WO2012124360A1 - 膜ろ過システムとその運転方法 - Google Patents

膜ろ過システムとその運転方法 Download PDF

Info

Publication number
WO2012124360A1
WO2012124360A1 PCT/JP2012/050594 JP2012050594W WO2012124360A1 WO 2012124360 A1 WO2012124360 A1 WO 2012124360A1 JP 2012050594 W JP2012050594 W JP 2012050594W WO 2012124360 A1 WO2012124360 A1 WO 2012124360A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
flow rate
membrane filtration
differential pressure
raw water
Prior art date
Application number
PCT/JP2012/050594
Other languages
English (en)
French (fr)
Inventor
良一 有村
武士 松代
英武 仕入
美和 石塚
太 黒川
英顕 山形
夕佳 平賀
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2012124360A1 publication Critical patent/WO2012124360A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • Embodiments of the present invention relate to the field of water treatment.
  • Embodiments of the present invention relate to a system for filtering seawater, brackish water, groundwater, and the like containing solutes such as ions and salts, using a membrane module, and an operation method thereof.
  • This type of technology can be applied to, for example, a water production plant.
  • a reverse osmosis membrane module is used to generate domestic water, industrial water, and agricultural water from seawater, brackish water, groundwater, etc. containing solutes such as ions and salts.
  • a reverse osmosis membrane (RO membrane) is a membrane that has the property of allowing water to permeate and not impurities other than water, such as ions and salts. Water and solute can be separated by applying a pressure equal to or higher than the osmotic pressure corresponding to the concentration of the solute to the water to be treated that is in contact with the reverse osmosis membrane.
  • pretreatment is performed to remove insoluble components contained in the water to be treated. For example, in order to purify seawater to produce fresh water, turbidity, algae, microorganisms, etc. contained in the taken seawater are removed by pretreatment. Pretreatment reduces the pollution load on the reverse osmosis membrane, lengthens the chemical washing interval of the reverse osmosis membrane, and allows the system to operate stably over a long period of time.
  • a membrane module such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is used for this pretreatment.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • dirt accumulates on the membrane surface of the MF membrane or the UF membrane itself due to turbidity in seawater, dissolved organic matter, microorganisms, highly viscous organic matter released by microorganisms, inorganic ions, and the like.
  • the output of the raw water supply pump for maintaining a constant permeation flow rate (Flux, commonly called flux) increases, and the pressure on the membrane inlet side increases. This occurs when the membrane is clogged.
  • Flux permeation flow rate
  • the degree of clogging is evaluated by the difference between the pressure at the membrane inlet and the pressure at the membrane outlet during membrane filtration. This pressure difference is called differential pressure.
  • the washing water is fed from the opposite side (outlet side) of the membrane as a washing step to remove dirt adhering to the membrane surface.
  • This washing is generally called a back washing (back washing) process.
  • backwashing water is usually passed at the same flow rate as the filtration flow rate or 2 to 3 times the flow rate.
  • the cleaning time is generally about several tens of seconds to several minutes.
  • an upper limit differential pressure value is provided according to the membrane module used.
  • chemical cleaning is performed to recover the pressure difference.
  • the cleaning effect of the chemical cleaning is high, the cost related to the chemical is high, and the membrane module is exposed to the chemical, so that the membrane may be deteriorated. Therefore, in the operation of the membrane filtration system, it is important to devise a technique that does not increase the differential pressure as much as possible so that the chemical cleaning interval can be increased.
  • washing water used in the back washing step filtered water filtered in the same membrane filtration or desalted water in which the filtered water is permeated through the reverse osmosis membrane is used. Cleaning with a large amount of water increases the back cleaning effect, which is effective from the viewpoint of recovering the differential pressure across the membrane. However, since more washing water is used, the amount of water produced by the water production plant per unit time is reduced.
  • the ratio of the produced water to the raw water used in the desalination plant is called the recovery rate.
  • the ratio of membrane filtration water produced to the raw water used is called the recovery rate in the membrane filtration step.
  • the scale of the equipment will increase with respect to the target production water volume, leading to an increase in initial costs and running costs such as power costs and chemical costs.
  • An increase in the amount of water used in the backwashing process leads to a decrease in the recovery rate, so the recovery rate of the differential pressure in the backwashing and the recovery rate in the membrane filtration process are in a trade-off relationship.
  • the differential pressure recovery rate in the backwashing process varies depending on the amount of turbidity and organic substances present in the raw water, the adhesion between the membrane surface and turbidity, and the membrane material used. This is because there are substances having reversible dirt and irreversible dirt due to properties such as turbidity in the raw water, and the ratio varies locally and seasonally. For this reason, even if the backwashing step is performed with the same washing flow rate and washing time, it is often seen that the differential pressure recovery rate is different. However, in the existing technology, with regard to the washing flow rate and washing time in the backwashing process, backwashing is often performed under the recommended fixed washing conditions, and it is efficient considering the recovery rate and membrane permeation flow rate. No backwash method is used.
  • the relationship between the recovery rate of the membrane filtration step, the permeation flow rate in the membrane filtration, and the differential pressure increase rate in the membrane filtration can be expressed by a characteristic curve, and by using this relationship, the differential pressure increase It has been found that a membrane filtration operation method can be selected that adjusts the recovery rate and permeate flow rate to increase or decrease the rate.
  • the most appropriate conditions can be selected to recover the differential pressure, and the conditions are affected by the permeation flow rate of membrane filtration and the quality of the target raw water. I understand that. Furthermore, it has also been found that with regard to additional types of cleaning designed to enhance the effect of backwashing, it is possible to select efficient use of the additional cleaning effect by providing the cleaning effect in the characteristic curve.
  • the purpose is to provide a membrane filtration system capable of improving the efficiency of operation and cleaning the membrane effectively, and an operation method thereof.
  • the membrane filtration system is filtered by a raw water tank that temporarily stores raw water, a membrane module that filters raw water, a raw water pump that supplies raw water from the raw water tank to the membrane module, and a membrane module.
  • a treated water tank for storing treated water and a backwash water pump for supplying treated water as washing water to the membrane module are provided. Then, in the membrane module cleaning process, based on the set value of the raw water recovery rate, the differential pressure increase in the cleaning process using the membrane filtration permeation flow rate and recovery rate characteristic curves for each differential pressure increase rate in the membrane filtration operation Select rate and membrane filtration permeate flow rate.
  • FIG. 1 is a conceptual diagram showing an increase in differential pressure in membrane filtration and recovery of differential pressure by backwashing.
  • FIG. 2 is a graph showing the relationship between the cleaning flow rate (L / min) and the differential pressure recovery rate in backwashing.
  • FIG. 3 is a conceptual diagram showing a differential pressure recovery rate and a differential pressure increase rate in membrane filtration.
  • FIG. 4 is a diagram showing the relationship between the washing time and the differential pressure recovery rate in membrane filtration.
  • FIG. 5 is a diagram showing the relationship between the differential pressure increase rate and the recovery rate at a certain permeation flow rate (Flux).
  • FIG. 6 is a conceptual diagram showing a shift in the differential pressure increase rate due to the difference in differential pressure recovery rate in membrane filtration.
  • FIG. 1 is a conceptual diagram showing an increase in differential pressure in membrane filtration and recovery of differential pressure by backwashing.
  • FIG. 2 is a graph showing the relationship between the cleaning flow rate (L / min) and the differential pressure recovery rate in backwashing.
  • FIG. 7 is a conceptual diagram showing a relationship connecting the same differential pressure increase rates in the characteristic curve.
  • FIG. 8 is a conceptual diagram showing a relationship connecting the same differential pressure increase rates in the characteristic curve.
  • FIG. 9 is a conceptual diagram showing the slope of the limit flux line in the characteristic curve.
  • FIG. 10 is a diagram illustrating an example of a membrane filtration system according to the embodiment.
  • FIG. 11 is a functional block diagram illustrating an embodiment of the control device 100.
  • FIG. 12 is a diagram illustrating a characteristic curve according to the first embodiment.
  • FIG. 13 is a diagram showing the relationship between the chemical cleaning interval and the differential pressure increase rate in the first embodiment.
  • FIG. 14 is a diagram illustrating a characteristic curve according to the second embodiment.
  • FIG. 15 is a conceptual diagram showing that an optimum cleaning condition is shifted according to a modification of the second embodiment.
  • FIG. 16 is a diagram illustrating a characteristic curve according to the third embodiment.
  • FIG. 17 is a diagram illustrating a characteristic curve according to the third embodiment.
  • FIG. 18 is a diagram illustrating a characteristic curve according to the third embodiment.
  • FIG. 19 is a conceptual diagram showing the degree of differential pressure recovery by an additional cleaning process according to the fourth embodiment.
  • FIG. 20 is a diagram illustrating a characteristic curve according to the fourth embodiment.
  • FIG. 21 is a diagram illustrating a characteristic curve according to the fourth embodiment.
  • FIG. 22 is a conceptual diagram showing the relationship between the permeation flow velocity (Flux) and the differential pressure increase rate in the fourth embodiment.
  • Flux permeation flow velocity
  • FIG. 1 is a conceptual diagram showing an increase in differential pressure in membrane filtration and recovery of differential pressure by backwashing.
  • FIG. 1 shows an increase in the differential pressure in membrane filtration, recovery of the differential pressure by the backwashing process, and the differential pressure increase rate at which the differential pressure gradually increases due to the dirt of the membrane not recovered by backwashing.
  • the permeation flow rate (Flux, flux) of the membrane filtration membrane in FIG. 1 is set to F1 (m / day).
  • the membrane filtration of the interval is performed in a time of about several tens of minutes to one hour.
  • a back washing step for washing from the opposite side of the membrane is performed.
  • the differential pressure recovers due to the effect of back washing, but since the dirt accumulated by back washing accumulates, the differential pressure recovery rate by back washing does not reach 100%. Therefore, the differential pressure of the base membrane gradually increases as the interval membrane filtration is repeated. This is expressed as the differential pressure increase rate (KPa / day).
  • FIG. 2 is a graph showing the relationship between the cleaning flow rate (L / min) and the differential pressure recovery rate in backwashing.
  • FIG. 2 (a) shows the concept of an increase in the differential pressure in membrane filtration and the recovery of the differential pressure by backwashing
  • FIG. 2 (b) shows the relationship between the cleaning flow rate and the differential pressure recovery rate.
  • FIG. 2 (a) if the differential pressure increases by A (KPa) in the membrane filtration during the interval and then enters the backwash process, it indicates that B (KPa) has recovered in the backwash where the differential pressure has recovered most.
