WO2012124157A1 - Motor speed measurement device and motor speed monitoring device - Google Patents

Motor speed measurement device and motor speed monitoring device Download PDF

Info

Publication number
WO2012124157A1
WO2012124157A1 PCT/JP2011/056964 JP2011056964W WO2012124157A1 WO 2012124157 A1 WO2012124157 A1 WO 2012124157A1 JP 2011056964 W JP2011056964 W JP 2011056964W WO 2012124157 A1 WO2012124157 A1 WO 2012124157A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
voltage
signal
speed
waveform
Prior art date
Application number
PCT/JP2011/056964
Other languages
French (fr)
Japanese (ja)
Inventor
純一 植野
明彦 森川
孝雄 牛山
哲也 赤木
康二 井口
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012124157A1 publication Critical patent/WO2012124157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/10Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for preventing overspeed or under speed

Definitions

  • the present invention relates to a motor rotational speed measuring device and a motor rotational speed monitoring device in an AC motor.
  • An AC motor used in an industrial machine is designed with the expectation of three-phase AC power, and is characterized in that it can obtain a rotational speed proportional to the input frequency. Therefore, in order to accelerate or decelerate the AC motor or perform speed control, many apparatuses adopt a method of smoothly controlling an arbitrary motor speed by a frequency changer such as an inverter.
  • an apparatus or function capable of rapidly stopping the motor by monitoring an abnormal operation in which the motor rotates at an unexpected speed due to a failure or the like is considered important.
  • a speed detector such as an encoder or sensor is provided on the motor shaft as a device to prevent the motor from being operated at an unexpected speed due to human error or failure of the control device.
  • the method of physically acquiring the difference between the rotational speed and the actual rotational speed is generally used.
  • Patent Document 1 below discloses a technique of outputting the rotational state of the motor including the stop state to the abnormality detection means from a rotational speed sensor provided in the motor.
  • the technology to estimate the rotational speed of the motor from the waveform of the power supplied to the motor is adopted in the technology such as sensorless vector control of the inverter, but the method by the current detector is not suitable for the purpose of miniaturization It is not suitable for speed detection because noise is erroneously detected as a high-speed signal by voltage control using PWM modulation, which is used to simplify the system.
  • An object of the present invention is to provide a motor speed measuring device and a motor speed monitoring device capable of measuring and monitoring the rotation speed of an AC motor without physically adding a sensor or the like to the motor rotation shaft.
  • the motor rotation number is derived and the motor is stopped or decelerated by the following means or processes.
  • the motor speed measuring device is a motor speed measuring device connected in parallel to a power supply line of an AC motor and used, wherein an AC voltage supplied to the AC motor through the power supply line is used for the AC motor. It has a speed deriving means for deriving a rotational speed, and the speed deriving means derives a rotational speed of the AC motor by measuring a required time between zero cross positions from the waveform of the AC voltage. .
  • a motor speed measuring device and a motor speed monitoring device capable of monitoring the rotation speed of an AC motor without physically adding a sensor or the like to the motor rotation shaft.
  • FIG. 7 is a diagram showing a configuration of a speed detection unit according to the first to third embodiments.
  • FIG. 2 is a circuit diagram showing a pulse width detection unit 201.
  • FIG. 6 is a diagram showing the waveform of a signal processed by a pulse width detection unit 201. It is a figure which shows the whole structure of the motor speed monitoring apparatus based on 1st Embodiment. It is a figure which shows the modification of the motor speed monitoring apparatus based on 1st Embodiment.
  • FIG. 7 is an operation flowchart of the abnormality detection unit 502 according to the first embodiment. It is a logic table based on 4th Embodiment. It is a circuit diagram added to pulse width detection part 201 concerning a 5th embodiment. It is a figure showing the diagnostic pulse concerning a 5th embodiment. It is a figure which shows the structure of the speed detection part 601,701 based on 4th, 5th embodiment. It is a figure which shows the structure of the signal consistency check part 204 based on 4th Embodiment.
  • an AC frequency is measured from the voltage waveform input to the motor to derive the motor speed.
  • the power used by industrial motors is a circuit with a voltage such as 200 V or 400 V, which is an extremely high voltage compared to the operation of the electronic control circuit, and waveform distortion in the pseudo sine wave generated from the PWM circuit by the inverter. Because of the high rate, advanced denoising techniques are required to completely restore the pre-modulation sine wave without malfunctioning the electronics. In the following, embodiments of the invention will be described which meet the above requirements and obtain an accurate frequency.
  • the speed detection unit 501 which is a speed deriving unit, is installed in parallel with the motor 505, and acquires a three-phase power source input to the motor. Although the power supply has three phases, only the phase is different and the frequency is the same, so that at least one arbitrary phase may be acquired.
  • the waveform of the AC voltage input to the motor 505 (simultaneously to the speed detection unit 501) is modulated by changing the duty ratio of the pulse wave as shown in FIG. 1A, and is a signal that reproduces a sine wave by PWM. is there.
  • simulated manner by pulse modulation (PWM or PAM) is called "pseudo-AC voltage.”
  • PWM or PAM pulse modulation
  • FIG. 2 is a diagram showing the configuration of the speed detection unit 501 in the configuration shown in FIG. 5a.
  • the speed detection unit 501 includes a pulse width detection unit 201, a pulse width measurement unit 202, and a rotation speed determination unit 203.
  • the pulse width detection unit 201 is a waveform shaping unit according to the present invention, and generates a shaped signal that is switched on / off in the same cycle as the plus / minus switching of the pseudo AC voltage by shaping the waveform of the pseudo AC voltage. I have a role.
  • the waveform shown in FIG. 1A passes through the pulse width detection unit 201, whereby a shaped signal having the waveform shown in FIG. 1B is obtained.
  • the pulse width measurement unit 202 measures the width of one period of the waveform shown in FIG. 1B, and converts the reciprocal thereof as the input frequency to the motor.
  • the rotational speed determination unit 203 determines the rotational speed of the motor from the acquired input frequency to the motor.
  • FIG. 3 is a diagram showing a circuit configuration of the pulse width detection unit 201.
  • the pulse width detection unit 201 includes a comparator 101 as a first extraction unit, a comparator 102 as a second extraction unit, and an RS flip-flop 103 as a shaping signal generation unit.
  • the power supply 104 input to the motor is stepped down and then input to the comparator 101 and the comparator 102.
  • a reference voltage (threshold voltage) Vref1 greater than 0 V and lower than the maximum voltage of the pulse wave is smaller than 0 V and higher than the maximum voltage of the pulse wave. ) Vref2 is applied.
  • the power supply 104 input to the pulse width detection unit 201 has the waveform shown in FIG.
  • the output logic of the comparator 101 is positive when the input 104 is higher than the reference voltage Vref1.
  • the input 104 becomes higher than the reference voltage Vref1, so the output waveform when the waveform of FIG. 4 (a) is input to the comparator 101 Is as shown in FIG. 4 (b).
  • the comparator 102 is reversely connected in polarity to the comparator 101, and when the reference voltage Vref2 is higher than the input 104, the output logic is true. That is, when the pulse swings to the positive side (phase 1 in FIG. 4A), the reference voltage Vref2 is always lower than the input 104, so the output logic becomes false.
  • the RS flip-flop 103 has an S input, an R input, and a Q output.
  • the RS-type flip-flop holds the logic of the S input at the Q output, and resets the held logic when the R input becomes true.
  • the waveform of the Q output 106 is obtained. Is as shown in FIG. 4 (d). This is a shaped signal obtained by removing the pulse width modulation component from the input waveform to the motor, which is the purpose of the pulse width detection unit 201.
  • the pulse width measurement unit 202 measures the width of one period of the acquired shaped signal waveform (FIG. 4 (d)), and determines the reciprocal thereof as the input frequency to the motor.
  • the pulse width for example, using a zero crossing circuit, the cycle of timing when the applied voltage becomes zero is measured.
  • the input frequency to the motor becomes 200 Hz which is the reciprocal thereof.
  • the rotational speed determination unit 203 derives the synchronous speed of the motor and the rotational speed based on the measured frequency.
  • the formula is as shown in Formula 1.
  • the speed detection unit 501 can derive the number of rotations of the motor.
  • step S801 of deriving the rotational speed of the motor from the speed detection unit 501 is executed.
  • step S802 is executed to confirm whether the rotational speed is within the allowable range.
  • the process transitions to step S805 of outputting a control signal to the motor control unit 503, which is the motor control unit of the present invention.
  • step S 803 the process proceeds to step S 803 of calculating the rotational speed increment with reference to the rotational speed stored in the previous process (when the process is the first process, it is stored in the previous process) The rotational speed is 0).
  • step S804 in which it is confirmed whether the rotational speed increment (motor acceleration) is within the allowable range.
  • step S805 for outputting a control signal to the motor control unit 503. If the acceleration is within the allowable range, the process returns to step S ⁇ b> 801 after transitioning to step S ⁇ b> 806 of temporarily storing the derived rotational speed.
  • step S805 the abnormality detection unit 502 issues a control signal to the motor control unit 503.
  • the motor control unit 503 is connected to an electromagnetic contactor 504 (circuit breaker) installed on a circuit of an inverter device 506, which is a motor controller, and a motor 505. Then, upon receiving the control signal, the motor control unit 503 opens the electromagnetic contactor 504. As a result, the power of the motor 505 is shut off, and the rotation of the motor 505 is stopped.
  • the present embodiment it is possible to obtain the rotational speed of the motor without using the speed detector by acquiring the voltage waveform input to the AC motor, shaping the waveform, and deriving the rotational speed of the motor. it can.
  • the semiconductor device is used for deriving the speed, which solves the drawback of the conventional problem that the apparatus is enlarged.
  • a blocking circuit 507 may be installed in the inverter device to block the control signal.
  • Second Embodiment The configuration in the second embodiment will be described with reference to FIG.
  • the speed detection unit 601, the abnormality detection unit 602, and the motor control unit 603 are installed in parallel with the motor 605, as in the first embodiment, and the operation is the same as that of the first embodiment.
  • the motor control unit 603 is connected to an electromagnetic contactor 604 installed on a circuit connecting the power supply 600 and the inverter device 606. Upon receiving the control signal, the motor control unit 603 opens the electromagnetic contactor 604. As a result, the power supply of the inverter device 606 is shut off, so that the rotation of the motor 605 is stopped as in the first embodiment.
  • the rotational speed or acceleration of the motor can be monitored without using a speed detector, but input to the inverter device 606 using the electromagnetic contactor 504 Not only the motor but also the inverter device can be simultaneously stopped by shutting off the power supply.
  • This method is effective because when one motor drives a plurality of motors, failure of the motor drive may affect other motors.
  • the configuration in the third embodiment will be described with reference to FIG.
  • the speed detection unit 701, the abnormality detection unit 702, and the motor control unit 703 are disposed in parallel with the motor 705 as in the first embodiment, but may be disposed outside the inverter device 706 or internally It may be arranged in The operation is similar to that of the first embodiment.
  • the motor control unit 703 is connected to a control circuit 704 which the inverter device 706 has.
  • motor control unit 603 When receiving the control signal, motor control unit 603 outputs a signal indicating that an abnormality has occurred to control circuit 704.
  • the inverter device 706 reduces the number of rotations until the motor 705 is stopped urgently or no abnormal signal is detected.
  • the response to temporarily reduce the rotational speed is effective when it is assumed that the user's abnormal operation is not a failure of the inverter device. In this case, a warning may be issued to the user.
  • the inverter 706 instead of cutting off the power.
  • By outputting the control signal it is possible to adjust the speed of the motor rather than the forced stop by shutting off the power. For example, when an overspeed occurs due to a user's operation error, an alarm is issued and then the vehicle is decelerated to a predetermined speed or less, or while the speed is over, the acceleration operation is not accepted. The effect can be expected.
  • a self-diagnosis function is realized by adding a signal integrity check unit 204 (fault diagnosis means) to the pulse width detection unit 201.
  • a signal integrity check unit 204 fault diagnosis means
  • the flip flop 103 in FIG. 3 there are an S input to which the output signal from the first extraction means is input, an R input to which the output signal from the second extraction means is input, and a shaping signal.
  • the speed detection units 501, 601, 701 determine that an abnormality has occurred in itself.
  • FIG. 9 is a diagram showing the logical states of S input, R input, and Q output, and the result of abnormality determination. The following describes each case that is determined to be normal or abnormal.
  • the Q output is determined to be normal regardless of the contents of the Q output (cases 901 and 902) because the characteristics of the flip-flop are undefined because the characteristics of the flip flop are undefined.
  • FIG. 13 is a circuit configuration example of the signal integrity check unit 204 using the logic circuit corresponding to FIG.
  • the diagnosis result 305 true is output when it is determined to be abnormal, and false is output when it is normal. If it is determined that the operation is abnormal, the pulse width detection unit 201 does not input the measurement result to the pulse width measurement unit 202, and stops the monitoring operation by locking out the device. At the same time, the user may be notified that an abnormality has occurred in the monitoring device.
  • the logic check according to the present embodiment may be performed continuously or at regular intervals. In order to obtain the state of each input / output, it is desirable to use a photocoupler or the like to perform insulation.
  • the logic check can prevent unintended operation of the comparators 101 and 102 and the flip flop 103. As a result, when one of the elements degrades and breaks down, this can be detected quickly, and the user can be notified. If a failure of the pulse width detection unit 201 is detected, for example, the monitoring function may be stopped or the motor itself may be stopped or decelerated. This has the advantage that it is possible to prevent the motor from operating with speed monitoring not functioning properly.
  • the dynamic test function is realized by adding the test signal input unit 205a to the input of the pulse width detection unit 201 and the test signal detection unit 205b to the output.
  • the test signal input units 205a and 205b correspond to the second failure diagnosis means of the present invention.
  • FIG. 10 is a circuit diagram in which a test signal input unit 205a is added to the input portion of the pulse width detection unit 201 shown in FIG.
  • the test signal input unit 205 a includes a test input signal line 1 (107 a), a test input signal line 2 (107 b), and photocouplers 108 and 109.
  • a test input signal line 1 107 a
  • a test input signal line 2 107 b
  • photocouplers 108 and 109 the operation in the case where the dynamic test is performed during motor drive monitoring will be described with reference to FIGS. 10 and 11.
  • the input to the pulse width detection unit 201 is clamped to Vcc by the effect of the photocoupler regardless of the input waveform supplied to the motor.
  • the input to the pulse width detection unit 201 is similarly clamped to Vss regardless of the input waveform supplied to the motor.
  • the waveforms input to the comparators 101 and 102 are as shown in FIG. It will be.
  • the hatched portion is a portion depending on the input waveform actually supplied to the motor.
  • the output of the flip flop 103 is as shown in FIG. For this reason, when the waveform as illustrated is input from the test signal input unit 205a, the output result of the flip flop 103 is acquired by the test signal detection unit 205b, and the apparatus as illustrated in FIG. It can be judged.
  • test signal detection unit 205 b may be arranged to be connected to the pulse width measurement unit 202 or the rotational speed determination unit 203.
  • the pulse width measurement unit 202 it can be understood that the apparatus is normal if the frequency that matches the input test signal can be measured.
  • the rotational speed determination unit 203 it can be known that the apparatus is normal if the expected rotational speed is derived for the input test signal.
  • the fifth embodiment by clamping the input waveform by the test signal, dynamic failure diagnosis of the comparators 101 and 102 and the flip flop 103 which the motor speed monitoring device has can be performed. While the fourth embodiment checks only the logic of input / output signals, this embodiment actually checks the operation of the apparatus by inputting a test signal, so both comparators 101 and 102, for example, In the case of failure and stopping while maintaining the logic of the case 901, although this can not be detected in the fourth embodiment, detection is possible in the present embodiment. As described above, the fifth embodiment has an advantage of being able to cope with a case where the apparatus for detecting an abnormality itself has failed in addition to the fourth embodiment.
  • the waveform change leading to the motor rotation is only the portion that crosses zero.
  • the period during which only the positive side of the PWM waveform is output is the waveform for the same motor magnetic pole, and it is necessary to get over the magnetic pole to get to the next magnetic pole, so the voltage is applied in the reverse direction .
  • the zero cross position can be ordered relatively easily by combining it with a low pass filter that eliminates high-speed changes that the motor can not respond to, such as fundamental frequency for PWM modulation and spike noise. It is possible to sample
  • the motor control unit 703 outputs a signal indicating abnormality to the inverter device 706, when the motor rotational speed does not decrease, the electromagnetic contactor disposed on the power supply line is opened.
  • multiple embodiments may be combined, such as stopping the motor 705.
  • the velocity may be monitored, or both of the velocity and the acceleration may be monitored.
  • the failure determination according to the fourth embodiment may be performed by a microcomputer other than the illustrated logic circuit.
  • the monitoring operation when it is determined that the device is malfunctioning, the monitoring operation is stopped, and a control signal is output to the motor control units 503, 603, and 703 to drive the motor. You may stop it. As a result, it is possible to prevent the motor operation in a state where the monitoring is not operating.
  • the present invention may be realized by the following configuration.
  • the alternating current voltage may be a pseudo alternating current voltage by pulse modulation.
  • a pseudo AC voltage by pulse modulation is used for control of an AC motor, and the present invention can be applied even to a motor that performs voltage control using the pulse modulation.
  • the motor speed monitoring device is a motor speed monitoring device that is used by being connected in parallel to a power supply line of an AC motor, wherein the AC speed is supplied from the AC voltage supplied to the AC motor through the power supply line. It is determined whether or not the rotational speed derived by the speed deriving means is a speed deriving means for deriving the rotational speed, and the control for stopping or decelerating the rotation of the AC motor when it is determined that the rotational speed is abnormal.
  • Motor control means for outputting a signal, the AC voltage is a pseudo AC voltage by pulse modulation, and the speed deriving means shapes plus / minus the pseudo AC voltage by shaping the waveform of the pseudo AC voltage.
  • a waveform shaping means for generating a shaping signal that switches on / off in the same cycle as the switching of It is characterized by deriving the rotational speed of the AC motor Zui.
  • the waveform shaping means in the present invention comprises: a first extracting means for extracting only a signal of a positive component from the waveform of the pseudo alternating voltage; and a second extracting means for extracting only a signal of a negative component from the waveform of the pseudo alternating voltage
  • shaping signal generation means for generating and outputting the shaping signal from the output signal of the first extraction means and the output signal of the second extraction means.
  • the first extraction means is constituted by a first comparator for comparing the pseudo AC voltage with a positive threshold voltage
  • the second extraction means comprises the pseudo AC voltage and the negative threshold voltage.
  • the shaping signal generation means may be constituted by a flip flop to which an output signal of the first comparator and an output signal of the second comparator are inputted.
  • the waveform shaping means in the present invention can perform the shaping of the AC voltage waveform for deriving the rotational speed of the motor with only at least three semiconductor elements, the entire apparatus can be miniaturized. There is no need to select a sensor for each capacity of the motor's current consumption because it has the advantages of not requiring a current detector, and it is possible to change the electric circuit only when detecting the speed without changing the existing machine. It has the advantage of being able to In addition, comparing the waveform of the pseudo AC voltage with the threshold voltage has the advantage of being able to reliably shape the waveform without being affected by power supply noise.
  • the combination of the logics of the three signals of the output signal of the first extraction means, the output signal of the second extraction means and the shaping signal is a possible combination. It is also preferable to have fault diagnosis means for judging whether the combination is not a possible combination and judging that the waveform shaping means is broken.
  • the three signals of the signal output from the first extraction means, the signal output from the second extraction means, and the shaping signal are not logically matched, that is, when a failure occurs in the device, this is detected It is possible to If a failure is detected, the user may be notified or the motor may be stopped on the basis of the non-monitoring state.
  • a test signal of a predetermined waveform is input to the first extraction unit and the second extraction unit, and the logic of the shaping signal output from the shaping signal generation unit Determining whether or not the signal corresponds to the waveform of the test signal, and determining that the waveform shaping means is broken if the signal does not correspond to the waveform of the test signal It is also preferable to have
  • the control signal output from the motor control means in the present invention is a signal output to the circuit breaker for interrupting the supply of the AC voltage to the AC motor or a controller for supplying the AC voltage to the AC motor. May be
  • the circuit breaker may receive a control signal to shut off the power supply to the motor.
  • the motor controller for example the control circuit of the inverter device, may receive the control signal and decelerate the motor until the speed reaches an acceptable range.

Abstract

The present invention generates, by shaping the waveform of a pseudo AC voltage that is made by pulse modulation and that is to be supplied to an AC motor, a shaped signal that has the ON/OFF thereof switched with the same cycle as the switching of the pseudo AC voltage between plus and minus, and derives the rotational speed of the AC motor on the basis of the shaped signal. Abnormality is evaluated on the basis of the derived rotational speed, and when abnormality is evaluated as having occurred, a control signal for stopping or decelerating the AC motor is outputted.

