WO2012124513A1 - Modified d-succinylase having improved d-form selectivity for n-succinyl-dl-amino acid - Google Patents
Modified d-succinylase having improved d-form selectivity for n-succinyl-dl-amino acid Download PDFInfo
- Publication number
- WO2012124513A1 WO2012124513A1 PCT/JP2012/055409 JP2012055409W WO2012124513A1 WO 2012124513 A1 WO2012124513 A1 WO 2012124513A1 JP 2012055409 W JP2012055409 W JP 2012055409W WO 2012124513 A1 WO2012124513 A1 WO 2012124513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- residue
- amino acid
- substitution
- succinyl
- base sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/006—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
- C12P41/007—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
Definitions
- the present invention relates to a protein (hereinafter referred to as D-succinylase) which has an activity of producing D-amino acid by desuccinylation of N-succinyl-D-amino acid, which can be used for the production of D-amino acid as a raw material for intermediates such as pharmaceuticals.
- D-succinylase a protein which has an activity of producing D-amino acid by desuccinylation of N-succinyl-D-amino acid, which can be used for the production of D-amino acid as a raw material for intermediates such as pharmaceuticals.
- a modified type in which D-amino acid is efficiently generated from N-succinyl-DL-amino acid by improving D-form selectivity by amino acid substitution of wild-type D-succinylase
- the present invention relates to a D-succinylase and an efficient method for producing a D-amino acid using such a modified D-succin
- the present invention also relates to a method for more efficiently producing a D-amino acid from N-succinyl-DL-amino acid by using such a modified D-succinylase in combination with an N-succinyl amino acid racemase.
- Optically active amino acids have many demands in the fields of pharmaceuticals, agricultural chemicals, foods, etc., but D-amino acids are difficult to obtain as optically pure amino acids, particularly products such as fermentation methods (natural amino acids). Therefore, how to efficiently produce D-amino acids is an important industrial issue.
- N-succinyl-DL-amino acid N-succinyl-DL-amino acid
- D-form N-succinyl-D-amino acid
- Patent Document 1 A method for obtaining D-amino acid by selective hydrolysis of D-succinyl with D-succinylase was proposed (Patent Document 1). Further, by using N-succinylamino acid racemase in addition to D-succinylase, the L form (N-succinyl-L-amino acid) remaining in the system without reacting with D-succinylase is racemized and generated. In addition, a method for improving the yield of D-amino acid by using the racemate again as a raw material was also proposed (see Patent Document 1).
- the D-succinylase used in Patent Document 1 is a wild-type D-succinylase produced by a bacterium of the genus Cupriavidus (Cupriavidas). Although these wild-type D-succinylases have a considerably high activity of hydrolyzing N-succinyl-D-amino acids, the present inventors further researched that these wild-type D-succinylases Inability to completely recognize the steric form of N-succinyl-DL-amino acid serving as a substrate, that is, when wild-type D-succinylase is allowed to act on a racemic form of N-succinyl amino acid, it reacts with not only D-form but also L-form Thus, it was found that not only D-amino acids but also L-amino acids were slightly produced. Therefore, in order to efficiently implement the method of Patent Document 1, it was considered desirable to further improve the D-form selectivity by further improving the wild-type D-succinylase used therein
- the present invention was devised in view of the current state of the prior art, and the object thereof is to further improve the efficiency of D-amino acids by further improving wild-type D-succinylase and improving D-form selectivity. It is to be able to be manufactured.
- the present inventors have produced a D. produced by the Cupriavidus sp. P4-10-C (Cupriavidus sp. P4-10-C) strain, which is a cell line derived from the genus Cupriavidus. -In the amino acid sequence of succinylase, specific sites are involved in steric recognition of the reaction substrate, and by substituting amino acid residues at these specific sites with other specific amino acid residues, It has been found that D-form selectivity can be remarkably improved.
- the D. succinylase of the related species Cupriavidus metallidurans Cupriavidas Metalidurans
- Cupriavidus sp is also known as Cupriavidus sp. It was found that D-form selectivity can be remarkably improved by the same amino acid residue substitution at the same site as the P4-10-C strain.
- a protein comprising the following amino acid sequence (A) or (B): (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 (a) an arginine residue of glutamine residue at position 72 (B) substitution of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) tryptophan residue at position 182, tryptophan residue, serine residue Group, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) threonine residue at position 183, proline residue, leucine residue Or substitution to asparagine residue (e) substitution of leucine residue at position 184 to proline residue (f) proline
- a protein comprising the following amino acid sequence (A) or (B): (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 (a) an arginine residue of a leucine residue at position 177 (B) Substitution of asparagine residue at position 180 to aspartic acid residue (c) Substitution of leucine residue at position 344 to proline residue (d) To isoleucine residue of phenylalanine residue at position 347 (E) Substitution of asparagine residue at position 457 to isoleucine residue (B) In the amino acid sequence of (A) above, at positions other than positions 177, 180, 344, 347, and 457, An amino acid sequence having substitutions, deletions, insertions, additions and / or inversions of one or several amino acid residues, which is D-form selective for N-succinyl-DL-amino acids Amino acid
- a gene comprising the following base sequence (A) or (B): (A) a base sequence having a substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 (a) cgt of the base sequence ctg at positions 529 to 531 , Cgc, cga, cgg, aga or agg substitution (b) substitution of base sequence aac at positions 538 to 540 to gat or gac (c) cct, ccc, cca of base sequence ctg at positions 1030 to 1032 Or substitution with ccg (d) substitution of base sequence ttc at positions 1039 to 1041 with att, atc or ata (e) substitution of base sequence aat at positions 1369 to 1371 with att, atc or ata (B) A base sequence that hybridizes with the base sequence of (A) above under stringent conditions and selectively acts on D-forms against N-succinyl
- Nucleotide sequence encoding a protein having the activity to form D- amino Te In the amino acid sequence having 70% or more homology with SEQ ID NO: 2, any one of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2
- a protein comprising an amino acid sequence in which the amino acid residue at the equivalent position is substituted with the amino acid residue shown in (1) of (1), which is D-form selective for N-succinyl-DL-amino acid
- an amino acid residue at a position equivalent to any of positions 177, 180, 344, 347, and 457 of SEQ ID NO: 4 in the amino acid sequence having 70% or more homology with SEQ ID NO: 4 Is a protein comprising an amino acid sequence substituted with the amino acid residue shown in (3) (A), wherein the D-amino acid acts selectively on N-succinyl-DL-amino acid to A protein characterized by having an activity to produce.
- a recombinant vector is prepared by inserting the gene described in (3), (4), (6), (8) or (10) into a vector, and a host cell is transformed with this recombinant vector.
- N-succinyl-D-amino acid in N-succinyl-DL-amino acid is specifically hydrolyzed using the protein according to (1), (2), (5), (7) or (9)
- the modified D-succinylase of the present invention has an amino acid residue at a specific site in the amino acid sequence of the wild-type D-succinylase substituted with another specific amino acid residue. D body selectivity is remarkably improved. Therefore, if the modified D-succinylase of the present invention is used, a D-amino acid useful as a raw material for intermediates such as pharmaceuticals can be produced more efficiently.
- FIG. 1 shows Cupriavidus sp.
- FIG. 3 is a diagram showing an electrophoresis image of D-succinylase produced by a P4-10-C strain by electrophoresis.
- FIG. 2 is a diagram showing a screening method for modified D-succinylase.
- FIG. 3 is a diagram showing an alignment result of amino acid sequences of D-succinylase derived from the genus Cupriavidus.
- the present invention provides a modified D-succinylase in which D-type selectivity is significantly improved by substituting wild-type D-succinylase with an amino acid at a specific site as compared with wild-type D-succinylase.
- the wild-type D-succinylase used as the base of modification is mainly D-succinylase of two types of bacteria belonging to the genus Cupriavidus (Cupriavidus sp. P4-10-C and Cupriavidus metallidurans).
- Cupriavidus sp. P4-10-C and Cupriavidus metallidurans are examples of each modified D-succinylase.
- the first aspect of the present invention relates to Cupriavidus sp.
- the present invention relates to a modified D-succinylase based on D-succinylase of the P4-10-C strain. That is, according to the first aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2
- a protein characterized by comprising: (A) Replacement of glutamine residue at position 72 with arginine residue (b) Replacement of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) Replacement of leucine residue at position 182 with tryptophan residue, serine residue, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) 183 Substitution of a
- the protein of (A) above has a substitution of a leucine residue at position 182 with a glutamic acid residue and a leucine residue at position 348 into an isoleucine residue. It consists of an amino acid sequence having the following substitutions.
- L348I single mutation does not improve the D-form selectivity, but when combined with the L182E single mutation, a synergistic effect is exhibited and the D-form selectivity is further improved. Can be made.
- the protein (A) has a feature that it has an activity of producing D-amino acid by selectively acting on D-form with respect to N-succinyl-DL-amino acid.
- “acting selectively in D form” means that N-succinyl-D-amino acid (D form) is more N-succinyl-L-amino acid (L form) than wild-type D-succinylase.
- the property which is easy to react is generally called, and this is synonymous with “D-form selectivity is improved”.
- “acting selectively in D-form” means that the degradation ratio of L-form to D-form (L / D) is lower than that of wild-type D-succinylase. Cupriavidus sp.
- N-succinyl-L-tryptophan is used according to the method described in Example 2.
- N-succinyl-D-tryptophan, L-form to D-form when the L-form is 4 and D-form is 1, ie, L: D 4: 1 in the amount of protein for each substrate. It means that the decomposition ratio (L / D) is less than 0.91.
- the decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.5 or less, and more preferably 0.3 or less.
- N-succinylphenylalanine was used as a substrate
- 4 L-forms were obtained for each of N-succinyl-L-phenylalanine and N-succinyl-D-phenylalanine according to the method described in Example 2.
- the decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.4 or less, and more preferably 0.2 or less.
- N-succinylbiphenylalanine was used as the substrate, the L-form was decomposed into the D-form when reacted with the racemic N-succinyl-DL-biphenylalanine according to the method described in Example 3. It means that the ratio (L / D) is less than 0.09.
- the decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.05 or less, and more preferably 0.02 or less.
- N-succinyl-L-tryptophan is used according to the method described in Example 2.
- N-succinyl-D-tryptophan, L-form relative to D-form when the L-form is reacted with the L-form, and the L-form is 1, ie, L: D 4: 1. It means that the decomposition ratio (L / D) is less than 0.54.
- the decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.3 or less, and more preferably 0.1 or less. From a practical viewpoint, not only the decomposition ratio of the L isomer to the D isomer but also the values of the L isomer decomposition rate and the D isomer decomposition rate should be considered. Specifically, the L-isomer decomposition rate is preferably 12% or less, the L-isomer decomposition rate is preferably 12% or less, and the D-isomer decomposition rate is more preferably 25% or more, and the L-isomer decomposition rate is 0. % And the D-form decomposition rate is particularly preferably 25% or more.
- stereoselectivity in the present invention is as shown in the examples, but the numerical value may vary depending on the reaction conditions such as the substrate concentration, enzyme amount, reaction temperature, reaction time and reaction pH.
- D-form selectivity for N-succinyl-DL-tryptophan, N-succinyl-DL-phenylalanine and N-succinyl-DL-biphenylalanine.
- the type D-succinylase has D-form selectivity not only for these specific N-succinyl-DL-amino acids but also for any N-succinyl-DL-amino acid represented by the following general formula (I). .
- R represents an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aralkyl group having 5 to 20 carbon atoms which may have a substituent.
- the aryl group having 6 to 20 carbon atoms which may have a substituent for R include a phenyl group and a 4-hydroxyphenyl group.
- the substituent include an amino group, hydroxyl group, nitro group, cyano group, carboxyl group, alkyl group, aralkyl group, aryl group, alkanoyl group, alkenyl group, alkynyl group, alkoxyl group, or halogen atom.
- the aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-phenylbenzyl group, and a 4-hydroxybenzyl group. Can be mentioned.
- the conventionally known wild-type D-succinylase cannot strictly discriminate optical isomerism of N-succinyl-DL-amino acid, which is a precursor of D-amino acid, and acts slightly on L-form, and only D-amino acid In addition, L-amino acids are also produced.
- the modified D-succinylase of the present invention changes the stereoselectivity by substituting a part of the amino acid residues of the wild-type D-succinylase, and selects D-form for N-succinyl-DL-amino acid.
- D-amino acids can be selectively generated from N-succinyl-DL-amino acids since they have been modified to act in an effective manner.
- genes which are a gene corresponding to the protein of said (A) are also provided.
- the gene (a) 214 to 216 characterized by comprising a base sequence having at least one base sequence substitution selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1.
- the gene corresponding to the protein of the above (A) is the base sequence shown in SEQ ID NO: 1, the substitution of the base sequence ctg at positions 544 to 546 to gaa or gag, and the positions 1042 to 1044
- the base sequence ctg is a base sequence having substitution to att, atc or ata. This is a gene corresponding to a double mutant of L182E + L348I.
- the protein of the modified D-succinylase according to the first aspect of the present invention is not limited to the above (A), and in the amino acid sequence of (B) (A), positions 72, 181-185, 305,
- An amino acid sequence having substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues at positions other than positions 348, 351, 461, and 539, and N-succinyl -Also includes a protein characterized by comprising an amino acid sequence encoding a protein having an activity of producing a D-amino acid by acting D-selectively on a DL-amino acid.
- the modified D-succinylase gene according to the first aspect of the present invention is not limited to the gene of (A) above, and (B) a nucleotide sequence that hybridizes with the nucleotide sequence of (A) under stringent conditions. And a gene characterized by comprising a base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid. This is often a functionally equivalent protein even if a part of the base sequence of the gene encoding the protein is mutated, and as a result, part of the amino acid sequence of the protein is mutated. Because.
- modified D-succinylase gene of the present invention when the modified D-succinylase gene of the present invention is incorporated into a host organism (such as E. coli) other than the organism from which the modified D-succinylase gene of the present invention is expressed, This is because the base sequence may be changed according to the codon usage.
- “one or several” is a range that does not significantly impair the three-dimensional structure of the amino acid residue protein, the D-succinylase activity, and the D-form selectivity to N-succinyl-DL-amino acid. Specifically, the number is 1 to 50, preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10. However, in the case of an amino acid sequence containing substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 2 in the Sequence Listing, 37 ° C., pH 7.
- stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
- DNAs having high homology for example, DNAs having a homology of 85% or more, preferably 90% or more, more preferably 95% or more, are present.
- the conditions are such that the DNAs that hybridize with each other and the DNAs with lower homology do not hybridize with each other (here, the homology is homologous (homology)). Or 37 ° C., 0.1 ⁇ SSC, 0.1% SDS, preferably 60 ° C., 0.1 ⁇ SSC, 0.8%, which are washing conditions for normal Southern hybridization.
- Conditions include hybridization at a salt concentration corresponding to 1% SDS, more preferably 65 ° C., 0.1 ⁇ SSC, corresponding to 0.1% SDS.
- a base sequence that hybridizes under stringent conditions with a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing the sequence number in the sequence listing under conditions of 37 ° C and pH 7.0 3% or more, preferably 10% or more, more preferably 30% or more, still more preferably 50% or more, particularly preferably 70% or more of the D-succinylase activity of the protein having the amino acid sequence described in 2. It is desirable.
- the protein of the first aspect of the present invention and its gene are, for example, Transformer Mutagenesis Kit; manufactured by Clonetech, EXOIII / Mung Bean Selection Kit; Can be obtained by modifying the base sequence described in SEQ ID NO: 1 using a commercially available kit or PCR method.
- the activity of the protein encoded by the obtained gene is, for example, by introducing the obtained gene into Escherichia coli to produce a transformant, and culturing the transformant to produce an enzyme protein. Confirmation is made by adding the cell disruption solution of this transformant or purified enzyme protein to N-succinyl-DL-amino acid and measuring the degradation ratio of L-form to D-form by the method described in the Examples. Can do.
- the second aspect of the present invention relates to a modified D-succinylase based on the D. succinylase of Cupriavidus metallidurans. That is, according to the second aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 A protein characterized by comprising: (A) Substitution of leucine residue at position 177 to arginine residue (b) Substitution of asparagine residue at position 180 to aspartic acid residue (c) Substitution of leucine residue at position 344 to proline residue ( d) Substitution of phenylalanine residue at position 347 to isoleucine residue (e) Substitution of asparagine residue at position 457 to isoleucine residue SEQ ID NO: 4 is the amino acid sequence of D-succinylase of Cupriavidus metallidrans.
- the protein (A) has a feature that it has an activity of producing D-amino acid by selectively acting on D-form with respect to N-succinyl-DL-amino acid.
- the definition of “acting selectively on D body” and the like are the same as in the first aspect, and thus description thereof is omitted.
- a gene (a) 529 to 531 comprising a base sequence having substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 Substitution of base sequence ctg to cgt, cgc, cga, cgg, aga or agg (b) Substitution of base sequence aac from positions 538 to 540 to gat or gac (c) Base sequence from positions 1030 to 1032 Substitution of ctg to cct, ccc, cca or ccg (d) Substitution of nucleotide sequence ttc at positions 1039 to 1041 to att, atc or ata (e) Att, atc of nucleotide sequence aat at positions 1369 to 1371 Alternatively, substitution to atata SEQ ID NO: 3 is the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 Substitution of base sequence ctg to cgt, cg
- the modified D-succinylase protein of the second aspect of the present invention is not limited to the above (A), and (B) in the amino acid sequence of (A), positions 177, 180, 344, 347 And an amino acid sequence having substitutions, deletions, insertions, additions and / or inversions of one or several amino acid residues at positions other than position 457, wherein D is an N-succinyl-DL-amino acid
- a protein comprising an amino acid sequence encoding a protein having an activity of producing a D-amino acid by acting selectively on the body.
- the modified D-succinylase gene of the second aspect of the present invention is not limited to the gene of (A) above, and (B) a nucleotide sequence that hybridizes with the nucleotide sequence of (A) under stringent conditions. And a gene characterized by comprising a base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid.
- the definition of “one or several” and “stringent conditions”, and the method for creating and confirming the activity of the protein and gene of the second aspect are the same as those of the first aspect, and thus the description thereof is omitted. .
- the modified D-succinylase based on D-succinylase of P4-10-C strain and Cupriavidus metallidurans D-succinylase has been described.
- the modified D-succinylase of the present invention is based on the D-succinylase of these bacteria. And those based on D-succinylase of related species including other bacteria of the genus Cupriavidus.
- D-succinylase of the close relative of P4-10-C strain or Cupriavidus metallidurans Cupriavidus sp.
- D-form selectivity is improved by substituting amino acid residues at positions equivalent to the amino acid residues involved in stereoselectivity in the amino acid sequence of P4-10-C strain or Cupriavidus metallidurans D-succinylase it is conceivable that.
- Transmuter Mutagenesis Kit manufactured by Clonetech; EXOIII / Mung Bean Deletion Kit; manufactured by Stratagene; QuickChange Site Directed Mutesisis Kit;
- the base sequence corresponding to the amino acid sequence of the base D-succinylase can be mutated site-specifically.
- the activity of the protein encoded by the obtained gene is, for example, by introducing the obtained gene into Escherichia coli to produce a transformant, and culturing the transformant to produce an enzyme protein.
- the cell disruption solution of this transformant or purified enzyme protein is added to N-succinyl-DL amino acid, and the degradation ratio of L-form to D-form is measured by the method described in the Examples. it can.
- N-succinyl amino acid racemase is an enzyme that catalyzes both the reaction of converting the L-form of N-succinyl amino acid into the D-form and the reaction of converting the D-form into the L-form, and the ratios are almost equal (racemization). .
- the N-succinyl amino acid racemase used in the production method of the present invention is not particularly limited as long as the N-succinyl amino acid can be racemized, and the N-acyl amino acid racemase described in JP-A-2007-82534 and JP-A Conventionally known ones such as N-acylamino acid racemase described in 2008-61642 can be used.
- N-succinyl amino acid racemase is preferably used at a concentration of 50 to 15000 mg / L (5000 to 1500,000 U / L) in the reaction solution.
- the activity of N-succinyl amino acid racemase is significantly improved by adding a divalent metal ion at a final concentration of 0.1 mM to 1 M (preferably 0.1 to 1 mM).
- the divalent metal ion to be added include Mn 2+ , Co 2+ , Mg 2+ , Fe 2+ and Ni 2+ .
- the buffer used for the reaction of N-succinyl amino acid racemase the same buffer as that used for the reaction of D-succinylase can be used.
- the culture was carried out for 2 days at 35 ° C., 150 r / min, with rotary stirring, using 27 mediums that were autoclaved by adding 200 mL of the above medium to a 500 mL flask.
- the turbidity (ABS 660 nm) at the end of the culture was 2.7, and the pH was 8.6.
- the cells were collected by centrifugation at 8000 r / min for 30 minutes using a cooled centrifuge (manufactured by Hitachi Koki Co., Ltd.). The collected cells were washed with 20 mM HEPES-NaOH (pH 7.5) buffer, and then centrifuged again to obtain 36 g of cells.
- the transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and a partial sequence of 575 bp was obtained. Furthermore, the following operation was performed to obtain a full-length sequence. Using TAKARA LA PCR In Vitro Cloning Kit (manufactured by Takara Bio Inc.), the operation was performed according to the protocol, and a DNA fragment from a known sequence toward the C-terminal was successfully amplified. The base sequence up to the partial gene sequence was determined.
- a DNA primer (SEQ ID NO: 9 in Table 1) having a sequence in which an NdeI cleavage site is bound to a portion presumed to be upstream from the N-terminus of the enzyme, and EcoRI cleavage to a portion presumed to be downstream from the C-terminus
- a DNA primer (SEQ ID NO: 10 in Table 1) having a sequence to which the sites are bound
- the DNA between this sequence is amplified by PCR using the previously obtained DNA as a template, thereby including the full length of the succinylase gene.
- a DNA fragment was obtained.
- the nucleotide sequence of the obtained DNA fragment was analyzed to confirm that the full length of the D-succinylase gene was included, and the amino acid sequence was estimated.
- the obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 1 and 2, respectively.
- penicillin acylase family to which this penicillin amidase belongs is an enzyme that hydrolyzes penicillin G, cephalosporin C, etc., and it is presumed that such an enzyme hydrolyzes N-succinyl-D-amino acid. It was difficult, and it was almost impossible to obtain this gene by homology search predicted from the function.
- CmDSA gene D-succinylase gene derived from Cupriavidus metallidurans strain and Cupriavidus sp. Cloning of D-succinylase from Cupriavidus metallidurans, a related species of P4-10-C, was also performed.
- cloning kit Target Clone-Plus manufactured by Toyobo Co., Ltd.
- the operation was performed according to the protocol, and the product was cloned into the vector pBluescript to obtain a recombinant expression plasmid pCmDSA.
- pCmDSA was transformed into Escherichia coli DH5 ⁇ competent cell (manufactured by Toyobo) to obtain the transformant.
- the transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and the amino acid sequence was deduced.
- the obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 3 and 4, respectively.
- the ligated DNA was transformed into Escherichia coli DH5 ⁇ strain competent cells (Toyobo Competent High DH5 ⁇ ) according to the protocol attached to the product to obtain the transformants.
- Escherichia coli DH5 ⁇ strain competent cells Toyobo Competent High DH5 ⁇
- pBSKP4DSA designed to express a large amount of the D-succinylase gene was obtained.
- the plasmid was extracted from the mutant which improved stereoselectivity, the P4DSA gene whole base sequence was confirmed, and the mutation location was identified.
- the 72nd, 176th, 181 to 185th, 286th, 305th, 348th, 351st, 388th, 461st, 518th and 539th amino acid residues contribute to the improvement of stereoselectivity. I was listed as a candidate.
- modified plasmid (optimization of substituted amino acids) Among the mutant strains obtained in (1), there were mutant strains having a plurality of amino acid mutations. In addition, in order to examine the types of amino acids to be substituted, site-directed mutations were mutated. A modified DSA expression plasmid was prepared. For the production of site-specific mutations, QuikChange Site-Directed Mutagenesis Kit manufactured by STRATAGENE was used. In addition, since the substitution amino acid is also optimized when mutating, the 72nd, 181st to 185th, 305th, 348th, 351 estimated to have contributed to the improvement of stereoselectivity in (2).
- the name of the modified enzyme is expressed in the order of “amino acid residue ⁇ residue number ⁇ substituted amino acid residue in the amino acid sequence of the wild-type enzyme”.
- the L182R modified enzyme means a modified enzyme in which the 182nd Leu (L) residue in the amino acid sequence of the wild-type enzyme is substituted with an Arg (R) residue.
- X in L182X means any amino acid among the 20 types of amino acids.
- Example 2 Evaluation of stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine using modified P4DSA Using the crude enzyme solution prepared in Example 1, stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine was evaluated. Specifically, the crude enzyme solution was added to each of the N-succinyl-D-amino acid solution and the N-succinyl-L-amino acid solution having the following composition.
- N-succinyl-D-tryptophan solution 25 mM KPB (pH 7.0), 1% N-succinyl-D-tryptophan N-succinyl-L-tryptophan solution: 25 mM KPB (pH 7.0), 1% N-succinyl-L -Tryptophan N-succinyl-D-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl-D-phenylalanine N-succinyl-L-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl -L-Phenylalanine After incubating the obtained reaction solution at 40 ° C.
- the decomposition rate and the decomposition ratio of L-form to D-form were calculated from the remaining substrate concentration.
- the reaction was performed at a protein ratio of 1: 1.
- the enzyme protein concentration is adjusted so that the final enzyme protein concentration is 2.0 mg / ml in the case of L-form reaction, and the final enzyme protein concentration is 0.5 mg / ml in the case of D-form reaction. Adjusted as follows. The results are shown in Table 3.
- Example 3 Evaluation of Stereoselectivity for N-Succinylbiphenylalanine Using Modified P4DSA
- Example 2 it was clarified that it was involved in stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine. It was confirmed whether the modified P4DSA acted selectively to other aromatic amino acids on the D form.
- N-succinylbiphenylalanine which is a kind of non-natural amino acid, is selected and the crude enzyme solution prepared in Example 1 is used to perform N-succinyl in the same procedure as in Example 2. The stereoselectivity for biphenylalanine was evaluated.
- Example 4 N-succinyl-DL-tryptophan to D-tryptophan, N-succinyl-DL-phenylalanine to D-phenylalanine and N-succinyl-DL-, using modified P4DSA and N-succinyl amino acid racemase from Chloroflexus aurantiacus Synthesis of D-biphenylalanine from biphenylalanine (1) Preparation of Modified P4DSA (L182E, L182P, R305N) A colony of E.
- Example 2 coli transformants expressing the modified P4DSA (L182E, L182P, R305N) obtained in Example 1 was placed in 5 mL of LB medium ( Inoculating ampicillin (containing 50 ⁇ g / mL), and culturing for 16 hours at 180 ° C. and 30 ° C. to obtain a seed culture solution.
- This seed culture was inoculated into 60 mL of TB medium (containing 50 ⁇ g / mL of ampicillin) contained in a 500 mL Sakaguchi flask, and cultured at a shaking speed of 310 rpm and 30 ° C. for 18 hours.
- Turbidity (Abs 660 nm) at the end of the culture was 15.0, 16.2, and 15.5.
- the obtained cells were collected by centrifugation, suspended in a 25 mM phosphate buffer solution (pH 7.0), and crushed using an ultrasonic cell crusher under ice cooling. Thereafter, heat treatment is performed at 65 ° C. for 1 hour, and then desalting is performed by a general method, and an enzyme sample for amino acid synthesis (L182E: 27.9 mg / mL, 5.2 U / mL, L182P: 7. 3 mg / mL, 1.8 U / mL, R305N: 28.5 mg / mL, 4.3 U / mL). Note that N-succinyl-D-tryptophan was used as the enzyme activity substrate.
- R305N enzyme solution (0.16 U, 0.2 U, 0.08 U) was added to each substrate, and 25 mg (6400 U) of an N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 was added to each substrate. And reacted at 45 ° C. for 3 days.
- a wild-type DSA enzyme solution prepared by the method described in the examples of PCT / JP2011 / 064943 was used, and reacted in the same manner to calculate the conversion rate and the optical purity of D-amino acid.
- the conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 ⁇ m, 4.6 ⁇ 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 ⁇ m, 4.0 ⁇ 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Tables 5-7.
- the conversion rate on the third day of the reaction in D-tryptophan synthesis was 83%, 87%, 86%, and 89% in the order of wild-type DSA, L182E, L182P, and R305N.
- the conversion rate on the third day of the reaction in the synthesis of phenylalanine is 81%, 84%, 83%, 84% in the order of wild-type DSA, L182E, L182P, and R305N, and the third day of the reaction in the synthesis of D-biphenylalanine.
- the conversion rates were 96%, 91%, 96%, and 91% in the order of wild type DSA, L182E, L182P, and R305N, and the reaction proceeded without any problem. Further, as shown in Tables 5 to 7, in any modified DSA, when N-succinyl-DL-amino acid constituted by an aromatic amino acid is used as a substrate, compared to the case where wild-type DSA is used. It was confirmed that a highly pure aromatic D-amino acid could be produced. In particular, when L-182E is used to produce D-tryptophan and D-biphenylalanine, 99.6% ee, 99.2% ee, and L182P are used to produce D-biphenylalanine, respectively.
- Example 5 D-Tryptophan from N-succinyl-DL-tryptophan using N-succinyl-DL-tryptophan using double mutant modified P4DSA (L182E + L348I) and N-succinyl amino acid racemase from Chloroflexus aurantiacus D-phenylalanine from N-succinyl-DL-phenylalanine And D-biphenylalanine synthesis from N-succinyl-DL-biphenylalanine (1) Construction of double-mutant modified plasmids To obtain a plasmid that expresses double-mutant variants, they were obtained in Example 1.
- PCR was carried out by the method described above.
- the 182nd leucine was replaced with glutamic acid, and the 348th leucine was replaced with isoleucine.
- the expression plasmid containing the heavy variant modified P4DSA (L182E + L348I) was constructed.
- the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that.
- the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
- the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that.
- the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
- the optical purity of D-biphenylalanine on the third day of the reaction is 88.3% ee for the wild type, whereas it is 99.2% ee for the single mutation type of L182E, and the double mutation of L182E + L348I.
- the modified type is 99.4% ee, and the optical purity of each modified type is markedly improved compared to the wild type.
- the double mutant modified type has a further improved optical purity than the single mutant modified type.
- the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that.
- the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
- Example 6 Cupriavidus sp. Comparison of homology of amino acid sequences between D-succinylase derived from P4-10-C strain and D-succinylase of related species Cupriavidus sp. In order to examine whether amino acid residues involved in stereoselectivity revealed in D-succinylase derived from P4-10-C strain are conserved in other D. succinylases of the genus Cupriavidus, Cupriavidus sp . A homology comparison of the amino acid sequences of D4 succinylases of P4-10-C, Cupriavidus metallidrans, Cupriavidus necator and Cupriavidus taiwanensis was performed. Cupriavidus sp.
- Example 7 Preparation of Modified Cupriavidus metallidurans-derived D-succinylase (hereinafter referred to as CmDSA gene) Based on the alignment results of the amino acid sequence of Example 6, the related species are also involved in the stereoselectivity of P4DSA. Substituents, 181 to 185, 305, 348, 351, 461, 539, and D-form selective action on N-succinyl-DL-amino acid by amino acid substitution at equivalent sites In order to show that this is the case, it was decided to create a modified CmDSA of Cupriavidus metallidurans, a kind of related species, and evaluate the stereoselectivity.
- CmDSA gene Modified Cupriavidus metallidurans-derived D-succinylase
- modified CmDSA gene expression plasmid A modified CmDSA gene expression plasmid was constructed in the same manner as described in Example 1 (3). Table 12 shows the sequences of the prepared modified enzymes and the synthetic oligo DNA primers used for introducing the mutation.
- Example 8 Evaluation of stereoselectivity for N-succinyltryptophan using modified CmDSA Stereoselection for N-succinyltryptophan using the crude enzyme solution prepared in Example 7 under the same conditions and procedures as in Example 1. Sexuality was evaluated. The results are shown in Table 13.
- the modified D-succinylase of the present invention has a significantly improved D-form selectivity compared to the wild-type D-succinylase, so that it can efficiently produce a D-amino acid useful as a raw material for intermediates such as pharmaceuticals. Useful for.
- SEQ ID Nos: 5 to 54 are the sequences of the designed polynucleotides described in the examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention enables the production of a D-amino acid at an improved efficiency by further modifying wild type D-succinylase to improve the D-form selectivity thereof.
A modified D-succinylase obtained by, in the amino acid sequence of wild type D-succinylase derived from Cupriavidus sp. P4-10-C or Cupriavidus metallidurans, substituting an amino acid residue at a specific position by a specific amino acid residue.
Description
本発明は、医薬品等の中間体の原料となるD-アミノ酸の製造に利用できる、N-サクシニル-D-アミノ酸を脱サクシニル化してD-アミノ酸を生成する活性を有するタンパク質(以下、D-サクシニラーゼと呼ぶ)に関し、詳しくは、野生型D-サクシニラーゼをアミノ酸置換することにより、D体選択性を向上させて、N-サクシニル-DL-アミノ酸からD-アミノ酸を効率よく生成できるようにした改変型D-サクシニラーゼ、及びかかる改変型D-サクシニラーゼを使用した効率的なD-アミノ酸の製造方法に関する。また、本発明は、かかる改変型D-サクシニラーゼと、N-サクシニルアミノ酸ラセマーゼを組み合わせて使用することにより、N-サクシニル-DL-アミノ酸からD-アミノ酸をさらに効率的に製造する方法に関する。
The present invention relates to a protein (hereinafter referred to as D-succinylase) which has an activity of producing D-amino acid by desuccinylation of N-succinyl-D-amino acid, which can be used for the production of D-amino acid as a raw material for intermediates such as pharmaceuticals. Specifically, a modified type in which D-amino acid is efficiently generated from N-succinyl-DL-amino acid by improving D-form selectivity by amino acid substitution of wild-type D-succinylase The present invention relates to a D-succinylase and an efficient method for producing a D-amino acid using such a modified D-succinylase. The present invention also relates to a method for more efficiently producing a D-amino acid from N-succinyl-DL-amino acid by using such a modified D-succinylase in combination with an N-succinyl amino acid racemase.
光学活性アミノ酸は、医薬品、農薬及び食品などの分野で多くの需要があるが、D-アミノ酸は、光学的に純粋なアミノ酸、特に発酵法などの産物(天然のアミノ酸)として得ることが難しい。従って、D-アミノ酸を、いかにして効率的に製造するかは、産業上重要な課題となっている。
Optically active amino acids have many demands in the fields of pharmaceuticals, agricultural chemicals, foods, etc., but D-amino acids are difficult to obtain as optically pure amino acids, particularly products such as fermentation methods (natural amino acids). Therefore, how to efficiently produce D-amino acids is an important industrial issue.
この課題に対して、本発明者らは、既に、N-サクシニルアミノ酸のラセミ体(N-サクシニル-DL-アミノ酸)を合成し、このラセミ体中のD体(N-サクシニル-D-アミノ酸)をD-サクシニラーゼでD体選択的に加水分解することによりD-アミノ酸を得る方法を提案した(特許文献1)。また、D-サクシニラーゼに加えてN-サクシニルアミノ酸ラセマーゼを使用することにより、D-サクシニラーゼに対して反応せずに系中に残存したL体(N-サクシニル-L-アミノ酸)をラセミ化し、生じたラセミ体を再度原料として使用することにより、D-アミノ酸の収率を向上させる方法も提案した(特許文献1参照)。
In response to this problem, the present inventors have already synthesized a racemate of N-succinyl amino acid (N-succinyl-DL-amino acid), and D-form (N-succinyl-D-amino acid) in this racemate. A method for obtaining D-amino acid by selective hydrolysis of D-succinyl with D-succinylase was proposed (Patent Document 1). Further, by using N-succinylamino acid racemase in addition to D-succinylase, the L form (N-succinyl-L-amino acid) remaining in the system without reacting with D-succinylase is racemized and generated. In addition, a method for improving the yield of D-amino acid by using the racemate again as a raw material was also proposed (see Patent Document 1).
特許文献1で使用したD-サクシニラーゼは、Cupriavidus属(クプリアビダス属)の細菌が生産する野生型のD-サクシニラーゼである。これらの野生型のD-サクシニラーゼは、N-サクシニル-D-アミノ酸を加水分解する活性がかなり高いが、本発明者らがさらに研究を進めたところ、これらの野生型のD-サクシニラーゼは、原料基質となるN-サクシニル-DL-アミノ酸の立体を完全に認識できないこと、すなわち、野生型のD-サクシニラーゼをN-サクシニルアミノ酸のラセミ体に作用させた場合、D体だけでなくL体とも反応して、D-アミノ酸だけでなくL-アミノ酸もわずかに生成してしまうことが判明した。従って、特許文献1の方法を効率的に実施するためには、そこで使用する野生型のD-サクシニラーゼをさらに改良してD体選択性を向上させることが望ましいと考えられた。
The D-succinylase used in Patent Document 1 is a wild-type D-succinylase produced by a bacterium of the genus Cupriavidus (Cupriavidas). Although these wild-type D-succinylases have a considerably high activity of hydrolyzing N-succinyl-D-amino acids, the present inventors further researched that these wild-type D-succinylases Inability to completely recognize the steric form of N-succinyl-DL-amino acid serving as a substrate, that is, when wild-type D-succinylase is allowed to act on a racemic form of N-succinyl amino acid, it reacts with not only D-form but also L-form Thus, it was found that not only D-amino acids but also L-amino acids were slightly produced. Therefore, in order to efficiently implement the method of Patent Document 1, it was considered desirable to further improve the D-form selectivity by further improving the wild-type D-succinylase used therein.
