WO2012124592A1 - Liquid crystal display device and three-dimensional image display system provided with same - Google Patents

Liquid crystal display device and three-dimensional image display system provided with same Download PDF

Info

Publication number
WO2012124592A1
WO2012124592A1 PCT/JP2012/055935 JP2012055935W WO2012124592A1 WO 2012124592 A1 WO2012124592 A1 WO 2012124592A1 JP 2012055935 W JP2012055935 W JP 2012055935W WO 2012124592 A1 WO2012124592 A1 WO 2012124592A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
liquid crystal
frame
eye
subframe
Prior art date
Application number
PCT/JP2012/055935
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012124592A1 publication Critical patent/WO2012124592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames

Definitions

  • the present invention relates to a liquid crystal display device capable of displaying a stereoscopic video and a stereoscopic video display system including the same.
  • FRC method frame rate control method
  • the FRC method in a case where an intermediate gradation between the first gradation and the second gradation is displayed on a certain pixel, the first gradation is displayed on the pixel in a certain frame, and the second gradation is displayed on the next frame. It is a method of displaying.
  • liquid crystal panel is generally driven by an alternating current to prevent deterioration of liquid crystal characteristics.
  • Patent Document 1 discloses a driving method using the FRC method while AC driving a liquid crystal panel.
  • FIG. 7 is a diagram for explaining a gradation display method of a liquid crystal display device using the FRC method described in Patent Document 1.
  • FIG. 7 shows the voltage applied to the liquid crystal of a certain pixel for each reference period.
  • a positive voltage V2 corresponding to the second gradation is applied to the liquid crystal in the first frame.
  • a negative voltage V2 corresponding to the second gradation is applied to the liquid crystal in the second frame.
  • a negative voltage ⁇ V2 corresponding to the second gradation is applied to the liquid crystal in the second frame.
  • a positive voltage + V2 corresponding to the second gradation is applied to the liquid crystal in the third frame.
  • the liquid crystal is AC driven while using the FRC method by canceling the positive polarity applied voltage and the negative polarity applied voltage in the first to fourth reference cycles.
  • a frame sequential method is generally used as a driving method of a liquid crystal panel capable of displaying a stereoscopic (3D) image.
  • FIG. 8 is a diagram showing luminance change of an ideal frame sequential pixel.
  • FIG. 9 is a diagram illustrating a luminance change of an actual frame sequential pixel. 8 and 9, L represents the left-eye video display period, and R represents the right-eye video display period. The vertical axis represents the voltage applied to the pixel.
  • the driving of the liquid crystal molecules is controlled so that the image for the right eye and the image for the left eye are alternately displayed on the liquid crystal display panel for each frame. Then, in accordance with the display image, a stereoscopic video is displayed by performing opening / closing control of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter.
  • the liquid crystal molecules change digitally when the voltage for the right eye image and the voltage for the left eye image are alternately applied to the pixels.
  • the falling of the right-eye video voltage enters the left-eye video display period, or the rising of the left-eye video voltage enters the right-eye video display period.
  • the present invention has been made to solve the above-described problems, and its object is to drive a liquid crystal by alternating current to perform multi-gradation display with low power consumption and to occur with a response delay of liquid crystal molecules. It is to prevent crosstalk.
  • the liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame.
  • Sub-frame dividing means for dividing one frame into a plurality of sub-frames, and an average value of gradations of the plurality of sub-frames in the pixel of interest is a prescribed gradation to be displayed by the pixel of interest in the one frame.
  • the gradation determining means for determining each of the gradations of the plurality of subframes and the application to the target pixel corresponding to each of the gradations for each of the subframes determined by the gradation determining means.
  • Polarity reversing means for reversing the polarity of the applied voltage for each frame
  • the gradation determining means includes the plurality of sub-frames so that the gradation of the last sub-frame is minimized. It is characterized by determining the respective gradations of the sub-frame.
  • one frame is divided into a plurality of subframes by the subframe dividing means.
  • the gradation determining means is configured to output the plurality of sub-subpixels so that an average value of gradations of the plurality of sub-frames in the pixel of interest is a predetermined gradation to be displayed by the pixel of interest in the one frame.
  • Each frame gradation is determined.
  • the specified gradation that the pixel of interest should display in one frame can be displayed by a combination of gradations of the plurality of subframes. For this reason, an increase in the number of circuits accompanying the increase in the number of gradations can be suppressed, and a multi-gradation display can be performed with low power consumption.
  • the polarity inversion means inverts the polarity of the voltage applied to the pixel of interest for each frame corresponding to each gradation for each subframe determined by the gradation determination means.
  • the gradation determination means determines the gradation of each of the plurality of subframes so that the gradation of the last subframe among the plurality of subframes becomes the smallest.
  • the target pixel corresponding to the gradation of the last subframe adjacent to the next frame is the smallest.
  • the liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame, and one frame is divided into a plurality of subframes.
  • the subframe dividing means for dividing, and the average value of the gradations of the plurality of subframes in the pixel of interest is the prescribed gradation to be displayed by the pixel of interest in the one frame.
  • the liquid crystal is AC driven to perform multi-gradation display with low power consumption, and the effect of preventing crosstalk caused by the response delay of the liquid crystal molecules is exhibited.
  • FIG. 2 shows a configuration of the liquid crystal panel 30 constituting the liquid crystal display device 10.
  • the liquid crystal panel 30 is a liquid crystal panel arranged in the liquid crystal display device 10 so that a stereoscopic video can be displayed by switching and displaying a right-eye video and a left-eye video for each frame.
  • the liquid crystal panel 30 includes a source driver 31, a gate driver 32, and a pixel array 33.
  • the liquid crystal panel 30 includes a TFT substrate on which display pixel electrodes and TFT elements for applying a voltage to the pixel electrodes are arranged in a matrix, and a counter substrate on which common electrodes and color filters are arranged to face the pixel electrodes. Are arranged so as to face each other through the liquid crystal layer.
  • the pixel array 33 includes a plurality of pixels 34 arranged in a matrix.
  • the pixel 34 includes the pixel electrode and the TFT element, a common electrode, and a liquid crystal layer disposed between the pixel electrode and the common electrode.
  • the source driver (horizontal drive circuit) 31 is disposed along the upper side of the pixel array 33, for example, and the gate driver (vertical drive circuit) 32 is disposed along the left side of the pixel array 33.
  • the source driver 31 performs D / A conversion on the display data latched in units of one line in the horizontal direction and applies the grayscale voltage to the pixel electrode of the pixel 34 from the upper side to the lower side (that is, in the vertical direction) in units of one horizontal line. Write sequentially.
  • the liquid crystal molecules in the pixel 34 are driven by the potential difference between the pixel electrode and the common electrode generated by the gradation voltage. By controlling the driving of the liquid crystal molecules for each pixel 34, the transmission of the pixel 34 is controlled. As a result, an image that the user can appreciate can be displayed on the pixel array 33.
  • FIG. 1 is a block diagram showing a configuration of a stereoscopic video display system 1 according to the present embodiment.
  • the stereoscopic image display system 1 is a liquid crystal display device capable of displaying a stereoscopic (3D) image by a frame sequential method.
  • the stereoscopic video display system 1 includes a liquid crystal display device 10 and light-shielding glasses 20.
  • the liquid crystal display device 10 includes a liquid crystal panel 30 and a liquid crystal drive circuit 40.
  • the liquid crystal driving circuit 40 sequentially outputs a right-eye video signal and a left-eye video signal having different polarities for each frame to the liquid crystal panel 30, thereby displaying a stereoscopic video on the pixel array 33 of the liquid crystal panel 30. Is.
  • the liquid crystal driving circuit 40 includes a video processing unit 41, a gradation control unit 42, a table storage unit 44, and a shutter control unit 45.
  • the video processing unit 41 includes a gradation signal generation unit 41a and a left / right identification signal generation unit (left / right identification signal generation means) 41b.
  • the gradation control unit 42 includes a subframe dividing unit (subframe dividing unit) 42a, a gradation determining unit (gradation determining unit) 42b, and a polarity inverting / amplifying unit (polarity inverting unit) 42c. Yes.
  • the video processing unit 41 obtains a video signal D including the right-eye video signal DR and the left-eye video signal DL from the outside.
  • the gradation signal generation unit 41a sequentially calculates the gradation for each frame of each pixel 34 of the right-eye video and the left-eye video from the video signal D acquired by the video processing unit 41.
  • the gradation calculated by the gradation signal generation unit 41a is a prescribed gradation that a certain pixel 34 should display in one frame in order to display an image. This specified gradation is referred to as a specified gradation.
  • the gradation signal generation unit 41a sequentially outputs the right-eye video signal DR1 and the left-eye video signal DL1 that are signals indicating the specified gradation for each frame of each pixel 34 to the gradation control unit 42.
  • the left / right identification signal generation unit 41b generates a left / right identification signal RL indicating whether the signal output from the gradation signal generation unit 41a to the gradation control unit 42 is the right-eye video signal DR1 or the left-eye video signal DL1.
  • the left / right identification signal RL is a signal including information indicating whether the stereoscopic video displayed on the liquid crystal display device 10 is a right-eye video or a left-eye video.
  • the left / right identification signal generation unit 41b outputs the generated left / right identification signal RL together with the output of the right-eye video signal DR1 or the left-eye video signal DL1 of the gradation signal generation unit 41a to the gradation control unit 42 and the shutter control. To the unit 45.
  • the subframe dividing unit 42a divides one frame into a plurality of subframes. In the present embodiment, the subframe dividing unit 42a divides one frame into four.
  • the number of subframes into which one frame is divided is not limited to four, and may be three or more. Further, it may be divided so as to correspond to a sub-frame gradation determination table stored in a table storage unit 44 described later.
  • the gradation determining unit 42b determines the gradation of each subframe divided by the subframe dividing unit 42a.
  • the gradation determination unit 42b has a plurality of gradations so that an average value of gradations of a plurality of subframes in a certain pixel (target pixel) 34 becomes a gradation (specified gradation) to be displayed by the pixel 34 in one frame. Each gradation of the subframe is determined.
  • the polarity inversion / amplification unit 42c inverts the plus / minus polarity of the voltage applied to the pixel 34 in response to the left / right identification signal RL output from the left / right identification signal generation unit 41b, or the gradation determination unit 42b.
  • the voltage value corresponding to the gradation for each subframe determined by is set.
  • the polarity inversion / amplification unit 42c sets the voltage for the right eye image to have a positive polarity and the voltage for the left eye image to have a negative polarity.
  • the right eye video voltage and the left eye video voltage need only have different polarities, and the right eye video voltage may have a negative polarity and the left eye video voltage may have a positive polarity.
  • a gradation determination table for the gradation determination unit 42b to determine the gradation for each subframe is stored.
  • the table storage unit 44 may store only one gradation determination table or a plurality of gradation determination tables. The gradation determination table will be described later.
  • the shutter control unit 45 When the shutter control unit 45 acquires the left / right identification signal RL output from the left / right identification signal generation unit 41b, the shutter control unit 45 generates a shutter control signal OC, which is a control signal for the light shielding glasses 20 including the acquired left / right identification signal RL. . Then, the shutter control unit 45 outputs the generated shutter control signal OC to the light shielding glasses 20. Accordingly, the shutter control unit 45 controls the driving of the left-eye light-shielding liquid crystal shutter 21 and the right-eye light-shielding liquid crystal shutter 22 of the light-shielding glasses 20 in the transmission state or the light-shielding state.
  • the light-shielding glasses 20 include a liquid crystal shutter 21 for shielding the left eye of the user and a liquid crystal shutter 22 for shielding the right eye.
  • the light-shielding glasses 20 obtain the shutter control signal OC output from the shutter control unit 45, the light-shielding glasses 20 transmit each of the left-eye light-shielding liquid crystal shutter 21 and the right-eye light-shielding liquid crystal shutter 22 based on the shutter control signal OC. Control the degree.
  • the light-shielding glasses 20 bring the right-eye light-shielding liquid crystal shutter 22 into a transmissive state and the left-eye light-shielding liquid crystal shutter 21 into a light-shielded state.
  • the left / right identification signal RL changes from high to low
  • the light-shielding glasses 20 place the left-eye light-shielding liquid crystal shutter 21 in the transmission state and the right-eye light-shielding liquid crystal shutter 22 in the light-shielding state.
  • the user can stereoscopically view the stereoscopic video by causing the video light to enter the right eye or the left eye of the user.
  • FIG. 3 is a diagram for explaining a voltage applied to a certain pixel 34 for each frame.
  • the liquid crystal display 10 sequentially displays a right-eye video display period (period R in FIG. 3) for displaying a right-eye video and a left-eye video display period (in FIG. 3) for displaying a left-eye video for each frame.
  • This is a so-called frame-sequential video display device that displays a stereoscopic video by alternately repeating the period L).
  • the consecutive frames are the first frame, the second frame, the third frame,...,
  • the right-eye video display period the left-eye video display period, the right-eye video display period,. It has become.
  • the left / right identification signal RL is high (High; information indicating that the stereoscopic image displayed on the liquid crystal display device 10 is a right-eye image) and is a right-eye signal, and low (Low; displayed on the liquid crystal display device 10).
  • Information indicating that the stereoscopic video to be processed is a video for the left eye).
  • the left / right identification signal RL is high in the first frame and low in the second frame. Even after the third frame, the signal repeats high and low.
  • Signal Q represents the voltage applied to the pixel 34. That is, if the absolute value of the signal Q is large, it indicates that the luminance (transmittance) of the pixel 34 is high.
  • a positive polarity voltage is applied as the signal Q.
  • a negative voltage is applied as the signal Q.
  • the liquid crystal display device 10 is AC driven by alternately applying + polarity and ⁇ polarity voltages to the pixels 34 for each frame. As a result, it is possible to prevent the DC voltage from being continuously applied and to prevent deterioration of the liquid crystal characteristics.
  • the plus / minus polarity of the signal Q is determined by the high / low of the left / right identification signal RL. That is, when the gradation control unit 42 acquires the left / right identification signal RL that is high from the left / right identification signal generation unit 41b, the polarity inversion / amplification unit 42c sends a voltage application signal indicating a positive polarity voltage to the liquid crystal panel 30. Output. When the liquid crystal panel 30 acquires the voltage application signal from the polarity inversion / amplification unit 42c, the liquid crystal panel 30 applies the positive voltage indicated by the acquired voltage application signal to the pixel 34 via the source driver 31 and the gate driver 32. Thereby, the gradation display of the right eye image is performed on the pixel 34.
  • the gradation control unit 42 acquires the left / right identification signal RL that is low from the left / right identification signal generation unit 41b
  • the polarity inversion / amplification unit 42c sends a voltage application signal indicating a negative polarity voltage to the liquid crystal panel 30.
  • the liquid crystal panel 30 acquires the voltage application signal from the polarity inversion / amplification unit 42c
  • the liquid crystal panel 30 applies a negative voltage indicated by the acquired voltage application signal to the pixel 34 via the source driver 31 and the gate driver 32. Thereby, the gradation display of the left-eye image is performed on the pixel 34.
  • one frame is divided into four subframes.
  • the first frame is divided into four subframes of a first subframe period a, a second subframe period b, a third subframe period c, and a fourth subframe period d, which are successive periods.
  • the second frame is divided into four subframes of a first subframe period e, a second subframe period f, a third subframe period g, and a fourth subframe period h, which are successive periods.
  • a voltage applied to the pixel 34 (hereinafter referred to as a specified applied voltage) in order to display a specified gradation (specified gradation) to be displayed in the right-eye video display period of the first frame is (+ V ).
  • a voltage (specified application voltage) applied to the pixel 34 is set to ( ⁇ V).
  • the specified gradations of the frame immediately before the first frame, the first frame, and the second frame are set to 0 gradation, 896 gradations (10 bits), and 896 gradations (10 bits) in order.
  • a necessary applied voltage to the pixel 34 for displaying 0 gradation is set to 0V. Further, of the necessary applied voltages to the pixel 34 for displaying 896 gradations, the positive polarity voltage is (+ V) and the negative polarity voltage is ( ⁇ V).
  • the left / right identification signal RL rises from low to high at the beginning of the first frame.
  • the polarity inversion / amplification unit 42c recognizes that the first frame is the right-eye video display period.
  • the gradation determination unit 42b maintains the voltage (0V) applied last in the frame before the first frame.
  • the gradation of the pixel 34 is determined. For this reason, the voltage 0V is continuously applied to the pixel 34 in the first subframe period a.
  • the gradation determination unit 42b determines that the gradation of the first subframe period a is smaller than the maximum value of the gradations of the plurality of subframes. As a result, the change in the voltage accompanying the change in the polarity of the voltage applied to the pixel 34 between frames is suppressed, and the crosstalk caused by the response delay of the liquid crystal molecules is prevented.
  • the gradation determination unit 42b performs the following second subframe period b to fourth subframe period d. Each gradation is determined.
  • the gradation determination unit 42b determines the gradation of the second subframe b and the third subframe c so that the value is larger than the specified gradation.
  • the gradation determination unit 42b refers to the table stored in the table storage unit 44 and determines the gradations of the second subframe b and the third subframe c.
  • FIG. 4 is a diagram showing a gradation determination table for subframes stored in the table storage unit 44.
  • the gradation determination table represents the gradation of the current first subframe period a in the vertical direction, and the prescribed gradation to be displayed in the first frame in the horizontal direction.
  • the table storage unit 44 refers to the table stored in the table storage unit 44.
  • the table storage unit 44 determines that the current gradation “0” and the next frame
  • the gray level “976” at the intersection of the gray level “896” is determined to be the gray level of the second subframe period b and the third subframe period c.
  • the polarity inversion / amplification unit 42c generates the voltage to be applied to the pixel 34 during the second subframe period b and the third subframe period c at a voltage corresponding to the gradation determined by the gradation determination unit 42b.
  • a voltage application signal is output to the liquid crystal panel 30.
  • the + polarity voltage corresponding to the 976 gradation is set to + 2V.
  • a voltage (+2 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
  • the driving speed of the liquid crystal molecules is improved, and the luminance higher than the prescribed luminance (luminance corresponding to the prescribed gradation) in the first frame is displayed on the pixel 34.
  • the gradation determination unit 42b also determines the gradation of the fourth subframe d while determining the gradation of each of the second subframe b and the third subframe c. The gradation determination unit 42b determines the gradation of the fourth subframe d so that the value is smaller than the prescribed gradation in the first frame.
  • the gradation determination unit 42b determines that the average of the total gradation of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d is the first frame.
  • the gradation of the fourth subframe period d is determined so that the prescribed gradation is obtained.
  • the gradation determining unit 42b determines that the gradation of the fourth subframe period d among the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d is The gray levels of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d are determined so as to be minimized.
  • the gradation determination unit 42b determines the gradation of the fourth subframe period d to be 0.
  • the polarity inversion / amplification unit 42c generates a voltage application signal so as to apply a voltage to the pixel 34 during the fourth subframe period d at a voltage (0 V) corresponding to the gradation determined by the gradation determination unit 42b. Output to the liquid crystal panel 30.
  • a voltage (0 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
  • the voltage applied to the pixel 34 in the second subframe period b and the third subframe c cancels the voltage applied to the pixel 34 in the first subframe period a and the fourth subframe period d.
  • the first frame is visually recognized by the user as if the specified applied voltage (+ V) was applied. This is because the change in luminance of a minute pixel that is lit at high speed can be felt only by the average value to the human eye.
  • the absolute value of the voltage applied to the pixel 34 corresponding to each gradation of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d is the smallest. That is, the absolute value of the voltage applied to the pixel 34 corresponding to the gradation of the fourth subframe period d adjacent to the second frame (next frame) is the smallest.
  • the left / right identification signal RL falls from high to low at the beginning of the second frame.
  • the polarity inversion / amplification unit 42c recognizes that the second frame is the left-eye video display period.
  • the gradation determination unit 42b applies the voltage (0 V) applied in the last fourth subframe period d of the first frame.
  • the gradation for the pixel 34 is determined so as to be maintained. For this reason, the voltage 0V is continuously applied to the pixel 34 in the first subframe period e.
  • the gradation determination unit 42b performs each of the next second subframe period f to the fourth subframe period h. To determine the gradation.
  • the gradation determination unit 42b determines the gradation of the second subframe f and the third subframe g so that the value is larger than the specified gradation.
  • the gradation determination unit 42b refers to the table (see FIG. 4) stored in the table storage unit 44 to determine the gradations of the second subframe f and the third subframe g.
  • the gradation in the first subframe e is “0” and the specified gradation in the second frame is “896”
  • the current gradation “0” and the gradation “896” of the next frame are set.
  • the gradation “976” at the intersection of the two is determined so as to be the gradation of the second subframe period f and the third subframe period g.
  • the polarity inversion / amplification unit 42c generates the voltage to be applied to the pixel 34 during the second subframe period f and the third subframe period g at a voltage corresponding to the gradation determined by the gradation determination unit 42b.
  • a voltage application signal is output to the liquid crystal panel 30.
  • a negative polarity voltage corresponding to 976 gradations is set to ( ⁇ 2V).
  • a voltage ( ⁇ 2 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
  • a voltage ( ⁇ 2 V) lower than the specified applied voltage ( ⁇ V) for displaying the specified gradation in the second frame is applied.
  • the response speed of the liquid crystal molecules is improved, and the brightness higher than the specified brightness in the second frame is displayed.
  • the gradation determination unit 42b also determines the gradation of the fourth subframe h while determining the gradation of each of the second subframe f and the third subframe g. The gradation determination unit 42b determines the gradation of the fourth subframe h so that the value is smaller than the prescribed gradation in the second frame.
  • the gradation determination unit 42b determines that the total gradation value of the first subframe period e, the second subframe period f, the third subframe period g, and the fourth subframe period h is the second frame.
  • the gradation of the fourth subframe period h is determined so that the specified display gradation is obtained.
  • the gradation determination unit 42b determines the gradation of the fourth subframe period h to be 0.
  • the polarity inversion / amplification unit 42c transmits a voltage application signal to the pixel 34 so as to apply a voltage to the pixel 34 during the fourth subframe period d at a voltage (0V) corresponding to the gradation determined by the gradation determination unit 42b. Output to 30.
  • a voltage (0 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
  • a voltage (0V) higher than the specified applied voltage ( ⁇ V) in the second frame that is, a voltage having a small absolute value is applied.
  • the brightness lower than the target brightness is displayed.
  • the applied voltage in the second subframe period f and the third subframe g and the applied voltage in the first subframe period e and the fourth subframe period h cancel each other, and the second frame is applied with the specified voltage. It is visually recognized by the user as the voltage ( ⁇ V) is applied.
  • the gradation determination unit 42b determines the gradation of the first subframe period e, which is the subframe period adjacent to the first frame, in the second frame. It is determined to be the same as the subframe period d.
  • the gradation determination unit 42b is adjacent to the second frame and is the last fourth subframe period d among the first frames divided into the plurality of first subframe periods a to the fourth subframe engine d.
  • the gradation of the first first subframe period e of the second frame is determined so as to be the same as the gradation of.
  • the polarity inversion / amplification unit 42c applies a voltage to the pixel 34 so that the voltage in the first subframe period e is the same as the voltage in the fourth subframe period d. For this reason, even if the polarity of the voltage applied to the pixel 34 is inverted between the right-eye video display period and the left-eye video display period, the liquid crystal molecules hardly move.
  • the crosstalk (the image for the right eye enters the left eye) due to the slow response speed of the liquid crystal molecules hardly occurs. Then, compared to the case where the gradation in the fourth subframe period d is different from the gradation in the first subframe period e, crosstalk can be prevented more reliably.
  • the voltage does not necessarily have to be 0 in adjacent subframe periods (the fourth subframe period d and the first subframe period e) in which the polarity of the voltage is inverted.
  • the gradation of each subframe may be determined so that the gradation does not change as much as possible immediately before and immediately after the switching between the right-eye video display period and the left-eye video display period.
  • the gradation setting is performed so that a voltage whose absolute value is smaller than the voltage applied in each of the first and second frames is applied. It only has to be done.
  • the specified gradation of each of the first frame and the second frame is “896”
  • the gradation of each subframe is determined using the table shown in FIG. Is not to be done.
  • the relationship between the specified display gradation in the frame and the gradation in each subframe in the frame is not limited to that described above.
  • the specified display gradation in the first frame is 700
  • the first subframe The gradation may be 600 gradations in a and the fourth subframe d, and 800 gradations in the second subframe period b and the third subframe period c.
  • a plurality of tables as shown in FIG. 4 may be stored in the table storage unit 44, and the optimum table may be referred to according to the ambient temperature.
  • the subframe dividing unit 42a divides one frame into four. Accordingly, among the four subframes, the third subframe period b and the fourth subframe period c are provided between the first first subframe period a and the last fourth subframe period d. become.
  • the number by which the subframe dividing unit 42a divides one frame is not limited to four, and may be three or more.
  • the gradation determination unit 42b can display the specified gradation within one frame by determining the gradation of the subframe sandwiched between the first and last subframes to be the maximum.
  • the switching from the right-eye video display period to the left-eye video display period has been described, but conversely, from the left-eye video display period (fourth subframe period h) to the right-eye video display period.
  • the present invention can be similarly applied when switching to a video display period (first subframe period in the next frame).
  • the drive control in one pixel 34 of a pixel of interest but also the drive of the pixel 34 and its surrounding pixels are controlled in consideration of the application timing of the drive voltage with the surrounding pixels of the pixel 34. Also good.
  • the pixel of interest 34 and, for example, the four surrounding pixels (up / down / left / right pixels) ) the pixel of interest 34 and, for example, the four surrounding pixels (up / down / left / right pixels) ).
  • the voltage applied to each pixel is controlled so that the total luminance does not change. By doing so, flicker can be reduced.
  • FIG. 5 is a block diagram showing the configuration of the stereoscopic video display stem 1 ′ according to the present embodiment.
  • FIG. 6 is a diagram for explaining a voltage applied to a certain pixel 34 for each frame according to the second embodiment.
  • the light shielding glasses 20 switch between the transmission state and the light shielding state of the left and right light shielding liquid crystal shutters 21 and 22 for each frame.
  • the light-shielding glasses 20 puts both the left and right light-shielding liquid crystal shutters 21 and 22 in a light-shielded state in the subframe period for switching between the right-eye video display period and the left-eye video display period. .
  • the subframe dividing unit 42a outputs information indicating the number of divided subframes to the shutter control unit 45.
  • the shutter control unit 45 acquires information indicating the left / right identification signal RL output from the left / right identification signal generation unit 41b and the number of subframes output from the subframe division unit 42a.
  • the shutter control unit 45 causes the right-eye liquid crystal shutter 22 to be in a transmissive state after the first subframe period a elapses, and the left / right identification signal RL changes from high.
  • a shutter control signal OC ′ which is a control signal for controlling the light-shielding glasses 20 so as to bring the liquid crystal shutter 21 for the left eye into a transmission state, is generated.
  • the shutter control unit 45 controls the driving of the light shielding glasses 20 by outputting the generated shutter control signal OC ′ to the light shielding glasses 20.
  • the left eye light shielding liquid crystal shutter 21 and the right eye light shielding are obtained based on the shutter control signal OC ′.
  • the transmissivity of each liquid crystal shutter 22 is controlled.
  • the light-shielding glasses 20 turn off both the liquid crystal shutters 21 and 22 in the light-shielding state (OFF) in the first subframe period a, and after the first subframe period a has elapsed. Only the liquid crystal shutter 22 for the right eye is in a transmission state (ON). Then, after the elapse of the second subframe period b and the third subframe period c, in the fourth subframe period d, the right-eye liquid crystal shutter 22 is turned off (OFF). As a result, in the fourth subframe period d, both the liquid crystal shutters 21 and 22 are in a light shielding state.
  • the light-shielding glasses 20 continue the light-shielding state (OFF) of both the left and right liquid crystal shutters 21 and 22 in the first subframe period e, and the first subframe period e
  • the liquid crystal shutter 21 for the left eye is set to the transmission state (ON).
  • the liquid crystal shutter 21 for the left eye is turned off (OFF).
  • both the liquid crystal shutters 21 and 22 are in a light shielding state.
  • the light-shielding glasses 20 put both the left and right light-shielding liquid crystal shutters 21 and 22 in the light-shielding state in the sub-frame period for switching between the right-eye video display period and the left-eye video display period.
  • the light-shielding glasses 20 put both the left and right light-shielding liquid crystal shutters 21 and 22 in the light-shielding state in the sub-frame period for switching between the right-eye video display period and the left-eye video display period.
  • the liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame.
  • Sub-frame dividing means for dividing one frame into a plurality of sub-frames, and an average value of gradations of the plurality of sub-frames in the pixel of interest is a prescribed gradation to be displayed by the pixel of interest in the one frame.
  • the gradation determining means for determining each of the gradations of the plurality of subframes and the application to the target pixel corresponding to each of the gradations for each of the subframes determined by the gradation determining means.
  • Polarity reversing means for reversing the polarity of the applied voltage for each frame
  • the gradation determining means includes the plurality of sub-frames so that the gradation of the last sub-frame is minimized. It is characterized by determining the respective gradations of the sub-frame.
  • one frame is divided into a plurality of subframes by the subframe dividing means.
  • the gradation determining means is configured to output the plurality of sub-subpixels so that an average value of gradations of the plurality of sub-frames in the pixel of interest is a predetermined gradation to be displayed by the pixel of interest in the one frame.
  • Each frame gradation is determined.
  • the specified gradation that the pixel of interest should display in one frame can be displayed by a combination of gradations of the plurality of subframes. For this reason, an increase in the number of circuits accompanying the increase in the number of gradations can be suppressed, and a multi-gradation display can be performed with low power consumption.
  • the polarity inversion means inverts the polarity of the voltage applied to the pixel of interest for each frame corresponding to each gradation for each subframe determined by the gradation determination means.
  • the gradation determination means determines the gradation of each of the plurality of subframes so that the gradation of the last subframe among the plurality of subframes becomes the smallest.
  • the target pixel corresponding to the gradation of the last subframe adjacent to the next frame is the smallest.
  • the gradation determining means determines the gradation of the first subframe among the plurality of subframes so as to be smaller than the maximum value of the gradations of the plurality of subframes.
  • the gradation determination unit is arranged so that the first frame of the first frame is equal to the gradation of the last subframe among the previous frames adjacent to the one frame and divided into a plurality of subframes. It is preferable to determine the gradation of the subframe.
  • the number of the one frame divided by the subframe dividing means is preferably 3 or more.
  • the gradation determining means determines that the gradation of the subframe between the first and last subframes among the three subframes is maximized, so The above specified gradation can be displayed.
  • the number of the one frame divided by the subframe dividing means is four.
  • the plurality of subframes have two subframes between the first subframe and the last subframe, so that the change in gradation of each of the plurality of subframes is suppressed and defined. Gradation can be displayed, and crosstalk that occurs with the response delay of liquid crystal molecules can be prevented.
  • the stereoscopic video display system of the present invention includes the liquid crystal display device, a light-shielding eyeglass including a liquid crystal shutter for the right eye and a liquid crystal shutter for the left eye, and the liquid crystal display device further includes the above-described liquid crystal display device.
  • Left and right identification signal generating means for generating a left and right identification signal including information indicating whether the stereoscopic video to be displayed on the liquid crystal display device is the right-eye video or the left-eye video; It is preferable to include a shutter control unit that controls driving of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter based on the left-right identification signal.
  • the light-shielding glasses it is possible to cause the light-shielding glasses to control the driving of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter according to the stereoscopic image displayed on the liquid crystal display device. Thereby, it is possible to obtain a stereoscopic video system that allows the user to stereoscopically view the stereoscopic video displayed on the liquid crystal display device.
  • the shutter control unit causes the liquid crystal shutter for the right eye to be in a transmissive state and acquires information indicating the image for the left eye. It is preferable to make the liquid crystal shutter for transmission transparent.
  • the light-shielding glasses make the right eye liquid crystal shutter in a transmissive state, and the left eye image is displayed on the liquid crystal display device.
  • the left-eye liquid crystal shutter can be driven to be in a transmissive state.
  • the stereoscopic video displayed on the liquid crystal display device can be stereoscopically viewed by the user.
  • the shutter control unit obtains information indicating that the video is for the right eye
  • the liquid crystal shutter for the right eye is brought into a transmission state
  • the liquid crystal shutter for the left eye is in a transmissive state when the first subframe period of the plurality of subframes has elapsed.
  • the light-shielding glasses set the right-eye or left-eye liquid crystal shutter in a transmissive state after the first subframe period has elapsed. It is possible to prevent the user from seeing the stereoscopic video on the opposite side to the above. Thereby, crosstalk can be reliably prevented.
  • the present invention can be used for a liquid crystal display device that is required to display a stereoscopic image and a stereoscopic image display system using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A liquid crystal display device (1) is capable of displaying a three-dimensional image by switching an image for a right eye and an image for a left eye each frame for display, and is provided with: a sub-frame division unit (42a) that divides one frame into a plurality of sub-frames; a gradation determination unit (42b) that determines respective gradations of the plurality of sub-frames such that the average value of the gradations of the plurality of sub-frames in a pixel (34) is a prescribed gradation to be displayed by the pixel (34) in the one frame; and a polarity reversion/amplification unit (42c) that reverses the polarity of a voltage applied to the pixel (34) each frame in response to each of the gradations for the respective sub-frames determined by the gradation determination unit (42b). The gradation determination unit (42b) determines the respective gradations of the plurality of sub-frames such that the gradation in a fourth sub-frame period (d) that is the last among the plurality of sub-frames is the smallest. Thus, liquid crystal is driven on AC, multi-gradation display is performed with low power consumption, and crosstalk caused by delay response of liquid crystal molecules is prevented.

