the assembly process of the optical connector 10 according to the first embodiment in [Step (b)] and [Step (c)].
 光コネクタ40の組み立て工程においては、ホルダ11を樹脂継手44内に位置決めした後、チャック45を固定した光ファイバ13を樹脂継手44の開口部14bから挿入する。このとき、チャック45は、小径部45aを前端側として樹脂継手44の通孔内に挿入され、通孔内を進むにつれてスリット45cが締め付けられていく。光ファイバ13は、樹脂継手44の内径に案内されてホルダ11の挿入孔11aに至り、ホルダ11の内径に案内されて陥没部11eに至る。光ファイバ13が、陥没部11eに当接したところで挿入作業が終了する。このとき、光ファイバ13は所定の位置に位置決めされた状態となる。また、チャック45は、大径部45bのテーパー部が樹脂継手44のテーパー部44cに当接した状態で、大径部45bの外面が樹脂継手44の通孔における第2筒部44bの内壁と当接して半径方向内側へ弾性変形することにより、大径部45bの内面に設けられた光ファイバ把持部45dで光ファイバ13を把持固定している。このように、大径部45bに複数のスリット45cを設けることにより、大径部45bが半径方向内側へ弾性変形した際に、光ファイバ13に均等に力をかけて光ファイバ13を保持できるため、光ファイバ13を安定した状態で固定することが可能となる。 In the assembly process of the optical connector 40, after positioning the holder 11 in the resin joint 44, the optical fiber 13 to which the chuck 45 is fixed is inserted from the opening 14b of the resin joint 44. At this time, the chuck 45 is inserted into the through hole of the resin joint 44 with the small diameter portion 45a as the front end side, and the slit 45c is tightened as it advances through the through hole. The optical fiber 13 is guided by the inner diameter of the resin joint 44 and reaches the insertion hole 11a of the holder 11, and is guided by the inner diameter of the holder 11 and reaches the depressed portion 11e. The insertion operation ends when the optical fiber 13 comes into contact with the depressed portion 11e. At this time, the optical fiber 13 is positioned at a predetermined position. Further, the chuck 45 is in a state in which the tapered portion of the large diameter portion 45 b is in contact with the tapered portion 44 c of the resin joint 44, and the outer surface of the large diameter portion 45 b is in contact with the inner wall of the second cylindrical portion 44 b in the through hole of the resin joint 44. By abutting and elastically deforming radially inward, the optical fiber 13 is held and fixed by the optical fiber holding portion 45d provided on the inner surface of the large diameter portion 45b. In this way, by providing the plurality of slits 45c in the large diameter portion 45b, when the large diameter portion 45b is elastically deformed inward in the radial direction, the optical fiber 13 can be held by applying an even force to the optical fiber 13. The optical fiber 13 can be fixed in a stable state.
 光ファイバ13を位置決めした後、樹脂継手44の開口部14bから押さえコマ36を挿入して押し込む。押さえコマ36は、その端部がチャック45の大径部45bの端部に当接すると静止し、チャック45を固定する。押さえコマ36のフランジ36aは、樹脂継手44の第2筒部44bに設けられた切り欠き部44dに係合する。なお、押さえコマ36は、チャック45を固定してから押し込むのではなく、光ファイバ13を位置決めする際にチャック45と同様に光ファイバ13に固定し、この状態で押さえコマ36を押し込む構成としてもよい。この場合は、押さえコマ36を第2筒部44bに押し込むことにより、チャック45も第1筒部44aに押し込まれ、それぞれ所定の位置に固定することができる。 After positioning the optical fiber 13, the pressing piece 36 is inserted and pushed in from the opening 14 b of the resin joint 44. When the end of the pressing piece 36 comes into contact with the end of the large-diameter portion 45 b of the chuck 45, the pressing piece 36 stops and fixes the chuck 45. The flange 36 a of the pressing piece 36 engages with a notch 44 d provided in the second cylindrical portion 44 b of the resin joint 44. The pressing piece 36 is not pushed after the chuck 45 is fixed, but is fixed to the optical fiber 13 in the same manner as the chuck 45 when the optical fiber 13 is positioned, and the holding piece 36 is pushed in this state. Good. In this case, by pushing the pressing piece 36 into the second cylinder portion 44b, the chuck 45 is also pushed into the first cylinder portion 44a, and can be respectively fixed at predetermined positions.