  • FIG. 2B shows the cleaning flow rate at this time as Qmax.
  • the differential pressure recovery rate of 90% is the limit of the differential pressure recovery rate.
  • the differential pressure recovery rate when the cleaning flow rate is decreased to Q2 and Q1, the differential pressure recovery rate also decreases.
  • the differential pressure recovery rate is 75% at the cleaning flow rate Q2, and the differential pressure recovery rate is 50% at the cleaning flow rate Q1.
  • a small recovery rate of the differential pressure means that the amount of washing water used is small, and the recovery rate of the membrane filtration step is high.
  • the rate of increase in differential pressure due to repeated membrane filtration increases.
  • FIG. 3 is a conceptual diagram showing a differential pressure recovery rate and a differential pressure increase rate in membrane filtration.
  • the differential pressure increase rate ⁇ can take various values.
  • FIG. 3 shows the state of the following expression (1).
  • FIG. 3 is a conceptual diagram showing a differential pressure recovery rate and a differential pressure increase rate in membrane filtration.
  • the differential pressure increase rate ⁇ can take various values depending on the magnitude of the backwash flow rate. The smaller the backwash flow rate, the smaller the amount of washing water, and the higher the recovery rate.
  • FIG. 3 shows the state of the following expression (1). ⁇ B ⁇ C ⁇ D (1) The greater the differential pressure increase rate ⁇ , the greater the degree of clogging of the film.
  • FIG. 4 is a graph showing the relationship between the washing time and the differential pressure recovery rate in membrane filtration.
  • FIG. 4 shows FIG. 2 as the cleaning time under the cleaning conditions, and the horizontal axis indicates the cleaning time. It is shown that the differential pressure recovers most when the cleaning time is Tmax, but the differential pressure does not recover any more even if the cleaning time is Tmax or more.
  • T2 and T1 the amount of cleaning water used for cleaning decreases, but the recovery rate of the differential pressure decreases, so the differential pressure increase rate ⁇ of the base shown in FIG. 3 increases.
  • FIG. 5 is a diagram showing the relationship between the differential pressure increase rate and the recovery rate at a certain permeation flow rate (Flux).
  • FIG. 5 shows the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate shown in FIGS.
  • F1 permeation flow rate
  • FIG. 6 is a conceptual diagram showing a shift in the differential pressure increase rate due to the difference in differential pressure recovery rate in membrane filtration.
  • FIG. 6A shows a case where the permeation flow rate (Flux) of the membrane is made smaller than F1 (m / day), and the reduced flux is F2.
  • Flux permeation flow rate
  • the increase in the differential pressure in the membrane filtration during the interval is reduced, so that the rate of increase in the differential pressure can be kept low as shown in FIG.
  • the differential pressure increase rate at this time be ⁇ E. From FIG. 6A, if the amount of washing water in the backwashing process is reduced while Flux remains at F2, the differential pressure recovery rate decreases, thereby increasing the differential pressure increase rate.
  • the amount of washing water is decreased, there is a differential pressure recovery rate that becomes a rate of increase overlapping with the rate of increase in differential pressure ( ⁇ B), as shown in FIG.
  • FIG. 7 is a conceptual diagram showing a relationship connecting the same differential pressure increase rates in the characteristic curve. That is, FIG. 7 is a plot of the permeation flow velocity in FIG. 6 and the rate of increase in differential pressure at each of F1 and F2.
  • the recovery rate is increased by reducing the amount of washing water in the backwashing process (from the recovery rate (B) to the recovery rate (X)), while the differential pressure recovery rate is small.
  • the differential pressure increase rate increases (from ⁇ E to ⁇ B). This state is indicated by point X. Since the differential pressure increase rate at the point X is ⁇ B as described above, it is the same as the differential pressure increase rate at the permeation flow rate F1 and the recovery rate (B). That is, the thick broken line in FIG. 7 connects the operating states that have the same differential pressure increase rate.
  • the differential pressure does not recover even if washing is performed beyond that used in the recovery rate (B). This is because the cleaning is already performed at Qmax shown in FIG. That is, it indicates that the permeation flow rate cannot be set to F1 or higher in the state where the differential pressure increase rate ⁇ B is maintained.
  • this state is defined as a critical flux, and a line connecting critical fluxes at each differential pressure increase rate is referred to as a critical flux line.
  • FIG. 8 is a conceptual diagram showing a relationship connecting the same differential pressure increase rates in the characteristic curve.
  • the permeate flow rate is increased while maintaining the differential pressure increase rate, and the amount of washing water is increased (as a result, the recovery rate decreases). Represented by a thick broken line.
  • FIG. 9 is a conceptual diagram showing the slope of the critical flux line in the characteristic curve. Strictly speaking, the line connecting the critical flux does not have a constant recovery rate (parallel to the horizontal axis) at the permeation flow rate as shown in FIG. That is, the recovery rate of the line connecting the critical flux increases as the permeation flow rate increases as shown in FIG.
  • FIG. 10 is a diagram illustrating an example of a membrane filtration system according to the embodiment.
  • the membrane filtration system includes a raw water tank 1, a membrane module 2, a raw water pump 3, a treated water tank 4, a compressor 5, a backwash water pump 6, a wash water tank 9, and a control device.
  • the washing water tank 9 includes a heater 10.
  • the raw water tank 1 temporarily stores raw water guided from a water pump (not shown).
  • the membrane module 2 is, for example, a hollow fiber type, and filters raw water.
  • the raw water pump 3 supplies raw water from the raw water tank 1 to the membrane module 2.
  • the treated water tank 4 stores the treated water filtered by the membrane module 2.
  • the compressor 5 supplies pressurized air into the membrane module 2.
  • the backwash water pump 6 supplies treated water to the membrane module 2 as wash water.
  • the washing water tank 9 introduces and stores a part of the treated water stored in the treated water tank 4 as washing water.
  • Reference numerals 71 to 710 denote pipes, respectively.
  • Reference numerals 8a to 8k, 8m, and 8n denote valves.
  • the pipe 71 connects the lower side of the raw water tank 1 and the bottom of the membrane module 2.
  • Valves 8 a and 8 b are interposed in the pipe 71.
  • the pipe 72 connects the upper part of the membrane module 2 and the upper part of the treated water tank 4.
  • Valves 8 c and 8 d are interposed in the pipe 72.
  • the pipe 73 is connected to the bottom of the membrane module 2.
  • a valve 8 e is interposed in the pipe 73.
  • the pipe 74 is connected to the upper side of the membrane module 2.
  • a valve 8 f is interposed in the pipe 74.
  • the pipes 71, 73, 74, 75, and 76 are pipes on the primary side of the membrane (before filtration), and 72, 77, 78, and 710 are pipes on the filtered treated water side.
  • the pipe 75 is connected to the pipe 74.
  • a valve 8 is interposed in the pipe 75.
  • the pipe 76 connects the compressor 5 and the lower side of the membrane module 2.
  • a valve 8 h is interposed in the pipe 76.
  • the pipe 77 is branched from the pipe 76 connected to the compressor 5 and connected to the pipe 72.
  • a valve 8 i is interposed in the pipe 77.
  • the pipe 78 connects the bottom of the treated water tank 4 and the pipe 72. Valves 8k and 8j are interposed in the pipe 78.
  • the pipe 79 connects the lower side of the treated water tank 4 and the lower side of the cleaning water tank 9.
  • a valve 8m is interposed in the pipe 79.
  • the pipe 710 connects the bottom of the treated water tank 9 and the pipe 78.
  • a valve 8n is interposed in the pipe 710.
  • Various controls including opening and closing of the raw water pump 3, the compressor 5, the backwash water pump 6, and the valves 8a to 8n are executed by the control device 100.
  • FIG. 11 is a functional block diagram showing an embodiment of the control device 100.
  • the control device 100 includes an interface unit 41, a display unit 42, an input / output unit 43, a database unit 44, and a control unit 45.
  • the interface unit 41 is connected via a control line to a drive unit (not shown) that drives the raw water pump 3, the compressor 5, the backwash water pump 6, the valves 8a to 8n, and the like, and relates to communication with the drive unit.
  • a drive unit not shown
  • the display unit 42 provides a user interface together with the input / output unit 43, and constructs a GUI (Graphical User Interface) environment.
  • the database unit 44 is a storage device such as a hard disk drive, and stores characteristic curve data 44a.
  • the characteristic curve data 44a is used for selecting a cleaning method in the following embodiments.
  • control part 45 is provided with the selection part 45a and the adjustment part 45b as a processing function concerning this embodiment.
  • the selection unit 45a uses the characteristic curve of the membrane filtration permeation flow rate and the recovery rate for each differential pressure increase rate in the membrane filtration operation based on the set value of the raw water recovery rate. Select the differential pressure increase rate and membrane filtration permeation flow rate.
  • the selection unit 45a selects the washing time and the washing flow rate in the backwashing process from the amount of water used in the backwashing process and the membrane filtration permeation flow rate based on the set value of the raw water recovery rate.
  • the adjusting unit 45b adjusts the cleaning time and the cleaning flow rate according to the membrane filtration permeation flow rate.
  • the adjusting unit 45b adjusts the cleaning time and the cleaning flow rate according to the quality of raw water.
  • the adjustment unit 45b determines the quality of the raw water from the turbidity, water temperature, pH, alkalinity, total organic carbon concentration, ultraviolet absorbance, fluorescence intensity, silt concentration index (SDI), and modified fouling index (Modified). Fouling Index: MFI) is grasped based on at least one of them. The adjusting unit 45b adjusts the cleaning time and the cleaning flow rate based on the result.
  • the adjusting unit 45b controls the rate of increase in the differential pressure in the backwashing process by adjusting the membrane filtration permeation flow rate. Moreover, the adjustment part 45b adjusts a collection
  • the adjusting unit 45b controls the rate of increase in the differential pressure in the backwashing process by adjusting the membrane filtration permeation flow rate and the recovery rate.
  • the adjustment part 45b is a characteristic that shows the effect of the additional washing step in the back washing step when the membrane filtration system further includes means for performing an additional washing step that is additionally carried out with respect to the back washing step.
  • the curve is used to adjust the membrane filtration permeate flow rate and recovery.
  • control unit 45 including the function of the selection unit 45a and the function of the adjustment unit 45b can be regarded as software functions executed by the control device 100 as a computer.
  • the selection unit 45a and the adjustment unit 45b can be realized as a program executed by the arithmetic processing function of Central Processing Unit (CPU). Next, the operation of the above configuration will be described.
  • CPU Central Processing Unit
  • raw water is guided to the raw water tank 1 by a water pump (not shown).
  • the raw water is pressurized by the raw water pump 3 and introduced into the membrane module 2.
  • the treated water that has passed through the membrane module 2 is stored in the treated water tank 4.
  • Normal washing includes a back-pressure water process (1) and a raw water rinse process (2).
  • valves 8b, 8d, 8g, 8i and 8n are closed, and the valves 8c, 8j and 8k are opened.
  • the backwash water pump 6 causes the treated water in the treated water tank 4 to flow backward from the treated water side of the membrane module 2.
  • the treated water is discharged from the raw water side pipe 73 at the bottom of the membrane module 2 (at this time 8e open) or from the raw water side pipe 74 at the top of the membrane module 2 (at this time 8f open).