Description

液晶表示装置及びそれを備えた立体映像表示システムLiquid crystal display device and stereoscopic image display system including the same
 本発明は、立体映像の表示が可能な液晶表示装置及びそれを備えた立体映像表示システムに関する。 The present invention relates to a liquid crystal display device capable of displaying a stereoscopic video and a stereoscopic video display system including the same.
 近年、液晶パネルの駆動方法の一つとして、フレーム・レート・コントロール法(以下、FRC法と称する)が開発されている。 In recent years, a frame rate control method (hereinafter referred to as FRC method) has been developed as one of driving methods for liquid crystal panels.
 FRC法は、ある画素に、第1階調と第2階調との中間の階調を表示させる場合、あるフレームで当該画素に第1階調を表示させ、次のフレームで第2階調を表示させる方法である。 In the FRC method, in a case where an intermediate gradation between the first gradation and the second gradation is displayed on a certain pixel, the first gradation is displayed on the pixel in a certain frame, and the second gradation is displayed on the next frame. It is a method of displaying.
 第1階調と第2階調との切り替えを短い時間で行うことで、人の目には、当該画素に、第1階調と第2階調との中間の階調が表示されたものと認識される。FRC法により、階調数増加に伴なう回路数の増加による消費電力の増加を防止することができる。 By switching between the first gradation and the second gradation in a short time, an intermediate gradation between the first gradation and the second gradation is displayed on the pixel to the human eye. It is recognized. By the FRC method, an increase in power consumption due to an increase in the number of circuits accompanying an increase in the number of gradations can be prevented.
 また、液晶パネルは、液晶の特性劣化を防止するため、一般的に交流駆動される。 In addition, the liquid crystal panel is generally driven by an alternating current to prevent deterioration of liquid crystal characteristics.
 特許文献1には、液晶パネルを交流駆動させつつ、FRC法を用いる駆動方法が開示されている。 Patent Document 1 discloses a driving method using the FRC method while AC driving a liquid crystal panel.
 図7は、特許文献1に記載のFRC法を用いた液晶表示装置の階調表示方法を説明する図である。図7では、ある画素の液晶に、基準周期毎に印加される電圧を表している。 FIG. 7 is a diagram for explaining a gradation display method of a liquid crystal display device using the FRC method described in Patent Document 1. FIG. 7 shows the voltage applied to the liquid crystal of a certain pixel for each reference period.
 第1番目の基準周期では、第2階調に相当し正極性の電圧V2を第1フレームで液晶に印加する。第2番目の基準周期では、第2階調に相当し負極性の電圧V2を第2フレームで液晶に印加する。 In the first reference period, a positive voltage V2 corresponding to the second gradation is applied to the liquid crystal in the first frame. In the second reference period, a negative voltage V2 corresponding to the second gradation is applied to the liquid crystal in the second frame.
 第3番目の基準周期では、第2階調に相当し負極性の電圧-V2を第2フレームで液晶に印加する。第4番目の基準周期では、第2階調に相当し正極性の電圧+V2を第3フレームで液晶に印加する。 In the third reference period, a negative voltage −V2 corresponding to the second gradation is applied to the liquid crystal in the second frame. In the fourth reference period, a positive voltage + V2 corresponding to the second gradation is applied to the liquid crystal in the third frame.
 このようにして、第1~第4番目の基準周期で正極性の印加電圧と、負極性の印加電圧とを相殺することで、FRC法を用いつつ、液晶を交流駆動させている。 In this way, the liquid crystal is AC driven while using the FRC method by canceling the positive polarity applied voltage and the negative polarity applied voltage in the first to fourth reference cycles.
特開2003‐66915号公報(2003年3月5日公開)JP 2003-66915 A (published on March 5, 2003)
 ここで、立体(3D)映像表示が可能な液晶パネルの駆動方法として、一般的に、フレームシーケンシャル方式が用いられている。 Here, as a driving method of a liquid crystal panel capable of displaying a stereoscopic (3D) image, a frame sequential method is generally used.
 図8は、理想的なフレームシーケンシャル方式の画素の輝度変化を表す図である。図9は、実際のフレームシーケンシャル方式の画素の輝度変化を表す図である。図8、9では、では、Lは左目用映像表示期間を表し、Rは右目用映像表示期間を表している。また、縦軸は画素に印加されている電圧を表している。 FIG. 8 is a diagram showing luminance change of an ideal frame sequential pixel. FIG. 9 is a diagram illustrating a luminance change of an actual frame sequential pixel. 8 and 9, L represents the left-eye video display period, and R represents the right-eye video display period. The vertical axis represents the voltage applied to the pixel.
 フレームシーケンシャル方式では、右目用画像と、左目用画像とをフレーム毎に交互に液晶表示パネルに表示するよう液晶分子の駆動を制御する。そして、表示画像に合わせて、右目用液晶シャッターと、左目用液晶シャッターとの開閉制御を行うことで、立体映像の表示を行う。 In the frame sequential method, the driving of the liquid crystal molecules is controlled so that the image for the right eye and the image for the left eye are alternately displayed on the liquid crystal display panel for each frame. Then, in accordance with the display image, a stereoscopic video is displayed by performing opening / closing control of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter.
 図8に示すように、画素に、右目映像用電圧、及び左目映像用電圧を交互に印加した際、液晶分子がデジタル的に変化することが理想である。 As shown in FIG. 8, it is ideal that the liquid crystal molecules change digitally when the voltage for the right eye image and the voltage for the left eye image are alternately applied to the pixels.
 しかし、図9に示すように、実際には液晶分子の応答速度には限界があるため、画素に、右目映像用電圧及び左目映像用電圧を交互に印加すると、画素に印加されている電圧はなだらかに変化する。これに伴なう画素の輝度変化もなだらかに変化する。 However, as shown in FIG. 9, since the response speed of liquid crystal molecules is actually limited, when the right-eye video voltage and the left-eye video voltage are alternately applied to the pixel, the voltage applied to the pixel is It changes gently. Along with this, the luminance change of the pixel also changes gently.
 その結果、例えば、図9の網掛け部分に示すように、右目映像用電圧の立ち下がりが左目用映像表示期間に入り込んだり、左目映像用電圧の立ち上がりが右目用映像表示期間に入り込んだりする。 As a result, for example, as shown in the shaded portion of FIG. 9, the falling of the right-eye video voltage enters the left-eye video display period, or the rising of the left-eye video voltage enters the right-eye video display period.
 図9の網掛け部分は、右目映像用電圧と左目映像用電圧との切替え直後で所望の輝度が得られていないことを示しており、この輝度差によりクロストークが発生する。 9 indicates that a desired luminance is not obtained immediately after switching between the right-eye video voltage and the left-eye video voltage, and crosstalk occurs due to this luminance difference.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、液晶を交流駆動させ、低消費電力で多階調表示を行うと共に、液晶分子の応答遅延に伴ない発生するクロストークを防止することである。 The present invention has been made to solve the above-described problems, and its object is to drive a liquid crystal by alternating current to perform multi-gradation display with low power consumption and to occur with a response delay of liquid crystal molecules. It is to prevent crosstalk.
 上記の課題を解決するために、本発明の液晶表示装置は、フレーム毎に、右目用映像と、左目用映像とを切替えて表示することで、立体映像の表示が可能が液晶表示装置であって、1フレームを複数のサブフレームに分割するサブフレーム分割手段と、着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する階調決定手段と、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる極性反転手段とを備え、上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定することを特徴としている。 In order to solve the above problems, the liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame. Sub-frame dividing means for dividing one frame into a plurality of sub-frames, and an average value of gradations of the plurality of sub-frames in the pixel of interest is a prescribed gradation to be displayed by the pixel of interest in the one frame. The gradation determining means for determining each of the gradations of the plurality of subframes and the application to the target pixel corresponding to each of the gradations for each of the subframes determined by the gradation determining means. Polarity reversing means for reversing the polarity of the applied voltage for each frame, and the gradation determining means includes the plurality of sub-frames so that the gradation of the last sub-frame is minimized. It is characterized by determining the respective gradations of the sub-frame.
 上記構成によると、上記サブフレーム分割手段により、1フレームが複数のサブフレームに分割される。そして、上記階調決定手段は、上記着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する。 According to the above configuration, one frame is divided into a plurality of subframes by the subframe dividing means. Then, the gradation determining means is configured to output the plurality of sub-subpixels so that an average value of gradations of the plurality of sub-frames in the pixel of interest is a predetermined gradation to be displayed by the pixel of interest in the one frame. Each frame gradation is determined.
 これにより、上記複数のサブフレームの階調の組み合わせにより、上記着目画素が1フレームで表示すべき規定階調を表示することができる。このため、多階調化に伴なう回路数の増加を抑制し、低消費電力で多階調表示を行うことができる。 Thus, the specified gradation that the pixel of interest should display in one frame can be displayed by a combination of gradations of the plurality of subframes. For this reason, an increase in the number of circuits accompanying the increase in the number of gradations can be suppressed, and a multi-gradation display can be performed with low power consumption.
 そして、上記構成によると、上記極性反転手段は、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる。これにより、上記着目画素を交流駆動をさせつつ、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれを、上記着目画素に表示させることができる。このため、液晶の特性劣化を防止することができる。 According to the above configuration, the polarity inversion means inverts the polarity of the voltage applied to the pixel of interest for each frame corresponding to each gradation for each subframe determined by the gradation determination means. Let As a result, each of the gradations for each of the subframes determined by the gradation determination unit can be displayed on the target pixel while the target pixel is AC driven. For this reason, characteristic deterioration of the liquid crystal can be prevented.
 さらに、上記構成によると、上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定する。 Furthermore, according to the above configuration, the gradation determination means determines the gradation of each of the plurality of subframes so that the gradation of the last subframe among the plurality of subframes becomes the smallest.
 このため、上記複数のサブフレームの階調のそれぞれに対応して上記着目画素に印加される電圧の絶対値のうち、次フレームと隣接する最後のサブフレームの階調に対応して上記着目画素に印加される電圧の絶対値が最も小さくなる。 Therefore, among the absolute values of the voltages applied to the target pixel corresponding to the gradations of the plurality of subframes, the target pixel corresponding to the gradation of the last subframe adjacent to the next frame. The absolute value of the voltage applied to is the smallest.
 これにより、上記1フレームと、次フレームとで、上記着目画素に印加される電圧の極性が反転したとしても、当該電圧の印加に伴なう液晶分子の応答量が少なくて済むので、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 As a result, even if the polarity of the voltage applied to the pixel of interest is inverted between the first frame and the next frame, the response amount of the liquid crystal molecules accompanying the application of the voltage can be reduced. It is possible to prevent crosstalk that occurs with the response delay.
 本発明の液晶表示装置は、フレーム毎に、右目用映像と、左目用映像とを切替えて表示することで、立体映像の表示が可能が液晶表示装置であり、1フレームを複数のサブフレームに分割するサブフレーム分割手段と、着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する階調決定手段と、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる極性反転手段とを備え、上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定する。 The liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame, and one frame is divided into a plurality of subframes. The subframe dividing means for dividing, and the average value of the gradations of the plurality of subframes in the pixel of interest is the prescribed gradation to be displayed by the pixel of interest in the one frame. Inversion of the polarity of the voltage applied to the pixel of interest for each frame corresponding to each of the gradations for each subframe determined by the gradation determination means and gradation determination means for determining each gradation Polarity reversing means for causing the gradation determining means to reduce the gradation of the last subframe among the plurality of subframes so that the gradation of the last subframe is minimized. To determine.
 これにより、液晶を交流駆動させ、低消費電力で多階調表示を行うと共に、液晶分子の応答遅延に伴ない発生するクロストークを防止するという効果を奏する。 As a result, the liquid crystal is AC driven to perform multi-gradation display with low power consumption, and the effect of preventing crosstalk caused by the response delay of the liquid crystal molecules is exhibited.
第1の実施形態の立体映像表示システムの構成を表すブロック図である。It is a block diagram showing the structure of the three-dimensional video display system of 1st Embodiment. 第1の実施形態の液晶表示装置が備えている液晶表示パネルの構成を表す図である。It is a figure showing the structure of the liquid crystal display panel with which the liquid crystal display device of 1st Embodiment is provided. 画素へのフレーム毎の印加電圧を説明するための図である。It is a figure for demonstrating the applied voltage for every flame | frame to a pixel. テーブル格納部に格納されているサブフレーム用の階調決定テーブルを表す図である。It is a figure showing the gradation determination table for sub-frames stored in the table storage part. 第2の実施形態の立体映像表示ステムの構成を表すブロック図である。It is a block diagram showing the structure of the three-dimensional video display stem of 2nd Embodiment. 画素へのフレーム毎の印加電圧を説明するための図である。It is a figure for demonstrating the applied voltage for every flame | frame to a pixel. 従来のFRC法を用いた液晶表示装置の階調表示方法を説明する図である。It is a figure explaining the gradation display method of the liquid crystal display device using the conventional FRC method. 理想的なフレームシーケンシャル方式の画素の輝度変化を表す図である。It is a figure showing the luminance change of the pixel of an ideal frame sequential system. 実際のフレームシーケンシャル方式の画素の輝度変化を表す図である。It is a figure showing the luminance change of the pixel of an actual frame sequential system.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔第1の実施の形態〕
 (液晶表示装置10の構成)
 図1、2を用いて、液晶表示装置10の構成について説明する。
[First Embodiment]
(Configuration of the liquid crystal display device 10)
The configuration of the liquid crystal display device 10 will be described with reference to FIGS.
 図2は、液晶表示装置10を構成する液晶パネル30の構成を表す。 FIG. 2 shows a configuration of the liquid crystal panel 30 constituting the liquid crystal display device 10.
 液晶パネル30は、フレーム毎に、右目用映像と、左目用映像とを切替えて表示することで、立体映像の表示が可能が液晶表示装置10に配される液晶パネルである。 The liquid crystal panel 30 is a liquid crystal panel arranged in the liquid crystal display device 10 so that a stereoscopic video can be displayed by switching and displaying a right-eye video and a left-eye video for each frame.
 液晶パネル30は、ソースドライバ31、ゲートドライバ32、及び画素アレイ33とを備えている。 The liquid crystal panel 30 includes a source driver 31, a gate driver 32, and a pixel array 33.
 液晶パネル30は、表示用の画素電極及び当該画素電極に電圧を印加するTFT素子がマトリクス状に配されたTFT基板と、画素電極と対向するように共通電極及びカラーフィルタが配された対向基板とが、液晶層を介して対向配置されることで構成されている。 The liquid crystal panel 30 includes a TFT substrate on which display pixel electrodes and TFT elements for applying a voltage to the pixel electrodes are arranged in a matrix, and a counter substrate on which common electrodes and color filters are arranged to face the pixel electrodes. Are arranged so as to face each other through the liquid crystal layer.
 画素アレイ33は、マトリクス状に配された複数の画素34を備えている。画素34は、上記画素電極及びTFT素子と、共通電極と、当該画素電極及び共通電極間に配されている液晶層とを備えている。 The pixel array 33 includes a plurality of pixels 34 arranged in a matrix. The pixel 34 includes the pixel electrode and the TFT element, a common electrode, and a liquid crystal layer disposed between the pixel electrode and the common electrode.