Description

モータ速度測定装置およびモータ速度監視装置Motor speed measuring device and motor speed monitoring device
 本発明は、交流モータにおける、モータ回転速度測定装置およびモータ回転速度監視装置に関する。 The present invention relates to a motor rotational speed measuring device and a motor rotational speed monitoring device in an AC motor.
 工業機械に使用される交流モータは、三相交流による電力を期待して設計されており、入力周波数に比例した回転数を得られるという性質がある。そのため、交流モータを加減速し、もしくは速度制御を行うため、インバータ等の周波数変更装置により、任意のモータ速度をスムーズに制御する方法が多くの装置で採用されている。 An AC motor used in an industrial machine is designed with the expectation of three-phase AC power, and is characterized in that it can obtain a rotational speed proportional to the input frequency. Therefore, in order to accelerate or decelerate the AC motor or perform speed control, many apparatuses adopt a method of smoothly controlling an arbitrary motor speed by a frequency changer such as an inverter.
 一方、工業機械においては、故障などによりモータが予期しない速度で回転する異常動作を監視し、速やかにモータを停止することができる装置あるいは機能が重要とされている。 On the other hand, in an industrial machine, an apparatus or function capable of rapidly stopping the motor by monitoring an abnormal operation in which the motor rotates at an unexpected speed due to a failure or the like is considered important.
 モータについては、人為的ミス、もしくは制御装置の故障などにより、想定を超えた速度で運転されることを防止するための装置として、モータシャフトにエンコーダやセンサ等の速度検出器を設け、想定する回転数と、実際の回転数の差異を物理的に取得するという方法が一般的である。下記特許文献1では、電動機に備えられた回転速度センサから、停止状態を含む電動機の回転状態を、異常検出手段に出力する技術が公開されている。 As for the motor, a speed detector such as an encoder or sensor is provided on the motor shaft as a device to prevent the motor from being operated at an unexpected speed due to human error or failure of the control device. The method of physically acquiring the difference between the rotational speed and the actual rotational speed is generally used. Patent Document 1 below discloses a technique of outputting the rotational state of the motor including the stop state to the abnormality detection means from a rotational speed sensor provided in the motor.
特開2010-288390号公報JP, 2010-288390, A
 前述したように、速度検出器を備えるモータであれば、その検出結果をモータ制御部にフィードバックすることにより、故障により異常な回転が発生した際も、これを検知することができるが、速度検出器を備えていないモータに対してこれを付加しようとした場合、従来は改造によって物理的に取り付けなければならない。しかし、環境によっては、場所等の制約により速度検出器を設置できない場合があり、また、設置できた場合であっても、装置が大型化するといったデメリットが存在する。 As described above, in the case of a motor provided with a speed detector, by feeding back the detection result to the motor control unit, even when an abnormal rotation occurs due to a failure, this can be detected, but the speed detection If this is to be added to a motor that is not equipped with a motor, it has conventionally to be physically attached by modification. However, depending on the environment, there may be cases where the speed detector can not be installed depending on the environment, etc., and even if it can be installed, there is a disadvantage that the apparatus becomes larger.
 一方で、モータに供給される電力の波形からモータの回転速度を推定する技術は、インバータのセンサレスベクトル制御等の技術で採用されているが、電流検出器による方法では小型化する目的にあわないことや、システムの簡素化のために使われているPWM変調による電圧制御によりノイズを高速信号として誤検出してしまうため、速度の検出には向いていなかった。 On the other hand, the technology to estimate the rotational speed of the motor from the waveform of the power supplied to the motor is adopted in the technology such as sensorless vector control of the inverter, but the method by the current detector is not suitable for the purpose of miniaturization It is not suitable for speed detection because noise is erroneously detected as a high-speed signal by voltage control using PWM modulation, which is used to simplify the system.
 本発明は、モータ回転軸にセンサ等を物理的に追加することなく、交流モータの回転速度を測定および監視することができるモータ速度測定装置およびモータ速度監視装置を提供することを目的とする。 An object of the present invention is to provide a motor speed measuring device and a motor speed monitoring device capable of measuring and monitoring the rotation speed of an AC motor without physically adding a sensor or the like to the motor rotation shaft.
 上記目的を達成するために、本発明に係るモータ速度測定装置およびモータ速度監視装置では、以下の手段または処理によってモータ回転数の導出、およびモータの停止または減速を行う。 In order to achieve the above object, in the motor speed measuring device and the motor speed monitoring device according to the present invention, the motor rotation number is derived and the motor is stopped or decelerated by the following means or processes.
 本発明に係るモータ速度測定装置は、交流モータの電源線に並列に接続されて用いられるモータ速度測定装置であって、前記電源線を通じて前記交流モータへ供給される交流電圧から、前記交流モータの回転速度を導出する速度導出手段を有し、前記速度導出手段は、前記交流電圧の波形からゼロクロス位置間の所要時間を測定することにより、前記交流モータの回転速度を導出することを特徴とする。 The motor speed measuring device according to the present invention is a motor speed measuring device connected in parallel to a power supply line of an AC motor and used, wherein an AC voltage supplied to the AC motor through the power supply line is used for the AC motor. It has a speed deriving means for deriving a rotational speed, and the speed deriving means derives a rotational speed of the AC motor by measuring a required time between zero cross positions from the waveform of the AC voltage. .
 このような構成を取ることにより、モータの回転軸に速度検出器を設置しなくとも、交流モータへ供給される交流電圧を取得するだけで、モータの回転速度を得ることができる。 By adopting such a configuration, it is possible to obtain the rotation speed of the motor only by acquiring the AC voltage supplied to the AC motor, without installing the speed detector on the rotation shaft of the motor.
 本発明によれば、モータ回転軸にセンサ等を物理的に追加することなく、交流モータの回転速度を監視することができるモータ速度測定装置およびモータ速度監視装置を提供することができる。 According to the present invention, it is possible to provide a motor speed measuring device and a motor speed monitoring device capable of monitoring the rotation speed of an AC motor without physically adding a sensor or the like to the motor rotation shaft.
PWM変調された入力波形と、前記波形から、時間軸方向の変調成分を除いた波形を示す図である。It is a figure which shows the waveform which removed the modulation component of the time-axis direction from the input waveform by which PWM modulation was carried out, and the said waveform. 第1~第3実施形態に係る、速度検出部の構成を示す図である。FIG. 7 is a diagram showing a configuration of a speed detection unit according to the first to third embodiments. パルス幅検出部201を示す回路図である。FIG. 2 is a circuit diagram showing a pulse width detection unit 201. パルス幅検出部201にて処理される信号の波形を示す図である。FIG. 6 is a diagram showing the waveform of a signal processed by a pulse width detection unit 201. 第1実施形態に係る、モータ速度監視装置の全体構成を示す図である。It is a figure which shows the whole structure of the motor speed monitoring apparatus based on 1st Embodiment. 第1実施形態に係る、モータ速度監視装置の変形例を示す図である。It is a figure which shows the modification of the motor speed monitoring apparatus based on 1st Embodiment. 第2実施形態に係る、モータ速度監視装置の全体構成を示す図である。It is a figure which shows the whole structure of the motor speed monitoring apparatus based on 2nd Embodiment. 第3実施形態に係る、モータ速度監視装置の全体構成を示す図である。It is a figure which shows the whole structure of the motor speed monitoring apparatus based on 3rd Embodiment. 第1実施形態に係る、異常検出部502の動作フローチャートである。7 is an operation flowchart of the abnormality detection unit 502 according to the first embodiment. 第4実施形態に係る、論理表である。It is a logic table based on 4th Embodiment. 第5実施形態に係る、パルス幅検出部201に追加する回路図である。It is a circuit diagram added to pulse width detection part 201 concerning a 5th embodiment. 第5実施形態に係る、診断パルスを表した図である。It is a figure showing the diagnostic pulse concerning a 5th embodiment. 第4,第5実施形態に係る、速度検出部601,701の構成を示す図である。It is a figure which shows the structure of the speed detection part 601,701 based on 4th, 5th embodiment. 第4実施形態に係る、信号整合性確認部204の構成を示す図である。It is a figure which shows the structure of the signal consistency check part 204 based on 4th Embodiment.
 本発明においては、モータへ入力される電圧波形から、交流周波数を測定し、モータの速度を導出するという手法を取る。しかし、産業用モータで使用する電力は、200Vや400Vなど、電子制御回路の動作と比較すると圧倒的に高い電圧の回路であり、さらにインバータによるPWM回路から発生する疑似正弦波においては、波形歪率が高いため、電子回路を誤動作させずに変調前の正弦波を完全復元するには高度なノイズ除去技術が必要である。以下に、上記の要件を満たし、正確に周波数を得るための発明の実施形態について述べる。 In the present invention, an AC frequency is measured from the voltage waveform input to the motor to derive the motor speed. However, the power used by industrial motors is a circuit with a voltage such as 200 V or 400 V, which is an extremely high voltage compared to the operation of the electronic control circuit, and waveform distortion in the pseudo sine wave generated from the PWM circuit by the inverter. Because of the high rate, advanced denoising techniques are required to completely restore the pre-modulation sine wave without malfunctioning the electronics. In the following, embodiments of the invention will be described which meet the above requirements and obtain an accurate frequency.
 (第1の実施形態)
 まず、本実施形態における速度導出手段の概要について、図5aを参照しながら説明する。速度導出手段となる速度検出部501は、モータ505と並列に設置されており、モータに入力される三相電源を取得する。電源は三相であるが、位相が異なるのみで周波数はどれも同じであるため、少なくとも任意の一相を取得すればよい。
First Embodiment
First, the outline of the speed deriving means in the present embodiment will be described with reference to FIG. 5a. The speed detection unit 501, which is a speed deriving unit, is installed in parallel with the motor 505, and acquires a three-phase power source input to the motor. Although the power supply has three phases, only the phase is different and the frequency is the same, so that at least one arbitrary phase may be acquired.
 モータ505(と同時に速度検出部501)に入力される交流電圧の波形は、図1(a)の通り、パルス波のデューティ比を変化させて変調させ、PWMにて正弦波を再現した信号である。このように、パルス変調(PWMやPAM)により擬似的に交流電圧の波形を表した信号を「擬似交流電圧」と呼ぶ。以下、このような擬似交流電圧の波形から入力周波数を取得(復元)するための構成を説明する。 The waveform of the AC voltage input to the motor 505 (simultaneously to the speed detection unit 501) is modulated by changing the duty ratio of the pulse wave as shown in FIG. 1A, and is a signal that reproduces a sine wave by PWM. is there. Thus, the signal which represented the waveform of AC voltage in a pseudo | simulated manner by pulse modulation (PWM or PAM) is called "pseudo-AC voltage." Hereinafter, a configuration for acquiring (restoring) the input frequency from the waveform of such a pseudo AC voltage will be described.