 第4の実施の形態に係る光コネクタ40においては、ホルダ11に形成された陥没部11eによりコリメータレンズ12と光ファイバ13との位置決めを行う一方、樹脂継手44に形成された把持領域14hおよびチャック45に形成された光ファイバ把持部45dにより光ファイバ13を固定している。この場合において、光ファイバ13は、位置決めした状態で堅固に固定されている。このため、光ファイバ13を用いて機器間もしくは機器内での大容量通信を行うための用途において、抜き差しが繰り返し行われた場合においても、光ファイバ13とコリメータレンズ12との位置関係を維持することができる。 In the optical connector 40 according to the fourth embodiment, the collimator lens 12 and the optical fiber 13 are positioned by the depressed portion 11e formed in the holder 11, while the gripping region 14h formed in the resin joint 44 and the chuck The optical fiber 13 is fixed by an optical fiber gripping part 45 d formed in 45. In this case, the optical fiber 13 is firmly fixed in a positioned state. For this reason, the positional relationship between the optical fiber 13 and the collimator lens 12 is maintained even when the insertion / removal is repeatedly performed in an application for performing large-capacity communication between devices or within the device using the optical fiber 13. be able to.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 It should be noted that the present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 上記実施の形態においては、プラスチック光ファイバを光ファイバ13の一例として説明しているが、上記実施の形態に係る光コネクタ10にて適用される光ファイバ13は、プラスチック光ファイバに限定されるものではない。例えば、ガラスファイバを適用することも可能である。 In the said embodiment, although the plastic optical fiber was demonstrated as an example of the optical fiber 13, the optical fiber 13 applied with the optical connector 10 which concerns on the said embodiment is limited to a plastic optical fiber. is not. For example, glass fiber can be applied.
 また、上記第1の実施の形態においては、樹脂継手14内にチャック15のみを挿入して光ファイバ13を固定する構成としたが、本発明はこの構成に限定されるものではない。樹脂継手14内にチャック15および押さえコマを挿入して光ファイバ13を固定する構成としてもよい。同様に、第2の実施の形態においても、樹脂継手24内にチャック25のみを挿入して光ファイバ13を固定する構成に限定されず、樹脂継手24内にチャック25および押さえコマを挿入して光ファイバ13を固定する構成としてもよい。また、第3の実施の形態においては、樹脂継手34内にチャック35および押さえコマ36を挿入して光ファイバ13を固定する構成に限定されず、樹脂継手34内にチャック35のみを挿入して光ファイバ13を固定する構成としてもよい。同様に、第4の実施の形態においても、樹脂継手44内にチャック45および押さえコマ36を挿入して光ファイバ13を固定する構成に限定されず、樹脂継手44内にチャック45のみを挿入して光ファイバ13を固定する構成としてもよい。 In the first embodiment, only the chuck 15 is inserted into the resin joint 14 and the optical fiber 13 is fixed. However, the present invention is not limited to this configuration. A configuration may be adopted in which the optical fiber 13 is fixed by inserting a chuck 15 and a pressing piece into the resin joint 14. Similarly, the second embodiment is not limited to the configuration in which only the chuck 25 is inserted into the resin joint 24 and the optical fiber 13 is fixed, and the chuck 25 and the pressing piece are inserted into the resin joint 24. The optical fiber 13 may be fixed. Further, in the third embodiment, the configuration is not limited to the configuration in which the optical fiber 13 is fixed by inserting the chuck 35 and the holding piece 36 into the resin joint 34, and only the chuck 35 is inserted into the resin joint 34. The optical fiber 13 may be fixed. Similarly, the fourth embodiment is not limited to the configuration in which the chuck 45 and the pressing piece 36 are inserted into the resin joint 44 to fix the optical fiber 13, and only the chuck 45 is inserted into the resin joint 44. The optical fiber 13 may be fixed.
 本出願は、2011年3月17日出願の特願2011-058813に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2011-058813 filed on Mar. 17, 2011. All this content is included here.