 ソースドライバ(水平駆動回路)31は、例えば、画素アレイ33の上辺に沿って配されており、ゲートドライバ(垂直駆動回路)32は、画素アレイ33の左辺に沿って配されている。 The source driver (horizontal drive circuit) 31 is disposed along the upper side of the pixel array 33, for example, and the gate driver (vertical drive circuit) 32 is disposed along the left side of the pixel array 33.
 ソースドライバ31は、水平方向の1ライン単位でラッチした表示データをD/A変換し階調電圧として画素34の画素電極に水平方向の1ライン単位で、上方から下方に(すなわち垂直方向に)順次書き込む。 The source driver 31 performs D / A conversion on the display data latched in units of one line in the horizontal direction and applies the grayscale voltage to the pixel electrode of the pixel 34 from the upper side to the lower side (that is, in the vertical direction) in units of one horizontal line. Write sequentially.
 そして、上記階調電圧により生じる上記画素電極及び共通電極間の電位差により、画素34内の液晶分子が駆動する。各画素34毎に、液晶分子の駆動を制御することで、画素34の透過制御がなされる。これにより、画素アレイ33に、ユーザに鑑賞させる映像を表示することができる。 The liquid crystal molecules in the pixel 34 are driven by the potential difference between the pixel electrode and the common electrode generated by the gradation voltage. By controlling the driving of the liquid crystal molecules for each pixel 34, the transmission of the pixel 34 is controlled. As a result, an image that the user can appreciate can be displayed on the pixel array 33.
 図1は、本実施の形態に係る立体映像表示システム1の構成を表すブロック図である。 FIG. 1 is a block diagram showing a configuration of a stereoscopic video display system 1 according to the present embodiment.
 立体映像表示システム1は、フレームシーケンシャル方式で立体(3D)画像の表示が可能な液晶表示装置である。 The stereoscopic image display system 1 is a liquid crystal display device capable of displaying a stereoscopic (3D) image by a frame sequential method.
 図1に示すように、立体映像表示システム1は、液晶表示装置10と、遮光メガネ20とを備えている。液晶表示装置10は、液晶パネル30と、液晶駆動回路40とを備えている。 As shown in FIG. 1, the stereoscopic video display system 1 includes a liquid crystal display device 10 and light-shielding glasses 20. The liquid crystal display device 10 includes a liquid crystal panel 30 and a liquid crystal drive circuit 40.
 液晶駆動回路40は、フレーム毎に極性が異なる右目用映像信号と、左目用映像信号とを順次、液晶パネル30に出力することで、液晶パネル30の画素アレイ33に、立体用映像を表示させるものである。 The liquid crystal driving circuit 40 sequentially outputs a right-eye video signal and a left-eye video signal having different polarities for each frame to the liquid crystal panel 30, thereby displaying a stereoscopic video on the pixel array 33 of the liquid crystal panel 30. Is.
 液晶駆動回路40は、映像処理部41と、階調制御部42と、テーブル格納部44と、シャッター制御部45とを備えている。映像処理部41は、階調信号生成部41aと、左右識別信号生成部(左右識別信号生成手段)41bとを備えている。また、階調制御部42は、サブフレーム分割部(サブフレーム分割手段)42aと、階調決定部(階調決定手段)42bと、極性反転・増幅部(極性反転手段)42cとを備えている。 The liquid crystal driving circuit 40 includes a video processing unit 41, a gradation control unit 42, a table storage unit 44, and a shutter control unit 45. The video processing unit 41 includes a gradation signal generation unit 41a and a left / right identification signal generation unit (left / right identification signal generation means) 41b. The gradation control unit 42 includes a subframe dividing unit (subframe dividing unit) 42a, a gradation determining unit (gradation determining unit) 42b, and a polarity inverting / amplifying unit (polarity inverting unit) 42c. Yes.
 映像処理部41は、右目用映像信号DRと、左目用映像信号DLとを含む映像信号Dを外部から取得する。 The video processing unit 41 obtains a video signal D including the right-eye video signal DR and the left-eye video signal DL from the outside.
 階調信号生成部41aは、映像処理部41が取得した映像信号Dから、右目用映像及び左目用映像のそれぞれの各画素34のフレーム毎の階調を順次算出する。階調信号生成部41aが算出した階調は、映像を表示するために、ある画素34が1フレームで表示すべき規定された階調である。この規定された階調を規定階調と称する。 The gradation signal generation unit 41a sequentially calculates the gradation for each frame of each pixel 34 of the right-eye video and the left-eye video from the video signal D acquired by the video processing unit 41. The gradation calculated by the gradation signal generation unit 41a is a prescribed gradation that a certain pixel 34 should display in one frame in order to display an image. This specified gradation is referred to as a specified gradation.
 階調信号生成部41aは、算出した各画素34のフレーム毎の規定階調を示す信号である右目用映像信号DR1、及び左目用映像信号DL1を順次、階調制御部42に出力する。 The gradation signal generation unit 41a sequentially outputs the right-eye video signal DR1 and the left-eye video signal DL1 that are signals indicating the specified gradation for each frame of each pixel 34 to the gradation control unit 42.
 左右識別信号生成部41bは、階調信号生成部41aが階調制御部42に出力する信号が右目用映像信号DR1であるか、左目用映像信号DL1であるかを示す左右識別信号RLを生成する。すなわち、左右識別信号RLは、液晶表示装置10に表示する立体映像が、右目用映像であるか、左目用映像であるかを示す情報を含む信号である。 The left / right identification signal generation unit 41b generates a left / right identification signal RL indicating whether the signal output from the gradation signal generation unit 41a to the gradation control unit 42 is the right-eye video signal DR1 or the left-eye video signal DL1. To do. That is, the left / right identification signal RL is a signal including information indicating whether the stereoscopic video displayed on the liquid crystal display device 10 is a right-eye video or a left-eye video.
 そして、左右識別信号生成部41bは、階調信号生成部41aの右目用映像信号DR1又は左目用映像信号DL1の出力と合わせて、生成した左右識別信号RLを、階調制御部42及びシャッター制御部45に出力する。 The left / right identification signal generation unit 41b outputs the generated left / right identification signal RL together with the output of the right-eye video signal DR1 or the left-eye video signal DL1 of the gradation signal generation unit 41a to the gradation control unit 42 and the shutter control. To the unit 45.
 サブフレーム分割部42aは、1フレームを、複数のサブフレームに分割するものである。本実施の形態では、サブフレーム分割部42aは、1フレームを4分割するものとする。 The subframe dividing unit 42a divides one frame into a plurality of subframes. In the present embodiment, the subframe dividing unit 42a divides one frame into four.
 なお、1フレームを分割するサブフレームの個数は、4つに限定されるものではなく、3以上であればよい。また、後述するテーブル格納部44に格納されているサブフレーム用の階調決定テーブルに対応するように分割されればよい。 Note that the number of subframes into which one frame is divided is not limited to four, and may be three or more. Further, it may be divided so as to correspond to a sub-frame gradation determination table stored in a table storage unit 44 described later.
 階調決定部42bは、サブフレーム分割部42aが分割したサブフレームのそれぞれの階調を決定するものである。 The gradation determining unit 42b determines the gradation of each subframe divided by the subframe dividing unit 42a.
 階調決定部42bは、ある画素(着目画素)34における複数のサブフレームの階調の平均値が、1フレームで、画素34が表示すべき階調(規定階調)となるように、複数のサブフレームの階調のそれぞれを決定する。 The gradation determination unit 42b has a plurality of gradations so that an average value of gradations of a plurality of subframes in a certain pixel (target pixel) 34 becomes a gradation (specified gradation) to be displayed by the pixel 34 in one frame. Each gradation of the subframe is determined.
 極性反転・増幅部42cは、左右識別信号生成部41bから出力されてきた左右識別信号RLに対応して、画素34に印加する印加電圧のプラスマイナスの極性を反転させたり、階調決定部42bが決定したサブフレーム毎の階調に対応する電圧値を設定したりするものである。 The polarity inversion / amplification unit 42c inverts the plus / minus polarity of the voltage applied to the pixel 34 in response to the left / right identification signal RL output from the left / right identification signal generation unit 41b, or the gradation determination unit 42b. The voltage value corresponding to the gradation for each subframe determined by is set.
 本実施の形態では、極性反転・増幅部42cは、右目映像用の電圧は正極性であり、左目映像用の電圧は負極性となるように設定する。なお、右目映像用の電圧と左目映像用の電圧とで極性が異なっていればよく、右目映像用の電圧を負極性とし、左目映像用の電圧を正極性としてもよい。 In the present embodiment, the polarity inversion / amplification unit 42c sets the voltage for the right eye image to have a positive polarity and the voltage for the left eye image to have a negative polarity. The right eye video voltage and the left eye video voltage need only have different polarities, and the right eye video voltage may have a negative polarity and the left eye video voltage may have a positive polarity.
 テーブル格納部44には、階調決定部42bが、サブフレーム毎の階調を決定するための階調決定用テーブルが格納されている。テーブル格納部44には、階調決定テーブルが一つだけ格納されていてもよく、複数の階調決定テーブルが格納されていてもよい。なお、階調決定テーブルは後述する。 In the table storage unit 44, a gradation determination table for the gradation determination unit 42b to determine the gradation for each subframe is stored. The table storage unit 44 may store only one gradation determination table or a plurality of gradation determination tables. The gradation determination table will be described later.
 シャッター制御部45は、左右識別信号生成部41bから出力されてきた左右識別信号RLを取得すると、当該取得した左右識別信号RLを含む遮光メガネ20の制御用信号であるシャッター制御信号OCを生成する。そして、シャッター制御部45は、当該生成したシャッター制御信号OCを遮光メガネ20に出力する。これにより、シャッター制御部45は、遮光メガネ20の左目遮光用の液晶シャッター21と、右目遮光用の液晶シャッター22との透過状態又は遮光状態の駆動を制御する。 When the shutter control unit 45 acquires the left / right identification signal RL output from the left / right identification signal generation unit 41b, the shutter control unit 45 generates a shutter control signal OC, which is a control signal for the light shielding glasses 20 including the acquired left / right identification signal RL. . Then, the shutter control unit 45 outputs the generated shutter control signal OC to the light shielding glasses 20. Accordingly, the shutter control unit 45 controls the driving of the left-eye light-shielding liquid crystal shutter 21 and the right-eye light-shielding liquid crystal shutter 22 of the light-shielding glasses 20 in the transmission state or the light-shielding state.
 遮光メガネ20は、ユーザの左目遮光用の液晶シャッター21と、右目遮光用の液晶シャッター22とを備えている。遮光メガネ20は、シャッター制御部45から出力されてきたシャッター制御信号OCを取得すると、当該シャッター制御信号OCに基づいて、左目遮光用の液晶シャッター21及び右目遮光用の液晶シャッター22のそれぞれの透過度を制御する。 The light-shielding glasses 20 include a liquid crystal shutter 21 for shielding the left eye of the user and a liquid crystal shutter 22 for shielding the right eye. When the light-shielding glasses 20 obtain the shutter control signal OC output from the shutter control unit 45, the light-shielding glasses 20 transmit each of the left-eye light-shielding liquid crystal shutter 21 and the right-eye light-shielding liquid crystal shutter 22 based on the shutter control signal OC. Control the degree.
 すなわち、遮光メガネ20は、左右識別信号RLがロウからハイへ変化すると、右目遮光用の液晶シャッター22を透過状態とし、左目遮光用の液晶シャッター21を遮光状態とする。一方、遮光メガネ20は、左右識別信号RLがハイからロウへ変化すると、左目遮光用の液晶シャッター21を透過状態とし、右目遮光用の液晶シャッター22を遮光状態とする。 That is, when the left / right identification signal RL changes from low to high, the light-shielding glasses 20 bring the right-eye light-shielding liquid crystal shutter 22 into a transmissive state and the left-eye light-shielding liquid crystal shutter 21 into a light-shielded state. On the other hand, when the left / right identification signal RL changes from high to low, the light-shielding glasses 20 place the left-eye light-shielding liquid crystal shutter 21 in the transmission state and the right-eye light-shielding liquid crystal shutter 22 in the light-shielding state.
 これにより、液晶パネル30に表示されている映像に応じて、ユーザの右目又は左目に映像光を入射させることで、ユーザに立体映像を立体視させることができる。 Thereby, according to the video displayed on the liquid crystal panel 30, the user can stereoscopically view the stereoscopic video by causing the video light to enter the right eye or the left eye of the user.
 (立体映像表示システムの駆動制御)
 次に、図1~図4を用いて、立体映像表示システムの駆動制御について説明する。
(Driving control of 3D image display system)
Next, drive control of the stereoscopic video display system will be described with reference to FIGS.
 図3は、ある画素34へのフレーム毎の印加電圧を説明するための図である。 FIG. 3 is a diagram for explaining a voltage applied to a certain pixel 34 for each frame.
 液晶表示装置10は、1フレーム毎に、順に、右目映像を表示するための右目用映像表示期間(図3の期間R)と、左目映像を表示するための左目用映像表示期間(図3の期間L)とを交互に繰り返すことで立体映像を表示する、所謂フレームシーケンシャル方式の映像表示装置である。 The liquid crystal display 10 sequentially displays a right-eye video display period (period R in FIG. 3) for displaying a right-eye video and a left-eye video display period (in FIG. 3) for displaying a left-eye video for each frame. This is a so-called frame-sequential video display device that displays a stereoscopic video by alternately repeating the period L).
 連続するフレームを順に、第1フレーム、第2フレーム、第3フレーム、・・・とすると図3では、順に、右目用映像表示期間、左目用映像表示期間、右目用映像表示期間、・・・となっている。 Assuming that the consecutive frames are the first frame, the second frame, the third frame,..., In FIG. 3, the right-eye video display period, the left-eye video display period, the right-eye video display period,. It has become.
 左右識別信号RLは、ハイ(High;液晶表示装置10に表示する立体映像が右目用映像であることを示す情報)で右目用信号であることを表し、ロウ(Low;液晶表示装置10に表示する立体映像が左目用映像であることを示す情報)で左目用信号であることを表している。 The left / right identification signal RL is high (High; information indicating that the stereoscopic image displayed on the liquid crystal display device 10 is a right-eye image) and is a right-eye signal, and low (Low; displayed on the liquid crystal display device 10). Information indicating that the stereoscopic video to be processed is a video for the left eye).
 左右識別信号RLは、第1フレームではハイとなっており、第2フレームではロウとなっている。第3フレーム以降でもハイと、ロウとを繰り返す信号となっている。 The left / right identification signal RL is high in the first frame and low in the second frame. Even after the third frame, the signal repeats high and low.
 信号Qは、画素34へ印加されている電圧を表す。すなわち、信号Qの値の絶対値が大きければ、画素34の輝度(透過度)が高いことを表している。 Signal Q represents the voltage applied to the pixel 34. That is, if the absolute value of the signal Q is large, it indicates that the luminance (transmittance) of the pixel 34 is high.
 そして、画素34に、右目映像用の階調を表示するには、信号Qとして+極性の電圧が印加される。一方、画素34に、左目映像用の階調を表示するには、信号Qとして-極性の電圧が印加される。 Then, in order to display the gradation for the right-eye image on the pixel 34, a positive polarity voltage is applied as the signal Q. On the other hand, in order to display the gray scale for the left-eye image on the pixel 34, a negative voltage is applied as the signal Q.
 このように画素34に、フレーム毎に、+極性及び-極性の電圧を交互に印加することで、液晶表示装置10は交流駆動がなされている。これにより、直流電圧が印加され続けることを防止し、液晶の特性劣化を防止することができる。 Thus, the liquid crystal display device 10 is AC driven by alternately applying + polarity and −polarity voltages to the pixels 34 for each frame. As a result, it is possible to prevent the DC voltage from being continuously applied and to prevent deterioration of the liquid crystal characteristics.
 信号Qのプラスマイナスの極性は、左右識別信号RLのハイ・ロウによって決定される。すなわち、階調制御部42が、左右識別信号生成部41bから、ハイである左右識別信号RLを取得すると、極性反転・増幅部42cは、プラス極性の電圧を示す電圧印加信号を液晶パネル30に出力する。液晶パネル30は、極性反転・増幅部42cから電圧印加信号を取得すると、ソースドライバ31及びゲートドライバ32を介して、上記取得した電圧印加信号が示す正極性の電圧を画素34に印加する。これにより、画素34に右目映像の階調表示がなされる。 The plus / minus polarity of the signal Q is determined by the high / low of the left / right identification signal RL. That is, when the gradation control unit 42 acquires the left / right identification signal RL that is high from the left / right identification signal generation unit 41b, the polarity inversion / amplification unit 42c sends a voltage application signal indicating a positive polarity voltage to the liquid crystal panel 30. Output. When the liquid crystal panel 30 acquires the voltage application signal from the polarity inversion / amplification unit 42c, the liquid crystal panel 30 applies the positive voltage indicated by the acquired voltage application signal to the pixel 34 via the source driver 31 and the gate driver 32. Thereby, the gradation display of the right eye image is performed on the pixel 34.