 図2は、図5aで示した構成のうち、速度検出部501の構成を示した図である。速度検出部501は、パルス幅検出部201、パルス幅測定部202、および回転速度決定部203にて構成されている。パルス幅検出部201は、本発明の波形整形手段であり、擬似交流電圧の波形を整形することにより、擬似交流電圧のプラス/マイナスの切り替わりと同じ周期でオン/オフが切り替わる整形信号を生成する役割を持っている。図1(a)で示された波形が、パルス幅検出部201を通過することにより、図1(b)で示された波形を持つ整形信号が得られる。パルス幅測定部202では、図1(b)に示した波形の一周期の幅を測定し、その逆数をモータへの入力周波数として変換する。回転速度決定部203では、取得したモータへの入力周波数から、モータの回転速度を決定する。 FIG. 2 is a diagram showing the configuration of the speed detection unit 501 in the configuration shown in FIG. 5a. The speed detection unit 501 includes a pulse width detection unit 201, a pulse width measurement unit 202, and a rotation speed determination unit 203. The pulse width detection unit 201 is a waveform shaping unit according to the present invention, and generates a shaped signal that is switched on / off in the same cycle as the plus / minus switching of the pseudo AC voltage by shaping the waveform of the pseudo AC voltage. I have a role. The waveform shown in FIG. 1A passes through the pulse width detection unit 201, whereby a shaped signal having the waveform shown in FIG. 1B is obtained. The pulse width measurement unit 202 measures the width of one period of the waveform shown in FIG. 1B, and converts the reciprocal thereof as the input frequency to the motor. The rotational speed determination unit 203 determines the rotational speed of the motor from the acquired input frequency to the motor.
 図3は、パルス幅検出部201の回路構成を示した図である。パルス幅検出部201は、第一の抽出手段であるコンパレータ101、および第二の抽出手段であるコンパレータ102と、整形信号生成手段であるRS型フリップフロップ103にて構成されている。モータに入力される電源104は、降圧されたのちにコンパレータ101、およびコンパレータ102に入力される。コンパレータ101には、0Vより大きく、かつ、パルス波の最大電圧より低い基準電圧(閾値電圧)Vref1が、コンパレータ102には、0Vより小さく、かつ、パルス波の最大電圧より高い基準電圧(閾値電圧)Vref2が印加されている。この回路の動作を、図4(a)から図4(d)を用いて説明する。 FIG. 3 is a diagram showing a circuit configuration of the pulse width detection unit 201. As shown in FIG. The pulse width detection unit 201 includes a comparator 101 as a first extraction unit, a comparator 102 as a second extraction unit, and an RS flip-flop 103 as a shaping signal generation unit. The power supply 104 input to the motor is stepped down and then input to the comparator 101 and the comparator 102. A reference voltage (threshold voltage) Vref1 greater than 0 V and lower than the maximum voltage of the pulse wave is smaller than 0 V and higher than the maximum voltage of the pulse wave. ) Vref2 is applied. The operation of this circuit will be described with reference to FIGS. 4 (a) to 4 (d).
 パルス幅検出部201に入力される電源104は、図4(a)に示した波形を有している。コンパレータ101については、入力104が基準電圧Vref1よりも高い場合に、出力論理が正となる。ここで、正の側へパルスが振れた場合(図4(a)フェーズ1)、入力104は基準電圧Vref1より高くなるため、図4(a)の波形をコンパレータ101に入力した場合の出力波形は図4(b)のようになる。 The power supply 104 input to the pulse width detection unit 201 has the waveform shown in FIG. The output logic of the comparator 101 is positive when the input 104 is higher than the reference voltage Vref1. Here, when the pulse swings to the positive side (FIG. 4 (a) phase 1), the input 104 becomes higher than the reference voltage Vref1, so the output waveform when the waveform of FIG. 4 (a) is input to the comparator 101 Is as shown in FIG. 4 (b).
 一方、コンパレータ102については、コンパレータ101と極性が逆に接続されており、基準電圧Vref2が入力104よりも高い場合に、出力論理が真となる。つまり、正の側へパルスが振れた場合(図4(a)フェーズ1)においては、常に基準電圧Vref2のほうが入力104より低くなるため、出力論理は偽となる。 On the other hand, the comparator 102 is reversely connected in polarity to the comparator 101, and when the reference voltage Vref2 is higher than the input 104, the output logic is true. That is, when the pulse swings to the positive side (phase 1 in FIG. 4A), the reference voltage Vref2 is always lower than the input 104, so the output logic becomes false.
 負の側へパルスが振れた場合(図4(a)フェーズ2)、コンパレータ101については、常に入力104のほうが基準電圧Vref1より低くなるため、出力論理は偽となる。一方、コンパレータ102については、基準電圧Vref2が入力104より高くなり、出力論理が真となるため、図4(a)の波形をコンパレータ102に入力した場合の出力波形は図4(b)のようになる。これにより、コンパレータ101,102において、入力波形のプラス成分およびマイナス成分のみを確実に抽出できるようになる。 When the pulse swings to the negative side (phase 2 in FIG. 4A), the output logic of the comparator 101 is false because the input 104 is always lower than the reference voltage Vref1. On the other hand, for the comparator 102, since the reference voltage Vref2 is higher than the input 104 and the output logic is true, the output waveform when the waveform of FIG. 4A is input to the comparator 102 is as shown in FIG. become. As a result, only the positive and negative components of the input waveform can be reliably extracted by the comparators 101 and 102.
 RS型フリップフロップ103は、S入力およびR入力、Q出力を有している。RS型フリップフロップは、S入力の論理をQ出力に保持し、R入力が真になると、保持された論理をリセットするという特徴を持っている。このフリップフロップ103のS入力に、前述したコンパレータ101の出力(図4(b))を与え、R入力に、コンパレータ102の出力(図4(c))を与えると、そのQ出力106の波形は図4(d)のようになる。これが、パルス幅検出部201の目的である、モータへの入力波形より、パルス幅変調成分を除去した整形信号となる。 The RS flip-flop 103 has an S input, an R input, and a Q output. The RS-type flip-flop holds the logic of the S input at the Q output, and resets the held logic when the R input becomes true. When the output (FIG. 4 (b)) of the comparator 101 described above is given to the S input of the flip flop 103 and the output (FIG. 4 (c)) of the comparator 102 is given to the R input, the waveform of the Q output 106 is obtained. Is as shown in FIG. 4 (d). This is a shaped signal obtained by removing the pulse width modulation component from the input waveform to the motor, which is the purpose of the pulse width detection unit 201.
 次に、パルス幅測定部202は、取得された整形信号波形(図4(d))の一周期の幅を測定し、その逆数をモータへの入力周波数として決定する。パルス幅の測定については、例えばゼロクロス回路を用いて、印加されていた電圧が0となるタイミングの周期を測定する。測定した結果、例えば一波形周期が5ミリ秒であった場合、モータへの入力周波数はその逆数である200Hzとなる。 Next, the pulse width measurement unit 202 measures the width of one period of the acquired shaped signal waveform (FIG. 4 (d)), and determines the reciprocal thereof as the input frequency to the motor. For the measurement of the pulse width, for example, using a zero crossing circuit, the cycle of timing when the applied voltage becomes zero is measured. As a result of measurement, for example, when one waveform cycle is 5 milliseconds, the input frequency to the motor becomes 200 Hz which is the reciprocal thereof.
 入力周波数を決定したら、回転速度決定部203は、測定した周波数を元にモータの同期速度と、回転速度を導出する。同期電動機の場合、モータの回転速度は、入力周波数から算出される同期速度と一致するため、その計算式は数式1のようになる。 After determining the input frequency, the rotational speed determination unit 203 derives the synchronous speed of the motor and the rotational speed based on the measured frequency. In the case of a synchronous motor, since the rotational speed of the motor matches the synchronous speed calculated from the input frequency, the formula is as shown in Formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、8極の同期電動機に対する入力周波数が200Hzであった場合、上記式により、回転数は(2×200÷8)×60=3000回転/毎分と決定することができる。誘導電動機の場合、入力周波数と、同期速度が一致しないため、上記にて算出した同期速度に、すべりに相当する分を減じたものをモータの回転数とする。例えば、上記の例において、すべりが0.1であった場合、回転数は3000-(3000×0.1)=2700回転/毎分とすることができる。以上の処理を行うことにより、速度検出部501は、モータの回転数を導出することができる。 For example, when the input frequency to the 8-pole synchronous motor is 200 Hz, the rotational speed can be determined as (2 × 200 × 8) × 60 = 3000 revolutions per minute according to the above equation. In the case of an induction motor, since the input frequency and the synchronous speed do not match, the rotational speed of the motor is obtained by subtracting the part corresponding to slip from the synchronous speed calculated above. For example, in the above example, if the slip is 0.1, then the number of revolutions can be 3000- (3000 × 0.1) = 2700 revolutions per minute. By performing the above processing, the speed detection unit 501 can derive the number of rotations of the motor.
 次に、図5aに示した異常検出部502の動作を、図8を参照しながら説明する。図8のフローチャートは、異常検出部502の動作を表したものである。まず、動作を開始すると、速度検出部501より、モータの回転速度を導出するステップS801が実行される。 Next, the operation of the abnormality detection unit 502 shown in FIG. 5a will be described with reference to FIG. The flowchart in FIG. 8 shows the operation of the abnormality detection unit 502. First, when the operation is started, step S801 of deriving the rotational speed of the motor from the speed detection unit 501 is executed.
 続いて、導出した速度をもとに、回転速度が許容範囲内にあるかを確認するステップS802が実行される。ここで、回転速度が許容範囲を逸脱していたら、処理は、本発明のモータ制御手段である、モータ制御部503に対して制御信号を出力するステップS805へ遷移する。回転速度が許容範囲内であった場合、前回の処理で記憶した回転速度を参照し、回転速度の増分を計算するステップS803へ遷移する(処理が初回であった場合、前回の処理で記憶した回転速度は0とする)。続いて、回転速度の増分(モータの加速度)が、許容範囲にあるかを確認するステップS804へ遷移する。ここで、加速度が許容範囲を逸脱していたら、処理は、モータ制御部503に対して制御信号を出力するステップS805へ遷移する。加速度が許容範囲内であった場合、導出した回転速度を一時記憶するステップS806へ遷移したのち、処理はS801へ戻る。 Subsequently, based on the derived speed, step S802 is executed to confirm whether the rotational speed is within the allowable range. Here, if the rotational speed deviates from the allowable range, the process transitions to step S805 of outputting a control signal to the motor control unit 503, which is the motor control unit of the present invention. If the rotational speed is within the allowable range, the process proceeds to step S 803 of calculating the rotational speed increment with reference to the rotational speed stored in the previous process (when the process is the first process, it is stored in the previous process) The rotational speed is 0). Subsequently, the process proceeds to step S804 in which it is confirmed whether the rotational speed increment (motor acceleration) is within the allowable range. Here, if the acceleration deviates from the allowable range, the process transitions to step S805 for outputting a control signal to the motor control unit 503. If the acceleration is within the allowable range, the process returns to step S <b> 801 after transitioning to step S <b> 806 of temporarily storing the derived rotational speed.