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、野生型のD-サクシニラーゼをさらに改良してD体選択性を向上させることにより、D-アミノ酸をさらに効率的に製造することができるようにすることにある。
The present invention was devised in view of the current state of the prior art, and the object thereof is to further improve the efficiency of D-amino acids by further improving wild-type D-succinylase and improving D-form selectivity. It is to be able to be manufactured.
本発明者らは、上記目標を達成するために鋭意検討した結果、Cupriavidus属由来の細胞株であるCupriavidus sp.P4-10-C(クプリアビダス・エスピー.P4-10-C)株の生産するD-サクシニラーゼのアミノ酸配列において、特定の部位が反応基質の立体認識に関与すること、そして、これらの特定の部位のアミノ酸残基を別の特定のアミノ酸残基に置換することにより、D-サクシニラーゼのD体選択性を著しく向上させることができることを見出した。また、近縁種のCupriavidus metallidurans(クプリアビダス・メタリデュランス)のD-サクシニラーゼにおいても、Cupriavidus sp.P4-10-C株と同等の部位における同様のアミノ酸残基置換により、D体選択性を著しく向上することができることを見出した。
As a result of diligent studies to achieve the above-mentioned goal, the present inventors have produced a D. produced by the Cupriavidus sp. P4-10-C (Cupriavidus sp. P4-10-C) strain, which is a cell line derived from the genus Cupriavidus. -In the amino acid sequence of succinylase, specific sites are involved in steric recognition of the reaction substrate, and by substituting amino acid residues at these specific sites with other specific amino acid residues, It has been found that D-form selectivity can be remarkably improved. In addition, the D. succinylase of the related species Cupriavidus metallidurans (Cupriavidas Metalidurans) is also known as Cupriavidus sp. It was found that D-form selectivity can be remarkably improved by the same amino acid residue substitution at the same site as the P4-10-C strain.
本発明は、上記の見地に基づいて完成されたものであり、以下の(1)~(13)を要旨とするものである。
(1)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号2に示すアミノ酸配列において、下記(a)~(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
(B)上記(A)のアミノ酸配列において、72位、181~185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(2)(1)の(A)のアミノ酸配列が、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列であることを特徴とする(1)に記載のタンパク質。
(3)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号1に示す塩基配列において、下記(a)~(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)214~216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541~543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544~546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547~549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550~552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553~555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913~915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042~1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051~1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381~1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615~1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(4)(3)の(A)の塩基配列が、配列番号1に示す塩基配列において、544~546位の塩基配列ctgの、gaa又はgagへの置換、及び1042~1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列であることを特徴とする(3)に記載の遺伝子。
(5)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号4に示すアミノ酸配列において、下記(a)~(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
(B)上記(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(6)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号3に示す塩基配列において、下記(a)~(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)529~531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538~540位の塩基配列aacの、gat又はgacへの置換
(c)1030~1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039~1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369~1371位の塩基配列aatの、att、atc又はataへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(7)配列番号2と70%以上の相同性を有するアミノ酸配列において、配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、(1)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。
(8)(7)に記載のタンパク質をコードすることを特徴とする遺伝子。
(9)配列番号4と70%以上の相同性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、(3)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。
(10)(9)に記載のタンパク質をコードすることを特徴とする遺伝子。
(11)(3),(4),(6),(8)又は(10)に記載の遺伝子をベクターに挿入して組換えベクターを調製し、この組換えベクターで宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養する工程を含むことを特徴とする(1),(2),(5),(7)又は(9)に記載のタンパク質の製造方法。
(12)(1),(2),(5),(7)又は(9)に記載のタンパク質を用いてN-サクシニル-DL-アミノ酸中のN-サクシニル-D-アミノ酸を特異的に加水分解する工程を含むことを特徴とするD-アミノ酸の製造方法。
(13)N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-L-アミノ酸をラセミ化してN-サクシニル-D-アミノ酸を生成させる工程をさらに含むことを特徴とする(12)に記載の方法。 The present invention has been completed based on the above viewpoint, and has the following (1) to (13).
(1) A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 (a) an arginine residue of glutamine residue at position 72 (B) substitution of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) tryptophan residue at position 182, tryptophan residue, serine residue Group, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) threonine residue at position 183, proline residue, leucine residue Or substitution to asparagine residue (e) substitution of leucine residue at position 184 to proline residue (f) proline residue of asparagine residue at position 185, Substituting with a phenylalanine residue, a serine residue or an aspartic acid residue (g) a threonine residue of the arginine residue at position 305, an alanine residue, a glycine residue, a histidine residue, a glutamine residue, a serine residue, Substitution to asparagine residue or valine residue (h) glutamic acid residue, proline residue, methionine residue, tryptophan residue, serine residue, threonine residue, cysteine residue, lysine residue of 348th leucine residue Group, substitution to histidine residue or glutamine residue (i) substitution of phenylalanine residue at position 351 to leucine residue, isoleucine residue, methionine residue, asparagine residue or glutamine residue (j) position 461 Placement of asparagine residues on isoleucine, phenylalanine, threonine, lysine or arginine residues (K) Replacement of the glycine residue atposition 539 with a proline residue, valine residue, methionine residue, threonine residue or asparagine residue (B) position 72, 181 to 185 in the amino acid sequence of (A) above An amino acid sequence having substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues at positions other than positions 305, 348, 351, 461 and 539 An amino acid sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid.
(2) In the amino acid sequence of (A) in (1), in the amino acid sequence shown in SEQ ID NO: 2, substitution of a leucine residue at position 182 with a glutamic acid residue, and conversion of a leucine residue at position 348 to an isoleucine residue The protein according to (1), which is an amino acid sequence having the following substitution:
(3) A gene comprising the following base sequence (A) or (B):
(A) a base sequence having the substitution of at least one base sequence selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1 (a) cgt of the base sequence caa at positions 214 to 216 (B) Substitution to cgg, cga, cgg, aga or agg (b) tgg, aaa, aag, cgt, cgg, cga, cgg, aga, agg, gat, gac, gaa or the base sequence ggg at positions 541 to 543 Substitution to gag (c) tgg, tct, tcc, tca, tcg, agt, agc, tgt, tgc, tat, tac, aaa, aag, cgt, cgc, cga, cgg of nucleotide sequence ctg at positions 544 to 546 , Aga, agg, gat, gac, gaa, gag, cct, ccc, cca or ccg substitution (d) nucleotide sequence from position 547 to 549 Substitution of acg to cct, ccc, cca, ccg, tta, ttg, ctt, ctc, cta, ctg, aat or aac (e) cct, ccc, cca or ccg of nucleotide sequence ctg at positions 550 to 552 (F) Substitution of base sequence aat at positions 553 to 555 to cct, ccc, cca, ccg, ttt, ttt, tct, tcc, tca, tcg, agt, agc, gat or gac (g) 913 to The base sequence cgg at position 915, act, acc, aca, acg, gct, gcc, gca, gcg, ggt, ggg, gga, ggg, cat, cac, caa, cag, tct, tcc, tca, tcg, agt, Substitution to agc, aat, aac, gtt, gtt, gta or gtg (h) bases at positions 1042 to 1044 Ctg, gaa, gag, cct, ccc, cca, ccg, atg, tgg, tct, tcc, tca, tcg, agt, agc, act, acc, aca, acg, tgt, tgc, aaa, aag, cat, Substitution to cac, caa or cag (i) substitution of base sequence ttc at positions 1051 to 1053 to tta, ttg, ctt, ctc, cta, ctg, att, atc, ata, atg, aat, aac, caa or cag Substitution (j) Substitution of nucleotide sequence aac at positions 1381 to 1383 to att, atc, ata, ttt, ttc, act, acc, aca, acg, aaa, aag, cgt, cgg, cga, cgg, aga or agg (K) cct, ccc, cca, ccg, gt of the base sequence ggc at positions 1615 to 1617 Substitution to t, gtc, gta, gtg, atg, act, acc, aca, acg, aat or aac (B) A nucleotide sequence that hybridizes with the nucleotide sequence of (A) above under stringent conditions, and N A base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on a D-form to succinyl-DL-amino acid.
(4) In the base sequence of (A) in (3), the base sequence ctg at positions 544 to 546 in the base sequence shown in SEQ ID NO: 1 is replaced with gaa or gag, and the base sequence ctg at positions 1042 to 1044 The gene according to (3), which is a base sequence having substitution to att, atc or ata.
(5) A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 (a) an arginine residue of a leucine residue at position 177 (B) Substitution of asparagine residue atposition 180 to aspartic acid residue (c) Substitution of leucine residue at position 344 to proline residue (d) To isoleucine residue of phenylalanine residue at position 347 (E) Substitution of asparagine residue at position 457 to isoleucine residue (B) In the amino acid sequence of (A) above, at positions other than positions 177, 180, 344, 347, and 457, An amino acid sequence having substitutions, deletions, insertions, additions and / or inversions of one or several amino acid residues, which is D-form selective for N-succinyl-DL-amino acids Amino acid sequence encoding a protein having an activity to produce the effect to D- amino acids.
(6) A gene comprising the following base sequence (A) or (B):
(A) a base sequence having a substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 (a) cgt of the base sequence ctg atpositions 529 to 531 , Cgc, cga, cgg, aga or agg substitution (b) substitution of base sequence aac at positions 538 to 540 to gat or gac (c) cct, ccc, cca of base sequence ctg at positions 1030 to 1032 Or substitution with ccg (d) substitution of base sequence ttc at positions 1039 to 1041 with att, atc or ata (e) substitution of base sequence aat at positions 1369 to 1371 with att, atc or ata (B) A base sequence that hybridizes with the base sequence of (A) above under stringent conditions and selectively acts on D-forms against N-succinyl-DL-amino acids. Nucleotide sequence encoding a protein having the activity to form D- amino Te.
(7) In the amino acid sequence having 70% or more homology with SEQ ID NO: 2, any one of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2 A protein comprising an amino acid sequence in which the amino acid residue at the equivalent position is substituted with the amino acid residue shown in (1) of (1), which is D-form selective for N-succinyl-DL-amino acid A protein characterized in that it has an activity of acting on D to produce a D-amino acid.
(8) A gene encoding the protein according to (7).
(9) an amino acid residue at a position equivalent to any ofpositions 177, 180, 344, 347, and 457 of SEQ ID NO: 4 in the amino acid sequence having 70% or more homology with SEQ ID NO: 4 Is a protein comprising an amino acid sequence substituted with the amino acid residue shown in (3) (A), wherein the D-amino acid acts selectively on N-succinyl-DL-amino acid to A protein characterized by having an activity to produce.
(10) A gene encoding the protein according to (9).
(11) A recombinant vector is prepared by inserting the gene described in (3), (4), (6), (8) or (10) into a vector, and a host cell is transformed with this recombinant vector. The method for producing a protein according to (1), (2), (5), (7) or (9), comprising the steps of preparing a transformant and culturing the transformant.
(12) N-succinyl-D-amino acid in N-succinyl-DL-amino acid is specifically hydrolyzed using the protein according to (1), (2), (5), (7) or (9) A method for producing D-amino acid, comprising a step of decomposing.
(13) The method according to (12), further comprising the step of racemizing N-succinyl-L-amino acid with N-succinylamino acid racemase to produce N-succinyl-D-amino acid.
(1)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号2に示すアミノ酸配列において、下記(a)~(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
(B)上記(A)のアミノ酸配列において、72位、181~185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(2)(1)の(A)のアミノ酸配列が、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列であることを特徴とする(1)に記載のタンパク質。
(3)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号1に示す塩基配列において、下記(a)~(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)214~216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541~543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544~546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547~549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550~552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553~555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913~915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042~1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051~1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381~1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615~1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(4)(3)の(A)の塩基配列が、配列番号1に示す塩基配列において、544~546位の塩基配列ctgの、gaa又はgagへの置換、及び1042~1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列であることを特徴とする(3)に記載の遺伝子。
(5)下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号4に示すアミノ酸配列において、下記(a)~(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
(B)上記(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。
(6)下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号3に示す塩基配列において、下記(a)~(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)529~531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538~540位の塩基配列aacの、gat又はgacへの置換
(c)1030~1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039~1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369~1371位の塩基配列aatの、att、atc又はataへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。
(7)配列番号2と70%以上の相同性を有するアミノ酸配列において、配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、(1)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。
(8)(7)に記載のタンパク質をコードすることを特徴とする遺伝子。
(9)配列番号4と70%以上の相同性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、(3)の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。
(10)(9)に記載のタンパク質をコードすることを特徴とする遺伝子。
(11)(3),(4),(6),(8)又は(10)に記載の遺伝子をベクターに挿入して組換えベクターを調製し、この組換えベクターで宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養する工程を含むことを特徴とする(1),(2),(5),(7)又は(9)に記載のタンパク質の製造方法。
(12)(1),(2),(5),(7)又は(9)に記載のタンパク質を用いてN-サクシニル-DL-アミノ酸中のN-サクシニル-D-アミノ酸を特異的に加水分解する工程を含むことを特徴とするD-アミノ酸の製造方法。
(13)N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-L-アミノ酸をラセミ化してN-サクシニル-D-アミノ酸を生成させる工程をさらに含むことを特徴とする(12)に記載の方法。 The present invention has been completed based on the above viewpoint, and has the following (1) to (13).
(1) A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 (a) an arginine residue of glutamine residue at position 72 (B) substitution of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) tryptophan residue at position 182, tryptophan residue, serine residue Group, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) threonine residue at position 183, proline residue, leucine residue Or substitution to asparagine residue (e) substitution of leucine residue at position 184 to proline residue (f) proline residue of asparagine residue at position 185, Substituting with a phenylalanine residue, a serine residue or an aspartic acid residue (g) a threonine residue of the arginine residue at position 305, an alanine residue, a glycine residue, a histidine residue, a glutamine residue, a serine residue, Substitution to asparagine residue or valine residue (h) glutamic acid residue, proline residue, methionine residue, tryptophan residue, serine residue, threonine residue, cysteine residue, lysine residue of 348th leucine residue Group, substitution to histidine residue or glutamine residue (i) substitution of phenylalanine residue at position 351 to leucine residue, isoleucine residue, methionine residue, asparagine residue or glutamine residue (j) position 461 Placement of asparagine residues on isoleucine, phenylalanine, threonine, lysine or arginine residues (K) Replacement of the glycine residue at
(2) In the amino acid sequence of (A) in (1), in the amino acid sequence shown in SEQ ID NO: 2, substitution of a leucine residue at position 182 with a glutamic acid residue, and conversion of a leucine residue at position 348 to an isoleucine residue The protein according to (1), which is an amino acid sequence having the following substitution:
(3) A gene comprising the following base sequence (A) or (B):
(A) a base sequence having the substitution of at least one base sequence selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1 (a) cgt of the base sequence caa at positions 214 to 216 (B) Substitution to cgg, cga, cgg, aga or agg (b) tgg, aaa, aag, cgt, cgg, cga, cgg, aga, agg, gat, gac, gaa or the base sequence ggg at positions 541 to 543 Substitution to gag (c) tgg, tct, tcc, tca, tcg, agt, agc, tgt, tgc, tat, tac, aaa, aag, cgt, cgc, cga, cgg of nucleotide sequence ctg at positions 544 to 546 , Aga, agg, gat, gac, gaa, gag, cct, ccc, cca or ccg substitution (d) nucleotide sequence from position 547 to 549 Substitution of acg to cct, ccc, cca, ccg, tta, ttg, ctt, ctc, cta, ctg, aat or aac (e) cct, ccc, cca or ccg of nucleotide sequence ctg at positions 550 to 552 (F) Substitution of base sequence aat at positions 553 to 555 to cct, ccc, cca, ccg, ttt, ttt, tct, tcc, tca, tcg, agt, agc, gat or gac (g) 913 to The base sequence cgg at position 915, act, acc, aca, acg, gct, gcc, gca, gcg, ggt, ggg, gga, ggg, cat, cac, caa, cag, tct, tcc, tca, tcg, agt, Substitution to agc, aat, aac, gtt, gtt, gta or gtg (h) bases at positions 1042 to 1044 Ctg, gaa, gag, cct, ccc, cca, ccg, atg, tgg, tct, tcc, tca, tcg, agt, agc, act, acc, aca, acg, tgt, tgc, aaa, aag, cat, Substitution to cac, caa or cag (i) substitution of base sequence ttc at positions 1051 to 1053 to tta, ttg, ctt, ctc, cta, ctg, att, atc, ata, atg, aat, aac, caa or cag Substitution (j) Substitution of nucleotide sequence aac at positions 1381 to 1383 to att, atc, ata, ttt, ttc, act, acc, aca, acg, aaa, aag, cgt, cgg, cga, cgg, aga or agg (K) cct, ccc, cca, ccg, gt of the base sequence ggc at positions 1615 to 1617 Substitution to t, gtc, gta, gtg, atg, act, acc, aca, acg, aat or aac (B) A nucleotide sequence that hybridizes with the nucleotide sequence of (A) above under stringent conditions, and N A base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on a D-form to succinyl-DL-amino acid.
(4) In the base sequence of (A) in (3), the base sequence ctg at positions 544 to 546 in the base sequence shown in SEQ ID NO: 1 is replaced with gaa or gag, and the base sequence ctg at positions 1042 to 1044 The gene according to (3), which is a base sequence having substitution to att, atc or ata.
(5) A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 (a) an arginine residue of a leucine residue at position 177 (B) Substitution of asparagine residue at
(6) A gene comprising the following base sequence (A) or (B):
(A) a base sequence having a substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 (a) cgt of the base sequence ctg at
(7) In the amino acid sequence having 70% or more homology with SEQ ID NO: 2, any one of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2 A protein comprising an amino acid sequence in which the amino acid residue at the equivalent position is substituted with the amino acid residue shown in (1) of (1), which is D-form selective for N-succinyl-DL-amino acid A protein characterized in that it has an activity of acting on D to produce a D-amino acid.
(8) A gene encoding the protein according to (7).
(9) an amino acid residue at a position equivalent to any of
(10) A gene encoding the protein according to (9).
(11) A recombinant vector is prepared by inserting the gene described in (3), (4), (6), (8) or (10) into a vector, and a host cell is transformed with this recombinant vector. The method for producing a protein according to (1), (2), (5), (7) or (9), comprising the steps of preparing a transformant and culturing the transformant.
(12) N-succinyl-D-amino acid in N-succinyl-DL-amino acid is specifically hydrolyzed using the protein according to (1), (2), (5), (7) or (9) A method for producing D-amino acid, comprising a step of decomposing.
(13) The method according to (12), further comprising the step of racemizing N-succinyl-L-amino acid with N-succinylamino acid racemase to produce N-succinyl-D-amino acid.
本発明の改変型D-サクシニラーゼは、野生型D-サクシニラーゼのアミノ酸配列の特定の部位のアミノ酸残基が別の特定のアミノ酸残基に置換されているので、野生型D-サクシニラーゼと比較してD体選択性が著しく向上している。従って、本発明の改変型D-サクシニラーゼを使用すれば、医薬品等の中間体の原料として有用なD-アミノ酸をさらに効率良く製造することができる。
The modified D-succinylase of the present invention has an amino acid residue at a specific site in the amino acid sequence of the wild-type D-succinylase substituted with another specific amino acid residue. D body selectivity is remarkably improved. Therefore, if the modified D-succinylase of the present invention is used, a D-amino acid useful as a raw material for intermediates such as pharmaceuticals can be produced more efficiently.
本発明は、野生型D-サクシニラーゼを特定の部位でアミノ酸置換することにより、野生型D-サクシニラーゼと比較してD体選択性が著しく向上した改変型D-サクシニラーゼを提供するものである。本発明において、改変のベースとする野生型D-サクシニラーゼは、主にCupriavidus属の2種類の細菌(Cupriavidus sp.P4-10-C株及びCupriavidus metallidurans)のD-サクシニラーゼである。以下、各改変型D-サクシニラーゼについて説明する。
The present invention provides a modified D-succinylase in which D-type selectivity is significantly improved by substituting wild-type D-succinylase with an amino acid at a specific site as compared with wild-type D-succinylase. In the present invention, the wild-type D-succinylase used as the base of modification is mainly D-succinylase of two types of bacteria belonging to the genus Cupriavidus (Cupriavidus sp. P4-10-C and Cupriavidus metallidurans). Hereinafter, each modified D-succinylase will be described.
本発明の第1の側面は、Cupriavidus sp.P4-10-C株のD-サクシニラーゼをベースとした改変型D-サクシニラーゼに関する。即ち、本発明の第1の側面によれば、(A)配列番号2に示すアミノ酸配列において、下記(a)~(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列からなることを特徴とするタンパク質が提供される。
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン酸残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
配列番号2は、Cupriavidus sp.P4-10-C株のD-サクシニラーゼのアミノ酸配列である。 The first aspect of the present invention relates to Cupriavidus sp. The present invention relates to a modified D-succinylase based on D-succinylase of the P4-10-C strain. That is, according to the first aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 A protein characterized by comprising:
(A) Replacement of glutamine residue at position 72 with arginine residue (b) Replacement of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) Replacement of leucine residue at position 182 with tryptophan residue, serine residue, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) 183 Substitution of a threonine residue at the position with a proline residue, a leucine residue or an asparagine residue (e) a substitution of a leucine residue at position 184 with a proline residue (f) a proline residue at the position 185 of asparagine; Substitution to phenylalanine residue, serine residue or aspartic acid residue (g) Threonine residue, alanine residue, glycine of arginine residue at position 305 Substitution to residue, histidine residue, glutamine residue, serine residue, aspartate residue or valine residue (h) glutamic acid residue of leucine residue at position 348, proline residue, methionine residue, tryptophan residue Group, serine residue, threonine residue, cysteine residue, lysine residue, histidine residue or glutamine residue substitution (i) leucine residue, isoleucine residue, methionine residue of phenylalanine residue at position 351, Substitution to asparagine residue or glutamine residue (j) Substitution of asparagine residue at position 461 to isoleucine residue, phenylalanine residue, threonine residue, lysine residue or arginine residue (k) Residue of glycine atposition 539 Substitution of a group with a proline residue, valine residue, methionine residue, threonine residue or asparagine residue Cupriavidus sp. Amino acid sequence of D-succinylase of the P4-10-C strain.
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン酸残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
配列番号2は、Cupriavidus sp.P4-10-C株のD-サクシニラーゼのアミノ酸配列である。 The first aspect of the present invention relates to Cupriavidus sp. The present invention relates to a modified D-succinylase based on D-succinylase of the P4-10-C strain. That is, according to the first aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 A protein characterized by comprising:
(A) Replacement of glutamine residue at position 72 with arginine residue (b) Replacement of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) Replacement of leucine residue at position 182 with tryptophan residue, serine residue, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) 183 Substitution of a threonine residue at the position with a proline residue, a leucine residue or an asparagine residue (e) a substitution of a leucine residue at position 184 with a proline residue (f) a proline residue at the position 185 of asparagine; Substitution to phenylalanine residue, serine residue or aspartic acid residue (g) Threonine residue, alanine residue, glycine of arginine residue at position 305 Substitution to residue, histidine residue, glutamine residue, serine residue, aspartate residue or valine residue (h) glutamic acid residue of leucine residue at position 348, proline residue, methionine residue, tryptophan residue Group, serine residue, threonine residue, cysteine residue, lysine residue, histidine residue or glutamine residue substitution (i) leucine residue, isoleucine residue, methionine residue of phenylalanine residue at position 351, Substitution to asparagine residue or glutamine residue (j) Substitution of asparagine residue at position 461 to isoleucine residue, phenylalanine residue, threonine residue, lysine residue or arginine residue (k) Residue of glycine at
好ましい実施態様によれば、上記(A)のタンパク質は、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列からなる。これは、L182E+L348Iの二重変異体に相当する。後述の実施例に示す通り、L348Iの単変異のみでは、D体選択性の向上効果は見られないが、L182Eの単変異と組み合わせることにより、相乗効果が発揮され、D体選択性をさらに向上させることができる。
According to a preferred embodiment, in the amino acid sequence shown in SEQ ID NO: 2, the protein of (A) above has a substitution of a leucine residue at position 182 with a glutamic acid residue and a leucine residue at position 348 into an isoleucine residue. It consists of an amino acid sequence having the following substitutions. This corresponds to a double mutant of L182E + L348I. As shown in the examples described later, only the L348I single mutation does not improve the D-form selectivity, but when combined with the L182E single mutation, a synergistic effect is exhibited and the D-form selectivity is further improved. Can be made.
上記(A)のタンパク質は、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するという特徴を有する。
The protein (A) has a feature that it has an activity of producing D-amino acid by selectively acting on D-form with respect to N-succinyl-DL-amino acid.
ここで、「D体選択的に作用する」とは、野生型のD-サクシニラーゼと比較して、N-サクシニル-L-アミノ酸(L体)よりもN-サクシニル-D-アミノ酸(D体)に反応しやすい性質のことを総じて称し、これは「D体選択性が向上している」と同義である。具体的には、「D体選択的に作用する」とは、D体に対するL体の分解比率(L/D)が野生型のD-サクシニラーゼより低いことを意味する。Cupriavidus sp.P4-10-CのD-サクシニラーゼをベースとした改変型D-サクシニラーゼの場合、基質として、例えばN-サクシニルトリプトファンを用いたときは、実施例2に記載の方法に従ってN-サクシニル-L-トリプトファン、N-サクシニル-D-トリプトファン、それぞれの基質に対して、L体を4、D体を1、すなわちL:D=4:1の比率のタンパク量で反応させたときのD体に対するL体の分解比率(L/D)が0.91未満であることを意味する。D体に対するL体の分解比率(L/D)は0.5以下であることが好ましく、0.3以下であることがさらに好ましい。また、基質として、N-サクシニルフェニルアラニンを用いたときは、実施例2に記載の方法に従ってN-サクシニル-L-フェニルアラニン、N-サクシニル-D-フェニルアラニン、それぞれの基質に対して、L体を4、D体を1、すなわちL:D=4:1の比率のタンパク量で反応させたときのD体に対するL体の分解比率(L/D)が0.69未満であることを意味する。D体に対するL体の分解比率(L/D)は0.4以下であることが好ましく、0.2以下であることがさらに好ましい。また、基質として、N-サクシニルビフェニルアラニンを用いたときは、実施例3に記載の方法に従ってN-サクシニル-DL-ビフェニルアラニンのラセミ体に対し、反応させたときのD体に対するL体の分解比率(L/D)が0.09未満であることを意味する。D体に対するL体の分解比率(L/D)は0.05以下であることが好ましく、0.02以下であることがさらに好ましい。また、後述するCupriavidus metalliduransのD-サクシニラーゼをベースとした改変型D-サクシニラーゼの場合、基質として、N-サクシニルトリプトファンを用いたときは、実施例2に記載の方法に従ってN-サクシニル-L-トリプトファン、N-サクシニル-D-トリプトファン、それぞれの基質に対して、L体を4、L体を1、すなわちL:D=4:1の比率のタンパク量で反応させたときのD体に対するL体の分解比率(L/D)が0.54未満であることを意味する。D体に対するL体の分解比率(L/D)は0.3以下であることが好ましく、0.1以下であることがさらに好ましい。
なお、実用上の観点からは、D体に対するL体の分解比率だけではなく、L体分解率及びD体分解率それぞれの値も考慮すべきである。具体的には、L体分解率が12%以下であることが好ましく、L体分解率が12%以下でかつD体分解率が25%以上であることがさらに好ましく、L体分解率が0%でかつD体分解率が25%以上であることが特に好ましい。 Here, “acting selectively in D form” means that N-succinyl-D-amino acid (D form) is more N-succinyl-L-amino acid (L form) than wild-type D-succinylase. The property which is easy to react is generally called, and this is synonymous with “D-form selectivity is improved”. Specifically, “acting selectively in D-form” means that the degradation ratio of L-form to D-form (L / D) is lower than that of wild-type D-succinylase. Cupriavidus sp. In the case of a modified D-succinylase based on P4-10-C D-succinylase, when N-succinyltryptophan is used as a substrate, for example, N-succinyl-L-tryptophan is used according to the method described in Example 2. , N-succinyl-D-tryptophan, L-form to D-form when the L-form is 4 and D-form is 1, ie, L: D = 4: 1 in the amount of protein for each substrate. It means that the decomposition ratio (L / D) is less than 0.91. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.5 or less, and more preferably 0.3 or less. In addition, when N-succinylphenylalanine was used as a substrate, 4 L-forms were obtained for each of N-succinyl-L-phenylalanine and N-succinyl-D-phenylalanine according to the method described in Example 2. , It means that the decomposition ratio (L / D) of L-form to D-form is less than 0.69 when D-form is reacted at a protein amount of 1, ie L: D = 4: 1. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.4 or less, and more preferably 0.2 or less. When N-succinylbiphenylalanine was used as the substrate, the L-form was decomposed into the D-form when reacted with the racemic N-succinyl-DL-biphenylalanine according to the method described in Example 3. It means that the ratio (L / D) is less than 0.09. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.05 or less, and more preferably 0.02 or less. Further, in the case of modified D-succinylase based on Cupriavidus metallidurans D-succinylase described later, when N-succinyltryptophan is used as a substrate, N-succinyl-L-tryptophan is used according to the method described in Example 2. , N-succinyl-D-tryptophan, L-form relative to D-form when the L-form is reacted with the L-form, and the L-form is 1, ie, L: D = 4: 1. It means that the decomposition ratio (L / D) is less than 0.54. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.3 or less, and more preferably 0.1 or less.
From a practical viewpoint, not only the decomposition ratio of the L isomer to the D isomer but also the values of the L isomer decomposition rate and the D isomer decomposition rate should be considered. Specifically, the L-isomer decomposition rate is preferably 12% or less, the L-isomer decomposition rate is preferably 12% or less, and the D-isomer decomposition rate is more preferably 25% or more, and the L-isomer decomposition rate is 0. % And the D-form decomposition rate is particularly preferably 25% or more.
なお、実用上の観点からは、D体に対するL体の分解比率だけではなく、L体分解率及びD体分解率それぞれの値も考慮すべきである。具体的には、L体分解率が12%以下であることが好ましく、L体分解率が12%以下でかつD体分解率が25%以上であることがさらに好ましく、L体分解率が0%でかつD体分解率が25%以上であることが特に好ましい。 Here, “acting selectively in D form” means that N-succinyl-D-amino acid (D form) is more N-succinyl-L-amino acid (L form) than wild-type D-succinylase. The property which is easy to react is generally called, and this is synonymous with “D-form selectivity is improved”. Specifically, “acting selectively in D-form” means that the degradation ratio of L-form to D-form (L / D) is lower than that of wild-type D-succinylase. Cupriavidus sp. In the case of a modified D-succinylase based on P4-10-C D-succinylase, when N-succinyltryptophan is used as a substrate, for example, N-succinyl-L-tryptophan is used according to the method described in Example 2. , N-succinyl-D-tryptophan, L-form to D-form when the L-form is 4 and D-form is 1, ie, L: D = 4: 1 in the amount of protein for each substrate. It means that the decomposition ratio (L / D) is less than 0.91. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.5 or less, and more preferably 0.3 or less. In addition, when N-succinylphenylalanine was used as a substrate, 4 L-forms were obtained for each of N-succinyl-L-phenylalanine and N-succinyl-D-phenylalanine according to the method described in Example 2. , It means that the decomposition ratio (L / D) of L-form to D-form is less than 0.69 when D-form is reacted at a protein amount of 1, ie L: D = 4: 1. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.4 or less, and more preferably 0.2 or less. When N-succinylbiphenylalanine was used as the substrate, the L-form was decomposed into the D-form when reacted with the racemic N-succinyl-DL-biphenylalanine according to the method described in Example 3. It means that the ratio (L / D) is less than 0.09. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.05 or less, and more preferably 0.02 or less. Further, in the case of modified D-succinylase based on Cupriavidus metallidurans D-succinylase described later, when N-succinyltryptophan is used as a substrate, N-succinyl-L-tryptophan is used according to the method described in Example 2. , N-succinyl-D-tryptophan, L-form relative to D-form when the L-form is reacted with the L-form, and the L-form is 1, ie, L: D = 4: 1. It means that the decomposition ratio (L / D) is less than 0.54. The decomposition ratio (L / D) of the L isomer to the D isomer is preferably 0.3 or less, and more preferably 0.1 or less.
From a practical viewpoint, not only the decomposition ratio of the L isomer to the D isomer but also the values of the L isomer decomposition rate and the D isomer decomposition rate should be considered. Specifically, the L-isomer decomposition rate is preferably 12% or less, the L-isomer decomposition rate is preferably 12% or less, and the D-isomer decomposition rate is more preferably 25% or more, and the L-isomer decomposition rate is 0. % And the D-form decomposition rate is particularly preferably 25% or more.
本発明における立体選択性の評価は、実施例に示した通りであるが、基質濃度や酵素量、反応温度、反応時間、反応pHなどの反応条件によっては、数値が変動する場合もある。
The evaluation of stereoselectivity in the present invention is as shown in the examples, but the numerical value may vary depending on the reaction conditions such as the substrate concentration, enzyme amount, reaction temperature, reaction time and reaction pH.
なお、上記のD体選択性の説明において、N-サクシニル-DL-トリプトファン、N-サクシニル-DL-フェニルアラニン及びN-サクシニル-DL-ビフェニルアラニンに対するD体選択性に言及したが、本発明の改変型D-サクシニラーゼは、これらの特定のN-サクシニル-DL-アミノ酸だけでなく、下記一般式(I)に示す任意のN-サクシニル-DL-アミノ酸に対しても同様にD体選択性を有する。
(一般式(I)中、Rは、置換基を有してもよい炭素数4~20のアリール基、または置換基を有してもよい炭素数5~20のアラルキル基を示す。)
上記Rにおける置換基を有していてもよい炭素数6~20のアリール基としては、フェニル基、4-ヒドロキシフェニル基などが挙げられる。置換基としては、アミノ基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、アルキル基、アラルキル基、アリール基、アルカノイル基、アルケニル基、アルキニル基、アルコキシル基、又はハロゲン原子等が挙げられる。また、置換基を有していてもよい炭素数7~20のアラルキル基としては、特に限定されず、例えば、ベンジル基、インドリルメチル基、4-フェニルベンジル基、4-ヒドロキシベンジル基等が挙げられる。 In the above description of D-form selectivity, reference was made to D-form selectivity for N-succinyl-DL-tryptophan, N-succinyl-DL-phenylalanine and N-succinyl-DL-biphenylalanine. The type D-succinylase has D-form selectivity not only for these specific N-succinyl-DL-amino acids but also for any N-succinyl-DL-amino acid represented by the following general formula (I). .
(In general formula (I), R represents an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aralkyl group having 5 to 20 carbon atoms which may have a substituent.)
Examples of the aryl group having 6 to 20 carbon atoms which may have a substituent for R include a phenyl group and a 4-hydroxyphenyl group. Examples of the substituent include an amino group, hydroxyl group, nitro group, cyano group, carboxyl group, alkyl group, aralkyl group, aryl group, alkanoyl group, alkenyl group, alkynyl group, alkoxyl group, or halogen atom. Further, the aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-phenylbenzyl group, and a 4-hydroxybenzyl group. Can be mentioned.
(一般式(I)中、Rは、置換基を有してもよい炭素数4~20のアリール基、または置換基を有してもよい炭素数5~20のアラルキル基を示す。)
上記Rにおける置換基を有していてもよい炭素数6~20のアリール基としては、フェニル基、4-ヒドロキシフェニル基などが挙げられる。置換基としては、アミノ基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシル基、アルキル基、アラルキル基、アリール基、アルカノイル基、アルケニル基、アルキニル基、アルコキシル基、又はハロゲン原子等が挙げられる。また、置換基を有していてもよい炭素数7~20のアラルキル基としては、特に限定されず、例えば、ベンジル基、インドリルメチル基、4-フェニルベンジル基、4-ヒドロキシベンジル基等が挙げられる。 In the above description of D-form selectivity, reference was made to D-form selectivity for N-succinyl-DL-tryptophan, N-succinyl-DL-phenylalanine and N-succinyl-DL-biphenylalanine. The type D-succinylase has D-form selectivity not only for these specific N-succinyl-DL-amino acids but also for any N-succinyl-DL-amino acid represented by the following general formula (I). .
(In general formula (I), R represents an aryl group having 4 to 20 carbon atoms which may have a substituent, or an aralkyl group having 5 to 20 carbon atoms which may have a substituent.)