 一方、階調制御部42が、左右識別信号生成部41bから、ロウである左右識別信号RLを取得すると、極性反転・増幅部42cは、マイナス極性の電圧を示す電圧印加信号を液晶パネル30に出力する。液晶パネル30は、極性反転・増幅部42cから電圧印加信号を取得すると、ソースドライバ31及びゲートドライバ32を介して、上記取得した電圧印加信号が示す負極性の電圧を画素34に印加する。これにより、画素34に左目映像の階調表示がなされる。 On the other hand, when the gradation control unit 42 acquires the left / right identification signal RL that is low from the left / right identification signal generation unit 41b, the polarity inversion / amplification unit 42c sends a voltage application signal indicating a negative polarity voltage to the liquid crystal panel 30. Output. When the liquid crystal panel 30 acquires the voltage application signal from the polarity inversion / amplification unit 42c, the liquid crystal panel 30 applies a negative voltage indicated by the acquired voltage application signal to the pixel 34 via the source driver 31 and the gate driver 32. Thereby, the gradation display of the left-eye image is performed on the pixel 34.
 また、図3に示すように、本実施の形態では、1フレームは4つのサブフレームに分割されている。 Also, as shown in FIG. 3, in this embodiment, one frame is divided into four subframes.
 第1フレームは、順に連続する期間である第1サブフレーム期間a、第2サブフレーム期間b、第3サブフレーム期間c、及び第4サブフレーム期間dの4つのサブフレームに分割されている。 The first frame is divided into four subframes of a first subframe period a, a second subframe period b, a third subframe period c, and a fourth subframe period d, which are successive periods.
 第2フレームは、順に連続する期間である第1サブフレーム期間e、第2サブフレーム期間f、第3サブフレーム期間g、及び第4サブフレーム期間hの4つのサブフレームに分割されている。 The second frame is divided into four subframes of a first subframe period e, a second subframe period f, a third subframe period g, and a fourth subframe period h, which are successive periods.
 そして、第1フレームの右目用映像表示期間で表示すべき規定された階調(規定階調)を表示するために、画素34に印加される電圧(以下、規定印加電圧と称する)を(+V)とする。 A voltage applied to the pixel 34 (hereinafter referred to as a specified applied voltage) in order to display a specified gradation (specified gradation) to be displayed in the right-eye video display period of the first frame is (+ V ).
 また、第2フレームの左目用映像表示期間で表示すべき規定された階調(規定階調)を表示するために、画素34に印加される電圧(規定印加電圧)を(-V)とする。 In addition, in order to display a specified gradation (specified gradation) to be displayed in the left-eye video display period of the second frame, a voltage (specified application voltage) applied to the pixel 34 is set to (−V). .
 一例として、第1フレームの一つ前のフレーム、第1フレーム、及び第2フレームのそれぞれの規定階調を順に0階調、896階調(10bit)、896階調(10bit)とする。 As an example, the specified gradations of the frame immediately before the first frame, the first frame, and the second frame are set to 0 gradation, 896 gradations (10 bits), and 896 gradations (10 bits) in order.
 そして、0階調を表示するための画素34への必要な印加電圧を0Vとする。また、896階調を表示するための画素34への必要な印加電圧のうち、プラス極性の電圧を(+V)とし、マイナス極性の電圧を(-V)とする。 Then, a necessary applied voltage to the pixel 34 for displaying 0 gradation is set to 0V. Further, of the necessary applied voltages to the pixel 34 for displaying 896 gradations, the positive polarity voltage is (+ V) and the negative polarity voltage is (−V).
 なお、第1フレームの一つ前のフレームの最後のサブフレーム期間では、画素34に電圧(0V)が印加されていたものとする。 Note that it is assumed that a voltage (0 V) is applied to the pixel 34 in the last subframe period of the frame immediately before the first frame.
 左右識別信号RLは、第1フレームの最初にロウからハイへと信号が立ち上がる。これにより、第1フレームは右目用映像表示期間であると、極性反転・増幅部42cに認識される。 The left / right identification signal RL rises from low to high at the beginning of the first frame. Thus, the polarity inversion / amplification unit 42c recognizes that the first frame is the right-eye video display period.
 第1フレームのうち、最初のサブフレーム期間であるサブフレーム期間aでは、階調決定部42bは、第1フレームの前のフレームで最後に印加されていた電圧(0V)を維持するように、画素34の階調を決定する。このため、第1サブフレーム期間aでは、画素34に電圧0Vが印加され続ける。 Among the first frames, in the subframe period a which is the first subframe period, the gradation determination unit 42b maintains the voltage (0V) applied last in the frame before the first frame. The gradation of the pixel 34 is determined. For this reason, the voltage 0V is continuously applied to the pixel 34 in the first subframe period a.
 階調決定部42bは、第1サブフレーム期間aの階調は、複数のサブフレームの階調の最大値より小さくなるように決定する。これにより、フレーム間での画素34への印加電圧の極性変化に伴なう電圧の変化を抑制し、液晶分子の応答遅延に伴ない発生するクロストークを防止するようにしている。 The gradation determination unit 42b determines that the gradation of the first subframe period a is smaller than the maximum value of the gradations of the plurality of subframes. As a result, the change in the voltage accompanying the change in the polarity of the voltage applied to the pixel 34 between frames is suppressed, and the crosstalk caused by the response delay of the liquid crystal molecules is prevented.
 そして、第1サブフレーム期間aの間に、つまり、左右識別信号RLがロウからハイへと切り替わると、階調決定部42bは、次の第2サブフレーム期間b~第4サブフレーム期間dのそれぞれの階調を決定する。 Then, during the first subframe period a, that is, when the left / right identification signal RL is switched from low to high, the gradation determination unit 42b performs the following second subframe period b to fourth subframe period d. Each gradation is determined.
 ここで、階調決定部42bは、第2サブフレームb及び第3サブフレームcの階調を、規定階調よりも値が大きくなるように決定する。 Here, the gradation determination unit 42b determines the gradation of the second subframe b and the third subframe c so that the value is larger than the specified gradation.
 この際、階調決定部42bは、テーブル格納部44に格納されているテーブルを参照して、第2サブフレームb、及び第3サブフレームcの階調を決定する。 At this time, the gradation determination unit 42b refers to the table stored in the table storage unit 44 and determines the gradations of the second subframe b and the third subframe c.
 図4は、テーブル格納部44に格納されているサブフレーム用の階調決定テーブルを表す図である。階調決定テーブルは、縦方向に、現在の第1サブフレーム期間aの階調を表し、横方向に第1フレームで表示すべき規定階調を表している。 FIG. 4 is a diagram showing a gradation determination table for subframes stored in the table storage unit 44. The gradation determination table represents the gradation of the current first subframe period a in the vertical direction, and the prescribed gradation to be displayed in the first frame in the horizontal direction.
 第1サブフレーム期間aで、テーブル格納部44は、テーブル格納部44に格納されているテーブルを参照する。そして、ここでは、第1サブフレーム期間aの階調が0であり、第1フレームで表示すべき規定階調が896なので、テーブル格納部44は、現在の階調「0」と、次フレームの階調「896」の交点の階調「976」を、第2サブフレーム期間b、及び第3サブフレーム期間cの階調となるように決定する。 In the first subframe period a, the table storage unit 44 refers to the table stored in the table storage unit 44. Here, since the gradation of the first subframe period a is 0 and the specified gradation to be displayed in the first frame is 896, the table storage unit 44 determines that the current gradation “0” and the next frame The gray level “976” at the intersection of the gray level “896” is determined to be the gray level of the second subframe period b and the third subframe period c.
 そして、極性反転・増幅部42cは、階調決定部42bが決定した階調に対応する電圧で第2サブフレーム期間b、第3サブフレーム期間c中、画素34に電圧を印加するよう生成した電圧印加信号を液晶パネル30に出力する。ここでは、976階調に対応する+極性の電圧を+2Vとする。 Then, the polarity inversion / amplification unit 42c generates the voltage to be applied to the pixel 34 during the second subframe period b and the third subframe period c at a voltage corresponding to the gradation determined by the gradation determination unit 42b. A voltage application signal is output to the liquid crystal panel 30. Here, the + polarity voltage corresponding to the 976 gradation is set to + 2V.
 液晶パネル30では、ソースドライバ31及びゲートドライバ32を介して、目的の画素34に電圧(+2V)が印加される。 In the liquid crystal panel 30, a voltage (+2 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
 すなわち、第2サブフレーム期間b、及び第3サブフレーム期間cでは、第1フレームでの規定階調を表示するための規定印加電圧(+V)よりも高い電圧(+2V)を印加することで、液晶分子の駆動速度を向上させ、第1フレームでの規定輝度(規定階調に対応する輝度)よりも高い輝度を画素34に表示させる。 That is, in the second subframe period b and the third subframe period c, by applying a voltage (+ 2V) higher than the specified applied voltage (+ V) for displaying the specified gradation in the first frame, The driving speed of the liquid crystal molecules is improved, and the luminance higher than the prescribed luminance (luminance corresponding to the prescribed gradation) in the first frame is displayed on the pixel 34.
 また、第2サブフレームb、第3サブフレームcそれぞれの階調を決定すると共に、階調決定部42bは、第4サブフレームdの階調も決定する。階調決定部42bは、第4サブフレームdの階調を、第1フレームでの規定階調よりも値が小さくなるように決定する。 Further, the gradation determination unit 42b also determines the gradation of the fourth subframe d while determining the gradation of each of the second subframe b and the third subframe c. The gradation determination unit 42b determines the gradation of the fourth subframe d so that the value is smaller than the prescribed gradation in the first frame.
 すなわち、階調決定部42bは、第1サブフレーム期間a、第2サブフレーム期間b、第3サブフレーム期間c、及び第4サブフレーム期間dの合計の階調の平均が、第1フレームでの規定階調となるように、第4サブフレーム期間dの階調を決定する。 That is, the gradation determination unit 42b determines that the average of the total gradation of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d is the first frame. The gradation of the fourth subframe period d is determined so that the prescribed gradation is obtained.
 さらに、階調決定部42bは、第1サブフレーム期間a、第2サブフレーム期間b、第3サブフレーム期間c、及び第4サブフレーム期間dのうち、第4サブフレーム期間dの階調が最も小さくなるように、第1サブフレーム期間a、第2サブフレーム期間b、第3サブフレーム期間c、及び第4サブフレーム期間dのそれぞれの階調を決定する。 Further, the gradation determining unit 42b determines that the gradation of the fourth subframe period d among the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d is The gray levels of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d are determined so as to be minimized.
 ここでは、階調決定部42bは、第4サブフレーム期間dの階調を0に決定する。 Here, the gradation determination unit 42b determines the gradation of the fourth subframe period d to be 0.
 そして、極性反転・増幅部42cは、階調決定部42bが決定した階調に対応する電圧(0V)で第4サブフレーム期間d中、画素34に電圧を印加するよう電圧印加信号を生成し液晶パネル30に出力する。 Then, the polarity inversion / amplification unit 42c generates a voltage application signal so as to apply a voltage to the pixel 34 during the fourth subframe period d at a voltage (0 V) corresponding to the gradation determined by the gradation determination unit 42b. Output to the liquid crystal panel 30.
 液晶パネル30では、ソースドライバ31及びゲートドライバ32を介して、目的の画素34に電圧(0V)が印加される。 In the liquid crystal panel 30, a voltage (0 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
 このように、第1サブフレーム期間a及び第4サブフレーム期間dでは、第1フレームでの規定印加電圧(+V)よりも低い電圧(0V)、すなわち絶対値が小さい電圧を印加することで、目標輝度よりも低い輝度を表示させる。 Thus, in the first subframe period a and the fourth subframe period d, by applying a voltage (0 V) lower than the specified applied voltage (+ V) in the first frame, that is, a voltage having a small absolute value, A brightness lower than the target brightness is displayed.
 これにより、第2サブフレーム期間b及び第3サブフレームcでの画素34への印加電圧と、第1サブフレーム期間a及び第4サブフレーム期間dでの画素34への印加電圧とが相殺されて、第1フレームは規定印加電圧(+V)が印加されたように、ユーザには視認される。これは、人間の目には高速で点灯する微小画素の輝度変化は、平均値でしか感じられないためである。 As a result, the voltage applied to the pixel 34 in the second subframe period b and the third subframe c cancels the voltage applied to the pixel 34 in the first subframe period a and the fourth subframe period d. Thus, the first frame is visually recognized by the user as if the specified applied voltage (+ V) was applied. This is because the change in luminance of a minute pixel that is lit at high speed can be felt only by the average value to the human eye.
 また、第1サブフレーム期間a、第2サブフレーム期間b、第3サブフレーム期間c、及び第4サブフレーム期間dのそれぞれの階調に対応して画素34に印加される電圧の絶対値のうち、第4サブフレーム期間dの階調に対応して画素34に印加される電圧の絶対値が一番小さい。すなわち、第2フレーム(次フレーム)と隣接する第4サブフレーム期間dの階調に対応して画素34に印加される電圧の絶対値が最も小さくなる。 In addition, the absolute value of the voltage applied to the pixel 34 corresponding to each gradation of the first subframe period a, the second subframe period b, the third subframe period c, and the fourth subframe period d. Among them, the absolute value of the voltage applied to the pixel 34 corresponding to the gradation in the fourth subframe period d is the smallest. That is, the absolute value of the voltage applied to the pixel 34 corresponding to the gradation of the fourth subframe period d adjacent to the second frame (next frame) is the smallest.
 これにより、第1フレームと、第2フレームとで、画素34に印加される電圧の極性が反転したとしても、その電圧の極性の変化に伴なう液晶分子の応答量が少なくて済むので、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 Thereby, even if the polarity of the voltage applied to the pixel 34 is inverted between the first frame and the second frame, the response amount of the liquid crystal molecules accompanying the change in the polarity of the voltage can be reduced. It is possible to prevent crosstalk that occurs due to the response delay of the liquid crystal molecules.
 次に、左右識別信号RLは、第2フレームの最初でハイからロウへと信号が立ち下がる。これにより、第2フレームは左目用映像表示期間であると、極性反転・増幅部42cに認識される。 Next, the left / right identification signal RL falls from high to low at the beginning of the second frame. Thereby, the polarity inversion / amplification unit 42c recognizes that the second frame is the left-eye video display period.
 第2フレームのうち、最初のサブフレーム期間である第1サブフレーム期間eでは、階調決定部42bは、第1フレームの最後の第4サブフレーム期間dで印加されていた電圧(0V)を維持するように、画素34への階調を決定する。このため、第1サブフレーム期間eでは、画素34に電圧0Vが印加され続ける。 In the first subframe period e, which is the first subframe period of the second frame, the gradation determination unit 42b applies the voltage (0 V) applied in the last fourth subframe period d of the first frame. The gradation for the pixel 34 is determined so as to be maintained. For this reason, the voltage 0V is continuously applied to the pixel 34 in the first subframe period e.
 そして、第1サブフレーム期間eの間、つまり、左右識別信号RLがハイからロウへと切り替わると、階調決定部42bは、次の第2サブフレーム期間f~第4サブフレーム期間hのそれぞれの階調を決定する。 Then, during the first subframe period e, that is, when the left / right identification signal RL is switched from high to low, the gradation determination unit 42b performs each of the next second subframe period f to the fourth subframe period h. To determine the gradation.
 ここで、階調決定部42bは、第2サブフレームf及び第3サブフレームgの階調を、規定階調よりも値が大きくなるように決定する。 Here, the gradation determination unit 42b determines the gradation of the second subframe f and the third subframe g so that the value is larger than the specified gradation.
 この際、階調決定部42bは、テーブル格納部44に格納されているテーブル(図4参照)を参照して、第2サブフレームf、及び第3サブフレームgの階調を決定する。 At this time, the gradation determination unit 42b refers to the table (see FIG. 4) stored in the table storage unit 44 to determine the gradations of the second subframe f and the third subframe g.
 ここでは、第1サブフレームeでの階調は「0」であり、第2フレームでの規定階調は「896」なので、現在の階調「0」と、次フレームの階調「896」の交点の階調「976」を、第2サブフレーム期間f、及び第3サブフレーム期間gの階調となるように決定する。 Here, since the gradation in the first subframe e is “0” and the specified gradation in the second frame is “896”, the current gradation “0” and the gradation “896” of the next frame are set. The gradation “976” at the intersection of the two is determined so as to be the gradation of the second subframe period f and the third subframe period g.