 したがって、この処理を繰り返して実行することにより、現在のモータの速度および加速度の監視が可能となり、速度あるいは加速度のどちらかが許容範囲から逸脱した場合、モータ制御部503に対して制御信号の出力をすることができる。 Therefore, by repeatedly executing this process, the current motor speed and acceleration can be monitored, and when either the speed or the acceleration deviates from the allowable range, the control signal is output to the motor control unit 503. You can
 ステップS805が実行された場合、異常検出部502は、モータ制御部503に対して制御信号を発行する。第1の実施形態においては、モータ制御部503は、モータコントローラであるインバータ装置506と、モータ505との回路上に設置された電磁接触器504(遮断器)に接続されている。そして、モータ制御部503は、制御信号を受信すると、電磁接触器504を開放する。これにより、モータ505の電源が遮断されるため、モータ505の回転は停止する。 When step S805 is executed, the abnormality detection unit 502 issues a control signal to the motor control unit 503. In the first embodiment, the motor control unit 503 is connected to an electromagnetic contactor 504 (circuit breaker) installed on a circuit of an inverter device 506, which is a motor controller, and a motor 505. Then, upon receiving the control signal, the motor control unit 503 opens the electromagnetic contactor 504. As a result, the power of the motor 505 is shut off, and the rotation of the motor 505 is stopped.
 本実施形態によれば、交流モータへ入力される電圧波形を取得し、波形を整形したうえでモータの回転速度を導出することにより、速度検出器を用いることなくモータの回転速度を得ることができる。また、速度の導出に半導体素子を用いることで、従来の問題点であった、装置が大型化するといった欠点を解消している。 According to the present embodiment, it is possible to obtain the rotational speed of the motor without using the speed detector by acquiring the voltage waveform input to the AC motor, shaping the waveform, and deriving the rotational speed of the motor. it can. In addition, the semiconductor device is used for deriving the speed, which solves the drawback of the conventional problem that the apparatus is enlarged.
 また、電磁接触器504を用いて電源を遮断することにより、確実にモータを停止することができるという利点があるほか、回転速度または加速度を監視することにより、インバータ装置の故障だけでなく、許容速度を超える指示を出す、あるいは許容範囲を超える急加速操作をするといった利用者の操作ミスをも検知することが可能である。なお、電磁接触器504を使用するかわりに、図5bで示したように、インバータ装置内に遮断回路507を設置し、制御信号を遮断してもよい。 Moreover, there is an advantage that the motor can be stopped surely by shutting off the power supply using the magnetic contactor 504, and by monitoring the rotational speed or acceleration, not only the failure of the inverter device but also the tolerance is permitted. It is also possible to detect a user's operation error such as issuing an instruction exceeding the speed or performing a rapid acceleration operation exceeding the allowable range. Instead of using the magnetic contactor 504, as shown in FIG. 5b, a blocking circuit 507 may be installed in the inverter device to block the control signal.
 (第2の実施形態)
 第2の実施形態における構成を、図6を参照しながら説明する。速度検出部601、異常検出部602、モータ制御部603は、第1の実施形態と同様に、モータ605と並列に設置されており、その動作は、第1の実施形態と同様である。
Second Embodiment
The configuration in the second embodiment will be described with reference to FIG. The speed detection unit 601, the abnormality detection unit 602, and the motor control unit 603 are installed in parallel with the motor 605, as in the first embodiment, and the operation is the same as that of the first embodiment.
 第2の実施形態においては、モータ制御部603は、電源600とインバータ装置606を結ぶ回路上に設置された電磁接触器604と接続されている。モータ制御部603は、制御信号を受信すると、電磁接触器604を開放する。これにより、インバータ装置606の電源が遮断されるため、第1の実施形態と同様に、モータ605の回転は停止する。 In the second embodiment, the motor control unit 603 is connected to an electromagnetic contactor 604 installed on a circuit connecting the power supply 600 and the inverter device 606. Upon receiving the control signal, the motor control unit 603 opens the electromagnetic contactor 604. As a result, the power supply of the inverter device 606 is shut off, so that the rotation of the motor 605 is stopped as in the first embodiment.
 第2の実施形態においても、第1の実施形態と同様に、速度検出器を用いることなくモータの回転速度または加速度を監視することができるが、電磁接触器504を用いてインバータ装置606へ入力される電源を遮断することにより、モータだけでなく、インバータ装置をも同時に停止することができる。一台のインバータ装置で、複数のモータを駆動している場合、インバータ装置の故障は他のモータへ影響を及ぼすことが考えられるため、この方法が有効である。 Also in the second embodiment, as in the first embodiment, the rotational speed or acceleration of the motor can be monitored without using a speed detector, but input to the inverter device 606 using the electromagnetic contactor 504 Not only the motor but also the inverter device can be simultaneously stopped by shutting off the power supply. This method is effective because when one motor drives a plurality of motors, failure of the motor drive may affect other motors.
 (第3の実施形態)
 第3の実施形態における構成を、図7を参照しながら説明する。速度検出部701、異常検出部702、モータ制御部703は、第1の実施形態と同様にモータ705と並列に設置されているが、インバータ装置706の外部に配置されていてもよいし、内部に配置されていてもよい。その動作は、第1の実施形態と同様である。
Third Embodiment
The configuration in the third embodiment will be described with reference to FIG. The speed detection unit 701, the abnormality detection unit 702, and the motor control unit 703 are disposed in parallel with the motor 705 as in the first embodiment, but may be disposed outside the inverter device 706 or internally It may be arranged in The operation is similar to that of the first embodiment.
 第3の実施形態においては、モータ制御部703は、インバータ装置706が有している制御回路704と接続されている。モータ制御部603は、制御信号を受信すると、制御回路704に対して異常が発生したことを示す信号を出力する。これにより、インバータ装置706は、モータ705を緊急停止、あるいは、異常信号を検出しなくなるまで回転数を下げる。一時的に回転数を下げる対応は、インバータ装置の故障ではなく、利用者の異常操作を想定した場合に有効である。この場合、利用者に対して警報を発してもよい。 In the third embodiment, the motor control unit 703 is connected to a control circuit 704 which the inverter device 706 has. When receiving the control signal, motor control unit 603 outputs a signal indicating that an abnormality has occurred to control circuit 704. Thereby, the inverter device 706 reduces the number of rotations until the motor 705 is stopped urgently or no abnormal signal is detected. The response to temporarily reduce the rotational speed is effective when it is assumed that the user's abnormal operation is not a failure of the inverter device. In this case, a warning may be issued to the user.
 第3の実施形態においても、第1の実施形態と同様に、速度検出器を用いることなくモータの回転速度または加速度を監視することができるが、電源の遮断ではなく、インバータ装置706に対して制御信号を出力することで、電源を遮断しての強制停止ではなく、モータの速度調整が可能となる。例えば、利用者の操作ミスにより速度超過が発生した場合、警報を発したうえで既定の速度以下となるように減速を行う、もしくは、速度が超過している間は加速操作を受け付けなくする、といった効果が期待できる。 Also in the third embodiment, as in the first embodiment, although it is possible to monitor the rotational speed or acceleration of the motor without using a speed detector, it is possible to monitor the inverter 706 instead of cutting off the power. By outputting the control signal, it is possible to adjust the speed of the motor rather than the forced stop by shutting off the power. For example, when an overspeed occurs due to a user's operation error, an alarm is issued and then the vehicle is decelerated to a predetermined speed or less, or while the speed is over, the acceleration operation is not accepted. The effect can be expected.
 (第4の実施形態)
 図12を参照しながら、第4の実施形態について説明する。第4の実施形態においては、パルス幅検出部201に対し、信号整合性確認部204(故障診断手段)を追加することにより、自己診断機能を実現する。具体的には、図3におけるフリップフロップ103において、第一の抽出手段からの出力信号が入力されるS入力,第二の抽出手段からの出力信号が入力されるR入力,および整形信号であるQ出力の状態を取得して、論理的にあり得ない組み合わせが取得された場合、速度検出部501,601,701は、自己に異常が発生したと判断する。
Fourth Embodiment
The fourth embodiment will be described with reference to FIG. In the fourth embodiment, a self-diagnosis function is realized by adding a signal integrity check unit 204 (fault diagnosis means) to the pulse width detection unit 201. Specifically, in the flip flop 103 in FIG. 3, there are an S input to which the output signal from the first extraction means is input, an R input to which the output signal from the second extraction means is input, and a shaping signal. When the Q output state is acquired and a logically impossible combination is acquired, the speed detection units 501, 601, 701 determine that an abnormality has occurred in itself.
 図9は、S入力,R入力,Q出力の論理状態と、異常判定の結果を示した図である。以下に、正常または異常と判断するケースごとに説明する。 FIG. 9 is a diagram showing the logical states of S input, R input, and Q output, and the result of abnormality determination. The following describes each case that is determined to be normal or abnormal.
 S入力が偽、R入力が偽であった場合、Q出力は、フリップフロップの特性上不定であるため、Q出力の内容にかかわらず正常と判断する(ケース901,902)。 If the S input is false and the R input is false, the Q output is determined to be normal regardless of the contents of the Q output (cases 901 and 902) because the characteristics of the flip-flop are undefined because the characteristics of the flip flop are undefined.
 S入力が偽、R入力が真であった場合、Q出力は必ず偽となるため、Q出力が偽であった場合は正常(ケース903)、真であった場合はフリップフロップの故障と判断する(ケース904)。 If the S input is false and the R input is true, the Q output is always false. If the Q output is false, it is normal (case 903), and if it is true, it is determined that the flip flop is broken. Yes (case 904).
 S入力が真、R入力が偽であった場合、Q出力は必ず真となるため、Q出力が真であった場合は正常(ケース905)、偽であった場合はフリップフロップの故障と判断する(ケース906)。 If the S input is true and the R input is false, the Q output is always true. If the Q output is true, it is normal (case 905). If it is false, it is determined that the flip flop is faulty. Yes (case 906).
 コンパレータ101および102からの出力は、同時に真となることがないため、S入力が真、R入力が真であった場合はコンパレータの故障と判断する(ケース907,908)。 The outputs from the comparators 101 and 102 do not become true at the same time, so if the S input is true and the R input is true, it is determined that the comparator has failed (cases 907 and 908).