  • the compressed air is caused to flow from the raw water side of the pipe 76 of the membrane module 2 by the compressor 5 to swing the membrane module 2.
  • the reverse pressure water cleaning and the injection of pressurized air may be performed simultaneously, sequentially, or repeatedly.
  • raw water is guided to the raw water tank 1 by a water pump (not shown). And it wash
  • FIG. 12 is a diagram illustrating a characteristic curve according to the first embodiment.
  • FIG. 12 is a characteristic curve showing the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate.
  • the permeation flow rate (Flux) in membrane filtration is selected based on the set recovery rate using this characteristic curve.
  • the recovery rate in the membrane filtration step which is a pretreatment, is set.
  • the recovery rate is calculated backward from the amount of production water required for the desalination plant.
  • the amount of water required at the RO membrane inlet is determined from the recovery rate in the operation of the RO membrane. This amount of water is indicated by reference sign Q2 in FIG.
  • the recovery rate of the membrane filtration process is set based on the scale of the membrane filtration equipment and the operating cost. This recovery rate is indicated by the symbol Q2 / Q1 in FIG. In the first embodiment, using this recovery rate as a set value, the differential pressure increase rate and the permeation flow rate of the membrane are set from the characteristic curve of FIG.
  • FIG. 13 is a diagram showing the relationship between the chemical cleaning interval and the differential pressure increase rate in the first embodiment. As shown in FIG. 13, the rate of increase in the differential pressure is selected based on the interval between cleanings using chemicals.
  • the chemical cleaning differential pressure level in FIG. 13 represents a level at which chemical cleaning is performed when this differential pressure is reached.
  • a high differential pressure increase rate shown in FIG. 12 is selected.
  • the differential pressure increase rate is relatively high, a larger value is selected for the permeation flow rate of the membrane.
  • a low differential pressure increase rate is selected.
  • the differential pressure increase rate is relatively low, a smaller value is selected for the permeation flow rate of the membrane.
  • the recovery rate in the membrane filtration step by selecting the recovery rate in the membrane filtration step, selecting the optimum value of the membrane filtration permeation flow rate for each differential pressure increase rate in the membrane filtration operation Can do. Furthermore, the rate of increase in the differential pressure is set based on the chemical cleaning interval, and the permeate flow rate in the membrane filtration operation can be selected correspondingly. Since it did in this way, an efficient driving
  • membrane filtration provided with the raw water tank 1, the membrane module 2, the raw water pump 3, the treated water tank 4, the compressor 5, the backwash water pump 6, and the wash water tank 9.
  • the differential pressure increase rate and the membrane filtration permeation flow rate are selected from the characteristic curve of the membrane filtration permeation flow rate and the recovery rate according to the differential pressure increase rate of the membrane filtration operation. Therefore, according to the first embodiment, it is possible to provide a membrane filtration system capable of improving the operation efficiency and effectively washing the membrane, and an operation method thereof.
  • FIG. 14 is a diagram illustrating a characteristic curve according to the second embodiment.
  • FIG. 14 shows the relationship between the cleaning time (per unit time) and the cleaning flow rate, and the relationship between the cleaning time and the differential pressure recovery rate.
  • Q (L) the amount of cleaning water used per backwashing step.
  • the backwashing step when the amount of cleaning water to be used is given, the amount of cleaning water is represented by the product of the cleaning flow rate and the cleaning time.
  • the maximum value in the graph showing the relationship between the cleaning time and the differential pressure recovery rate in FIG. 14 corresponds to the condition for obtaining the highest cleaning effect. That is, it has been found that there is a condition between the cleaning time and the cleaning flow rate at which the differential pressure recovers most.
  • the cleaning time and the cleaning flow rate at which the differential pressure recovers most are selected based on the characteristic curve indicating the relationship between the cleaning time and the differential pressure recovery rate. That is, the amount of washing water used in one backwashing process is determined based on the recovery rate of the membrane filtration process. And it becomes possible to obtain
  • FIG. 15 is a diagram according to a modification of the second embodiment.
  • FIG. 15 is a conceptual diagram showing that optimum cleaning conditions shift.
  • the washing condition that provides the maximum differential pressure recovery rate varies depending on the permeation flow rate of the membrane and the quality of the raw water.
  • the cleaning conditions are adjusted in consideration of this change.
  • the permeation flow rate of the membrane is high, a large amount of washing water that can be used per unit time is secured. Therefore, in this case, a higher cleaning effect can be obtained by cleaning at a relatively fast flow rate in a short time.
  • transmission flow rate of a membrane is slow, compared with the case where a permeation
  • the control unit 45 adjusts the cleaning time and the cleaning flow rate based on the water quality grasped based on these indexes.
  • the cleaning time and the cleaning flow rate at which the differential pressure recovers most are selected based on the characteristic curve indicating the relationship between the cleaning time and the differential pressure recovery rate. And adjust according to the water quality fluctuation of raw water. Since it did in this way, it becomes possible to raise the operating efficiency of a system further.
  • FIG. 17, and FIG. 18 are diagrams showing characteristic curves according to the third embodiment.
  • the third embodiment in order to control (increase or decrease) the differential pressure increase rate in the membrane filtration operation, using the characteristic curve indicating the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate, The permeation flow rate is adjusted, the recovery rate is adjusted, or both are adjusted together.
  • the recovery rate in membrane filtration is Kb
  • the differential pressure increase rate is ⁇ B
  • the permeation flow rate (Flux) is Fb.
  • the increase rate of the differential pressure can be lowered by adjusting the permeation flow rate using a characteristic curve showing the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate.
  • the permeation flow rate Fe can be selected by using this characteristic curve.
  • the permeation flow rate Fc can be selected according to the characteristic curve. This makes it possible to secure a large amount of production water.
  • the recovery rate in membrane filtration is Kb
  • the differential pressure increase rate is ⁇ B
  • the permeation flow rate (Flux) is Fb.
  • the recovery rate is adjusted to be Kc
  • the differential pressure increase rate is obtained as ⁇ C according to this characteristic curve.
  • the rate of increase in the differential pressure is reduced without changing the permeation flow rate
  • how much the rate of increase in the differential pressure can be reduced by considering the allowable range for the decrease in the recovery rate. It can be selected from a characteristic curve. If it is allowed to lower the recovery rate to Ke, the differential pressure increase rate can be selected as ⁇ E according to this characteristic curve.
  • FIG. 18 is a diagram illustrating a case where the adjustment described with reference to FIGS. 16 and 17 is performed together.
  • the permeation flow rate is adjusted, the recovery rate is adjusted using the characteristic curve indicating the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate. And make adjustments. Any adjustment is performed for the purpose of increasing or decreasing the rate of increase in the differential pressure in the membrane filtration operation. By such adjustment, a more efficient driving method can be realized. Such a method can be used both when the permeation flow rate is increased and decreased and when the recovery rate is increased and decreased.
  • FIG. 19 is a conceptual diagram showing the degree of differential pressure recovery by an additional cleaning process according to the fourth embodiment.
  • a method for increasing the cleaning effect is additionally used in addition to the usual backwashing method.
  • a characteristic curve indicating the effect of the additional cleaning method is used in addition to the characteristic curve of the membrane filtration permeation flow rate and the recovery rate.
  • a characteristic curve showing the effect of the additional cleaning method is newly introduced in this embodiment. These characteristic curves are used to make adjustments such as increasing the membrane filtration permeation flow rate or increasing the recovery rate.
  • FIG. 19 shows the membrane filtration at the base differential pressure increase rate ⁇ B and the membrane filtration at the differential pressure increase rate ⁇ C.
  • the permeation flow rate (Flux) is larger in the membrane filtration at the differential pressure increase rate ⁇ C, and therefore the increase in the differential pressure in the membrane filtration in the interval is larger. Accordingly, the differential pressure increase rate ⁇ C becomes larger than ⁇ B.
  • FIG. 20 and 21 are diagrams showing characteristic curves according to the fourth embodiment. These characteristic curves incorporate the effect of an additional washing step into the characteristic curve showing the relationship between the differential pressure increase rate, the permeation flow rate (Flux), and the recovery rate.
  • membrane filtration that incorporates a method to enhance the cleaning effect, the rate of increase in the differential pressure remains the same, and the permeation flow rate (Flux) of the membrane is increased compared to membrane filtration only in the normal backwashing process.
  • the differential pressure increase rate in membrane filtration corresponding to the point Y in FIG. 20 can be obtained by increasing the permeation flow rate (Flux) from F1 to Fh.
  • FIG. 21 shows a case that additionally incorporates a method for enhancing the cleaning effect without changing the permeation flow rate of the membrane.
  • the membrane permeation flow rate can be increased from FL to F1 in the membrane filtration of ⁇ A where the differential pressure increase rate was low. Therefore, in the operation at point Y, the rate of increase in the differential pressure can be reduced from ⁇ B to ⁇ A while maintaining the permeation flow velocity F1.
  • FIG. 22 is a conceptual diagram showing the relationship between the permeation flow velocity (Flux) and the differential pressure increase rate in the fourth embodiment.
  • FIG. 22 shows the relationship between the permeation flow rate (Flux) of the membrane and the differential pressure increase rate in the limit flux line for both the case of only the normal backwashing process and the case of incorporating a method for enhancing the washing effect. .
  • the effect of the additional cleaning method is shown in addition to the characteristic curve of the membrane filtration permeation flow rate and the recovery rate. Use characteristic curves. Then, using these characteristic curves, adjustments were made to increase the membrane filtration permeation flow rate or increase the recovery rate. As a result, the operating efficiency of the system can be further increased.
  • the characteristic curves for the membrane filtration permeation flow rate and the differential pressure increase rate of the recovery rate, and the washing time and washing flow rate in the reverse washing step are used.
  • the characteristic curve of the additional cleaning method is used in addition to the characteristic curve of the membrane filtration permeation flow rate and the recovery rate even when a method for increasing the cleaning effect is added to the normal backwashing method.
  • the membrane filtration permeation flow rate and the recovery rate can be adjusted. Therefore, it is possible to provide a membrane filtration system capable of increasing the efficiency of operation and effectively washing the membrane, and an operation method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 課題は、運転の効率を高めるとともに効果的に膜を洗浄することの可能な膜ろ過システムを提供することにある。 実施形態によれば、膜ろ過システムは、原水を一時的に貯水する原水槽と、原水をろ過する膜モジュールと、原水槽の原水を膜モジュールに供給する原水ポンプと、膜モジュールでろ過された処理水を貯水する処理水槽と、処理水を洗浄水として膜モジュールに供給する逆洗水ポンプとを具備する。そして膜モジュールの洗浄工程において、原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、洗浄工程の差圧上昇率および膜ろ過透過流速を選択する。