 そして、極性反転・増幅部42cは、階調決定部42bが決定した階調に対応する電圧で第2サブフレーム期間f、第3サブフレーム期間g中、画素34に電圧を印加するよう生成した電圧印加信号を液晶パネル30に出力する。ここでは、976階調に対応するマイナス極性の電圧を(-2V)とする。 Then, the polarity inversion / amplification unit 42c generates the voltage to be applied to the pixel 34 during the second subframe period f and the third subframe period g at a voltage corresponding to the gradation determined by the gradation determination unit 42b. A voltage application signal is output to the liquid crystal panel 30. Here, a negative polarity voltage corresponding to 976 gradations is set to (−2V).
 液晶パネル30では、ソースドライバ31及びゲートドライバ32を介して、目的の画素34に電圧(-2V)が印加される。 In the liquid crystal panel 30, a voltage (−2 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
 すなわち、第2サブフレーム期間f、及び第3サブフレーム期間gでは、第2フレームでの規定階調を表示するための規定印加電圧(-V)よりも低い電圧(-2V)を印加することで、液晶分子の応答速度を向上させ、第2フレームでの規定輝度よりも高い輝度を表示させる。 That is, in the second subframe period f and the third subframe period g, a voltage (−2 V) lower than the specified applied voltage (−V) for displaying the specified gradation in the second frame is applied. Thus, the response speed of the liquid crystal molecules is improved, and the brightness higher than the specified brightness in the second frame is displayed.
 また、第2サブフレームf、第3サブフレームgそれぞれの階調を決定すると共に、階調決定部42bは、第4サブフレームhの階調も決定する。階調決定部42bは、第4サブフレームhの階調を、第2フレームでの規定階調よりも値が小さくなるように決定する。 Further, the gradation determination unit 42b also determines the gradation of the fourth subframe h while determining the gradation of each of the second subframe f and the third subframe g. The gradation determination unit 42b determines the gradation of the fourth subframe h so that the value is smaller than the prescribed gradation in the second frame.
 すなわち、階調決定部42bは、第1サブフレーム期間e、第2サブフレーム期間f、第3サブフレーム期間g、及び第4サブフレーム期間hの合計の階調の値が、第2フレームでの規定表示階調となるように、第4サブフレーム期間hの階調を決定する。ここでは、階調決定部42bは、第4サブフレーム期間hの階調を0に決定する。 That is, the gradation determination unit 42b determines that the total gradation value of the first subframe period e, the second subframe period f, the third subframe period g, and the fourth subframe period h is the second frame. The gradation of the fourth subframe period h is determined so that the specified display gradation is obtained. Here, the gradation determination unit 42b determines the gradation of the fourth subframe period h to be 0.
 そして、極性反転・増幅部42cは、階調決定部42bが決定した階調に対応する電圧(0V)で第4サブフレーム期間d中、画素34に電圧を印加するよう電圧印加信号を液晶パネル30に出力する。 Then, the polarity inversion / amplification unit 42c transmits a voltage application signal to the pixel 34 so as to apply a voltage to the pixel 34 during the fourth subframe period d at a voltage (0V) corresponding to the gradation determined by the gradation determination unit 42b. Output to 30.
 液晶パネル30では、ソースドライバ31及びゲートドライバ32を介して、目的の画素34に電圧(0V)が印加される。 In the liquid crystal panel 30, a voltage (0 V) is applied to the target pixel 34 via the source driver 31 and the gate driver 32.
 このように、第1サブフレーム期間e及び第4サブフレーム期間hでは、第2フレームでの規定印加電圧(-V)よりも高い電圧(0V)、すなわち絶対値が小さい電圧を印加することで、目標輝度よりも低い輝度を表示させる。 Thus, in the first subframe period e and the fourth subframe period h, a voltage (0V) higher than the specified applied voltage (−V) in the second frame, that is, a voltage having a small absolute value is applied. The brightness lower than the target brightness is displayed.
 これにより、第2サブフレーム期間f及び第3サブフレームgでの印加電圧と、第1サブフレーム期間e及び第4サブフレーム期間hでの印加電圧とが相殺されて、第2フレームは規定印加電圧(-V)が印加されたように、ユーザには視認される。 As a result, the applied voltage in the second subframe period f and the third subframe g and the applied voltage in the first subframe period e and the fourth subframe period h cancel each other, and the second frame is applied with the specified voltage. It is visually recognized by the user as the voltage (−V) is applied.
 このように、階調決定部42bは、第2フレームにおける、第1フレームと隣接するサブフレーム期間である第1サブフレーム期間eの階調を、隣接する前フレームである第1フレームの第4サブフレーム期間dと同じとなるように決定している。 In this way, the gradation determination unit 42b determines the gradation of the first subframe period e, which is the subframe period adjacent to the first frame, in the second frame. It is determined to be the same as the subframe period d.
 すなわち、階調決定部42bは、第2フレームと隣接し、複数の第1サブフレーム期間a~第4サブフレーム機関dに分割されている第1フレームのうち、最後の第4サブフレーム期間dの階調と同じとなるように、第2フレームの最初の第1サブフレーム期間eの階調を決定する。 That is, the gradation determination unit 42b is adjacent to the second frame and is the last fourth subframe period d among the first frames divided into the plurality of first subframe periods a to the fourth subframe engine d. The gradation of the first first subframe period e of the second frame is determined so as to be the same as the gradation of.
 これにより、極性反転・増幅部42cは、第1サブフレーム期間eの電圧と、第4サブフレーム期間dの電圧とが同じとなるように、画素34に電圧を印加させている。このため、右目用映像表示期間と、左目用映像表示期間とで、画素34に対する印加電圧の極性が反転したとしても、液晶分子がほとんど動かずに済む。 Thus, the polarity inversion / amplification unit 42c applies a voltage to the pixel 34 so that the voltage in the first subframe period e is the same as the voltage in the fourth subframe period d. For this reason, even if the polarity of the voltage applied to the pixel 34 is inverted between the right-eye video display period and the left-eye video display period, the liquid crystal molecules hardly move.
 その結果、液晶分子の応答速度が遅いことに起因するクロストーク(右目用映像が左目に入り込むこと)がほとんど生じない。そして、第4サブフレーム期間dの階調と、第1サブフレーム期間eの階調とが異なっている場合と比べて、より確実にクロストークを防止することができる。 As a result, the crosstalk (the image for the right eye enters the left eye) due to the slow response speed of the liquid crystal molecules hardly occurs. Then, compared to the case where the gradation in the fourth subframe period d is different from the gradation in the first subframe period e, crosstalk can be prevented more reliably.
 特に、図3では、電圧の極性が反転する隣接ずるサブフレーム期間(第4サブフレーム期間d及び第1サブフレーム期間e)は共に電圧が(0V)なので、第2フレームに+極性の電圧が印加されることがない。このため、確実に、クロストークを防止することができる。 In particular, in FIG. 3, since the voltage is (0V) in the adjacent subframe periods (the fourth subframe period d and the first subframe period e) in which the polarity of the voltage is inverted, the + polarity voltage is applied to the second frame. It is not applied. For this reason, crosstalk can be reliably prevented.
 なお、電圧の極性が反転する隣接ずるサブフレーム期間(第4サブフレーム期間d及び第1サブフレーム期間e)は必ずしも電圧が0となる必要はない。右目用映像表示期間と、左目用映像表示期間との切り替わり直前及び切り替わり直後で、階調が極力変化しないように各サブフレームの階調を決定すればよい。 Note that the voltage does not necessarily have to be 0 in adjacent subframe periods (the fourth subframe period d and the first subframe period e) in which the polarity of the voltage is inverted. The gradation of each subframe may be determined so that the gradation does not change as much as possible immediately before and immediately after the switching between the right-eye video display period and the left-eye video display period.
 すなわち、第4サブフレーム期間dと第1サブフレーム期間eとは、第1及び第2フレームそれぞれで印加される電圧より、絶対値の値が小さい電圧が印加されるように、階調設定がなされればよい。 That is, in the fourth subframe period d and the first subframe period e, the gradation setting is performed so that a voltage whose absolute value is smaller than the voltage applied in each of the first and second frames is applied. It only has to be done.
 これにより、電圧の極性が反転する隣接するサブフレーム期間(第4サブフレーム期間d及び第1サブフレーム期間e)での液晶分子の動きを抑制し、液晶分子の応答速度が遅いことに起因するクロストークを抑制することができる。 As a result, the movement of the liquid crystal molecules in the adjacent subframe periods (the fourth subframe period d and the first subframe period e) in which the polarity of the voltage is inverted is suppressed, and the response speed of the liquid crystal molecules is low. Crosstalk can be suppressed.
 また、第1フレーム及び第2フレームそれぞれの規定階調は「896」であるものとして、図4に記載のテーブルを用いて各サブフレームの階調を決定するものとして説明したが、これに限定されるものではない。 Further, although it has been described that the specified gradation of each of the first frame and the second frame is “896”, the gradation of each subframe is determined using the table shown in FIG. Is not to be done.
 例えば、フレームにおける規定表示階調と、当該フレームにおける各サブフレームでの階調との関係は上述したものに限定されず、第1フレームでの規定表示階調が700の場合、第1サブフレームa、第4サブフレームdではそれぞれ600階調とし、第2サブフレーム期間b、第3サブフレーム期間cでは800階調とする等としてもよい。 For example, the relationship between the specified display gradation in the frame and the gradation in each subframe in the frame is not limited to that described above. When the specified display gradation in the first frame is 700, the first subframe The gradation may be 600 gradations in a and the fourth subframe d, and 800 gradations in the second subframe period b and the third subframe period c.
 また、図4に記載したようなテーブルを複数個、テーブル格納部44に格納しておき、周囲温度に応じて最適なテーブルを参照するようにしてもよい。 Also, a plurality of tables as shown in FIG. 4 may be stored in the table storage unit 44, and the optimum table may be referred to according to the ambient temperature.
 これにより、周囲の温度が変化したとしても、液晶の温度依存性に関わらず、クロストークを抑制することができる。 Thus, even if the ambient temperature changes, crosstalk can be suppressed regardless of the temperature dependence of the liquid crystal.
 また、サブフレーム分割部42aは、1フレームを4つに分割している。これにより、4つのサブフレームのうち、最初の第1サブフレーム期間aと、最後の第4サブフレーム期間dとの間に第3サブフレーム期間bと、第4サブフレーム期間cとを有することになる。 Further, the subframe dividing unit 42a divides one frame into four. Accordingly, among the four subframes, the third subframe period b and the fourth subframe period c are provided between the first first subframe period a and the last fourth subframe period d. become.
 このため、比較的、複数のサブフレームのそれぞれの階調の変化を抑えて、規定階調を表示することができ、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 For this reason, it is possible to display a specified gradation while suppressing a change in gradation of each of a plurality of subframes, and to prevent crosstalk caused by a response delay of liquid crystal molecules.
 しかし、サブフレーム分割部42aが1フレームを分割する個数は4つに限定されるものではなく3以上であればよい。これにより、階調決定部42bは、最初と最後のサブフレームに挟まれたサブフレームの階調が最大となるように決定することで、1フレーム内で規定階調を表示することができる。 However, the number by which the subframe dividing unit 42a divides one frame is not limited to four, and may be three or more. Thereby, the gradation determination unit 42b can display the specified gradation within one frame by determining the gradation of the subframe sandwiched between the first and last subframes to be the maximum.
 なお、上述した説明では、右目用映像表示期間から、左目用映像表示期間への切り替わりの際について説明をしたが、逆に、左目用映像表示期間(第4サブフレーム期間h)から、右目用映像表示期間(一つ後ろのフレームにおける最初のサブフレーム期間)への切り替わりの際にも同様にして適用することができる。 In the above description, the switching from the right-eye video display period to the left-eye video display period has been described, but conversely, from the left-eye video display period (fourth subframe period h) to the right-eye video display period. The present invention can be similarly applied when switching to a video display period (first subframe period in the next frame).
 さらに、ある着目画素の一画素34における駆動制御のみならず、当該画素34の周囲の画素との駆動電圧の印加タイミングを考慮して、画素34及びその周囲の画素の駆動を制御するようにしてもよい。 Further, not only the drive control in one pixel 34 of a pixel of interest but also the drive of the pixel 34 and its surrounding pixels are controlled in consideration of the application timing of the drive voltage with the surrounding pixels of the pixel 34. Also good.
 例えば、ディザ法などのように、人間の眼には周囲画素とのトータルの輝度で感じられる。 For example, like the dither method, it is perceived by the human eye with the total luminance with the surrounding pixels.
 このため右目映像表示期間から左目映像表示期間への切り替えに当たるサブフレーム期間(第4サブフレームd及び第1サブフレーム期間e)で、着目画素34と、例えばその周囲の4画素(上下左右の画素)のトータルの輝度が変化しないようにそれぞれの画素への印加電圧を制御する。このようにすることで、フリッカを低減することができる。 Therefore, in the sub-frame period (fourth sub-frame d and first sub-frame period e) corresponding to switching from the right-eye video display period to the left-eye video display period, the pixel of interest 34 and, for example, the four surrounding pixels (up / down / left / right pixels) ), The voltage applied to each pixel is controlled so that the total luminance does not change. By doing so, flicker can be reduced.
 〔第2の実施の形態〕
 次に、第2の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図5は、本実施の形態に係る立体映像表示ステム1’の構成を表すブロック図である。 FIG. 5 is a block diagram showing the configuration of the stereoscopic video display stem 1 ′ according to the present embodiment.
 図6は、第2の実施の形態に係る、ある画素34へのフレーム毎の印加電圧を説明するための図である。 FIG. 6 is a diagram for explaining a voltage applied to a certain pixel 34 for each frame according to the second embodiment.
 第1の実施の形態では、遮光メガネ20は、1フレーム毎に、左右の遮光用の液晶シャッター21・22の透過状態と、遮光状態とを切替えていた。 In the first embodiment, the light shielding glasses 20 switch between the transmission state and the light shielding state of the left and right light shielding liquid crystal shutters 21 and 22 for each frame.
 一方、本実施の形態では、遮光メガネ20は、右目用映像表示期間と左目用映像表示期間との切り替わりのサブフレーム期間で、左右の遮光用の液晶シャッター21・22の両方を遮光状態とする。 On the other hand, in the present embodiment, the light-shielding glasses 20 puts both the left and right light-shielding liquid crystal shutters 21 and 22 in a light-shielded state in the subframe period for switching between the right-eye video display period and the left-eye video display period. .
 図5に示すように、サブフレーム分割部42aは、1フレームを、複数のサブフレームに分割すると、当該分割したサブフレームの個数を示す情報をシャッター制御部45に出力する。 As shown in FIG. 5, when one frame is divided into a plurality of subframes, the subframe dividing unit 42a outputs information indicating the number of divided subframes to the shutter control unit 45.
 シャッター制御部45は、左右識別信号生成部41bから出力されてきた左右識別信号RL及びサブフレーム分割部42aから出力されてきたサブフレームの個数を示す情報を取得する。 The shutter control unit 45 acquires information indicating the left / right identification signal RL output from the left / right identification signal generation unit 41b and the number of subframes output from the subframe division unit 42a.
 そして、シャッター制御部45は、左右識別信号RLがロウからハイへ立ち上がると、第1サブフレーム期間a経過してから、右目用の液晶シャッター22を透過状態にさせ、左右識別信号RLがハイからロウへ立ち下がると、第1サブフレーム期間e経過してから、左目用の液晶シャッター21を透過状態にさせるように遮光メガネ20を制御するための制御用信号であるシャッター制御信号OC’を生成する。 Then, when the left / right identification signal RL rises from low to high, the shutter control unit 45 causes the right-eye liquid crystal shutter 22 to be in a transmissive state after the first subframe period a elapses, and the left / right identification signal RL changes from high. When falling to low, after the elapse of the first subframe period e, a shutter control signal OC ′, which is a control signal for controlling the light-shielding glasses 20 so as to bring the liquid crystal shutter 21 for the left eye into a transmission state, is generated. To do.
 そして、シャッター制御部45は、生成したシャッター制御信号OC’を遮光メガネ20に出力することで、遮光メガネ20の駆動を制御する。 Then, the shutter control unit 45 controls the driving of the light shielding glasses 20 by outputting the generated shutter control signal OC ′ to the light shielding glasses 20.