Claims (10)

  1.  一端にコリメータレンズを収容する収容部が形成され、他端に光ファイバが挿入される挿入孔が形成された金属製の保持部材と、
     一端に前記保持部材が挿入される第1の挿入孔が形成され、他端に前記光ファイバが挿入される第2の挿入孔が形成された樹脂継手と、
     前記光ファイバの把持部を有し、前記樹脂継手の通孔に挿入されるチャックと、
     を備えた光コネクタであって、
     前記保持部材の収容部近傍に形成された陥没部に、前記コリメータレンズおよび前記光ファイバの端面の少なくとも一方を当接させて位置決めを行うとともに、前記通孔に挿入された前記チャックが半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定することを特徴とする光コネクタ。
    A metal holding member in which an accommodating portion for accommodating a collimator lens is formed at one end and an insertion hole into which an optical fiber is inserted is formed at the other end,
    A resin coupling in which a first insertion hole into which the holding member is inserted is formed at one end, and a second insertion hole into which the optical fiber is inserted into the other end;
    A chuck having a grip portion of the optical fiber, and inserted into the through hole of the resin joint;
    An optical connector comprising:
    Positioning is performed by bringing at least one of the collimator lens and the end face of the optical fiber into contact with a recessed portion formed in the vicinity of the holding portion of the holding member, and the chuck inserted into the through hole is radially inward. An optical connector characterized in that the optical fiber is fixed by the gripping part by elastically deforming.
  2.  前記チャックは、前記通孔に対する挿入方向の前端部を後端部よりも小径に設けた円筒形状を有するとともに、前記挿入方向に沿ってスリットが設けられ、前記通孔の内壁に設けられたテーパー面と当接して半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定することを特徴とする請求項1記載の光コネクタ。 The chuck has a cylindrical shape in which a front end portion in the insertion direction with respect to the through hole is provided with a smaller diameter than a rear end portion, and a slit is provided along the insertion direction, and a taper provided on an inner wall of the through hole. The optical connector according to claim 1, wherein the optical fiber is fixed by the grip portion by abutting with a surface and elastically deforming radially inward.
  3.  前記チャックは、弾性材料で形成された円筒形状を有し、前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記把持部で前記光ファイバを固定することを特徴とする請求項1記載の光コネクタ。 The chuck has a cylindrical shape formed of an elastic material, and abuts against an inner wall of the through hole and elastically deforms radially inward to fix the optical fiber at the gripping portion. Item 5. The optical connector according to Item 1.
  4.  前記チャックは、前記通孔に対する挿入方向に大径部と小径部とを連結して設けた円筒形状を有するとともに、前記挿入方向に沿ってスリットが設けられ、前記大径部の外面が前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記小径部の内面に設けられた前記把持部で前記光ファイバを固定することを特徴とする請求項1記載の光コネクタ。 The chuck has a cylindrical shape in which a large diameter portion and a small diameter portion are connected in the insertion direction with respect to the through hole, and a slit is provided along the insertion direction, and an outer surface of the large diameter portion is formed through the through hole. 2. The optical connector according to claim 1, wherein the optical fiber is fixed by the grip portion provided on the inner surface of the small diameter portion by abutting against an inner wall of the hole and elastically deforming radially inward.
  5.  前記チャックは、前記通孔に対する挿入方向に小径部と大径部とを連結して設けた円筒形状を有するとともに、前記挿入方向に沿って前記大径部に複数のスリットが設けられ、前記大径部の外面が前記通孔の内壁と当接して半径方向内側へ弾性変形することにより前記大径部の内面に設けられた前記把持部で前記光ファイバを固定することを特徴とする請求項1記載の光コネクタ。 The chuck has a cylindrical shape in which a small diameter portion and a large diameter portion are connected in the insertion direction with respect to the through hole, and a plurality of slits are provided in the large diameter portion along the insertion direction. The outer surface of the diameter portion abuts against the inner wall of the through hole and elastically deforms radially inward, whereby the optical fiber is fixed by the grip portion provided on the inner surface of the large diameter portion. The optical connector according to 1.
  6.  前記チャックの端部に接触して前記チャックを固定する押えコマを備えることを特徴とする請求項1記載の光コネクタ。 The optical connector according to claim 1, further comprising a presser piece that contacts the end of the chuck and fixes the chuck.
  7.  前記第2の挿入孔および前記第2の挿入孔から露出する前記光ファイバを覆うカバーを備えることを特徴とする請求項1記載の光コネクタ。 The optical connector according to claim 1, further comprising a cover that covers the second insertion hole and the optical fiber exposed from the second insertion hole.
  8.  前記カバーの前記光ファイバを覆う部分には、複数の凸部が設けられていることを特徴とする請求項7記載の光コネクタ。 The optical connector according to claim 7, wherein a plurality of convex portions are provided on a portion of the cover that covers the optical fiber.
  9.  前記樹脂継手の外周に、デバイスと接続した際に前記デバイス側の係合部と係合する被係合部を設けることを特徴とする請求項1から請求項8のいずれかに記載の光コネクタ。 The optical connector according to any one of claims 1 to 8, wherein an engaged portion that engages with an engaging portion on the device side when connected to a device is provided on an outer periphery of the resin joint. .
  10.  前記樹脂継手の外周に、デバイスに対して接続位置まで挿入可能とする環状に突出したフランジを設けることを特徴とする請求項1から請求項9のいずれかに記載の光コネクタ。
     