Description

膜ろ過システムとその運転方法
 本発明の実施形態は、水処理分野に関する。本発明の実施形態は、イオンや塩類などの溶質を含む海水、汽水、地下水などを、膜モジュールを用いてろ過するシステムと、その運転方法に関する。この種の技術は例えば造水プラントに適用可能である。
 イオンや塩類などの溶質を含む海水、汽水、地下水などから生活用水、工業用水、農業用水を生成するために、逆浸透膜モジュールが用いられる。逆浸透膜(Reverse Osmosis Membrane:RO膜)は、水を透過させイオンや塩類など水以外の不純物は透過させない性質を持つ膜である。逆浸透膜に接する被処理水に、溶質の濃度に応じた浸透圧以上の圧力をかけることで水と溶質とを分離することができる。
 逆浸透膜モジュールを用いた膜ろ過システムでは、被処理水に含まれる不溶解性成分を除去するために前処理が実施される。例えば海水を精製して真水を造るには、取水した海水中に含まれる濁質、藻類、微生物などを前処理で除去する。前処理により、逆浸透膜への汚濁負荷を低減し、逆浸透膜の薬品洗浄のインターバルを長くし、長期間にわたり安定してシステムを運転することが可能となる。
 近年、この前処理には、精密ろ過膜(Microfiltration Membrane:MF膜)や、限外ろ過膜(Ultrafiltration Membrane:UF膜)などの膜モジュールが用いられる。しかしながら海水中の濁質、溶存有機物、微生物、微生物が放出する粘性の高い有機物、無機イオンなどが原因となってMF膜またはUF膜自体の膜表面に汚れが蓄積する。このため一定の透過流速(Flux、フラックスと通称される)を維持するための原水供給ポンプの出力が増大し、膜入口側の圧力が上昇していく。これは膜が目詰まりすることで起こる。一般に目詰まりの程度は、膜ろ過を行っている際の、膜入口の圧力と膜出口の圧力との差で評価する。この圧力差を差圧と称する。
 膜ろ過においては、30分~60分程度の膜ろ過を行った後に、洗浄工程として膜の逆側(出口側)から洗浄水を送水して膜面に付着した汚れを除去する。この洗浄を一般に逆洗(逆洗浄)工程と呼ぶ。逆洗では通常、ろ過流量と同程度か、その2~3倍の流量で通水される。洗浄時間としては数10秒から数分程度が一般的である。逆洗工程を実施することで膜前後の圧力の差(膜の差圧)が低下する。これを差圧が回復するという。
 膜ろ過システムの運転にあたっては、使用する膜モジュールに応じて上限となる差圧の値が設けられている。その差圧に達すれば、差圧を回復させるために薬品洗浄を実施することとなる。薬品洗浄の洗浄効果は高いが、薬品に関するコストも高く、膜モジュールが薬品に暴露されるので膜が劣化したりもする。よって膜ろ過システムの運転では、薬品洗浄の間隔を長くとれるように、できる限り差圧を上昇させない工夫が重要である。
 逆洗工程で使用する洗浄水には、同膜ろ過においてろ過されたろ過水か、ろ過水を逆浸透膜を透過させた脱塩水が用いられる。多量の水を用いて洗浄すると逆洗浄効果が高まり、膜の差圧を回復させる観点からみると効果的ではある。しかしながら使用する洗浄水が多くなるので、単位時間当たりの造水プラントの生産水量が低下することにつながる。
 造水プラントにおいて、使用する原水に対して生産される生産水の割合を回収率と呼ぶ。回収率が高いほうが効率の良いプラントとなる。プラントにおける個々のプロセス、例えば前処理の膜ろ過において、使用する原水に対して生産される膜ろ過水の割合を、その膜ろ過工程における回収率とよぶ。
 回収率が低くなると、目的とする生産水量に対して設備規模が大きくなり、イニシャル費用の増加と、動力費や薬品費などのランニング費用の増加につながる。逆洗工程において使用する水量が増加するということは回収率が低下することにつながるので、逆洗における差圧の回復率と膜ろ過工程の回収率はトレードオフの関係にある。
 逆洗工程における差圧の回復率は、原水中に存在する濁質や有機物質の量や、膜表面と濁質等との付着状態、および使用する膜の素材により様々である。これは、原水中の濁質などの性質上、可逆的な汚れと、不可逆的な汚れを持つ物質が存在し、その割合が地域的、季節的に様々であるからである。このため同じ洗浄流量と洗浄時間で逆洗工程を実施しても、差圧の回復率が異なることは良く見られる。しかしながら既存の技術において、逆洗工程における洗浄流量と洗浄時間に関しては、おおよそ推奨される固定の洗浄条件で逆洗を行っている場合が多く、回収率や膜透過流速をも考慮した効率的な逆洗方法は用いられていない。
 洗浄効果を高めて差圧を回復させる方法として、逆洗工程に付加する形で、様々な方法が考案されている。例えば、逆洗浄と空気による洗浄を同時に行うことで洗浄効果を高める方法が提案されている。また、洗浄水中に次亜塩素酸ナトリウムといった酸化剤などの薬品を添加し、洗浄効果を高める方法が提案されている。さらに、洗浄水の温度を上げることによって洗浄効果を高める方法が提案されている。
特開2007-289940号公報 特開2009-240903号公報 特開2007-289899号公報 特開2008-289959号公報
 種々の洗浄方法が提案されており、それぞれの洗浄を採用することで、差圧を回復させ差圧上昇率を低くしたり、透過流速を増加させたりすることが可能ではある。しかしながら長期的な膜ろ過システムの運転において、通常の逆洗と、さらに効果が高められた洗浄方法の効果的な組み合わせに関する選択方法や、膜ろ過工程の回収率と、膜ろ過における差圧上昇率、および膜ろ過における透過流速の相関に関しては十分な検討がなされているとはいえない。
 本願発明者らの研究により、膜ろ過工程の回収率、膜ろ過における透過流速、および膜ろ過における差圧上昇率の関係は特性曲線で表すことができ、この関係を用いることで、差圧上昇率を増減させるために回収率および透過流速を調整したりする、膜ろ過の運転方法を選択できることが分かってきた。
 また、逆洗工程における洗浄時間と洗浄流量に関して、差圧を回復させるために最も適切な条件が選択できること、およびその条件は膜ろ過の透過流速や、対象としている原水中の水質に影響を受けることが分かってきた。さらに、逆洗の効果を高めるために考案された付加する形の洗浄に関しても、洗浄の効果を上記特性曲線に設けることで、追加の洗浄効果の効率的な利用を選択できることもわかってきた。
 目的は、運転の効率を高めるとともに効果的に膜を洗浄することの可能な膜ろ過システムとその運転方法を提供することにある。
 実施形態によれば、膜ろ過システムは、原水を一時的に貯水する原水槽と、原水をろ過する膜モジュールと、原水槽の原水を膜モジュールに供給する原水ポンプと、膜モジュールでろ過された処理水を貯水する処理水槽と、処理水を洗浄水として膜モジュールに供給する逆洗水ポンプとを具備する。そして膜モジュールの洗浄工程において、原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、洗浄工程の差圧上昇率および膜ろ過透過流速を選択する。
図1は、膜ろ過における差圧の上昇と逆洗による差圧の回復を示す概念図である。 図2は、逆洗における洗浄流量(L/min)と差圧回復率との関係を示す図である。 図3は、膜ろ過における差圧の回復率と差圧上昇率を示す概念図である。 図4は、膜ろ過における洗浄時間と差圧回復率の関係を示す図である。 図5は、或る透過流速(Flux)における差圧上昇率と回収率の関係を示す図である。 図6は、膜ろ過における差圧回復率の違いによる差圧上昇率のシフトを表す概念図である。 図7は、特性曲線における同じ差圧上昇率を結んだ関係を示す概念図である。 図8は、特性曲線における同じ差圧上昇率を結んだ関係を示す概念図である。 図9は、特性曲線における限界フラックスラインの傾きを表す概念図である。 図10は、実施形態に係わる膜ろ過システムの一例を示す図である。 図11は、制御装置100の実施の形態を示す機能ブロック図である。 図12は、第1の実施形態に係わる特性曲線を示す図である。 図13は、第1の実施形態における薬品洗浄の間隔と差圧上昇率の関係を示す図である。 図14は、第2の実施形態に係わる特性曲線を示す図である。 図15は、第2の実施形態の変形例に係わり、最適な洗浄条件がシフトすることを示す概念図である。 図16は、第3の実施形態に係わる特性曲線を示す図である。 図17は、第3の実施形態に係わる特性曲線を示す図である。 図18は、第3の実施形態に係わる特性曲線を示す図である。 図19は、第4の実施形態係わる、追加的な洗浄プロセスによる差圧回復の度合いを示す概念図である。 図20は、第4の実施形態に係わる特性曲線を示す図である。 図21は、第4の実施形態に係わる特性曲線を示す図である。 図22は、第4の実施形態における透過流速(Flux)と差圧上昇率の関係を表す概念図である。
 以下、図面を参照して実施形態につき説明する。先ず基本的な概念について説明する。図1は、膜ろ過における差圧の上昇と逆洗による差圧の回復を示す概念図である。図1においては、膜ろ過における差圧の上昇と、逆洗工程による差圧の回復、および逆洗では回復しない膜の汚れによって徐々に差圧が上昇している差圧上昇率について示される。
 図1における膜ろ過の膜の透過流速(Flux、フラックス)をF1(m/日)と設定することにする。通常、インターバルの膜ろ過は、数10分から1時間程度の時間で行われる。その次の工程として、膜の逆側から洗浄する逆洗工程が実施される。逆洗浄の効果により差圧が回復するが、逆洗では除去されない汚れが蓄積しているので逆洗による差圧回復率は100%とはならない。よってインターバルの膜ろ過を繰り返すことにより徐々にベースとなる膜の差圧は上昇してゆく。これを差圧上昇率(KPa/日)と表す。
 図2は、逆洗における洗浄流量(L/min)と差圧回復率との関係を示す図である。図2(a)は膜ろ過における差圧の上昇と逆洗による差圧の回復を示す概念を示し、図2(b)は洗浄流量と差圧回復率との関係を示す。 
 図2(a)において、インターバルの膜ろ過において差圧がA(KPa)上昇したのち、逆洗工程に入ったとすると、最も差圧の回復した逆洗においてB(KPa)回復したと示す。この時の洗浄流量をQmaxとして図2(b)に示す。ここでは、これ以上洗浄流量を増やしても差圧は回復しない。これは逆洗では除去できない汚れが付着しているからである。図2では差圧回復率90%が差圧回復率の限界である。
 図2(b)において洗浄流量をQ2、Q1と少なくしていくと差圧の回復率も減少する。図2(b)では洗浄流量Q2のとき差圧回復率75%、洗浄流量Q1のとき差圧回復率50%である。差圧の回復率が小さいということは使用する洗浄水量は少ないことを意味し、膜ろ過工程の回収率は高くなる。その一方で、繰り返しの膜ろ過による差圧上昇率は大きくなる。
 図3は、膜ろ過における差圧の回復率と差圧上昇率を示す概念図である。図3において透過流速(Flux、フラックス)をF1(m/日)と固定した場合、差圧上昇率δは種々の値をとり得る。図3には次式(1)の状態が示される。 