 図13は、図9に対応した論理回路を用いた、信号整合性確認部204の回路構成例である。診断結果305には、異常と判断した場合に真が、正常な場合は偽が出力される。異常と判定された場合、パルス幅検出部201は、測定結果をパルス幅測定部202へ入力せず、装置をロックアウトすることにより監視動作を停止させる。また、同時に利用者に対して、監視装置に異常が発生した旨の通知を行ってもよい。 FIG. 13 is a circuit configuration example of the signal integrity check unit 204 using the logic circuit corresponding to FIG. In the diagnosis result 305, true is output when it is determined to be abnormal, and false is output when it is normal. If it is determined that the operation is abnormal, the pulse width detection unit 201 does not input the measurement result to the pulse width measurement unit 202, and stops the monitoring operation by locking out the device. At the same time, the user may be notified that an abnormality has occurred in the monitoring device.
 本実施例に係る論理チェックについては、連続して行ってもよいし、一定の間隔で行ってもよい。なお、各入出力の状態を取得するためには、絶縁を行うためフォトカプラ等を使用することが望ましい。 The logic check according to the present embodiment may be performed continuously or at regular intervals. In order to obtain the state of each input / output, it is desirable to use a photocoupler or the like to perform insulation.
 第4の実施形態においては、論理チェックを実施することで、コンパレータ101,102およびフリップフロップ103の意図しない動作を防止することができる。これにより、いずれかの素子が劣化して故障した場合、これをいち早く検出することができ、利用者に対して通知することができる。もし、パルス幅検出部201の故障が検出された場合は、例えば監視機能を停止し、あるいはモータ自体を停止もしくは減速してもよい。これにより、速度監視が正しく機能していない状態でモータが運転されることを防止できるという利点がある。 In the fourth embodiment, the logic check can prevent unintended operation of the comparators 101 and 102 and the flip flop 103. As a result, when one of the elements degrades and breaks down, this can be detected quickly, and the user can be notified. If a failure of the pulse width detection unit 201 is detected, for example, the monitoring function may be stopped or the motor itself may be stopped or decelerated. This has the advantage that it is possible to prevent the motor from operating with speed monitoring not functioning properly.
 (第5の実施形態)
 図12を参照しながら、第5の実施形態について説明する。第5の実施形態においては、パルス幅検出部201の入力に対してテスト信号入力部205a、出力に対してテスト信号検出部205bを追加することにより、動的テスト機能を実現する。本実施形態では、テスト信号入力部205aおよび205bが、本発明の第二の故障診断手段に対応する。図10は、図3で示したパルス幅検出部201の入力部分に、テスト信号入力部205aを追加した回路図である。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. In the fifth embodiment, the dynamic test function is realized by adding the test signal input unit 205a to the input of the pulse width detection unit 201 and the test signal detection unit 205b to the output. In the present embodiment, the test signal input units 205a and 205b correspond to the second failure diagnosis means of the present invention. FIG. 10 is a circuit diagram in which a test signal input unit 205a is added to the input portion of the pulse width detection unit 201 shown in FIG.
 テスト信号入力部205aは、テスト入力信号線1(107a)、テスト入力信号線2(107b)、フォトカプラ108および109にて構成される。以下、モータ駆動監視中に動的テストを実施した場合の動作を、図10と図11を参照しながら説明する。 The test signal input unit 205 a includes a test input signal line 1 (107 a), a test input signal line 2 (107 b), and photocouplers 108 and 109. Hereinafter, the operation in the case where the dynamic test is performed during motor drive monitoring will be described with reference to FIGS. 10 and 11.
 テスト入力信号線1(107a)に信号を入力した場合、パルス幅検出部201への入力は、モータへ供給される入力波形に関係なく、フォトカプラの効果によりVccにクランプされる。また、テスト入力信号線2(107b)に信号を入力した場合、パルス幅検出部201への入力は、同じく、モータへ供給される入力波形に関係なく、Vssにクランプされる。 When a signal is input to the test input signal line 1 (107a), the input to the pulse width detection unit 201 is clamped to Vcc by the effect of the photocoupler regardless of the input waveform supplied to the motor. When a signal is input to the test input signal line 2 (107b), the input to the pulse width detection unit 201 is similarly clamped to Vss regardless of the input waveform supplied to the motor.
 よって、図11(a)(b)のタイミングチャートの通りに、二本のテスト入力線に対してパルス信号を加えた場合、コンパレータ101,102に入力される波形は、図11(c)のようになる。なお、斜線部分は、実際にモータへ供給されている入力波形に依存する部分である。 Therefore, as shown in the timing chart of FIGS. 11A and 11B, when pulse signals are applied to two test input lines, the waveforms input to the comparators 101 and 102 are as shown in FIG. It will be. The hatched portion is a portion depending on the input waveform actually supplied to the motor.
 また、フリップフロップ103の出力は、図11(d)のようになる。このため、例示した通りの波形をテスト信号入力部205aより入力し、フリップフロップ103の出力結果をテスト信号検出部205bにより取得し、例示した通りの波形が取得できない場合、装置が故障していると判断することができる。 The output of the flip flop 103 is as shown in FIG. For this reason, when the waveform as illustrated is input from the test signal input unit 205a, the output result of the flip flop 103 is acquired by the test signal detection unit 205b, and the apparatus as illustrated in FIG. It can be judged.
 また、テスト信号検出部205bは、パルス幅測定部202、もしくは回転速度決定部203に接続される形で配置されていてもよい。パルス幅測定部202に接続されている場合、入力されたテスト信号と一致する周波数が測定できれば、装置が正常であることがわかる。同じように、回転速度決定部203に接続されている場合、入力されたテスト信号に対して期待通りの回転速度が導出されれば、装置が正常であることがわかる。 In addition, the test signal detection unit 205 b may be arranged to be connected to the pulse width measurement unit 202 or the rotational speed determination unit 203. When connected to the pulse width measurement unit 202, it can be understood that the apparatus is normal if the frequency that matches the input test signal can be measured. Similarly, when connected to the rotational speed determination unit 203, it can be known that the apparatus is normal if the expected rotational speed is derived for the input test signal.
 第5の実施形態においては、テスト信号により入力波形をクランプすることで、モータ速度監視装置が有するコンパレータ101,102、およびフリップフロップ103の動的な故障診断を行うことができる。第4の実施形態が入出力信号の論理のみをチェックしているのに対して、本実施形態は実際にテスト信号を入力することで装置の動作チェックを行うため、たとえばコンパレータ101,102がともに故障し、図9:ケース901の論理を保ったまま停止してしまった場合、第4の実施形態ではこれを検出することはできないが、本実施形態においては検出が可能である。このように、第5の実施形態では、第4の実施形態に加え、異常を検出する装置自体が故障したケースにも対応することができるという利点がある。 In the fifth embodiment, by clamping the input waveform by the test signal, dynamic failure diagnosis of the comparators 101 and 102 and the flip flop 103 which the motor speed monitoring device has can be performed. While the fourth embodiment checks only the logic of input / output signals, this embodiment actually checks the operation of the apparatus by inputting a test signal, so both comparators 101 and 102, for example, In the case of failure and stopping while maintaining the logic of the case 901, although this can not be detected in the fourth embodiment, detection is possible in the present embodiment. As described above, the fifth embodiment has an advantage of being able to cope with a case where the apparatus for detecting an abnormality itself has failed in addition to the fourth embodiment.
 以上述べたように、本発明では、PWM変調における複雑な信号変化のうち、モータ回転につながる波形変化がゼロクロスする部分だけであることに注目した。PWM波形のうち、正側のみ出力している期間は、同じモータ磁極に対する波形であり、次の磁極へ乗り移るためには磁極を乗り越える必要があるため、電圧が逆方向に印加されるものである。 As described above, in the present invention, it has been noted that among the complex signal changes in PWM modulation, the waveform change leading to the motor rotation is only the portion that crosses zero. The period during which only the positive side of the PWM waveform is output is the waveform for the same motor magnetic pole, and it is necessary to get over the magnetic pole to get to the next magnetic pole, so the voltage is applied in the reverse direction .
 また、モータがコイルであることから、PWM変調用の基本周波数やスパイク状のノイズなどのモータが応答できない高速変化を排除するローパスフィルタとの組み合わせをすることで、比較的簡単にゼロクロス位置を順番にサンプリングしていくことが可能となる。 In addition, since the motor is a coil, the zero cross position can be ordered relatively easily by combining it with a low pass filter that eliminates high-speed changes that the motor can not respond to, such as fundamental frequency for PWM modulation and spike noise. It is possible to sample
 ゼロクロス位置を検出した後においては、一般的な技術を用いて、ゼロクロス位置間の所要時間を測定することにより、出力したエネルギーがモータ回転に与えている主な周波数を測定することができ、これにより、独立回路による正確な速度検出が可能となる。 After detecting the zero-crossing position, it is possible to measure the main frequency that the output energy gives to the motor rotation by measuring the required time between the zero-crossing positions using a common technique. Enables accurate speed detection by an independent circuit.
 なお、上記一連の実施形態の説明は、本発明を説明する上での例示にすぎず、本発明を上記の実施形態に限定して解釈すべきではない。例えば、第3の実施形態において、モータ制御部703が、インバータ装置706に異常を示す信号を出力したにもかかわらず、モータ回転数が下がらない場合、電源線上に配置された電磁接触器を開放し、モータ705を停止させるといったように、複数の実施例を組み合わせてもよい。 The above description of the series of embodiments is merely an example for describing the present invention, and the present invention should not be interpreted as being limited to the above embodiments. For example, in the third embodiment, although the motor control unit 703 outputs a signal indicating abnormality to the inverter device 706, when the motor rotational speed does not decrease, the electromagnetic contactor disposed on the power supply line is opened. Alternatively, multiple embodiments may be combined, such as stopping the motor 705.
 また、異常検出部502,602,702にあっては、速度のみを監視してもよいし、速度と加速度の双方を監視してもよい。また、第4の実施形態に係る故障判断については、例示した論理回路のほか、マイコンによって行ってもよい。 In the abnormality detection units 502, 602, and 702, only the velocity may be monitored, or both of the velocity and the acceleration may be monitored. The failure determination according to the fourth embodiment may be performed by a microcomputer other than the illustrated logic circuit.
 また、第4および第5の実施形態については、装置の故障判断がされた場合、監視動作を停止させるとともに、モータ制御部503,603,703に対して制御信号を出力し、モータの運転を停止させてもよい。これにより、監視が動作していない状態でのモータ運転を許容しないという対応も可能である。 In the fourth and fifth embodiments, when it is determined that the device is malfunctioning, the monitoring operation is stopped, and a control signal is output to the motor control units 503, 603, and 703 to drive the motor. You may stop it. As a result, it is possible to prevent the motor operation in a state where the monitoring is not operating.
 なお、本発明は、以下の構成によって実現されてもよい。 The present invention may be realized by the following configuration.
 また、前記交流電圧は、パルス変調による擬似交流電圧であってもよい。 The alternating current voltage may be a pseudo alternating current voltage by pulse modulation.