    The optical connector according to any one of claims 1 to 9, wherein an annularly projecting flange is provided on an outer periphery of the resin joint so as to be inserted to a connection position with respect to the device.
PCT/JP2012/056070 2011-03-17 2012-03-09 Optical connector WO2012124620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-058813 2011-03-17
JP2011058813A JP5705602B2 (en) 2011-03-17 2011-03-17 Optical connector

Publications (1)

Publication Number Publication Date
WO2012124620A1 true WO2012124620A1 (en) 2012-09-20

Family

ID=46830692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056070 WO2012124620A1 (en) 2011-03-17 2012-03-09 Optical connector

Country Status (3)

Country Link
JP (1) JP5705602B2 (en)
TW (1) TW201250312A (en)
WO (1) WO2012124620A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095807A (en) * 2012-11-09 2014-05-22 Mitsubishi Pencil Co Ltd Optical connector
US8702322B1 (en) * 2013-06-03 2014-04-22 Corning Cable Systems Llc Optical connector with adhesive material
US9588303B2 (en) 2013-06-03 2017-03-07 Corning Optical Communications LLC Optical connector with adhesive material
JP6328417B2 (en) * 2013-12-18 2018-05-23 三菱鉛筆株式会社 Optical coupling member
JP2016130749A (en) * 2015-01-12 2016-07-21 小池 康博 Optical module, electronic apparatus and optical connection method
CN114746147A (en) * 2019-10-29 2022-07-12 Ipg光子公司 Optical fiber cable connector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847803U (en) * 1981-09-25 1983-03-31 三菱レイヨン株式会社 light guide
JPS6060706U (en) * 1983-09-30 1985-04-27 富士通株式会社 optical receptacle
JPS62235909A (en) * 1986-04-04 1987-10-16 Fujitsu Ltd Adjusting structure for optical collimater part
JPS62296104A (en) * 1986-05-19 1987-12-23 ソシエタ・カビ・ピレリ−・ソシエタ・ペル・アジオニ Expansion beam type connector and axial positioning of optical fiber therefor
JP2004302222A (en) * 2003-03-31 2004-10-28 Sumitomo Osaka Cement Co Ltd Optical fiber collimator and manufacturing method therefor
WO2011129229A1 (en) * 2010-04-16 2011-10-20 三菱鉛筆株式会社 Optical collimator, optical connector using same, and holding member for optical collimator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8202359L (en) * 1981-04-20 1982-10-21 Malco DEVICE FOR INBOARD DIRECTION OF AN OPTICAL FIBER AND A COLLIMATOR LENS
JPS62129517U (en) * 1986-02-12 1987-08-15
JPH0444607U (en) * 1990-08-17 1992-04-15
JPH07120642A (en) * 1993-10-21 1995-05-12 Mitsubishi Rayon Co Ltd Optical fiber type photoelectric switch attachment
US6065882A (en) * 1995-07-14 2000-05-23 Cogent Light Technologies, Inc. Snap-in proximal connector for mounting an optic fiber element into a light source system
JPH10160992A (en) * 1996-12-04 1998-06-19 Mitsubishi Cable Ind Ltd Lens fixing structure for endoscope and lens fixing method
JPH11305066A (en) * 1998-04-27 1999-11-05 Fujitsu Ltd Terminal part structure for plastic optical fiber and optical connector using the terminal part structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847803U (en) * 1981-09-25 1983-03-31 三菱レイヨン株式会社 light guide
JPS6060706U (en) * 1983-09-30 1985-04-27 富士通株式会社 optical receptacle
JPS62235909A (en) * 1986-04-04 1987-10-16 Fujitsu Ltd Adjusting structure for optical collimater part
JPS62296104A (en) * 1986-05-19 1987-12-23 ソシエタ・カビ・ピレリ−・ソシエタ・ペル・アジオニ Expansion beam type connector and axial positioning of optical fiber therefor
JP2004302222A (en) * 2003-03-31 2004-10-28 Sumitomo Osaka Cement Co Ltd Optical fiber collimator and manufacturing method therefor
WO2011129229A1 (en) * 2010-04-16 2011-10-20 三菱鉛筆株式会社 Optical collimator, optical connector using same, and holding member for optical collimator

Also Published As

Publication number Publication date
TW201250312A (en) 2012-12-16
JP2012194410A (en) 2012-10-11
JP5705602B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2012124620A1 (en) Optical connector
US8480311B2 (en) Optical connector, method of attaching the optical connector to coated optical fiber, and optical connection member
JP4866961B2 (en) Optical collimator, optical connector using the same, and optical collimator holding member
JP5053709B2 (en) Optical connection member
JP5357231B2 (en) Optical connector
WO2011145466A1 (en) Optical collimator and optical connector using same
JP2012032725A (en) Small-diameter bending optical connector and method for manufacturing the same
JP5743676B2 (en) Optical connector
JP6251512B2 (en) Optical connector
JP5851793B2 (en) Optical coupling member, optical connector using the same, and optical coupling member holding member
JP2018141954A (en) Optical connection member and optical connector
JP5657944B2 (en) Optical connector with lens
WO2018159081A1 (en) Optical connection member and optical connector
JP5425866B2 (en) Optical collimator, optical connector using the same, and optical collimator holding member
JP5182955B2 (en) Optical fiber alignment structure, optical connector using the same, and optical fiber alignment method
WO2013046800A1 (en) Optically coupling member, optical connector using same, and member for holding optically coupling member
JP6328417B2 (en) Optical coupling member
JP2017111261A (en) Optical coupling member
JP2014095807A (en) Optical connector
JP2012198429A (en) Multicore optical fiber holder and holder body part
JP5483502B2 (en) Optical fiber alignment structure, optical connector using the same, and optical fiber alignment method
JP2012185319A (en) Multi-core optical fiber holder and holder body part
JP2005292292A (en) Optical fiber stress cutting method, optical plug, optical receptacle, and optical connector structure
TWM449272U (en) Optical collimator
JP2011022229A (en) Optical fiber cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757700

Country of ref document: EP

Kind code of ref document: A1