Examples of the aryl group having 6 to 20 carbon atoms which may have a substituent for R include a phenyl group and a 4-hydroxyphenyl group. Examples of the substituent include an amino group, hydroxyl group, nitro group, cyano group, carboxyl group, alkyl group, aralkyl group, aryl group, alkanoyl group, alkenyl group, alkynyl group, alkoxyl group, or halogen atom. Further, the aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-phenylbenzyl group, and a 4-hydroxybenzyl group. Can be mentioned.
従来公知の野生型D-サクシニラーゼは、D-アミノ酸の前駆体であるN-サクシニル-DL-アミノ酸の光学異性を厳密には区別できず、L体にもわずかに作用して、D-アミノ酸のみならず、L-アミノ酸も生じてしまう。しかし、本発明の改変型D-サクシニラーゼは、野生型D-サクシニラーゼの一部のアミノ酸残基を置換することにより立体選択性を変化させて、N-サクシニル-DL-アミノ酸に対してD体選択的に作用するよう改変を加えているので、N-サクシニル-DL-アミノ酸からD-アミノ酸を選択的に生成することができる。
The conventionally known wild-type D-succinylase cannot strictly discriminate optical isomerism of N-succinyl-DL-amino acid, which is a precursor of D-amino acid, and acts slightly on L-form, and only D-amino acid In addition, L-amino acids are also produced. However, the modified D-succinylase of the present invention changes the stereoselectivity by substituting a part of the amino acid residues of the wild-type D-succinylase, and selects D-form for N-succinyl-DL-amino acid. D-amino acids can be selectively generated from N-succinyl-DL-amino acids since they have been modified to act in an effective manner.
また、本発明の第1の側面によれば、上記(A)のタンパク質に対応する遺伝子である、以下の遺伝子も提供される。
(A)配列番号1に示す塩基配列において、下記(a)~(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)214~216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541~543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544~546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547~549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550~552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553~555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913~915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042~1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051~1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381~1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615~1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
配列番号1は、Cupriavidus sp.P4-10-C株のD-サクシニラーゼの塩基配列である。 Moreover, according to the 1st side surface of this invention, the following genes which are a gene corresponding to the protein of said (A) are also provided.
(A) The gene (a) 214 to 216 characterized by comprising a base sequence having at least one base sequence substitution selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1. (C) substitution of the base sequence caa with cgt, cgg, cga, cgg, aga or agg (b) tgg, aaa, aag, cgt, cgg, cga, cgg, aga, Substitution to agg, gat, gac, gaa or gag (c) tgg, tct, tcc, tca, tcg, agt, agc, tgt, tgc, tat, tac, aaa, aag of the nucleotide sequence ctg at positions 544 to 546 , Cgt, cgc, cga, cgg, aga, agg, gat, gac, gaa, gag, cct, ccc, cca or ccg d) Substitution of base sequence acg at positions 547 to 549 to cct, ccc, cca, ccg, tta, ttg, ctt, ctc, cta, ctg, aat or aac (e) base sequence ctg at positions 550 to 552 (C), ccc, ccc, cca or ccg substitution (f) cct, ccc, cca, ccg, ttt, ttc, tct, tcc, tca, tcg, agt, agc, gat or Substitution to gac (g) Act, acc, aca, acg, gct, gcc, gca, gcg, ggt, ggg, gga, ggg, cat, cac, caa, cag, tct of base sequence cgg at positions 913 to 915 , Tcc, tca, tcg, agt, agc, aat, aac, gtt, gtt, gta or gtg ( ) The base sequence ctg at positions 1042 to 1044, gaa, gag, cct, ccc, cca, ccg, atg, tgg, tct, tcc, tca, tcg, agt, agc, act, acc, aca, acg, tgt, tgc , Aaa, aag, cat, cac, caa or cag (i) tta, ttg, ctt, ctc, cta, ctg, att, atc, ata, atg, aat, of the nucleotide sequence ttc at positions 1051 to 1053 Substitution with aac, caa or cag (j) att, atc, ata, ttt, ttc, act, acc, aca, acg, aaa, aag, cgt, cgg, cga, cgg of the base sequence aac at positions 1381 to 1383 , Substitution to aga or agg (k) cct of the nucleotide sequence ggc at positions 1615 to 1617 , Ccc, cca, ccg, gtt, gtc, gta, gtg, atg, act, acc, aca, acg, aat, or aac substitution SEQ ID NO: 1 is Cupriavidus sp. This is the base sequence of D-succinylase of the P4-10-C strain.
(A)配列番号1に示す塩基配列において、下記(a)~(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)214~216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541~543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544~546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547~549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550~552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553~555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913~915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042~1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051~1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381~1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615~1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
配列番号1は、Cupriavidus sp.P4-10-C株のD-サクシニラーゼの塩基配列である。 Moreover, according to the 1st side surface of this invention, the following genes which are a gene corresponding to the protein of said (A) are also provided.
(A) The gene (a) 214 to 216 characterized by comprising a base sequence having at least one base sequence substitution selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1. (C) substitution of the base sequence caa with cgt, cgg, cga, cgg, aga or agg (b) tgg, aaa, aag, cgt, cgg, cga, cgg, aga, Substitution to agg, gat, gac, gaa or gag (c) tgg, tct, tcc, tca, tcg, agt, agc, tgt, tgc, tat, tac, aaa, aag of the nucleotide sequence ctg at positions 544 to 546 , Cgt, cgc, cga, cgg, aga, agg, gat, gac, gaa, gag, cct, ccc, cca or ccg d) Substitution of base sequence acg at positions 547 to 549 to cct, ccc, cca, ccg, tta, ttg, ctt, ctc, cta, ctg, aat or aac (e) base sequence ctg at positions 550 to 552 (C), ccc, ccc, cca or ccg substitution (f) cct, ccc, cca, ccg, ttt, ttc, tct, tcc, tca, tcg, agt, agc, gat or Substitution to gac (g) Act, acc, aca, acg, gct, gcc, gca, gcg, ggt, ggg, gga, ggg, cat, cac, caa, cag, tct of base sequence cgg at positions 913 to 915 , Tcc, tca, tcg, agt, agc, aat, aac, gtt, gtt, gta or gtg ( ) The base sequence ctg at positions 1042 to 1044, gaa, gag, cct, ccc, cca, ccg, atg, tgg, tct, tcc, tca, tcg, agt, agc, act, acc, aca, acg, tgt, tgc , Aaa, aag, cat, cac, caa or cag (i) tta, ttg, ctt, ctc, cta, ctg, att, atc, ata, atg, aat, of the nucleotide sequence ttc at positions 1051 to 1053 Substitution with aac, caa or cag (j) att, atc, ata, ttt, ttc, act, acc, aca, acg, aaa, aag, cgt, cgg, cga, cgg of the base sequence aac at positions 1381 to 1383 , Substitution to aga or agg (k) cct of the nucleotide sequence ggc at positions 1615 to 1617 , Ccc, cca, ccg, gtt, gtc, gta, gtg, atg, act, acc, aca, acg, aat, or aac substitution SEQ ID NO: 1 is Cupriavidus sp. This is the base sequence of D-succinylase of the P4-10-C strain.
好ましい実施態様によれば、上記(A)のタンパク質に対応する遺伝子は、配列番号1に示す塩基配列において、544~546位の塩基配列ctgの、gaa又はgagへの置換、及び1042~1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列からなる。これは、L182E+L348Iの二重変異体に相当する遺伝子である。
According to a preferred embodiment, the gene corresponding to the protein of the above (A) is the base sequence shown in SEQ ID NO: 1, the substitution of the base sequence ctg at positions 544 to 546 to gaa or gag, and the positions 1042 to 1044 The base sequence ctg is a base sequence having substitution to att, atc or ata. This is a gene corresponding to a double mutant of L182E + L348I.
本発明の第1の側面の改変型D-サクシニラーゼのタンパク質は、上記(A)のものに限定されず、(B)(A)のアミノ酸配列において、72位、181~185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列からなることを特徴とするタンパク質も含む。また、本発明の第1の側面の改変型D-サクシニラーゼの遺伝子は、上記(A)のものに限定されず、(B)(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列からなることを特徴とする遺伝子も含む。これは、タンパク質をコードする遺伝子の塩基配列の一部に変異が生じたり、またその結果としてタンパク質のアミノ酸配列の一部に変異が生じても、機能的には同等のタンパク質であることが多いからである。また、本発明の改変型D-サクシニラーゼの遺伝子を、由来生物以外の宿主生物(大腸菌など)に組込んで本発明の改変型D-サクシニラーゼを発現させる場合、発現効率向上のため、宿主生物のコドンユーセージに合わせて塩基配列を変更することもあるからである。
The protein of the modified D-succinylase according to the first aspect of the present invention is not limited to the above (A), and in the amino acid sequence of (B) (A), positions 72, 181-185, 305, An amino acid sequence having substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues at positions other than positions 348, 351, 461, and 539, and N-succinyl -Also includes a protein characterized by comprising an amino acid sequence encoding a protein having an activity of producing a D-amino acid by acting D-selectively on a DL-amino acid. The modified D-succinylase gene according to the first aspect of the present invention is not limited to the gene of (A) above, and (B) a nucleotide sequence that hybridizes with the nucleotide sequence of (A) under stringent conditions. And a gene characterized by comprising a base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid. This is often a functionally equivalent protein even if a part of the base sequence of the gene encoding the protein is mutated, and as a result, part of the amino acid sequence of the protein is mutated. Because. In addition, when the modified D-succinylase gene of the present invention is incorporated into a host organism (such as E. coli) other than the organism from which the modified D-succinylase gene of the present invention is expressed, This is because the base sequence may be changed according to the codon usage.
ここで、「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造や、D-サクシニラーゼ活性及びN-サクシニル-DL-アミノ酸に対するD体選択性を大きく損なわない範囲のものであり、具体的には、1~50個、好ましくは1~30個、より好ましくは1~20個、さらに好ましくは1~10個である。ただし、配列表の配列番号2に記載のアミノ酸配列において1又は数個のアミノ酸残基の置換、欠失、挿入、付加及び/又は逆位を含むアミノ酸配列の場合には、37℃、pH7.0の条件下で配列表の配列番号2に記載のアミノ酸配列を有するタンパク質の3%以上、好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上、特に好ましくは70%以上のD-サクシニラーゼ活性を保持していることが望ましい。
Here, “one or several” is a range that does not significantly impair the three-dimensional structure of the amino acid residue protein, the D-succinylase activity, and the D-form selectivity to N-succinyl-DL-amino acid. Specifically, the number is 1 to 50, preferably 1 to 30, more preferably 1 to 20, and still more preferably 1 to 10. However, in the case of an amino acid sequence containing substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues in the amino acid sequence shown in SEQ ID NO: 2 in the Sequence Listing, 37 ° C., pH 7. 3% or more, preferably 10% or more, more preferably 30% or more, still more preferably 50% or more, particularly preferably 70% or more of the protein having the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing under the condition of 0 It is desirable to retain the D-succinylase activity.
また、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。この条件を明確に数値化することは困難であるが、一例を示せば、相同性が高いDNA同士、例えば85%以上、好ましくは90%以上、より好ましくは95%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件(ここでいう相同性(homology)は、比較する配列間において一致する塩基の数が最大となるような並べ方にして演算された値であることが望ましい)、あるいは通常のサザンハイブリダイゼーションの洗いの条件である37℃、0.1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、さらに好ましくは65℃、0.1×SSC、0.1% SDSに相当するに相当する塩濃度でハイブリダイズする条件が挙げられる。ただし、配列表の配列番号1に記載の塩基配列と相補的な塩基配列とストリンジェントな条件でハイブリダイズする塩基配列の場合には、37℃、pH7.0の条件下で配列表の配列番号2に記載のアミノ酸配列を有するタンパク質の3%以上、好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上、特に好ましくは70%以上のD-サクシニラーゼ活性を保持していることが望ましい。
Also, “stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Although it is difficult to quantify these conditions clearly, for example, DNAs having high homology, for example, DNAs having a homology of 85% or more, preferably 90% or more, more preferably 95% or more, are present. The conditions are such that the DNAs that hybridize with each other and the DNAs with lower homology do not hybridize with each other (here, the homology is homologous (homology)). Or 37 ° C., 0.1 × SSC, 0.1% SDS, preferably 60 ° C., 0.1 × SSC, 0.8%, which are washing conditions for normal Southern hybridization. Conditions include hybridization at a salt concentration corresponding to 1% SDS, more preferably 65 ° C., 0.1 × SSC, corresponding to 0.1% SDS.However, in the case of a base sequence that hybridizes under stringent conditions with a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing, the sequence number in the sequence listing under conditions of 37 ° C and pH 7.0 3% or more, preferably 10% or more, more preferably 30% or more, still more preferably 50% or more, particularly preferably 70% or more of the D-succinylase activity of the protein having the amino acid sequence described in 2. It is desirable.
本発明の第1の側面のタンパク質及びその遺伝子は、例えばTransformerMutagenesis Kit;Clonetech製、EXOIII/Mung Bean Deletion Kit;Stratagene製、QuickChange Site Directed Mutagenesis Kit;Stratagene製、KOD-Plus-Mutagenesis Kit;東洋紡製などの市販のキットやPCR法を利用して配列番号1に記載の塩基配列を改変することによって得ることができる。得られた遺伝子によってコードされるタンパク質の活性は、例えば、得られた遺伝子を大腸菌に導入して形質転換体を作成し、この形質転換体を培養して酵素タンパク質を生成させ、この形質転換体、この形質転換体の菌体破砕液もしくは精製した酵素タンパク質をN-サクシニル-DL-アミノ酸に添加してD体に対するL体の分解比率を実施例に記載の方法で測定することによって確認することができる。
The protein of the first aspect of the present invention and its gene are, for example, Transformer Mutagenesis Kit; manufactured by Clonetech, EXOIII / Mung Bean Selection Kit; Can be obtained by modifying the base sequence described in SEQ ID NO: 1 using a commercially available kit or PCR method. The activity of the protein encoded by the obtained gene is, for example, by introducing the obtained gene into Escherichia coli to produce a transformant, and culturing the transformant to produce an enzyme protein. Confirmation is made by adding the cell disruption solution of this transformant or purified enzyme protein to N-succinyl-DL-amino acid and measuring the degradation ratio of L-form to D-form by the method described in the Examples. Can do.
本発明の第2の側面は、Cupriavidus metalliduransのD-サクシニラーゼをベースとした改変型D-サクシニラーゼに関する。即ち、本発明の第2の側面によれば、(A)配列番号4に示すアミノ酸配列において、下記(a)~(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列からなることを特徴とするタンパク質が提供される。
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
配列番号4は、Cupriavidus metalliduransのD-サクシニラーゼのアミノ酸配列である。 The second aspect of the present invention relates to a modified D-succinylase based on the D. succinylase of Cupriavidus metallidurans. That is, according to the second aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 A protein characterized by comprising:
(A) Substitution of leucine residue at position 177 to arginine residue (b) Substitution of asparagine residue atposition 180 to aspartic acid residue (c) Substitution of leucine residue at position 344 to proline residue ( d) Substitution of phenylalanine residue at position 347 to isoleucine residue (e) Substitution of asparagine residue at position 457 to isoleucine residue SEQ ID NO: 4 is the amino acid sequence of D-succinylase of Cupriavidus metallidrans.
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
配列番号4は、Cupriavidus metalliduransのD-サクシニラーゼのアミノ酸配列である。 The second aspect of the present invention relates to a modified D-succinylase based on the D. succinylase of Cupriavidus metallidurans. That is, according to the second aspect of the present invention, (A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 A protein characterized by comprising:
(A) Substitution of leucine residue at position 177 to arginine residue (b) Substitution of asparagine residue at
上記(A)のタンパク質は、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するという特徴を有する。「D体選択的に作用する」の定義などは、第1の側面と同様であるので、説明を省略する。
The protein (A) has a feature that it has an activity of producing D-amino acid by selectively acting on D-form with respect to N-succinyl-DL-amino acid. The definition of “acting selectively on D body” and the like are the same as in the first aspect, and thus description thereof is omitted.
また、本発明の第2の側面によれば、上記(A)のタンパク質に対応する遺伝子である、以下の遺伝子も提供される。
(A)配列番号3に示す塩基配列において、下記(a)~(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)529~531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538~540位の塩基配列aacの、gat又はgacへの置換
(c)1030~1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039~1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369~1371位の塩基配列aatの、att、atc又はataへの置換
配列番号3は、Cupriavidus metalliduransのD-サクシニラーゼの塩基配列である。 Moreover, according to the 2nd side surface of this invention, the following genes which are a gene corresponding to the protein of said (A) are also provided.
(A) A gene (a) 529 to 531 comprising a base sequence having substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 Substitution of base sequence ctg to cgt, cgc, cga, cgg, aga or agg (b) Substitution of base sequence aac frompositions 538 to 540 to gat or gac (c) Base sequence from positions 1030 to 1032 Substitution of ctg to cct, ccc, cca or ccg (d) Substitution of nucleotide sequence ttc at positions 1039 to 1041 to att, atc or ata (e) Att, atc of nucleotide sequence aat at positions 1369 to 1371 Alternatively, substitution to atata SEQ ID NO: 3 is the base sequence of D-succinylase of Cupriavidus metallidurans.
(A)配列番号3に示す塩基配列において、下記(a)~(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列からなることを特徴とする遺伝子
(a)529~531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538~540位の塩基配列aacの、gat又はgacへの置換
(c)1030~1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039~1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369~1371位の塩基配列aatの、att、atc又はataへの置換
配列番号3は、Cupriavidus metalliduransのD-サクシニラーゼの塩基配列である。 Moreover, according to the 2nd side surface of this invention, the following genes which are a gene corresponding to the protein of said (A) are also provided.
(A) A gene (a) 529 to 531 comprising a base sequence having substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 Substitution of base sequence ctg to cgt, cgc, cga, cgg, aga or agg (b) Substitution of base sequence aac from
本発明の第2の側面の改変型D-サクシニラーゼのタンパク質は、上記(A)のものに限定されず、(B)(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列からなることを特徴とするタンパク質も含む。また、本発明の第2の側面の改変型D-サクシニラーゼの遺伝子は、上記(A)のものに限定されず、(B)(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列からなることを特徴とする遺伝子も含む。「1若しくは数個」及び「ストリンジェントな条件」の定義など、並びに第2の側面のタンパク質及びその遺伝子の作成方法や活性確認方法は、第1の側面と同様であるので、説明を省略する。
The modified D-succinylase protein of the second aspect of the present invention is not limited to the above (A), and (B) in the amino acid sequence of (A), positions 177, 180, 344, 347 And an amino acid sequence having substitutions, deletions, insertions, additions and / or inversions of one or several amino acid residues at positions other than position 457, wherein D is an N-succinyl-DL-amino acid Also included is a protein comprising an amino acid sequence encoding a protein having an activity of producing a D-amino acid by acting selectively on the body. The modified D-succinylase gene of the second aspect of the present invention is not limited to the gene of (A) above, and (B) a nucleotide sequence that hybridizes with the nucleotide sequence of (A) under stringent conditions. And a gene characterized by comprising a base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid. The definition of “one or several” and “stringent conditions”, and the method for creating and confirming the activity of the protein and gene of the second aspect are the same as those of the first aspect, and thus the description thereof is omitted. .
以上、Cupriavidus sp.P4-10-C株のD-サクシニラーゼ及びCupriavidus metalliduransのD-サクシニラーゼをベースとした改変型D-サクシニラーゼについて説明したが、本発明の改変型D-サクシニラーゼはこれらの細菌のD-サクシニラーゼをベースとしたものに限定されず、Cupriavidus属の他の細菌を含む近縁種のD-サクシニラーゼをベースとしたものも含む。
As described above, Cupriavidus sp. The modified D-succinylase based on D-succinylase of P4-10-C strain and Cupriavidus metallidurans D-succinylase has been described. The modified D-succinylase of the present invention is based on the D-succinylase of these bacteria. And those based on D-succinylase of related species including other bacteria of the genus Cupriavidus.
Cupriavidus sp.P4-10-C株のD-サクシニラーゼとCupriavidus metalliduransのD-サクシニラーゼは、75%の相同性しか有さないが、実施例で示すように、Cupriavidus sp.P4-10-C株のD-サクシニラーゼのアミノ酸配列において立体選択性に関与することが今回見出されたアミノ酸残基は全て、Cupriavidus metalliduransのD-サクシニラーゼのアミノ酸配列でも保存されている。また、実際に、Cupriavidus metalliduransのD-サクシニラーゼにおいても、これらの保存アミノ酸残基を、Cupriavidus sp.P4-10-C株のD-サクシニラーゼベースの改変型D-サクシニラーゼと同様にアミノ酸置換することによって、D体選択性が向上することが確認されている。さらに、立体選択性に関与するアミノ酸残基は全て、Cupriavidus sp.P4-10-C株とCupriavidus metalliduransの間だけではなく、Cupriavidus sp.P4-10-C株とCupriavidus属の他の細菌との間でも保存されている。これらのことから、Cupriavidus sp.P4-10-C株のD-サクシニラーゼ及びCupriavidus metalliduransのD-サクシニラーゼに限らず、Cupriavidus sp.P4-10-C株又はCupriavidus metalliduransの近縁種のD-サクシニラーゼにおいて、Cupriavidus sp.P4-10-C株又はCupriavidus metalliduransのD-サクシニラーゼのアミノ酸配列中の立体選択性に関与するアミノ酸残基と同等な位置のアミノ酸残基をアミノ酸置換することによって、D体選択性が向上するものと考えられる。
Cupriavidus sp. The P4-10-C strain D-succinylase and Cupriavidus metallidrans D-succinylase have only 75% homology, but as shown in the Examples, Cupriavidus sp. All amino acid residues found this time to be involved in stereoselectivity in the amino acid sequence of D-succinylase of the P4-10-C strain are also conserved in the amino acid sequence of Cupriavidus metallidrans D-succinylase. In fact, the conserved amino acid residues in Cupriavidus metallidrans D-succinylase were also converted to Cupriavidus sp. It has been confirmed that D-form selectivity is improved by amino acid substitution in the same manner as the D-succinylase-based modified D-succinylase of the P4-10-C strain. In addition, all amino acid residues involved in stereoselectivity are Cupriavidus sp. Not only between the P4-10-C strain and Cupriavidus metallidurans, but also Cupriavidus sp. It is also conserved between the P4-10-C strain and other bacteria of the genus Cupriavidus. From these facts, Cupriavidus sp. Not only D-succinylase of P4-10-C strain and D-succinylase of Cupriavidus metallidurans, but also Cupriavidus sp. In D-succinylase of the close relative of P4-10-C strain or Cupriavidus metallidurans, Cupriavidus sp. D-form selectivity is improved by substituting amino acid residues at positions equivalent to the amino acid residues involved in stereoselectivity in the amino acid sequence of P4-10-C strain or Cupriavidus metallidurans D-succinylase it is conceivable that.
従って、本発明の第3の側面は、Cupriavidus sp.P4-10-C株の近縁種のD-サクシニラーゼをベースとした改変型D-サクシニラーゼ及びその遺伝子に関する。即ち、本発明の第3の側面によれば、配列番号2と70%以上の相同性を有するアミノ酸配列において、配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、本発明の第1の側面のタンパク質(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質、及びこのタンパク質をコードすることを特徴とする遺伝子が提供される。
Therefore, the third aspect of the present invention relates to Cupriavidus sp. The present invention relates to a modified D-succinylase based on D-succinylase of a close relative of the P4-10-C strain and a gene thereof. That is, according to the third aspect of the present invention, in the amino acid sequence having 70% or more homology with SEQ ID NO: 2, positions 72, 181-185, 305, 348, 351 of SEQ ID NO: 2, A protein comprising an amino acid sequence in which an amino acid residue at a position equivalent to any of positions 461 and 539 is substituted with the amino acid residue shown in the protein (A) of the first aspect of the present invention, , A protein characterized by having an activity of producing a D-amino acid by selectively acting on D-form against N-succinyl-DL-amino acid, and a gene encoding the protein The
本発明の第3の側面の改変型D-サクシニラーゼは、Cupriavidus sp.P4-10-C株のD-サクシニラーゼのアミノ酸配列である配列番号2と70%以上、好ましくは74%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上の相同性を有するD-サクシニラーゼをベースとする。このような相同性レベルを有するアミノ酸配列は、公知のアミノ酸配列のデータベースに基づく相同性検索や、Cupriavidus sp.P4-10-C株のD-サクシニラーゼの遺伝子のDNA断片をプローブとしたハイブリダイゼーションにより得ることができる。例えば、相同性検索により得られるアミノ酸配列としては、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列が挙げられる。これらのアミノ酸配列は、NCBI(http://blast.ncbi.nlm.nih.gov/)に公開されている。なお、NCBIでは、これらのアミノ酸配列は、D-サクシニラーゼの配列ではなくペニシリンGアシラーゼ又はペニシリンGアミダーゼの配列としてそれぞれ登録されている。また、プローブハイブリダイゼーションの場合は、以下に示すようなCupriavidus属の細菌から、該当する相同性レベルのD-サクシニラーゼのアミノ酸配列を得ることができる可能性が高い。
Cupriavidus oxalaticus;
Cupriavidus gilardii;
Cupriavidus basilensis;
Cupriavidus campinensis;
Cupriavidus pauculus;
Cupriavidus pinatubonensis;
Cupriavidus respiraculi;
Cupriavidus sp。
なお、上述のCupriavidus属の細菌の中には、Ralstonia(ラルストニア)属の細菌として文献に表記されているものもあるが、Cupriavidus属が正式な属名として一般的に使用されてきている。これらの細菌の学術名は、将来の再分類により、統一又は変更される可能性がある。 The modified D-succinylase of the third aspect of the present invention is Cupriavidus sp. SEQ ID NO: 2 which is the amino acid sequence of D-succinylase of the P4-10-C strain and 70% or more, preferably 74% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more Based on homologous D-succinylase. An amino acid sequence having such a homology level is obtained by homology search based on a database of known amino acid sequences, or by Cupriavidus sp. It can be obtained by hybridization using a DNA fragment of the D-succinylase gene of the P4-10-C strain as a probe. For example, the amino acid sequence obtained by homology search includes the amino acid sequence of D-succinylase of Cupriavidus necator and Cupriavidus taiwanensis. These amino acid sequences are published in NCBI (http://blast.ncbi.nlm.nih.gov/). In NCBI, these amino acid sequences are registered as penicillin G acylase or penicillin G amidase sequences, not D-succinylase sequences. In the case of probe hybridization, it is highly possible that an amino acid sequence of D-succinylase having a corresponding homology level can be obtained from a bacterium belonging to the genus Cupriavidus as shown below.
Cupriavidus oxalaticus;
Cupriavidus gillardii;
Cupriavidus basilensis;
Cupriavidus campinensis;
Cupriavidus pauculus;
Cupriavidus pinatobonensis;
Cupriavidus respiraculi;
Cupriavidus sp.
Some bacteria of the genus Cupriavidus are described in the literature as bacteria of the genus Ralstonia, but the genus Cupriavidus has been generally used as an official genus name. The scientific names of these bacteria may be unified or changed due to future reclassification.
Cupriavidus oxalaticus;
Cupriavidus gilardii;
Cupriavidus basilensis;
Cupriavidus campinensis;
Cupriavidus pauculus;
Cupriavidus pinatubonensis;
Cupriavidus respiraculi;
Cupriavidus sp。
なお、上述のCupriavidus属の細菌の中には、Ralstonia(ラルストニア)属の細菌として文献に表記されているものもあるが、Cupriavidus属が正式な属名として一般的に使用されてきている。これらの細菌の学術名は、将来の再分類により、統一又は変更される可能性がある。 The modified D-succinylase of the third aspect of the present invention is Cupriavidus sp. SEQ ID NO: 2 which is the amino acid sequence of D-succinylase of the P4-10-C strain and 70% or more, preferably 74% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably 95% or more Based on homologous D-succinylase. An amino acid sequence having such a homology level is obtained by homology search based on a database of known amino acid sequences, or by Cupriavidus sp. It can be obtained by hybridization using a DNA fragment of the D-succinylase gene of the P4-10-C strain as a probe. For example, the amino acid sequence obtained by homology search includes the amino acid sequence of D-succinylase of Cupriavidus necator and Cupriavidus taiwanensis. These amino acid sequences are published in NCBI (http://blast.ncbi.nlm.nih.gov/). In NCBI, these amino acid sequences are registered as penicillin G acylase or penicillin G amidase sequences, not D-succinylase sequences. In the case of probe hybridization, it is highly possible that an amino acid sequence of D-succinylase having a corresponding homology level can be obtained from a bacterium belonging to the genus Cupriavidus as shown below.
Cupriavidus oxalaticus;
Cupriavidus gillardii;
Cupriavidus basilensis;
Cupriavidus campinensis;
Cupriavidus pauculus;
Cupriavidus pinatobonensis;
Cupriavidus respiraculi;
Cupriavidus sp.
Some bacteria of the genus Cupriavidus are described in the literature as bacteria of the genus Ralstonia, but the genus Cupriavidus has been generally used as an official genus name. The scientific names of these bacteria may be unified or changed due to future reclassification.
本発明の第3の側面において、改変のベースとするD-サクシニラーゼは、Cupriavidus sp.P4-10-C株の近縁種からの野生型D-サクシニラーゼに限定されず、これらの野生型D-サクシニラーゼに何らかの変異を生じさせたものも、配列番号2と70%以上の相同性を有する限り、改変のベースとして使用することができる。
In the third aspect of the present invention, the D-succinylase used as a modification base is Cupriavidus sp. Not limited to wild-type D-succinylases from closely related species of the P4-10-C strain, those having some mutations in these wild-type D-succinylases also have a homology of at least 70% with SEQ ID NO: 2. As long as it has, it can be used as a base for modification.
本発明の第3の側面において、改変は、これらのベースとするD-サクシニラーゼのアミノ酸配列中の、配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基を、本発明の第1の側面の改変型D-サクシニラーゼと同じアミノ酸残基に置換することによって行われる。ここで、「配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置」は、ベースとするD-サクシニラーゼのアミノ酸配列を配列番号2のアミノ酸配列とアラインメントさせることによって特定することができる。アラインメントは、Blastなどの公知のアルゴリズムに基づく市販のアミノ酸配列解析ソフトを使用して容易に行うことができる。例えば、先に例示したCupriavidus属の細菌のうち、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列の場合、配列番号2のアミノ酸配列とのアラインメント結果は、図3に示す通りであり、図3中の網掛けされた位置のアミノ酸残基が「配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置」のアミノ酸残基に相当する。アミノ酸置換は、例えばTransformerMutagenesis Kit;Clonetech製、EXOIII/Mung Bean Deletion Kit;Stratagene製、QuickChange Site Directed Mutagenesis Kit;Stratagene製、KOD-Plus-Mutagenesis Kit;東洋紡製などの市販のキットやPCR法を利用して、ベースとするD-サクシニラーゼのアミノ酸配列に相当する塩基配列を部位特異的に変異させることによって行うことができる。得られた遺伝子によってコードされるタンパク質の活性は、例えば、得られた遺伝子を大腸菌に導入して形質転換体を作成し、この形質転換体を培養して酵素タンパク質を生成させ、この形質転換体、この形質転換体の菌体破砕液もしくは精製した酵素タンパク質をN-サクシニル-DLアミノ酸に添加してD体に対するL体の分解比率を実施例に記載の方法で測定することによって確認することができる。
In the third aspect of the present invention, the modification is performed in the amino acid sequence of these base D-succinylases at positions 72, 181-185, 305, 348, 351, 461 of SEQ ID NO: 2, And the amino acid residue at a position equivalent to any of positions 539 is replaced with the same amino acid residue as the modified D-succinylase of the first aspect of the present invention. Here, “positions equivalent to any of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2” are amino acids of the base D-succinylase The sequence can be identified by aligning it with the amino acid sequence of SEQ ID NO: 2. The alignment can be easily performed using commercially available amino acid sequence analysis software based on a known algorithm such as Blast. For example, among the bacteria of the genus Cupriavidus exemplified above, in the case of the amino acid sequence of Cupriavidus necator and Cupriavidus taiwanensis D-succinylase, the alignment result with the amino acid sequence of SEQ ID NO: 2 is as shown in FIG. The amino acid residue at the shaded position in “the position equivalent to any of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2” Corresponds to an amino acid residue. For example, Transmuter Mutagenesis Kit; manufactured by Clonetech; EXOIII / Mung Bean Deletion Kit; manufactured by Stratagene; QuickChange Site Directed Mutesisis Kit; The base sequence corresponding to the amino acid sequence of the base D-succinylase can be mutated site-specifically. The activity of the protein encoded by the obtained gene is, for example, by introducing the obtained gene into Escherichia coli to produce a transformant, and culturing the transformant to produce an enzyme protein. The cell disruption solution of this transformant or purified enzyme protein is added to N-succinyl-DL amino acid, and the degradation ratio of L-form to D-form is measured by the method described in the Examples. it can.
また、本発明の第4の側面は、Cupriavidus metalliduransの近縁種のD-サクシニラーゼをベースとした改変型D-サクシニラーゼ及びその遺伝子に関する。即ち、本発明の第4の側面によれば、配列番号4と70%以上の相同性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、本発明の第2の側面のタンパク質(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質、及びこのタンパク質をコードすることを特徴とする遺伝子が提供される。
In addition, the fourth aspect of the present invention relates to a modified D-succinylase based on D-succinylase of a close relative of Cupriavidus metallidurans and a gene thereof. That is, according to the fourth aspect of the present invention, among amino acid sequences having 70% or more homology with SEQ ID NO: 4, among positions 177, 180, 344, 347, and 457 of SEQ ID NO: 4 A protein comprising an amino acid sequence in which an amino acid residue at a position equivalent to any one of the above is substituted with the amino acid residue shown in the protein (A) of the second aspect of the present invention, the N-succinyl-DL-amino acid There is provided a protein characterized by having an activity of selectively producing D-amino acids by acting selectively on D-form, and a gene characterized by encoding this protein.
本発明の第4の側面の改変型D-サクシニラーゼは、Cupriavidus metalliduransのD-サクシニラーゼのアミノ酸配列である配列番号4と70%以上、好ましくは74%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上の相同性を有するD-サクシニラーゼをベースとする。このような相同性レベルを有するアミノ酸配列は、公知のアミノ酸配列のデータベースに基づく相同性検索や、Cupriavidus metalliduransのD-サクシニラーゼの遺伝子のDNA断片をプローブとしたハイブリダイゼーションにより得ることができ、具体的なアミノ酸配列としては、本発明の第3の側面で例示したものと同様のものが例示される。
本発明の第4の側面において、改変のベースとするD-サクシニラーゼは、Cupriavidus metalliduransの近縁種からの野生型D-サクシニラーゼに限定されず、これらの野生型D-サクシニラーゼに何らかの変異を生じさせたものも、配列番号4と70%以上の相同性を有する限り、改変のベースとして使用することができる。
本発明の第4の側面において、改変は、これらのベースとするD-サクシニラーゼのアミノ酸配列中の、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基を、本発明の第2の側面の改変型D-サクシニラーゼと同じアミノ酸残基に置換することによって行われる。ここで、「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」は、ベースとするD-サクシニラーゼのアミノ酸配列を配列番号4のアミノ酸配列とアラインメントさせることによって特定することができる。アラインメントは、Blastなどの公知のアルゴリズムに基づく市販のアミノ酸配列解析ソフトを使用して容易に行うことができる。例えば、先に例示したCupriavidus属の細菌のうち、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列の場合、配列番号4のアミノ酸配列とのアラインメント結果は、図3に示す通りであり、図3中の網掛けされた位置のアミノ酸残基が「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」のアミノ酸残基に相当する。アミノ酸置換の方法、及び得られたタンパク質の活性の確認方法は、第3の側面と同様であるので、説明を省略する。 The modified D-succinylase according to the fourth aspect of the present invention is 70% or more, preferably 74% or more, more preferably 80% or more, more preferably 80% or more, with SEQ ID NO: 4, which is the amino acid sequence of D-succinylase of Cupriavidus metallidurans It is based on D-succinylase having a homology of 90% or more, particularly preferably 95% or more. An amino acid sequence having such a homology level can be obtained by homology search based on a database of known amino acid sequences or by hybridization using a DNA fragment of the gene of D. succinylase of Cupriavidus metallidurans as a probe. Examples of such amino acid sequences are the same as those exemplified in the third aspect of the present invention.
In the fourth aspect of the present invention, the D-succinylase on which the modification is based is not limited to wild-type D-succinylases from relatives of Cupriavidus metallidurans, but causes any mutation in these wild-type D-succinylases. As long as it has 70% or more homology with SEQ ID NO: 4, it can be used as a base for modification.