 交流モータの制御には、パルス変調による擬似交流電圧を用いることが多く、前記パルス変調を用いた電圧制御を行うモータであっても、本発明を適用することができる。 In many cases, a pseudo AC voltage by pulse modulation is used for control of an AC motor, and the present invention can be applied even to a motor that performs voltage control using the pulse modulation.
 本発明に係るモータ速度監視装置は、交流モータの電源線に並列に接続されて用いられるモータ速度監視装置であって、前記電源線を通じて前記交流モータへ供給される交流電圧から、前記交流モータの回転速度を導出する速度導出手段と、前記速度導出手段により導出された回転速度が異常であるか否かを判断し、異常と判断した場合に前記交流モータの回転を停止もしくは減速するための制御信号を出力するモータ制御手段とを有し、前記交流電圧はパルス変調による擬似交流電圧であり、前記速度導出手段は、前記擬似交流電圧の波形を整形することにより前記擬似交流電圧のプラス/マイナスの切り替わりと同じ周期でオン/オフが切り替わる整形信号を生成する波形整形手段を有し、前記波形整形手段から出力される整形信号に基づいて前記交流モータの回転速度を導出することを特徴としている。 The motor speed monitoring device according to the present invention is a motor speed monitoring device that is used by being connected in parallel to a power supply line of an AC motor, wherein the AC speed is supplied from the AC voltage supplied to the AC motor through the power supply line. It is determined whether or not the rotational speed derived by the speed deriving means is a speed deriving means for deriving the rotational speed, and the control for stopping or decelerating the rotation of the AC motor when it is determined that the rotational speed is abnormal. Motor control means for outputting a signal, the AC voltage is a pseudo AC voltage by pulse modulation, and the speed deriving means shapes plus / minus the pseudo AC voltage by shaping the waveform of the pseudo AC voltage. And a waveform shaping means for generating a shaping signal that switches on / off in the same cycle as the switching of It is characterized by deriving the rotational speed of the AC motor Zui.
 このような構成を取ることにより、モータの回転軸に速度検出器を設置しなくとも、交流モータへ供給される交流電圧を取得するだけで、モータの回転速度を検出し、速度に異常を検知した場合、停止または減速のための指示を外部に出力することができる。 By adopting such a configuration, even if the speed detector is not installed on the rotation shaft of the motor, the rotational speed of the motor can be detected and abnormality in the speed is detected only by acquiring the AC voltage supplied to the AC motor. In this case, an instruction for stopping or decelerating can be output to the outside.
 本発明における波形整形手段は、前記擬似交流電圧の波形からプラス成分の信号のみを抽出する第一の抽出手段と、前記擬似交流電圧の波形からマイナス成分の信号のみを抽出する第二の抽出手段と、前記第一の抽出手段の出力信号と前記第二の抽出手段の出力信号とから、前記整形信号を生成し出力する整形信号生成手段とを有することができる。 The waveform shaping means in the present invention comprises: a first extracting means for extracting only a signal of a positive component from the waveform of the pseudo alternating voltage; and a second extracting means for extracting only a signal of a negative component from the waveform of the pseudo alternating voltage And shaping signal generation means for generating and outputting the shaping signal from the output signal of the first extraction means and the output signal of the second extraction means.
 また、前記第一の抽出手段は、前記擬似交流電圧とプラスの閾値電圧とを比較する第一のコンパレータから構成され、前記第二の抽出手段は、前記擬似交流電圧とマイナスの閾値電圧とを比較する第二のコンパレータから構成され、前記整形信号生成手段は、前記第一のコンパレータの出力信号と前記第二のコンパレータの出力信号が入力されるフリップフロップから構成することができる。 Further, the first extraction means is constituted by a first comparator for comparing the pseudo AC voltage with a positive threshold voltage, and the second extraction means comprises the pseudo AC voltage and the negative threshold voltage. The shaping signal generation means may be constituted by a flip flop to which an output signal of the first comparator and an output signal of the second comparator are inputted.
 このように、本発明における波形整形手段は、少なくとも三つの半導体素子のみで、モータの回転速度を導出するための交流電圧波形の整形を行うことができるため、装置全体を小型化することができるという利点や、電流検出器が不要なため、モータの消費電流の容量毎にセンサを選定する必要がなく、既設の機械を変更せずに速度を検出したい場合にも電気回路のみの変更で対応できるという利点を有している。また、擬似交流電圧の波形を閾値電圧と比較することにより、電源ノイズに影響されることなく、確実に波形を整形できるという利点も有している。 As described above, since the waveform shaping means in the present invention can perform the shaping of the AC voltage waveform for deriving the rotational speed of the motor with only at least three semiconductor elements, the entire apparatus can be miniaturized. There is no need to select a sensor for each capacity of the motor's current consumption because it has the advantages of not requiring a current detector, and it is possible to change the electric circuit only when detecting the speed without changing the existing machine. It has the advantage of being able to In addition, comparing the waveform of the pseudo AC voltage with the threshold voltage has the advantage of being able to reliably shape the waveform without being affected by power supply noise.
 また、本発明におけるモータ速度監視装置には、前記第一の抽出手段の出力信号と前記第二の抽出手段の出力信号と前記整形信号の三つの信号の論理の組み合わせが、取り得る組み合わせか否かを判定し、取り得る組み合わせでない場合に前記波形整形手段が故障していると判断する故障診断手段を有することも好ましい。 Further, in the motor speed monitoring device according to the present invention, the combination of the logics of the three signals of the output signal of the first extraction means, the output signal of the second extraction means and the shaping signal is a possible combination. It is also preferable to have fault diagnosis means for judging whether the combination is not a possible combination and judging that the waveform shaping means is broken.
 これにより、第一の抽出手段が出力した信号と、第二の抽出手段が出力した信号と、整形信号の三つの信号が論理的に整合しない、つまり装置に故障が発生した場合、これを検知することが可能となる。故障が検出された場合は、利用者に通知を行ってもよいし、無監視状態となったことを理由にモータを停止してもよい。 As a result, the three signals of the signal output from the first extraction means, the signal output from the second extraction means, and the shaping signal are not logically matched, that is, when a failure occurs in the device, this is detected It is possible to If a failure is detected, the user may be notified or the motor may be stopped on the basis of the non-monitoring state.
 同様に、本発明におけるモータ速度監視装置には、前記第一の抽出手段および前記第二の抽出手段へ所定の波形のテスト信号を入力し、前記整形信号生成手段から出力される整形信号の論理が、前記テスト信号の波形に対応するものであるか否かを判定し、前記テスト信号の波形に対応するものでない場合に前記波形整形手段が故障していると判断する第二の故障診断手段を有していることも好ましい。 Similarly, in the motor speed monitoring apparatus according to the present invention, a test signal of a predetermined waveform is input to the first extraction unit and the second extraction unit, and the logic of the shaping signal output from the shaping signal generation unit Determining whether or not the signal corresponds to the waveform of the test signal, and determining that the waveform shaping means is broken if the signal does not correspond to the waveform of the test signal It is also preferable to have
 テスト信号を入力し、出力された結果と対比することにより、所定の動作が正しく行われているかを確認することができる。論理整合チェックによる故障検出では、正しい論理状態のまま回路が停止してしまった場合、故障の検出ができなくなるが、これと比較して確実に故障検出を行うことができるという利点がある。 By inputting the test signal and comparing it with the output result, it can be confirmed whether the predetermined operation is performed correctly. In the fault detection by the logic matching check, if the circuit stops in the correct logic state, the fault can not be detected, but there is an advantage that the fault detection can be surely performed as compared with this.
 本発明におけるモータ制御手段から出力される制御信号は、前記交流モータへの交流電圧の供給を遮断する遮断器、または、前記交流モータへ交流電圧を供給するコントローラに対して出力される信号であってもよい。 The control signal output from the motor control means in the present invention is a signal output to the circuit breaker for interrupting the supply of the AC voltage to the AC motor or a controller for supplying the AC voltage to the AC motor. May be
 モータを直ちに停止させる場合、たとえば遮断器が制御信号を受信し、モータに対する電力供給を停止させてもよい。モータを減速させる場合、モータコントローラ、たとえばインバータ装置の制御回路が制御信号を受信し、速度が許容範囲に到達するまでモータを減速させてもよい。 If the motor is to be stopped immediately, for example, the circuit breaker may receive a control signal to shut off the power supply to the motor. When decelerating the motor, the motor controller, for example the control circuit of the inverter device, may receive the control signal and decelerate the motor until the speed reaches an acceptable range.
 制御信号を遮断器やモータのコントローラに出力することで、遮断器の開放による確実なモータの停止も可能であるし、利用者に警報を与えたうえで減速し、運転を継続するといった動作も可能である。これには、コントローラの故障を監視するだけではなく、利用者の異常操作をも監視できるという利点がある。もちろん、減速するための制御信号をコントローラに対して出力しても回転速度が落ちなかった場合には、故障と判断し、停止のための制御信号を遮断器に対して出力するなど、両者を併用してもよい。 By outputting a control signal to the controller of the circuit breaker or motor, it is also possible to stop the motor reliably by opening the circuit breaker, and also gives an alarm to the user and then decelerates to continue the operation. It is possible. This has the advantage of not only monitoring controller failures, but also monitoring abnormal operation of the user. Of course, if the rotational speed does not decrease even if the control signal for decelerating is output to the controller, it is determined that there is a failure, and the control signal for stopping is output to the circuit breaker, etc. You may use together.
 101,102 コンパレータ
 103 RS型フリップフロップ
 104 入力電源線
 106 出力電源線
 107a テスト信号線1
 107b テスト信号線2
 108,109,301 フォトカプラ
 201 パルス幅検出部
 202 パルス幅測定部
 203 回転速度決定部
 302 NOTゲート
 303 ANDゲート
 304 ORゲート
 500,600,700 電源装置
 501,601,701 速度検出部
 502,602,702 異常検出部
 503,603,703 モータ制御部
 504 電磁接触器
 505,605,705 交流モータ
 506,606,706 インバータ装置
 507 遮断回路
 704 インバータ制御回路
101, 102 Comparator 103 RS flip-flop 104 Input power supply line 106 Output power supply line 107a Test signal line 1
107b test signal line 2
108, 109, 301 Photocoupler 201 Pulse Width Detection Unit 202 Pulse Width Measurement Unit 203 Rotational Speed Determination Unit 302 NOT Gate 303 AND Gate 304 OR Gate 500, 600, 700 Power Supply Device 501, 601, 701 Speed Detection Unit 502, 602, 702 abnormality detection unit 503, 603, 703 motor control unit 504 electromagnetic contactor 505, 605, 705 AC motor 506, 606, 706 inverter device 507 cut-off circuit 704 inverter control circuit