 図3は、膜ろ過における差圧の回復率と差圧上昇率を示す概念図である。図3において透過流速(Flux、フラックス)をF1(m/日)と固定した場合、逆洗流量の大きさによって差圧上昇率δは種々の値をとり得る。逆洗流量が小さいほど洗浄水量が少ないので回収率は高くなる。しかし、洗浄が不足するので差圧上昇率は高くなる。逆洗流量が大きいほど洗浄水量が多くなるので回収率は低くなる。しかし、洗浄は十分に足りるので差圧上昇率は低くなる。図3には次式(1)の状態が示される。 
 δB<δC<δD  ・・・  (1)
 差圧上昇率δが大きいほど膜の目詰まりの度合いが大きいことになる。
 図4は、膜ろ過における洗浄時間と差圧回復率の関係を示す図である。図4は図2を洗浄の条件における洗浄時間で示すものであり、横軸に洗浄時間を取っている。洗浄時間をTmaxとした場合に最も差圧が回復するが、洗浄時間をTmax以上にしても差圧はこれ以上回復しないことが示される。洗浄時間をT2、T1と短くすることで洗浄に使用する洗浄水量は減少するが、差圧の回復率が小さくなるので、図3に示すベースの差圧上昇率δは大きくなる。
 図5は、或る透過流速(Flux)における差圧上昇率と回収率の関係を示す図である。図5には、図2、図3に示される差圧上昇率、透過流速(Flux)、および回収率の関係が示される。一定の透過流速(F1)においては洗浄水量が多いほうが回収率は低くなり、それに伴って差圧の上昇率は小さくなる。すなわち図5の差圧上昇率には式(1)の関係が示される。
 図6は、膜ろ過における差圧回復率の違いによる差圧上昇率のシフトを表す概念図である。図6(a)は膜の透過流速(Flux)をF1(m/日)より小さくした場合について示すもので、小さくしたFluxをF2とする。透過流速が小さくなるとインターバルの膜ろ過の差圧上昇が小さくなるので、図6(a)に示すように差圧上昇率も低く抑えられる。このときの差圧上昇率をδEとする。 
 図6(a)から、FluxをF2のままで、逆洗工程における洗浄水量を少なくすると差圧回復率が小さくなり、これにより差圧上昇率が増加する。洗浄水量を少なくしていくと、図6(b)に示すように、差圧上昇率(δB)と重なる上昇率になる差圧回復率が存在する。
 図7は、特性曲線における同じ差圧上昇率を結んだ関係を示す概念図である。すなわち図7は、図6における透過流速、F1とF2のそれぞれにおける差圧上昇率を図5にプロットしたものである。
 図7の透過流速F2において、逆洗工程における洗浄水量を少なくすることで回収率が増加し(回収率(B)から回収率(X)となる)、その一方で、差圧回復率が小さくなり、差圧上昇率が増加する(δEからδBとなる)。この状態を点Xで示す。点Xにおける差圧上昇率は上記したようにδBであるので、透過流速F1かつ回収率(B)における差圧上昇率と同じである。つまり図7の太い破線は同じ差圧上昇率になる運転状態を結ぶものである。
 ここで、透過流速F1においては、回収率(B)で使用した以上に洗浄を行ったとしても差圧は回復しない。これは、既に図2(b)に示すQmaxで洗浄を行っているからである。つまり、差圧上昇率δBを維持している状態においては、透過流速をF1以上に設定できないことを示す。この状態を図7では限界フラックスとし、各差圧上昇率における限界フラックスを結んだラインを限界フラックスラインと称する。
 図8は、特性曲線における同じ差圧上昇率を結んだ関係を示す概念図である。図8では、図5における差圧上昇率δCおよびδDにおいて、当該差圧上昇率を維持しながら透過流速を増加させ、洗浄水量を増加させていく状態(その結果として回収率が低下する)を太い破線で表す。ここでも、ある差圧上昇率(δC、δD)を維持した状態で、どれだけ洗浄してもこれ以上は透過流速を増加できないフラックス(限界フラックス)が存在する。
 図9は、特性曲線における限界フラックスラインの傾きを表す概念図である。限界フラックスを結んだラインは厳密には、図8に示すように、透過流速において回収率が一定(横軸に平行)にはならない。すなわち限界フラックスを結んだラインは、図9に示すように透過流速が増加するにつれて回収率が増加するようになる。
 つまり、透過流速が増加するにつれて、限界フラックスにおける回収率が上がる(使用する洗浄水量が少なくて済む)ような状態になることが分かってきている。これは、透過流速が大きいため、単位時間あたりに生産するろ過水量が多くなり、同じ回収率であっても、透過流速が大きいほど洗浄で使用する洗浄水量が多く確保されることになり、確保されている洗浄水量を全て使用する前に差圧が回復しない状態(限界フラックスライン上)に達するからである。次に、実施形態につき詳細に説明する。
 [第1の実施形態]
 以下、本発明の膜ろ過システムの実施形態について図面を参照して説明する。 
 図10は、実施形態に係わる膜ろ過システムの一例を示す図である。 
 膜ろ過システムは、原水槽1、膜モジュール2、原水ポンプ3、処理水槽4、コンプレッサ5、逆洗水ポンプ6、洗浄水槽9、および、制御装置を備える。洗浄水槽9はヒータ10を備える。
 原水槽1は、導水ポンプ(図示せず)から導かれた原水を一時的に貯水する。膜モジュール2は例えば中空糸型であって、原水をろ過する。原水ポンプ3は、原水槽1の原水を膜モジュール2に供給する。処理水槽4は、膜モジュール2でろ過された処理水を貯水する。コンプレッサ5は、膜モジュール2内に加圧空気を供給する。逆洗水ポンプ6は、処理水を、洗浄水として膜モジュール2に供給する。洗浄水槽9は、処理水槽4内に貯水された処理水の一部を洗浄水として導入し、貯水する。
 参照符号71~710は、それぞれ配管を示す。参照符号8a~8k、8m,8nはそれぞれバルブを示す。配管71は原水槽1の下部側と膜モジュール2の底部とを接続する。バルブ8a,8bが配管71に介装される。配管72は膜モジュール2の上部と処理水槽4の上部を接続する。バルブ8c,8dが配管72に介装される。配管73は膜モジュール2の底部に接続される。バルブ8eが配管73に介装される。配管74は膜モジュール2の上部側に接続される。バルブ8fが配管74に介装される。ここでは、配管71,73,74,75,76は、膜の一次側(ろ過する前)の配管であり、72,77,78,710は、ろ過された処理水側の配管である。
 配管75は配管74に接続される。バルブ8が配管75に介装される。配管76はコンプレッサ5と膜モジュール2の下部側とを接続する。バルブ8hが配管76に介装される。配管77は、コンプレッサ5に接続される配管76、から分岐して配管72に接続される。バルブ8iが配管77に介装される。
 配管78は処理水槽4の底部と配管72とを接続する。バルブ8kと8jとが配管78に介装される。配管79は処理水槽4の下部側と洗浄水槽9の下部側とを接続する。バルブ8mが配管79に介装される。配管710は処理水槽9の底部と配管78とを接続する。バルブ8nが配管710に介装される。原水ポンプ3、コンプレッサ5、逆洗水ポンプ6および各バルブ8a~8nの開閉を含む各種制御は、制御装置100により実行される。
 図11は、制御装置100の実施の形態を示す機能ブロック図である。制御装置100は、インタフェース部41、表示部42、入出力部43、データベース部44、および、制御部45を備える。インタフェース部41は、原水ポンプ3、コンプレッサ5、逆洗水ポンプ6、各バルブ8a~8nなどを駆動する駆動部(図示せず)に制御回線を介して接続され、駆動部との通信に係わるインタフェース処理を担う。
 表示部42は入出力部43とともにユーザインタフェースを提供し、GUI(Graphical User Interface)環境を構築する。データベース部44はハードディスクドライブなどのストレージデバイスであり、特性曲線データ44aを記憶する。特性曲線データ44aは以下の実施形態において洗浄方法の選択などに用いられる。
 ところで、制御部45は、この実施形態に係わる処理機能として選択部45aおよび調整部45bを備える。 
 選択部45aは、逆洗工程において、原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、この逆洗工程の差圧上昇率および膜ろ過透過流速を選択する。
 また選択部45aは、逆洗工程において、原水の回収率の設定値に基づいて、この逆洗工程における使用水量と膜ろ過透過流速から、この逆洗工程における洗浄時間と洗浄流量を選択する。
 調整部45bは、膜ろ過透過流速に応じて、洗浄時間と洗浄流量を調整する。また調整部45bは、原水の水質変動に応じて、洗浄時間と洗浄流量を調整する。
 さらに調整部45bは、原水の水質を、当該原水の濁度、水温、pH、アルカリ度、全有機炭素濃度、紫外線吸光度、蛍光強度、シルト濃度指数(SDI)、および、修正ファウリング指数(Modified Fouling Index:MFI)のうち、少なくともいずれか1つに基づいて把握する。調整部45bはその結果に基づいて前記洗浄時間と洗浄流量を調整する。
 さらに調整部45bは、膜ろ過透過流速を調整して逆洗工程の差圧上昇率を制御する。また調整部45bは、回収率を調整して逆洗工程の差圧上昇率を制御する。
 また調整部45bは、膜ろ過透過流速と回収率とを併せて調整して逆洗工程の差圧上昇率を制御する。
 さらに、調整部45bは、膜ろ過システムが逆洗工程に対し追加的に実施される追加的洗浄工程を実施する手段をさらに備える場合に、逆洗工程において、追加的洗浄工程の効果を示す特性曲線を用いて膜ろ過透過流速および回収率を調整する。
 選択部45aの機能および調整部45bの機能を含む制御部45の各種機能は、コンピュータとしての制御装置100により実施されるソフトウェアの機能として捉えることができる。つまり選択部45aおよび調整部45bは、Central Processing Unit(CPU)の演算処理機能により実行されるプログラムとして実現することができる。次に、上記構成における作用を説明する。
 図10に示される膜ろ過システムにおいて、原水は導水ポンプ(図示せず)によって原水槽1に導かれる。原水は原水ポンプ3により加圧され、膜モジュール2に導入される。膜モジュール2を透過した処理水は処理水槽4に貯留される。通常の洗浄は、逆圧水工程(1)と原水すすぎ工程(2)とを含む。
 (1)逆圧水工程 
 バルブ8b,8d,8g,8i,8nを閉じ、バルブ8c,8j,8kを開く。この状態で、逆洗水ポンプ6により処理水槽4内の処理水を膜モジュール2の処理水側から逆流させる。処理水を、膜モジュール2の下部の原水側の配管73(このとき8e開)、または、膜モジュール2上部の原水側の配管74から排出する(このとき8f開)。このとき、コンプレッサ5によって膜モジュール2の配管76の原水側から加圧空気を流して膜モジュール2を揺動させる。逆圧水洗浄と加圧空気の注入とは同時に行われても良いし、順番に行われても良いし、それらを繰り返し行ってもいい。
 (2)原水すすぎ工程 
 バルブ8a,8b、および膜モジュール2の上部のバルブ8fを開く。この状態で原水ポンプ3を起動させ、膜モジュール2のすすぎを行う。すすぎ水は原水槽1に循環しても構わない。このとき、コンプレッサ5から加圧空気を流したままの方が、すすぎの効果は高い。しかし、電力費を削減するためにコンプレッサ5を停止しても構わない。
 図10に示す膜ろ過システムにおけるろ過処理では、原水は、導水ポンプ(図示せず)によって原水槽1に導かれる。そして、ある程度の頻度で、以下の(3)、(4)の手順により洗浄水を温度調整した温水で洗浄を行う。
 (3)逆圧水工程 
 バルブ8b,8d,8g,8i,8jを閉じ、バルブ8c,8k,8nを開く。この状態でヒータ10により温度調整した洗浄水槽9内の処理水を、逆水洗ポンプ6で膜モジュール2の処理水側から供給する。水温としては、例えば40℃から50℃くらいの温水を用いる。このとき、逆圧水工程と同様に、コンプレッサ5によって膜モジュール2の配管76の原水側から加圧空気を流して膜モジュール2を揺動させる。逆圧水洗浄と加圧空気の注入とは同時に行われても良いし、順番に行われても良いし、それらを繰り返し行っても良い。
 (4)原水すすぎ工程 
 バルブ8a,8b、および膜モジュール2の上部のバルブ8fを開く。この状態で原水ポンプ3を起動させ、膜モジュール2のすすぎを行う。すすぎ水は原水槽1に循環しても構わない。このとき、コンプレッサ5から加圧空気を流したままの方が、すすぎの効果は高い。しかし、電力費を削減するためにコンプレッサ5を停止しても構わない。
 図12は、第1の実施形態に係わる特性曲線を示す図である。図12は、差圧上昇率、透過流速(Flux)、および回収率の関係を示す特性曲線である。第1の実施形態ではこの特性曲線を用いて、設定された回収率を元にして、膜ろ過における透過流速(Flux)を選択する。
 第1の実施形態では、まず、前処理である膜ろ過工程における回収率が設定される。回収率は、造水プラントに要求される生産水量から逆算される。必要な生産水量が決まると、RO膜の運転における回収率から、RO膜の入口に必要な水量が求められる。この水量は図12中の参照符号Q2に示される。
 次に、前処理の膜ろ過工程において、膜ろ過設備の規模や運転コストなどをもとに、膜ろ過工程の回収率が設定される。この回収率は図12中の記号Q2/Q1に示される。第1の実施形態ではこの回収率を設定値として、図12の特性曲線から、膜ろ過工程における差圧上昇率と、膜の透過流速とを設定する。