In the fourth aspect of the present invention, the modification is any one ofpositions 177, 180, 344, 347, and 457 of SEQ ID NO: 4 in the amino acid sequence of these base D-succinylases. This is done by substituting an amino acid residue at an equivalent position with the same amino acid residue as the modified D-succinylase of the second aspect of the present invention. Here, “position equivalent to any of positions 177, 180, 344, 347, and 457 of SEQ ID NO: 4” is the amino acid sequence of SEQ ID NO: 4 based on the amino acid sequence of the base D-succinylase And can be specified by aligning. The alignment can be easily performed using commercially available amino acid sequence analysis software based on a known algorithm such as Blast. For example, among the bacteria of the genus Cupriavidus exemplified above, in the case of the amino acid sequence of Cupriavidus necator and Cupriavidus taiwanensis D-succinylase, the alignment result with the amino acid sequence of SEQ ID NO: 4 is as shown in FIG. The amino acid residue at the shaded position corresponds to the amino acid residue at “position equivalent to any of positions 177, 180, 344, 347, and 457 of SEQ ID NO: 4”. Since the method for amino acid substitution and the method for confirming the activity of the obtained protein are the same as those in the third aspect, description thereof is omitted.
本発明の第4の側面において、改変のベースとするD-サクシニラーゼは、Cupriavidus metalliduransの近縁種からの野生型D-サクシニラーゼに限定されず、これらの野生型D-サクシニラーゼに何らかの変異を生じさせたものも、配列番号4と70%以上の相同性を有する限り、改変のベースとして使用することができる。
本発明の第4の側面において、改変は、これらのベースとするD-サクシニラーゼのアミノ酸配列中の、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基を、本発明の第2の側面の改変型D-サクシニラーゼと同じアミノ酸残基に置換することによって行われる。ここで、「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」は、ベースとするD-サクシニラーゼのアミノ酸配列を配列番号4のアミノ酸配列とアラインメントさせることによって特定することができる。アラインメントは、Blastなどの公知のアルゴリズムに基づく市販のアミノ酸配列解析ソフトを使用して容易に行うことができる。例えば、先に例示したCupriavidus属の細菌のうち、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列の場合、配列番号4のアミノ酸配列とのアラインメント結果は、図3に示す通りであり、図3中の網掛けされた位置のアミノ酸残基が「配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置」のアミノ酸残基に相当する。アミノ酸置換の方法、及び得られたタンパク質の活性の確認方法は、第3の側面と同様であるので、説明を省略する。 The modified D-succinylase according to the fourth aspect of the present invention is 70% or more, preferably 74% or more, more preferably 80% or more, more preferably 80% or more, with SEQ ID NO: 4, which is the amino acid sequence of D-succinylase of Cupriavidus metallidurans It is based on D-succinylase having a homology of 90% or more, particularly preferably 95% or more. An amino acid sequence having such a homology level can be obtained by homology search based on a database of known amino acid sequences or by hybridization using a DNA fragment of the gene of D. succinylase of Cupriavidus metallidurans as a probe. Examples of such amino acid sequences are the same as those exemplified in the third aspect of the present invention.
In the fourth aspect of the present invention, the D-succinylase on which the modification is based is not limited to wild-type D-succinylases from relatives of Cupriavidus metallidurans, but causes any mutation in these wild-type D-succinylases. As long as it has 70% or more homology with SEQ ID NO: 4, it can be used as a base for modification.
In the fourth aspect of the present invention, the modification is any one of
次に、本発明の改変型D-サクシニラーゼの製造方法について説明する。本発明の改変型D-サクシニラーゼは、その遺伝子を適当なベクターに挿入して組換えベクターを調製し、この組換えベクターで適当な宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養することによって容易に製造することができる。
Next, a method for producing the modified D-succinylase of the present invention will be described. The modified D-succinylase of the present invention is prepared by inserting a gene into an appropriate vector to prepare a recombinant vector, and transforming an appropriate host cell with the recombinant vector to prepare a transformant. It can be easily produced by culturing the transformant.
ベクターとしては、原核および/または真核細胞の各種宿主細胞内で複製保持または自律増殖できるものであれば特に限定されず、プラスミドベクターおよびファージベクター、ウィルスベクター等が包含される。組換えベクターの調製は、常法に従って行えばよく、例えば、これらのベクターに、本発明の改変型D-サクシニラーゼの遺伝子を適当な制限酵素およびリガーゼ、あるいは必要に応じてさらにリンカーもしくはアダプターDNAを用いて連結することにより容易に行うことができる。また、Taqポリメラーゼのように増幅末端に一塩基を付加するようなDNAポリメラーゼを用いて増幅作製した遺伝子断片であれば、TAクローニングによるベクターへの接続も可能である。
The vector is not particularly limited as long as it can be replicated and autonomously propagated in various prokaryotic and / or eukaryotic host cells, and includes plasmid vectors, phage vectors, virus vectors and the like. Recombinant vectors can be prepared according to conventional methods. For example, the modified D-succinylase gene of the present invention is added to these vectors with an appropriate restriction enzyme and ligase, or, if necessary, a linker or adapter DNA. It can carry out easily by using and connecting. In addition, gene fragments amplified using a DNA polymerase that adds a single base to the amplification end, such as Taq polymerase, can be connected to a vector by TA cloning.
また、宿主細胞としては、従来公知のものが使用可能であり、組換え発現系が確立しているものであれば特に制限されないが、好ましくは大腸菌、枯草菌、放線菌、麹菌、酵母といった微生物ならびに昆虫細胞、動物細胞、高等植物などが挙げられ、より好ましくは微生物が挙げられ、特に好ましくは大腸菌(例えば、K12株、B株など)が挙げられる。形質転換体の調製は、常法に従って行えばよい。
Moreover, as a host cell, a conventionally known cell can be used and is not particularly limited as long as a recombinant expression system is established. Preferably, microorganisms such as Escherichia coli, Bacillus subtilis, Actinomyces, Neisseria gonorrhoeae and yeast are used. Insect cells, animal cells, higher plants, etc., more preferably microorganisms, and particularly preferably Escherichia coli (for example, K12 strain, B strain, etc.). The transformant may be prepared according to a conventional method.
得られた形質転換体を、その宿主細胞に応じた適当な培養条件で一定期間培養すれば、組込まれた遺伝子から本発明の改変型D-サクシニラーゼが発現されて、形質転換体中に蓄積する。
When the obtained transformant is cultured for a certain period of time under appropriate culture conditions according to the host cell, the modified D-succinylase of the present invention is expressed from the incorporated gene and accumulated in the transformant. .
形質転換体中に蓄積した本発明の改変型D-サクシニラーゼは、未精製のまま用いることができるが、精製したものを使用しても良い。この精製方法としては、従来公知のものが使用可能であり、例えば、培養後の形質転換体あるいはその培養物を適当な緩衝液中でホモジナイズし、超音波処理や界面活性剤処理等により細胞抽出液を得、そこからタンパク質の分離精製に常套的に利用される分離技術を適宜組み合わせることにより行うことができる。このような分離技術としては、塩析、溶媒沈澱法等の溶解度の差を利用する方法、透析、限外濾過、ゲル濾過、非変性ポリアクリルアミドゲル電気泳動(PAGE)、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)などの分子量の差を利用する方法、イオン交換クロマトグラフィー、ヒドロキシアパタイトクロマトグラフィーなどの荷電を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動などの等電点の差を利用する方法などが挙げられるが、これらに限定されない。
The modified D-succinylase of the present invention accumulated in the transformant can be used as it is, but it may be used after purification. As this purification method, a conventionally known method can be used. For example, a transformed body after culture or a culture thereof is homogenized in an appropriate buffer, and cell extraction is carried out by sonication or surfactant treatment. A liquid can be obtained, and separation techniques conventionally used for protein separation and purification can be appropriately combined therewith. Such separation techniques include methods utilizing the difference in solubility such as salting out, solvent precipitation, dialysis, ultrafiltration, gel filtration, non-denaturing polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate-polyacrylamide. Method using molecular weight difference such as gel electrophoresis (SDS-PAGE), method using charge such as ion exchange chromatography and hydroxyapatite chromatography, method using specific affinity such as affinity chromatography, and reverse Examples include, but are not limited to, a method using a difference in hydrophobicity such as phase high performance liquid chromatography and a method using a difference in isoelectric point such as isoelectric focusing.
次に、本発明の改変型D-サクシニラーゼを用いてD-アミノ酸を製造する方法について説明する。本発明によるD-アミノ酸は、本発明の改変型D-サクシニラーゼを用いてN-サクシニル-DL-アミノ酸(ラセミ体)中のN-サクシニル-D-アミノ酸(D体)を特異的に加水分解する工程によって製造される。
Next, a method for producing a D-amino acid using the modified D-succinylase of the present invention will be described. The D-amino acid according to the present invention specifically hydrolyzes N-succinyl-D-amino acid (D form) in N-succinyl-DL-amino acid (racemic form) using the modified D-succinylase of the present invention. Manufactured by process.
この工程は、具体的には、適当な溶液中に、本発明の改変型D-サクシニラーゼと原料のN-サクシニル-DL-アミノ酸を溶解させて反応液を調製し、この反応液を適当な条件で反応させることによって行うことができる。
Specifically, in this step, a modified reaction solution is prepared by dissolving the modified D-succinylase of the present invention and the raw material N-succinyl-DL-amino acid in a suitable solution. It can be performed by reacting with.
使用する溶液は、蒸留水でもよいが、必要により、リン酸塩やトリスなどの緩衝剤を使用してもよい。緩衝剤を使用する場合、その濃度は20~200mMであることが好ましく、pHは6~8であることが好ましい。
The solution to be used may be distilled water, but if necessary, a buffer such as phosphate or Tris may be used. When a buffering agent is used, the concentration is preferably 20 to 200 mM, and the pH is preferably 6 to 8.
本発明の改変型D-サクシニラーゼは、反応液中10~3000mg/L(100~30000U/L)の濃度で使用されることが好ましい。
The modified D-succinylase of the present invention is preferably used at a concentration of 10 to 3000 mg / L (100 to 30000 U / L) in the reaction solution.
本発明の改変型D-サクシニラーゼと反応させるN-サクシニル-DL-アミノ酸は、種々の公知の方法によって合成することができ、例えばSakai A.et al.,Biochemistry,2006,45(14),4455-62に記載の方法によって合成することができる。原料のDL-アミノ酸の種類は、製造したいD-アミノ酸の種類に応じて適宜選択すればよく、天然に存在する20種のアミノ酸およびビフェニルアラニン、シクロヘキシルグリシン、4-ブロモフェニルアラニンなどの非天然アミノ酸およびその誘導体であることができる。反応液中のN-サクシニル-DL-アミノ酸の濃度は、特に限定されないが、一般的に1重量%~30重量%である。
N-succinyl-DL-amino acid to be reacted with the modified D-succinylase of the present invention can be synthesized by various known methods, for example, Sakai A.I. et al. , Biochemistry, 2006, 45 (14), 4455-62. The type of DL-amino acid used as a raw material may be appropriately selected according to the type of D-amino acid to be produced. Twenty naturally occurring amino acids and unnatural amino acids such as biphenylalanine, cyclohexylglycine, 4-bromophenylalanine and the like It can be a derivative thereof. The concentration of N-succinyl-DL-amino acid in the reaction solution is not particularly limited, but is generally 1% by weight to 30% by weight.
本発明のD-アミノ酸の製造方法では、反応液を反応させる温度は、本発明の改変型D-サクシニラーゼが十分作用する温度であれば特に限定されないが、一般的には5~60℃が好ましく、10~55℃がより好ましく、30~50℃がさらに好ましい。また、反応時のpHは、本発明の改変型D-サクシニラーゼが十分作用するpHであれば特に限定されないが、一般的にはpH5~10が好ましく、pH6~9がより好ましい。反応時間は、特に限定されないが、一般的に1~120時間程度、好ましくは1~72時間程度、さらに好ましくは1~24時間程度である。反応時間は、製造したいD-アミノ酸の種類と所望の収量、収率、使用する酵素や基質の量、量比、反応温度や反応pHなどを考慮し、実験的に適宜選択することができる。
In the method for producing a D-amino acid of the present invention, the temperature at which the reaction solution is reacted is not particularly limited as long as the modified D-succinylase of the present invention acts sufficiently, but generally 5 to 60 ° C. is preferable. 10 to 55 ° C is more preferable, and 30 to 50 ° C is more preferable. Further, the pH during the reaction is not particularly limited as long as the modified D-succinylase of the present invention acts sufficiently, but in general, pH 5 to 10 is preferable, and pH 6 to 9 is more preferable. The reaction time is not particularly limited, but is generally about 1 to 120 hours, preferably about 1 to 72 hours, and more preferably about 1 to 24 hours. The reaction time can be appropriately selected experimentally in consideration of the type of D-amino acid to be produced and the desired yield, yield, amount of enzyme or substrate used, quantity ratio, reaction temperature and reaction pH.
なお、本発明のD-アミノ酸の製造方法で使用する改変型D-サクシニラーゼは、精製されたものや未精製のもの(粗酵素液など)に限定されず、形質転換体中に含まれた状態のものであってもよい。この場合は、形質転換体を反応系に添加して、形質転換体を培養させながら同時に反応を進行させるか、又は予め培養された形質転換体を反応系に添加すればよい。
The modified D-succinylase used in the method for producing D-amino acid of the present invention is not limited to a purified or unpurified one (crude enzyme solution, etc.), and is included in the transformant. It may be. In this case, the transformant is added to the reaction system, and the reaction is allowed to proceed simultaneously while culturing the transformant, or the transformant cultured in advance may be added to the reaction system.
好ましくは、本発明のD-アミノ酸の製造方法は、N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-L-アミノ酸をラセミ化してN-サクシニル-D-アミノ酸を生成させる工程をさらに含む。本発明の改変型D-サクシニラーゼは、N-サクシニル-DL-アミノ酸(ラセミ体)中のN-サクシニル-D-アミノ酸を主に加水分解するため、このままではラセミ体のうち、N-サクシニル-L-アミノ酸の多くが無駄になってしまう。そこで、N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-L-アミノ酸をラセミ化してN-サクシニル-D-アミノ酸を生成させてやれば、残ったN-サクシニル-L-アミノ酸もD-アミノ酸に変換することができる。
Preferably, the method for producing D-amino acid of the present invention further includes a step of racemizing N-succinyl-L-amino acid with N-succinyl amino acid racemase to produce N-succinyl-D-amino acid. Since the modified D-succinylase of the present invention mainly hydrolyzes the N-succinyl-D-amino acid in the N-succinyl-DL-amino acid (racemate), the N-succinyl-L of the racemate remains as it is. -Many amino acids are wasted. Therefore, if N-succinyl-L-amino acid is racemized using N-succinyl amino acid racemase to produce N-succinyl-D-amino acid, the remaining N-succinyl-L-amino acid is also converted to D-amino acid. can do.
N-サクシニルアミノ酸ラセマーゼは、N-サクシニルアミノ酸のL体をD体に変換する反応とD体をL体に変換する反応の両方を触媒してその比率をほぼ等しく(ラセミ化)する酵素である。本発明の製造方法で使用するN-サクシニルアミノ酸ラセマーゼは、N-サクシニルアミノ酸をラセミ化することができれば特に限定されず、特開2007-82534号公報に記載されたN-アシルアミノ酸ラセマーゼや特開2008-61642号公報に記載されたN-アシルアミノ酸ラセマーゼなどの従来公知のものを使用することができる。
N-succinyl amino acid racemase is an enzyme that catalyzes both the reaction of converting the L-form of N-succinyl amino acid into the D-form and the reaction of converting the D-form into the L-form, and the ratios are almost equal (racemization). . The N-succinyl amino acid racemase used in the production method of the present invention is not particularly limited as long as the N-succinyl amino acid can be racemized, and the N-acyl amino acid racemase described in JP-A-2007-82534 and JP-A Conventionally known ones such as N-acylamino acid racemase described in 2008-61642 can be used.
N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-D-アミノ酸をラセミ化する反応は、例えば以下の条件でN-サクシニルアミノ酸、N-サクシニルアミノ酸ラセマーゼおよび緩衝剤を含む反応溶液中で混合することにより行なう。反応温度は、使用するN-サクシニルアミノ酸ラセマーゼが十分作用する温度であれば特に限定されないが、一般的には25~70℃が好ましく、37~60℃がより好ましい。反応時のpHは、使用するN-サクシニルアミノ酸ラセマーゼが十分作用するpHであれば特に限定されないが、一般的にはpH5~9が好ましく、pH6~8がより好ましい。N-サクシニルアミノ酸ラセマーゼは、反応液中50~15000mg/L(5000~1500000U/L)の濃度で使用されることが好ましい。N-サクシニルアミノ酸ラセマーゼは、2価の金属イオンを0.1mM~1M(好ましくは0.1~1mM)の終濃度で添加することにより、活性が著しく向上する。添加する2価の金属イオンとしては、Mn2+,Co2+,Mg2+,Fe2+およびNi2+が挙げられる。N-サクシニルアミノ酸ラセマーゼの反応に用いる緩衝剤は、D-サクシニラーゼの反応に用いる緩衝剤と同様のものが使用できる。なお、特開2007-82534号に記載のN-アシルアミノ酸ラセマーゼは、その後の研究により、N-サクシニルアミノ酸をより好適な基質とするN-サクシニルアミノ酸ラセマーゼであることが判明している。従って、特開2007-82534号に記載のN-アシルアミノ酸ラセマーゼは、本発明のD-サクシニラーゼと組合せて使用することができる。
The reaction of racemizing N-succinyl-D-amino acid using N-succinyl amino acid racemase is performed by, for example, mixing in a reaction solution containing N-succinyl amino acid, N-succinyl amino acid racemase and a buffer under the following conditions: Do. The reaction temperature is not particularly limited as long as the N-succinyl amino acid racemase to be used is sufficiently effective, but is generally preferably 25 to 70 ° C, more preferably 37 to 60 ° C. The pH during the reaction is not particularly limited as long as the N-succinyl amino acid racemase to be used acts sufficiently, but in general, pH 5 to 9 is preferable, and pH 6 to 8 is more preferable. N-succinyl amino acid racemase is preferably used at a concentration of 50 to 15000 mg / L (5000 to 1500,000 U / L) in the reaction solution. The activity of N-succinyl amino acid racemase is significantly improved by adding a divalent metal ion at a final concentration of 0.1 mM to 1 M (preferably 0.1 to 1 mM). Examples of the divalent metal ion to be added include Mn 2+ , Co 2+ , Mg 2+ , Fe 2+ and Ni 2+ . As the buffer used for the reaction of N-succinyl amino acid racemase, the same buffer as that used for the reaction of D-succinylase can be used. The N-acylamino acid racemase described in Japanese Patent Application Laid-Open No. 2007-82534 has been found to be an N-succinyl amino acid racemase using N-succinylamino acid as a more suitable substrate through subsequent studies. Therefore, the N-acyl amino acid racemase described in JP-A-2007-82534 can be used in combination with the D-succinylase of the present invention.
前述のN-サクシニルアミノ酸ラセマーゼによるラセミ化反応とD-サクシニラーゼによる加水分解反応は、別々に行なうことも可能であるが、同時に行なわれることが好ましい。同時に行われる場合、微視的に見ると、まずN-サクシニル-DL-アミノ酸のうちD体が本発明のD-サクシニラーゼにより加水分解(脱サクシニル化)され、目的のD-アミノ酸が生成する。基質のD体が消費されるとラセミ状態が解消されるため、N-サクシニルアミノ酸ラセマーゼはL体をD体に変換する反応をより促進する。N-サクシニルアミノ酸ラセマーゼにより生成したN-サクシニル-D-アミノ酸は、本発明のD-サクシニラーゼにより順次D-アミノ酸へと分解される。この繰返しにより、理論的にはほぼすべてのN-サクシニル-DL-アミノ酸をD-アミノ酸に変換することができる。ラセミ化反応および加水分解反応を同時に行う場合の反応条件は、N-サクシニルアミノ酸ラセマーゼおよび本発明のD-サクシニラーゼが活性を発揮する条件の範囲内であれば特に限定しないが、基質濃度1重量%~30重量%、pH6~8、温度40~50℃で行うことが好ましい。ラセミ化反応および加水分解反応に要する時間は、原料として用いるN-サクシニル-DL-アミノ酸が、所望する量のD-アミノ酸へと変換し得るまでの時間であれば特に制限されず、仕込み量によっても異なるが、一般的に1日~7日程度である。
The racemization reaction using N-succinylamino acid racemase and the hydrolysis reaction using D-succinylase can be performed separately, but are preferably performed simultaneously. When performed simultaneously, when viewed microscopically, the D-form of N-succinyl-DL-amino acid is first hydrolyzed (desuccinylated) by the D-succinylase of the present invention to produce the desired D-amino acid. Since the racemic state is eliminated when the D-form of the substrate is consumed, the N-succinyl amino acid racemase further promotes the reaction of converting the L-form to the D-form. N-succinyl-D-amino acid produced by N-succinyl amino acid racemase is sequentially decomposed into D-amino acids by the D-succinylase of the present invention. By repeating this, theoretically almost all N-succinyl-DL-amino acids can be converted to D-amino acids. The reaction conditions when the racemization reaction and the hydrolysis reaction are carried out simultaneously are not particularly limited as long as the N-succinylamino acid racemase and the D-succinylase of the present invention are within the range of activity, but the substrate concentration is 1% by weight. It is preferable to carry out at 30 to 30% by weight, pH 6 to 8 and temperature 40 to 50 ° C. The time required for the racemization reaction and hydrolysis reaction is not particularly limited as long as it is a time until the N-succinyl-DL-amino acid used as a raw material can be converted into a desired amount of D-amino acid, and depends on the amount charged. Generally, it is about 1 to 7 days.
以下、本発明を実施例により、具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
Hereinafter, the present invention will be specifically described by way of examples. However, the scope of the present invention is not limited to the following examples.
本実施例において、N-サクシニルトリプトファン、N-サクシニルフェニルアラニン、N-サクシニルビフェニルアラニンの定量は、特に記載がない場合は、目的に応じて、以下の分析条件で定量した。
In this example, N-succinyltryptophan, N-succinylphenylalanine, and N-succinylbiphenylalanine were quantified under the following analysis conditions depending on the purpose unless otherwise specified.
N-サクシニル-D-アミノ酸又はN-サクシニル-L-アミノ酸などの光学活性体を定量する場合は、ジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーにより行った。
When quantifying optically active substances such as N-succinyl-D-amino acid or N-succinyl-L-amino acid, a high-speed liquid using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences Inc. Performed by chromatography.
N-サクシニルトリプトファンの分析
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV280nm Analytical mobile phase of N-succinyltryptophan: pH 2.3 aqueous phosphoric acid / acetonitrile = 75/25
Flow rate: 0.7 ml / min
Column temperature: 40 ° C
Detection: UV280nm
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV280nm Analytical mobile phase of N-succinyltryptophan: pH 2.3 aqueous phosphoric acid / acetonitrile = 75/25
Flow rate: 0.7 ml / min
Column temperature: 40 ° C
Detection: UV280nm
N-サクシニルフェニルアラニンの分析
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV210nm Analytical mobile phase of N-succinylphenylalanine: pH 2.3 aqueous phosphoric acid solution / acetonitrile = 75/25
Flow rate: 0.7 ml / min
Column temperature: 40 ° C
Detection: UV210nm
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:0.7ml/min
カラム温度:40℃
検出:UV210nm Analytical mobile phase of N-succinylphenylalanine: pH 2.3 aqueous phosphoric acid solution / acetonitrile = 75/25
Flow rate: 0.7 ml / min
Column temperature: 40 ° C
Detection: UV210nm
N-サクシニルビフェニルアラニンの分析
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:1.5ml/min
カラム温度:40℃
検出:UV254nm Analytical mobile phase of N-succinylbiphenylalanine: pH 2.3 aqueous phosphoric acid / acetonitrile = 75/25
Flow rate: 1.5 ml / min
Column temperature: 40 ° C
Detection: UV254nm
移動相:pH2.3リン酸水溶液/アセトニトリル=75/25
流速:1.5ml/min
カラム温度:40℃
検出:UV254nm Analytical mobile phase of N-succinylbiphenylalanine: pH 2.3 aqueous phosphoric acid / acetonitrile = 75/25
Flow rate: 1.5 ml / min
Column temperature: 40 ° C
Detection: UV254nm
また、光学純度を測定する際には、ダイセル化学工業株式会社製光学分割カラム「CHIRALPAK QN-AX」(5μm、4.6×150mm)により行った。分析条件は以下に示した通りである。
Further, when measuring the optical purity, it was performed with an optical resolution column “CHIRALPAK QN-AX” (5 μm, 4.6 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The analysis conditions are as shown below.
N-サクシニルトリプトファン、N-サクシニルフェニルアラニン及びN-サクシニルビフェニルアラニンの分析
移動相:メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0
に調製
流速:1.0ml/min
カラム温度:35℃
検出:UV210nm Analytical mobile phase of N-succinyltryptophan, N-succinylphenylalanine and N-succinylbiphenylalanine: methanol / 0.2M acetic acid = 90/10 (V / V) pH 7.0 with ammonia
Preparation flow rate: 1.0 ml / min
Column temperature: 35 ° C
Detection: UV210nm
移動相:メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0
に調製
流速:1.0ml/min
カラム温度:35℃
検出:UV210nm Analytical mobile phase of N-succinyltryptophan, N-succinylphenylalanine and N-succinylbiphenylalanine: methanol / 0.2M acetic acid = 90/10 (V / V) pH 7.0 with ammonia
Preparation flow rate: 1.0 ml / min
Column temperature: 35 ° C
Detection: UV210nm
また、N-サクシニルアミノ酸が加水分解(脱サクシニル化)されて生成する遊離体のD-アミノ酸及びL-アミノ酸を定量する際は、ダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)により行った。分析条件は以下に示した通りである。
In addition, when quantifying free D-amino acids and L-amino acids produced by hydrolysis (desuccinylation) of N-succinylamino acids, an optical resolution column “CROWNPAK CR (+)” manufactured by Daicel Chemical Industries, Ltd. (5 μm, 4.0 × 150 mm). The analysis conditions are as shown below.
DL-トリプトファンの分析
移動相:過塩素酸水溶液(pH2.0)/メタノール=90/10
流速:0.7ml/min
カラム温度:15℃
検出:UV280nm Analytical mobile phase of DL-tryptophan: aqueous perchloric acid solution (pH 2.0) / methanol = 90/10
Flow rate: 0.7 ml / min
Column temperature: 15 ° C
Detection: UV280nm
移動相:過塩素酸水溶液(pH2.0)/メタノール=90/10
流速:0.7ml/min
カラム温度:15℃
検出:UV280nm Analytical mobile phase of DL-tryptophan: aqueous perchloric acid solution (pH 2.0) / methanol = 90/10
Flow rate: 0.7 ml / min
Column temperature: 15 ° C
Detection: UV280nm
DL-フェニルアラニンの分析
移動相:過塩素酸水溶液(pH2.0)
流速:1.2ml/min
カラム温度:15℃
検出:UV210nm Analysis mobile phase of DL-phenylalanine: aqueous perchloric acid solution (pH 2.0)
Flow rate: 1.2 ml / min
Column temperature: 15 ° C
Detection: UV210nm
移動相:過塩素酸水溶液(pH2.0)
流速:1.2ml/min
カラム温度:15℃
検出:UV210nm Analysis mobile phase of DL-phenylalanine: aqueous perchloric acid solution (pH 2.0)
Flow rate: 1.2 ml / min
Column temperature: 15 ° C
Detection: UV210nm
DL-ビフェニルアラニンの分析
移動相:過塩素酸水溶液(pH2.0)/メタノール=85/15
流速:1.5ml/min
カラム温度:50℃
検出:UV254nm Analysis mobile phase of DL-biphenylalanine: aqueous perchloric acid solution (pH 2.0) / methanol = 85/15
Flow rate: 1.5 ml / min
Column temperature: 50 ° C
Detection: UV254nm
移動相:過塩素酸水溶液(pH2.0)/メタノール=85/15
流速:1.5ml/min
カラム温度:50℃
検出:UV254nm Analysis mobile phase of DL-biphenylalanine: aqueous perchloric acid solution (pH 2.0) / methanol = 85/15
Flow rate: 1.5 ml / min
Column temperature: 50 ° C
Detection: UV254nm
本発明におけるD-サクシニラーゼの活性は、以下のD-アミノ酸オキシダーゼ法により測定することができる。
<試薬>
14mM N-サクシニル-D-バリン
2.5(U/mL) ペルオキシダーゼ(東洋紡製PEO-302)
1.5mM 4-アミノアンチピリン(第一化学薬品製)
2.4mM TOOS(同人化学研究所製)
6.0(U/mL) D-アミノ酸オキシダーゼ(バイオザイム製DOX2)
を含む25mMリン酸緩衝溶液を反応試薬とする。
なお、N-サクシニル-D-トリプトファンに対する酵素活性を測定する際には、14mM N-サクシニル-D-バリンの代わりに、33mM N-サクシニル-D-トリプトファンを使用した。
N-サクシニル-D-バリンの合成は以下のようにして行った。D-バリン(ナカライテスク製、4.7g)と無水コハク酸(ナカライテスク製、4.0g)を40mLの酢酸(ナカライテスク製)に溶解した。溶液を50~60℃に加熱し、溶媒を揮発させて結晶化した。次に、結晶化した白い沈殿を集めて、酢酸エチル20mLとメタノール20mLの混合液にて再結晶化した。沈殿を乳鉢で破砕し、乾燥させ、N-サクシニル-D-バリンを得た。詳細はSakai A.et al.,Biochemistry,2006,45(14),4455-62に記載されている。
<測定条件>
反応試薬3.0mLを37℃で5分間予備加温する。酵素溶液0.1mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、555nmの吸光度変化を5分記録し、直線部分から1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検は、酵素溶液の代わりに酵素を溶解する溶液を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってD-サクシニラーゼ活性を求める。ここでD-サクシニラーゼ活性における1単位(U)とは、上記条件下で1分間に1マイクロモルのD-アミノ酸を生成する酵素量として定義する。
活性(U/mL)=
{(ΔODTEST-ΔODBLANK)×3.1×希釈倍率}/{31.0×1/2×0.1×1.0}
なお、式中の3.1は反応試薬+酵素溶液の液量(mL)、31.0は本活性測定条件におけるミリモル分子吸光係数(cm2/マイクロモル)、1/2は酵素反応で生成したH2O2の1分子から形成するQuinoneimine色素が1/2分子であることによる係数、0.1は酵素溶液の液量(mL)、1.0はセルの光路長(cm)を示す。 The activity of D-succinylase in the present invention can be measured by the following D-amino acid oxidase method.
<Reagent>
14 mM N-succinyl-D-valine 2.5 (U / mL) peroxidase (Toyobo PEO-302)
1.5 mM 4-aminoantipyrine (Daiichi Chemical)
2.4 mM TOOS (manufactured by Doujin Chemical Laboratory)
6.0 (U / mL) D-amino acid oxidase (Biozyme DOX2)
A 25 mM phosphate buffer solution containing
In measuring the enzyme activity for N-succinyl-D-tryptophan, 33 mM N-succinyl-D-tryptophan was used instead of 14 mM N-succinyl-D-valine.
N-succinyl-D-valine was synthesized as follows. D-valine (Nacalai Tesque, 4.7 g) and succinic anhydride (Nacalai Tesque, 4.0 g) were dissolved in 40 mL of acetic acid (Nacalai Tesque). The solution was heated to 50-60 ° C. and the solvent was evaporated and crystallized. Next, the crystallized white precipitate was collected and recrystallized with a mixed solution of 20 mL of ethyl acetate and 20 mL of methanol. The precipitate was crushed in a mortar and dried to obtain N-succinyl-D-valine. For details, see Sakai A. et al. Biochemistry, 2006, 45 (14), 4455-62.
<Measurement conditions>
Prewarm 3.0 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of the enzyme solution and mixing gently, the absorbance change at 555 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and the absorbance change per minute (ΔOD TEST) ). In the blind test, a solution that dissolves the enzyme instead of the enzyme solution is added to the reagent mixture, and the change in absorbance per minute (ΔOD BLANK ) is similarly measured. From these values, D-succinylase activity is determined according to the following formula. Here, one unit (U) in D-succinylase activity is defined as the amount of enzyme that produces 1 micromole of D-amino acid per minute under the above conditions.
Activity (U / mL) =
{(ΔOD TEST −ΔOD BLANK ) × 3.1 × dilution ratio} / {31.0 × 1/2 × 0.1 × 1.0}
In the formula, 3.1 is the amount of the reaction reagent + enzyme solution (mL), 31.0 is the millimolar molecular extinction coefficient (cm 2 / micromol) under this activity measurement condition, and 1/2 is generated by the enzyme reaction. The coefficient due to the quinoneimine dye formed from one molecule of H 2 O 2 being ½ molecule, 0.1 is the volume of the enzyme solution (mL), 1.0 is the optical path length (cm) of the cell .
<試薬>
14mM N-サクシニル-D-バリン
2.5(U/mL) ペルオキシダーゼ(東洋紡製PEO-302)
1.5mM 4-アミノアンチピリン(第一化学薬品製)
2.4mM TOOS(同人化学研究所製)
6.0(U/mL) D-アミノ酸オキシダーゼ(バイオザイム製DOX2)
を含む25mMリン酸緩衝溶液を反応試薬とする。
なお、N-サクシニル-D-トリプトファンに対する酵素活性を測定する際には、14mM N-サクシニル-D-バリンの代わりに、33mM N-サクシニル-D-トリプトファンを使用した。
N-サクシニル-D-バリンの合成は以下のようにして行った。D-バリン(ナカライテスク製、4.7g)と無水コハク酸(ナカライテスク製、4.0g)を40mLの酢酸(ナカライテスク製)に溶解した。溶液を50~60℃に加熱し、溶媒を揮発させて結晶化した。次に、結晶化した白い沈殿を集めて、酢酸エチル20mLとメタノール20mLの混合液にて再結晶化した。沈殿を乳鉢で破砕し、乾燥させ、N-サクシニル-D-バリンを得た。詳細はSakai A.et al.,Biochemistry,2006,45(14),4455-62に記載されている。
<測定条件>
反応試薬3.0mLを37℃で5分間予備加温する。酵素溶液0.1mLを添加しゆるやかに混和後、水を対照に37℃に制御された分光光度計で、555nmの吸光度変化を5分記録し、直線部分から1分間あたりの吸光度変化(ΔODTEST)を測定する。盲検は、酵素溶液の代わりに酵素を溶解する溶液を試薬混液に加えて同様に1分間あたりの吸光度変化(ΔODBLANK)を測定する。これらの値から次の式に従ってD-サクシニラーゼ活性を求める。ここでD-サクシニラーゼ活性における1単位(U)とは、上記条件下で1分間に1マイクロモルのD-アミノ酸を生成する酵素量として定義する。
活性(U/mL)=
{(ΔODTEST-ΔODBLANK)×3.1×希釈倍率}/{31.0×1/2×0.1×1.0}
なお、式中の3.1は反応試薬+酵素溶液の液量(mL)、31.0は本活性測定条件におけるミリモル分子吸光係数(cm2/マイクロモル)、1/2は酵素反応で生成したH2O2の1分子から形成するQuinoneimine色素が1/2分子であることによる係数、0.1は酵素溶液の液量(mL)、1.0はセルの光路長(cm)を示す。 The activity of D-succinylase in the present invention can be measured by the following D-amino acid oxidase method.
<Reagent>
14 mM N-succinyl-D-valine 2.5 (U / mL) peroxidase (Toyobo PEO-302)
1.5 mM 4-aminoantipyrine (Daiichi Chemical)
2.4 mM TOOS (manufactured by Doujin Chemical Laboratory)
6.0 (U / mL) D-amino acid oxidase (Biozyme DOX2)
A 25 mM phosphate buffer solution containing
In measuring the enzyme activity for N-succinyl-D-tryptophan, 33 mM N-succinyl-D-tryptophan was used instead of 14 mM N-succinyl-D-valine.
N-succinyl-D-valine was synthesized as follows. D-valine (Nacalai Tesque, 4.7 g) and succinic anhydride (Nacalai Tesque, 4.0 g) were dissolved in 40 mL of acetic acid (Nacalai Tesque). The solution was heated to 50-60 ° C. and the solvent was evaporated and crystallized. Next, the crystallized white precipitate was collected and recrystallized with a mixed solution of 20 mL of ethyl acetate and 20 mL of methanol. The precipitate was crushed in a mortar and dried to obtain N-succinyl-D-valine. For details, see Sakai A. et al. Biochemistry, 2006, 45 (14), 4455-62.
<Measurement conditions>
Prewarm 3.0 mL of reaction reagent at 37 ° C. for 5 minutes. After adding 0.1 mL of the enzyme solution and mixing gently, the absorbance change at 555 nm was recorded for 5 minutes using a spectrophotometer controlled at 37 ° C. with water as a control, and the absorbance change per minute (ΔOD TEST) ). In the blind test, a solution that dissolves the enzyme instead of the enzyme solution is added to the reagent mixture, and the change in absorbance per minute (ΔOD BLANK ) is similarly measured. From these values, D-succinylase activity is determined according to the following formula. Here, one unit (U) in D-succinylase activity is defined as the amount of enzyme that produces 1 micromole of D-amino acid per minute under the above conditions.