Claims (8)

  1.  交流モータの電源線に並列に接続されて用いられるモータ速度測定装置であって、
     前記電源線を通じて前記交流モータへ供給される交流電圧から、前記交流モータの回転速度を導出する速度導出手段と、
     を有し、
     前記速度導出手段は、前記交流電圧の波形からゼロクロス位置間の所要時間を測定することにより、前記交流モータの回転速度を導出することを特徴とするモータ速度測定装置。
    A motor speed measuring device used in parallel connection to a power supply line of an AC motor,
    Speed deriving means for deriving the rotational speed of the AC motor from the AC voltage supplied to the AC motor through the power supply line;
    Have
    The motor speed measuring device, wherein the speed deriving means derives a rotational speed of the AC motor by measuring a required time between zero cross positions from a waveform of the AC voltage.
  2.  前記交流電圧は、パルス変調による擬似交流電圧である
     ことを特徴とする請求項1に記載のモータ速度測定装置。
    The motor speed measuring device according to claim 1, wherein the alternating voltage is a pseudo alternating voltage based on pulse modulation.
  3.  交流モータの電源線に並列に接続されて用いられるモータ速度監視装置であって、
     前記電源線を通じて前記交流モータへ供給される交流電圧から、前記交流モータの回転速度を導出する速度導出手段と、
     前記速度導出手段により導出された回転速度が異常であるか否かを判断し、異常と判断した場合に前記交流モータの回転を停止もしくは減速するための制御信号を出力するモータ制御手段と、を有し、
     前記交流電圧は、パルス変調による擬似交流電圧であり、
     前記速度導出手段は、前記擬似交流電圧の波形を整形することにより前記擬似交流電圧のプラス/マイナスの切り替わりと同じ周期でオン/オフが切り替わる整形信号を生成する波形整形手段を有し、前記波形整形手段から出力される整形信号に基づいて前記交流モータの回転速度を導出する
     ことを特徴とするモータ速度監視装置。
    A motor speed monitoring device connected in parallel to a power supply line of an AC motor and used,
    Speed deriving means for deriving the rotational speed of the AC motor from the AC voltage supplied to the AC motor through the power supply line;
    Motor control means for determining whether or not the rotational speed derived by the speed deriving means is abnormal, and outputting a control signal for stopping or decelerating the rotation of the AC motor when it is determined that the rotational speed is abnormal. Have
    The AC voltage is a pseudo AC voltage by pulse modulation,
    The speed deriving means has a waveform shaping means for generating a shaping signal which is switched on / off at the same cycle as switching of the pseudo AC voltage by shaping the waveform of the pseudo AC voltage, and the waveform A motor speed monitoring device characterized in that the rotational speed of the AC motor is derived based on a shaping signal output from a shaping means.
  4.  前記波形整形手段は、
     前記擬似交流電圧の波形からプラス成分の信号のみを抽出する第一の抽出手段と、
     前記擬似交流電圧の波形からマイナス成分の信号のみを抽出する第二の抽出手段と、
     前記第一の抽出手段の出力信号と前記第二の抽出手段の出力信号とから、前記整形信号を生成し出力する整形信号生成手段と、
     を有することを特徴とする、請求項3に記載のモータ速度監視装置。
    The waveform shaping means
    First extracting means for extracting only a signal of a positive component from the waveform of the pseudo AC voltage;
    A second extraction unit that extracts only a negative component signal from the waveform of the pseudo AC voltage;
    Shaping signal generation means for generating and outputting the shaping signal from the output signal of the first extraction means and the output signal of the second extraction means;
    The motor speed monitoring device according to claim 3, comprising:
  5.  前記第一の抽出手段は、前記擬似交流電圧とプラスの閾値電圧とを比較する第一のコンパレータから構成され、
     前記第二の抽出手段は、前記擬似交流電圧とマイナスの閾値電圧とを比較する第二のコンパレータから構成され、
     前記整形信号生成手段は、前記第一のコンパレータの出力信号と前記第二のコンパレータの出力信号が入力されるフリップフロップから構成されている
     ことを特徴とする、請求項4に記載のモータ速度監視装置。
    The first extraction means comprises a first comparator that compares the pseudo AC voltage with a positive threshold voltage;
    The second extraction means comprises a second comparator that compares the pseudo AC voltage with a negative threshold voltage;
    The motor speed monitor according to claim 4, wherein the shaping signal generation means is configured of a flip flop to which an output signal of the first comparator and an output signal of the second comparator are input. apparatus.
  6.  前記第一の抽出手段の出力信号と前記第二の抽出手段の出力信号と前記整形信号の三つの信号の論理の組み合わせが、取り得る組み合わせか否かを判定し、取り得る組み合わせでない場合に前記波形整形手段が故障していると判断する故障診断手段をさらに有する
     ことを特徴とする、請求項4または請求項5に記載のモータ速度監視装置。
    It is determined whether or not the combination of the logic of the three signals of the output signal of the first extraction means, the output signal of the second extraction means and the shaping signal is a possible combination, and the combination is not possible. The motor speed monitoring device according to claim 4 or 5, further comprising failure diagnosis means for judging that the waveform shaping means is broken.
  7.  前記第一の抽出手段および前記第二の抽出手段へ所定の波形のテスト信号を入力し、前記整形信号生成手段から出力される整形信号の論理が、前記テスト信号の波形に対応するものであるか否かを判定し、前記テスト信号の波形に対応するものでない場合に前記波形整形手段が故障していると判断する第二の故障診断手段をさらに有する
     ことを特徴とする、請求項4乃至請求項6のいずれか1項に記載のモータ速度監視装置。
    A test signal of a predetermined waveform is input to the first extraction unit and the second extraction unit, and the logic of the shaping signal output from the shaping signal generation unit corresponds to the waveform of the test signal. It further comprises a second failure diagnostic means for judging whether or not the waveform shaping means is defective if it does not correspond to the waveform of the test signal. The motor speed monitoring device according to any one of claims 6 to 10.
  8.  前記モータ制御手段から出力される制御信号は、前記交流モータへの交流電圧の供給を遮断する遮断器、または、前記交流モータへ交流電圧を供給するコントローラに対して出力される
     ことを特徴とする、請求項3乃至請求項7のいずれか1項に記載のモータ速度監視装置。
    The control signal output from the motor control means is output to a circuit breaker that shuts off the supply of AC voltage to the AC motor, or a controller that supplies AC voltage to the AC motor. The motor speed monitoring device according to any one of claims 3 to 7.
PCT/JP2011/056964 2011-03-15 2011-03-23 Motor speed measurement device and motor speed monitoring device WO2012124157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056391A JP5370397B2 (en) 2011-03-15 2011-03-15 Motor speed monitoring device
JP2011-056391 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124157A1 true WO2012124157A1 (en) 2012-09-20

Family

ID=46830265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056964 WO2012124157A1 (en) 2011-03-15 2011-03-23 Motor speed measurement device and motor speed monitoring device

Country Status (2)

Country Link
JP (1) JP5370397B2 (en)
WO (1) WO2012124157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933201A (en) * 2015-12-31 2017-07-07 中核陕西铀浓缩有限公司 The collection of digitlization engine speed and processing unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678777B2 (en) 2017-01-23 2020-04-08 東芝三菱電機産業システム株式会社 Control device for synchronous motor
JP7050529B2 (en) * 2018-03-02 2022-04-08 住友重機械工業株式会社 Motor drive for injection molding machines and industrial machinery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323540A (en) * 1986-07-14 1988-01-30 Seikosha Seisakusho:Kk Brushless synchronous motor
JPH04368497A (en) * 1991-06-17 1992-12-21 Isuzu Ceramics Kenkyusho:Kk Synchronous motor controller
JP2000324881A (en) * 1999-05-12 2000-11-24 Fuji Electric Co Ltd Controller for permanent magnet type synchronous motor
JP2007006676A (en) * 2005-06-27 2007-01-11 Denso Corp Motor controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323540A (en) * 1986-07-14 1988-01-30 Seikosha Seisakusho:Kk Brushless synchronous motor
JPH04368497A (en) * 1991-06-17 1992-12-21 Isuzu Ceramics Kenkyusho:Kk Synchronous motor controller
JP2000324881A (en) * 1999-05-12 2000-11-24 Fuji Electric Co Ltd Controller for permanent magnet type synchronous motor
JP2007006676A (en) * 2005-06-27 2007-01-11 Denso Corp Motor controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933201A (en) * 2015-12-31 2017-07-07 中核陕西铀浓缩有限公司 The collection of digitlization engine speed and processing unit

Also Published As

Publication number Publication date
JP5370397B2 (en) 2013-12-18
JP2012196002A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
Estima et al. Recent advances in fault diagnosis by Park's vector approach
Jung et al. An MRAS-based diagnosis of open-circuit fault in PWM voltage-source inverters for PM synchronous motor drive systems
CN103941114B (en) The self checking method of automobile permanent magnet synchronous motor system power module and current sensor
JP6370513B1 (en) Power converter and logic circuit
JPWO2006112033A1 (en) AC motor controller
CN101841298B (en) Control device of three-phase synchronous motor with wiring error detection function
JP2013500697A (en) Method and apparatus for fail-safe monitoring of motion variables of electric drive
US10060983B2 (en) Method and apparatus for determining a physical quantity of a multiphase synchronous machine
Freire et al. A voltage-based approach for open-circuit fault diagnosis in voltage-fed SVM motor drives without extra hardware
JPWO2017122309A1 (en) Electric motor control device
WO2012124157A1 (en) Motor speed measurement device and motor speed monitoring device
US10444288B2 (en) Abnormality diagnosing device and abnormality diagnosing method
KR101916046B1 (en) Voltage sensor default detecting method
CN108802611B (en) Abnormality diagnosis device and abnormality diagnosis method
EP1646525B1 (en) Monitoring an operation of a converter
JP6457589B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
KR101965239B1 (en) System and method for localizing open-switch faults in inverter
TWI782298B (en) Power conversion device and predictive diagnosis method therefor
JP5288931B2 (en) Motor drive device for determining the cause of phase loss in a multi-phase motor
Di Tommaso et al. A review of multiple faults diagnosis methods in voltage source inverters
CN109951135B (en) Power control unit
Sleszynski et al. Real-time fault detection and localization vector-controlled induction motor drives
JP2019205243A (en) Inverter device
JP2012065438A (en) Electric vehicle control device
JP2017158374A (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861078

Country of ref document: EP

Kind code of ref document: A1