 図13は、第1の実施形態における薬品洗浄の間隔と差圧上昇率の関係を示す図である。図13に示すように、差圧上昇率は、薬品を用いた洗浄の間隔に基づいて選択される。
薬品を用いれば、膜の差圧は大幅に回復する。図13における要薬品洗浄差圧レベルとは、この差圧に達すれば薬品洗浄を実施するというレベルを表す。
 差圧上昇率が小さいほど、要薬品洗浄差圧レベルに達するまでの期間が長くなる。第1の実施形態では、薬品洗浄の間隔が短くてもよい場合には、図12に示される高い差圧上昇率を選択する。差圧上昇率が比較的高いと、膜の透過流速には、より大きい値が選択される。逆に、薬品洗浄の間隔を長くとりたい場合には、低い差圧上昇率が選択される。差圧上昇率が比較的低いと、膜の透過流速には、より小さい値が選択される。
 第1実施形態では、図12および図13に示すように、膜ろ過工程における回収率を設定することで、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速の最適値を選択することができる。さらに、差圧の上昇率は薬品洗浄の間隔をもとに設定され、これに対応して、膜ろ過運転における透過流速を選択することができる。このようにしたので、効率的な運転を実施でき、高い洗浄効果を得ることが可能になる。
 すなわち第1の実施形態によれば、原水槽1と、膜モジュール2と、原水ポンプ3と、処理水槽4と、コンプレッサ5と、逆洗水ポンプ6と、洗浄水槽9とを備えた膜ろ過システムにおいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線から、差圧上昇率と膜ろ過透過流速を選択するようにしている。従って第1の実施形態によれば、運転の効率を高めるとともに効果的に膜を洗浄することの可能な膜ろ過システムとその運転方法を提供することが可能になる。
 [第2の実施形態]
 図14は、第2の実施形態に係わる特性曲線を示す図である。図14においては、洗浄時間(単位時間当たり)と洗浄流量との関係、および、洗浄時間と差圧回復率との関係が示される。 
 第1の実施形態において述べたように、膜ろ過工程の回収率が設定されると、1回の逆洗工程あたりの使用洗浄水量(Q(L))が決まる。逆洗工程においては、使用する洗浄水量が与えられたとき、洗浄水量は、洗浄流量と洗浄時間との積で表わされる。
 逆洗工程においては、長時間で比較的遅い流量で洗浄するケースと、短時間に速い流量で洗浄するケースと、これらのケースの中間のケースとが存在する。図14の上側のグラフにより洗浄時間と洗浄流量との関係がされる。
 発明者らの研究により、逆洗工程においては比較的速い流量で洗浄を行うほうが、高い効果を得られることがわかってきている。図14における洗浄時間と差圧回復率との関係を示すグラフにおける極大値が、最も高い洗浄効果を得られる条件に相当する。すなわち、最も差圧が回復する洗浄時間と洗浄流量との条件が存在することがわかってきている。
 そこで第2の実施形態においては、洗浄時間と差圧回復率との関係を示す特性曲線をもとに、最も差圧が回復する洗浄時間と洗浄流量を選択するようにする。すなわち膜ろ過工程の回収率に基づき1回の逆洗工程で使用する洗浄水量を求める。そして、洗浄水量を一定とする条件下で差圧回復率を最大にする洗浄時間と洗浄流量とを一意に求めることが可能になる。従って第2の実施形態によっても、運転の効率を高めるとともに効果的に膜を洗浄することの可能な膜ろ過システムとその運転方法を提供することが可能になる。
 [第2の実施形態の変形例]
 図15は、第2の実施形態の変形例に係わる図である。図15は、最適な洗浄条件がシフトすることを示す概念図である。最大の差圧回復率をもたらす洗浄条件は、膜の透過流速や原水の水質変動により変化する。第2の実施形態の変形例では、この変化を考慮して洗浄条件を調整する。
 膜の透過流速が速いと、単位時間に使用可能な洗浄水量が多く確保される。よってこのケースでは短い時間に比較的速い流量で洗浄を行うほうが高い洗浄効果を得られる。膜の透過流速が遅いと、透過流速が速いケースに比べて単位時間に使用可能な洗浄水量が少なくなる。よってこのケースでは速い流量で洗浄すると洗浄時間が短くなりすぎるので、洗浄効果が低くなる。従って透過流速が遅いケースでは、洗浄流量を少なくして洗浄時間を長くするほうが洗浄効果は高まる。このような事実をもとにこの変形例では、差圧回復率を最大にするために、洗浄流量を落とし、かつ洗浄時間を長くするという調整が行われる。
 原水の水質が変動すると、膜に付着しやすい物質の割合や、逆洗工程において膜面から除去されにくい物質の割合などが変動する。このため同じ洗浄条件で膜を洗浄して、洗浄効果が低くなるケースが生じる。原水の水質変動を把握するための水質指標として、原水の濁度、水温、pH、アルカリ度、全有機炭素濃度、紫外線吸光度、蛍光強度、シルト濃度指数(SDI)、および、修正ファウリング指数(Modified Fouling Index:MFI)などを用いることができる。制御部45は、これらの指標に基づいて把握した水質に基づいて、洗浄時間と洗浄流量とを調整する。
 特に、水中のフミン物質などの疎水性物質の割合や、多糖類やタンパクなどの親水性物質の割合などから、膜面から除去されにくい物質の存在量を把握することができる。これらの割合は蛍光強度の測定によって間接的に定量される。この変形例では、これらの物質の存在割合に応じて、洗浄条件における洗浄流量と洗浄時間とを調整する。
 第2の実施形態の変形例においては、洗浄時間と差圧回復率との関係を示す特性曲線をもとに選択した、最も差圧が回復する洗浄時間と洗浄流量とを、膜の透過流速や原水の水質変動に応じて調整するようにする。このようにしたので、システムの運転効率をさらに高めることが可能になる。
 [第3の実施形態]
 図16、図17、および図18は、第3の実施形態に係わる特性曲線を示す図である。第3の実施形態においては、差圧上昇率、透過流速(Flux)、および回収率の関係を示す特性曲線を用いて、膜ろ過運転における差圧上昇率を制御する(増減させる)ために、透過流速を調整したり、回収率を調整したり、その両者を併せて調整したりするようにする。
 図16に示される点Xの状態では、膜ろ過における回収率はKbであり、差圧上昇率はδBであり、透過流速(Flux)はFbである。例えば、差圧上昇率が予想よりも高くなってきている場合、次の薬品洗浄までの期間を考慮して差圧上昇率を下げるという操作が求められるケースがある。このケースでは、差圧上昇率、透過流速(Flux)、および回収率の関係を示す特性曲線を用いて透過流速を調整することで、差圧の上昇率を下げることが可能となる。差圧上昇率をδEとなるように調整するには、この特性曲線を用いることで、透過流速Feを選択することができる。
 逆に、生産水量を多く確保しなくてはならないような状況が生じるケースもある。このケースでは、差圧上昇率の許容範囲を考慮することで、透過流速をどの程度上げることができるかを、この特性曲線から選択することができる。差圧上昇率をδCまで上げることが許容されるとすると、同特性曲線によれば、透過流速Fcと選択することができる。これにより、生産水量を多く確保することが可能になる。
 図17の点Xの状態では、膜ろ過における回収率はKbであり、差圧上昇率はδBであり、透過流速(Flux)はFbである。例えば、透過流速は変化させずに膜ろ過工程の回収率を上昇させるという状況が発生したとき、回収率をどの程度上げれば差圧上昇率がどの程度上昇するかを、この特性曲線から算出することができる。回収率をKcとなるように調整する場合、この特性曲線によれば差圧上昇率はδCと求められる。
 逆に、透過流速は変化させずに差圧上昇率を下げるという状況が発生した場合、回収率低下の許容範囲を考慮することで、差圧上昇率をどの程度下げることができるのかを、この特性曲線から選択することができる。回収率をKeまで下げることが許容されるとすると、この特性曲線によれば差圧上昇率をδEと選択することができる。
 図18は、図16および図17を用いて説明された調整を、併せて実施するケースを示す図である。 
 第3の実施形態においては、差圧上昇率、透過流速(Flux)、および回収率の関係を示す特性曲線を用いて、透過流速を調整したり、回収率を調整したり、その両者を併せて調整したりするようにしている。いずれの調整も、膜ろ過運転における差圧上昇率を増減させることを目的として実施される。このような調整により、さらに効率的な運転方法を実現することができる。このような手法は、透過流速を増減させることを目的とする場合においても、回収率を増減させることを目的とする場合においても利用可能である。
 [第4の実施形態]
 図19は、第4の実施形態に係わる、追加的な洗浄プロセスによる差圧回復の度合いを示す概念図である。通常の逆洗方法に付加する形で、洗浄効果を上げるための方法を追加的に用いるケースがある。第4の実施形態ではこのケースにおいて、膜ろ過透過流速と回収率の特性曲線に加えて、追加洗浄方法の効果を示す特性曲線を用いる。追加洗浄方法の効果を示す特性曲線はこの実施形態において新たに導入される。これらの特性曲線を用いて膜ろ過透過流速を増加させたり、回収率を上げたりする調整を行う。
 図19に、ベース差圧上昇率δBでの膜ろ過と、差圧上昇率δCでの膜ろ過とが示される。差圧上昇率δCでの膜ろ過のほうが透過流速(Flux)は大きく、そのためインターバルの膜ろ過における差圧の上昇が大きい。これに伴って差圧上昇率δCは、δBよりも大きくなる。
 ここで、通常の逆洗方法に付加する形で、洗浄効果を上げるための方法を用いることを考える。例えば温水を用いて逆洗浄を行うことで洗浄効果を高める方法がある。この洗浄方法によれば大きな差圧回復率を得られる。この洗浄方法を定期的に或る頻度で実施すると、図19の(追加の洗浄の効果)に示されるような差圧の回復が見込まれる。
 このように、洗浄効果を高める方法を定期的に組み込むことによって、長期間の膜ろ過における差圧の上昇率を下げることができる。図19によれば、膜の透過流速が大きいにもかかわらず、差圧上昇率はδBと同程度の差圧上昇率を示すことがわかる。
 図20および図21は、第4の実施形態に係わる特性曲線を示す図である。これらの特性曲線は、差圧上昇率、透過流速(Flux)、および回収率の関係を示す特性曲線に、追加的洗浄工程の効果を組み込んだものである。 
 洗浄効果を高める方法を追加して組み込んだ膜ろ過によれば、通常の逆洗工程のみの膜ろ過に対して、差圧上昇率は同じままで、膜の透過流速(Flux)を大きくすることが可能である。つまり、洗浄効果を高める方法を追加することで、回収率と差圧上昇率とを変化させずに膜の透過流速を上げることが可能となる。例えば図20における点Yに対応する膜ろ過における差圧上昇率を、透過流速(Flux)をF1からFhに増加させても得ることができる。
 図21には、膜の透過流速を変化させずに、洗浄効果を高める方法を追加的に組み込んだケースが示される。このケースでは、差圧上昇率の低かったδAの膜ろ過において、膜透過流速をFLからF1まで上げることが可能となる。よって、点Yの運転においては、透過流速F1のままで、差圧上昇率をδBからδAに落とすことが可能となる。
 図22は、第4の実施形態における透過流速(Flux)と差圧上昇率との関係を表す概念図である。図22は、膜の透過流速(Flux)と差圧上昇率との限界フラックスラインにおける関係が、通常の逆洗工程のみのケースと、洗浄効果を高める方法を組み込んだケースとの双方について示される。
 図22に示される特性曲線を用いれば、洗浄効果を高める方法を追加的に組み込むと膜の透過流速をどの程度上げることが可能かを、求めることができる。また、透過流速を一定にした場合において、差圧上昇率をどの程度下げることが可能かを、選択することができる。
 第4の実施形態においては、洗浄効果を上げるための方法を通常の逆洗方法に付加する形で用いるケースにおいて、膜ろ過透過流速と回収率の特性曲線に加え、追加洗浄方法の効果を示す特性曲線を用いる。そして、これらの特性曲線を用いて、膜ろ過透過流速を増加させたり、回収率を上げたりする調整を行うようにした。これによりシステムの運転効率をさらに高めることが可能になる。
 以上述べたように第1乃至第4の実施形態によれば、膜ろ過システムにおいて、膜ろ過透過流速と回収率の差圧上昇率別の特性曲線、および、逆洗浄工程における洗浄時間と洗浄流量と差圧回復率との関係を用いて、効率的な運転方法と、高い洗浄効果を得ることの可能な、膜ろ過の運転方法を選択することができる。
 さらに、通常の逆洗方法に付加する形で、洗浄効果を上げるための方法を用いた場合においても、膜ろ過透過流速と回収率の特性曲線に加えて、追加の洗浄方法の特性曲線を用いて、膜ろ過透過流速および回収率を調整することができる。従って、運転の効率を高めるとともに効果的に膜を洗浄することの可能な膜ろ過システムとその運転方法を提供することが可能になる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…原水槽、2…膜モジュール、3…原水ポンプ、4…処理水槽、5…コンプレッサ、6…逆洗水ポンプ、71~710…配管、8a~8k,8m,8n…バルブ、9…洗浄水槽、10…ヒータ、100…制御装置、41…インタフェース部、42…表示部、43…入出力部、44…データベース部、44a…特性曲線データ、45…制御部、45a…選択部、45b…調整部

Claims (27)

  1.  原水を一時的に貯水する原水槽と、
     前記原水をろ過する膜モジュールと、
     前記原水槽の前記原水を前記膜モジュールに供給する原水ポンプと、
     前記膜モジュールでろ過された処理水を貯水する処理水槽と、
     前記膜モジュールの逆洗工程において、前記処理水を洗浄水として前記膜モジュールに供給する逆洗水ポンプと、
     制御装置とを具備し、
      前記制御装置は、
      前記逆洗工程において、前記原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、当該逆洗工程の差圧上昇率および膜ろ過透過流速を選択する制御部を備える、膜ろ過システム。
  2.  前記制御部は、前記逆洗工程において、前記原水の回収率の設定値に基づいて、当該逆洗工程における使用水量と膜ろ過透過流速から、この逆洗工程における洗浄時間と洗浄流量を選択する、請求項1に記載の膜ろ過システム。
  3.  前記制御部は、前記膜ろ過透過流速に応じて、前記洗浄時間と洗浄流量を調整する、請求項2に記載の膜ろ過システム。
  4.  前記制御部は、前記原水の水質変動に応じて、前記洗浄時間と洗浄流量を調整する、請求項2に記載の膜ろ過システム。
  5.  前記制御部は、前記原水の水質を、当該原水の濁度、水温、pH、アルカリ度、全有機炭素濃度、紫外線吸光度、蛍光強度、シルト濃度指数(SDI)、および、修正ファウリング指数(Modified Fouling Index:MFI)のうち、少なくともいずれか1つに基づいて把握し、その結果に基づいて前記洗浄時間と洗浄流量を調整する、請求項4に記載の膜ろ過システム。
  6.  前記制御部は、前記膜ろ過透過流速を調整して前記逆洗工程の差圧上昇率を制御する、請求項1に記載の膜ろ過システム。
  7.  前記制御部は、前記回収率を調整して前記逆洗工程の差圧上昇率を制御する、請求項1に記載の膜ろ過システム。
  8.  前記制御部は、前記膜ろ過透過流速と前記回収率とを併せて調整して前記逆洗工程の差圧上昇率を制御する、請求項1に記載の膜ろ過システム。
  9.  前記逆洗工程に対し追加的に実施される追加的洗浄工程を実施する手段をさらに具備し、
     前記制御部は、前記逆洗工程において、前記追加的洗浄工程の効果を示す特性曲線を用いて前記膜ろ過透過流速および前記回収率を調整する、請求項1に記載の膜ろ過システム。
  10.  原水を一時的に貯水する原水槽と、前記原水をろ過する膜モジュールと、前記原水槽の前記原水を前記膜モジュールに供給する原水ポンプと、前記膜モジュールでろ過された処理水を貯水する処理水槽と、前記膜モジュールの逆洗工程において、前記処理水を洗浄水として前記膜モジュールに供給する逆洗水ポンプとを具備する膜ろ過システムの運転方法であって、
      前記逆洗工程において、前記原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、当該逆洗工程の差圧上昇率および膜ろ過透過流速を選択する、運転方法。
  11.  前記逆洗工程において、前記原水の回収率の設定値に基づいて、当該逆洗工程における使用水量と膜ろ過透過流速から、この逆洗工程における洗浄時間と洗浄流量を選択する、請求項10に記載の運転方法。
  12.  前記膜ろ過透過流速に応じて、前記洗浄時間と洗浄流量を調整する、請求項11に記載の運転方法。
  13.  前記原水の水質変動に応じて、前記洗浄時間と洗浄流量を調整する、請求項11に記載の運転方法。
  14.  前記原水の水質を、当該原水の濁度、水温、pH、アルカリ度、全有機炭素濃度、紫外線吸光度、蛍光強度、シルト濃度指数(SDI)、および、修正ファウリング指数(Modified Fouling Index:MFI)のうち、少なくともいずれか1つに基づいて把握し、その結果に基づいて前記洗浄時間と洗浄流量を調整する、請求項13に記載の運転方法。
  15.  前記膜ろ過透過流速を調整して前記逆洗工程の差圧上昇率を制御する、請求項10に記載の運転方法。
  16.  前記回収率を調整して前記逆洗工程の差圧上昇率を制御する、請求項10に記載の運転方法。
  17.  前記膜ろ過透過流速と前記回収率とを併せて調整して前記逆洗工程の差圧上昇率を制御する、請求項10に記載の運転方法。
  18.  前記膜ろ過システムは、前記逆洗工程に対し追加的に実施される追加的洗浄工程を実施する手段をさらに具備し、
     前記逆洗工程において、前記追加的洗浄工程の効果を示す特性曲線を用いて前記膜ろ過透過流速および前記回収率を調整する、請求項10に記載の運転方法。
  19.  原水を一時的に貯水する原水槽と、前記原水をろ過する膜モジュールと、前記原水槽の前記原水を前記膜モジュールに供給する原水ポンプと、前記膜モジュールでろ過された処理水を貯水する処理水槽と、前記膜モジュールの逆洗工程において、前記処理水を洗浄水として前記膜モジュールに供給する逆洗水ポンプとを具備する膜ろ過システムに適用される制御装置において、
     前記逆洗工程において、前記原水の回収率の設定値に基づいて、膜ろ過運転の差圧上昇率別の、膜ろ過透過流速と回収率の特性曲線を用いて、当該逆洗工程の差圧上昇率および膜ろ過透過流速を選択する制御部を備える、制御装置。
  20.  前記制御部は、前記逆洗工程において、前記原水の回収率の設定値に基づいて、当該逆洗工程における使用水量と膜ろ過透過流速から、この逆洗工程における洗浄時間と洗浄流量を選択する、請求項19に記載の制御装置。
  21.  前記制御部は、前記膜ろ過透過流速に応じて、前記洗浄時間と洗浄流量を調整する、請求項20に記載の制御装置。
  22.  前記制御部は、前記原水の水質変動に応じて、前記洗浄時間と洗浄流量を調整する、請求項20に記載の制御装置。
  23.  前記制御部は、前記原水の水質を、当該原水の濁度、水温、pH、アルカリ度、全有機炭素濃度、紫外線吸光度、蛍光強度、シルト濃度指数(SDI)、および、修正ファウリング指数(Modified Fouling Index:MFI)のうち、少なくともいずれか1つに基づいて把握し、その結果に基づいて前記洗浄時間と洗浄流量を調整する、請求項22に記載の制御装置。
  24.  前記制御部は、前記膜ろ過透過流速を調整して前記逆洗工程の差圧上昇率を制御する、請求項19に記載の制御装置。
  25.  前記制御部は、前記回収率を調整して前記逆洗工程の差圧上昇率を制御する、請求項19に記載の制御装置。
  26.  前記制御部は、前記膜ろ過透過流速と前記回収率とを併せて調整して前記逆洗工程の差圧上昇率を制御する、請求項19に記載の制御装置。
  27.  前記膜ろ過システムは、前記逆洗工程に対し追加的に実施される追加的洗浄工程を実施する手段をさらに具備し、
     前記制御部は、前記逆洗工程において、前記追加的洗浄工程の効果を示す特性曲線を用いて前記膜ろ過透過流速および前記回収率を調整する、請求項19に記載の制御装置。
PCT/JP2012/050594 2011-03-17 2012-01-13 膜ろ過システムとその運転方法 WO2012124360A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-059930 2011-03-17
JP2011059930A JP5377553B2 (ja) 2011-03-17 2011-03-17 膜ろ過システムとその運転方法