Activity (U / mL) =
{(ΔOD TEST −ΔOD BLANK ) × 3.1 × dilution ratio} / {31.0 × 1/2 × 0.1 × 1.0}
In the formula, 3.1 is the amount of the reaction reagent + enzyme solution (mL), 31.0 is the millimolar molecular extinction coefficient (cm 2 / micromol) under this activity measurement condition, and 1/2 is generated by the enzyme reaction. The coefficient due to the quinoneimine dye formed from one molecule of H 2 O 2 being ½ molecule, 0.1 is the volume of the enzyme solution (mL), 1.0 is the optical path length (cm) of the cell .
また、N-サクシニルアミノ酸ラセマーゼの活性測定は、以下に述べる方法で行った。
HEPES(1.0M/pH7.9)を10μl(終濃度100mM)、酢酸コバルトを1μl(終濃度0.1mM)滅菌蒸留水を49μlを混和し、この溶液に酵素液10μlを加え、この反応液に、基質となるN-サクシニル-D-フェニルアラニン溶液を30μl(終濃度60mM)を加えて30℃で反応を行い、適当な時間で移動相(メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0に調製したもの)により反応停止させた。生成したN-サクシニル-L-フェニルアラニンを高速液体クロマトグラフィーにより定量し、酵素活性を算出する。酵素活性はN-サクシニル-D-フェニルアラニンからN-サクシニル-L-フェニルアラニンが1分間に1μmole生成された場合を1unit(U)と定義した。 The activity of N-succinyl amino acid racemase was measured by the method described below.
Mix 10 μl of HEPES (1.0 M / pH 7.9) (final concentration 100 mM), 1 μl of cobalt acetate (final concentration 0.1 mM) and 49 μl of sterile distilled water, add 10 μl of enzyme solution to this solution, and add this reaction solution. 30 μl (final concentration 60 mM) of N-succinyl-D-phenylalanine solution as a substrate was added and reacted at 30 ° C., and mobile phase (methanol / 0.2 M acetic acid = 90/10 (V / V) The reaction was stopped with ammonia adjusted to pH 7.0). The produced N-succinyl-L-phenylalanine is quantified by high performance liquid chromatography, and the enzyme activity is calculated. The enzyme activity was defined as 1 unit (U) when 1 μmole of N-succinyl-L-phenylalanine was produced from N-succinyl-D-phenylalanine per minute.
HEPES(1.0M/pH7.9)を10μl(終濃度100mM)、酢酸コバルトを1μl(終濃度0.1mM)滅菌蒸留水を49μlを混和し、この溶液に酵素液10μlを加え、この反応液に、基質となるN-サクシニル-D-フェニルアラニン溶液を30μl(終濃度60mM)を加えて30℃で反応を行い、適当な時間で移動相(メタノール/0.2M酢酸=90/10(V/V)アンモニアでpH7.0に調製したもの)により反応停止させた。生成したN-サクシニル-L-フェニルアラニンを高速液体クロマトグラフィーにより定量し、酵素活性を算出する。酵素活性はN-サクシニル-D-フェニルアラニンからN-サクシニル-L-フェニルアラニンが1分間に1μmole生成された場合を1unit(U)と定義した。 The activity of N-succinyl amino acid racemase was measured by the method described below.
Mix 10 μl of HEPES (1.0 M / pH 7.9) (final concentration 100 mM), 1 μl of cobalt acetate (final concentration 0.1 mM) and 49 μl of sterile distilled water, add 10 μl of enzyme solution to this solution, and add this reaction solution. 30 μl (
参考例1 Cupriavidus sp.P4-10-C株由来D-サクシニラーゼ遺伝子(以下、P4DSA遺伝子と称する)のクローニング
(1)野生型D-サクシニラーゼの精製
Cupriavidus sp.P4-10-C株(日本国茨城県つくば市東1丁目1番地1 中央第6の独立行政法人産業技術総合研究所 特許生物寄託センターに受託番号FERM BP-11387として2011年6月28日に国際寄託済)を、普通ブイヨン“栄研”1.8%に、粉末酵母エキスD-3 0.2%(和光純薬工業(株)製、Code:390-00531)、カザミノ酸「ダイゴ」0.1%(和光純薬工業(株)製、Code:392-00655)、リン酸水素二カリウム0.3%、及びグルコース0.2%を添加したpH7.5の培地で培養した。具体的には、500mLフラスコに上記培地200mLを加えオートクレーブ滅菌した培地27本を用い、35℃、150r/min、回転攪拌で2日間培養した。培養終了時の濁度(ABS660nm)は2.7であり、pHは8.6であった。培養後、冷却遠心分離機(日立工機(株)製)を用い、8000r/minで30分間遠心分離を行い、集菌した。集菌した菌体を、20mM HEPES-NaOH(pH7.5)緩衝液で洗浄した後、再度遠心分離し、菌体を36g得た。取得菌体量の約3倍の20mM HEPES-NaOH(pH7.5)緩衝液100mLで懸濁後、氷冷下の超音波細胞破砕装置 BD-1(東湘電気(株)製)を用い、5分サイクルで10回超音波破砕を行った。破砕後、高速冷却遠心機(日立工機(株)製)で8000r/min、4℃、60分間遠心分離し、上清液178mLを得た。これを粗酵素液とした。なお、本菌株は培養時にN-サクシニル-D-フェニルアラニンを添加しなくともD-サクシニラーゼを産生した。粗酵素液を透析チューブに詰め、20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液中に投入し、低温室内(4℃)で攪拌を行いながら、数回緩衝液を交換し、一昼夜透析を行った。透析終了後、高速冷却遠心機(日立工機(株)製)で4000r/min、4℃、30分間遠心分離し、上清液100mLを得た。この上清液100mLを、予め20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液で平衡化したButyl-TOYOPEARL 650Mカラム(東ソー(株)製)(3.2cmφ×20cm)に供して目的酵素を吸着させ、20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液と20mM HEPES-NaOH(pH7.5)緩衝液を総量2000mL用い、直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。Butyl-TOYOPEARLで得られた活性画分を70%硫酸アンモニウム飽和にて濃縮し、遠心分離10,000r/min、4℃、60分間にて沈殿を回収した。回収した硫安沈殿を、5mMリン酸緩衝液(pH7.2)で透析した。この透析した酵素液33mLを、予め5mMリン酸緩衝液(pH7.2)で平衡化したMacro-Prep CHT TypeI(BIO-RAD社製)ハイドロキシアパタイトカラム(1.6cmφ×20cm)に吸着させた。次に、5mMリン酸緩衝液(pH7.2)と300mM リン酸緩衝液(pH7.2)を総量150mL用いて直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。Macro-Prep CHT TypeIにより得られた活性画分130mLを、ビバスピン 20(ザルトリウス(株)製)分画分子量10000の限外ろ過膜を用いて、20mLに濃縮した。回収した濃縮液を、20mM HEPES-NaOH(pH7.5)酸緩衝液で透析した。この透析液を、予め20mM HEPES-NaOH(pH7.5)緩衝液で平衡化したHi Trap Q F.F.カラム5mL(GEヘルスケア バイオサイエンス社製)に供し、続いて20mM HEPES-NaOH(pH7.5)と20mM HEPES-NaOH(pH7.5)0.3M塩化ナトリウム酸緩衝液を総量200mL用いて直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。D-サクシニラーゼ活性が確認された画分の少量を定法のSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)分析に供し、不純蛋白質が混在しない画分を回収し、新規D-サクシニラーゼを得た。精製後の電気泳動結果を図1に示す。 Reference Example 1 Cupriavidus sp. Cloning of D-succinylase gene derived from P4-10-C strain (hereinafter referred to as P4DSA gene) (1) Purification of wild-type D-succinylase Cupriavidus sp. P4-10-C (1st East, 1-chome, Tsukuba, Ibaraki, Japan 1st International Administrative Institute, National Institute of Advanced Industrial Science and Technology, Patent Biology Depositary Center on June 28, 2011 as FERM BP-11387 Deposited) is 1.8% for ordinary bouillon “Eiken”, 0.2% for powdered yeast extract D-3 (Code: 390-00531 manufactured by Wako Pure Chemical Industries, Ltd.), “Daigo” casamino acid 0 The cells were cultured in a medium at pH 7.5 supplemented with 1% (Wako Pure Chemical Industries, Ltd., Code: 392-00655), dipotassium hydrogen phosphate 0.3%, and glucose 0.2%. Specifically, the culture was carried out for 2 days at 35 ° C., 150 r / min, with rotary stirring, using 27 mediums that were autoclaved by adding 200 mL of the above medium to a 500 mL flask. The turbidity (ABS 660 nm) at the end of the culture was 2.7, and the pH was 8.6. After culturing, the cells were collected by centrifugation at 8000 r / min for 30 minutes using a cooled centrifuge (manufactured by Hitachi Koki Co., Ltd.). The collected cells were washed with 20 mM HEPES-NaOH (pH 7.5) buffer, and then centrifuged again to obtain 36 g of cells. After suspending in 100 mL of 20 mM HEPES-NaOH (pH 7.5) buffer, which is about 3 times the amount of cells obtained, using an ultrasonic cell disruption apparatus BD-1 (manufactured by Toago Electric Co., Ltd.) under ice cooling, Ultrasonic crushing was performed 10 times in a 5-minute cycle. After crushing, the mixture was centrifuged at 8000 r / min and 4 ° C. for 60 minutes with a high-speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) to obtain 178 mL of the supernatant. This was used as a crude enzyme solution. This strain produced D-succinylase even when N-succinyl-D-phenylalanine was not added during culture. The crude enzyme solution was packed in a dialysis tube, poured into a buffer solution containing 20 mM HEPES-NaOH (pH 7.5) 1.2 M ammonium sulfate, and the buffer solution was changed several times while stirring in a low temperature chamber (4 ° C.). Dialysis was performed overnight. After completion of dialysis, the mixture was centrifuged at 4000 r / min and 4 ° C. for 30 minutes with a high-speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) to obtain 100 mL of the supernatant. 100 mL of this supernatant was applied to a Butyl-TOYOPEARL 650M column (manufactured by Tosoh Corporation) (3.2 cmφ × 20 cm) previously equilibrated with a buffer containing 1.2 mM ammonium sulfate of 20 mM HEPES-NaOH (pH 7.5). The target enzyme is adsorbed, and the enzyme is eluted by a linear concentration gradient method using a total volume of 2000 mL of a 20 mM HEPES-NaOH (pH 7.5) 1.2 M ammonium sulfate-containing buffer and 20 mM HEPES-NaOH (pH 7.5) buffer. -The fraction with succinylase activity was collected. The active fraction obtained with Butyl-TOYOPEARL was concentrated with 70% ammonium sulfate saturation, and the precipitate was collected by centrifugation at 10,000 r / min, 4 ° C. for 60 minutes. The recovered ammonium sulfate precipitate was dialyzed against 5 mM phosphate buffer (pH 7.2). 33 mL of the dialyzed enzyme solution was adsorbed onto a Macro-Prep CHT Type I (manufactured by BIO-RAD) hydroxyapatite column (1.6 cmφ × 20 cm) equilibrated in advance with a 5 mM phosphate buffer (pH 7.2). Next, the enzyme was eluted by a linear concentration gradient method using a total volume of 150 mL of 5 mM phosphate buffer (pH 7.2) and 300 mM phosphate buffer (pH 7.2), and a fraction having D-succinylase activity was recovered. . An active fraction (130 mL) obtained by Macro-Prep CHT Type I was concentrated to 20 mL using an ultrafiltration membrane having a molecular weight cut off of 10,000 by Vivaspin 20 (manufactured by Sartorius Co., Ltd.). The collected concentrated solution was dialyzed against 20 mM HEPES-NaOH (pH 7.5) acid buffer. This dialysate was previously equilibrated with 20 mM HEPES-NaOH (pH 7.5) buffer solution. F. Column 5 mL (manufactured by GE Healthcare Biosciences), followed by linear concentration using 20 mM HEPES-NaOH (pH 7.5) and 20 mM HEPES-NaOH (pH 7.5) 0.3 M sodium chloride buffer in a total volume of 200 mL The enzyme was eluted by a gradient method, and a fraction having D-succinylase activity was collected. A small amount of the fraction in which the D-succinylase activity was confirmed was subjected to a conventional SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the fraction free of impure protein was collected to obtain a novel D-succinylase. The result of electrophoresis after purification is shown in FIG.
(1)野生型D-サクシニラーゼの精製
Cupriavidus sp.P4-10-C株(日本国茨城県つくば市東1丁目1番地1 中央第6の独立行政法人産業技術総合研究所 特許生物寄託センターに受託番号FERM BP-11387として2011年6月28日に国際寄託済)を、普通ブイヨン“栄研”1.8%に、粉末酵母エキスD-3 0.2%(和光純薬工業(株)製、Code:390-00531)、カザミノ酸「ダイゴ」0.1%(和光純薬工業(株)製、Code:392-00655)、リン酸水素二カリウム0.3%、及びグルコース0.2%を添加したpH7.5の培地で培養した。具体的には、500mLフラスコに上記培地200mLを加えオートクレーブ滅菌した培地27本を用い、35℃、150r/min、回転攪拌で2日間培養した。培養終了時の濁度(ABS660nm)は2.7であり、pHは8.6であった。培養後、冷却遠心分離機(日立工機(株)製)を用い、8000r/minで30分間遠心分離を行い、集菌した。集菌した菌体を、20mM HEPES-NaOH(pH7.5)緩衝液で洗浄した後、再度遠心分離し、菌体を36g得た。取得菌体量の約3倍の20mM HEPES-NaOH(pH7.5)緩衝液100mLで懸濁後、氷冷下の超音波細胞破砕装置 BD-1(東湘電気(株)製)を用い、5分サイクルで10回超音波破砕を行った。破砕後、高速冷却遠心機(日立工機(株)製)で8000r/min、4℃、60分間遠心分離し、上清液178mLを得た。これを粗酵素液とした。なお、本菌株は培養時にN-サクシニル-D-フェニルアラニンを添加しなくともD-サクシニラーゼを産生した。粗酵素液を透析チューブに詰め、20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液中に投入し、低温室内(4℃)で攪拌を行いながら、数回緩衝液を交換し、一昼夜透析を行った。透析終了後、高速冷却遠心機(日立工機(株)製)で4000r/min、4℃、30分間遠心分離し、上清液100mLを得た。この上清液100mLを、予め20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液で平衡化したButyl-TOYOPEARL 650Mカラム(東ソー(株)製)(3.2cmφ×20cm)に供して目的酵素を吸着させ、20mM HEPES-NaOH(pH7.5)1.2M硫酸アンモニウム含有緩衝液と20mM HEPES-NaOH(pH7.5)緩衝液を総量2000mL用い、直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。Butyl-TOYOPEARLで得られた活性画分を70%硫酸アンモニウム飽和にて濃縮し、遠心分離10,000r/min、4℃、60分間にて沈殿を回収した。回収した硫安沈殿を、5mMリン酸緩衝液(pH7.2)で透析した。この透析した酵素液33mLを、予め5mMリン酸緩衝液(pH7.2)で平衡化したMacro-Prep CHT TypeI(BIO-RAD社製)ハイドロキシアパタイトカラム(1.6cmφ×20cm)に吸着させた。次に、5mMリン酸緩衝液(pH7.2)と300mM リン酸緩衝液(pH7.2)を総量150mL用いて直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。Macro-Prep CHT TypeIにより得られた活性画分130mLを、ビバスピン 20(ザルトリウス(株)製)分画分子量10000の限外ろ過膜を用いて、20mLに濃縮した。回収した濃縮液を、20mM HEPES-NaOH(pH7.5)酸緩衝液で透析した。この透析液を、予め20mM HEPES-NaOH(pH7.5)緩衝液で平衡化したHi Trap Q F.F.カラム5mL(GEヘルスケア バイオサイエンス社製)に供し、続いて20mM HEPES-NaOH(pH7.5)と20mM HEPES-NaOH(pH7.5)0.3M塩化ナトリウム酸緩衝液を総量200mL用いて直線濃度勾配法で酵素を溶出し、D-サクシニラーゼ活性のある画分を回収した。D-サクシニラーゼ活性が確認された画分の少量を定法のSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)分析に供し、不純蛋白質が混在しない画分を回収し、新規D-サクシニラーゼを得た。精製後の電気泳動結果を図1に示す。 Reference Example 1 Cupriavidus sp. Cloning of D-succinylase gene derived from P4-10-C strain (hereinafter referred to as P4DSA gene) (1) Purification of wild-type D-succinylase Cupriavidus sp. P4-10-C (1st East, 1-chome, Tsukuba, Ibaraki, Japan 1st International Administrative Institute, National Institute of Advanced Industrial Science and Technology, Patent Biology Depositary Center on June 28, 2011 as FERM BP-11387 Deposited) is 1.8% for ordinary bouillon “Eiken”, 0.2% for powdered yeast extract D-3 (Code: 390-00531 manufactured by Wako Pure Chemical Industries, Ltd.), “Daigo” casamino acid 0 The cells were cultured in a medium at pH 7.5 supplemented with 1% (Wako Pure Chemical Industries, Ltd., Code: 392-00655), dipotassium hydrogen phosphate 0.3%, and glucose 0.2%. Specifically, the culture was carried out for 2 days at 35 ° C., 150 r / min, with rotary stirring, using 27 mediums that were autoclaved by adding 200 mL of the above medium to a 500 mL flask. The turbidity (ABS 660 nm) at the end of the culture was 2.7, and the pH was 8.6. After culturing, the cells were collected by centrifugation at 8000 r / min for 30 minutes using a cooled centrifuge (manufactured by Hitachi Koki Co., Ltd.). The collected cells were washed with 20 mM HEPES-NaOH (pH 7.5) buffer, and then centrifuged again to obtain 36 g of cells. After suspending in 100 mL of 20 mM HEPES-NaOH (pH 7.5) buffer, which is about 3 times the amount of cells obtained, using an ultrasonic cell disruption apparatus BD-1 (manufactured by Toago Electric Co., Ltd.) under ice cooling, Ultrasonic crushing was performed 10 times in a 5-minute cycle. After crushing, the mixture was centrifuged at 8000 r / min and 4 ° C. for 60 minutes with a high-speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) to obtain 178 mL of the supernatant. This was used as a crude enzyme solution. This strain produced D-succinylase even when N-succinyl-D-phenylalanine was not added during culture. The crude enzyme solution was packed in a dialysis tube, poured into a buffer solution containing 20 mM HEPES-NaOH (pH 7.5) 1.2 M ammonium sulfate, and the buffer solution was changed several times while stirring in a low temperature chamber (4 ° C.). Dialysis was performed overnight. After completion of dialysis, the mixture was centrifuged at 4000 r / min and 4 ° C. for 30 minutes with a high-speed cooling centrifuge (manufactured by Hitachi Koki Co., Ltd.) to obtain 100 mL of the supernatant. 100 mL of this supernatant was applied to a Butyl-TOYOPEARL 650M column (manufactured by Tosoh Corporation) (3.2 cmφ × 20 cm) previously equilibrated with a buffer containing 1.2 mM ammonium sulfate of 20 mM HEPES-NaOH (pH 7.5). The target enzyme is adsorbed, and the enzyme is eluted by a linear concentration gradient method using a total volume of 2000 mL of a 20 mM HEPES-NaOH (pH 7.5) 1.2 M ammonium sulfate-containing buffer and 20 mM HEPES-NaOH (pH 7.5) buffer. -The fraction with succinylase activity was collected. The active fraction obtained with Butyl-TOYOPEARL was concentrated with 70% ammonium sulfate saturation, and the precipitate was collected by centrifugation at 10,000 r / min, 4 ° C. for 60 minutes. The recovered ammonium sulfate precipitate was dialyzed against 5 mM phosphate buffer (pH 7.2). 33 mL of the dialyzed enzyme solution was adsorbed onto a Macro-Prep CHT Type I (manufactured by BIO-RAD) hydroxyapatite column (1.6 cmφ × 20 cm) equilibrated in advance with a 5 mM phosphate buffer (pH 7.2). Next, the enzyme was eluted by a linear concentration gradient method using a total volume of 150 mL of 5 mM phosphate buffer (pH 7.2) and 300 mM phosphate buffer (pH 7.2), and a fraction having D-succinylase activity was recovered. . An active fraction (130 mL) obtained by Macro-Prep CHT Type I was concentrated to 20 mL using an ultrafiltration membrane having a molecular weight cut off of 10,000 by Vivaspin 20 (manufactured by Sartorius Co., Ltd.). The collected concentrated solution was dialyzed against 20 mM HEPES-NaOH (pH 7.5) acid buffer. This dialysate was previously equilibrated with 20 mM HEPES-NaOH (pH 7.5) buffer solution. F. Column 5 mL (manufactured by GE Healthcare Biosciences), followed by linear concentration using 20 mM HEPES-NaOH (pH 7.5) and 20 mM HEPES-NaOH (pH 7.5) 0.3 M sodium chloride buffer in a total volume of 200 mL The enzyme was eluted by a gradient method, and a fraction having D-succinylase activity was collected. A small amount of the fraction in which the D-succinylase activity was confirmed was subjected to a conventional SDS-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the fraction free of impure protein was collected to obtain a novel D-succinylase. The result of electrophoresis after purification is shown in FIG.
(2)部分アミノ酸配列の取得
SDS-PAGE後に該酵素に相当するバンドをアクリルアミドゲル上からPVDF膜(Bio-Rad:シーケ-ブロットPVDFメンブレン)に転写し、N末端アミノ酸配列分析、及び内部アミノ酸配列分析を行い、約60kDaのバンドから内部アミノ酸配列;SNNWVIAGSRTSTGR、約23kDaのバンドからN末端アミノ酸配列;APPTDRYAAPGLEKPと内部アミノ酸配列;MARDFGPAYVDGDRRを得た。 (2) Acquisition of partial amino acid sequence After SDS-PAGE, a band corresponding to the enzyme was transferred from an acrylamide gel to a PVDF membrane (Bio-Rad: Sequel-Blot PVDF membrane), N-terminal amino acid sequence analysis, and internal amino acid sequence Analysis was performed to obtain an internal amino acid sequence from the band of about 60 kDa; SNNWVIAGSRSTSTGR; an N-terminal amino acid sequence from the band of about 23 kDa; APPTDRYAAPGLEKP and the internal amino acid sequence; MARDFGPAYVDGDRR.
SDS-PAGE後に該酵素に相当するバンドをアクリルアミドゲル上からPVDF膜(Bio-Rad:シーケ-ブロットPVDFメンブレン)に転写し、N末端アミノ酸配列分析、及び内部アミノ酸配列分析を行い、約60kDaのバンドから内部アミノ酸配列;SNNWVIAGSRTSTGR、約23kDaのバンドからN末端アミノ酸配列;APPTDRYAAPGLEKPと内部アミノ酸配列;MARDFGPAYVDGDRRを得た。 (2) Acquisition of partial amino acid sequence After SDS-PAGE, a band corresponding to the enzyme was transferred from an acrylamide gel to a PVDF membrane (Bio-Rad: Sequel-Blot PVDF membrane), N-terminal amino acid sequence analysis, and internal amino acid sequence Analysis was performed to obtain an internal amino acid sequence from the band of about 60 kDa; SNNWVIAGSRSTSTGR; an N-terminal amino acid sequence from the band of about 23 kDa; APPTDRYAAPGLEKP and the internal amino acid sequence; MARDFGPAYVDGDRR.
(3)染色体DNAの調製
培養液50mLの菌体を遠心分離操作に供し、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)を用いて、そのプロトコールに従ってゲノム精製を行った。しかし、本キットで精製したゲノムDNAでは全長配列のクローニングのためのPCR反応において、長鎖のDNA断片を増幅させることができなかった。PCR条件を検討しても改善は見られなかったため、これはゲノムDNAの純度に問題があると考え、「current protocols in molucular biology」に記載されている公知の方法に基づいて、再びゲノムDNAの抽出を行った。まず、50mLの培地で培養し、集菌した菌体をTE(50mM Tris-HCl(pH8.0)、20mM EDTA)に懸濁して洗浄し、遠心分離操作により菌体を回収した後、再びこの菌体を11.3mLのTEに懸濁した。さらに、この懸濁液に0.06mlの20mg/mLプロテイナーゼK溶液、0.6mLの10%SDS溶液を加えた後、37℃で1時間インキュベートした。インキュベート後、2mLの5M NaCl溶液を加えて十分に攪拌し、1.6mLのCTAB/NaCl溶液(10% CTAB/0.7M NaCl)を混合し、65℃で10分間インキュベートした。インキュベート後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。通常の細菌であれば、この工程で水層に濁りは見られないが、本菌においては濁りが残っていた。そこで、もう一度、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。これにより、濁りが完全に除去されたので、続いて、分離した水層に対して等量の24/1=クロロホルム/イソアミルアルコールを加えて混合し、水層を回収した。これと等量のイソプロパノールを加えてDNAを沈殿させ、回収した。沈殿したDNAを0.5mLのTEに溶解した後、5μlの10mg/mL RNaseを加えて、37℃で一晩反応させた。反応後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行い、24/1=クロロホルム/イソアミルアルコールを加えて攪拌し、水層を回収した。この操作をさらに2回行った後に得られた水層に終濃度0.4Mとなるように3M酢酸ナトリウム溶液(pH5.2)を加え、さらに2倍容のエタノールを加えた。沈殿となって生じたDNAを回収し、70%エタノールで洗浄、乾燥させ、1mLのTEに溶解させた。 (3) Preparation of chromosomal DNA 50 mL of the culture broth was subjected to centrifugation, and genome purification was performed using a genome extraction kit (Toyobo: Genomic DNA purification Kit) according to the protocol. However, in the genomic DNA purified with this kit, a long-chain DNA fragment could not be amplified in the PCR reaction for cloning the full-length sequence. Since no improvement was seen even when the PCR conditions were examined, it was considered that there was a problem with the purity of the genomic DNA. Based on the known method described in “current protocols in molecular biology”, the genomic DNA was again analyzed. Extraction was performed. First, the cells were cultured in 50 mL of the medium, and the collected cells were suspended in TE (50 mM Tris-HCl (pH 8.0), 20 mM EDTA) and washed. After the cells were collected by centrifugation, the cells were again collected. The cells were suspended in 11.3 mL of TE. Further, 0.06 ml of 20 mg / mL proteinase K solution and 0.6 mL of 10% SDS solution were added to this suspension, followed by incubation at 37 ° C. for 1 hour. After incubation, 2 mL of 5M NaCl solution was added and stirred well, 1.6 mL of CTAB / NaCl solution (10% CTAB / 0.7M NaCl) was mixed and incubated at 65 ° C. for 10 minutes. After incubation, deproteinization was performed with an equal volume of 25/24/1 = phenol / chloroform / isoamyl alcohol solution. In the case of ordinary bacteria, turbidity was not observed in the aqueous layer in this step, but turbidity remained in this bacterium. Therefore, deproteinization was performed once again with an equal amount of 25/24/1 = phenol / chloroform / isoamyl alcohol solution. As a result, the turbidity was completely removed. Then, an equal amount of 24/1 = chloroform / isoamyl alcohol was added to the separated aqueous layer and mixed to recover the aqueous layer. An equivalent amount of isopropanol was added thereto to precipitate and collect DNA. The precipitated DNA was dissolved in 0.5 mL of TE, 5 μl of 10 mg / mL RNase was added, and the mixture was reacted at 37 ° C. overnight. After the reaction, deproteinization was performed with an equal amount of 25/24/1 = phenol / chloroform / isoamyl alcohol solution, 24/1 = chloroform / isoamyl alcohol was added and stirred, and the aqueous layer was recovered. 3M sodium acetate solution (pH 5.2) was added to the aqueous layer obtained after performing this operation twice more so that the final concentration was 0.4M, and further 2 volumes of ethanol was added. The DNA produced as a precipitate was collected, washed with 70% ethanol, dried, and dissolved in 1 mL of TE.
培養液50mLの菌体を遠心分離操作に供し、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)を用いて、そのプロトコールに従ってゲノム精製を行った。しかし、本キットで精製したゲノムDNAでは全長配列のクローニングのためのPCR反応において、長鎖のDNA断片を増幅させることができなかった。PCR条件を検討しても改善は見られなかったため、これはゲノムDNAの純度に問題があると考え、「current protocols in molucular biology」に記載されている公知の方法に基づいて、再びゲノムDNAの抽出を行った。まず、50mLの培地で培養し、集菌した菌体をTE(50mM Tris-HCl(pH8.0)、20mM EDTA)に懸濁して洗浄し、遠心分離操作により菌体を回収した後、再びこの菌体を11.3mLのTEに懸濁した。さらに、この懸濁液に0.06mlの20mg/mLプロテイナーゼK溶液、0.6mLの10%SDS溶液を加えた後、37℃で1時間インキュベートした。インキュベート後、2mLの5M NaCl溶液を加えて十分に攪拌し、1.6mLのCTAB/NaCl溶液(10% CTAB/0.7M NaCl)を混合し、65℃で10分間インキュベートした。インキュベート後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。通常の細菌であれば、この工程で水層に濁りは見られないが、本菌においては濁りが残っていた。そこで、もう一度、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行った。これにより、濁りが完全に除去されたので、続いて、分離した水層に対して等量の24/1=クロロホルム/イソアミルアルコールを加えて混合し、水層を回収した。これと等量のイソプロパノールを加えてDNAを沈殿させ、回収した。沈殿したDNAを0.5mLのTEに溶解した後、5μlの10mg/mL RNaseを加えて、37℃で一晩反応させた。反応後、等量の25/24/1=フェノール/クロロホルム/イソアミルアルコール溶液で除タンパクを行い、24/1=クロロホルム/イソアミルアルコールを加えて攪拌し、水層を回収した。この操作をさらに2回行った後に得られた水層に終濃度0.4Mとなるように3M酢酸ナトリウム溶液(pH5.2)を加え、さらに2倍容のエタノールを加えた。沈殿となって生じたDNAを回収し、70%エタノールで洗浄、乾燥させ、1mLのTEに溶解させた。 (3) Preparation of chromosomal DNA 50 mL of the culture broth was subjected to centrifugation, and genome purification was performed using a genome extraction kit (Toyobo: Genomic DNA purification Kit) according to the protocol. However, in the genomic DNA purified with this kit, a long-chain DNA fragment could not be amplified in the PCR reaction for cloning the full-length sequence. Since no improvement was seen even when the PCR conditions were examined, it was considered that there was a problem with the purity of the genomic DNA. Based on the known method described in “current protocols in molecular biology”, the genomic DNA was again analyzed. Extraction was performed. First, the cells were cultured in 50 mL of the medium, and the collected cells were suspended in TE (50 mM Tris-HCl (pH 8.0), 20 mM EDTA) and washed. After the cells were collected by centrifugation, the cells were again collected. The cells were suspended in 11.3 mL of TE. Further, 0.06 ml of 20 mg / mL proteinase K solution and 0.6 mL of 10% SDS solution were added to this suspension, followed by incubation at 37 ° C. for 1 hour. After incubation, 2 mL of 5M NaCl solution was added and stirred well, 1.6 mL of CTAB / NaCl solution (10% CTAB / 0.7M NaCl) was mixed and incubated at 65 ° C. for 10 minutes. After incubation, deproteinization was performed with an equal volume of 25/24/1 = phenol / chloroform / isoamyl alcohol solution. In the case of ordinary bacteria, turbidity was not observed in the aqueous layer in this step, but turbidity remained in this bacterium. Therefore, deproteinization was performed once again with an equal amount of 25/24/1 = phenol / chloroform / isoamyl alcohol solution. As a result, the turbidity was completely removed. Then, an equal amount of 24/1 = chloroform / isoamyl alcohol was added to the separated aqueous layer and mixed to recover the aqueous layer. An equivalent amount of isopropanol was added thereto to precipitate and collect DNA. The precipitated DNA was dissolved in 0.5 mL of TE, 5 μl of 10 mg / mL RNase was added, and the mixture was reacted at 37 ° C. overnight. After the reaction, deproteinization was performed with an equal amount of 25/24/1 = phenol / chloroform / isoamyl alcohol solution, 24/1 = chloroform / isoamyl alcohol was added and stirred, and the aqueous layer was recovered. 3M sodium acetate solution (pH 5.2) was added to the aqueous layer obtained after performing this operation twice more so that the final concentration was 0.4M, and further 2 volumes of ethanol was added. The DNA produced as a precipitate was collected, washed with 70% ethanol, dried, and dissolved in 1 mL of TE.
(4)P4DSA遺伝子の全長配列取得
上記(2)で同定したアミノ酸配列をもとに縮重プライマーを合成し(表1の配列番号5、6)、Cupriavidus sp.P4-10-Cから、上記(3)で抽出したゲノムDNAを鋳型として、DNAポリメラーゼKOD-Plus(東洋紡製)を用いて推奨する条件のもとPCRを行った。該PCRで増幅されたPCR産物をクローニングキットTarget Clone-Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、エシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、部分配列575bpを取得した。さらに、全長配列を取得するために以下のような操作を行った。TAKARA LA PCR In Vitro Cloning Kit(タカラバイオ製)を用いて、そのプロトコールに従って操作を行い、既知配列からC末端方向へのDNA断片を増幅させることに成功し、開始コドンを含むN末端から既知の部分遺伝子配列までの塩基配列を決定した。しかしながら、上記キットではC末端側の塩基配列を決定することができなかったため、既知の塩基配列に基づき、遺伝子の外側方向に向けた2種類のプライマー(表1の配列番号7、8)を新たに設計した。このプライマーを用い、先に得たDNAを鋳型にInverse PCR法を行った。これにより、既に取得した部分遺伝子より外側の遺伝子部分を含むDNA断片を取得し、C末端配列を決定した。続いて、酵素のN末端より上流と推定される部分にNdeIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号9)とC末端より下流と推定される部分にEcoRIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号10)を用いて、この配列の間のDNAを先に得たDNAを鋳型にしたPCRにより増幅することでサクシニラーゼ遺伝子の全長を含むDNA断片を取得した。得られたDNA断片の塩基配列を解析し、D-サクシニラーゼ遺伝子の全長が含まれていることを確認し、そのアミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号1及び2に示す。 (4) Acquisition of full-length sequence of P4DSA gene Degenerate primers were synthesized based on the amino acid sequence identified in (2) above (SEQ ID NOs: 5 and 6 in Table 1), and Cupriavidus sp. PCR was performed under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo) from P4-10-C using the genomic DNA extracted in (3) above as a template. The PCR product amplified by the PCR was operated in accordance with its protocol using a cloning kit Target Clone-Plus (manufactured by Toyobo), cloned into the vector pBluescript, and Escherichia coli DH5α strain competent cell (Toyobo). And the transformant was obtained. The transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and a partial sequence of 575 bp was obtained. Furthermore, the following operation was performed to obtain a full-length sequence. Using TAKARA LA PCR In Vitro Cloning Kit (manufactured by Takara Bio Inc.), the operation was performed according to the protocol, and a DNA fragment from a known sequence toward the C-terminal was successfully amplified. The base sequence up to the partial gene sequence was determined. However, since the above-mentioned kit was unable to determine the base sequence on the C-terminal side, two types of primers (SEQ ID NOs: 7 and 8 in Table 1) directed to the outside of the gene were newly added based on the known base sequence. Designed. Using this primer, an inverse PCR method was performed using the previously obtained DNA as a template. Thereby, a DNA fragment containing a gene part outside the already obtained partial gene was obtained, and the C-terminal sequence was determined. Subsequently, a DNA primer (SEQ ID NO: 9 in Table 1) having a sequence in which an NdeI cleavage site is bound to a portion presumed to be upstream from the N-terminus of the enzyme, and EcoRI cleavage to a portion presumed to be downstream from the C-terminus Using a DNA primer (SEQ ID NO: 10 in Table 1) having a sequence to which the sites are bound, the DNA between this sequence is amplified by PCR using the previously obtained DNA as a template, thereby including the full length of the succinylase gene. A DNA fragment was obtained. The nucleotide sequence of the obtained DNA fragment was analyzed to confirm that the full length of the D-succinylase gene was included, and the amino acid sequence was estimated. The obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 1 and 2, respectively.