 図6に示すように、遮光メガネ20は、シャッター制御部45から出力されてきたシャッター制御信号OC’を取得すると、当該シャッター制御信号OC’に基づいて、左目遮光用の液晶シャッター21及び右目遮光用の液晶シャッター22のそれぞれの透過度を制御する。 As shown in FIG. 6, when the light shielding glasses 20 obtains the shutter control signal OC ′ output from the shutter control unit 45, the left eye light shielding liquid crystal shutter 21 and the right eye light shielding are obtained based on the shutter control signal OC ′. The transmissivity of each liquid crystal shutter 22 is controlled.
 すなわち、遮光メガネ20は、左右識別信号RLがロウからハイへ変化すると、第1サブフレーム期間aでは左右両方の液晶シャッター21・22を遮光状態(OFF)とし、第1サブフレーム期間a経過後、右目用の液晶シャッター22のみ透過状態(ON)とする。そして、第2サブフレーム期間b、及び第3サブフレーム期間cが経過後、第4サブフレーム期間dでは、右目用の液晶シャッター22を遮光状態(OFF)とする。これにより、第4サブフレーム期間dでは両方の液晶シャッター21・22が遮光状態となる。 That is, when the left / right identification signal RL changes from low to high, the light-shielding glasses 20 turn off both the liquid crystal shutters 21 and 22 in the light-shielding state (OFF) in the first subframe period a, and after the first subframe period a has elapsed. Only the liquid crystal shutter 22 for the right eye is in a transmission state (ON). Then, after the elapse of the second subframe period b and the third subframe period c, in the fourth subframe period d, the right-eye liquid crystal shutter 22 is turned off (OFF). As a result, in the fourth subframe period d, both the liquid crystal shutters 21 and 22 are in a light shielding state.
 そして、遮光メガネ20は、左右識別信号RLがハイからロウへ変化すると、第1サブフレーム期間eでは左右両方の液晶シャッター21・22を遮光状態(OFF)を継続し、第1サブフレーム期間e経過後、左目用の液晶シャッター21のみ透過状態(ON)とする。そして、第2サブフレーム期間f、及び第3サブフレーム期間gが経過後、第4サブフレーム期間hでは、左目用の液晶シャッター21を遮光状態(OFF)とする。これにより、第4サブフレーム期間hでは両方の液晶シャッター21・22が遮光状態となる。 Then, when the left / right identification signal RL changes from high to low, the light-shielding glasses 20 continue the light-shielding state (OFF) of both the left and right liquid crystal shutters 21 and 22 in the first subframe period e, and the first subframe period e After the elapse of time, only the liquid crystal shutter 21 for the left eye is set to the transmission state (ON). Then, after the elapse of the second subframe period f and the third subframe period g, in the fourth subframe period h, the liquid crystal shutter 21 for the left eye is turned off (OFF). Thereby, in the fourth subframe period h, both the liquid crystal shutters 21 and 22 are in a light shielding state.
 このように、遮光メガネ20は、右目用映像表示期間と左目映像表示期間との切り替わりのサブフレーム期間で左右の遮光用の液晶シャッター21・22の両方を遮光状態とするので、フレームの切り替わりにより、透過状態としている液晶シャッター21・22とは逆側の立体映像が、ユーザに視認されることを防止することができる。これにより、クロストークを、確実に防止することができる。 In this way, the light-shielding glasses 20 put both the left and right light-shielding liquid crystal shutters 21 and 22 in the light-shielding state in the sub-frame period for switching between the right-eye video display period and the left-eye video display period. Thus, it is possible to prevent the user from viewing the stereoscopic video on the side opposite to the liquid crystal shutters 21 and 22 in the transmissive state. Thereby, crosstalk can be reliably prevented.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 上記の課題を解決するために、本発明の液晶表示装置は、フレーム毎に、右目用映像と、左目用映像とを切替えて表示することで、立体映像の表示が可能が液晶表示装置であって、1フレームを複数のサブフレームに分割するサブフレーム分割手段と、着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する階調決定手段と、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる極性反転手段とを備え、上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定することを特徴としている。 In order to solve the above problems, the liquid crystal display device of the present invention is a liquid crystal display device capable of displaying a stereoscopic image by switching between a right-eye image and a left-eye image for each frame. Sub-frame dividing means for dividing one frame into a plurality of sub-frames, and an average value of gradations of the plurality of sub-frames in the pixel of interest is a prescribed gradation to be displayed by the pixel of interest in the one frame. The gradation determining means for determining each of the gradations of the plurality of subframes and the application to the target pixel corresponding to each of the gradations for each of the subframes determined by the gradation determining means. Polarity reversing means for reversing the polarity of the applied voltage for each frame, and the gradation determining means includes the plurality of sub-frames so that the gradation of the last sub-frame is minimized. It is characterized by determining the respective gradations of the sub-frame.
 上記構成によると、上記サブフレーム分割手段により、1フレームが複数のサブフレームに分割される。そして、上記階調決定手段は、上記着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する。 According to the above configuration, one frame is divided into a plurality of subframes by the subframe dividing means. Then, the gradation determining means is configured to output the plurality of sub-subpixels so that an average value of gradations of the plurality of sub-frames in the pixel of interest is a predetermined gradation to be displayed by the pixel of interest in the one frame. Each frame gradation is determined.
 これにより、上記複数のサブフレームの階調の組み合わせにより、上記着目画素が1フレームで表示すべき規定階調を表示することができる。このため、多階調化に伴なう回路数の増加を抑制し、低消費電力で多階調表示を行うことができる。 Thus, the specified gradation that the pixel of interest should display in one frame can be displayed by a combination of gradations of the plurality of subframes. For this reason, an increase in the number of circuits accompanying the increase in the number of gradations can be suppressed, and a multi-gradation display can be performed with low power consumption.
 そして、上記構成によると、上記極性反転手段は、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる。これにより、上記着目画素を交流駆動をさせつつ、上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれを、上記着目画素に表示させることができる。このため、液晶の特性劣化を防止することができる。 According to the above configuration, the polarity inversion means inverts the polarity of the voltage applied to the pixel of interest for each frame corresponding to each gradation for each subframe determined by the gradation determination means. Let As a result, each of the gradations for each of the subframes determined by the gradation determination unit can be displayed on the target pixel while the target pixel is AC driven. For this reason, characteristic deterioration of the liquid crystal can be prevented.
 さらに、上記構成によると、上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定する。 Furthermore, according to the above configuration, the gradation determination means determines the gradation of each of the plurality of subframes so that the gradation of the last subframe among the plurality of subframes becomes the smallest.
 このため、上記複数のサブフレームの階調のそれぞれに対応して上記着目画素に印加される電圧の絶対値のうち、次フレームと隣接する最後のサブフレームの階調に対応して上記着目画素に印加される電圧の絶対値が最も小さくなる。 Therefore, among the absolute values of the voltages applied to the target pixel corresponding to the gradations of the plurality of subframes, the target pixel corresponding to the gradation of the last subframe adjacent to the next frame. The absolute value of the voltage applied to is the smallest.
 これにより、上記1フレームと、次フレームとで、上記着目画素に印加される電圧の極性が反転したとしても、当該電圧の印加に伴なう液晶分子の応答量が少なくて済むので、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 As a result, even if the polarity of the voltage applied to the pixel of interest is inverted between the first frame and the next frame, the response amount of the liquid crystal molecules accompanying the application of the voltage can be reduced. It is possible to prevent crosstalk that occurs with the response delay.
 また、上記階調決定手段は、上記複数のサブフレームのうち、最初のサブフレームの階調を、上記複数のサブフレームの階調の最大値より小さくなるように決定する。これにより、フレーム間での上記着目画素への印加電圧の極性変化に伴なう、電圧の変化を抑制することができるので、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 Also, the gradation determining means determines the gradation of the first subframe among the plurality of subframes so as to be smaller than the maximum value of the gradations of the plurality of subframes. As a result, it is possible to suppress the change in the voltage accompanying the change in the polarity of the voltage applied to the pixel of interest between frames, so that it is possible to prevent the crosstalk caused by the response delay of the liquid crystal molecules. it can.
 また、上記階調決定手段は、上記1フレームと隣接し、複数のサブフレームに分割されている前フレームのうち、最後のサブフレームの階調と同じとなるように、上記1フレームの最初のサブフレームの階調を決定することが好ましい。 In addition, the gradation determination unit is arranged so that the first frame of the first frame is equal to the gradation of the last subframe among the previous frames adjacent to the one frame and divided into a plurality of subframes. It is preferable to determine the gradation of the subframe.
 これにより、極性反転に伴うクロストークの発生を、さらに、確実に抑制することができる。 This makes it possible to more reliably suppress the occurrence of crosstalk associated with polarity reversal.
 また、上記1フレームが、上記サブフレーム分割手段によって分割される個数は3以上であることが好ましい。上記構成により、上記階調決定手段は、3つのサブフレームのうち、最初と最後のサブフレームに挟まれた間のサブフレームの階調が最大となるように決定することで、上記1フレーム内で上記規定階調を表示することができる。 Further, the number of the one frame divided by the subframe dividing means is preferably 3 or more. With the above configuration, the gradation determining means determines that the gradation of the subframe between the first and last subframes among the three subframes is maximized, so The above specified gradation can be displayed.
 また、上記1フレームが、上記サブフレーム分割手段によって分割される個数は4であることが好ましい。上記構成によると、上記複数のサブフレームは、最初のサブフレームと、最後のサブフレームとの間に2つのサブフレームを有するので、複数のサブフレームのそれぞれの階調の変化を抑えて、規定階調を表示することができ、液晶分子の応答遅延に伴ない発生するクロストークを防止することができる。 Also, it is preferable that the number of the one frame divided by the subframe dividing means is four. According to the above configuration, the plurality of subframes have two subframes between the first subframe and the last subframe, so that the change in gradation of each of the plurality of subframes is suppressed and defined. Gradation can be displayed, and crosstalk that occurs with the response delay of liquid crystal molecules can be prevented.
 また、本発明の立体映像表示システムは、上記液晶表示装置と、右目用の液晶シャッターと、左目用の液晶シャッターとを備えている遮光メガネと、を備え、上記液晶表示装置は、さらに、上記液晶表示装置に表示する立体映像が、上記右目用映像であるか、上記左目用映像であるかを示す情報を含む左右識別信号を生成する左右識別信号生成手段と、
 上記左右識別信号に基づいて、上記右目用の液晶シャッターと、上記左目用の液晶シャッターとの駆動制御をさせるシャッター制御部とを備えていることが好ましい。
The stereoscopic video display system of the present invention includes the liquid crystal display device, a light-shielding eyeglass including a liquid crystal shutter for the right eye and a liquid crystal shutter for the left eye, and the liquid crystal display device further includes the above-described liquid crystal display device. Left and right identification signal generating means for generating a left and right identification signal including information indicating whether the stereoscopic video to be displayed on the liquid crystal display device is the right-eye video or the left-eye video;
It is preferable to include a shutter control unit that controls driving of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter based on the left-right identification signal.
 上記構成により、上記液晶表示装置に表示されている立体映像に応じて、上記遮光メガネに、右目用の液晶シャッターと、左目用の液晶シャッターとそれぞれの駆動を制御させることができる。これにより、上記液晶表示装置に表示されている立体映像を、ユーザに立体視させる立体映像システムを得ることができる。 With the above configuration, it is possible to cause the light-shielding glasses to control the driving of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter according to the stereoscopic image displayed on the liquid crystal display device. Thereby, it is possible to obtain a stereoscopic video system that allows the user to stereoscopically view the stereoscopic video displayed on the liquid crystal display device.
 また、上記シャッター制御部は、上記右目用映像であることを示す情報と取得すると、上記右目用の液晶シャッターを透過状態にさせ、上記左目用映像であることを示す情報を取得すると、上記左目用の液晶シャッターを透過状態にさせることが好ましい。 Further, when the information indicating that the image is for the right eye is acquired, the shutter control unit causes the liquid crystal shutter for the right eye to be in a transmissive state and acquires information indicating the image for the left eye. It is preferable to make the liquid crystal shutter for transmission transparent.
 上記構成によると、上記遮光メガネは、上記液晶表示装置に、右目用映像が表示されているとき、上記右目用の液晶シャッターを透過状態とし、上記液晶表示装置に、左目用映像が表示されているとき、上記左目用の液晶シャッターを透過状態となるように駆動することができる。これにより、上記液晶表示装置に表示されている立体映像を、ユーザに立体視させることができる。 According to the above configuration, when the right eye image is displayed on the liquid crystal display device, the light-shielding glasses make the right eye liquid crystal shutter in a transmissive state, and the left eye image is displayed on the liquid crystal display device. The left-eye liquid crystal shutter can be driven to be in a transmissive state. As a result, the stereoscopic video displayed on the liquid crystal display device can be stereoscopically viewed by the user.
 また、上記シャッター制御部は、上記右目用映像であることを示す情報と取得すると、上記複数のサブフレームのうちの最初のサブフレーム期間経過時に、上記右目用の液晶シャッターを透過状態にさせ、上記左目用映像であることを示す情報と取得すると、上記複数のサブフレームのうちの最初のサブフレーム期間経過時に、上記左目用の液晶シャッターを透過状態にさせることが好ましい。 Further, when the shutter control unit obtains information indicating that the video is for the right eye, when the first subframe period of the plurality of subframes has elapsed, the liquid crystal shutter for the right eye is brought into a transmission state, When the information indicating that the video is for the left eye is acquired, it is preferable that the liquid crystal shutter for the left eye is in a transmissive state when the first subframe period of the plurality of subframes has elapsed.
 上記構成によると、上記遮光メガネは、上記最初のサブフレーム期間が経過してから、上記右目用又は左目用の液晶シャッターを透過状態にするので、フレームの切り替わりにより、上記透過状態としている液晶シャッターとは逆側の立体映像が、ユーザに視認されることを防止することができる。これにより、クロストークを、確実に防止することができる。 According to the above configuration, the light-shielding glasses set the right-eye or left-eye liquid crystal shutter in a transmissive state after the first subframe period has elapsed. It is possible to prevent the user from seeing the stereoscopic video on the opposite side to the above. Thereby, crosstalk can be reliably prevented.
 本発明は、立体映像の表示が要求される液晶表示装置及びそれを用いた立体映像表示システムに利用することができる。 The present invention can be used for a liquid crystal display device that is required to display a stereoscopic image and a stereoscopic image display system using the same.
 1  立体映像表示システム
 1’ 立体映像表示ステム
 10 液晶表示装置
 20 遮光メガネ
 21・22 液晶シャッター
 30 液晶パネル
 34 画素(着目画素)
 40 液晶駆動回路
 41a 階調信号生成部
 41b 左右識別信号生成部(左右識別信号生成手段)
 42 階調制御部
 42a サブフレーム分割部(サブフレーム分割手段)
 42b 階調決定部(階調決定手段)
 42c 極性反転・増幅部(極性反転手段)
 44 テーブル格納部
 45 シャッター制御部
DESCRIPTION OF SYMBOLS 1 3D image display system 1 '3D image display stem 10 Liquid crystal display device 20 Light-shielding glasses 21/22 Liquid crystal shutter 30 Liquid crystal panel 34 Pixel (pixel of interest)
40 Liquid crystal drive circuit 41a Gradation signal generation unit 41b Left / right identification signal generation unit (left / right identification signal generation means)
42 gradation control unit 42a subframe dividing unit (subframe dividing means)
42b Gradation determination unit (gradation determination means)
42c Polarity inversion / amplification unit (polarity inversion means)
44 Table storage unit 45 Shutter control unit