Publications (1)

Publication Number Publication Date
WO2012124360A1 true WO2012124360A1 (ja) 2012-09-20

Family

ID=46830441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050594 WO2012124360A1 (ja) 2011-03-17 2012-01-13 膜ろ過システムとその運転方法

Country Status (2)

Country Link
JP (1) JP5377553B2 (ja)
WO (1) WO2012124360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857500A (zh) * 2021-01-12 2021-05-28 青岛海尔施特劳斯水设备有限公司 智能水表的冲洗方法及智能水表
CN114555532A (zh) * 2019-10-29 2022-05-27 科唯怡株式会社 净水器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264095B2 (ja) * 2014-02-28 2018-01-24 株式会社明電舎 膜モジュールの洗浄方法
KR101766457B1 (ko) 2015-02-12 2017-08-08 두산중공업 주식회사 막오염 지수 측정 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294906A (ja) * 1987-05-26 1988-12-01 Nippon Atom Ind Group Co Ltd 中空糸膜フィルタの運転方法
JPH02126923A (ja) * 1988-11-02 1990-05-15 Toshiba Corp 廃液ろ過装置
JPH07204476A (ja) * 1994-01-20 1995-08-08 Daicel Chem Ind Ltd 水浄化システムとその運転方法
JP2001327967A (ja) * 2000-05-19 2001-11-27 Toray Ind Inc 膜濾過プラントの運転方法および製造方法
JP2002263452A (ja) * 2001-03-13 2002-09-17 Univ Nagoya 膜濾過方法及び膜濾過システム
JP2003126855A (ja) * 2001-10-26 2003-05-07 Toshiba Corp 膜濾過システム
JP2008289958A (ja) * 2007-05-22 2008-12-04 Toshiba Corp 膜ろ過システム
JP2009523062A (ja) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション ろ過プロセスにおける改良型運転方法
JP2011031245A (ja) * 2010-11-15 2011-02-17 Toshiba Corp 膜ろ過システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294906A (ja) * 1990-04-12 1991-12-26 Fanuc Ltd 加工プログラムの編集方式

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294906A (ja) * 1987-05-26 1988-12-01 Nippon Atom Ind Group Co Ltd 中空糸膜フィルタの運転方法
JPH02126923A (ja) * 1988-11-02 1990-05-15 Toshiba Corp 廃液ろ過装置
JPH07204476A (ja) * 1994-01-20 1995-08-08 Daicel Chem Ind Ltd 水浄化システムとその運転方法
JP2001327967A (ja) * 2000-05-19 2001-11-27 Toray Ind Inc 膜濾過プラントの運転方法および製造方法
JP2002263452A (ja) * 2001-03-13 2002-09-17 Univ Nagoya 膜濾過方法及び膜濾過システム
JP2003126855A (ja) * 2001-10-26 2003-05-07 Toshiba Corp 膜濾過システム
JP2009523062A (ja) * 2006-01-12 2009-06-18 シーメンス・ウォーター・テクノロジーズ・コーポレーション ろ過プロセスにおける改良型運転方法
JP2008289958A (ja) * 2007-05-22 2008-12-04 Toshiba Corp 膜ろ過システム
JP2011031245A (ja) * 2010-11-15 2011-02-17 Toshiba Corp 膜ろ過システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555532A (zh) * 2019-10-29 2022-05-27 科唯怡株式会社 净水器
EP4019110A1 (en) * 2019-10-29 2022-06-29 Coway Co., Ltd. Water purifier
EP4019110A4 (en) * 2019-10-29 2022-06-29 Coway Co., Ltd. Water purifier
CN112857500A (zh) * 2021-01-12 2021-05-28 青岛海尔施特劳斯水设备有限公司 智能水表的冲洗方法及智能水表
CN112857500B (zh) * 2021-01-12 2023-03-21 青岛海尔施特劳斯水设备有限公司 智能水表的冲洗方法及智能水表

Also Published As

Publication number Publication date
JP2012192380A (ja) 2012-10-11
JP5377553B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
US8980100B2 (en) Low energy reverse osmosis process
Brehant et al. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination
JP5433633B2 (ja) 正浸透膜を用いた海水淡水化システム
KR100987294B1 (ko) 고압 막여과공정의 삼투 역세정 방법 및 이를 이용하는 고압 막여과장치
AU2008233377B2 (en) Method for the filtration of a fluid
AU2009341904B2 (en) Water desalination equipment and cleaning method for water desalination equipment
Halpern et al. UF pretreatment for SWRO: pilot studies
JP6441808B2 (ja) 淡水化装置及び淡水化方法
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
AU2010257526A1 (en) Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
McMordie Stoughton et al. Reverse osmosis optimization
WO2012124360A1 (ja) 膜ろ過システムとその運転方法
Zupančič et al. An evaluation of industrial ultrafiltration systems for surface water using fouling indices as a performance indicator
Awwa Subcommittee on Periodical Publications of the Membrane Process Committee Microfiltration and ultrafiltration membranes for drinking water
CN108722195A (zh) 一种反渗透系统的免加药在线清洗方法和装置
JP6087667B2 (ja) 淡水化方法及び淡水化装置
US20120193299A1 (en) Water treatment plant as well as a method and computer program for operating a water treatment plant
JP2011031245A (ja) 膜ろ過システム
JP2008289959A (ja) 膜ろ過システム
Wise et al. Ceramic Ultrafiltration Membranes with Improved Economics, Operability, and Process Design Flexibility
JP2008289958A (ja) 膜ろ過システム
JP5434752B2 (ja) 濾過装置及びその運転方法
Bartels et al. Wastewater reuse RO plant: road from troubled to stable operation
Morales et al. Desalination of Produced Water Using Reverse Osmosis
JP4804097B2 (ja) 水浄化システムの連続運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757994

Country of ref document: EP

Kind code of ref document: A1