上記(2)で同定したアミノ酸配列をもとに縮重プライマーを合成し(表1の配列番号5、6)、Cupriavidus sp.P4-10-Cから、上記(3)で抽出したゲノムDNAを鋳型として、DNAポリメラーゼKOD-Plus(東洋紡製)を用いて推奨する条件のもとPCRを行った。該PCRで増幅されたPCR産物をクローニングキットTarget Clone-Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、エシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、部分配列575bpを取得した。さらに、全長配列を取得するために以下のような操作を行った。TAKARA LA PCR In Vitro Cloning Kit(タカラバイオ製)を用いて、そのプロトコールに従って操作を行い、既知配列からC末端方向へのDNA断片を増幅させることに成功し、開始コドンを含むN末端から既知の部分遺伝子配列までの塩基配列を決定した。しかしながら、上記キットではC末端側の塩基配列を決定することができなかったため、既知の塩基配列に基づき、遺伝子の外側方向に向けた2種類のプライマー(表1の配列番号7、8)を新たに設計した。このプライマーを用い、先に得たDNAを鋳型にInverse PCR法を行った。これにより、既に取得した部分遺伝子より外側の遺伝子部分を含むDNA断片を取得し、C末端配列を決定した。続いて、酵素のN末端より上流と推定される部分にNdeIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号9)とC末端より下流と推定される部分にEcoRIの切断部位を結合させた配列を有するDNAプライマー(表1の配列番号10)を用いて、この配列の間のDNAを先に得たDNAを鋳型にしたPCRにより増幅することでサクシニラーゼ遺伝子の全長を含むDNA断片を取得した。得られたDNA断片の塩基配列を解析し、D-サクシニラーゼ遺伝子の全長が含まれていることを確認し、そのアミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号1及び2に示す。 (4) Acquisition of full-length sequence of P4DSA gene Degenerate primers were synthesized based on the amino acid sequence identified in (2) above (SEQ ID NOs: 5 and 6 in Table 1), and Cupriavidus sp. PCR was performed under the recommended conditions using DNA polymerase KOD-Plus (manufactured by Toyobo) from P4-10-C using the genomic DNA extracted in (3) above as a template. The PCR product amplified by the PCR was operated in accordance with its protocol using a cloning kit Target Clone-Plus (manufactured by Toyobo), cloned into the vector pBluescript, and Escherichia coli DH5α strain competent cell (Toyobo). And the transformant was obtained. The transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and a partial sequence of 575 bp was obtained. Furthermore, the following operation was performed to obtain a full-length sequence. Using TAKARA LA PCR In Vitro Cloning Kit (manufactured by Takara Bio Inc.), the operation was performed according to the protocol, and a DNA fragment from a known sequence toward the C-terminal was successfully amplified. The base sequence up to the partial gene sequence was determined. However, since the above-mentioned kit was unable to determine the base sequence on the C-terminal side, two types of primers (SEQ ID NOs: 7 and 8 in Table 1) directed to the outside of the gene were newly added based on the known base sequence. Designed. Using this primer, an inverse PCR method was performed using the previously obtained DNA as a template. Thereby, a DNA fragment containing a gene part outside the already obtained partial gene was obtained, and the C-terminal sequence was determined. Subsequently, a DNA primer (SEQ ID NO: 9 in Table 1) having a sequence in which an NdeI cleavage site is bound to a portion presumed to be upstream from the N-terminus of the enzyme, and EcoRI cleavage to a portion presumed to be downstream from the C-terminus Using a DNA primer (SEQ ID NO: 10 in Table 1) having a sequence to which the sites are bound, the DNA between this sequence is amplified by PCR using the previously obtained DNA as a template, thereby including the full length of the succinylase gene. A DNA fragment was obtained. The nucleotide sequence of the obtained DNA fragment was analyzed to confirm that the full length of the D-succinylase gene was included, and the amino acid sequence was estimated. The obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 1 and 2, respectively.
(5)取得できたP4DSAの塩基配列
上記(4)で得られたCupriavidus sp.P4-10-C株由来D-サクシニラーゼ遺伝子をNCBI-BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi)により検索すると、Cupriavidus melallidurans CH34のpeptidase S45,penicillin amidase(ACCESSION No.YP_587763)として登録されている遺伝子と76%の相同性を示した。このpenicillin amidaseが属しているpenicillin acylaseファミリーは、ペニシリンGやセファロスポリンC等を加水分解する酵素であり、このような酵素がN-サクシニル-D-アミノ酸を加水分解することを推定することは困難であり、機能から予測してホモロジー検索により本遺伝子を取得することは不可能に近いものであった。 (5) The base sequence of the obtained P4DSA Cupriavidus sp. When the D-succinylase gene derived from the P4-10-C strain was searched by NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), Peptidase sillAinSlAinSinA45A peptidase SIlAinSinApSidseinSinApS .YP — 587763) and 76% homology with the gene registered. The penicillin acylase family to which this penicillin amidase belongs is an enzyme that hydrolyzes penicillin G, cephalosporin C, etc., and it is presumed that such an enzyme hydrolyzes N-succinyl-D-amino acid. It was difficult, and it was almost impossible to obtain this gene by homology search predicted from the function.
上記(4)で得られたCupriavidus sp.P4-10-C株由来D-サクシニラーゼ遺伝子をNCBI-BLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi)により検索すると、Cupriavidus melallidurans CH34のpeptidase S45,penicillin amidase(ACCESSION No.YP_587763)として登録されている遺伝子と76%の相同性を示した。このpenicillin amidaseが属しているpenicillin acylaseファミリーは、ペニシリンGやセファロスポリンC等を加水分解する酵素であり、このような酵素がN-サクシニル-D-アミノ酸を加水分解することを推定することは困難であり、機能から予測してホモロジー検索により本遺伝子を取得することは不可能に近いものであった。 (5) The base sequence of the obtained P4DSA Cupriavidus sp. When the D-succinylase gene derived from the P4-10-C strain was searched by NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), Peptidase sillAinSlAinSinA45A peptidase SIlAinSinApSidseinSinApS .YP — 587763) and 76% homology with the gene registered. The penicillin acylase family to which this penicillin amidase belongs is an enzyme that hydrolyzes penicillin G, cephalosporin C, etc., and it is presumed that such an enzyme hydrolyzes N-succinyl-D-amino acid. It was difficult, and it was almost impossible to obtain this gene by homology search predicted from the function.
参考例2 Cupriavidus metallidurans株由来D-サクシニラーゼ遺伝子(以下、CmDSA遺伝子と称する)のクローニング
また、Cupriavidus sp.P4-10-Cの近縁種であるCupriavidus metallidurans由来のD-サクシニラーゼのクローニングも行った。 Reference Example 2 Cloning of D-succinylase gene (hereinafter referred to as CmDSA gene) derived from Cupriavidus metallidurans strain and Cupriavidus sp. Cloning of D-succinylase from Cupriavidus metallidurans, a related species of P4-10-C, was also performed.
また、Cupriavidus sp.P4-10-Cの近縁種であるCupriavidus metallidurans由来のD-サクシニラーゼのクローニングも行った。 Reference Example 2 Cloning of D-succinylase gene (hereinafter referred to as CmDSA gene) derived from Cupriavidus metallidurans strain and Cupriavidus sp. Cloning of D-succinylase from Cupriavidus metallidurans, a related species of P4-10-C, was also performed.
(1)CmDSAのクローニング
独立行政法人製品評価技術基盤機構よりCupriavidus metallidurans(NBRC番号101272)の菌株を取得し、液体培地で培養した。培養して得た菌体から、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)によりゲノムを抽出した。遺伝子特異的プライマーを合成し(表7の配列番号43、44)、得られたゲノムを鋳型にDNAポリメラーゼKOD-Plus(東洋紡製)を用いたPCRにより遺伝子を取得した。クローニングキットTarget Clone-Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、組換え発現プラスミドpCmDSAを取得した。pCmDSAをエシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、アミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号3及び4に示す。 (1) Cloning of CmDSA A strain of Cupriavidus metallidrans (NBRC No. 101272) was obtained from the National Institute of Technology and Evaluation, an independent administrative agency, and cultured in a liquid medium. A genome was extracted from the cells obtained by the culture using a genome extraction kit (Toyobo: Genomic DNA purification Kit). Gene-specific primers were synthesized (SEQ ID NOs: 43 and 44 in Table 7), and the gene was obtained by PCR using DNA polymerase KOD-Plus (manufactured by Toyobo) using the obtained genome as a template. Using cloning kit Target Clone-Plus (manufactured by Toyobo Co., Ltd.), the operation was performed according to the protocol, and the product was cloned into the vector pBluescript to obtain a recombinant expression plasmid pCmDSA. pCmDSA was transformed into Escherichia coli DH5α competent cell (manufactured by Toyobo) to obtain the transformant. The transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and the amino acid sequence was deduced. The obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 3 and 4, respectively.
独立行政法人製品評価技術基盤機構よりCupriavidus metallidurans(NBRC番号101272)の菌株を取得し、液体培地で培養した。培養して得た菌体から、ゲノム抽出キット(東洋紡:Genomic DNA purification Kit)によりゲノムを抽出した。遺伝子特異的プライマーを合成し(表7の配列番号43、44)、得られたゲノムを鋳型にDNAポリメラーゼKOD-Plus(東洋紡製)を用いたPCRにより遺伝子を取得した。クローニングキットTarget Clone-Plus(東洋紡製)を用いて、そのプロトコールに従って操作を行い、ベクターpBluescriptにクローニングし、組換え発現プラスミドpCmDSAを取得した。pCmDSAをエシェリヒア・コリー(Escherichia coli)DH5α株コンピテントセル(東洋紡製)に形質転換し、該形質転換体を取得した。該形質転換体をLB培地で培養し、プラスミドを抽出し、BigDye(商標登録)Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems)により遺伝子配列を確認し、アミノ酸配列を推定した。得られた塩基配列及びアミノ酸配列をそれぞれ、配列表の配列番号3及び4に示す。 (1) Cloning of CmDSA A strain of Cupriavidus metallidrans (NBRC No. 101272) was obtained from the National Institute of Technology and Evaluation, an independent administrative agency, and cultured in a liquid medium. A genome was extracted from the cells obtained by the culture using a genome extraction kit (Toyobo: Genomic DNA purification Kit). Gene-specific primers were synthesized (SEQ ID NOs: 43 and 44 in Table 7), and the gene was obtained by PCR using DNA polymerase KOD-Plus (manufactured by Toyobo) using the obtained genome as a template. Using cloning kit Target Clone-Plus (manufactured by Toyobo Co., Ltd.), the operation was performed according to the protocol, and the product was cloned into the vector pBluescript to obtain a recombinant expression plasmid pCmDSA. pCmDSA was transformed into Escherichia coli DH5α competent cell (manufactured by Toyobo) to obtain the transformant. The transformant was cultured in LB medium, the plasmid was extracted, the gene sequence was confirmed by BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), and the amino acid sequence was deduced. The obtained base sequence and amino acid sequence are shown in SEQ ID NOs: 3 and 4, respectively.
参考例3 P4DSA遺伝子発現プラスミドの構築
参考例1で得られたD-サクシニラーゼ遺伝子のN末端、C末端部分にそれぞれ制限酵素NdeI及びEcoRIの切断部位を結合させた配列を有するプライマー(表1の配列番号9、10)を用いて、この間のDNAを参考例1で得たゲノムDNAを鋳型にしたPCRにより増幅することで、オープンリーディングフレームを含むDNA断片を取得した。このDNA断片を制限酵素NdeIとEcoRIで切断し、同酵素で切断したベクタープラスミドpBSKと混合し、混合液と等量のライゲーション試薬(東洋紡製ラーゲーションハイ)を加えてインキュベーションすることにより、ライゲーションを実施した。このようにライゲーションしたDNAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。このようにしてD-サクシニラーゼ遺伝子を大量に発現できるように設計されたpBSKP4DSAを取得した。 Reference Example 3 Construction of P4DSA Gene Expression Plasmid Primer having a sequence in which the cleavage sites of restriction enzymes NdeI and EcoRI are bound to the N-terminal and C-terminal parts of the D-succinylase gene obtained in Reference Example 1, respectively (sequence in Table 1 A DNA fragment containing an open reading frame was obtained by amplifying the DNA during this period by PCR using the genomic DNA obtained in Reference Example 1 as a template. The DNA fragment was cleaved with restriction enzymes NdeI and EcoRI, mixed with vector plasmid pBSK cleaved with the same enzyme, ligation reagent (Toyobo Lagation High) was added to the mixture and incubated, and ligation was performed. Carried out. The ligated DNA was transformed into Escherichia coli DH5α strain competent cells (Toyobo Competent High DH5α) according to the protocol attached to the product to obtain the transformants. Thus, pBSKP4DSA designed to express a large amount of the D-succinylase gene was obtained.
参考例1で得られたD-サクシニラーゼ遺伝子のN末端、C末端部分にそれぞれ制限酵素NdeI及びEcoRIの切断部位を結合させた配列を有するプライマー(表1の配列番号9、10)を用いて、この間のDNAを参考例1で得たゲノムDNAを鋳型にしたPCRにより増幅することで、オープンリーディングフレームを含むDNA断片を取得した。このDNA断片を制限酵素NdeIとEcoRIで切断し、同酵素で切断したベクタープラスミドpBSKと混合し、混合液と等量のライゲーション試薬(東洋紡製ラーゲーションハイ)を加えてインキュベーションすることにより、ライゲーションを実施した。このようにライゲーションしたDNAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。このようにしてD-サクシニラーゼ遺伝子を大量に発現できるように設計されたpBSKP4DSAを取得した。 Reference Example 3 Construction of P4DSA Gene Expression Plasmid Primer having a sequence in which the cleavage sites of restriction enzymes NdeI and EcoRI are bound to the N-terminal and C-terminal parts of the D-succinylase gene obtained in Reference Example 1, respectively (sequence in Table 1 A DNA fragment containing an open reading frame was obtained by amplifying the DNA during this period by PCR using the genomic DNA obtained in Reference Example 1 as a template. The DNA fragment was cleaved with restriction enzymes NdeI and EcoRI, mixed with vector plasmid pBSK cleaved with the same enzyme, ligation reagent (Toyobo Lagation High) was added to the mixture and incubated, and ligation was performed. Carried out. The ligated DNA was transformed into Escherichia coli DH5α strain competent cells (Toyobo Competent High DH5α) according to the protocol attached to the product to obtain the transformants. Thus, pBSKP4DSA designed to express a large amount of the D-succinylase gene was obtained.
参考例4 P4DSA発現E.coliの作製
参考例3で構築したプラスミド、pBSKP4DSAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。 Reference Example 4 P4DSA expression The plasmid constructed in Reference Example 3 of E. coli, pBSKP4DSA, was transformed into Escherichia coli DH5α strain competent cells (Toyobo Competent High DH5α) according to the protocol attached to this product, and the transformants were obtained. .
参考例3で構築したプラスミド、pBSKP4DSAをエシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に当製品に添付のプロトコールに従ってそれぞれ形質転換し、該形質転換体を取得した。 Reference Example 4 P4DSA expression The plasmid constructed in Reference Example 3 of E. coli, pBSKP4DSA, was transformed into Escherichia coli DH5α strain competent cells (Toyobo Competent High DH5α) according to the protocol attached to this product, and the transformants were obtained. .
参考例5 N-サクシニルアミノ酸ラセマーゼの調製
特開2007-82534号公報の実施例に記載の方法で、Chloroflexus aurantiacus(クロロフレクス・アウランチアクス)由来のN-サクシニルアミノ酸ラセマーゼを調製し、25.6(KU/mL)、100(mg/mL)の精製酵素標品を得た。 Reference Example 5 Preparation of N-succinyl amino acid racemase N-succinyl amino acid racemase derived from Chloroflexus aurantiacus (Chloroflex aurantiacus) was prepared by the method described in Examples of Japanese Patent Application Laid-Open No. 2007-82534, and 25.6 ( KU / mL) and 100 (mg / mL) purified enzyme preparations were obtained.
特開2007-82534号公報の実施例に記載の方法で、Chloroflexus aurantiacus(クロロフレクス・アウランチアクス)由来のN-サクシニルアミノ酸ラセマーゼを調製し、25.6(KU/mL)、100(mg/mL)の精製酵素標品を得た。 Reference Example 5 Preparation of N-succinyl amino acid racemase N-succinyl amino acid racemase derived from Chloroflexus aurantiacus (Chloroflex aurantiacus) was prepared by the method described in Examples of Japanese Patent Application Laid-Open No. 2007-82534, and 25.6 ( KU / mL) and 100 (mg / mL) purified enzyme preparations were obtained.
実施例1 改変型P4DSAの調製
(1)改変型P4DSA遺伝子を含む発現プラスミドの作成
参考例1で得られたpBSKP4DSAのP4DSA遺伝子全長を増幅するよう設計したプライマーを用いて、P4DSA遺伝子に変異が生じるよう、クロンテック社製、Diversify PCR Random Mutagenesis KitでPCR反応を実施した。続いて、反応液を制限酵素NdeIとEcoRIで処理後、アガロースゲル電気泳動に供し、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片をゲルから回収した。また、pBSKP4DSAを制限酵素NdeIとEcoRIで処理し、同様にしてpBSKP4DSAのベクターNdeIとEcoRI断片を回収した。最後に、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片とpBSKP4DSAのNdeI+EcoRIベクター断片とをライゲーションし、ランダムな変異を有するP4DSA遺伝子が挿入されたpBSKP4DSAのプラスミド集団を作成した。 Example 1 Preparation of Modified P4DSA (1) Preparation of Expression Plasmid Containing Modified P4DSA Gene Using the primer designed to amplify the full length of the P4DSA gene of pBSKP4DSA obtained in Reference Example 1, a mutation occurs in the P4DSA gene As described above, PCR reaction was performed using Diversity PCR Random Mutagenesis Kit manufactured by Clontech. Subsequently, the reaction solution was treated with restriction enzymes NdeI and EcoRI, and then subjected to agarose gel electrophoresis, and the NdeI + EcoRI fragment of the P4DSA gene having a random mutation was recovered from the gel. Further, pBSKP4DSA was treated with restriction enzymes NdeI and EcoRI, and the vector NdeI and EcoRI fragments of pBSKP4DSA were recovered in the same manner. Finally, the NdeI + EcoRI fragment of the P4DSA gene having a random mutation and the NdeI + EcoRI vector fragment of pBSKP4DSA were ligated to create a plasmid population of pBSKP4DSA in which the P4DSA gene having a random mutation was inserted.
(1)改変型P4DSA遺伝子を含む発現プラスミドの作成
参考例1で得られたpBSKP4DSAのP4DSA遺伝子全長を増幅するよう設計したプライマーを用いて、P4DSA遺伝子に変異が生じるよう、クロンテック社製、Diversify PCR Random Mutagenesis KitでPCR反応を実施した。続いて、反応液を制限酵素NdeIとEcoRIで処理後、アガロースゲル電気泳動に供し、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片をゲルから回収した。また、pBSKP4DSAを制限酵素NdeIとEcoRIで処理し、同様にしてpBSKP4DSAのベクターNdeIとEcoRI断片を回収した。最後に、ランダムな変異を生じたP4DSA遺伝子のNdeI+EcoRI断片とpBSKP4DSAのNdeI+EcoRIベクター断片とをライゲーションし、ランダムな変異を有するP4DSA遺伝子が挿入されたpBSKP4DSAのプラスミド集団を作成した。 Example 1 Preparation of Modified P4DSA (1) Preparation of Expression Plasmid Containing Modified P4DSA Gene Using the primer designed to amplify the full length of the P4DSA gene of pBSKP4DSA obtained in Reference Example 1, a mutation occurs in the P4DSA gene As described above, PCR reaction was performed using Diversity PCR Random Mutagenesis Kit manufactured by Clontech. Subsequently, the reaction solution was treated with restriction enzymes NdeI and EcoRI, and then subjected to agarose gel electrophoresis, and the NdeI + EcoRI fragment of the P4DSA gene having a random mutation was recovered from the gel. Further, pBSKP4DSA was treated with restriction enzymes NdeI and EcoRI, and the vector NdeI and EcoRI fragments of pBSKP4DSA were recovered in the same manner. Finally, the NdeI + EcoRI fragment of the P4DSA gene having a random mutation and the NdeI + EcoRI vector fragment of pBSKP4DSA were ligated to create a plasmid population of pBSKP4DSA in which the P4DSA gene having a random mutation was inserted.
(2)D体選択的に作用する改変型D-サクシニラーゼのスクリーニング
(1)で調製したpBSKP4DSAのプラスミド集団を用いて、エシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に、当製品に添付のプロトコールに従ってそれぞれ形質転換を行った。そうして得られたコロニー、約5,000株をLB培地(アンピシリン50μg/mLを含む)にそれぞれ接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を、N-サクシニル-D-トリプトファン溶液(25mM KPB(pH7.0)、100mM N-サクシニル-D-トリプトファン)及びN-サクシニル-L-トリプトファン溶液(25mM KPB(pH7.0)、100mM N-サクシニル-L-トリプトファン)とそれぞれ混合し、37℃で16時間反応させた。その反応液の一部をTLCプレート(Merck社製)に供し、n-ブタノール:酢酸:水(3:1:1、v/v)からなる展開溶媒で展開し、ニンヒドリンスプレーにより、D-トリプトファン、L-トリプトファンを検出し、D-トリプトファンのスポットに対するL-トリプトファンのスポットの割合が野生型よりも小さい、即ち、野生型P4DSAと比較して、D体に反応しやすい変異株を選抜した。結果の一例を図2に示す。図2中、変異株2や変異株3が望ましい変異体であり、このような変異体を選抜した。そして、立体選択性が向上した変異株よりプラスミドを抽出し、P4DSA遺伝子全塩基配列を確認し、変異箇所を同定した。その結果、72番目、176番目、181~185番目、286番目、305番目、348番目、351番目、388番目、461番目、518番目及び539番目のアミノ酸残基が立体選択性向上に寄与している部位として候補に挙がった。 (2) Screening of modified D-succinylase that selectively acts on D body Using the plasmid population of pBSKP4DSA prepared in (1), Escherichia coli DH5α strain competent cell (competitive high DH5α manufactured by Toyobo Co., Ltd.) Transformation was performed according to the protocol attached to this product. The colonies thus obtained, about 5,000 strains, were each inoculated into LB medium (containing 50 μg / mL ampicillin), and cultured with shaking at 37 ° C. for 16 hours. The cells prepared by centrifugation from the culture solution were mixed with N-succinyl-D-tryptophan solution (25 mM KPB (pH 7.0), 100 mM N-succinyl-D-tryptophan) and N-succinyl-L-tryptophan solution (25 mM). Each was mixed with KPB (pH 7.0) and 100 mM N-succinyl-L-tryptophan) and reacted at 37 ° C. for 16 hours. A part of the reaction solution was applied to a TLC plate (manufactured by Merck), developed with a developing solvent consisting of n-butanol: acetic acid: water (3: 1: 1, v / v), and D-tryptophan by ninhydrin spray. Thus, L-tryptophan was detected, and the ratio of the L-tryptophan spot to the D-tryptophan spot was smaller than that of the wild type, that is, a mutant strain that was more susceptible to D-form than the wild type P4DSA was selected. An example of the results is shown in FIG. In FIG. 2, mutant 2 and mutant 3 are desirable mutants, and such mutants were selected. And the plasmid was extracted from the mutant which improved stereoselectivity, the P4DSA gene whole base sequence was confirmed, and the mutation location was identified. As a result, the 72nd, 176th, 181 to 185th, 286th, 305th, 348th, 351st, 388th, 461st, 518th and 539th amino acid residues contribute to the improvement of stereoselectivity. I was listed as a candidate.
(1)で調製したpBSKP4DSAのプラスミド集団を用いて、エシェリヒア・コリーDH5α株コンピテントセル(東洋紡績製コンピテントハイDH5α)に、当製品に添付のプロトコールに従ってそれぞれ形質転換を行った。そうして得られたコロニー、約5,000株をLB培地(アンピシリン50μg/mLを含む)にそれぞれ接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を、N-サクシニル-D-トリプトファン溶液(25mM KPB(pH7.0)、100mM N-サクシニル-D-トリプトファン)及びN-サクシニル-L-トリプトファン溶液(25mM KPB(pH7.0)、100mM N-サクシニル-L-トリプトファン)とそれぞれ混合し、37℃で16時間反応させた。その反応液の一部をTLCプレート(Merck社製)に供し、n-ブタノール:酢酸:水(3:1:1、v/v)からなる展開溶媒で展開し、ニンヒドリンスプレーにより、D-トリプトファン、L-トリプトファンを検出し、D-トリプトファンのスポットに対するL-トリプトファンのスポットの割合が野生型よりも小さい、即ち、野生型P4DSAと比較して、D体に反応しやすい変異株を選抜した。結果の一例を図2に示す。図2中、変異株2や変異株3が望ましい変異体であり、このような変異体を選抜した。そして、立体選択性が向上した変異株よりプラスミドを抽出し、P4DSA遺伝子全塩基配列を確認し、変異箇所を同定した。その結果、72番目、176番目、181~185番目、286番目、305番目、348番目、351番目、388番目、461番目、518番目及び539番目のアミノ酸残基が立体選択性向上に寄与している部位として候補に挙がった。 (2) Screening of modified D-succinylase that selectively acts on D body Using the plasmid population of pBSKP4DSA prepared in (1), Escherichia coli DH5α strain competent cell (competitive high DH5α manufactured by Toyobo Co., Ltd.) Transformation was performed according to the protocol attached to this product. The colonies thus obtained, about 5,000 strains, were each inoculated into LB medium (containing 50 μg / mL ampicillin), and cultured with shaking at 37 ° C. for 16 hours. The cells prepared by centrifugation from the culture solution were mixed with N-succinyl-D-tryptophan solution (25 mM KPB (pH 7.0), 100 mM N-succinyl-D-tryptophan) and N-succinyl-L-tryptophan solution (25 mM). Each was mixed with KPB (pH 7.0) and 100 mM N-succinyl-L-tryptophan) and reacted at 37 ° C. for 16 hours. A part of the reaction solution was applied to a TLC plate (manufactured by Merck), developed with a developing solvent consisting of n-butanol: acetic acid: water (3: 1: 1, v / v), and D-tryptophan by ninhydrin spray. Thus, L-tryptophan was detected, and the ratio of the L-tryptophan spot to the D-tryptophan spot was smaller than that of the wild type, that is, a mutant strain that was more susceptible to D-form than the wild type P4DSA was selected. An example of the results is shown in FIG. In FIG. 2, mutant 2 and mutant 3 are desirable mutants, and such mutants were selected. And the plasmid was extracted from the mutant which improved stereoselectivity, the P4DSA gene whole base sequence was confirmed, and the mutation location was identified. As a result, the 72nd, 176th, 181 to 185th, 286th, 305th, 348th, 351st, 388th, 461st, 518th and 539th amino acid residues contribute to the improvement of stereoselectivity. I was listed as a candidate.
(3)改変型プラスミドの構築(置換アミノ酸の至適化)
(1)で得た変異株の中には、複数のアミノ酸変異をもつ変異株もあったため、また、置換するアミノ酸の種類を検討するために、部位特異的(Site-Directed mutagenesis)に変異させた改変型DSA発現プラスミドを作成した。部位特異的変異の作製には、STRATAGENE社製QuikChange Site-Directed mutagenesis Kitを使用した。また、変異させる際には、置換アミノ酸の至適化も行うため、(2)で立体選択性向上に寄与していると推測された72番目、181~185番目、305番目、348番目、351番目、461番目及び539番目のアミノ酸残基それぞれを20種のアミノ酸に置換するように、かつ、2本鎖DNAのそれぞれの鎖に相補的になるように設計した合成オリゴDNAプライマーをそれぞれ合成した(配列番号11~42)。なお、一部の合成オリゴDNAプライマーは、置換されるアミノ酸が1種類になるように、合成した。変異導入に使用した合成オリゴDNAプライマーの配列を表2に示す。 (3) Construction of modified plasmid (optimization of substituted amino acids)
Among the mutant strains obtained in (1), there were mutant strains having a plurality of amino acid mutations. In addition, in order to examine the types of amino acids to be substituted, site-directed mutations were mutated. A modified DSA expression plasmid was prepared. For the production of site-specific mutations, QuikChange Site-Directed Mutagenesis Kit manufactured by STRATAGENE was used. In addition, since the substitution amino acid is also optimized when mutating, the 72nd, 181st to 185th, 305th, 348th, 351 estimated to have contributed to the improvement of stereoselectivity in (2). Synthetic oligo DNA primers designed to substitute the 20th amino acid at each of the first, 461st and 539th amino acid residues and to be complementary to each strand of double-stranded DNA were synthesized. (SEQ ID NO: 11-42). Some synthetic oligo DNA primers were synthesized so that one amino acid was substituted. Table 2 shows the sequences of synthetic oligo DNA primers used for mutagenesis.
(1)で得た変異株の中には、複数のアミノ酸変異をもつ変異株もあったため、また、置換するアミノ酸の種類を検討するために、部位特異的(Site-Directed mutagenesis)に変異させた改変型DSA発現プラスミドを作成した。部位特異的変異の作製には、STRATAGENE社製QuikChange Site-Directed mutagenesis Kitを使用した。また、変異させる際には、置換アミノ酸の至適化も行うため、(2)で立体選択性向上に寄与していると推測された72番目、181~185番目、305番目、348番目、351番目、461番目及び539番目のアミノ酸残基それぞれを20種のアミノ酸に置換するように、かつ、2本鎖DNAのそれぞれの鎖に相補的になるように設計した合成オリゴDNAプライマーをそれぞれ合成した(配列番号11~42)。なお、一部の合成オリゴDNAプライマーは、置換されるアミノ酸が1種類になるように、合成した。変異導入に使用した合成オリゴDNAプライマーの配列を表2に示す。 (3) Construction of modified plasmid (optimization of substituted amino acids)
Among the mutant strains obtained in (1), there were mutant strains having a plurality of amino acid mutations. In addition, in order to examine the types of amino acids to be substituted, site-directed mutations were mutated. A modified DSA expression plasmid was prepared. For the production of site-specific mutations, QuikChange Site-Directed Mutagenesis Kit manufactured by STRATAGENE was used. In addition, since the substitution amino acid is also optimized when mutating, the 72nd, 181st to 185th, 305th, 348th, 351 estimated to have contributed to the improvement of stereoselectivity in (2). Synthetic oligo DNA primers designed to substitute the 20th amino acid at each of the first, 461st and 539th amino acid residues and to be complementary to each strand of double-stranded DNA were synthesized. (SEQ ID NO: 11-42). Some synthetic oligo DNA primers were synthesized so that one amino acid was substituted. Table 2 shows the sequences of synthetic oligo DNA primers used for mutagenesis.
改変型酵素の名称は、「野生型酵素のアミノ酸配列中のアミノ酸残基→残基番号→置換したアミノ酸残基」の順に表記する。例えば、L182R改変型酵素は野生型酵素のアミノ酸配列中の182番目のLeu(L)残基をArg(R)残基に置換した改変型酵素であることを意味する。なお、表2中のL182XのXとは、20種類のアミノ酸のうちの任意のアミノ酸を意味するものである。
The name of the modified enzyme is expressed in the order of “amino acid residue → residue number → substituted amino acid residue in the amino acid sequence of the wild-type enzyme”. For example, the L182R modified enzyme means a modified enzyme in which the 182nd Leu (L) residue in the amino acid sequence of the wild-type enzyme is substituted with an Arg (R) residue. In Table 2, X in L182X means any amino acid among the 20 types of amino acids.
これらのプライマーを使用し、上記キットの方法に従い、参考例1にて採取した野生型P4DSA発現プラスミドpBSKP4DSAを鋳型として、改変型プラスミドを作製した。例えば、L182Rの作製にあたっては、pBSKP4DSAを鋳型として、配列番号17及び18のプライマーを用いて、以下のPCR条件で改変型P4DSA発現プラスミドを増幅した。
98℃ 10秒
60℃ 30秒
68℃ 6分 × 25サイクル Using these primers, a modified plasmid was prepared using the wild-type P4DSA expression plasmid pBSKP4DSA collected in Reference Example 1 as a template according to the method of the above kit. For example, in preparation of L182R, a modified P4DSA expression plasmid was amplified under the following PCR conditions using pBSKP4DSA as a template and primers of SEQ ID NOs: 17 and 18.
98 ° C 10seconds 60 ° C 30 seconds 68 ° C 6 minutes x 25 cycles
98℃ 10秒
60℃ 30秒
68℃ 6分 × 25サイクル Using these primers, a modified plasmid was prepared using the wild-type P4DSA expression plasmid pBSKP4DSA collected in Reference Example 1 as a template according to the method of the above kit. For example, in preparation of L182R, a modified P4DSA expression plasmid was amplified under the following PCR conditions using pBSKP4DSA as a template and primers of SEQ ID NOs: 17 and 18.
98 ° C 10
次に、メチル化DNAを認識して切断する制限酵素DpnI処理によって鋳型pBSKP4DSAを切断し、得られた反応液でE.coli DH5αを形質転換した。形質転換体からプラスミドを回収して塩基配列を決定し、正しく変異が導入されていることを確認すると共に、コードしているアミノ酸残基を確認した。
Next, the template pBSKP4DSA was cleaved by a restriction enzyme DpnI treatment that recognizes and cleaves methylated DNA. E. coli DH5α was transformed. The plasmid was recovered from the transformant, the nucleotide sequence was determined, it was confirmed that the mutation was correctly introduced, and the encoded amino acid residue was confirmed.
(4)改変型P4DSA発現E.coliの作製及び粗酵素液の調製
改変型P4DSA遺伝子搭載プラスミドを持つ大腸菌形質転換体をLB培地3ml(アンピシリン50μg/mLを含む)に接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を超音波破砕し、その遠心後の上清を改変型P4DSAの粗酵素液とした。 (4) Modified P4DSA expression Preparation of E. coli and preparation of crude enzyme solution An E. coli transformant having a modified P4DSA gene carrying plasmid was inoculated into 3 ml of LB medium (containing 50 μg / ml of ampicillin), and cultured with shaking at 37 ° C. for 16 hours. The bacterial cells prepared by centrifugation from the culture solution were sonicated, and the supernatant after the centrifugation was used as a modified P4DSA crude enzyme solution.
改変型P4DSA遺伝子搭載プラスミドを持つ大腸菌形質転換体をLB培地3ml(アンピシリン50μg/mLを含む)に接種し、37℃で16時間振とう培養した。その培養液から遠心分離により調製した菌体を超音波破砕し、その遠心後の上清を改変型P4DSAの粗酵素液とした。 (4) Modified P4DSA expression Preparation of E. coli and preparation of crude enzyme solution An E. coli transformant having a modified P4DSA gene carrying plasmid was inoculated into 3 ml of LB medium (containing 50 μg / ml of ampicillin), and cultured with shaking at 37 ° C. for 16 hours. The bacterial cells prepared by centrifugation from the culture solution were sonicated, and the supernatant after the centrifugation was used as a modified P4DSA crude enzyme solution.
実施例2 改変型P4DSAを用いたN-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対する立体選択性の評価
実施例1で調製した粗酵素液を用いて、N-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対する立体選択性の評価を行った。具体的には、以下の組成のN-サクシニル-D-アミノ酸溶液及びN-サクシニル-L-アミノ酸溶液のそれぞれに対して粗酵素液を添加した。
N-サクシニル-D-トリプトファン溶液:25mM KPB(pH7.0)、1% N-サクシニル-D-トリプトファン
N-サクシニル-L-トリプトファン溶液:25mM KPB(pH7.0)、1% N-サクシニル-L-トリプトファン
N-サクシニル-D-フェニルアラニン溶液:25mM KPB(pH7.0)、1% N-サクシニル-D-フェニルアラニン
N-サクシニル-L-フェニルアラニン溶液:25mM KPB(pH7.0)、1% N-サクシニル-L-フェニルアラニン
得られた反応液を40℃で16時間インキュベートした後に、残存する基質濃度から分解率及びD体に対するL体の分解比率(L/D)を算出した。なお、改変型P4DSAは、L体に対する反応性がかなり低下しており、基質の減少量を定量する方法では、識別しづらかったため、L体を4、D体を1、すなわちL:D=4:1のタンパク質比率で反応させた。また、酵素タンパク質濃度は、L体の反応の場合は最終酵素タンパク質濃度が2.0mg/mlになるように調節し、D体の反応の場合は最終酵素タンパク質濃度が0.5mg/mlになるように調節した。その結果を表3に示す。 Example 2 Evaluation of stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine using modified P4DSA Using the crude enzyme solution prepared in Example 1, stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine Was evaluated. Specifically, the crude enzyme solution was added to each of the N-succinyl-D-amino acid solution and the N-succinyl-L-amino acid solution having the following composition.
N-succinyl-D-tryptophan solution: 25 mM KPB (pH 7.0), 1% N-succinyl-D-tryptophan N-succinyl-L-tryptophan solution: 25 mM KPB (pH 7.0), 1% N-succinyl-L -Tryptophan N-succinyl-D-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl-D-phenylalanine N-succinyl-L-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl -L-Phenylalanine After incubating the obtained reaction solution at 40 ° C. for 16 hours, the decomposition rate and the decomposition ratio of L-form to D-form (L / D) were calculated from the remaining substrate concentration. It should be noted that the modified P4DSA has a considerably reduced reactivity to the L-form, and it was difficult to discriminate by the method of quantifying the amount of decrease in the substrate. Therefore, the L-form was 4, and the D-form was 1, that is, L: D = 4 The reaction was performed at a protein ratio of 1: 1. The enzyme protein concentration is adjusted so that the final enzyme protein concentration is 2.0 mg / ml in the case of L-form reaction, and the final enzyme protein concentration is 0.5 mg / ml in the case of D-form reaction. Adjusted as follows. The results are shown in Table 3.