Claims (8)

  1.  フレーム毎に、右目用映像と、左目用映像とを切替えて表示することで、立体映像の表示が可能が液晶表示装置であって、
     1フレームを複数のサブフレームに分割するサブフレーム分割手段と、
     着目画素における上記複数のサブフレームの階調の平均値が、上記1フレームで、上記着目画素が表示すべき規定階調となるように、上記複数のサブフレームの階調のそれぞれを決定する階調決定手段と、
     上記階調決定手段が決定した上記サブフレーム毎の階調のそれぞれに対応して、上記着目画素に印加される電圧の極性をフレーム毎に反転させる極性反転手段とを備え、
     上記階調決定手段は、上記複数のサブフレームのうち最後のサブフレームの階調が最も小さくなるように、上記複数のサブフレームのそれぞれの階調を決定することを特徴とする液晶表示装置。
    A liquid crystal display device capable of displaying a stereoscopic video by switching and displaying a right-eye video and a left-eye video for each frame,
    Subframe dividing means for dividing one frame into a plurality of subframes;
    The level at which each of the gradations of the plurality of subframes is determined so that the average value of the gradations of the plurality of subframes in the pixel of interest becomes the specified gradation that the pixel of interest should display in the one frame Key decision means,
    Corresponding to each gradation for each subframe determined by the gradation determination means, the polarity inversion means for inverting the polarity of the voltage applied to the pixel of interest for each frame,
    The liquid crystal display device, wherein the gradation determining means determines the gradation of each of the plurality of subframes so that the gradation of the last subframe among the plurality of subframes is minimized.
  2.  上記階調決定手段は、上記複数のサブフレームのうち、最初のサブフレームの階調を、上記複数のサブフレームの階調の最大値より小さくなるように決定することを特徴とする請求項1に記載の液晶表示装置。 The gradation determination means determines the gradation of the first subframe of the plurality of subframes to be smaller than the maximum value of the gradations of the plurality of subframes. A liquid crystal display device according to 1.
  3.  上記階調決定手段は、上記1フレームと隣接し、複数のサブフレームに分割されている前フレームのうち、最後のサブフレームの階調と同じとなるように、上記1フレームの最初のサブフレームの階調を決定することを特徴とする請求項2に記載の液晶表示装置。 The gradation determining means is arranged such that the first subframe of the one frame is the same as the gradation of the last subframe among the previous frames adjacent to the one frame and divided into a plurality of subframes. The liquid crystal display device according to claim 2, wherein the gradation is determined.
  4.  上記1フレームが、上記サブフレーム分割手段によって分割される個数は3以上であることを特徴とする請求項1~3の何れか1項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the number of the one frame divided by the sub-frame dividing means is 3 or more.
  5.  上記1フレームが、上記サブフレーム分割手段によって分割される個数は4であることを特徴とする請求項1~3の何れか1項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the number of the one frame divided by the sub-frame dividing means is four.
  6.  請求項1~5の何れか1項に記載の液晶表示装置と、
     右目用の液晶シャッターと、左目用の液晶シャッターとを備えている遮光メガネと、を備えている立体映像表示システムであって、
     上記液晶表示装置は、さらに、
     上記液晶表示装置に表示する立体映像が、上記右目用映像であるか、上記左目用映像であるかを示す情報を含む左右識別信号を生成する左右識別信号生成手段と、
     上記左右識別信号に基づいて、上記右目用の液晶シャッターと、上記左目用の液晶シャッターとの駆動制御をさせるシャッター制御部とを備えていることを特徴とする立体映像表示システム。
    A liquid crystal display device according to any one of claims 1 to 5,
    A stereoscopic video display system comprising a right-eye liquid crystal shutter and a left-eye liquid crystal shutter,
    The liquid crystal display device further includes:
    Left and right identification signal generating means for generating a left and right identification signal including information indicating whether the stereoscopic video to be displayed on the liquid crystal display device is the right-eye video or the left-eye video;
    A stereoscopic video display system comprising: a liquid crystal shutter for the right eye and a shutter control unit that controls driving of the liquid crystal shutter for the left eye based on the left / right identification signal.
  7.  上記シャッター制御部は、上記右目用映像であることを示す情報と取得すると、上記右目用の液晶シャッターを透過状態にさせ、上記左目用映像であることを示す情報を取得すると、上記左目用の液晶シャッターを透過状態にさせることを特徴とする請求項6に記載の立体映像表示システム。 When acquiring the information indicating that the image is for the right eye, the shutter control unit causes the liquid crystal shutter for the right eye to be in a transmissive state and acquires the information indicating the image for the left eye. The stereoscopic image display system according to claim 6, wherein the liquid crystal shutter is set in a transmissive state.
  8.  上記シャッター制御部は、上記右目用映像であることを示す情報と取得すると、上記複数のサブフレームのうちの最初のサブフレーム期間経過時に、上記右目用の液晶シャッターを透過状態にさせ、上記左目用映像であることを示す情報と取得すると、上記複数のサブフレームのうちの最初のサブフレーム期間経過時に、上記左目用の液晶シャッターを透過状態にさせることを特徴とする請求項7に記載の立体映像表示システム。 When the shutter control unit obtains the information indicating that the video is for the right eye, when the first subframe period of the plurality of subframes has elapsed, the right eye liquid crystal shutter is set in a transmissive state, and the left eye 8. The liquid crystal shutter for the left eye is set in a transmissive state when the first subframe period of the plurality of subframes has elapsed when acquired as information indicating that the video is a video for use. 9. 3D image display system.
PCT/JP2012/055935 2011-03-15 2012-03-08 Liquid crystal display device and three-dimensional image display system provided with same WO2012124592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057254 2011-03-15
JP2011057254 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124592A1 true WO2012124592A1 (en) 2012-09-20