実施例1で調製した粗酵素液を用いて、N-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対する立体選択性の評価を行った。具体的には、以下の組成のN-サクシニル-D-アミノ酸溶液及びN-サクシニル-L-アミノ酸溶液のそれぞれに対して粗酵素液を添加した。
N-サクシニル-D-トリプトファン溶液:25mM KPB(pH7.0)、1% N-サクシニル-D-トリプトファン
N-サクシニル-L-トリプトファン溶液:25mM KPB(pH7.0)、1% N-サクシニル-L-トリプトファン
N-サクシニル-D-フェニルアラニン溶液:25mM KPB(pH7.0)、1% N-サクシニル-D-フェニルアラニン
N-サクシニル-L-フェニルアラニン溶液:25mM KPB(pH7.0)、1% N-サクシニル-L-フェニルアラニン
得られた反応液を40℃で16時間インキュベートした後に、残存する基質濃度から分解率及びD体に対するL体の分解比率(L/D)を算出した。なお、改変型P4DSAは、L体に対する反応性がかなり低下しており、基質の減少量を定量する方法では、識別しづらかったため、L体を4、D体を1、すなわちL:D=4:1のタンパク質比率で反応させた。また、酵素タンパク質濃度は、L体の反応の場合は最終酵素タンパク質濃度が2.0mg/mlになるように調節し、D体の反応の場合は最終酵素タンパク質濃度が0.5mg/mlになるように調節した。その結果を表3に示す。 Example 2 Evaluation of stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine using modified P4DSA Using the crude enzyme solution prepared in Example 1, stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine Was evaluated. Specifically, the crude enzyme solution was added to each of the N-succinyl-D-amino acid solution and the N-succinyl-L-amino acid solution having the following composition.
N-succinyl-D-tryptophan solution: 25 mM KPB (pH 7.0), 1% N-succinyl-D-tryptophan N-succinyl-L-tryptophan solution: 25 mM KPB (pH 7.0), 1% N-succinyl-L -Tryptophan N-succinyl-D-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl-D-phenylalanine N-succinyl-L-phenylalanine solution: 25 mM KPB (pH 7.0), 1% N-succinyl -L-Phenylalanine After incubating the obtained reaction solution at 40 ° C. for 16 hours, the decomposition rate and the decomposition ratio of L-form to D-form (L / D) were calculated from the remaining substrate concentration. It should be noted that the modified P4DSA has a considerably reduced reactivity to the L-form, and it was difficult to discriminate by the method of quantifying the amount of decrease in the substrate. Therefore, the L-form was 4, and the D-form was 1, that is, L: D = 4 The reaction was performed at a protein ratio of 1: 1. The enzyme protein concentration is adjusted so that the final enzyme protein concentration is 2.0 mg / ml in the case of L-form reaction, and the final enzyme protein concentration is 0.5 mg / ml in the case of D-form reaction. Adjusted as follows. The results are shown in Table 3.
その結果、実施例1(1)では、複数の箇所にアミノ酸置換が起こることもあり、どの変異が立体選択性に寄与しているのか分からない変異体もあったために、R176HやV286Aなどの立体選択性の向上の寄与していない改変体も見られたが、表3に示したように、多くの改変型P4DSAにおいて、N-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対して共に、D体選択的に作用していることが確認できた。特に、N-サクシニルトリプトファンに対しては、G181E、L182W、L182Y、L182K、L182R、L182E、N185F、R305A、R305G、R305H、R305Q、R305S、R305N、L348E、L348W、L348T、F351I、G539V及びG539M、N-サクシニルフェニルアラニンに対しては、G181W、G181D、G181E、L182R、R305A、R305G、R305S、L348E及びL348Wにおいて、基質の減少量では検出限界以下(表中では、0.0)となるまでに、L体に対する反応性が低下し、野生型と比べて顕著にD体選択的に作用していることが確認できた。
As a result, in Example 1 (1), amino acid substitutions may occur at a plurality of positions, and some mutations do not know which mutation contributes to stereoselectivity. Therefore, a three-dimensional structure such as R176H or V286A is used. Although some variants did not contribute to the improvement of selectivity, as shown in Table 3, in many modified P4DSAs, both D-form selective to N-succinyltryptophan and N-succinylphenylalanine. It was confirmed that it was acting on. In particular, for N-succinyltryptophan, G181E, L182W, L182Y, L182K, L182R, L182E, N185F, R305A, R305G, R305H, R305Q, R305S, R305N, L348E, L348W, L348T, F351I, G539V, -For succinylphenylalanine, in G181W, G181D, G181E, L182R, R305A, R305G, R305S, L348E, and L348W, the amount of substrate decrease is less than the detection limit (0.0 in the table). It was confirmed that the reactivity to the body decreased, and the D-form selection was remarkably acting compared to the wild type.
実施例3 改変型P4DSAを用いたN-サクシニルビフェニルアラニンに対する立体選択性の評価
次に、実施例2でN-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対する立体選択性に関与していることが明らかとなった改変型P4DSAについて、他の芳香族アミノ酸に対してもD体選択的に作用するかどうかを確認した。他の芳香族アミノ酸としては、非天然型アミノ酸の一種であるN-サクシニルビフェニルアラニンを選択し、実施例1で調製した粗酵素液を用いて、実施例2と同様の手順で、N-サクシニルビフェニルアラニンに対する立体選択性の評価を行った。ただし、本実施例3では、以下に示すようなラセミ体溶液を反応基質として使用した。
N-サクシニル-DL-ビフェニルアラニン反応溶液:25mM KPB(pH7.0)、2% N-サクシニル-DL-ビフェニルアラニン Example 3 Evaluation of Stereoselectivity for N-Succinylbiphenylalanine Using Modified P4DSA Next, in Example 2, it was clarified that it was involved in stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine. It was confirmed whether the modified P4DSA acted selectively to other aromatic amino acids on the D form. As another aromatic amino acid, N-succinylbiphenylalanine, which is a kind of non-natural amino acid, is selected and the crude enzyme solution prepared in Example 1 is used to perform N-succinyl in the same procedure as in Example 2. The stereoselectivity for biphenylalanine was evaluated. However, in Example 3, a racemic solution as shown below was used as a reaction substrate.
N-succinyl-DL-biphenylalanine reaction solution: 25 mM KPB (pH 7.0), 2% N-succinyl-DL-biphenylalanine
次に、実施例2でN-サクシニルトリプトファン及びN-サクシニルフェニルアラニンに対する立体選択性に関与していることが明らかとなった改変型P4DSAについて、他の芳香族アミノ酸に対してもD体選択的に作用するかどうかを確認した。他の芳香族アミノ酸としては、非天然型アミノ酸の一種であるN-サクシニルビフェニルアラニンを選択し、実施例1で調製した粗酵素液を用いて、実施例2と同様の手順で、N-サクシニルビフェニルアラニンに対する立体選択性の評価を行った。ただし、本実施例3では、以下に示すようなラセミ体溶液を反応基質として使用した。
N-サクシニル-DL-ビフェニルアラニン反応溶液:25mM KPB(pH7.0)、2% N-サクシニル-DL-ビフェニルアラニン Example 3 Evaluation of Stereoselectivity for N-Succinylbiphenylalanine Using Modified P4DSA Next, in Example 2, it was clarified that it was involved in stereoselectivity for N-succinyltryptophan and N-succinylphenylalanine. It was confirmed whether the modified P4DSA acted selectively to other aromatic amino acids on the D form. As another aromatic amino acid, N-succinylbiphenylalanine, which is a kind of non-natural amino acid, is selected and the crude enzyme solution prepared in Example 1 is used to perform N-succinyl in the same procedure as in Example 2. The stereoselectivity for biphenylalanine was evaluated. However, in Example 3, a racemic solution as shown below was used as a reaction substrate.
N-succinyl-DL-biphenylalanine reaction solution: 25 mM KPB (pH 7.0), 2% N-succinyl-DL-biphenylalanine
反応液を40℃で16時間インキュベートした後に、残存する基質濃度から分解率及びD体に対するL体の分解比率(L/D)を算出した。なお、N-サクシニル-DL-ビフェニルアラニンについては、基質にラセミ体を利用したため、D体とL体を同タンパク量で反応させたことになる。また、酵素タンパク質濃度は、最終酵素タンパク質濃度が1.0mg/mlになるように調節した。その結果を表4に示す。
After the reaction solution was incubated at 40 ° C. for 16 hours, the decomposition rate and the decomposition ratio (L / D) of L-form to D-form were calculated from the remaining substrate concentration. For N-succinyl-DL-biphenylalanine, a racemate was used as a substrate, so that D form and L form were reacted with the same amount of protein. The enzyme protein concentration was adjusted so that the final enzyme protein concentration was 1.0 mg / ml. The results are shown in Table 4.
その結果、評価した全ての改変型P4DSAにおいて、N-サクシニル-DL-ビフェニルアラニンに対してもD体選択的に作用していることが確認できた。実施例2及び3に示す結果は、本発明の改変型P4DSAはN-サクシニルトリプトファン、N-サクシニルフェニルアラニン及びN-サクシニルビフェニルアラニンのみに対してD体選択的に作用するのではなく、その他の芳香族アミノ酸や、置換基を有する非天然型の芳香族アミノ酸を含む任意のアミノ酸を構成アミノ酸とするN-サクシニル-DL-アミノ酸に対しても、D体選択的に作用することを示唆するものである。
As a result, it was confirmed that all the modified P4DSAs evaluated acted selectively to D-form with respect to N-succinyl-DL-biphenylalanine. The results shown in Examples 2 and 3 show that the modified P4DSA of the present invention does not act selectively on D-form only for N-succinyltryptophan, N-succinylphenylalanine and N-succinylbiphenylalanine. N-succinyl-DL-amino acid containing any amino acid, including non-natural aromatic amino acids having a non-natural type having a substituent, as a constituent amino acid. is there.
実施例4 改変型P4DSA並びにChloroflexus aurantiacus由来のN-サクシニルアミノ酸ラセマーゼを用いたN-サクシニル-DL-トリプトファンからD-トリプトファン、N-サクシニル-DL-フェニルアラニンからのD-フェニルアラニン及びN-サクシニル-DL-ビフェニルアラニンからD-ビフェニルアラニンの合成
(1)
改変型P4DSA(L182E、L182P、R305N)の調製
実施例1で得られた改変型P4DSA(L182E、L182P、R305N)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)にそれぞれ植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は、15.0、16.2、15.5であった。続いて、得られた菌体を遠心分離にて集菌し、25mMリン酸緩衝溶液(pH7.0)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、65℃で1時間、熱処理を行い、その後、一般的な方法で脱塩処理を行い、アミノ酸合成用の酵素サンプル(L182E:27.9mg/mL、5.2U/mL、L182P:7.3mg/mL、1.8U/mL、R305N:28.5mg/mL、4.3U/mL)を調製した。なお、酵素活性の基質には、N-サクシニル-D-トリプトファンを用いた。 Example 4 N-succinyl-DL-tryptophan to D-tryptophan, N-succinyl-DL-phenylalanine to D-phenylalanine and N-succinyl-DL-, using modified P4DSA and N-succinyl amino acid racemase from Chloroflexus aurantiacus Synthesis of D-biphenylalanine from biphenylalanine (1)
Preparation of Modified P4DSA (L182E, L182P, R305N) A colony of E. coli transformants expressing the modified P4DSA (L182E, L182P, R305N) obtained in Example 1 was placed in 5 mL of LB medium ( Inoculating ampicillin (containing 50 μg / mL), and culturing for 16 hours at 180 ° C. and 30 ° C. to obtain a seed culture solution. This seed culture was inoculated into 60 mL of TB medium (containing 50 μg / mL of ampicillin) contained in a 500 mL Sakaguchi flask, and cultured at a shaking speed of 310 rpm and 30 ° C. for 18 hours. Turbidity (Abs 660 nm) at the end of the culture was 15.0, 16.2, and 15.5. Subsequently, the obtained cells were collected by centrifugation, suspended in a 25 mM phosphate buffer solution (pH 7.0), and crushed using an ultrasonic cell crusher under ice cooling. Thereafter, heat treatment is performed at 65 ° C. for 1 hour, and then desalting is performed by a general method, and an enzyme sample for amino acid synthesis (L182E: 27.9 mg / mL, 5.2 U / mL, L182P: 7. 3 mg / mL, 1.8 U / mL, R305N: 28.5 mg / mL, 4.3 U / mL). Note that N-succinyl-D-tryptophan was used as the enzyme activity substrate.
(1)
改変型P4DSA(L182E、L182P、R305N)の調製
実施例1で得られた改変型P4DSA(L182E、L182P、R305N)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)にそれぞれ植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は、15.0、16.2、15.5であった。続いて、得られた菌体を遠心分離にて集菌し、25mMリン酸緩衝溶液(pH7.0)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、65℃で1時間、熱処理を行い、その後、一般的な方法で脱塩処理を行い、アミノ酸合成用の酵素サンプル(L182E:27.9mg/mL、5.2U/mL、L182P:7.3mg/mL、1.8U/mL、R305N:28.5mg/mL、4.3U/mL)を調製した。なお、酵素活性の基質には、N-サクシニル-D-トリプトファンを用いた。 Example 4 N-succinyl-DL-tryptophan to D-tryptophan, N-succinyl-DL-phenylalanine to D-phenylalanine and N-succinyl-DL-, using modified P4DSA and N-succinyl amino acid racemase from Chloroflexus aurantiacus Synthesis of D-biphenylalanine from biphenylalanine (1)
Preparation of Modified P4DSA (L182E, L182P, R305N) A colony of E. coli transformants expressing the modified P4DSA (L182E, L182P, R305N) obtained in Example 1 was placed in 5 mL of LB medium ( Inoculating ampicillin (containing 50 μg / mL), and culturing for 16 hours at 180 ° C. and 30 ° C. to obtain a seed culture solution. This seed culture was inoculated into 60 mL of TB medium (containing 50 μg / mL of ampicillin) contained in a 500 mL Sakaguchi flask, and cultured at a shaking speed of 310 rpm and 30 ° C. for 18 hours. Turbidity (Abs 660 nm) at the end of the culture was 15.0, 16.2, and 15.5. Subsequently, the obtained cells were collected by centrifugation, suspended in a 25 mM phosphate buffer solution (pH 7.0), and crushed using an ultrasonic cell crusher under ice cooling. Thereafter, heat treatment is performed at 65 ° C. for 1 hour, and then desalting is performed by a general method, and an enzyme sample for amino acid synthesis (L182E: 27.9 mg / mL, 5.2 U / mL, L182P: 7. 3 mg / mL, 1.8 U / mL, R305N: 28.5 mg / mL, 4.3 U / mL). Note that N-succinyl-D-tryptophan was used as the enzyme activity substrate.
(2)各種N-サクシニルアミノ酸との反応及び分析
5%N-サクシニル-DL-トリプトファン水溶液(pH7.5)5mL、5%N-サクシニル-DL-フェニルアラニン水溶液(pH7.5)5mL、5%N-サクシニル-DL-ビフェニルアラニン水溶液(pH7.5)5mLをそれぞれ基質として用い、塩化コバルト水溶液を終濃度1mMとなるようにそれぞれ添加後、上記(1)で調製した改変型DSA(L182E、L182P、R305N)の酵素液(0.16U、0.2U、0.08U)をそれぞれの基質に加え、さらに参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mg(6400U)をそれぞれに対して加え、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液を用い、同様に反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表5~7に示す。 (2) Reaction with various N-succinyl amino acids and analysis 5% N-succinyl-DL-tryptophan aqueous solution (pH 7.5) 5 mL, 5% N-succinyl-DL-phenylalanine aqueous solution (pH 7.5) 5 mL, 5% N -Modified DSA (L182E, L182P, L182E, L182P, prepared in (1) above after adding 5 mL each of succinyl-DL-biphenylalanine aqueous solution (pH 7.5) as a substrate and adding an aqueous cobalt chloride solution to a final concentration of 1 mM. R305N) enzyme solution (0.16 U, 0.2 U, 0.08 U) was added to each substrate, and 25 mg (6400 U) of an N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 was added to each substrate. And reacted at 45 ° C. for 3 days. On the other hand, as a control, a wild-type DSA enzyme solution prepared by the method described in the examples of PCT / JP2011 / 064943 was used, and reacted in the same manner to calculate the conversion rate and the optical purity of D-amino acid. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Tables 5-7.
5%N-サクシニル-DL-トリプトファン水溶液(pH7.5)5mL、5%N-サクシニル-DL-フェニルアラニン水溶液(pH7.5)5mL、5%N-サクシニル-DL-ビフェニルアラニン水溶液(pH7.5)5mLをそれぞれ基質として用い、塩化コバルト水溶液を終濃度1mMとなるようにそれぞれ添加後、上記(1)で調製した改変型DSA(L182E、L182P、R305N)の酵素液(0.16U、0.2U、0.08U)をそれぞれの基質に加え、さらに参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mg(6400U)をそれぞれに対して加え、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液を用い、同様に反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表5~7に示す。 (2) Reaction with various N-succinyl amino acids and analysis 5% N-succinyl-DL-tryptophan aqueous solution (pH 7.5) 5 mL, 5% N-succinyl-DL-phenylalanine aqueous solution (pH 7.5) 5 mL, 5% N -Modified DSA (L182E, L182P, L182E, L182P, prepared in (1) above after adding 5 mL each of succinyl-DL-biphenylalanine aqueous solution (pH 7.5) as a substrate and adding an aqueous cobalt chloride solution to a final concentration of 1 mM. R305N) enzyme solution (0.16 U, 0.2 U, 0.08 U) was added to each substrate, and 25 mg (6400 U) of an N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 was added to each substrate. And reacted at 45 ° C. for 3 days. On the other hand, as a control, a wild-type DSA enzyme solution prepared by the method described in the examples of PCT / JP2011 / 064943 was used, and reacted in the same manner to calculate the conversion rate and the optical purity of D-amino acid. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Tables 5-7.
表5~7に示すように、D-トリプトファン合成における反応3日目の変換率は、野生型DSA、L182E,L182P、R305Nの順に、83%、87%、86%、89%であり、D-フェニルアラニン合成における反応3日目の変換率は、野生型DSA、L182E,L182P、R305Nの順に、81%、84%、83%、84%であり、D-ビフェニルアラニン合成における反応3日目の変換率は、野生型DSA、L182E,L182P、R305Nの順に、96%、91%、96%、91%であり、いずれも問題なく反応が進んだ。また、表5~7に示すように、いずれの改変型DSAにおいても、芳香族アミノ酸によって構成されるN-サクシニル-DL-アミノ酸を基質とした場合、野生型DSAを使用する場合と比較して、高純度の芳香族D-アミノ酸を製造できることを確認した。特に、L182Eを使用して、D-トリプトファン、D-ビフェニルアラニンを製造した場合にそれぞれ99.6%ee、99.2%ee、L182Pを使用して、D-ビフェニルアラニンを製造した場合に99.3%ee、R305Nを使用して、D-トリプトファンを製造した場合に、99.6%eeという高い光学純度に達した。また、L182Pは、実施例2で挙げられている改変型DSAの中では、N-サクシニルトリプトファンに対するL/D比が0.13と比較的大きい値を示しているが、本実施例が示すようにL182Pを使用した場合のD-トリプトファンの光学純度が98.6%eeに達したということは、表3に記載のその他の改変型DSAも、それ相当の改変効果があることを示唆する。
As shown in Tables 5 to 7, the conversion rate on the third day of the reaction in D-tryptophan synthesis was 83%, 87%, 86%, and 89% in the order of wild-type DSA, L182E, L182P, and R305N. The conversion rate on the third day of the reaction in the synthesis of phenylalanine is 81%, 84%, 83%, 84% in the order of wild-type DSA, L182E, L182P, and R305N, and the third day of the reaction in the synthesis of D-biphenylalanine. The conversion rates were 96%, 91%, 96%, and 91% in the order of wild type DSA, L182E, L182P, and R305N, and the reaction proceeded without any problem. Further, as shown in Tables 5 to 7, in any modified DSA, when N-succinyl-DL-amino acid constituted by an aromatic amino acid is used as a substrate, compared to the case where wild-type DSA is used. It was confirmed that a highly pure aromatic D-amino acid could be produced. In particular, when L-182E is used to produce D-tryptophan and D-biphenylalanine, 99.6% ee, 99.2% ee, and L182P are used to produce D-biphenylalanine, respectively. When D-tryptophan was produced using .3% ee, R305N, a high optical purity of 99.6% ee was achieved. In addition, L182P has a relatively large L / D ratio of 0.13 with respect to N-succinyltryptophan among the modified DSAs listed in Example 2, but this example shows that The fact that the optical purity of D-tryptophan reached 98.6% ee when L182P was used in the sample suggests that other modified DSAs described in Table 3 also have a corresponding modification effect.
実施例5 二重変異改変型P4DSA(L182E+L348I)並びにChloroflexus aurantiacus由来のN-サクシニルアミノ酸ラセマーゼを用いたN-サクシニル-DL-トリプトファンからのD-トリプトファン、N-サクシニル-DL-フェニルアラニンからのD-フェニルアラニン及びN-サクシニル-DL-ビフェニルアラニンからのD-ビフェニルアラニンの合成
(1)二重変異改変型プラスミドの構築
二重変異改変体を発現するプラスミドを作製するために、実施例1で得られた改変型P4DSA(L182E)を含む発現プラスミドを鋳型とし、上記に記載の方法でPCR反応を実施し、182番目のロイシンがグルタミン酸に置換され、かつ、348番目のロイシンがイソロイシンに置換された二重変異改変型P4DSA(L182E+L348I)を含む発現プラスミドを構築した。 Example 5 D-Tryptophan from N-succinyl-DL-tryptophan using N-succinyl-DL-tryptophan using double mutant modified P4DSA (L182E + L348I) and N-succinyl amino acid racemase from Chloroflexus aurantiacus D-phenylalanine from N-succinyl-DL-phenylalanine And D-biphenylalanine synthesis from N-succinyl-DL-biphenylalanine (1) Construction of double-mutant modified plasmids To obtain a plasmid that expresses double-mutant variants, they were obtained in Example 1. Using an expression plasmid containing the modified P4DSA (L182E) as a template, PCR was carried out by the method described above. The 182nd leucine was replaced with glutamic acid, and the 348th leucine was replaced with isoleucine. The expression plasmid containing the heavy variant modified P4DSA (L182E + L348I) was constructed.
(1)二重変異改変型プラスミドの構築
二重変異改変体を発現するプラスミドを作製するために、実施例1で得られた改変型P4DSA(L182E)を含む発現プラスミドを鋳型とし、上記に記載の方法でPCR反応を実施し、182番目のロイシンがグルタミン酸に置換され、かつ、348番目のロイシンがイソロイシンに置換された二重変異改変型P4DSA(L182E+L348I)を含む発現プラスミドを構築した。 Example 5 D-Tryptophan from N-succinyl-DL-tryptophan using N-succinyl-DL-tryptophan using double mutant modified P4DSA (L182E + L348I) and N-succinyl amino acid racemase from Chloroflexus aurantiacus D-phenylalanine from N-succinyl-DL-phenylalanine And D-biphenylalanine synthesis from N-succinyl-DL-biphenylalanine (1) Construction of double-mutant modified plasmids To obtain a plasmid that expresses double-mutant variants, they were obtained in Example 1. Using an expression plasmid containing the modified P4DSA (L182E) as a template, PCR was carried out by the method described above. The 182nd leucine was replaced with glutamic acid, and the 348th leucine was replaced with isoleucine. The expression plasmid containing the heavy variant modified P4DSA (L182E + L348I) was constructed.
(2)二重変異改変型P4DSA(L182E+L348I)の調製
(1)で得られた二重変異改変型P4DSA(L182E+L348I)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)に植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は15.6であった。続いて、得られた菌体を遠心分離で集菌し、25mMリン酸緩衝溶液(pH7.5)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、55℃で3時間、熱処理を行い、その後、0.45飽和になるように硫酸アンモニウムを徐々に添加し、目的のタンパク質を沈殿させた。その後、上清を取り除き、25mMリン酸緩衝溶液(pH7.5)を加えて、沈殿を再溶解させ、一般的な脱塩処理を行った後、25mMリン酸緩衝溶液(pH7.5)で平衡化した5mLのDEAEセファロースFast Flow(GEヘルスケア製)カラムにかけ、素通り画分を回収した。このようにして、アミノ酸合成用の酵素サンプル(L182E+L348I:7.0mg/mL、11.4U/mL)を調製した。なお、酵素活性の基質には、N-サクシニル-D-トリプトファンを用いた。 (2) Preparation of double-mutant modified P4DSA (L182E + L348I) Preparation of colony of E. coli transformant expressing double-mutated modified P4DSA (L182E + L348I) obtained in (1) in 5 mL of LB medium in a test tube (Including 50 μg / mL of ampicillin) and inoculated for 16 hours at 180 ° C. and 30 ° C., and used as a seed culture solution. This seed culture was inoculated into 60 mL of TB medium (containing 50 μg / mL of ampicillin) contained in a 500 mL Sakaguchi flask, and cultured at a shaking speed of 310 rpm and 30 ° C. for 18 hours. Turbidity (Abs 660 nm) at the end of the culture was 15.6. Subsequently, the obtained cells were collected by centrifugation, suspended in a 25 mM phosphate buffer solution (pH 7.5), and crushed using an ultrasonic cell crusher under ice cooling. Thereafter, heat treatment was performed at 55 ° C. for 3 hours, and then ammonium sulfate was gradually added to reach 0.45 saturation to precipitate the target protein. Thereafter, the supernatant is removed, 25 mM phosphate buffer solution (pH 7.5) is added, the precipitate is re-dissolved, subjected to general desalting treatment, and then equilibrated with 25 mM phosphate buffer solution (pH 7.5). The applied fraction was applied to a 5 mL DEAE Sepharose Fast Flow column (manufactured by GE Healthcare) and collected. In this way, an enzyme sample for amino acid synthesis (L182E + L348I: 7.0 mg / mL, 11.4 U / mL) was prepared. Note that N-succinyl-D-tryptophan was used as the enzyme activity substrate.
(1)で得られた二重変異改変型P4DSA(L182E+L348I)を発現する大腸菌形質転換体のコロニーを、試験管に入った5mLのLB培地(アンピシリン50μg/mLを含む)に植菌し、振とう数180rpm、30℃で16時間培養し、種培養液とした。この種培養液を、500mLの坂口フラスコに入った60mLのTB培地(アンピシリン50μg/mLを含む)に接種し、振とう数310rpm、30℃で18時間培養した。培養終了時の濁度(Abs660nm)は15.6であった。続いて、得られた菌体を遠心分離で集菌し、25mMリン酸緩衝溶液(pH7.5)に懸濁し、氷冷下で超音波細胞破砕装置を用いて破砕した。その後、55℃で3時間、熱処理を行い、その後、0.45飽和になるように硫酸アンモニウムを徐々に添加し、目的のタンパク質を沈殿させた。その後、上清を取り除き、25mMリン酸緩衝溶液(pH7.5)を加えて、沈殿を再溶解させ、一般的な脱塩処理を行った後、25mMリン酸緩衝溶液(pH7.5)で平衡化した5mLのDEAEセファロースFast Flow(GEヘルスケア製)カラムにかけ、素通り画分を回収した。このようにして、アミノ酸合成用の酵素サンプル(L182E+L348I:7.0mg/mL、11.4U/mL)を調製した。なお、酵素活性の基質には、N-サクシニル-D-トリプトファンを用いた。 (2) Preparation of double-mutant modified P4DSA (L182E + L348I) Preparation of colony of E. coli transformant expressing double-mutated modified P4DSA (L182E + L348I) obtained in (1) in 5 mL of LB medium in a test tube (Including 50 μg / mL of ampicillin) and inoculated for 16 hours at 180 ° C. and 30 ° C., and used as a seed culture solution. This seed culture was inoculated into 60 mL of TB medium (containing 50 μg / mL of ampicillin) contained in a 500 mL Sakaguchi flask, and cultured at a shaking speed of 310 rpm and 30 ° C. for 18 hours. Turbidity (Abs 660 nm) at the end of the culture was 15.6. Subsequently, the obtained cells were collected by centrifugation, suspended in a 25 mM phosphate buffer solution (pH 7.5), and crushed using an ultrasonic cell crusher under ice cooling. Thereafter, heat treatment was performed at 55 ° C. for 3 hours, and then ammonium sulfate was gradually added to reach 0.45 saturation to precipitate the target protein. Thereafter, the supernatant is removed, 25 mM phosphate buffer solution (pH 7.5) is added, the precipitate is re-dissolved, subjected to general desalting treatment, and then equilibrated with 25 mM phosphate buffer solution (pH 7.5). The applied fraction was applied to a 5 mL DEAE Sepharose Fast Flow column (manufactured by GE Healthcare) and collected. In this way, an enzyme sample for amino acid synthesis (L182E + L348I: 7.0 mg / mL, 11.4 U / mL) was prepared. Note that N-succinyl-D-tryptophan was used as the enzyme activity substrate.
(3)N-サクシニル-DL-トリプトファンからのD-トリプトファンの調製
5%N-サクシニル-DL-トリプトファン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表8に示す。なお、表8には、比較のため、表5のL182Eの単変異のデータを併記している。 (3) Preparation of D-tryptophan from N-succinyl-DL-tryptophan Using 5 mL of 5% N-succinyl-DL-tryptophan aqueous solution (pH 7.5) as a substrate, add cobalt chloride aqueous solution to a final concentration of 1 mM. Thereafter, 0.05 mg of the enzyme solution of double mutation-modified DSA (L182E + L348I) prepared in (2) above and 2.5 mg of N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added. The reaction was carried out at 3 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the Examples of PCT / JP2011 / 064943 and an N-succinyl amino acid racemase solution derived from the Chloroflexus aurantiacus strain prepared in Reference Example 5. 5 mg was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 8. In Table 8, for comparison, L182E single mutation data in Table 5 is also shown.
5%N-サクシニル-DL-トリプトファン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表8に示す。なお、表8には、比較のため、表5のL182Eの単変異のデータを併記している。 (3) Preparation of D-tryptophan from N-succinyl-DL-tryptophan Using 5 mL of 5% N-succinyl-DL-tryptophan aqueous solution (pH 7.5) as a substrate, add cobalt chloride aqueous solution to a final concentration of 1 mM. Thereafter, 0.05 mg of the enzyme solution of double mutation-modified DSA (L182E + L348I) prepared in (2) above and 2.5 mg of N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added. The reaction was carried out at 3 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the Examples of PCT / JP2011 / 064943 and an N-succinyl amino acid racemase solution derived from the Chloroflexus aurantiacus strain prepared in Reference Example 5. 5 mg was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 8. In Table 8, for comparison, L182E single mutation data in Table 5 is also shown.
表8に示すように、反応3日目にはいずれも80%以上に達した。また、反応3日目のD-トリプトファンの光学純度は、野生型は96.1%eeであるのに対し、L182Eの単変異改変型は99.6%eeであり、L182E+L348Iの二重変異改変型は99.7%eeであり、いずれの改変型も光学純度が野生型と比較して顕著に向上しており、特に二重変異改変型は、単変異改変型よりさらに光学純度が向上していた。本発明のD-サクシニラーゼは、工業規模でのD-アミノ酸の製造に使用されるため、製造されるD-アミノ酸の光学純度がわずかでも向上するということは、製造コストの低下をもたらす顕著な向上であるといえる。また、データには示さないが、L348Iの単変異のみでは、野生型と比較して選択性向上の効果は見られず、L182Eと組み合わせることで、相乗的な立体選択性向上への寄与が確認された。
As shown in Table 8, both reached 80% or more on the third day of the reaction. The optical purity of D-tryptophan on the third day of the reaction is 96.1% ee for the wild type, whereas it is 99.6% ee for the L182E single mutation, and double mutation modification of L182E + L348I. The type is 99.7% ee, and the optical purity of each modified type is markedly improved compared to the wild type. In particular, the double mutant modified type has a further improved optical purity than the single mutant modified type. It was. Since the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that. In addition, although not shown in the data, only the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
(4)N-サクシニル-DL-フェニルアラニンからのD-フェニルアラニンの調製
5%N-サクシニル-DL-フェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.075mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表9に示す。なお、表9には、比較のため、表6のL182Eの単変異のデータを併記している。 (4) Preparation of D-phenylalanine from N-succinyl-DL-phenylalanine Using 5 mL of 5% N-succinyl-DL-phenylalanine aqueous solution (pH 7.5) as a substrate, and adding cobalt chloride aqueous solution to a final concentration of 1 mM Thereafter, 0.075 mg of the enzyme solution of double mutation-modified DSA (L182E + L348I) prepared in (2) above and 2.5 mg of N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added. The reaction was carried out at 3 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the Examples of PCT / JP2011 / 064943 and an N-succinyl amino acid racemase solution derived from the Chloroflexus aurantiacus strain prepared in Reference Example 5. 5 mg was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 9. In Table 9, for comparison, the single-mutation data of L182E in Table 6 are also shown.
5%N-サクシニル-DL-フェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.075mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液2.5mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表9に示す。なお、表9には、比較のため、表6のL182Eの単変異のデータを併記している。 (4) Preparation of D-phenylalanine from N-succinyl-DL-phenylalanine Using 5 mL of 5% N-succinyl-DL-phenylalanine aqueous solution (pH 7.5) as a substrate, and adding cobalt chloride aqueous solution to a final concentration of 1 mM Thereafter, 0.075 mg of the enzyme solution of double mutation-modified DSA (L182E + L348I) prepared in (2) above and 2.5 mg of N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added. The reaction was carried out at 3 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the Examples of PCT / JP2011 / 064943 and an N-succinyl amino acid racemase solution derived from the Chloroflexus aurantiacus strain prepared in Reference Example 5. 5 mg was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 9. In Table 9, for comparison, the single-mutation data of L182E in Table 6 are also shown.
表9に示すように、反応3日目にはいずれも80%以上に達した。また、反応3日目のD-フェニルアラニンの光学純度は、野生型は93.6%eeであるのに対し、L182Eの単変異改変型は98.8%eeであり、L182E+L348Iの二重変異改変型は99.4%eeであり、いずれの改変型も光学純度が野生型と比較して顕著に向上しており、特に二重変異改変型は、単変異改変型よりさらに光学純度が向上していた。本発明のD-サクシニラーゼは、工業規模でのD-アミノ酸の製造に使用されるため、製造されるD-アミノ酸の光学純度がわずかでも向上するということは、製造コストの低下をもたらす顕著な向上であるといえる。また、データには示さないが、L348Iの単変異のみでは、野生型と比較して選択性向上の効果は見られず、L182Eと組み合わせることで、相乗的な立体選択性向上への寄与が確認された。
As shown in Table 9, all reached 80% or more on the third day of the reaction. The optical purity of D-phenylalanine on the third day of the reaction is 93.6% ee for the wild type, whereas it is 98.8% ee for the L182E single mutation, and double mutation modification for L182E + L348I. The type is 99.4% ee, and the optical purity of each modified type is remarkably improved as compared to the wild type. In particular, the double mutant modified type has further improved optical purity than the single mutant modified type. It was. Since the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that. In addition, although not shown in the data, only the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
(5)N-サクシニル-DL-ビフェニルアラニンからのD-ビフェニルアラニンの調製
5%N-サクシニル-DL-ビフェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表10に示す。なお、表10には、比較のため、表7のL182Eの単変異のデータを併記している。 (5) Preparation of D-biphenylalanine from N-succinyl-DL-biphenylalanine Using 5 mL of 5% N-succinyl-DL-biphenylalanine aqueous solution (pH 7.5) as a substrate, the aqueous solution of cobalt chloride has a final concentration of 1 mM. After the addition, 0.05 mg of the double mutant DSA (L182E + L348I) enzyme solution prepared in (2) above and 25 mg of the N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added, The reaction was carried out at 45 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the examples of PCT / JP2011 / 064943 and 25 mg of an N-succinylamino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were used. The mixture was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 10. In Table 10, for comparison, L182E single mutation data in Table 7 is also shown.
5%N-サクシニル-DL-ビフェニルアラニン水溶液(pH7.5)5mLを基質として用い、塩化コバルト水溶液を終濃度1mMとなるように添加後、上記(2)で調製した二重変異改変型DSA(L182E+L348I)の酵素液0.05mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させた。また、一方でコントロールとして、PCT/JP2011/064943の実施例に記載の方法で調製した野生型DSA酵素液0.025mgと参考例5で調製したChloroflexus aurantiacus株由来のN-サクシニルアミノ酸ラセマーゼ溶液25mgを添加し、45℃で3日間反応させ、変換率及びD-アミノ酸の光学純度を算出した。変換率は、上記記載のジーエルサイエンス社製「Inertsil ODS-3」(5μm、4.6×100mm)を利用した高速液体クロマトグラフィーで酵素反応前と反応後の基質のピーク面積値を測定することによって算出した。光学純度は、上記記載のダイセル化学工業株式会社製光学分割カラム「CROWNPAK CR(+)」(5μm、4.0×150mm)で生成した遊離体のアミノ酸の光学純度を測定することによって算出した。結果を表10に示す。なお、表10には、比較のため、表7のL182Eの単変異のデータを併記している。 (5) Preparation of D-biphenylalanine from N-succinyl-DL-biphenylalanine Using 5 mL of 5% N-succinyl-DL-biphenylalanine aqueous solution (pH 7.5) as a substrate, the aqueous solution of cobalt chloride has a final concentration of 1 mM. After the addition, 0.05 mg of the double mutant DSA (L182E + L348I) enzyme solution prepared in (2) above and 25 mg of the N-succinyl amino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were added, The reaction was carried out at 45 ° C. for 3 days. On the other hand, as a control, 0.025 mg of a wild-type DSA enzyme solution prepared by the method described in the examples of PCT / JP2011 / 064943 and 25 mg of an N-succinylamino acid racemase solution derived from Chloroflexus aurantiacus strain prepared in Reference Example 5 were used. The mixture was added and reacted at 45 ° C. for 3 days, and the conversion rate and optical purity of D-amino acid were calculated. The conversion rate is determined by measuring the peak area value of the substrate before and after the enzyme reaction by high performance liquid chromatography using “Inertsil ODS-3” (5 μm, 4.6 × 100 mm) manufactured by GL Sciences, Inc. Calculated by The optical purity was calculated by measuring the optical purity of the free amino acid produced by the above-described optical resolution column “CROWNPAK CR (+)” (5 μm, 4.0 × 150 mm) manufactured by Daicel Chemical Industries, Ltd. The results are shown in Table 10. In Table 10, for comparison, L182E single mutation data in Table 7 is also shown.
表10に示すように、反応3日目にはいずれも90%以上に達した。また、反応3日目のD-ビフェニルアラニンの光学純度は、野生型は88.3%eeであるのに対し、L182Eの単変異改変型は99.2%eeであり、L182E+L348Iの二重変異改変型は99.4%eeであり、いずれの改変型も光学純度が野生型と比較して顕著に向上しており、特に二重変異改変型は、単変異改変型よりさらに光学純度が向上していた。本発明のD-サクシニラーゼは、工業規模でのD-アミノ酸の製造に使用されるため、製造されるD-アミノ酸の光学純度がわずかでも向上するということは、製造コストの低下をもたらす顕著な向上であるといえる。また、データには示さないが、L348Iの単変異のみでは、野生型と比較して選択性向上の効果は見られず、L182Eと組み合わせることで、相乗的な立体選択性向上への寄与が確認された。
As shown in Table 10, all reached 90% or more on the third day of the reaction. The optical purity of D-biphenylalanine on the third day of the reaction is 88.3% ee for the wild type, whereas it is 99.2% ee for the single mutation type of L182E, and the double mutation of L182E + L348I. The modified type is 99.4% ee, and the optical purity of each modified type is markedly improved compared to the wild type. In particular, the double mutant modified type has a further improved optical purity than the single mutant modified type. Was. Since the D-succinylase of the present invention is used for the production of D-amino acids on an industrial scale, the slight improvement in the optical purity of the produced D-amino acids means a significant improvement resulting in a reduction in production costs. You can say that. In addition, although not shown in the data, only the single mutation of L348I does not show an effect of improving the selectivity compared to the wild type, and it is confirmed that the combination with L182E contributes to a synergistic improvement of stereoselectivity. It was done.
実施例6 Cupriavidus sp.P4-10-C株由来D-サクシニラーゼと近縁種のD-サクシニラーゼにおけるアミノ酸配列の相同性比較
Cupriavidus sp.P4-10-C株由来のD-サクシニラーゼにおいて明らかとなった立体選択性に関与するアミノ酸残基が、その他のCupriavidus属細菌のD-サクシニラーゼにおいて、保存されているかどうかを調べるために、Cupriavidus sp.P4-10-C、Cupriavidus metallidurans、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列の相同性比較を行った。なお、Cupriavidus sp.P4-10-CとCupriavidus metalliduransについては、参考例1及び2で明らかにしたアミノ酸配列を、Cupriavidus necatorとCupriavidus taiwanensisについては、NCBI(http://blast.ncbi.nlm.nih.gov)に公開されているアミノ酸配列を用いた。詳しくはCupriavidus necatorについては、Penicillin G acylase(ACCESSION No.YP_842011)として登録されているアミノ酸配列を、Cupriavidus taiwanensisについては、Penicillin G amidaseprecursor(ACCESSION No.YP_002008843)として登録されているアミノ酸配列を用いた。また、アミノ酸配列解析ソフトは、GENETYX CORPORATIONから販売されているGENETYX WIN Version 6.1のものを使用した。結果を図3に示す。その結果、Cupriavidus sp.P4-10-C株由来のD-サクシニラーゼで明らかになった立体選択性に関与しているアミノ酸残基の全てが、比較した全てのCupriavidus属細菌のD-サクシニラーゼで保存されていることが明らかになった。なお、これらの4種のCupriavidus属細菌のD-サクシニラーゼの相同性は、以下の表11に示すように75%~93%であった。 Example 6 Cupriavidus sp. Comparison of homology of amino acid sequences between D-succinylase derived from P4-10-C strain and D-succinylase of related species Cupriavidus sp. In order to examine whether amino acid residues involved in stereoselectivity revealed in D-succinylase derived from P4-10-C strain are conserved in other D. succinylases of the genus Cupriavidus, Cupriavidus sp . A homology comparison of the amino acid sequences of D4 succinylases of P4-10-C, Cupriavidus metallidrans, Cupriavidus necator and Cupriavidus taiwanensis was performed. Cupriavidus sp. For P4-10-C and Cupriavidus metallidurans, the amino acid sequences revealed in Reference Examples 1 and 2 were used, and for Cupriavidus necator and Cupriavidus Taiwananesis, NCBI (http: //blast.ncbi.nlm.n. The amino acid sequence used was used. Specifically, the amino acid sequence registered as Penicillin G acylase (ACCESSION No. YP — 842011) is used for Cupriavidus necator, and Penicillin Gamidasepresor is used as the amino acid sequence registered as Penicillin G amidaseprecursor. In addition, the amino acid sequence analysis software of GENETYX WIN Version 6.1 sold by GENETYX CORPORATION was used. The results are shown in FIG. As a result, Cupriavidus sp. It is clear that all amino acid residues involved in stereoselectivity revealed by D-succinylase derived from P4-10-C strain are conserved by all D-succinylases of Cupriavidus bacteria compared. Became. The homology of D-succinylase of these four types of Cupriavidus bacteria was 75% to 93% as shown in Table 11 below.
Cupriavidus sp.P4-10-C株由来のD-サクシニラーゼにおいて明らかとなった立体選択性に関与するアミノ酸残基が、その他のCupriavidus属細菌のD-サクシニラーゼにおいて、保存されているかどうかを調べるために、Cupriavidus sp.P4-10-C、Cupriavidus metallidurans、Cupriavidus necator及びCupriavidus taiwanensisのD-サクシニラーゼのアミノ酸配列の相同性比較を行った。なお、Cupriavidus sp.P4-10-CとCupriavidus metalliduransについては、参考例1及び2で明らかにしたアミノ酸配列を、Cupriavidus necatorとCupriavidus taiwanensisについては、NCBI(http://blast.ncbi.nlm.nih.gov)に公開されているアミノ酸配列を用いた。詳しくはCupriavidus necatorについては、Penicillin G acylase(ACCESSION No.YP_842011)として登録されているアミノ酸配列を、Cupriavidus taiwanensisについては、Penicillin G amidaseprecursor(ACCESSION No.YP_002008843)として登録されているアミノ酸配列を用いた。また、アミノ酸配列解析ソフトは、GENETYX CORPORATIONから販売されているGENETYX WIN Version 6.1のものを使用した。結果を図3に示す。その結果、Cupriavidus sp.P4-10-C株由来のD-サクシニラーゼで明らかになった立体選択性に関与しているアミノ酸残基の全てが、比較した全てのCupriavidus属細菌のD-サクシニラーゼで保存されていることが明らかになった。なお、これらの4種のCupriavidus属細菌のD-サクシニラーゼの相同性は、以下の表11に示すように75%~93%であった。 Example 6 Cupriavidus sp. Comparison of homology of amino acid sequences between D-succinylase derived from P4-10-C strain and D-succinylase of related species Cupriavidus sp. In order to examine whether amino acid residues involved in stereoselectivity revealed in D-succinylase derived from P4-10-C strain are conserved in other D. succinylases of the genus Cupriavidus, Cupriavidus sp . A homology comparison of the amino acid sequences of D4 succinylases of P4-10-C, Cupriavidus metallidrans, Cupriavidus necator and Cupriavidus taiwanensis was performed. Cupriavidus sp. For P4-10-C and Cupriavidus metallidurans, the amino acid sequences revealed in Reference Examples 1 and 2 were used, and for Cupriavidus necator and Cupriavidus Taiwananesis, NCBI (http: //blast.ncbi.nlm.n. The amino acid sequence used was used. Specifically, the amino acid sequence registered as Penicillin G acylase (ACCESSION No. YP — 842011) is used for Cupriavidus necator, and Penicillin Gamidasepresor is used as the amino acid sequence registered as Penicillin G amidaseprecursor. In addition, the amino acid sequence analysis software of GENETYX WIN Version 6.1 sold by GENETYX CORPORATION was used. The results are shown in FIG. As a result, Cupriavidus sp. It is clear that all amino acid residues involved in stereoselectivity revealed by D-succinylase derived from P4-10-C strain are conserved by all D-succinylases of Cupriavidus bacteria compared. Became. The homology of D-succinylase of these four types of Cupriavidus bacteria was 75% to 93% as shown in Table 11 below.
実施例7 改変型Cupriavidus metallidurans由来D-サクシニラーゼ(以下、CmDSA遺伝子と称する)の調製
そこで、実施例6のアミノ酸配列のアライメント結果に基づき、近縁種においても、P4DSAの立体選択性に関与する72位、181~185位、305位、348位、351位、461位、539位に同等な部位をアミノ酸置換することにより、N-サクシニル-DL-アミノ酸に対して、D体選択的に作用するようになるということを示すために、近縁種の一種であるCupriavidus metalliduransの改変型CmDSAを作成し、立体選択性を評価することにした。
(1)改変型CmDSA遺伝子発現プラスミドの構築
実施例1(3)に記載した方法と同様の方法で改変型CmDSA遺伝子発現プラスミドを構築した。作製した改変型酵素と変異導入に使用した合成オリゴDNAプライマーの配列を表12に示す。 Example 7 Preparation of Modified Cupriavidus metallidurans-derived D-succinylase (hereinafter referred to as CmDSA gene) Based on the alignment results of the amino acid sequence of Example 6, the related species are also involved in the stereoselectivity of P4DSA. Substituents, 181 to 185, 305, 348, 351, 461, 539, and D-form selective action on N-succinyl-DL-amino acid by amino acid substitution at equivalent sites In order to show that this is the case, it was decided to create a modified CmDSA of Cupriavidus metallidurans, a kind of related species, and evaluate the stereoselectivity.
(1) Construction of modified CmDSA gene expression plasmid A modified CmDSA gene expression plasmid was constructed in the same manner as described in Example 1 (3). Table 12 shows the sequences of the prepared modified enzymes and the synthetic oligo DNA primers used for introducing the mutation.
そこで、実施例6のアミノ酸配列のアライメント結果に基づき、近縁種においても、P4DSAの立体選択性に関与する72位、181~185位、305位、348位、351位、461位、539位に同等な部位をアミノ酸置換することにより、N-サクシニル-DL-アミノ酸に対して、D体選択的に作用するようになるということを示すために、近縁種の一種であるCupriavidus metalliduransの改変型CmDSAを作成し、立体選択性を評価することにした。
(1)改変型CmDSA遺伝子発現プラスミドの構築
実施例1(3)に記載した方法と同様の方法で改変型CmDSA遺伝子発現プラスミドを構築した。作製した改変型酵素と変異導入に使用した合成オリゴDNAプライマーの配列を表12に示す。 Example 7 Preparation of Modified Cupriavidus metallidurans-derived D-succinylase (hereinafter referred to as CmDSA gene) Based on the alignment results of the amino acid sequence of Example 6, the related species are also involved in the stereoselectivity of P4DSA. Substituents, 181 to 185, 305, 348, 351, 461, 539, and D-form selective action on N-succinyl-DL-amino acid by amino acid substitution at equivalent sites In order to show that this is the case, it was decided to create a modified CmDSA of Cupriavidus metallidurans, a kind of related species, and evaluate the stereoselectivity.
(1) Construction of modified CmDSA gene expression plasmid A modified CmDSA gene expression plasmid was constructed in the same manner as described in Example 1 (3). Table 12 shows the sequences of the prepared modified enzymes and the synthetic oligo DNA primers used for introducing the mutation.
(2)CmDSA及び改変型CmDSAの調製
実施例1(4)に記載した方法と同様の方法で、CmDSA及び改変型CmDSAの粗酵素液を調製した。 (2) Preparation of CmDSA and modified CmDSA Crude enzyme solutions of CmDSA and modified CmDSA were prepared in the same manner as described in Example 1 (4).
実施例1(4)に記載した方法と同様の方法で、CmDSA及び改変型CmDSAの粗酵素液を調製した。 (2) Preparation of CmDSA and modified CmDSA Crude enzyme solutions of CmDSA and modified CmDSA were prepared in the same manner as described in Example 1 (4).
実施例8 改変型CmDSAを用いたN-サクシニルトリプトファンに対する立体選択性の評価
実施例7で調製した粗酵素液を用いて、実施例1と同様の条件及び手順で、N-サクシニルトリプトファンに対する立体選択性の評価を行った。その結果を表13に示す。 Example 8 Evaluation of stereoselectivity for N-succinyltryptophan using modified CmDSA Stereoselection for N-succinyltryptophan using the crude enzyme solution prepared in Example 7 under the same conditions and procedures as in Example 1. Sexuality was evaluated. The results are shown in Table 13.
実施例7で調製した粗酵素液を用いて、実施例1と同様の条件及び手順で、N-サクシニルトリプトファンに対する立体選択性の評価を行った。その結果を表13に示す。 Example 8 Evaluation of stereoselectivity for N-succinyltryptophan using modified CmDSA Stereoselection for N-succinyltryptophan using the crude enzyme solution prepared in Example 7 under the same conditions and procedures as in Example 1. Sexuality was evaluated. The results are shown in Table 13.
その結果、全ての改変型CmDSAにおいて、D体選択的に作用していることが確認された。すなわち、Cupriavidus sp.P4-10-C株由来D-サクシニラーゼの立体選択性に関与する72位、181~185位、305位、348位、351位、461位及び539位は、本菌株のみならず、近縁種のD-サクシニラーゼにおいても、それぞれの部位に同等な部位をアミノ酸置換することにより、D体選択性を向上させることができる部位であることが示唆された。
As a result, it was confirmed that all modified CmDSAs acted selectively in the D form. That is, Cupriavidus sp. Positions 72, 181 to 185, 305, 348, 351, 461 and 539, which are involved in the stereoselectivity of P4-10-C-derived D-succinylase, are not only this strain but also related species It was suggested that the D-succinylase can also be improved in D-form selectivity by amino acid substitution of equivalent sites in the respective sites.
本発明の改変型D-サクシニラーゼは、野生型D-サクシニラーゼと比較してD体選択性が著しく向上しているので、医薬品等の中間体の原料として有用なD-アミノ酸を効率良く製造するために有用である。
The modified D-succinylase of the present invention has a significantly improved D-form selectivity compared to the wild-type D-succinylase, so that it can efficiently produce a D-amino acid useful as a raw material for intermediates such as pharmaceuticals. Useful for.
配列番号5~54は、実施例に記載した設計ポリヌクレオチドの配列である。
SEQ ID NOs: 5 to 54 are the sequences of the designed polynucleotides described in the examples.
Claims (13)
- 下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号2に示すアミノ酸配列において、下記(a)~(k)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)72位のグルタミン残基のアルギニン残基への置換
(b)181位のグリシン残基のトリプトファン残基、リジン残基、アルギニン残基、アスパラギン酸又はグルタミン酸残基への置換
(c)182位のロイシン残基のトリプトファン残基、セリン残基、システイン残基、チロシン残基、リジン残基、アルギニン残基、アスパラギン酸残基、グルタミン酸残基又はプロリン残基への置換
(d)183位のスレオニン残基のプロリン残基、ロイシン残基又はアスパラギン残基への置換
(e)184位のロイシン残基のプロリン残基への置換
(f)185位のアスパラギン残基のプロリン残基、フェニルアラニン残基、セリン残基又はアスパラギン酸残基への置換
(g)305位のアルギニン残基のスレオニン残基、アラニン残基、グリシン残基、ヒスチジン残基、グルタミン残基、セリン残基、アスパラギン残基又はバリン残基への置換
(h)348位のロイシン残基のグルタミン酸残基、プロリン残基、メチオニン残基、トリプトファン残基、セリン残基、スレオニン残基、システイン残基、リジン残基、ヒスチジン残基又はグルタミン残基への置換
(i)351位のフェニルアラニン残基のロイシン残基、イソロイシン残基、メチオニン残基、アスパラギン残基又はグルタミン残基への置換
(j)461位のアスパラギン残基のイソロイシン残基、フェニルアラニン残基、スレオニン残基、リジン残基又はアルギニン残基への置換
(k)539位のグリシン残基のプロリン残基、バリン残基、メチオニン残基、スレオニン残基又はアスパラギン残基への置換
(B)上記(A)のアミノ酸配列において、72位、181~185位、305位、348位、351位、461位、及び539位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。 A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (k) in the amino acid sequence shown in SEQ ID NO: 2 (a) an arginine residue of glutamine residue at position 72 (B) substitution of glycine residue at position 181 with tryptophan residue, lysine residue, arginine residue, aspartic acid or glutamic acid residue (c) tryptophan residue at position 182, tryptophan residue, serine residue Group, cysteine residue, tyrosine residue, lysine residue, arginine residue, aspartic acid residue, glutamic acid residue or proline residue (d) threonine residue at position 183, proline residue, leucine residue Or substitution to asparagine residue (e) substitution of leucine residue at position 184 to proline residue (f) proline residue of asparagine residue at position 185, Substituting with a phenylalanine residue, a serine residue or an aspartic acid residue (g) a threonine residue of the arginine residue at position 305, an alanine residue, a glycine residue, a histidine residue, a glutamine residue, a serine residue, Substitution to asparagine residue or valine residue (h) glutamic acid residue, proline residue, methionine residue, tryptophan residue, serine residue, threonine residue, cysteine residue, lysine residue of 348th leucine residue Group, substitution to histidine residue or glutamine residue (i) substitution of phenylalanine residue at position 351 to leucine residue, isoleucine residue, methionine residue, asparagine residue or glutamine residue (j) position 461 Placement of asparagine residues on isoleucine, phenylalanine, threonine, lysine or arginine residues (K) Replacement of the glycine residue at position 539 with a proline residue, valine residue, methionine residue, threonine residue or asparagine residue (B) position 72, 181 to 185 in the amino acid sequence of (A) above An amino acid sequence having substitution, deletion, insertion, addition and / or inversion of one or several amino acid residues at positions other than positions 305, 348, 351, 461 and 539 An amino acid sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to N-succinyl-DL-amino acid. - 請求項1の(A)のアミノ酸配列が、配列番号2に示すアミノ酸配列において、182位のロイシン残基のグルタミン酸残基への置換、及び348位のロイシン残基のイソロイシン残基への置換を有するアミノ酸配列であることを特徴とする請求項1に記載のタンパク質。 In the amino acid sequence of (A) of claim 1, in the amino acid sequence shown in SEQ ID NO: 2, substitution of a leucine residue at position 182 with a glutamic acid residue and substitution of a leucine residue at position 348 with an isoleucine residue The protein according to claim 1, wherein the protein has an amino acid sequence.
- 下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号1に示す塩基配列において、下記(a)~(k)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)214~216位の塩基配列caaの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)541~543位の塩基配列ggcの、tgg、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa又はgagへの置換
(c)544~546位の塩基配列ctgの、tgg、tct、tcc、tca、tcg、agt、agc、tgt、tgc、tat、tac、aaa、aag、cgt、cgc、cga、cgg、aga、agg、gat、gac、gaa、gag、cct、ccc、cca又はccgへの置換
(d)547~549位の塩基配列acgの、cct、ccc、cca、ccg、tta、ttg、ctt、ctc、cta、ctg、aat又はaacへの置換
(e)550~552位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(f)553~555位の塩基配列aatの、cct、ccc、cca、ccg、ttt、ttc、tct、tcc、tca、tcg、agt、agc、gat又はgacへの置換
(g)913~915位の塩基配列cggの、act、acc、aca、acg、gct、gcc、gca、gcg、ggt、ggc、gga、ggg、cat、cac、caa、cag、tct、tcc、tca、tcg、agt、agc、aat、aac、gtt、gtc、gta又はgtgへの置換
(h)1042~1044位の塩基配列ctgの、gaa、gag、cct、ccc、cca、ccg、atg、tgg、tct、tcc、tca、tcg、agt、agc、act、acc、aca、acg、tgt、tgc、aaa、aag、cat、cac、caa又はcagへの置換
(i)1051~1053位の塩基配列ttcの、tta、ttg、ctt、ctc、cta、ctg、att、atc、ata、atg、aat、aac、caa又はcagへの置換
(j)1381~1383位の塩基配列aacの、att、atc、ata、ttt、ttc、act、acc、aca、acg、aaa、aag、cgt、cgc、cga、cgg、aga又はaggへの置換
(k)1615~1617位の塩基配列ggcの、cct、ccc、cca、ccg、gtt、gtc、gta、gtg、atg、act、acc、aca、acg、aat又はaacへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。 A gene comprising the following base sequence (A) or (B):
(A) a base sequence having the substitution of at least one base sequence selected from the following (a) to (k) in the base sequence shown in SEQ ID NO: 1 (a) cgt of the base sequence caa at positions 214 to 216 (B) Substitution to cgg, cga, cgg, aga or agg (b) tgg, aaa, aag, cgt, cgg, cga, cgg, aga, agg, gat, gac, gaa or the base sequence ggg at positions 541 to 543 Substitution to gag (c) tgg, tct, tcc, tca, tcg, agt, agc, tgt, tgc, tat, tac, aaa, aag, cgt, cgc, cga, cgg of nucleotide sequence ctg at positions 544 to 546 , Aga, agg, gat, gac, gaa, gag, cct, ccc, cca or ccg substitution (d) nucleotide sequence from position 547 to 549 Substitution of acg to cct, ccc, cca, ccg, tta, ttg, ctt, ctc, cta, ctg, aat or aac (e) cct, ccc, cca or ccg of nucleotide sequence ctg at positions 550 to 552 (F) Substitution of base sequence aat at positions 553 to 555 to cct, ccc, cca, ccg, ttt, ttt, tct, tcc, tca, tcg, agt, agc, gat or gac (g) 913 to The base sequence cgg at position 915, act, acc, aca, acg, gct, gcc, gca, gcg, ggt, ggg, gga, ggg, cat, cac, caa, cag, tct, tcc, tca, tcg, agt, Substitution to agc, aat, aac, gtt, gtt, gta or gtg (h) bases at positions 1042 to 1044 Ctg, gaa, gag, cct, ccc, cca, ccg, atg, tgg, tct, tcc, tca, tcg, agt, agc, act, acc, aca, acg, tgt, tgc, aaa, aag, cat, Substitution to cac, caa or cag (i) substitution of base sequence ttc at positions 1051 to 1053 to tta, ttg, ctt, ctc, cta, ctg, att, atc, ata, atg, aat, aac, caa or cag Substitution (j) Substitution of nucleotide sequence aac at positions 1381 to 1383 to att, atc, ata, ttt, ttc, act, acc, aca, acg, aaa, aag, cgt, cgg, cga, cgg, aga or agg (K) cct, ccc, cca, ccg, gt of the base sequence ggc at positions 1615 to 1617 Substitution to t, gtc, gta, gtg, atg, act, acc, aca, acg, aat or aac (B) A nucleotide sequence that hybridizes with the nucleotide sequence of (A) above under stringent conditions, and N A base sequence encoding a protein having an activity of producing a D-amino acid by selectively acting on D-form to succinyl-DL-amino acid. - 請求項3の(A)の塩基配列が、配列番号1に示す塩基配列において、544~546位の塩基配列ctgの、gaa又はgagへの置換、及び1042~1044位の塩基配列ctgの、att,atc又はataへの置換を有する塩基配列であることを特徴とする請求項3に記載の遺伝子。 The base sequence of (A) of claim 3 is an att of the base sequence ctg at positions 544 to 546 to gaa or gag in the base sequence shown in SEQ ID NO: 1, and the base sequence ctg at positions 1042 to 1044 The gene according to claim 3, wherein the gene has a substitution to atc or ata.
- 下記(A)又は(B)のアミノ酸配列からなることを特徴とするタンパク質。
(A)配列番号4に示すアミノ酸配列において、下記(a)~(e)から選択される少なくとも1個のアミノ酸残基の置換を有するアミノ酸配列
(a)177位のロイシン残基のアルギニン残基への置換
(b)180位のアスパラギン残基のアスパラギン酸残基への置換
(c)344位のロイシン残基のプロリン残基への置換
(d)347位のフェニルアラニン残基のイソロイシン残基への置換
(e)457位のアスパラギン残基のイソロイシン残基への置換
(B)上記(A)のアミノ酸配列において、177位、180位、344位、347位、及び457位以外の箇所に、1若しくは数個のアミノ酸残基の置換、欠失、挿入、付加および/または逆位を有するアミノ酸配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードするアミノ酸配列。 A protein comprising the following amino acid sequence (A) or (B):
(A) an amino acid sequence having a substitution of at least one amino acid residue selected from the following (a) to (e) in the amino acid sequence shown in SEQ ID NO: 4 (a) an arginine residue of a leucine residue at position 177 (B) Substitution of asparagine residue at position 180 to aspartic acid residue (c) Substitution of leucine residue at position 344 to proline residue (d) To isoleucine residue of phenylalanine residue at position 347 (E) Substitution of asparagine residue at position 457 to isoleucine residue (B) In the amino acid sequence of (A) above, at positions other than positions 177, 180, 344, 347, and 457, An amino acid sequence having substitutions, deletions, insertions, additions and / or inversions of one or several amino acid residues, which is D-form selective for N-succinyl-DL-amino acids Amino acid sequence encoding a protein having an activity to produce the effect to D- amino acids. - 下記(A)又は(B)の塩基配列からなることを特徴とする遺伝子。
(A)配列番号3に示す塩基配列において、下記(a)~(e)から選択される少なくとも1個の塩基配列の置換を有する塩基配列
(a)529~531位の塩基配列ctgの、cgt、cgc、cga、cgg、aga又はaggへの置換
(b)538~540位の塩基配列aacの、gat又はgacへの置換
(c)1030~1032位の塩基配列ctgの、cct、ccc、cca又はccgへの置換
(d)1039~1041位の塩基配列ttcの、att、atc又はataへの置換
(e)1369~1371位の塩基配列aatの、att、atc又はataへの置換
(B)上記(A)の塩基配列とストリンジェントな条件でハイブリダイズする塩基配列であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有するタンパク質をコードする塩基配列。 A gene comprising the following base sequence (A) or (B):
(A) a base sequence having a substitution of at least one base sequence selected from the following (a) to (e) in the base sequence shown in SEQ ID NO: 3 (a) cgt of the base sequence ctg at positions 529 to 531 , Cgc, cga, cgg, aga or agg substitution (b) substitution of base sequence aac at positions 538 to 540 to gat or gac (c) cct, ccc, cca of base sequence ctg at positions 1030 to 1032 Or substitution with ccg (d) substitution of base sequence ttc at positions 1039 to 1041 with att, atc or ata (e) substitution of base sequence aat at positions 1369 to 1371 with att, atc or ata (B) A base sequence that hybridizes with the base sequence of (A) above under stringent conditions and selectively acts on D-forms against N-succinyl-DL-amino acids. Nucleotide sequence encoding a protein having the activity to form D- amino Te. - 配列番号2と70%以上の相同性を有するアミノ酸配列において、配列番号2の72位、181~185位、305位、348位、351位、461位、及び539位のうちのいずれかと同等な位置のアミノ酸残基が、請求項1の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。 In the amino acid sequence having 70% or more homology with SEQ ID NO: 2, it is equivalent to any of positions 72, 181-185, 305, 348, 351, 461, and 539 of SEQ ID NO: 2. A protein comprising an amino acid sequence in which the amino acid residue at the position is substituted with the amino acid residue shown in (A) of claim 1, which acts in a D-form selective manner on N-succinyl-DL-amino acids. A protein having an activity of producing a D-amino acid.
- 請求項7に記載のタンパク質をコードすることを特徴とする遺伝子。 A gene encoding the protein according to claim 7.
- 配列番号4と70%以上の相同性を有するアミノ酸配列において、配列番号4の177位、180位、344位、347位、及び457位のうちのいずれかと同等な位置のアミノ酸残基が、請求項3の(A)に示すアミノ酸残基に置換されているアミノ酸配列からなるタンパク質であって、N-サクシニル-DL-アミノ酸に対してD体選択的に作用してD-アミノ酸を生成する活性を有することを特徴とするタンパク質。 In the amino acid sequence having 70% or more homology with SEQ ID NO: 4, an amino acid residue at a position equivalent to any of positions 177, 180, 344, 347, and 457 of SEQ ID NO: 4 is claimed A protein comprising an amino acid sequence substituted with the amino acid residue shown in (A) of Item 3, wherein the D-amino acid acts selectively on N-succinyl-DL-amino acid to produce D-amino acid A protein characterized by comprising:
- 請求項9に記載のタンパク質をコードすることを特徴とする遺伝子。 A gene encoding the protein according to claim 9.
- 請求項3,4,6,8又は10に記載の遺伝子をベクターに挿入して組換えベクターを調製し、この組換えベクターで宿主細胞を形質転換して形質転換体を調製し、この形質転換体を培養する工程を含むことを特徴とする請求項1,2,5,7又は9に記載のタンパク質の製造方法。 A recombinant vector is prepared by inserting the gene according to claim 3, 4, 6, 8 or 10 into a vector, a host cell is transformed with the recombinant vector, and a transformant is prepared. The method for producing a protein according to claim 1, 2, 5, 7, or 9, further comprising a step of culturing the body.
- 請求項1,2,5,7又は9に記載のタンパク質を用いてN-サクシニル-DL-アミノ酸中のN-サクシニル-D-アミノ酸を特異的に加水分解する工程を含むことを特徴とするD-アミノ酸の製造方法。 A step of specifically hydrolyzing N-succinyl-D-amino acid in N-succinyl-DL-amino acid using the protein according to claim 1, 2, 5, 7, or 9. -A method for producing amino acids.
- N-サクシニルアミノ酸ラセマーゼを用いてN-サクシニル-L-アミノ酸をラセミ化してN-サクシニル-D-アミノ酸を生成させる工程をさらに含むことを特徴とする請求項12に記載の方法。 The method according to claim 12, further comprising the step of racemizing the N-succinyl-L-amino acid with an N-succinyl amino acid racemase to produce an N-succinyl-D-amino acid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-055365 | 2011-03-14 | ||
JP2011055365 | 2011-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012124513A1 true WO2012124513A1 (en) | 2012-09-20 |
Family
ID=46830588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055409 WO2012124513A1 (en) | 2011-03-14 | 2012-03-02 | Modified d-succinylase having improved d-form selectivity for n-succinyl-dl-amino acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5903298B2 (en) |
WO (1) | WO2012124513A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106399412A (en) * | 2016-06-03 | 2017-02-15 | 南京红杉生物科技有限公司 | Method for synthesizing D-biphenyl alanine |
US9700599B2 (en) | 2012-11-13 | 2017-07-11 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US9795678B2 (en) | 2014-05-14 | 2017-10-24 | Adocia | Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound |
US10525133B2 (en) | 2014-05-14 | 2020-01-07 | Adocia | Aqueous composition comprising at least one protein and one solubilizing agent, preparation thereof and uses thereof |
US10792335B2 (en) | 2015-11-16 | 2020-10-06 | Adocia | Rapid-acting insulin composition comprising a substituted citrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008061642A (en) * | 2006-08-10 | 2008-03-21 | Toyobo Co Ltd | Method for producing d-amino acid |
WO2012002450A1 (en) * | 2010-06-30 | 2012-01-05 | 積水メディカル株式会社 | D-succinylase, and method for producing d-amino acid using same |
-
2012
- 2012-03-02 WO PCT/JP2012/055409 patent/WO2012124513A1/en active Application Filing
- 2012-03-02 JP JP2012046441A patent/JP5903298B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008061642A (en) * | 2006-08-10 | 2008-03-21 | Toyobo Co Ltd | Method for producing d-amino acid |
WO2012002450A1 (en) * | 2010-06-30 | 2012-01-05 | 積水メディカル株式会社 | D-succinylase, and method for producing d-amino acid using same |
Non-Patent Citations (2)
Title |
---|
DATABASE UNIPROTKB/ SWISS-PROT DAT [online] 28 November 2006 (2006-11-28), "Penicillin G acylase precursor.", retrieved from http://www.ncbi.nlm.nih.gov/protein/QOJY93 Database accession no. QOJY93 * |
DATABASE UNIPROTKB/SWISS-PROT DATA [online] 28 November 2006 (2006-11-28), "Peptidase S45, penicillin amidase precursor.", retrieved from http://www.ncbi.nlm.nih.gov/protein/ Q1LBI2 Database accession no. Q1LBI2 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9700599B2 (en) | 2012-11-13 | 2017-07-11 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US10583175B2 (en) | 2012-11-13 | 2020-03-10 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US10646551B2 (en) | 2012-11-13 | 2020-05-12 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US10881716B2 (en) | 2012-11-13 | 2021-01-05 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US11324808B2 (en) | 2012-11-13 | 2022-05-10 | Adocia | Rapid-acting insulin formulation comprising a substituted anionic compound |
US9795678B2 (en) | 2014-05-14 | 2017-10-24 | Adocia | Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound |
US10525133B2 (en) | 2014-05-14 | 2020-01-07 | Adocia | Aqueous composition comprising at least one protein and one solubilizing agent, preparation thereof and uses thereof |
US10792335B2 (en) | 2015-11-16 | 2020-10-06 | Adocia | Rapid-acting insulin composition comprising a substituted citrate |
CN106399412A (en) * | 2016-06-03 | 2017-02-15 | 南京红杉生物科技有限公司 | Method for synthesizing D-biphenyl alanine |
CN106399412B (en) * | 2016-06-03 | 2019-12-10 | 南京红杉生物科技有限公司 | Method for synthesizing D-biphenylalanine |
Also Published As
Publication number | Publication date |
---|---|
JP5903298B2 (en) | 2016-04-13 |
JP2012205587A (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7316916B2 (en) | DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids | |
JP5232247B2 (en) | L-succinylaminoacylase and method for producing L-amino acid using the same | |
JP6048850B2 (en) | D-succinylase and method for producing D-amino acid using the same | |
JP2008061642A (en) | Method for producing d-amino acid | |
CN113969269B (en) | D-amino acid oxidase mutant and application thereof in preparation of L-glufosinate | |
JP5903298B2 (en) | Modified D-succinylase with improved D-form selectivity for N-succinyl-DL-amino acids | |
WO2009136500A1 (en) | L-succinyl aminoacylase and process for producing an l-amino acid using the same | |
CN110885803A (en) | Recombinant glufosinate-ammonium dehydrogenase, genetically engineered bacterium and application of recombinant glufosinate-ammonium dehydrogenase in preparation of L-glufosinate-ammonium | |
JP5516664B2 (en) | N-acetyl- (R, S) -β-amino acid acylase gene | |
EP3666894B1 (en) | D type amino acid dehydrogenase | |
JP4561009B2 (en) | DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid | |
CN112779233B (en) | Recombinant glufosinate dehydrogenase, genetically engineered bacterium and application thereof in preparation of L-glufosinate | |
JP4118687B2 (en) | D-carbamoylase derived from Arthrobacter crystallopoietes DSM20117 strain | |
CN106795511A (en) | Oxidizing ferment, the polynucleotides for encoding the enzyme and their application | |
JP4650421B2 (en) | L-form amino acid amide asymmetric hydrolase and DNA encoding the same | |
JP5119783B2 (en) | N-acetyl- (R, S) -β-amino acid acylase gene | |
JP4489598B2 (en) | D-aminoacylase | |
JP4274767B2 (en) | (R) -Amidase gene that selectively hydrolyzes amide bond and its use | |
JP4627039B2 (en) | Polypeptide having amidase activity and gene thereof | |
JP4116798B2 (en) | Novel amidase and gene encoding the same | |
WO2015093320A1 (en) | 2-deoxy-scyllo-inosose reductase | |
WO2018088434A1 (en) | Method for producing n-succinyl-hydroxy-d-amino acid and/or hydroxy-d-amino acid | |
JP5954539B2 (en) | Method for producing 1-benzyl-4-hydroxy-3-piperidinecarboxylic acid alkyl ester | |
JP2005304498A (en) | NEW MICROORGANISM AND ENZYME FOR PRODUCING alpha-AMINOADIPIC ACID SEMIALDEHYDE DERIVATIVE AND alpha-AMINOADIPIC ACID DERIVATIVE AND METHOD FOR PRODUCING alpha-AMINOADIPIC ACID SEMIALDEHYDE DERIVATIVE AND alpha-AMINOADIPIC ACID DERIVATIVE | |
JPWO2003085108A1 (en) | Recombinant DNA having hydantoinase gene and carbamylase gene, and method for producing amino acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12758296 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12758296 Country of ref document: EP Kind code of ref document: A1 |