Family

ID=46830665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055935 WO2012124592A1 (en) 2011-03-15 2012-03-08 Liquid crystal display device and three-dimensional image display system provided with same

Country Status (1)

Country Link
WO (1) WO2012124592A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240317A (en) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd Display method, display device and data writing circuit to be used for the device
JP2006221060A (en) * 2005-02-14 2006-08-24 Sony Corp Image signal processing device, processing method for image signal, processing program for image signal, and recording medium where processing program for image signal is recorded
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus
WO2010032927A2 (en) * 2008-09-17 2010-03-25 Samsung Electronics Co,. Ltd. Method and apparatus for displaying stereoscopic image
JP2010271366A (en) * 2009-05-19 2010-12-02 Sony Corp Display device and display method
JP2011039194A (en) * 2009-08-07 2011-02-24 Sony Corp Liquid crystal shutter glass and picture display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240317A (en) * 2003-02-07 2004-08-26 Sanyo Electric Co Ltd Display method, display device and data writing circuit to be used for the device
JP2006221060A (en) * 2005-02-14 2006-08-24 Sony Corp Image signal processing device, processing method for image signal, processing program for image signal, and recording medium where processing program for image signal is recorded
JP2009025436A (en) * 2007-07-18 2009-02-05 Seiko Epson Corp Electro-optical device, display method and electronic apparatus
WO2010032927A2 (en) * 2008-09-17 2010-03-25 Samsung Electronics Co,. Ltd. Method and apparatus for displaying stereoscopic image
JP2010271366A (en) * 2009-05-19 2010-12-02 Sony Corp Display device and display method
JP2011039194A (en) * 2009-08-07 2011-02-24 Sony Corp Liquid crystal shutter glass and picture display system

Similar Documents

Publication Publication Date Title
JP5321393B2 (en) Image display device, image display observation system, and image display method
TWI435297B (en) Image display device and method of driving image display device
KR101738476B1 (en) Method of driving display panel and display device performing the method
KR101804890B1 (en) Method of driving display panel and a display apparatus performing the method
EP2317501A1 (en) Method and device for driving a liquid crystal display
JP6434681B2 (en) Display panel driving method and display device executing the same
KR20130104054A (en) Method of driving display panel and display apparatus for performing the same
JP2013114143A (en) Electro-optic device and electronic apparatus
JP6208444B2 (en) Display device
JP2012103357A (en) Stereoscopic video image display unit
US20140078267A1 (en) Video display apparatus
US9664917B2 (en) Liquid crystal display panel and liquid crystal display device
JP2011039194A (en) Liquid crystal shutter glass and picture display system
KR102161198B1 (en) 3 dimensional image display device and driving method thereof
JP2011081337A (en) Image display device
KR20130032161A (en) Method for driving display panel and display apparatus thereof
US9013459B2 (en) Liquid crystal display device
US9344709B2 (en) Display control circuit, liquid crystal display device including the same, and display control method
KR20160087459A (en) Display device and method for driving the same
JP2010231179A (en) Liquid crystal display element, driving method of liquid crystal display element and liquid crystal display dive using the same
JP2015194596A (en) video display device
JP5742322B2 (en) Electro-optical device, driving method of electro-optical device, and electronic apparatus
JP5879902B2 (en) Electro-optical device and electronic apparatus
WO2012124592A1 (en) Liquid crystal display device and three-dimensional image display system provided with same
WO2012073731A1 (en) Liquid crystal display device, stereoscopic display system, control program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP