WO2012124128A1 - Information processing device, sensor system, program and recording medium - Google Patents

Information processing device, sensor system, program and recording medium Download PDF

Info

Publication number
WO2012124128A1
WO2012124128A1 PCT/JP2011/056632 JP2011056632W WO2012124128A1 WO 2012124128 A1 WO2012124128 A1 WO 2012124128A1 JP 2011056632 W JP2011056632 W JP 2011056632W WO 2012124128 A1 WO2012124128 A1 WO 2012124128A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
sensor
time
data
sensor modules
Prior art date
Application number
PCT/JP2011/056632
Other languages
French (fr)
Japanese (ja)
Inventor
早映子 柴垣
壮司 大前
公啓 生雲
亮太 赤井
勇樹 上山
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012124128A1 publication Critical patent/WO2012124128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to an information processing apparatus that communicates with a plurality of sensor modules and receives data measured by each sensor module, and relates to an information processing apparatus that sets data transmission timing for each of the plurality of sensor modules.
  • a sensor network technology in which a plurality of sensor modules and a server device (information processing device) are connected via a network, and the server device receives a plurality of data from each of the plurality of sensor modules and collects the data.
  • One of the requirements for such a sensor network configuration is to extend the battery life of the sensor module.
  • the timing of energizing the communication unit in each sensor module is set at a fixed time interval, and the stored measurement data is collected by communicating with the server device at the timing of energizing the communication unit. There is a way to send.
  • each sensor module since each sensor module transmits and receives data with the server at the transmission timing set individually, there is a problem in that collision between data communicated between the plurality of sensors and the server occurs. The collision between data is more likely to occur as the number of connected sensor modules increases.
  • the server device may not be able to receive some or all of the collided data. If data reception fails, the server device does not transmit a message indicating reception completion to the sensor module that is the data transmission source. The sensor module of the data transmission source detects that the communication has failed because it cannot receive the message from the server device, and retransmits the same data. The data retransmission is repeated until the communication is successful or the number of retransmissions reaches a predetermined number.
  • Such re-transmission of data may cause a delay in the collection of measurement data of the server device or cause the collection of necessary measurement data to be disabled.
  • re-transmission of data may cause a decrease in the battery life of the sensor module. This is because the communication unit of the sensor module needs to be energized again in order to retransmit the data. That is, the retransmission due to the collision of data goes against the requirement for extending the battery life of the sensor module required for the sensor network configuration.
  • Patent Document 1 describes a technique in which a plurality of sensor nodes and a gateway device are connected via a network, and the gateway device allocates timing for acquiring sensing data to each of the plurality of sensor nodes. ing.
  • the gateway device assigns a timing corresponding to a sensing cycle for transmitting sensing data to each of a plurality of sensor nodes having different sensing cycles.
  • the gateway apparatus preferentially determines the timing with respect to the sensor node having a short sensing cycle. Further, when there are sensor nodes having the same timing as a result of assigning the timing, the timing of acquiring sensing data is adjusted by increasing or decreasing the timing of the sensor node having a long sensing cycle. This prevents the timing from overlapping.
  • Patent Document 2 describes a technique for preventing data acquisition timing from overlapping in a mobile communication system including a base station and a plurality of mobile stations.
  • a base station determines priority for each packet data, assigns a channel to each of a plurality of mobile stations, and receives packet data transmitted by each of the plurality of mobile stations based on the assigned channel.
  • the priority is determined by, for example, the communication quality of the transmission path, and the base station assigns a longer channel earlier to a packet with a higher priority.
  • a system may be configured such that each of a plurality of sensor modules connected to the server device via the network transmits data to the server device at the same transmission time interval. That is, in each sensor module, the timing for energizing the communication unit is set to the same time interval.
  • the mutual relationship between the transmission timings of the sensor modules having the same transmission time interval is determined by the time when the power switch of each sensor module is turned on. This is because the timer is operated from the power switch time and data is transmitted every time the transmission time interval elapses.
  • the transmission time interval is, for example, 60 seconds
  • the transmission timing of the sensor module B in which the power switch is turned on 60 seconds after the power switch of the sensor module A is turned on also overlaps.
  • FIG. 22 shows that the server apparatus has received data from six sensor modules SM-1 to SM-6, each of which is set to a transmission time interval of 60 seconds when the power switch is turned on at random. The reception timing is shown. In FIG. 22, the time point when the server apparatus starts receiving data transmitted from the sensor module SM-3 is used as a base point.
  • the data transmitted by the sensor module SM-2 collides with the data transmitted by the sensor module SM-6. Further, the data transmitted by the sensor module SM-5 and the data transmitted by the sensor module SM-1 also collide.
  • the transmission timing is also maintained for the next transmission cycle. In other words, the collided data always remain collided.
  • Patent Document 1 the technique described in Patent Document 1 is based on the premise that data is transmitted with the same transmission time interval as the sensing period, and the transmission timing is adjusted by paying attention to the difference in the sensing period. Therefore, regardless of the sensing cycle, it is not appropriate as an adjustment method when the transmission timing overlaps at the timing when the power switch of the sensor module is turned on.
  • the mobile station must always wait for a message in order to obtain permission for transmission from the base station. Therefore, when this technique is applied to a sensor network, the timing for energizing the wireless unit in each sensor module is set at a fixed interval, and data is transmitted to and received from the server device only at the timing for energizing the wireless unit. This is incompatible with attempts to reduce power consumption, and there is a problem that the battery life of the sensor module cannot be extended.
  • the present invention has been made in view of the above problems, and its purpose is based on the premise that each of the plurality of sensor modules transmits data to the server device at the same transmission time interval. It is to provide an information processing apparatus, a sensor system, a program, and a recording medium that can adjust the data transmission timing and suppress the occurrence of collision between data.
  • an information processing apparatus of the present invention is connected to a plurality of sensor modules that transmit data obtained by measurement to the outside via a network, and communicates with the plurality of sensor modules to obtain data.
  • An information processing apparatus for collecting wherein each of the plurality of sensor modules has an equal transmission time interval for transmitting data, and receives data when communicating with the plurality of sensor modules.
  • Reception time storage means for storing the time and identification information of the sensor module that transmitted the data in the storage unit at least for the time of the transmission time interval, and the reception read from the storage unit for each of the plurality of sensor modules A transmission timing for setting a transmission timing for transmitting data based on the time and identification information and the transmission time interval.
  • the transmission timing setting means divides the time of the transmission time interval into a plurality of equally allocated times based on the number of the plurality of sensor modules, and one sensor module within the allocated time. A transmission timing is set for each of the plurality of sensor modules so that data transmission is performed.
  • the reception time storage means communicates with a plurality of sensor modules
  • the reception time when the data is received and the identification information of the sensor module that transmits the data correspond to at least the transmission time interval.
  • the amount of time to be stored is stored in the storage unit.
  • the transmission timing means sets a transmission timing for transmitting data based on the reception time and identification information read from the storage unit and the transmission time interval for each of the plurality of sensor modules.
  • the transmission timing setting means divides the time of the transmission time interval into a plurality of equally allocated times based on the number of the plurality of sensor modules, and transmits data of one sensor module within the allocated time.
  • the transmission timing is set for each of the plurality of sensor modules.
  • the data transmission timing of each sensor module is evenly distributed within the transmission time interval. The occurrence of a collision can be suppressed. Therefore, it is possible to reduce the power consumption of the sensor module due to the re-transmission of the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission in the server device due to retransmission of measurement data.
  • FIG. 4 is a flowchart illustrating a flow of basic processing in the sensor module according to the first embodiment.
  • 3 is a flowchart illustrating a flow of measurement processing in the sensor module according to the first embodiment.
  • 4 is a flowchart illustrating a flow of each data transmission / message reception process of the server device and the sensor module according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a transmission offset value calculation process in the server device according to the first embodiment.
  • 6 is a flowchart illustrating a flow of transmission offset correction processing in the server device according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a transmission offset reservation process to a setting management table in the server device according to the first embodiment.
  • Both (a) and (b) explain the results of measuring and comparing the number of missing data, the number of retransmissions, and power consumption before and after optimization of transmission timing by the server device according to the first embodiment.
  • It is a drawing. It is explanatory drawing which shows the image implemented in the server apparatus which concerns on Embodiment 2 of this invention, and optimizes a transmission timing.
  • It is a block diagram which shows an example of a structure of the sensor module and server apparatus which concern on Embodiment 2 of this invention.
  • FIG. 14 is a flowchart illustrating a flow of a transmission offset value calculation process in the server device according to the third embodiment.
  • 14 is a flowchart illustrating a flow of transmission time interval change processing in the server device according to the third embodiment. It is drawing explaining the state which the measurement data transmitted from the several sensor module by which the transmission time interval was set to the same is transmitted at each timing, and is colliding at the time of reception in a server apparatus.
  • FIG. 2 is a diagram illustrating an example of the overall outline of the data processing system according to the first embodiment of the present invention.
  • the data processing system (sensor system) 1 includes a server apparatus 200 as an information processing apparatus and a plurality of sensor modules 100.
  • the server device 200 is connected to each of the plurality of sensor modules 100 via a network, and the server device 200 and the plurality of sensor modules 100 constitute a sensor network.
  • the communication between the server apparatus 200 and the plurality of sensor modules 100 via a network may use a wireless line or a wired line.
  • a wireless line is used will be described as an example.
  • Each of the plurality of sensor modules 100 is also referred to as a sensor node, which is a small device having a sensor function for measuring a measurement target, a function for storing and processing measured data, a wireless function, a power supply function, and the like.
  • Examples of the sensor that realizes the sensor function include physical sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, a flow sensor, a pressure sensor, a ground temperature sensor, and a particle sensor, a CO 2 sensor, a pH sensor, an EC sensor, and soil.
  • There are chemical sensors such as moisture sensors.
  • Each of the plurality of sensor modules 100 measures and stores data at a set measurement time interval, and transmits the measured data (hereinafter referred to as measurement data) to the server device 200 collectively at a set transmission time interval. To do.
  • the timing at which the measurement data is transmitted to the server device between different sensor modules overlaps, and there is a possibility that measurement data may collide.
  • the number of connected sensor modules is large, or when the transmission time interval of each sensor module is short, a collision is more likely to occur.
  • the sensor module when a measurement data collision occurs, the sensor module retransmits the measurement data. Such retransmission may cause a delay in the measurement data collection of the server device, It may cause the collection to become impossible.
  • re-transmission of measurement data causes a decrease in battery life of the sensor module.
  • transmission time interval is unified in each of the plurality of sensor modules and all the sensor modules are set to transmit data to the server device at the same transmission time interval
  • transmission between the sensor modules is performed.
  • the interrelationship of timing is determined by the time when the power switch of each sensor module is turned on. For this reason, the transmission timing is maintained regardless of the transmission cycle, so that the collided data always remain in collision. Therefore, it is necessary to adjust so that the transmission timing does not overlap.
  • the server device 200 transmits at least the reception time when data is received and the sensor ID (identification information) of the sensor module that transmitted the data when communicating with the plurality of sensor modules 100.
  • a time corresponding to the time interval is acquired, and for each of the plurality of sensor modules 100, a transmission timing for transmitting measurement data is set based on the acquired reception time, sensor ID, and transmission time interval. .
  • the time of the transmission time interval is divided into a plurality of equal allocation times, and data transmission of one sensor module 100 is performed within the allocation time.
  • the transmission timing is set for each of the plurality of sensor modules 100.
  • the time of the transmission time interval is divided into a plurality of equal shift times (same as the allocated time), and each of the plurality of sensor modules 100 is equal to the shift time.
  • the transmission timing is set for each of the plurality of sensor modules 100 so that data transmission is performed in order while shifting by a certain amount.
  • processing for setting (adjusting) transmission timing in this way is expressed as optimization of transmission timing.
  • the server apparatus 200 optimizes the transmission timing for the six sensor modules SM-1 to SM-6 set at a transmission time interval of 60 seconds when the power switch is randomly turned on. Show the image.
  • FIG. 3 shows the timing of data reception for four transmission periods, with the point of starting reception of data transmitted from the sensor module SM-3 as the base point of one transmission period (one transmission time interval).
  • the server device 200 acquires data from each sensor module and simultaneously acquires and stores the sensor ID and the reception time for 60 seconds in the first round. From the acquired number of sensor IDs, the number of sensor modules connected to the server device 200 is known.
  • the server apparatus 200 notifies the transmission timing set for each sensor module immediately after receiving the data from the sensor modules SM-1 to SM-6 in the second round for 60 seconds.
  • the server device 200 divides the transmission time interval of 60 seconds by the number of sensor modules (6), and calculates an allocation time to be allocated to one sensor module. Based on the allocated time and each reception time information, the transmission timings of the sensor modules SM-1 to SM-6 are set so that data transmission of one sensor module is performed within the allocated time. Each of the set transmission timings is notified to each of the sensor modules SM-1 to SM-6.
  • the sensor modules SM-1 to SM-6 are configured to operate the timer from the time when each power switch is turned on and transmit the measurement data every time the transmission time interval elapses. . Therefore, the server device sets a transmission offset value (offset value) that is a waiting time until the next measurement data is transmitted for each of the plurality of sensor modules, thereby transmitting each of the plurality of sensor modules. Set the timing. Each of the sensor modules SM-1 to SM-6 is notified of this transmission offset value.
  • the transmission offset value “45” is notified to the sensor module SM-2 so as to be delayed by 45 seconds.
  • the sensor module SM-6 is notified of the transmission offset value “50” so as to be delayed by 50 seconds.
  • the sensor module SM-5 is notified of the transmission offset value “55” so as to be delayed by 55 seconds.
  • the sensor module SM-4 is notified of the transmission offset value “5” so as to be delayed by 5 seconds.
  • Sensor modules SM-2, SM-6, and SM-5 for which delays of 45 seconds, 50 seconds, and 55 seconds are instructed do not transmit measurement data.
  • each of the sensor modules SM-1 to SM-6 transmits data at the optimized transmission timing.
  • the sensor module SM-2 for which a delay of 45 seconds is instructed is delayed 105 seconds after the transmission timing before the optimization for the second round of optimization (60 seconds for the third round and 45 seconds for the delay instruction).
  • the sensor module SM-4 for which a delay of 5 seconds has been instructed is delayed 65 seconds after the transmission timing before optimization for the second round of optimization (total of 60 seconds for the third round and 5 seconds for the delay instruction).
  • the next measurement data is transmitted.
  • the sensor modules SM-1 to SM-6 transmit measurement data at intervals of 60 seconds at the same timing as the fourth round.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the sensor module 100 and the server device 200. First, the configuration of the sensor module 100 will be described.
  • the sensor module 100 includes a sensor control unit 101 that controls the entire sensor module 100, a power supply unit 102, a sensor unit 103, a sensor communication unit 104, a measurement data storage unit 105, and an input.
  • Unit 106 and operation setting parameter storage unit 107 are included in the sensor module 100.
  • the input unit 106 enables various information such as setting information to be input to the sensor module 100.
  • the transmission time interval of the sensor module 100 and the measurement time interval can be set using the input unit 106.
  • the power supply unit 102 is a power supply for driving the sensor module 100, and is a replaceable battery in the present embodiment.
  • the power supply unit 102 is not limited to a battery in the present invention, and may be a commercial power supply.
  • the sensor unit 103 measures a measurement target and thereby generates measurement data.
  • the sensor unit 103 stores the generated measurement data in the measurement data storage unit 105.
  • the measurement data includes measurement date / time information indicating the date / time measured by the sensor unit 103.
  • the measurement timing at which the sensor unit 103 generates measurement data is determined by the sensor control unit 101.
  • the sensor communication unit 104 communicates with an external device using a communication protocol such as TCP or UDP using a wireless line.
  • the sensor communication unit 104 transmits / receives data to / from an external device connected via a wireless line in accordance with an instruction from the sensor control unit 101.
  • the sensor communication unit 104 transmits the measurement data stored in the measurement data storage unit 105 to the server device 200 that is an external device.
  • the sensor control unit 101 determines the transmission timing at which the sensor communication unit 104 transmits measurement data.
  • the server 200 When the server 200 receives the measurement data, the server 200 is configured to transmit a signal (reception completion message) indicating that the data has been received to the sensor module 100, here, an ACK signal.
  • the sensor communication unit 104 also receives the ACK signal transmitted from the server device 200. By receiving the ACK signal, the sensor module 100 recognizes that the server device 200 has successfully received the data.
  • the sensor communication unit 104 receives a setting change message including a transmission offset value transmitted from the server device 200.
  • the sensor communication unit 104 stores the received transmission offset value in the operation setting parameter storage unit 107 and sets a flag indicating that the setting change is reserved in the operation setting parameter storage unit 107. Stand in the area.
  • the operation setting parameter storage unit 107 stores various parameters necessary for setting the operation of the sensor module 100, such as a transmission time interval, a transmission offset value, a measurement time interval, and whether there is a setting change reservation.
  • the sensor control unit 101 controls the entire sensor module 100, and an HDD or ROM that stores a program executed by the sensor control unit 101 or data necessary for executing the program. , RAM and the like and a CPU. Hereinafter, functions of the sensor control unit 101 will be described.
  • the sensor control unit 101 includes a measurement management unit 111 and a sensor communication control unit 112 as functional blocks.
  • the measurement management unit 111 manages the operation of the sensor unit 103 in the sensor module 100.
  • the measurement management unit 111 reads the measurement time interval stored in the operation setting parameter storage unit 107, energizes the sensor unit 103 via the power supply unit 102 for each measurement time interval, measures the data, and measures the measurement data. Is generated.
  • the sensor communication control unit 112 controls the communication with the server device 200 by controlling the sensor communication unit 104.
  • the sensor communication control unit 112 reads the transmission time interval stored in the operation setting parameter storage unit 107, and energizes the sensor communication unit 104 via the power supply unit 102 at each transmission time interval to transmit measurement data. .
  • the sensor communication control unit 112 reads the stored transmission offset value, and the next measurement data Transmission is delayed by the time of the transmission offset value. That is, when the flag is set, the measurement data transmission interval is adjusted by delaying the data transmission once, and thereafter, the data is transmitted according to the set transmission time interval.
  • the measurement time interval and the transmission time interval are independent.
  • the transmission time interval may be greater than or less than the measurement time interval.
  • the transmission time interval is set shorter than the measurement time interval.
  • measurement data is not accumulated and is not transmitted, but it is possible to transmit the state of the sensor module to the server device.
  • the measurement time interval and the transmission time interval are assumed to be different.
  • the server device 200 includes a server control unit 201 that controls the entire server device 200, a server communication unit 202, an operation setting parameter storage unit 203, and a measurement data history storage unit 204.
  • the server communication unit 202 communicates with an external device using a communication protocol such as TCP or UDP using a wireless line.
  • the server communication unit 202 transmits and receives data to and from an external device connected via a wireless line in accordance with an instruction from the server control unit 201.
  • the server communication unit 202 receives measurement data transmitted from the sensor module 100 which is an external device.
  • the server communication unit 202 stores the received measurement data in the measurement data history storage unit 204 with a measurement data ID that is identification information of the measurement data.
  • a measurement data DB in which measurement data is accumulated and a reception time management DB in which reception times are accumulated in association with sensor IDs each time measurement data is received are constructed.
  • FIG. 4 shows an example of the reception time management DB. Each time measurement data is received, the reception time, the measurement data ID for referring to the received measurement data, and the sensor ID of the sensor module 100 that is the transmission destination of the received measurement data are accumulated.
  • the server communication unit 202 when receiving the measurement data, the server communication unit 202 sends a signal (reception completion message) indicating that the data has been received to the sensor module 100 that is the transmission source of the measurement data.
  • a signal reception completion message
  • An ACK signal is transmitted.
  • the server communication unit 202 transmits a setting change message including a transmission offset value to the corresponding sensor module 100 in accordance with a setting management table (see FIG. 8) described later stored in the operation setting parameter storage unit 203. To do.
  • the sensor module 100 sets a flag indicating that the setting change is reserved as described above, and delays transmission of the next measurement data by the time of the transmission offset value.
  • the operation setting parameter storage unit 203 stores various tables and setting values necessary for calculating such a transmission offset value, including a setting management table (see FIG. 8).
  • the operation setting parameter storage unit 203 includes a sensor reception time management table (created or used by the server communication control unit 208, the transmission timing setting unit 205, and the change detection unit 209 of the server control unit 201). 5), a sensor ID table (see FIG. 6), a setting management table (see FIG. 8), a transmission time interval, and an existence determination time are stored.
  • the transmission time interval stored in the operation setting parameter storage unit 203 is a unified transmission time interval of a plurality of sensor modules 100 connected to the server device 200.
  • the transmission time interval is 60 seconds. Is illustrated.
  • the presence determination time stored in the operation setting parameter storage unit 203 is a time used to determine the presence of the sensor module 100 connected to the server device 200.
  • the time size of a sensor reception time management table (see FIG. 5) to be described later is determined by this existence determination time.
  • the existence determination time is the transmission time interval that is the minimum size.
  • the sensor connected to the server device 200 is specified by identifying the sensor module 100 that has received the measurement data at least for the transmission time interval. Module 100 can be identified.
  • the presence determination time and the transmission time interval are input using an input unit (not shown).
  • the server control unit 201 controls the entire server device 200.
  • the server control unit 201 stores a program executed by the server control unit 201 or data necessary for executing the program, such as an HDD or a ROM. It is composed of a RAM or the like and a CPU.
  • functions of the server control unit 201 will be described.
  • the server control unit 201 includes a server communication control unit 208, a transmission timing setting unit 205, and a change detection unit 209 as functional blocks.
  • the server communication control unit (reception time storage unit) 208 controls the sensor communication unit 204 to control the overall communication with the server device 200.
  • the server communication control unit 208 accumulates the received measurement data in the measurement data history storage unit 204 with the measurement data ID and stores the measurement data in the measurement data DB.
  • the reception time is stored in the reception time management DB in association with the measurement data ID and sensor ID.
  • the server communication control unit 208 reads out the sensor ID from which the measurement data is transmitted within the presence determination time and the reception time from the reception time management DB constructed in the measurement data history storage unit 204, and the result is shown in FIG. A sensor reception time management table is created.
  • the server communication control unit 208 updates the sensor reception time management table every time it receives measurement data by communicating with one sensor module 100, and always manages the latest reception history.
  • the server management unit 208 stores the setting management stored in the operation setting parameter storage unit 203.
  • a setting change message including a transmission offset value is transmitted to the corresponding sensor module 100 according to the table (see FIG. 8).
  • the transmission timing setting unit (transmission timing setting means) 205 refers to the sensor reception time management table for each of the plurality of sensor modules 100, and receives at least the reception time and sensor ID information corresponding to the transmission time interval. Then, based on the unified transmission time interval set in the plurality of sensor modules 100, the optimization for setting the transmission timing for transmitting the measurement data is performed.
  • the transmission timing setting unit 205 obtains an allocation time allocated to one sensor module 100, and sets the transmission timing for each of the plurality of sensor modules 100 so that data transmission of one sensor module 100 is performed within the allocation time. It is to set.
  • the transmission timing setting unit 205 includes an allocation time calculation unit (first allocation time calculation unit) 206 and a transmission offset value calculation unit 207.
  • the allocated time calculation unit 206 refers to the sensor reception time management table, determines the number of connected sensor modules 100 based on the number of sensor IDs, and divides the transmission time interval by the number of sensor modules 100 determined. Calculate the allocation time.
  • the transmission offset value calculation unit 207 refers to the sensor reception time management table, acquires the reception time of each sensor module 100, and within the allocated time based on the allocation time calculated by the allocation time calculation unit 206. A transmission offset value that is a waiting time until the next measurement data is transmitted is calculated for each of the plurality of sensor modules 100 so that data transmission of one sensor module 100 is performed.
  • the transmission timing setting unit 205 sets the transmission timing for each of the plurality of sensor modules 100 by setting the offset value calculated by the transmission offset value calculation unit 207, and optimizes the transmission timing. .
  • the transmission offset value calculated by the transmission timing setting unit 205 is stored in the setting management table in association with the sensor ID as shown in FIG.
  • FIG. 8 shows a setting management table created for the six sensor modules SM-1 to SM-6 whose image of optimization is shown in FIG.
  • Sensor ID: “1”, “2”, “3”, “4”, “5”, “6” are sensor modules SM-1, SM-2, SM-3, SM-4, SM-5, SM Corresponds to -6.
  • the sensor modules with sensor IDs “7”, “8”, “9”, and “10” are sensor modules that have already been disconnected from the server device 200.
  • the setting change reservation in the setting management table is changed from “1” with reservation to “2” without reservation when a setting change message is transmitted from the server communication unit 202, and the transmission offset value is also set to zero. Returned.
  • FIG. 7 shows sensor reception time data accumulated in the reception time management DB for four cycles whose optimization image is shown in FIG. At the timing indicated by arrow A, an interruption for optimization of transmission timing is instructed.
  • the transmission timing is optimized from the next sensor module SM-2 as the reference of the sensor module SM-3 of the sensor ID “3” that has received the measurement data after the timing indicated by the arrow A.
  • measurement data is transmitted from the sensor module 100 that has received the message with a delay corresponding to the transmission time interval + the transmission offset value immediately after that. Thereafter, as usual, the measurement data is sent after a transmission time interval.
  • the transmission timing setting unit 205 is connected when the allocated time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100.
  • a plurality of sensor modules 100 are grouped as a group of N (positive integers), which is a value obtained by dividing the transmission time interval by the unit time, and for each sensor module 100 in the group, the unit time For the fractional sensor module 100, the allocation time is determined according to the number of the fractional sensor modules 100, and the transmission timing is set based on the allocation time. Yes.
  • the change detection unit 209 extracts the sensor ID based on the sensor reception time management table and creates the sensor ID table shown in FIG.
  • the change detection unit 209 detects whether the sensor module 100 has been changed based on the sensor ID table.
  • the transmission timing setting unit 205 optimizes the transmission timing for each of the sensor modules 100 when the transmission timing optimization is instructed and when the change detection unit 209 detects a change.
  • FIG. 9 is a flowchart showing the flow of basic processing in the sensor module 100. As shown in FIG. 9, the sensor module 100 performs two processes, a measurement process (S1) and a data transmission / message reception process (S2).
  • S1 measurement process
  • S2 data transmission / message reception process
  • FIG. 10 is a flowchart showing the flow of the measurement process (S11 in FIG. 9) of the sensor module 100.
  • the sensor unit 103 is energized and measured, the measurement data is added to the measurement data storage unit 105, and then the energization to the sensor unit 103 is turned off (S3 to S7).
  • FIG. 11 is a flowchart showing the flow of each data transmission / message reception process of the server apparatus 200 and the sensor module 100.
  • the transmission time interval and presence determination time are input first (S11, S12). This is normally input by the administrator of the server device 200. Thereafter, the process proceeds to S13, and the sensor reception time management table shown in FIG. 5 is updated every time measurement data is received from the sensor module 100.
  • the process proceeds to S14, where it is determined whether the transmission timing optimization is instructed. If there is an instruction, the process proceeds to S16. On the other hand, if there is no instruction, the process proceeds to S15, and it is determined whether or not a change in the sensor module 100 to which the change detection unit 209 is connected is detected based on the sensor ID table shown in FIG. If the change detection unit 209 detects a change in the sensor module 100, the process also proceeds to S16. The processes in S13 to S15 are repeated until “YES” is determined in S14 or S15.
  • the sensor ID table is updated based on the sensor ID included in the sensor reception time management table.
  • the transmission timing setting unit 205 refers to the sensor reception time management table, calculates a transmission offset value for optimizing the transmission timing for each sensor module 100 registered in the table, and FIG.
  • the transmission offset value calculation process for updating the setting management table shown in FIG. The transmission offset value calculation process in S17 will be described later using the flowchart of the subroutine in FIG.
  • the setting management table shown in FIG. 8 is referred to the sensor module 100 that is the transmission source of the measurement data received in S18. It is then determined whether or not a setting change reservation has been made (S19).
  • the process proceeds to S21, and a normal reception completion message is transmitted. If there is a setting change reservation, the process proceeds to S20, and a setting change message is transmitted together with a normal reception completion message. After transmitting the setting change message, the process proceeds to S22 and S23, and the setting change reservation for the sensor module 100 that has transmitted the change setting message in S20 in the setting management table shown in FIG.
  • the processes from S14 to S17 and the processes from S13 and S18 to S24 operate in separate threads. That is, even if the process of S24 is not completed, the process proceeds to S14 when the sensor reception management table is updated in S13.
  • the transmission offset value calculation process of S17 even if the setting change reservation is entered for the sensor ID 15, and the transmission of the setting change reservation message in S20 has not yet been completed, If the reception time management table is updated and the optimization process is started, the transmission offset value is recalculated in S17. Therefore, the transmission offset value calculated one time before is not notified to the sensor module of the sensor ID 15 and is recalculated.
  • the transmission offset value is reserved.
  • the sensor communication unit 104 when the measurement data transmission time comes (S31), the sensor communication unit 104 is energized (S32), and the measurement data is transmitted (S33). Thereafter, when a message from the server device 200 is received in S34, the energization to the sensor communication unit 104 is turned off (S35).
  • the process proceeds to S36, and the measurement data transmitted to the server apparatus 200 in S33 in the measurement data storage unit 105 is deleted. Then, it is determined whether or not a setting change message has been received from the server device 200 (S37). If not received, the process proceeds to S40, and a “transmission time interval” is set as a waiting time until the next data transmission. Then, the process proceeds to S39.
  • the number of connected sensor modules 100 is obtained from the sensor reception time management table, and the number of groups is calculated.
  • the number of groups is obtained by “number of sensor IDs / transmission time interval”. That is, the number of sensor IDs is divided by the time of the transmission time interval, and the “quotient” is set as the number of groups (S51). In the example of FIG. 3, since the number of sensor IDs is “6” and the transmission time interval is “60”, the number of groups is zero.
  • the process does not enter the loop 2 of S52 and the loop 3 of S53, and the process proceeds to S61, and the correction time (allocation time) is obtained by dividing the transmission time interval by the number of loops.
  • the loop count (4) of the loop 4 is obtained by “number of sensor IDs% transmission time interval”. That is, the “remainder value” when the number of sensor IDs is divided by the transmission time interval is the number of loops. In the example of FIG. 3, since the number of sensor IDs is “6” and the transmission time interval is “60”, the number of loops (4) is 6. That is, the processing from S62 to S68 is performed six times.
  • the transmission offset value is obtained by “reference time ⁇ latest reception time of processing sensor module + correction value ⁇ (number of loops (4) ⁇ 1)”.
  • S51 when the number of groups becomes 1 or more, the process proceeds to S52, and the processes of S52 to S60 are performed for the number of groups.
  • S53 the processing of S53 to S59 is performed for the number of sensor modules 100 included in one group, which is obtained by dividing the transmission time interval by the unit time for which the sensor module 100 can set the transmission timing.
  • the transmission offset value is compared with the transmission time interval (S71), and if the transmission offset value is larger than the transmission time interval, the process proceeds to S72.
  • the remainder when the transmission offset value is divided by the transmission time interval is set as the corrected transmission offset value.
  • the process proceeds to S73.
  • S73 it is determined whether or not the transmission offset value is 0 or less. If it is 0 or less, the process proceeds to S74.
  • S74 a value obtained by adding the transmission offset value to the transmission time interval and the remainder when the transmission offset value is divided by the transmission time interval is set as a corrected transmission offset value.
  • the transmission offset value calculated in S64 of FIG. 12 is a positive value within the time of the transmission time interval, it is determined as “NO” in S71 and S73, and thus correction is not performed. Return to the main routine.
  • the number of missing data, the number of retransmissions, and power consumption are measured for 64 sensor modules 100 before and after optimization of transmission timing.
  • the comparison result is shown.
  • the transmission time intervals were 60 seconds, 30 seconds, and 20 seconds.
  • the settable unit time of the sensor module 100 used for verification is 1 second.
  • (A) in FIG. 15 is data before optimization.
  • the transmission time interval was 20 seconds
  • data loss occurred in three units.
  • the data loss rate of 2 units was 0.56%
  • the data loss rate of 1 unit was 3.9%.
  • as many as six retransmissions occur at a transmission time interval of 20 seconds.
  • (B) in FIG. 15 is the data after optimization. Even if the transmission time interval was 20 seconds, the number of data loss was 0. Further, as can be seen from comparison of the number of retransmissions, it is extremely reduced even in 20 seconds, and it can be seen that collision of measurement data is effectively avoided. By reducing the number of retransmissions, the transmission time interval of 20 seconds can be reduced by 6.1% compared to the state before optimization.
  • the transmission timing of the measurement data of each sensor module 100 can be evenly distributed within the transmission time interval, and the occurrence of collision between the data can be suppressed. It is possible to reduce the power consumption of the sensor module 100 by retransmitting the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission of the server apparatus 200 due to retransmission of measurement data.
  • the server device 200 refers to the sensor reception time management table, calculates an allocated time according to the number of sensor modules 100 that are actually connected, and includes one sensor module 100 within the allocated time. The transmission timing was set so that data transmission was performed.
  • the allocated time is calculated by adding the number of sensor modules that are actually connected to the number of sensor modules that are actually connected, and among the plurality of sensor modules that are actually connected,
  • the transmission timing is set so that data transmission of a fictitious sensor module is performed before and after data transmission of a predetermined sensor module.
  • the transmission timing of the imaginary sensor module is arranged before and after the sensor module SM-6 corresponding to the predetermined sensor module, and the front and rear of the sensor module SM-6 are widely secured. Do not overlap with the measurement data.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the server device 200A and the sensor module 100A according to the present embodiment.
  • the difference between the sensor module 100A and the sensor module 100 is that the sensor module 100A includes a reproduction number counting unit 113 that counts the number of retransmissions that is the number of retransmission processes, and the sensor communication unit 104 includes the reproduction number counting unit 113 together with the measurement data. This is the point to transmit the count value.
  • the server device 200A has a transmission timing setting unit 205A capable of setting a transmission timing in consideration of an aerial sensor module, and a preferential sensor designating unit 210. Is a point.
  • the transmission timing setting unit 205A replaces the allocation time calculation unit 206 with an allocation time calculation unit (second allocation time) that calculates the allocation time by adding the number of imaginary sensor modules to the number of connected sensor modules 100A. (Calculation means) 206A.
  • the transmission timing setting unit 205A replaces the transmission offset value calculation unit 207 with the data of the imaginary sensor module before and after data transmission of the sensor module 100A that should be spaced apart from each other among the plurality of sensor modules 100A.
  • a transmission offset value calculation unit 207A that calculates a transmission offset value for each sensor module 100A is provided so that transmission is performed.
  • the transmission offset value calculation unit 207A determines, based on the information on the number of retransmissions acquired together with the measurement data, the sensor module 100A in which the number of retransmissions exceeds the threshold as the sensor module 100A that should have the above-described interval.
  • the sensor module 100A that should have such a front-rear interval is referred to as a preferential sensor module.
  • the preferential sensor specification unit 210 enables arbitrary setting of the preferential sensor module 100A.
  • the preferential sensor designation unit 210 recognizes the sensor module 100A of the sensor ID input by the user as the preferential sensor module 100A, and transmits the sensor ID to the transmission offset value calculation unit 207A.
  • the allocated time calculation unit 206A sets the number of fictitious sensor modules according to the number of sensor modules 100A that are preferentially treated. If the number of preferentially treated sensor modules 100A is 1, the number of aerial sensor modules is 2 in order to make a space before and after that. That is, the number of aerial sensor modules is twice the number of preferential sensor modules 100A.
  • the server device 200A it is possible to reliably collect important data by designating the sensor module 100A measuring important data with the preferential sensor designating unit 210.
  • the sensor module 100A that is likely to be retransmitted is also identified as the preferential sensor module 100A and a wide interval is secured, so the number of retransmissions is reduced, and the sensor module The battery life of 100A can be improved.
  • the sensor module has the same configuration as the sensor module 100 of the first embodiment, and the server device 200B refers to the reception time management DB table to It is good also as a structure provided with the deviation
  • the transmission timing setting unit 205B included in the server device 200B secures a wide interval before and after the sensor module 100 with the deviation amount exceeding the threshold as the preferential sensor module 100 based on the deviation amount detected by the deviation amount detection unit 211. To optimize the transmission timing.
  • the server device 200 when the allocation time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100, the server device 200 is connected to a plurality of connected sensors.
  • the modules 100 are grouped as a group of N (positive integer) values obtained by dividing the transmission time interval by the unit time, and the unit time is transmitted as the allocated time for each sensor module 100 in the group.
  • the timing was set, and for the fractional sensor module 100, the allocation time was determined according to the number of the fractional sensor modules 100, and the transmission timing was set based on the allocation time.
  • the allocated time when the allocated time is smaller than the unit time for which the timing can be set in each of the plurality of sensor modules 100, the allocated time A transmission time interval changing unit 212 that changes the transmission time interval so as to be equal to or longer than the unit time is provided.
  • the transmission time interval changing unit 212 changes the transmission time interval so that the unit time becomes the allocated time.
  • the difference between the server apparatus 200 of the first embodiment and the server apparatus 300 of the present embodiment is that the transmission time interval changing unit 212 is provided, the transmission timing setting unit 305 is implemented by the transmission timing setting unit 205.
  • the grouping, which is performed when the allocation time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100, is not performed.
  • the number of loops is the number of sensor IDs in the sensor reception time management table.
  • a transmission time interval is set even if the transmission offset value is zero. The transmission time interval is notified to all the sensor modules 100.
  • FIG. 21 shows a flowchart of a subroutine for transmission time interval change processing.
  • the transmission time interval is changed to the number of unit time ⁇ sensor ID (S93). That is, when the unit time is 1 second and the number of sensor IDs is 80, the transmission time interval is set to 80 seconds (1 ⁇ 80), and the process returns to S61.
  • S61 to S68 the transmission offset value of each of the 80 sensor modules 100 is calculated so that the measurement data is transmitted to the 80 sensor modules 100 every second which is a unit time.
  • the allocation time is forcibly set to a unit time or more. As described above, by widening the transmission time interval, collision of measurement data can be avoided more effectively, power consumption of the sensor module 100 can be reduced, and the battery life can be extended.
  • each block of the servers 200, 200A, and 200B, particularly the server control unit 201 may be configured by hardware logic, or may be realized by software using a CPU as follows.
  • the server devices 200, 200A, 200B, and 300 include a CPU (central processing unit) that executes a command of a control program that realizes each function, and a ROM that stores the program. (Read only memory), a RAM (random access memory) for expanding the program, a storage device (recording medium) such as a memory for storing the program and various data, and the like.
  • An object of the present invention is to enable the computer program codes (execution format program, intermediate code program, source program) of the server devices 200, 200A, 200B, and 300, which are software for realizing the functions described above, to be read by a computer. This can also be achieved by supplying the recorded recording medium to the server devices 200, 200A, 200B, 300, and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU). .
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • server devices 200, 200A, 200B, and 300 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the information processing apparatus of the present invention is connected to a plurality of sensor modules that transmit data obtained by measurement to the outside via a network, and collects data by communicating with the plurality of sensor modules.
  • Each of the plurality of sensor modules is a processing device, and the transmission time interval for transmitting data is set to be equal, and the reception time and data when the data is received when communicating with the plurality of sensor modules.
  • the reception time storage means for storing the identification information of the sensor module that has transmitted at least the transmission time interval in the storage unit, and the reception time and identification read from the storage unit for each of the plurality of sensor modules
  • Transmission timing setting means for setting a transmission timing for transmitting data based on the information and the transmission time interval
  • the transmission timing setting means divides the time of the transmission time interval into a plurality of equal allocation times based on the number of the plurality of sensor modules, and data transmission of one sensor module is performed within the allocation time. As described above, the transmission timing is set for each of the plurality of sensor modules.
  • the transmission timing setting means further determines the number of sensor modules connected from the identification information, and divides the time of the transmission time interval by the number of sensor modules. It can also be configured to include a first allocation time calculation means for calculating the allocation time.
  • the allocation time corresponding to the number of sensor modules actually connected is calculated, so that the transmission timing of each of the plurality of sensor modules is set with the allocation time calculated in this way.
  • the number of actually connected sensor modules can be evenly distributed.
  • the transmission timing setting means further determines the number of sensor modules connected from the identification information, and determines the time of the transmission time interval of the connected sensor modules.
  • a second allocation time calculating means for calculating the allocation time by dividing the number by the value obtained by adding the number of imaginary sensor modules, and before and after data transmission of a predetermined sensor module of the plurality of sensor modules, The transmission timing may be set for each of the plurality of sensor modules so that the data transmission of the imaginary sensor module is performed.
  • the allocation time is calculated based on the value obtained by adding the number of imaginary sensor modules to the number of sensor modules actually connected, the allocation time is calculated based on the number of sensor modules actually connected. It will be shorter than the appropriate allocation time.
  • the time for the fictitious sensor module secured by shortening the allocation time to transmit data is arranged before and after a predetermined sensor module among the plurality of sensor modules.
  • allocation time of the fictitious sensor module is arranged before and after a predetermined sensor module among the plurality of sensor modules.
  • the data can be more effectively It is possible to more effectively reduce collection leakage and power consumption of the sensor module.
  • the predetermined sensor module can be arbitrarily set, and the transmission timing setting unit may be configured to specify the predetermined sensor module based on the identification information of each sensor module.
  • each of the plurality of sensor modules performs a retransmission process of transmitting the data again when transmission of the data fails, transmits the number of retransmissions that is the number of retransmission processes to the server apparatus together with the data
  • the transmission timing setting means may be configured such that a sensor module whose number of retransmissions exceeds a threshold is the predetermined sensor module based on the acquired number of retransmissions.
  • the reception time of each of the plurality of sensor modules is accumulated and stored in a storage unit, and includes a shift amount detection unit that detects a shift amount of a transmission time interval for each sensor module, and the transmission timing setting unit includes the shift timing setting unit. Based on the amount of deviation detected by the amount detection means, a sensor module in which the amount of deviation exceeds a threshold may be used as the predetermined sensor module.
  • the transmission timing setting means further transmits next measurement data for each of the plurality of sensor modules so that data transmission of one sensor module is performed within the allocated time.
  • the transmission timing is calculated as an offset value that is a waiting time until the next measurement data is transmitted for each of the plurality of sensor modules, the sensor module will transmit the measurement data next time.
  • the transmission timing is changed by simply adding the offset value to this time.
  • the allocation time when the allocation time is smaller than a unit time for which timing can be set in each of the plurality of sensor modules, the allocation time is equal to or more than the unit time.
  • the transmission time interval changing means for changing the transmission time interval is further provided, and the transmission timing setting means is changed by the transmission time interval changing means based on the number of the plurality of sensor modules. It is also possible to divide the time of the transmission time interval into a plurality of equally allocated times and set the transmission timing of each sensor module.
  • the allocation time is forcibly over the unit time.
  • collision of data can be avoided more effectively, the power consumption of the sensor module can be reduced, and the battery life can be extended.
  • the reception time storage means may be configured to update the reception time and identification information every time it communicates with one of the plurality of sensor modules.
  • the information processing apparatus of the present invention further includes a change detection unit that detects that the plurality of sensor modules connected from the identification information read from the storage unit has changed,
  • the transmission timing setting means may be configured to set the transmission timing for each of the sensor modules when a change is detected by the change detection means.
  • the sensor system of the present invention is characterized by including the above information processing apparatus and the plurality of sensors. Even in the above configuration, in the configuration in which each of the plurality of sensor modules transmits data to the server device at the same transmission time interval, the transmission timing of the data of each sensor module is evenly distributed within the transmission time interval, The occurrence of collision between data can be suppressed.
  • the information processing apparatus of the present invention may be realized by a computer.
  • a program that causes the computer to operate the information processing apparatus by operating the computer as the above-described means, and a program for recording the program are recorded.
  • Such computer-readable recording media also fall within the scope of the present invention.
  • the present invention can be used in a sensor system that collects measurement data from a plurality of sensors.

Abstract

A transmission timing setting unit (205) of a server device (200) of the present invention, on the basis of the number of connected sensor modules (100), partitions the amount of time of a transmission time interval into a plurality of uniform assigned amounts of time in order to set the transmission timing for each of the connected plurality of sensor modules (100) so that data transmission for one sensor module (100) is performed within the assigned time.

Description

情報処理装置、センサシステム、プログラム及び記録媒体Information processing apparatus, sensor system, program, and recording medium
 本発明は、複数のセンサモジュールと通信して、各センサモジュールで計測されたデータを受信する情報処理装置であり、複数のセンサモジュールの各々について、データの送信タイミングを設定する情報処理装置に関する。 The present invention relates to an information processing apparatus that communicates with a plurality of sensor modules and receives data measured by each sensor module, and relates to an information processing apparatus that sets data transmission timing for each of the plurality of sensor modules.
 複数のセンサモジュールとサーバ装置(情報処理装置)とがネットワークで接続され、サーバ装置が、複数のセンサモジュール各々より複数のデータを受信してデータを収集するセンサネットワーク技術が知られている。 A sensor network technology is known in which a plurality of sensor modules and a server device (information processing device) are connected via a network, and the server device receives a plurality of data from each of the plurality of sensor modules and collects the data.
 このようなセンサネットワークの構成に求められる要件の一つとして、センサモジュールの電池長寿命化がある。長寿命化を図る手法として、各センサモジュールにおける通信部に通電するタイミングを、一定時間間隔に設定し、通信部を通電するタイミングでサーバ装置と通信して、記憶させていた計測データをまとめて送信する方法がある。 One of the requirements for such a sensor network configuration is to extend the battery life of the sensor module. As a method for extending the service life, the timing of energizing the communication unit in each sensor module is set at a fixed time interval, and the stored measurement data is collected by communicating with the server device at the timing of energizing the communication unit. There is a way to send.
 しかしながら、この方法では各センサモジュールが個々に設定された送信タイミングで、サーバとのデータ送信及び受信を行うため、複数センサとサーバ間で通信するデータ同士の衝突が発生するという課題がある。データ同士の衝突は、接続されるセンサモジュールの数が増えるほど起こりやすくなる。 However, in this method, since each sensor module transmits and receives data with the server at the transmission timing set individually, there is a problem in that collision between data communicated between the plurality of sensors and the server occurs. The collision between data is more likely to occur as the number of connected sensor modules increases.
 データ同士が衝突すると、サーバ装置は、衝突したデータの一部または全てを受信できないことがある。データの受信に失敗すると、サーバ装置は、データ送信元のセンサモジュールに対して受信完了を示すメッセージを送信しない。データ送信元のセンサモジュールは、サーバ装置からのメッセージを受信できないことで、通信に失敗したことを検知し、同じデータを再送信する。データの再送信は、通信が成功するまで、あるいは再送回数が所定回数に達するまで繰り返される。 If the data collide, the server device may not be able to receive some or all of the collided data. If data reception fails, the server device does not transmit a message indicating reception completion to the sensor module that is the data transmission source. The sensor module of the data transmission source detects that the communication has failed because it cannot receive the message from the server device, and retransmits the same data. The data retransmission is repeated until the communication is successful or the number of retransmissions reaches a predetermined number.
 このようなデータの再送信は、サーバ装置の計測データ収集に遅延を発生させたり、必要な計測データの収集をできなくさせたりする原因となる。 Such re-transmission of data may cause a delay in the collection of measurement data of the server device or cause the collection of necessary measurement data to be disabled.
 また、データの再送信は、センサモジュールの電池寿命を低下させる原因にもなる。これは、データを再送信するために、センサモジュールの通信部を再度通電させる必要があるためである。つまり、データ同士の衝突による再送信は、センサネットワークの構成に求められる上記したセンサモジュールの電池長寿命化の要件に逆行するものである。 Also, re-transmission of data may cause a decrease in the battery life of the sensor module. This is because the communication unit of the sensor module needs to be energized again in order to retransmit the data. That is, the retransmission due to the collision of data goes against the requirement for extending the battery life of the sensor module required for the sensor network configuration.
 従来、データ同士の衝突を避けるための技術として、例えば、特許文献1,2がある。 Conventionally, as a technique for avoiding collision between data, for example, there are Patent Documents 1 and 2.
 特許文献1には、複数のセンサノードとゲートウェイ装置とがネットワークを介して接続されており、ゲートウェイ装置が、複数のセンサノードそれぞれに対し、センシングデータを取得するためのタイミングを割り当てる技術が記載されている。 Patent Document 1 describes a technique in which a plurality of sensor nodes and a gateway device are connected via a network, and the gateway device allocates timing for acquiring sensing data to each of the plurality of sensor nodes. ing.
 ゲートウェイ装置は、センシング周期が異なる複数のセンサノードそれぞれに対して、センシングデータを送信するセンシング周期に応じたタイミングを割り当てる。ここで、ゲートウェイ装置は、センシング周期が短いセンサノードに対して優先的にタイミングを決定する。また、タイミングを割り当てた結果、タイミングが同一となるセンサノードが存在する場合、センシング周期が長いセンサノードのタイミングを早くする、または遅くすることにより、センシングデータを取得するタイミングを調整している。これにより、タイミングが重ならないようにしている。 The gateway device assigns a timing corresponding to a sensing cycle for transmitting sensing data to each of a plurality of sensor nodes having different sensing cycles. Here, the gateway apparatus preferentially determines the timing with respect to the sensor node having a short sensing cycle. Further, when there are sensor nodes having the same timing as a result of assigning the timing, the timing of acquiring sensing data is adjusted by increasing or decreasing the timing of the sensor node having a long sensing cycle. This prevents the timing from overlapping.
 また、特許文献2には、基地局と複数の移動局とを含む移動通信システムにおいて、データを取得するタイミングが重ならないようにする技術が記載されている。この移動通信システムにおいて、基地局は、パケットデータ毎に優先度を定め、複数の移動局それぞれにチャネルを割り当て、割り当てられたチャネルに基づいて複数の移動局それぞれが送信するパケットデータを受信する。ここで、優先度は、例えば、伝送路の通信品質により定められ、基地局は、優先度の高いパケットに対して、より早く、より長いチャネルを割り当てる。 Patent Document 2 describes a technique for preventing data acquisition timing from overlapping in a mobile communication system including a base station and a plurality of mobile stations. In this mobile communication system, a base station determines priority for each packet data, assigns a channel to each of a plurality of mobile stations, and receives packet data transmitted by each of the plurality of mobile stations based on the assigned channel. Here, the priority is determined by, for example, the communication quality of the transmission path, and the base station assigns a longer channel earlier to a packet with a higher priority.
日本国公開特許公報「特開2010-220036号公報(2010年9月30日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-220036 (published on September 30, 2010)” 日本国公開特許公報「特開2000-224231号公報(2000年8月11日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2000-224231” (published on August 11, 2000)
 ところで、サンセネットワークにおいて、サーバ装置にネットワークで接続された複数のセンサモジュールそれぞれが、全て同じ送信時間間隔でデータをサーバ装置へと送信するようにシステムを構成することがある。つまり、各センサモジュールにおいて、通信部を通電するタイミングを同じ時間間隔に設定することである。 By the way, in a sanse network, a system may be configured such that each of a plurality of sensor modules connected to the server device via the network transmits data to the server device at the same transmission time interval. That is, in each sensor module, the timing for energizing the communication unit is set to the same time interval.
 このように送信時間間隔が同じに設定された各センサモジュールの送信タイミングの相互関係は、各センサモジュールの電源スイッチを入れた時刻によって決まる。これは、電源スイッチ時刻よりタイマーを作動させて、送信時間間隔が経過する度にデータを送信するためである。送信時間間隔が例えば60秒の場合、センサモジュールAの電源スイッチ投入後60秒後に電源スイッチが投入されたセンサモジュールBも、送信タイミングは重なってしまう。 The mutual relationship between the transmission timings of the sensor modules having the same transmission time interval is determined by the time when the power switch of each sensor module is turned on. This is because the timer is operated from the power switch time and data is transmitted every time the transmission time interval elapses. When the transmission time interval is, for example, 60 seconds, the transmission timing of the sensor module B in which the power switch is turned on 60 seconds after the power switch of the sensor module A is turned on also overlaps.
 図22に、サーバ装置が、無作為に電源スイッチが投入された送信時間間隔60秒に設定されている6個のセンサモジュールSM-1~SM-6からのデータをそれぞれ受信した、2周期分の受信タイミングを示す。図22では、サーバ装置が、センサモジュールSM-3から送信されたデータの受信を開始した時点を基点としている。 FIG. 22 shows that the server apparatus has received data from six sensor modules SM-1 to SM-6, each of which is set to a transmission time interval of 60 seconds when the power switch is turned on at random. The reception timing is shown. In FIG. 22, the time point when the server apparatus starts receiving data transmitted from the sensor module SM-3 is used as a base point.
 図22の例では、センサモジュールSM-2が送信したデータとセンサモジュールSM-6が送信したデータとが衝突している。また、センサモジュールSM-5が送信したデータとセンサモジュールSM-1が送信したデータも衝突している。 In the example of FIG. 22, the data transmitted by the sensor module SM-2 collides with the data transmitted by the sensor module SM-6. Further, the data transmitted by the sensor module SM-5 and the data transmitted by the sensor module SM-1 also collide.
 次の60秒(次の送信周期)のタイミングを見るとわかるように、各センサモジュールSM-1~SM-6は、送信時間間隔が互いに等しいため、送信タイミングは次の送信周期も維持されることとなり、衝突したデータ同士は常に衝突したままとなる。 As can be seen from the timing of the next 60 seconds (next transmission cycle), since the sensor module SM-1 to SM-6 have the same transmission time interval, the transmission timing is also maintained for the next transmission cycle. In other words, the collided data always remain collided.
 そこで、特許文献1,2の技術を用いて、このようなデータ同士の衝突を避けることが考えられる。 Therefore, it is conceivable to avoid such collision between data using the techniques of Patent Documents 1 and 2.
 しかしながら、特許文献1に記載されている技術は、送信時間間隔をセンシング周期と同じにしてデータを送信することを前提としており、センシング周期の違いに着目して送信タイミングを調整するものである。そのため、センシング周期とは関係なく、センサモジュールの電源スイッチを入れたタイミングで送信タイミングが重なっている場合の調整方法としては適切ではない。 However, the technique described in Patent Document 1 is based on the premise that data is transmitted with the same transmission time interval as the sensing period, and the transmission timing is adjusted by paying attention to the difference in the sensing period. Therefore, regardless of the sensing cycle, it is not appropriate as an adjustment method when the transmission timing overlaps at the timing when the power switch of the sensor module is turned on.
 また、特許文献2に記載されている技術では、移動局は、基地局からの送信許可をもらうために、常にメッセージを待ち受ける必要がある。そのため、本手法をセンサネットワークに適用した場合には、各センサモジュールにおける無線部を通電するタイミングを一定間隔に定め、無線部を通電するタイミングにのみサーバ装置との間でデータの送受信を行って消費電力を削減する試みとは相容れず、センサモジュールの電池長寿命化が図れないといった問題がある。 Also, with the technology described in Patent Document 2, the mobile station must always wait for a message in order to obtain permission for transmission from the base station. Therefore, when this technique is applied to a sensor network, the timing for energizing the wireless unit in each sensor module is set at a fixed interval, and data is transmitted to and received from the server device only at the timing for energizing the wireless unit. This is incompatible with attempts to reduce power consumption, and there is a problem that the battery life of the sensor module cannot be extended.
 本発明は、上記課題に鑑みなされたもので、その目的は、複数のセンサモジュールそれぞれが、全て同じ送信時間間隔でデータをサーバ装置へと送信する構成を前提とし、これにおいて、各センサモジュールにおけるデータの送信タイミングを調整して、データ同士の衝突の発生を抑制することができる情報処理装置、センサシステム、プログラム及び記録媒体を提供することである。 The present invention has been made in view of the above problems, and its purpose is based on the premise that each of the plurality of sensor modules transmits data to the server device at the same transmission time interval. It is to provide an information processing apparatus, a sensor system, a program, and a recording medium that can adjust the data transmission timing and suppress the occurrence of collision between data.
 本発明の情報処理装置は、上記課題を解決するために、計測により得られたデータを外部に送信する複数のセンサモジュールとネットワークを介して接続され、上記複数のセンサモジュールと通信してデータを収集する情報処理装置であって、上記複数のセンサモジュールの各々は、データを送信する送信時間間隔が等しく設定されており、上記複数のセンサモジュールと通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールの識別情報とを、少なくとも上記送信時間間隔の時間分、記憶部に記憶する受信時刻記憶手段と、上記複数のセンサモジュールの各々について、上記記憶部から読み出した受信時刻及び識別情報と上記送信時間間隔とに基づいてデータを送信する送信タイミングを設定する送信タイミング設定手段を備え、上記送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定することを特徴としている。 In order to solve the above problems, an information processing apparatus of the present invention is connected to a plurality of sensor modules that transmit data obtained by measurement to the outside via a network, and communicates with the plurality of sensor modules to obtain data. An information processing apparatus for collecting, wherein each of the plurality of sensor modules has an equal transmission time interval for transmitting data, and receives data when communicating with the plurality of sensor modules. Reception time storage means for storing the time and identification information of the sensor module that transmitted the data in the storage unit at least for the time of the transmission time interval, and the reception read from the storage unit for each of the plurality of sensor modules A transmission timing for setting a transmission timing for transmitting data based on the time and identification information and the transmission time interval. The transmission timing setting means divides the time of the transmission time interval into a plurality of equally allocated times based on the number of the plurality of sensor modules, and one sensor module within the allocated time. A transmission timing is set for each of the plurality of sensor modules so that data transmission is performed.
 上記構成によれば、受信時刻記憶手段が、複数のセンサモジュールと通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールの識別情報とを、少なくとも上記送信時間間隔に相当する時間分、記憶部に記憶しておく。少なくとも送信時間間隔分の情報を取得することで、当該サーバ装置に接続されている全てのセンサモジュールを認識することができる。 According to the above configuration, when the reception time storage means communicates with a plurality of sensor modules, the reception time when the data is received and the identification information of the sensor module that transmits the data correspond to at least the transmission time interval. The amount of time to be stored is stored in the storage unit. By acquiring information for at least the transmission time interval, all sensor modules connected to the server device can be recognized.
 送信タイミング手段は、複数のセンサモジュールの各々について、上記記憶部から読み出した受信時刻及び識別情報と上記送信時間間隔とに基づいてデータを送信する送信タイミングを設定する。 The transmission timing means sets a transmission timing for transmitting data based on the reception time and identification information read from the storage unit and the transmission time interval for each of the plurality of sensor modules.
 具体的には、送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定する。 Specifically, the transmission timing setting means divides the time of the transmission time interval into a plurality of equally allocated times based on the number of the plurality of sensor modules, and transmits data of one sensor module within the allocated time. The transmission timing is set for each of the plurality of sensor modules.
 これにより、送信時間間隔内で各センサモジュールのデータの送信タイミングを均等に分散させることが可能となり、データ同士の衝突の発生を抑制することができる。したがって、計測データの再送信による、センサモジュールの消費電力を低減し、電池の長寿命化に貢献することができる。加えて、計測データの再送による、サーバ装置の計測データ収集遅延や、収集漏れも確実に低減することができる。 This makes it possible to evenly distribute the data transmission timing of each sensor module within the transmission time interval, and to suppress the occurrence of collision between the data. Therefore, it is possible to reduce the power consumption of the sensor module due to the re-transmission of the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission in the server device due to retransmission of measurement data.
 本発明は、複数のセンサモジュールそれぞれが、全て同じ送信時間間隔でデータをサーバ装置へと送信する構成において、送信時間間隔内で各センサモジュールのデータの送信タイミングを均等に分散させて、データ同士の衝突の発生を抑制することができる。したがって、計測データの再送信による、センサモジュールの消費電力を低減し、電池の長寿命化に貢献することができる。加えて、計測データの再送による、サーバ装置の計測データ収集遅延や、収集漏れも確実に低減することができる。 According to the present invention, in a configuration in which each of a plurality of sensor modules transmits data to the server device at the same transmission time interval, the data transmission timing of each sensor module is evenly distributed within the transmission time interval. The occurrence of a collision can be suppressed. Therefore, it is possible to reduce the power consumption of the sensor module due to the re-transmission of the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission in the server device due to retransmission of measurement data.
本発明の実施形態1に係るセンサモジュール及びサーバ装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the sensor module and server apparatus which concern on Embodiment 1 of this invention. 本発明の実施形態1におけるデータ処理システムの全体概要の一例を示す図である。It is a figure which shows an example of the whole outline | summary of the data processing system in Embodiment 1 of this invention. 本発明の実施形態1に係るサーバ装置において実施される、送信タイミングを最適化するイメージを示す説明図である。It is explanatory drawing which shows the image implemented in the server apparatus which concerns on Embodiment 1 of this invention, and optimizes a transmission timing. 本発明の実施形態1に係るサーバ装置が構築する受信時刻管理DBの一例を示す図である。It is a figure which shows an example of the reception time management DB which the server apparatus which concerns on Embodiment 1 of this invention builds. 実施形態1に係るサーバ装置が作成するセンサ受信時刻管理テーブルの一例を示す図であるIt is a figure which shows an example of the sensor reception time management table which the server apparatus which concerns on Embodiment 1 produces. 実施形態1に係るサーバ装置が作成するセンサIDテーブルの一例を示す図である。It is a figure which shows an example of the sensor ID table which the server apparatus which concerns on Embodiment 1 produces. 実施形態1に係るサーバ装置が、受信時刻管理DBに蓄積していくセンサ受信時刻データの一例を示す図である。It is a figure which shows an example of the sensor reception time data which the server apparatus which concerns on Embodiment 1 accumulate | stores in reception time management DB. 実施形態1に係るサーバ装置が作成する管理設定テーブルの一例を示す図である。It is a figure which shows an example of the management setting table which the server apparatus which concerns on Embodiment 1 produces. 実施形態1に係るセンサモジュールにおける基本処理の流れを示すフローチャートである。4 is a flowchart illustrating a flow of basic processing in the sensor module according to the first embodiment. 実施形態1に係るセンサモジュールにおける計測処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of measurement processing in the sensor module according to the first embodiment. 実施形態1に係るサーバ装置及びセンサモジュールの各データ送信/メッセージ受信処理の流れを示すフローチャートである。4 is a flowchart illustrating a flow of each data transmission / message reception process of the server device and the sensor module according to the first embodiment. 実施形態1に係るサーバ装置における送信オフセット値算出処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a transmission offset value calculation process in the server device according to the first embodiment. 実施形態1に係るサーバ装置における送信オフセット補正処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of transmission offset correction processing in the server device according to the first embodiment. 実施形態1に係るサーバ装置における設定管理テーブルへの送信オフセット予約処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a transmission offset reservation process to a setting management table in the server device according to the first embodiment. (a)(b)共に、実施形態1に係るサーバ装置による送信タイミングの最適化を行う前と行った後とにおける、データ欠損台数、再送回数、消費電力を測定して比較した結果を説明する図面である。Both (a) and (b) explain the results of measuring and comparing the number of missing data, the number of retransmissions, and power consumption before and after optimization of transmission timing by the server device according to the first embodiment. It is a drawing. 本発明の実施形態2に係るサーバ装置において実施される、送信タイミングを最適化するイメージを示す説明図である。It is explanatory drawing which shows the image implemented in the server apparatus which concerns on Embodiment 2 of this invention, and optimizes a transmission timing. 本発明の実施形態2に係るセンサモジュール及びサーバ装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the sensor module and server apparatus which concern on Embodiment 2 of this invention. 本発明の実施形態2に係る変形例のセンサモジュール及びサーバ装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the sensor module and server apparatus of the modification concerning Embodiment 2 of this invention. 本発明の実施形態3に係るセンサモジュール及びサーバ装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the sensor module and server apparatus which concern on Embodiment 3 of this invention. 実施形態3に係るサーバ装置における送信オフセット値算出処理の流れを示すフローチャートである。14 is a flowchart illustrating a flow of a transmission offset value calculation process in the server device according to the third embodiment. 実施形態3に係るサーバ装置における送信時間間隔変更処理の流れを示すフローチャートである。14 is a flowchart illustrating a flow of transmission time interval change processing in the server device according to the third embodiment. 送信時間間隔が同じに設定された複数のセンサモジュールから送信された計測データが、個々のタイミングで送信されてきて、サーバ装置において受信時に衝突している状態を説明する図面である。It is drawing explaining the state which the measurement data transmitted from the several sensor module by which the transmission time interval was set to the same is transmitted at each timing, and is colliding at the time of reception in a server apparatus.
 〔実施形態1〕
 以下、本発明の実施形態1について図面を参照して説明する。図2は、本発明の実施形態1におけるデータ処理システムの全体概要の一例を示す図である。
[Embodiment 1]
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram illustrating an example of the overall outline of the data processing system according to the first embodiment of the present invention.
 図2に示すように、データ処理システム(センサシステム)1は、情報処理装置としてのサーバ装置200と、複数のセンサモジュール100とを含む。サーバ装置200は、複数のセンサモジュール100それぞれと、ネットワークを介して接続されており、サーバ装置200と複数のセンサモジュール100とで、センサネットワークが構成される。 As shown in FIG. 2, the data processing system (sensor system) 1 includes a server apparatus 200 as an information processing apparatus and a plurality of sensor modules 100. The server device 200 is connected to each of the plurality of sensor modules 100 via a network, and the server device 200 and the plurality of sensor modules 100 constitute a sensor network.
 サーバ装置200と複数のセンサモジュール100との間のネットワークを介した通信は、無線回線を利用してもよいし、有線回線を利用してもよい。ここでは、無線回線を利用する場合を例に説明する。 The communication between the server apparatus 200 and the plurality of sensor modules 100 via a network may use a wireless line or a wired line. Here, a case where a wireless line is used will be described as an example.
 複数のセンサモジュール100それぞれは、計測対象を計測するセンサ機能、計測したデータを記憶したり処理したりする機能、無線機能、電源機能等が実装された小型のデバイスである、センサノードとも称される。 Each of the plurality of sensor modules 100 is also referred to as a sensor node, which is a small device having a sensor function for measuring a measurement target, a function for storing and processing measured data, a wireless function, a power supply function, and the like. The
 上記センサ機能を実現するセンサとしては、例えば、温度センサ、湿度センサ、照度センサ、フローセンサ、圧力センサ、地温センサ、パーティクルセンサ等の物理系センサや、COセンサ、pHセンサ、ECセンサ、土壌水分センサ等の化学系センサがある。 Examples of the sensor that realizes the sensor function include physical sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, a flow sensor, a pressure sensor, a ground temperature sensor, and a particle sensor, a CO 2 sensor, a pH sensor, an EC sensor, and soil. There are chemical sensors such as moisture sensors.
 複数のセンサモジュール100それぞれは、設定された計測時間間隔でデータを計測して記憶し、計測したデータ(以下、計測データと称する)を、設定された送信時間間隔でまとめてサーバ装置200に送信するものである。 Each of the plurality of sensor modules 100 measures and stores data at a set measurement time interval, and transmits the measured data (hereinafter referred to as measurement data) to the server device 200 collectively at a set transmission time interval. To do.
 サーバ装置に複数のセンサモジュールが接続される構成では、異なるセンサモジュール同士で計測データをサーバ装置に送信するタイミングが重なってしまい、計測データの衝突が発生する恐れがある。接続されるセンサモジュールの数が多い場合や、各センサモジュールの送信時間間隔が短い場合は、より衝突が発生しやすい。 In a configuration in which a plurality of sensor modules are connected to the server device, the timing at which the measurement data is transmitted to the server device between different sensor modules overlaps, and there is a possibility that measurement data may collide. When the number of connected sensor modules is large, or when the transmission time interval of each sensor module is short, a collision is more likely to occur.
 前述したように、計測データの衝突が起こると、センサモジュールは、計測データを再送信するが、このような再送信は、サーバ装置の計測データ収集に遅延を発生させたり、必要な計測データの収集をできなくさせたりする原因となる。 As described above, when a measurement data collision occurs, the sensor module retransmits the measurement data. Such retransmission may cause a delay in the measurement data collection of the server device, It may cause the collection to become impossible.
 また、計測データの再送信は、センサモジュールの電池寿命を低下させる原因となる。特に、複数のセンサモジュールそれぞれにおいて送信時間間隔が統一化され、全てのセンサモジュールが同じ送信時間間隔でデータをサーバ装置へと送信するように設定されるシステム構成においては、各センサモジュール間の送信タイミングの相互関係は、各センサモジュールの電源スイッチを投入した時間で決まる。そのため、送信周期に関わりなく送信タイミングは維持されるので、衝突したデータ同士は常に衝突したままとなる。したがって、送信タイミングが重ならないように、調整することが必要である。 Also, re-transmission of measurement data causes a decrease in battery life of the sensor module. In particular, in a system configuration in which the transmission time interval is unified in each of the plurality of sensor modules and all the sensor modules are set to transmit data to the server device at the same transmission time interval, transmission between the sensor modules is performed. The interrelationship of timing is determined by the time when the power switch of each sensor module is turned on. For this reason, the transmission timing is maintained regardless of the transmission cycle, so that the collided data always remain in collision. Therefore, it is necessary to adjust so that the transmission timing does not overlap.
 そこで、本実施形態では、サーバ装置200は、複数のセンサモジュール100と通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールのセンサID(識別情報)とを、少なくとも送信時間間隔に相当する時間分取得し、上記複数のセンサモジュール100の各々について、取得した受信時刻及びセンサIDと送信時間間隔とに基づいて計測データを送信する送信タイミングを設定するようになっている。 Therefore, in the present embodiment, the server device 200 transmits at least the reception time when data is received and the sensor ID (identification information) of the sensor module that transmitted the data when communicating with the plurality of sensor modules 100. A time corresponding to the time interval is acquired, and for each of the plurality of sensor modules 100, a transmission timing for transmitting measurement data is set based on the acquired reception time, sensor ID, and transmission time interval. .
 具体的には、複数のセンサモジュール100の数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュール100のデータ送信が行われるように、上記複数のセンサモジュール100の各々について送信タイミングを設定する。換言すると、複数のセンサモジュール100の数に基づいて、送信時間間隔の時間を複数の均等なずらし時間(割当時間に同じ)に分割し、複数のセンサモジュール100の各々が、ずらし時間の時間分だけずれながら順にデータ送信を行うように上記複数のセンサモジュール100の各々について送信タイミングを設定する。以下、このように送信タイミングを設定する(調整する)処理を、送信タイミングを最適化すると表現する。 Specifically, based on the number of the plurality of sensor modules 100, the time of the transmission time interval is divided into a plurality of equal allocation times, and data transmission of one sensor module 100 is performed within the allocation time. The transmission timing is set for each of the plurality of sensor modules 100. In other words, based on the number of the plurality of sensor modules 100, the time of the transmission time interval is divided into a plurality of equal shift times (same as the allocated time), and each of the plurality of sensor modules 100 is equal to the shift time. The transmission timing is set for each of the plurality of sensor modules 100 so that data transmission is performed in order while shifting by a certain amount. Hereinafter, processing for setting (adjusting) transmission timing in this way is expressed as optimization of transmission timing.
 図3に、サーバ装置200が、無作為に電源スイッチが投入された送信時間間隔60秒に設定されている6個のセンサモジュールSM-1~SM-6に対して、送信タイミングを最適化するイメージを示す。図3は、センサモジュールSM-3から送信されたデータの受信を開始した時点を1送信周期(1送信時間間隔)の基点として、送信周期4周期分のデータ受信のタイミングを示している。 In FIG. 3, the server apparatus 200 optimizes the transmission timing for the six sensor modules SM-1 to SM-6 set at a transmission time interval of 60 seconds when the power switch is randomly turned on. Show the image. FIG. 3 shows the timing of data reception for four transmission periods, with the point of starting reception of data transmitted from the sensor module SM-3 as the base point of one transmission period (one transmission time interval).
 図3に示すように、サーバ装置200は、1周目の60秒間では、各センサモジュールからデータを取得すると共に、同時に、センサIDと受信時刻とを取得し、記憶する。取得したセンサIDの個数より、サーバ装置200に接続されているセンサモジュールの個数が分る。 As shown in FIG. 3, the server device 200 acquires data from each sensor module and simultaneously acquires and stores the sensor ID and the reception time for 60 seconds in the first round. From the acquired number of sensor IDs, the number of sensor modules connected to the server device 200 is known.
 サーバ装置200は、2周目の60秒間で、センサモジュールSM-1~SM-6からのデータを受信した直後に、各センサモジュールに対し、それぞれに設定した送信タイミングを通達する。 The server apparatus 200 notifies the transmission timing set for each sensor module immediately after receiving the data from the sensor modules SM-1 to SM-6 in the second round for 60 seconds.
 ここで、サーバ装置200は、送信時間間隔の60秒をセンサモジュールの個数(6)で割って、1台のセンサモジュールに割り当てる割当時間を算出する。そして、該割当時間と、それぞれの受信時刻情報とに基づいて、割当時間内に1つのセンサモジュールのデータ送信が行われるように、センサモジュールSM-1~SM-6の送信タイミングをそれぞれ設定し、センサモジュールSM-1~SM-6それぞれに、設定した各々の送信タイミングを通達する。 Here, the server device 200 divides the transmission time interval of 60 seconds by the number of sensor modules (6), and calculates an allocation time to be allocated to one sensor module. Based on the allocated time and each reception time information, the transmission timings of the sensor modules SM-1 to SM-6 are set so that data transmission of one sensor module is performed within the allocated time. Each of the set transmission timings is notified to each of the sensor modules SM-1 to SM-6.
 ここで、センサモジュールSM-1~SM-6は、それぞれの電源スイッチが投入された時刻より、タイマーを作動させて、送信時間間隔が経過する度に計測データを送信するように構成されている。したがって、サーバ装置は、上記複数のセンサモジュールの各々について、次回の測定データを送信するまでの待機時間である送信オフセット値(オフセット値)を設定することにより、上記複数のセンサモジュールの各々について送信タイミングを設定する。センサモジュールSM-1~SM-6それぞれには、この送信オフセット値が通達される。 Here, the sensor modules SM-1 to SM-6 are configured to operate the timer from the time when each power switch is turned on and transmit the measurement data every time the transmission time interval elapses. . Therefore, the server device sets a transmission offset value (offset value) that is a waiting time until the next measurement data is transmitted for each of the plurality of sensor modules, thereby transmitting each of the plurality of sensor modules. Set the timing. Each of the sensor modules SM-1 to SM-6 is notified of this transmission offset value.
 図3の例では、センサモジュールSM-2には、45秒遅くするように、送信オフセット値「45」が通達される。センサモジュールSM-6には、50秒遅くするように、送信オフセット値「50」が通達される。センサモジュールSM-5には、55秒遅くするように、送信オフセット値「55」が通達される。センサモジュールSM-4には、5秒遅くするように、送信オフセット値「5」が通達される。 In the example of FIG. 3, the transmission offset value “45” is notified to the sensor module SM-2 so as to be delayed by 45 seconds. The sensor module SM-6 is notified of the transmission offset value “50” so as to be delayed by 50 seconds. The sensor module SM-5 is notified of the transmission offset value “55” so as to be delayed by 55 seconds. The sensor module SM-4 is notified of the transmission offset value “5” so as to be delayed by 5 seconds.
 3周目の60秒間では、送信オフセット値が通達されなかった、センサモジュールSM-3、SM-1、及び5秒のみ遅延が指示されたセンサモジュールSM-4が計測データを送信する。45秒、50秒、55秒の遅延が指示されたセンサモジュールSM-2、SM-6、SM-5は、計測データを送信しない。 In 60 seconds of the third lap, the sensor module SM-3, SM-1, for which the transmission offset value has not been notified, and the sensor module SM-4 instructed to delay only 5 seconds, transmit measurement data. Sensor modules SM-2, SM-6, and SM-5 for which delays of 45 seconds, 50 seconds, and 55 seconds are instructed do not transmit measurement data.
 4周目では、センサモジュールSM-1~SM-6それぞれが、最適化された送信タイミングにてデータを送信する。45秒の遅延が指示されたセンサモジュールSM-2は、最適化を図る2周目の最適化前の送信タイミングから105秒後(3周目の60秒と遅延指示の45秒の合計)遅れて、次の計測データを送信する。5秒の遅延が指示されたセンサモジュールSM-4は、最適化を図る2周目の最適化前の送信タイミングから65秒後(3周目の60秒と遅延指示の5秒の合計)遅れて、次の計測データを送信する。5周目は示していないが、これ以降は、4周目と同じタイミングで、センサモジュールSM-1~SM-6は60秒間隔で計測データを送信する。 In the fourth lap, each of the sensor modules SM-1 to SM-6 transmits data at the optimized transmission timing. The sensor module SM-2 for which a delay of 45 seconds is instructed is delayed 105 seconds after the transmission timing before the optimization for the second round of optimization (60 seconds for the third round and 45 seconds for the delay instruction). Then, the next measurement data is transmitted. The sensor module SM-4 for which a delay of 5 seconds has been instructed is delayed 65 seconds after the transmission timing before optimization for the second round of optimization (total of 60 seconds for the third round and 5 seconds for the delay instruction). Then, the next measurement data is transmitted. Although the fifth round is not shown, the sensor modules SM-1 to SM-6 transmit measurement data at intervals of 60 seconds at the same timing as the fourth round.
 このように、送信時間間隔内で各センサモジュール100の計測データの送信タイミングを均等に分散させることで、データ同士の衝突の発生を抑制することができ、データの再送信による、センサモジュールの電池寿命低下等の問題を解決することができる。 Thus, by uniformly distributing the transmission timing of the measurement data of each sensor module 100 within the transmission time interval, it is possible to suppress the occurrence of collision between the data, and the battery of the sensor module due to data retransmission. Problems such as a reduction in service life can be solved.
 <センサモジュールのハードウェア構成について>
 図1は、センサモジュール100及びサーバ装置200の構成の一例を示すブロック図である。まずは、センサモジュール100の構成より説明する。
<About the hardware configuration of the sensor module>
FIG. 1 is a block diagram illustrating an example of the configuration of the sensor module 100 and the server device 200. First, the configuration of the sensor module 100 will be described.
 図1に示すように、センサモジュール100は、センサモジュール100の全体を制御するセンサ制御部101と、電源部102と、センサ部103と、センサ通信部104と、計測データ記憶部105と、入力部106と、動作設定パラメータ記憶部107とを含む。 As shown in FIG. 1, the sensor module 100 includes a sensor control unit 101 that controls the entire sensor module 100, a power supply unit 102, a sensor unit 103, a sensor communication unit 104, a measurement data storage unit 105, and an input. Unit 106 and operation setting parameter storage unit 107.
 入力部106は、センサモジュール100に対して設定情報等の各種の情報入力を可能にするものである。例えば、入力部106を用いて、センサモジュール100の送信時間間隔や、計測時間間隔の設定が可能である。 The input unit 106 enables various information such as setting information to be input to the sensor module 100. For example, the transmission time interval of the sensor module 100 and the measurement time interval can be set using the input unit 106.
 電源部102は、センサモジュール100を駆動させるための電源であり、本実施形態においては交換可能な電池である。ただし、電源部102は、本発明において電池に限定されるものではなく、商用電源であってもよい。 The power supply unit 102 is a power supply for driving the sensor module 100, and is a replaceable battery in the present embodiment. However, the power supply unit 102 is not limited to a battery in the present invention, and may be a commercial power supply.
 センサ部103は、計測対象を計測し、それにより計測データを生成するものである。センサ部103は、生成した計測データを計測データ記憶部105に記憶させる。計測データには、センサ部103により計測された日時を示す計測日時情報が含まれる。 The sensor unit 103 measures a measurement target and thereby generates measurement data. The sensor unit 103 stores the generated measurement data in the measurement data storage unit 105. The measurement data includes measurement date / time information indicating the date / time measured by the sensor unit 103.
 センサ部103が計測データを生成する計測タイミングは、センサ制御部101にて決定される。 The measurement timing at which the sensor unit 103 generates measurement data is determined by the sensor control unit 101.
 センサ通信部104は、無線回線を利用して、TCPまたはUDP等の通信プロトコルによって外部の機器と通信するものである。センサ通信部104は、センサ制御部101からの指示に従って、無線回線により接続された外部の機器との間でデータを送受信する。 The sensor communication unit 104 communicates with an external device using a communication protocol such as TCP or UDP using a wireless line. The sensor communication unit 104 transmits / receives data to / from an external device connected via a wireless line in accordance with an instruction from the sensor control unit 101.
 センサ通信部104は、外部の機器であるサーバ装置200に対して、計測データ記憶部105に格納されている計測データを送信する。センサ通信部104が、計測データを送信する送信タイミングは、センサ制御部101にて決定される。 The sensor communication unit 104 transmits the measurement data stored in the measurement data storage unit 105 to the server device 200 that is an external device. The sensor control unit 101 determines the transmission timing at which the sensor communication unit 104 transmits measurement data.
 サーバ装置200は、計測データを受信すると、センサモジュール100に対して、当該データを受信したことを示す信号(受信完了メッセージ)、ここではACK信号を送信するように構成されている。センサ通信部104は、このようなサーバ装置200より送信される該ACK信号も受信する。ACK信号を受信することで、センサモジュール100は、サーバ装置200がデータの受信に成功したことを認識する。 When the server 200 receives the measurement data, the server 200 is configured to transmit a signal (reception completion message) indicating that the data has been received to the sensor module 100, here, an ACK signal. The sensor communication unit 104 also receives the ACK signal transmitted from the server device 200. By receiving the ACK signal, the sensor module 100 recognizes that the server device 200 has successfully received the data.
 また、センサ通信部104は、サーバ装置200より送信される、送信オフセット値を含む設定変更メッセージを受信する。センサ通信部104は、設定変更メッセージを受信すると、受信した送信オフセット値を動作設定パラメータ記憶部107に格納すると共に、設定変更が予約されたことを示すフラグを、動作設定パラメータ記憶部107の所定領域に立てる。 Further, the sensor communication unit 104 receives a setting change message including a transmission offset value transmitted from the server device 200. When the sensor communication unit 104 receives the setting change message, the sensor communication unit 104 stores the received transmission offset value in the operation setting parameter storage unit 107 and sets a flag indicating that the setting change is reserved in the operation setting parameter storage unit 107. Stand in the area.
 動作設定パラメータ記憶部107は、送信時間間隔、送信オフセット値、計測時間間隔、設定変更予約の有無、等のセンサモジュール100の動作を設定するのに必要な各種のパラメータを格納するものである。 The operation setting parameter storage unit 107 stores various parameters necessary for setting the operation of the sensor module 100, such as a transmission time interval, a transmission offset value, a measurement time interval, and whether there is a setting change reservation.
 センサ制御部101は、上述したように、センサモジュール100の全体を制御するものであり、センサ制御部101が実行するプログラム、またはそのプログラムを実行するために必要なデータを記憶した、HDDやROM、RAM等と、CPUとで構成される。以下、センサ制御部101の機能について説明する。 As described above, the sensor control unit 101 controls the entire sensor module 100, and an HDD or ROM that stores a program executed by the sensor control unit 101 or data necessary for executing the program. , RAM and the like and a CPU. Hereinafter, functions of the sensor control unit 101 will be described.
 <センサ制御部の機能について>
 センサ制御部101は、機能ブロックとして、計測管理部111と、センサ通信制御部112とを含む。計測管理部111は、センサモジュール100におけるセンサ部103の動作を管理するものである。計測管理部111は、動作設定パラメータ記憶部107に格納されている計測時間間隔を読み出し、計測時間間隔毎に、電源部102を介してセンサ部103に通電を行い、データを計測させ、計測データを生成させる。
<About the function of the sensor control unit>
The sensor control unit 101 includes a measurement management unit 111 and a sensor communication control unit 112 as functional blocks. The measurement management unit 111 manages the operation of the sensor unit 103 in the sensor module 100. The measurement management unit 111 reads the measurement time interval stored in the operation setting parameter storage unit 107, energizes the sensor unit 103 via the power supply unit 102 for each measurement time interval, measures the data, and measures the measurement data. Is generated.
 センサ通信制御部112は、センサ通信部104を制御して、サーバ装置200との通信全般を制御するものである。センサ通信制御部112は、動作設定パラメータ記憶部107に格納されている送信時間間隔を読み出し、送信時間間隔毎に、電源部102を介してセンサ通信部104に通電を行い、計測データを送信させる。 The sensor communication control unit 112 controls the communication with the server device 200 by controlling the sensor communication unit 104. The sensor communication control unit 112 reads the transmission time interval stored in the operation setting parameter storage unit 107, and energizes the sensor communication unit 104 via the power supply unit 102 at each transmission time interval to transmit measurement data. .
 そして、センサ通信制御部112は、動作設定パラメータ記憶部107において、設定変更が予約されたことを示すフラグが立てられている場合は、格納されている送信オフセット値を読み出し、次回の測定データの送信を、送信オフセット値の時間分、遅延させる。つまり、フラグが立てられると、データ送信1回分だけ、測定データを送信する間隔を遅らせて調整し、それ以降は、また、設定されている送信時間間隔に従ってデータを送信する。 When the flag indicating that the setting change is reserved is set in the operation setting parameter storage unit 107, the sensor communication control unit 112 reads the stored transmission offset value, and the next measurement data Transmission is delayed by the time of the transmission offset value. That is, when the flag is set, the measurement data transmission interval is adjusted by delaying the data transmission once, and thereafter, the data is transmitted according to the set transmission time interval.
 本発明において、計測時間間隔と送信時間間隔とは独立している。送信時間間隔は計測時間間隔以上であっても未満であってもよい。例えば、設定変更をより早くセンサモジュールに反映させたい場合は、送信時間間隔は計測時間間隔よりも短く設定される。また、送信時間間隔が計測時間間隔よりも短い場合、計測データは蓄積されていないため送信されないが、センサモジュールの状態等をサーバ装置へ送信することは可能である。以下では、計測時間間隔と送信時間間隔とは異なるものとして説明する。 In the present invention, the measurement time interval and the transmission time interval are independent. The transmission time interval may be greater than or less than the measurement time interval. For example, when the setting change is to be reflected in the sensor module earlier, the transmission time interval is set shorter than the measurement time interval. Further, when the transmission time interval is shorter than the measurement time interval, measurement data is not accumulated and is not transmitted, but it is possible to transmit the state of the sensor module to the server device. In the following description, the measurement time interval and the transmission time interval are assumed to be different.
 <サーバ装置のハードウェア構成について>
 次に、サーバ装置200の構成について説明する。図1に示すように、サーバ装置200は、サーバ装置200の全体を制御するサーバ制御部201と、サーバ通信部202と、動作設定パラメータ記憶部203と、計測データ履歴記憶部204とを含む。
<Hardware configuration of server device>
Next, the configuration of the server device 200 will be described. As illustrated in FIG. 1, the server device 200 includes a server control unit 201 that controls the entire server device 200, a server communication unit 202, an operation setting parameter storage unit 203, and a measurement data history storage unit 204.
 サーバ通信部202は、無線回線を利用して、TCPまたはUDP等の通信プロトコルによって外部の機器と通信するものである。サーバ通信部202は、サーバ制御部201からの指示に従って、無線回線により接続された外部の機器との間でデータを送受信する。 The server communication unit 202 communicates with an external device using a communication protocol such as TCP or UDP using a wireless line. The server communication unit 202 transmits and receives data to and from an external device connected via a wireless line in accordance with an instruction from the server control unit 201.
 サーバ通信部202は、外部の機器であるセンサモジュール100より送信される計測データを受信する。サーバ通信部202は、受信した計測データを、計測データの識別情報である計測データIDを付して、計測データ履歴記憶部204に記憶させる。 The server communication unit 202 receives measurement data transmitted from the sensor module 100 which is an external device. The server communication unit 202 stores the received measurement data in the measurement data history storage unit 204 with a measurement data ID that is identification information of the measurement data.
 計測データ履歴記憶部204には、計測データが蓄積される計測データDB、計測データを受信する毎に、センサIDに対応付けて受信時刻が蓄積される受信時刻管理DBが構築される。 In the measurement data history storage unit 204, a measurement data DB in which measurement data is accumulated and a reception time management DB in which reception times are accumulated in association with sensor IDs each time measurement data is received are constructed.
 図4に、受信時刻管理DBの一例を示す。計測データを受信する度に、受信時刻と、受信した計測データを参照するための計測データID、及び、受信した計測データの送信先となるセンサモジュール100のセンサIDとが、蓄積されていく。 FIG. 4 shows an example of the reception time management DB. Each time measurement data is received, the reception time, the measurement data ID for referring to the received measurement data, and the sensor ID of the sensor module 100 that is the transmission destination of the received measurement data are accumulated.
 また、サーバ通信部202は、上述したように、計測データを受信すると、計測データの送信元であるセンサモジュール100に対して、当該データを受信したことを示す信号(受信完了メッセージ)、ここではACK信号を送信する。 Further, as described above, when receiving the measurement data, the server communication unit 202 sends a signal (reception completion message) indicating that the data has been received to the sensor module 100 that is the transmission source of the measurement data. An ACK signal is transmitted.
 また、サーバ通信部202は、動作設定パラメータ記憶部203に格納されている後述する設定管理テーブル(図8参照)に従い、該当するセンサモジュール100に対して、送信オフセット値を含む設定変更メッセージを送信する。センサモジュール100は、設定変更メッセージを受信することで、上述したように、設定変更が予約されたことを示すフラグを立て、次回の計測データの送信を、送信オフセット値の時間分遅延させる。 Further, the server communication unit 202 transmits a setting change message including a transmission offset value to the corresponding sensor module 100 in accordance with a setting management table (see FIG. 8) described later stored in the operation setting parameter storage unit 203. To do. By receiving the setting change message, the sensor module 100 sets a flag indicating that the setting change is reserved as described above, and delays transmission of the next measurement data by the time of the transmission offset value.
 動作設定パラメータ記憶部203は、設定管理テーブル(図8参照)を始めとして、このような送信オフセット値の算出に必要な各種のテーブル、設定値を記憶するものである。 The operation setting parameter storage unit 203 stores various tables and setting values necessary for calculating such a transmission offset value, including a setting management table (see FIG. 8).
 詳細については後述するが、動作設定パラメータ記憶部203には、サーバ制御部201のサーバ通信制御部208、送信タイミング設定部205、変更検出部209が作成し或いは使用する、センサ受信時刻管理テーブル(図5参照)、センサIDテーブル(図6参照)、設定管理テーブル(図8参照)、送信時間間隔、存在判定時間が記憶されている。 Although details will be described later, the operation setting parameter storage unit 203 includes a sensor reception time management table (created or used by the server communication control unit 208, the transmission timing setting unit 205, and the change detection unit 209 of the server control unit 201). 5), a sensor ID table (see FIG. 6), a setting management table (see FIG. 8), a transmission time interval, and an existence determination time are stored.
 ここで、動作設定パラメータ記憶部203に記憶されている上記送信時間間隔は、当該サーバ装置200に接続される複数のセンサモジュール100の統一化された送信時間間隔であり、本実施形態では60秒を例示している。 Here, the transmission time interval stored in the operation setting parameter storage unit 203 is a unified transmission time interval of a plurality of sensor modules 100 connected to the server device 200. In the present embodiment, the transmission time interval is 60 seconds. Is illustrated.
 また、動作設定パラメータ記憶部203に記憶されている上記存在判定時間は、当該サーバ装置200に接続されるセンサモジュール100の存在を判定するのに使用する時間である。後述するセンサ受信時刻管理テーブル(図5参照)の時間サイズは、この存在判定時間によって決まる。 Further, the presence determination time stored in the operation setting parameter storage unit 203 is a time used to determine the presence of the sensor module 100 connected to the server device 200. The time size of a sensor reception time management table (see FIG. 5) to be described later is determined by this existence determination time.
 本実施形態では、存在判定時間を、その最小サイズである送信時間間隔としている。全てのセンサモジュール100の送信時間間隔が同じに設定されている場合、少なくとも送信時間間隔の時間分に計測データを受け取ったのセンサモジュール100を特定することで、サーバ装置200に接続されているセンサモジュール100を特定することができる。 In the present embodiment, the existence determination time is the transmission time interval that is the minimum size. When the transmission time intervals of all the sensor modules 100 are set to be the same, the sensor connected to the server device 200 is specified by identifying the sensor module 100 that has received the measurement data at least for the transmission time interval. Module 100 can be identified.
 本実施形態では、上記存在判定時間と送信時間間隔は、図示しない入力部を用いて入力される。 In the present embodiment, the presence determination time and the transmission time interval are input using an input unit (not shown).
 サーバ制御部201は、上述したように、サーバ装置200全体を制御するものであり、サーバ制御部201が実行するプログラム、またはそのプログラムを実行するために必要なデータを記憶した、HDDやROM、RAM等と、CPUとで構成される。以下、サーバ制御部201の機能について説明する。 As described above, the server control unit 201 controls the entire server device 200. The server control unit 201 stores a program executed by the server control unit 201 or data necessary for executing the program, such as an HDD or a ROM. It is composed of a RAM or the like and a CPU. Hereinafter, functions of the server control unit 201 will be described.
 <サーバ制御部の機能について>
 サーバ制御部201は、機能ブロックとして、サーバ通信制御部208、送信タイミング設定部205、変更検出部209を含む。
<About the functions of the server control unit>
The server control unit 201 includes a server communication control unit 208, a transmission timing setting unit 205, and a change detection unit 209 as functional blocks.
 サーバ通信制御部(受信時刻憶手段)208は、センサ通信部204を制御して、サーバ装置200との通信全般を制御するものである。サーバ通信制御部208は、サーバ通信部202が計測データを受信すると、受信した計測データを計測データ履歴記憶部204に、計測データIDを付けて計測データDBに蓄積すると共に、計測データを受信した受信時刻を、計測データID、センサIDに対応付けて受信時刻管理DBに蓄積する。 The server communication control unit (reception time storage unit) 208 controls the sensor communication unit 204 to control the overall communication with the server device 200. When the server communication unit 202 receives the measurement data, the server communication control unit 208 accumulates the received measurement data in the measurement data history storage unit 204 with the measurement data ID and stores the measurement data in the measurement data DB. The reception time is stored in the reception time management DB in association with the measurement data ID and sensor ID.
 また、サーバ通信制御部208は、計測データ履歴記憶部204に構築された受信時刻管理DBより、存在判定時間内に計測データが送信されてきたセンサIDと、受信時刻を読み出して、図5に示すセンサ受信時刻管理テーブルを作成する。本実施形態では、サーバ通信制御部208は、センサ受信時刻管理テーブルを、1つのセンサモジュール100と通信して計測データを受信する毎に更新し、常に最新の受信履歴を管理する。 Further, the server communication control unit 208 reads out the sensor ID from which the measurement data is transmitted within the presence determination time and the reception time from the reception time management DB constructed in the measurement data history storage unit 204, and the result is shown in FIG. A sensor reception time management table is created. In this embodiment, the server communication control unit 208 updates the sensor reception time management table every time it receives measurement data by communicating with one sensor module 100, and always manages the latest reception history.
 また、サーバ通信制御部208は、サーバ通信部202を制御して、送信タイミング設定部205にて、送信タイミングの最適化が実施されると、動作設定パラメータ記憶部203に格納されている設定管理テーブル(図8参照)に従って、該当するセンサモジュール100に対して、送信オフセット値を含む設定変更メッセージを送信する。 Further, when the server communication control unit 208 controls the server communication unit 202 and the transmission timing setting unit 205 optimizes the transmission timing, the server management unit 208 stores the setting management stored in the operation setting parameter storage unit 203. A setting change message including a transmission offset value is transmitted to the corresponding sensor module 100 according to the table (see FIG. 8).
 送信タイミング設定部(送信タイミング設定手段)205は、上記複数のセンサモジュール100の各々について、センサ受信時刻管理テーブルを参照して、少なくとも送信時間間隔に相当する時間分の受信時刻及びセンサIDの情報と、複数のセンサモジュール100に設定されている統一の送信時間間隔とに基づいて、計測データを送信する送信タイミングを設定する最適化を実施するものである。 The transmission timing setting unit (transmission timing setting means) 205 refers to the sensor reception time management table for each of the plurality of sensor modules 100, and receives at least the reception time and sensor ID information corresponding to the transmission time interval. Then, based on the unified transmission time interval set in the plurality of sensor modules 100, the optimization for setting the transmission timing for transmitting the measurement data is performed.
 送信タイミング設定部205は、1つのセンサモジュール100に割り当てる割当時間を求め、該割当時間内に1つのセンサモジュール100のデータ送信が行われるように、上記複数のセンサモジュール100の各々について送信タイミングを設定するものである。 The transmission timing setting unit 205 obtains an allocation time allocated to one sensor module 100, and sets the transmission timing for each of the plurality of sensor modules 100 so that data transmission of one sensor module 100 is performed within the allocation time. It is to set.
 具体的には、送信タイミング設定部205は、割当時間算出部(第1割当時間算出手段)206と、送信オフセット値算出部207とを含む。 Specifically, the transmission timing setting unit 205 includes an allocation time calculation unit (first allocation time calculation unit) 206 and a transmission offset value calculation unit 207.
 割当時間算出部206は、センサ受信時刻管理テーブルを参照して、センサIDの個数より、接続されているセンサモジュール100の数を判定し、送信時間間隔を判定したセンサモジュール100の数で割って割当時間を算出する。 The allocated time calculation unit 206 refers to the sensor reception time management table, determines the number of connected sensor modules 100 based on the number of sensor IDs, and divides the transmission time interval by the number of sensor modules 100 determined. Calculate the allocation time.
 送信オフセット値算出部207は、センサ受信時刻管理テーブルを参照して、各センサモジュール100の受信時刻を取得し、割当時間算出部206で算出された割当時間とを基に、該割当時間内に1つのセンサモジュール100のデータ送信が行われるように、複数のセンサモジュール100の各々について、次回の測定データを送信するまでの待機時間である送信オフセット値を算出するものである。 The transmission offset value calculation unit 207 refers to the sensor reception time management table, acquires the reception time of each sensor module 100, and within the allocated time based on the allocation time calculated by the allocation time calculation unit 206. A transmission offset value that is a waiting time until the next measurement data is transmitted is calculated for each of the plurality of sensor modules 100 so that data transmission of one sensor module 100 is performed.
 つまり、送信タイミング設定部205は、送信オフセット値算出部207で算出されたオフセット値を設定することにより、複数のセンサモジュール100の各々について送信タイミングを設定して、送信タイミングの最適化を実施する。 That is, the transmission timing setting unit 205 sets the transmission timing for each of the plurality of sensor modules 100 by setting the offset value calculated by the transmission offset value calculation unit 207, and optimizes the transmission timing. .
 送信タイミング設定部205で算出された、送信オフセット値は、図8に示すように、設定管理テーブルに、センサIDに対応つけて格納される。図8では、図3に最適化のイメージを示した6個のセンサモジュールSM-1~SM-6に対して作成された設定管理テーブルを示している。 The transmission offset value calculated by the transmission timing setting unit 205 is stored in the setting management table in association with the sensor ID as shown in FIG. FIG. 8 shows a setting management table created for the six sensor modules SM-1 to SM-6 whose image of optimization is shown in FIG.
 センサID:「1」「2」「3」「4」「5」「6」の各センサモジュールが、センサモジュールSM-1、SM-2、SM-3、SM-4、SM-5、SM-6に対応している。なお、センサID「7」「8」「9」「10」の各センサモジュールは、既にサーバ装置200から切り離されたセンサモジュールである。 Sensor ID: “1”, “2”, “3”, “4”, “5”, “6” are sensor modules SM-1, SM-2, SM-3, SM-4, SM-5, SM Corresponds to -6. The sensor modules with sensor IDs “7”, “8”, “9”, and “10” are sensor modules that have already been disconnected from the server device 200.
 設定管理テーブルの設定変更予約は、サーバ通信部202より、設定変更メッセージが送信されると、予約ありの「1」から予約なしの「2」に変更され、また、送信オフセット値についても0に戻される。 The setting change reservation in the setting management table is changed from “1” with reservation to “2” without reservation when a setting change message is transmitted from the server communication unit 202, and the transmission offset value is also set to zero. Returned.
 図7に、図3に最適化のイメージを示した4周期分の受信時刻管理DBに蓄積されていくセンサ受信時刻データを示す。矢印Aにて示すタイミングで、送信タイミングの最適化の割り込みが指示されている。 FIG. 7 shows sensor reception time data accumulated in the reception time management DB for four cycles whose optimization image is shown in FIG. At the timing indicated by arrow A, an interruption for optimization of transmission timing is instructed.
 矢印Aにて示すタイミングの次に計測データを受信したセンサID「3」のセンサモジュールSM-3の基準として、その次のセンサモジュールSM-2から、送信タイミングの最適化を実施する。送信オフセット値を含む設定変更メッセージを送信すると、メッセージを受け取ったセンサモジュール100からは、その直後から、送信時間間隔+送信オフセット値分遅れて計測データが送信されてくる。その後は、通常通り、送信時間間隔分の時間をあけて、計測データが送られてくる。 The transmission timing is optimized from the next sensor module SM-2 as the reference of the sensor module SM-3 of the sensor ID “3” that has received the measurement data after the timing indicated by the arrow A. When a setting change message including a transmission offset value is transmitted, measurement data is transmitted from the sensor module 100 that has received the message with a delay corresponding to the transmission time interval + the transmission offset value immediately after that. Thereafter, as usual, the measurement data is sent after a transmission time interval.
 さらに、本実施形態においては、上記送信タイミング設定部205は、1つのセンサモジュール100に割り当てる割当時間が、各センサモジュール100にて送信タイミングを設定可能な単位時間よりも小さくなる場合には、接続されている複数のセンサモジュール100を、送信時間間隔を上記単位時間で割った値であるN(正の整数)個を1グループとしてグループ化し、グループ内の各センサモジュール100については、上記単位時間を上記割当時間として送信タイミングを設定し、端数のセンサモジュール100については、端数のセンサモジュール100の数に応じて上記割当時間を求め、該割当時間に基づいて送信タイミングを設定するようになっている。 Furthermore, in the present embodiment, the transmission timing setting unit 205 is connected when the allocated time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100. A plurality of sensor modules 100 are grouped as a group of N (positive integers), which is a value obtained by dividing the transmission time interval by the unit time, and for each sensor module 100 in the group, the unit time For the fractional sensor module 100, the allocation time is determined according to the number of the fractional sensor modules 100, and the transmission timing is set based on the allocation time. Yes.
 変更検出部209は、センサ受信時刻管理テーブルに基づいて、そのセンサIDを抜き出し、図6に示すセンサIDテーブルを作成する。変更検出部209は、センサIDテーブルを基に、センサモジュール100の変更の有無を検出するものである。 The change detection unit 209 extracts the sensor ID based on the sensor reception time management table and creates the sensor ID table shown in FIG. The change detection unit 209 detects whether the sensor module 100 has been changed based on the sensor ID table.
 上記送信タイミング設定部205は、送信タイミングの最適化が指示された場合、及び変更検出部209にて変更が検出された場合、各センサモジュール100の各々について、送信タイミングの最適化を行う。 The transmission timing setting unit 205 optimizes the transmission timing for each of the sensor modules 100 when the transmission timing optimization is instructed and when the change detection unit 209 detects a change.
 <データ処理システムの処理の流れ>
 次に、データ処理システム1における処理の流れについて、図9及び図14のフローを参照しながら説明する。
<Processing flow of data processing system>
Next, the flow of processing in the data processing system 1 will be described with reference to the flows in FIGS. 9 and 14.
 図9は、センサモジュール100における基本処理の処理の流れを示すフローチャートである。図9に示すように、センサモジュール100は、計測処理(S1)と、データ送信/メッセージ受信処理(S2)との2つを実施する。 FIG. 9 is a flowchart showing the flow of basic processing in the sensor module 100. As shown in FIG. 9, the sensor module 100 performs two processes, a measurement process (S1) and a data transmission / message reception process (S2).
 図10は、センサモジュール100の計測処理(図9のS11)の流れを示すフローチャートである。計測時刻になると、センサ部103へ通電し、計測し、計測データを計測データ記憶部105に追加し、そのあと、センサ部103への通電をOFFする(S3~S7)。 FIG. 10 is a flowchart showing the flow of the measurement process (S11 in FIG. 9) of the sensor module 100. When the measurement time comes, the sensor unit 103 is energized and measured, the measurement data is added to the measurement data storage unit 105, and then the energization to the sensor unit 103 is turned off (S3 to S7).
 図11は、サーバ装置200及びセンサモジュール100の各データ送信/メッセージ受信処理の流れを示すフローチャートである。 FIG. 11 is a flowchart showing the flow of each data transmission / message reception process of the server apparatus 200 and the sensor module 100.
 サーバ装置200においては、送信時間間隔、存在判定時間が始めに入力される(S11、S12)。これは通常、サーバ装置200の管理者によって入力される。その後、S13に進み、センサモジュール100より計測データを受信する毎に、図5に示すセンサ受信時刻管理テーブルを更新する。 In the server device 200, the transmission time interval and presence determination time are input first (S11, S12). This is normally input by the administrator of the server device 200. Thereafter, the process proceeds to S13, and the sensor reception time management table shown in FIG. 5 is updated every time measurement data is received from the sensor module 100.
 更新後、S14に進み、送信タイミングの最適化が指示されたかを判断し、指示があった場合はS16に進む。一方、指示がなかった場合はS15に進み、図6に示すセンサIDテーブルを基に、変更検出部209が接続されているセンサモジュール100の変更が検出されたかどうかを判断する。変更検出部209にてセンサモジュール100の変更が検出された場合もS16に進む。S14或いはS15で「YES」と判断するまで、S13~S15の処理を繰り返す。 After the update, the process proceeds to S14, where it is determined whether the transmission timing optimization is instructed. If there is an instruction, the process proceeds to S16. On the other hand, if there is no instruction, the process proceeds to S15, and it is determined whether or not a change in the sensor module 100 to which the change detection unit 209 is connected is detected based on the sensor ID table shown in FIG. If the change detection unit 209 detects a change in the sensor module 100, the process also proceeds to S16. The processes in S13 to S15 are repeated until “YES” is determined in S14 or S15.
 S16では、センサ受信時刻管理テーブルに含まれるセンサIDに基づいて、センサIDテーブルを更新する。S17においては、送信タイミング設定部205が、センサ受信時刻管理テーブルを参照し、テーブルに登録されている各センサモジュール100に対して、送信タイミングを最適化するため送信オフセット値を算出し、図8に示す設定管理テーブルを更新する、送信オフセット値算出処理を実施する。なお、S17のこの送信オフセット値算出処理については、図12のサブルーチンのフローチャートを用いて後述する。 In S16, the sensor ID table is updated based on the sensor ID included in the sensor reception time management table. In S17, the transmission timing setting unit 205 refers to the sensor reception time management table, calculates a transmission offset value for optimizing the transmission timing for each sensor module 100 registered in the table, and FIG. The transmission offset value calculation process for updating the setting management table shown in FIG. The transmission offset value calculation process in S17 will be described later using the flowchart of the subroutine in FIG.
 S17において、送信オフセット値の算出処理を実施した後、計測データを受信すると(S18)、図8に示す設定管理テーブルを参照して、S18で受信した計測データの送信元のセンサモジュール100に対して、設定変更予約が入っているかどうかを判断する(S19)。 When the measurement data is received after performing the calculation process of the transmission offset value in S17 (S18), the setting management table shown in FIG. 8 is referred to the sensor module 100 that is the transmission source of the measurement data received in S18. It is then determined whether or not a setting change reservation has been made (S19).
 設定変更予約が入っていない場合は、S21に進んで、通常の受信完了メッセージを送信する。設定変更予約が入っている場合は、S20に進んで、通常の受信完了メッセージと共に、設定変更メッセージを送信する。設定変更メッセージを送信後は、S22、S23に進み、図8に示す設定管理テーブルにおける、S20で変更設定メッセージを送信したセンサモジュール100に対する設定変更予約を解除し、送信オフセット値も0とする。 If there is no setting change reservation, the process proceeds to S21, and a normal reception completion message is transmitted. If there is a setting change reservation, the process proceeds to S20, and a setting change message is transmitted together with a normal reception completion message. After transmitting the setting change message, the process proceeds to S22 and S23, and the setting change reservation for the sensor module 100 that has transmitted the change setting message in S20 in the setting management table shown in FIG.
 上記S14からS17までの処理と、S13とS18からS24までの処理とは、別々のスレッドで動いている。つまり、S24の処理が終わらなくても、S13にて、センサ受信管理テーブルが更新されると、S14に処理が進む。例えば、S17の送信オフセット値算出処理において、サンサID15に対して設定変更予約が入れられ、その状態で、S20における設定変更予約メッセージの送信がまだ終わっていない状況であっても、S13において、センサ受信時刻管理テーブルが更新され、最適化処理に入れば、S17において送信オフセット値は再計算されるので、一回前に計算した送信オフセット値はサンサID15のセンサモジュールに通達されず、再計算された送信オフセット値が予約されることとなる。 The processes from S14 to S17 and the processes from S13 and S18 to S24 operate in separate threads. That is, even if the process of S24 is not completed, the process proceeds to S14 when the sensor reception management table is updated in S13. For example, in the transmission offset value calculation process of S17, even if the setting change reservation is entered for the sensor ID 15, and the transmission of the setting change reservation message in S20 has not yet been completed, If the reception time management table is updated and the optimization process is started, the transmission offset value is recalculated in S17. Therefore, the transmission offset value calculated one time before is not notified to the sensor module of the sensor ID 15 and is recalculated. The transmission offset value is reserved.
 一方、センサモジュール100においては、計測データの送信時刻になると(S31)、センサ通信部104へ通電し(S32)、計測データを送信する(S33)。その後、S34で、サーバ装置200からのメッセージを受信すると、センサ通信部104への通電をOFFする(S35)。 On the other hand, in the sensor module 100, when the measurement data transmission time comes (S31), the sensor communication unit 104 is energized (S32), and the measurement data is transmitted (S33). Thereafter, when a message from the server device 200 is received in S34, the energization to the sensor communication unit 104 is turned off (S35).
 その後、S36に進み、計測データ記憶部105におけるS33でサーバ装置200に送信した計測データを削除する。そして、サーバ装置200より、設定変更メッセージを受信したかどうかを判断し(S37)、受信していない場合は、S40に進んで、次回のデータ送信までの待ち時間として「送信時間間隔」を設定し、S39に進む。 Thereafter, the process proceeds to S36, and the measurement data transmitted to the server apparatus 200 in S33 in the measurement data storage unit 105 is deleted. Then, it is determined whether or not a setting change message has been received from the server device 200 (S37). If not received, the process proceeds to S40, and a “transmission time interval” is set as a waiting time until the next data transmission. Then, the process proceeds to S39.
 一方、サーバ装置200より、設定変更メッセージを受信しており、S37において、「YES」と判断した場合は、S38に進み、次回のデータ送信までの待ち時間として、「送信時間間隔+設定変更メッセージに含まれる送信オフセット値」を設定し、S39に進む。 On the other hand, if the setting change message has been received from the server device 200 and it is determined “YES” in S37, the process proceeds to S38, where “transmission time interval + setting change message” is set as the waiting time until the next data transmission. "Transmission offset value included in" is set, and the process proceeds to S39.
 S39においては、S40或いはS38で設定された、次回のデータ送信待ちまでの時間を設定したタイマーを起動し、その後、S31に戻る。 In S39, the timer that is set in S40 or S38 and that sets the time until the next data transmission wait is started, and then the process returns to S31.
 続いて、図12のフローチャートを用いて、図11のS17の処理である、送信オフセット値算出処理について説明する。 Subsequently, the transmission offset value calculation process, which is the process of S17 of FIG. 11, will be described using the flowchart of FIG.
 まずは、センサ受信時刻管理テーブルより、接続されているセンサモジュール100の数を求め、グループ数を算出する。グループ数は、「センサIDの個数/送信時間間隔」にて求める。つまり、センサIDの個数を送信時間間隔の時間で割り、その「商」をグループ数とする(S51)。図3の例では、センサIDの個数が「6」で送信時間間隔が「60」であるので、グループ数は0となる。 First, the number of connected sensor modules 100 is obtained from the sensor reception time management table, and the number of groups is calculated. The number of groups is obtained by “number of sensor IDs / transmission time interval”. That is, the number of sensor IDs is divided by the time of the transmission time interval, and the “quotient” is set as the number of groups (S51). In the example of FIG. 3, since the number of sensor IDs is “6” and the transmission time interval is “60”, the number of groups is zero.
 グループ数が0の場合は、S52のループ2、S53のループ3には入らず、S61に移行し、送信時間間隔をループ回数で割って、補正値(割当時間)を求める。センサ受信時刻管理テーブルが図5の内容である図3の例では、補正値は60÷6=10となる。 When the number of groups is 0, the process does not enter the loop 2 of S52 and the loop 3 of S53, and the process proceeds to S61, and the correction time (allocation time) is obtained by dividing the transmission time interval by the number of loops. In the example of FIG. 3 in which the sensor reception time management table is the content of FIG. 5, the correction value is 60 ÷ 6 = 10.
 S62では、ループ4のループ回数(4)を、「センサIDの個数%送信時間間隔」にて求める。つまり、センサIDの個数を送信時間間隔で割った場合の「余りの値」がループ回数となる。図3の例では、センサIDの個数が「6」で送信時間間隔が「60」であるので、ループ回数(4)は6となる。つまり、S62~S68までの処理を6回行う。 In S62, the loop count (4) of the loop 4 is obtained by “number of sensor IDs% transmission time interval”. That is, the “remainder value” when the number of sensor IDs is divided by the transmission time interval is the number of loops. In the example of FIG. 3, since the number of sensor IDs is “6” and the transmission time interval is “60”, the number of loops (4) is 6. That is, the processing from S62 to S68 is performed six times.
 S63では、ループ回数(4)=1かどうを判断し、ループ回数(4)=1である場合のみS65に進む。S65では、図5のセンサ受信時刻管理テーブルを参照し、ループ回数(4)=1、つまり、1つめのセンサID「3」の最新受信時刻を「基準時刻」に設定する。 In S63, it is determined whether or not the loop count (4) = 1, and the process proceeds to S65 only when the loop count (4) = 1. In S65, the sensor reception time management table of FIG. 5 is referred to, and the loop count (4) = 1, that is, the latest reception time of the first sensor ID “3” is set as the “reference time”.
 ループ回数(4)=2からは、S64に進み、送信オフセット値を算出していく。送信オフセット値は、「基準時刻-処理中センサモジュールの最新受信時刻+補正値×(ループ回数(4)-1)」で求める。 From the loop count (4) = 2, the process proceeds to S64, and the transmission offset value is calculated. The transmission offset value is obtained by “reference time−latest reception time of processing sensor module + correction value × (number of loops (4) −1)”.
 つまり、センサ受信時刻管理テーブルが図5の内容である図3の例では、以下のとおりとなる。 That is, in the example of FIG. 3 in which the sensor reception time management table is the content of FIG. 5, it is as follows.
 ループ回数(4)=2のとき:センサID「2」の送信オフセット値は、「2011/1/31 10:15:03」-「2011/1/31 10:15:28」+10×(2-1)=-15となる。同様にして、ループ回数(4)=3のとき:センサID「6」の送信オフセット値は-10、ループ回数(4)=4のとき:センサID「5」の送信オフセット値は-5、ループ回数(4)=5のとき:センサID「1」の送信オフセット値は=0、ループ回数(4)=6のとき:センサID「4」の送信オフセット値は=5となる。 When the number of loops (4) = 2: The transmission offset value of the sensor ID “2” is “2011/1/31 10:15:03” − “2011/1/31 10:15:28” + 10 × (2 -1) =-15. Similarly, when the loop count (4) = 3: the transmission offset value of the sensor ID “6” is −10, and when the loop count (4) = 4: the transmission offset value of the sensor ID “5” is −5. When the number of loops (4) = 5: the transmission offset value of the sensor ID “1” = 0, and when the number of loops (4) = 6: the transmission offset value of the sensor ID “4” is = 5.
 続くS66では、S64で算出して送信オフセット値を補正する送信オフセット値補正処理を実施し、その後、図8の設定管理テーブルに、送信オフセット値の送信を予約する。S66の送信オフセット値の補正処理、及びS67の送信オフセット値の予約処理については、図13、図14のサブルーチンのフローチャートを用いて後述する。 In subsequent S66, a transmission offset value correction process for correcting the transmission offset value calculated in S64 is performed, and thereafter, transmission of the transmission offset value is reserved in the setting management table of FIG. The transmission offset value correction process in S66 and the transmission offset value reservation process in S67 will be described later with reference to the subroutine flowcharts shown in FIGS.
 なお、S51にて、グループ数が1以上となった場合は、S52に進み、グループの数だけS52~S60の処理を行う。S53では、送信時間間隔をセンサモジュール100にて送信タイミングを設定可能な単位時間で割ることで求まる、1グループに含まれるセンサモジュール100の個数分、S53~S59の処理を行う。 In S51, when the number of groups becomes 1 or more, the process proceeds to S52, and the processes of S52 to S60 are performed for the number of groups. In S53, the processing of S53 to S59 is performed for the number of sensor modules 100 included in one group, which is obtained by dividing the transmission time interval by the unit time for which the sensor module 100 can set the transmission timing.
 次に、図13のフローチャートを用いて、図12のS66の処理である、送信オフセット補正処理について説明する。 Next, the transmission offset correction process, which is the process of S66 of FIG. 12, will be described using the flowchart of FIG.
 まず、送信オフセット値と送信時間間隔とを比較し(S71)、送信オフセット値が送信時間間隔よりも大きい場合は、S72に進む。S72では、送信オフセット値を送信時間間隔で割った場合の余りの値を、補正後の送信オフセット値と設定する。 First, the transmission offset value is compared with the transmission time interval (S71), and if the transmission offset value is larger than the transmission time interval, the process proceeds to S72. In S72, the remainder when the transmission offset value is divided by the transmission time interval is set as the corrected transmission offset value.
 一方、送信オフセット値が送信時間間隔以下の場合は、S73に進む。S73では、送信オフセット値が0以下かどうかを判断し、0以下である場合はS74に進む。S74では、送信オフセット値を、送信時間間隔に、送信オフセット値を送信時間間隔で割った場合の余りの値を足した値を、補正後の送信オフセット値とする。 On the other hand, if the transmission offset value is less than or equal to the transmission time interval, the process proceeds to S73. In S73, it is determined whether or not the transmission offset value is 0 or less. If it is 0 or less, the process proceeds to S74. In S74, a value obtained by adding the transmission offset value to the transmission time interval and the remainder when the transmission offset value is divided by the transmission time interval is set as a corrected transmission offset value.
 図3の例では、補正により、送信ループ回数(4)=2のとき:オフセット値は45に、ループ回数(4)=3のとき:送信オフセット値は50に、ループ回数(4)=4のとき:送信オフセット値は55に、ループ回数(4)=5のとき:送信オフセット値は0に、ループ回数(4)=6のとき:送信オフセット値は5となる。 In the example of FIG. 3, when the number of transmission loops (4) = 2 is corrected, the offset value is 45, and when the number of loops (4) = 3: the transmission offset value is 50, and the number of loops (4) = 4. When: The transmission offset value is 55, when the loop count (4) = 5: The transmission offset value is 0, and when the loop count (4) = 6: The transmission offset value is 5.
 図12のS64で算出された送信オフセット値が、送信時間間隔の時間分内の正の値であれば、S71、S73において、いずれも「NO」と判断されるので、補正がなされることなく、メインルーチンに戻る。 If the transmission offset value calculated in S64 of FIG. 12 is a positive value within the time of the transmission time interval, it is determined as “NO” in S71 and S73, and thus correction is not performed. Return to the main routine.
 次に、図14のフローチャートを用いて、図12のS67の処理である、送信オフセット値の予約処理について説明する。 Next, the transmission offset value reservation process, which is the process of S67 of FIG. 12, will be described using the flowchart of FIG.
 まず、送信オフセット値が0であるかを判断し(S81)、送信オフセット値が0である場合は、予約することなく、そのままメインルーチンに戻る。一方、S81で、0ではないと判断すると、S82、S83に進み、図8の示す設定管理テーブルにおける処理中のセンサモジュール100に対応した送信オフセット値を入力し、設定変更予約を入力する。 First, it is determined whether the transmission offset value is 0 (S81). If the transmission offset value is 0, the process returns to the main routine without making a reservation. On the other hand, if it is determined in S81 that it is not 0, the process proceeds to S82 and S83, in which the transmission offset value corresponding to the sensor module 100 being processed in the setting management table shown in FIG. 8 is input, and the setting change reservation is input.
 図15の(a)および(b)に、64台のセンサモジュール100に対して、送信タイミングの最適化を行う前と行った後とで、データ欠損台数、再送回数、消費電力を測定して、比較した結果を示す。送信時間間隔は60秒、30秒、20秒とした。また、検証に用いたセンサモジュール100の設定可能な単位時間は1秒である。 15 (a) and 15 (b), the number of missing data, the number of retransmissions, and power consumption are measured for 64 sensor modules 100 before and after optimization of transmission timing. The comparison result is shown. The transmission time intervals were 60 seconds, 30 seconds, and 20 seconds. The settable unit time of the sensor module 100 used for verification is 1 second.
 図15の(a)は、最適化を行う前のデータである。送信時間間隔20秒の場合に、3台でデータ欠損が発生した。その内容は、2台のデータ欠損率が0.56%であり、1台のデータ欠損率は3.9%であった。また、送信時間間隔20秒では、約6回もの再送が発生している。 (A) in FIG. 15 is data before optimization. When the transmission time interval was 20 seconds, data loss occurred in three units. As for the contents, the data loss rate of 2 units was 0.56%, and the data loss rate of 1 unit was 3.9%. In addition, as many as six retransmissions occur at a transmission time interval of 20 seconds.
 図15の(b)は、最適化後のデータである。送信時間間隔20秒であっても、データ欠損を発生した台数は0であった。また、再送回数を比較すると分るように、20秒においても極端に低下しており、計測データの衝突が効果的に回避されていることがわかる。再送回数の削減により、送信時間間隔20秒では、最適化する前の状態に比べて、6.1%も低減できている。 (B) in FIG. 15 is the data after optimization. Even if the transmission time interval was 20 seconds, the number of data loss was 0. Further, as can be seen from comparison of the number of retransmissions, it is extremely reduced even in 20 seconds, and it can be seen that collision of measurement data is effectively avoided. By reducing the number of retransmissions, the transmission time interval of 20 seconds can be reduced by 6.1% compared to the state before optimization.
 以上にように、送信タイミングの最適化を行うことで、送信時間間隔内で各センサモジュール100の計測データの送信タイミングを均等に分散させることが可能となり、データ同士の衝突の発生を抑制することができ、計測データの再送信による、センサモジュール100の消費電力を低減し、電池の長寿命化に貢献することができる。加えて、計測データの再送による、サーバ装置200の計測データ収集遅延や、収集漏れも確実に低減することができる。 As described above, by optimizing the transmission timing, the transmission timing of the measurement data of each sensor module 100 can be evenly distributed within the transmission time interval, and the occurrence of collision between the data can be suppressed. It is possible to reduce the power consumption of the sensor module 100 by retransmitting the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission of the server apparatus 200 due to retransmission of measurement data.
 〔実施形態2〕
 本発明の別の実施形態2について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment 2 of the present invention will be described. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 実施形態1では、サーバ装置200は、センサ受信時刻管理テーブルを参照して、実際に接続されているセンサモジュール100の数に応じた割当時間を算出し、割当時間内に1つのセンサモジュール100のデータ送信が行われるように、送信タイミングを設定した。 In the first embodiment, the server device 200 refers to the sensor reception time management table, calculates an allocated time according to the number of sensor modules 100 that are actually connected, and includes one sensor module 100 within the allocated time. The transmission timing was set so that data transmission was performed.
 これに対し、本実施形態2では、実際に接続されているセンサモジュールの数に架空のセンサモジュールの数を加算して割当時間を算出し、実際に接続されている複数のセンサモジュールのうちの所定のセンサモジュールのデータ送信の前後に、架空のセンサモジュールのデータ送信が行われるように送信タイミングを設定する。 On the other hand, in the second embodiment, the allocated time is calculated by adding the number of sensor modules that are actually connected to the number of sensor modules that are actually connected, and among the plurality of sensor modules that are actually connected, The transmission timing is set so that data transmission of a fictitious sensor module is performed before and after data transmission of a predetermined sensor module.
 つまり、図16に示すように、所定のセンサモジュールに相当するセンサモジュールSM-6の前後に、架空のセンサモジュールの送信タイミングを配置し、センサモジュールSM-6の前後を広く確保して、前後の計測データと重ならないようにする。 That is, as shown in FIG. 16, the transmission timing of the imaginary sensor module is arranged before and after the sensor module SM-6 corresponding to the predetermined sensor module, and the front and rear of the sensor module SM-6 are widely secured. Do not overlap with the measurement data.
 図17は、本実施形態のサーバ装置200A及びセンサモジュール100Aの構成の一例を示すブロック図である。 FIG. 17 is a block diagram illustrating an example of the configuration of the server device 200A and the sensor module 100A according to the present embodiment.
 センサモジュール100Aとセンサモジュール100との違いは、センサモジュール100Aが、再送処理の回数である再送回数をカウントする再生回数カウント部113を備え、センサ通信部104が、計測データと共に再生回数カウント部113のカウント値を送信する点である。 The difference between the sensor module 100A and the sensor module 100 is that the sensor module 100A includes a reproduction number counting unit 113 that counts the number of retransmissions that is the number of retransmission processes, and the sensor communication unit 104 includes the reproduction number counting unit 113 together with the measurement data. This is the point to transmit the count value.
 また、サーバ装置200Aとサーバ装置200とが異なる点は、架空センサモジュールを考慮した送信タイミングを設定可能な送信タイミング設定部205Aを有している点と、優遇センサ指定部210を有している点である。 Further, the difference between the server device 200A and the server device 200 is that the server device 200A has a transmission timing setting unit 205A capable of setting a transmission timing in consideration of an aerial sensor module, and a preferential sensor designating unit 210. Is a point.
 送信タイミング設定部205Aは、割当時間算出部206に替えて、接続されているセンサモジュール100Aの数に架空のセンサモジュールの数を加算して割当時間を算出する割当時間算出部(第2割当時間算出手段)206Aを備えている。また、送信タイミング設定部205Aは、送信オフセット値算出部207に替えて、複数のセンサモジュール100Aのうちの、前後の間隔を空けるべきセンサモジュール100Aのデータ送信の前後に、架空のセンサモジュールのデータ送信が行われるように、各センサモジュール100Aについて送信オフセット値を算出する送信オフセット値算出部207Aを有している。 The transmission timing setting unit 205A replaces the allocation time calculation unit 206 with an allocation time calculation unit (second allocation time) that calculates the allocation time by adding the number of imaginary sensor modules to the number of connected sensor modules 100A. (Calculation means) 206A. In addition, the transmission timing setting unit 205A replaces the transmission offset value calculation unit 207 with the data of the imaginary sensor module before and after data transmission of the sensor module 100A that should be spaced apart from each other among the plurality of sensor modules 100A. A transmission offset value calculation unit 207A that calculates a transmission offset value for each sensor module 100A is provided so that transmission is performed.
 送信オフセット値算出部207Aは、計測データと共に取得した再送回数の情報を基に、再送回数が閾値を超えるセンサモジュール100Aを、上記前後の間隔を空けるべきセンサモジュール100Aと判定する。以下、このような前後の間隔を空けるべきセンサモジュール100Aを優遇センサモジュールと称する。 The transmission offset value calculation unit 207A determines, based on the information on the number of retransmissions acquired together with the measurement data, the sensor module 100A in which the number of retransmissions exceeds the threshold as the sensor module 100A that should have the above-described interval. Hereinafter, the sensor module 100A that should have such a front-rear interval is referred to as a preferential sensor module.
 優遇センサ指定部210は、優遇センサモジュール100Aの任意設定を可能とするものである。優遇センサ指定部210は、ユーザにて入力された、センサIDのセンサモジュール100Aを、優遇センサモジュール100Aであると認定し、そのセンサIDを送信オフセット値算出部207Aに送信する。 The preferential sensor specification unit 210 enables arbitrary setting of the preferential sensor module 100A. The preferential sensor designation unit 210 recognizes the sensor module 100A of the sensor ID input by the user as the preferential sensor module 100A, and transmits the sensor ID to the transmission offset value calculation unit 207A.
 また、割当時間算出部206Aは、優遇されるセンサモジュール100Aの数に応じて、架空のセンサモジュールの数を設定する。優遇されるセンサモジュール100Aの数が1であれば、その前後を空けるために、架空センサモジュールの数は2とする。つまり、架空センサモジュール数は、優遇センサモジュール100Aの数の2倍となる。 Further, the allocated time calculation unit 206A sets the number of fictitious sensor modules according to the number of sensor modules 100A that are preferentially treated. If the number of preferentially treated sensor modules 100A is 1, the number of aerial sensor modules is 2 in order to make a space before and after that. That is, the number of aerial sensor modules is twice the number of preferential sensor modules 100A.
 このようなサーバ装置200Aの構成によれば、重要なデータを計測しているセンサモジュール100Aを優遇センサ指定部210で指定することで、重要なデータを確実に収集することができる。 According to such a configuration of the server device 200A, it is possible to reliably collect important data by designating the sensor module 100A measuring important data with the preferential sensor designating unit 210.
 また、電波状況があまりよくない環境にあるため、再送が発生しやすいセンサモジュール100Aについても、優遇センサモジュール100Aとして特定されて、間隔が広く確保されるので、再送回数が低減され、当該センサモジュール100Aの電池寿命を改善することができる。 In addition, since the radio wave condition is not so good, the sensor module 100A that is likely to be retransmitted is also identified as the preferential sensor module 100A and a wide interval is secured, so the number of retransmissions is reduced, and the sensor module The battery life of 100A can be improved.
 また、本実施形態の変形例として、図18の示すように、センサモジュールは実施形態1のセンサモジュール100と同様の構成とし、サーバ装置200Bが、受信時刻管理DBテーブルを参照して、センサモジュール毎の送信時間間隔のズレ量を検出するズレ量検出部211を備える構成としてもよい。 As a modification of the present embodiment, as shown in FIG. 18, the sensor module has the same configuration as the sensor module 100 of the first embodiment, and the server device 200B refers to the reception time management DB table to It is good also as a structure provided with the deviation | shift amount detection part 211 which detects the deviation | shift amount of every transmission time interval.
 サーバ装置200Bが備える送信タイミング設定部205Bは、ズレ量検出部211で検出されたズレ量を基に、ズレ量が閾値を超えるセンサモジュール100を優遇センサモジュール100として、その前後の間隔が広く確保されるように送信タイミングを最適化する。 The transmission timing setting unit 205B included in the server device 200B secures a wide interval before and after the sensor module 100 with the deviation amount exceeding the threshold as the preferential sensor module 100 based on the deviation amount detected by the deviation amount detection unit 211. To optimize the transmission timing.
 このような構成とすることで、内部クロックがずれやすく、送信タイミングもずれやすいセンサモジュール100について、間隔が広く確保されるので、前後の計測データとの衝突を効果的に回避して、当該センサモジュール100、及びその前後に計測データを送信するセンサモジュール100の各再送回数が低減され、これらのセンサモジュール100の電池寿命を改善することができる。 With such a configuration, a wide interval is secured for the sensor module 100 in which the internal clock is easily shifted and the transmission timing is easily shifted. Therefore, it is possible to effectively avoid collision with the measurement data before and after the sensor module 100. The number of retransmissions of the module 100 and the sensor module 100 that transmits measurement data before and after the module 100 is reduced, and the battery life of the sensor module 100 can be improved.
 〔実施形態3〕
 本発明の別の実施形態3について説明する。なお、説明の便宜上、実施形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Another embodiment 3 of the present invention will be described. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 実施形態1では、サーバ装置200は、1つのセンサモジュール100に割り当てる割当時間が、各センサモジュール100にて送信タイミングを設定可能な単位時間よりも小さくなる場合には、接続されている複数のセンサモジュール100を、送信時間間隔を上記単位時間で割った値であるN(正の整数)個を1グループとしてグループ化し、グループ内の各センサモジュール100については、上記単位時間を上記割当時間として送信タイミングを設定し、端数のセンサモジュール100については、端数のセンサモジュール100の数に応じて上記割当時間を求め、該割当時間に基づいて送信タイミングを設定した。 In the first embodiment, when the allocation time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100, the server device 200 is connected to a plurality of connected sensors. The modules 100 are grouped as a group of N (positive integer) values obtained by dividing the transmission time interval by the unit time, and the unit time is transmitted as the allocated time for each sensor module 100 in the group. The timing was set, and for the fractional sensor module 100, the allocation time was determined according to the number of the fractional sensor modules 100, and the transmission timing was set based on the allocation time.
 これに対し、図19に示すように、本実施形態のサーバ装置300では、割当時間が複数のセンサモジュール100の各々にてタイミングを設定可能な単位時間よりも小さくなる場合には、割当時間が単位時間以上となるように、送信時間間隔を変更する送信時間間隔変更部212を備えている。ここでは、送信時間間隔変更部212は、単位時間が割当時間となるように送信時間間隔を変更する。 On the other hand, as shown in FIG. 19, in the server device 300 of the present embodiment, when the allocated time is smaller than the unit time for which the timing can be set in each of the plurality of sensor modules 100, the allocated time A transmission time interval changing unit 212 that changes the transmission time interval so as to be equal to or longer than the unit time is provided. Here, the transmission time interval changing unit 212 changes the transmission time interval so that the unit time becomes the allocated time.
 実施形態1のサーバ装置200と、本実施形態のサーバ装置300との違いは、送信時間間隔変更部212を備えている点と、送信タイミング設定部305が、送信タイミング設定部205が実施していた、1つのセンサモジュール100に割り当てる割当時間が、各センサモジュール100にて送信タイミングを設定可能な単位時間よりも小さくなる場合に行っていた、上記グループ分けを実施しない点である。 The difference between the server apparatus 200 of the first embodiment and the server apparatus 300 of the present embodiment is that the transmission time interval changing unit 212 is provided, the transmission timing setting unit 305 is implemented by the transmission timing setting unit 205. In addition, the grouping, which is performed when the allocation time allocated to one sensor module 100 is smaller than the unit time in which the transmission timing can be set in each sensor module 100, is not performed.
 つまり、送信タイミング設定部305では、図20に示すように、送信オフセット値算出処理において、S91において、送信時間間隔を単位時間で割った値よりもセンサ受信時刻管理テーブルに登録されているセンサIDの個数が多い場合には、S92に進み、送信時間間隔変更処理を実施し、その後、図12のS61~S68の処理に同じS93~S100を実施する。 That is, in the transmission timing setting unit 305, as shown in FIG. 20, in the transmission offset value calculation process, in S91, the sensor ID registered in the sensor reception time management table rather than the value obtained by dividing the transmission time interval by the unit time. If the number is large, the process proceeds to S92, where the transmission time interval changing process is performed, and thereafter, the same S93 to S100 as the processes of S61 to S68 of FIG.
 但し、S94では、グループ数を求めていないので、ループ回数は、センサ受信時刻管理テーブル内のセンサIDの個数となる。また、S99の設定管理テーブルへの送信オフセット予約処理については、たとえ送信オフセット値が0であっても、送信時間間隔が設定される。送信時間間隔は、全てのセンサモジュール100に通達される。 However, since the number of groups is not obtained in S94, the number of loops is the number of sensor IDs in the sensor reception time management table. In addition, in the transmission offset reservation process for the setting management table in S99, a transmission time interval is set even if the transmission offset value is zero. The transmission time interval is notified to all the sensor modules 100.
 図21に、送信時間間隔変更処理のサブルーチンのフローチャートを示す。送信時間間隔変更処理においては、送信時間間隔を単位時間×センサIDの個数に変更する(S93)。つまり、単位時間が1秒である場合に、センサIDの個数が80であれば、送信時間間隔を80秒(1×80)とした後、S61に戻る。これにより、S61~S68において、80個のセンサモジュール100に対して、単位時間である1秒毎に計測データが送信されるように、80個のセンサモジュール100の各々の送信オフセット値が算出される。 FIG. 21 shows a flowchart of a subroutine for transmission time interval change processing. In the transmission time interval changing process, the transmission time interval is changed to the number of unit time × sensor ID (S93). That is, when the unit time is 1 second and the number of sensor IDs is 80, the transmission time interval is set to 80 seconds (1 × 80), and the process returns to S61. Thus, in S61 to S68, the transmission offset value of each of the 80 sensor modules 100 is calculated so that the measurement data is transmitted to the 80 sensor modules 100 every second which is a unit time. The
 このように、接続されるセンサモジュール100の個数が多く、割当時間が、センサモジュール100における送信タイミングを設定可能な単位時間よりも小さくなる場合は、強制的に、割当時間が単位時間以上となるように、送信時間間隔を広げることで、より効果的に、計測データ同士の衝突を回避して、センサモジュール100の消費電力を低減し、電池の長寿命化に貢献することができる。 As described above, when the number of sensor modules 100 to be connected is large and the allocation time is smaller than a unit time in which the transmission timing in the sensor module 100 can be set, the allocation time is forcibly set to a unit time or more. As described above, by widening the transmission time interval, collision of measurement data can be avoided more effectively, power consumption of the sensor module 100 can be reduced, and the battery life can be extended.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 最後に、サーバ200、200A、200Bの各ブロック、特にサーバ制御部201は、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよい。 Finally, each block of the servers 200, 200A, and 200B, particularly the server control unit 201, may be configured by hardware logic, or may be realized by software using a CPU as follows.
 すなわち、サーバ装置200、200A、200B、300は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM
(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラム及び各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアであるサーバ装置200、200A、200B、300の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記サーバ装置200、200A、200B、300に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
That is, the server devices 200, 200A, 200B, and 300 include a CPU (central processing unit) that executes a command of a control program that realizes each function, and a ROM that stores the program.
(Read only memory), a RAM (random access memory) for expanding the program, a storage device (recording medium) such as a memory for storing the program and various data, and the like. An object of the present invention is to enable the computer program codes (execution format program, intermediate code program, source program) of the server devices 200, 200A, 200B, and 300, which are software for realizing the functions described above, to be read by a computer. This can also be achieved by supplying the recorded recording medium to the server devices 200, 200A, 200B, 300, and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU). .
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。 Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
 また、サーバ装置200、200A、200B、300を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Further, the server devices 200, 200A, 200B, and 300 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available. Also, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 〔本発明の構成〕
 本発明の情報処理装置は、以上のように、計測により得られたデータを外部に送信する複数のセンサモジュールとネットワークを介して接続され、上記複数のセンサモジュールと通信してデータを収集する情報処理装置であって、上記複数のセンサモジュールの各々は、データを送信する送信時間間隔が等しく設定されており、上記複数のセンサモジュールと通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールの識別情報とを、少なくとも上記送信時間間隔の時間分、記憶部に記憶する受信時刻記憶手段と、上記複数のセンサモジュールの各々について、上記記憶部から読み出した受信時刻及び識別情報と上記送信時間間隔とに基づいてデータを送信する送信タイミングを設定する送信タイミング設定手段を備え、上記送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定する。
[Configuration of the present invention]
As described above, the information processing apparatus of the present invention is connected to a plurality of sensor modules that transmit data obtained by measurement to the outside via a network, and collects data by communicating with the plurality of sensor modules. Each of the plurality of sensor modules is a processing device, and the transmission time interval for transmitting data is set to be equal, and the reception time and data when the data is received when communicating with the plurality of sensor modules. The reception time storage means for storing the identification information of the sensor module that has transmitted at least the transmission time interval in the storage unit, and the reception time and identification read from the storage unit for each of the plurality of sensor modules Transmission timing setting means for setting a transmission timing for transmitting data based on the information and the transmission time interval The transmission timing setting means divides the time of the transmission time interval into a plurality of equal allocation times based on the number of the plurality of sensor modules, and data transmission of one sensor module is performed within the allocation time. As described above, the transmission timing is set for each of the plurality of sensor modules.
 これにより、送信時間間隔内で各センサモジュールのデータの送信タイミングを均等に分散させることが可能となり、データ同士の衝突の発生を抑制することができる。したがって、計測データの再送信による、センサモジュールの消費電力を低減し、電池の長寿命化に貢献することができる。加えて、計測データの再送による、サーバ装置の計測データ収集遅延や、収集漏れも確実に低減することができる。 This makes it possible to evenly distribute the data transmission timing of each sensor module within the transmission time interval, and to suppress the occurrence of collision between the data. Therefore, it is possible to reduce the power consumption of the sensor module due to the re-transmission of the measurement data and contribute to the extension of the battery life. In addition, it is possible to reliably reduce measurement data collection delay and collection omission in the server device due to retransmission of measurement data.
 本発明の上記情報処理装置においては、さらに、上記送信タイミング設定手段は、上記識別情報より接続されているセンサモジュールの数を判定し、上記送信時間間隔の時間をセンサモジュールの数で割って上記割当時間を算出する第1割当時間算出手段を含む構成とすることもできる。 In the information processing apparatus of the present invention, the transmission timing setting means further determines the number of sensor modules connected from the identification information, and divides the time of the transmission time interval by the number of sensor modules. It can also be configured to include a first allocation time calculation means for calculating the allocation time.
 上記構成によれば、実際に接続されているセンサモジュール数に見合った割当時間が算出されるので、このように算出した割当時間にて、上記複数のセンサモジュールの各々の送信タイミングを設定することで、実際に接続されているセンサモジュール数を均等に分散させることが可能となる。 According to the above configuration, the allocation time corresponding to the number of sensor modules actually connected is calculated, so that the transmission timing of each of the plurality of sensor modules is set with the allocation time calculated in this way. Thus, the number of actually connected sensor modules can be evenly distributed.
 本発明の上記情報処理装置においては、さらに、上記送信タイミング設定手段は、上記識別情報より接続されているセンサモジュールの数を判定し、上記送信時間間隔の時間を、接続されているセンサモジュールの数に架空のセンサモジュールの数を加算した値で割って上記割当時間を算出する第2割当時間算出手段を備え、上記複数のセンサモジュールのうちの所定のセンサモジュールのデータ送信の前後に、上記架空のセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定する構成とすることもできる。 In the information processing apparatus of the present invention, the transmission timing setting means further determines the number of sensor modules connected from the identification information, and determines the time of the transmission time interval of the connected sensor modules. A second allocation time calculating means for calculating the allocation time by dividing the number by the value obtained by adding the number of imaginary sensor modules, and before and after data transmission of a predetermined sensor module of the plurality of sensor modules, The transmission timing may be set for each of the plurality of sensor modules so that the data transmission of the imaginary sensor module is performed.
 上記構成によれば、実際に接続されているセンサモジュール数に架空のセンサモジュール数を加算した値を基に割当時間が算出されるので、割当時間は、実際に接続されているセンサモジュール数に見合った割当時間よりも短くなる。 According to the above configuration, since the allocation time is calculated based on the value obtained by adding the number of imaginary sensor modules to the number of sensor modules actually connected, the allocation time is calculated based on the number of sensor modules actually connected. It will be shorter than the appropriate allocation time.
 しかしながら、割当時間を縮めることで確保した架空のセンサモジュールがデータを送信するための時間(架空のセンサモジュールの割当時間)を、複数のセンサモジュールのうちの所定のセンサモジュールの前後に配置することで、当該所定のセンサモジュールのデータ送信の前後を広く確保することができる。 However, the time for the fictitious sensor module secured by shortening the allocation time to transmit data (allocation time of the fictitious sensor module) is arranged before and after a predetermined sensor module among the plurality of sensor modules. Thus, it is possible to ensure a wide range before and after data transmission of the predetermined sensor module.
 これにより、例えば、重要なデータを計測しているセンサモジュールや、送信タイミングがズレ易いセンサモジュール、或いは再送回数の多いセンサモジュールを上記の所定のセンサモジュールとすることで、より効果的に、データ収集漏れや、センサモジュールの消費電力の低減を、より効果的に図ることができる。 As a result, for example, by making a sensor module measuring important data, a sensor module whose transmission timing is easily shifted, or a sensor module having a large number of retransmissions as the predetermined sensor module, the data can be more effectively It is possible to more effectively reduce collection leakage and power consumption of the sensor module.
 この場合、例えば、上記所定のセンサモジュールは、任意に設定可能であり、上記送信タイミング設定手段は、各センサモジュールの識別情報に基づいて、所定のセンサモジュールを特定する構成としてもよい。 In this case, for example, the predetermined sensor module can be arbitrarily set, and the transmission timing setting unit may be configured to specify the predetermined sensor module based on the identification information of each sensor module.
 或いは、上記複数のセンサモジュールの各々は、上記データの送信に失敗した場合に当該データを再度送信する再送処理を行い、上記再送処理の回数である再送回数をデータと共にサーバ装置に送信し、上記送信タイミング設定手段は、取得した再送回数を基に、再送回数が閾値を超えるセンサモジュールを上記所定のセンサモジュールとする構成としてもよい。 Alternatively, each of the plurality of sensor modules performs a retransmission process of transmitting the data again when transmission of the data fails, transmits the number of retransmissions that is the number of retransmission processes to the server apparatus together with the data, The transmission timing setting means may be configured such that a sensor module whose number of retransmissions exceeds a threshold is the predetermined sensor module based on the acquired number of retransmissions.
 或いは、複数のセンサモジュールの各々の受信時刻を記憶部に蓄積して記憶させ、センサモジュール毎の送信時間間隔のズレ量を検出するズレ量検出手段を備え、上記送信タイミング設定手段は、上記ズレ量検出手段で検出されたズレ量を基に、ズレ量が閾値を超えるセンサモジュールを上記所定のセンサモジュールとする構成としてもよい。 Alternatively, the reception time of each of the plurality of sensor modules is accumulated and stored in a storage unit, and includes a shift amount detection unit that detects a shift amount of a transmission time interval for each sensor module, and the transmission timing setting unit includes the shift timing setting unit. Based on the amount of deviation detected by the amount detection means, a sensor module in which the amount of deviation exceeds a threshold may be used as the predetermined sensor module.
 本発明の上記情報処理装置においては、さらに、上記送信タイミング設定手段は、割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について、次回の測定データを送信するまでの待機時間であるオフセット値を算出するオフセット値算出手段を含み、上記オフセット値算出部で算出されたオフセット値を設定することにより、上記複数のセンサモジュールの各々について送信タイミングを設定する構成とすることもできる。 In the information processing apparatus according to the present invention, the transmission timing setting means further transmits next measurement data for each of the plurality of sensor modules so that data transmission of one sensor module is performed within the allocated time. Including an offset value calculating means for calculating an offset value that is a waiting time until transmission, and setting a transmission timing for each of the plurality of sensor modules by setting the offset value calculated by the offset value calculating unit. It can also be configured.
 これによれば、複数のセンサモジュールの各々について、送信タイミングが、次回の測定データを送信するまでの待機時間であるオフセット値として算出さてるので、センサモジュールは、次回に計測データを送信するまでの時間にオフセット値を加算するだけで、送信タイミングを変更することとなる。 According to this, since the transmission timing is calculated as an offset value that is a waiting time until the next measurement data is transmitted for each of the plurality of sensor modules, the sensor module will transmit the measurement data next time. The transmission timing is changed by simply adding the offset value to this time.
 また、本発明の上記情報処理装置においては、さらに、上記割当時間が、上記複数のセンサモジュールの各々にてタイミングを設定可能な単位時間よりも小さくなる場合に、上記割当時間が上記単位時間以上となるように、上記送信時間間隔を変更する送信時間間隔変更手段をさらに備え、上記送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、上記送信時間間隔変更手段にて変更された送信時間間隔の時間を複数の均等な割当時間に分割して、各センサモジュールの送信タイミングを設定する構成とすることもできる。 In the information processing apparatus of the present invention, when the allocation time is smaller than a unit time for which timing can be set in each of the plurality of sensor modules, the allocation time is equal to or more than the unit time. The transmission time interval changing means for changing the transmission time interval is further provided, and the transmission timing setting means is changed by the transmission time interval changing means based on the number of the plurality of sensor modules. It is also possible to divide the time of the transmission time interval into a plurality of equally allocated times and set the transmission timing of each sensor module.
 このような構成とすることで、接続されるセンサモジュールの個数が多く、割当時間が、センサモジュールにおける送信タイミングを設定可能な単位時間よりも小さくなる場合は、強制的に割当時間が単位時間以上となるように、送信時間間隔が広げられるので、より効果的に、データ同士の衝突を回避して、センサモジュールの消費電力を低減し、電池の長寿命化に貢献することができる。 With this configuration, if the number of connected sensor modules is large and the allocation time is smaller than the unit time in which the transmission timing in the sensor module can be set, the allocation time is forcibly over the unit time. Thus, since the transmission time interval is widened, collision of data can be avoided more effectively, the power consumption of the sensor module can be reduced, and the battery life can be extended.
 また、本発明の上記情報処理装置においては、さらに、上記受信時刻記憶手段は、上記複数のセンサモジュールのうちの1つと通信する毎に、上記受信時刻及び識別情報を更新する構成としてもよい。 Further, in the information processing apparatus of the present invention, the reception time storage means may be configured to update the reception time and identification information every time it communicates with one of the plurality of sensor modules.
 また、本発明の上記情報処理装置においては、さらに、上記記憶部から読み出した上記識別情報より接続されている上記複数のセンサモジュールに変更があったことを検出する変更検出手段をさらに備え、上記送信タイミング設定手段は、上記変更検出手段にて変更が検出された場合に、各センサモジュールの各々について、送信タイミングの設定を行う構成としてもよい。 The information processing apparatus of the present invention further includes a change detection unit that detects that the plurality of sensor modules connected from the identification information read from the storage unit has changed, The transmission timing setting means may be configured to set the transmission timing for each of the sensor modules when a change is detected by the change detection means.
 また、本発明のセンサシステムは、上記の情報処理装置と、上記複数のセンサとを備えることを特徴とする。上記の構成によっても、複数のセンサモジュールそれぞれが、全て同じ送信時間間隔でデータをサーバ装置へと送信する構成において、送信時間間隔内で各センサモジュールのデータの送信タイミングを均等に分散させて、データ同士の衝突の発生を抑制することができる。 The sensor system of the present invention is characterized by including the above information processing apparatus and the plurality of sensors. Even in the above configuration, in the configuration in which each of the plurality of sensor modules transmits data to the server device at the same transmission time interval, the transmission timing of the data of each sensor module is evenly distributed within the transmission time interval, The occurrence of collision between data can be suppressed.
 なお、本発明の情報処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各手段として動作させることにより上記情報処理装置をコンピュータにて実現させるプログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 Note that the information processing apparatus of the present invention may be realized by a computer. In this case, a program that causes the computer to operate the information processing apparatus by operating the computer as the above-described means, and a program for recording the program are recorded. Such computer-readable recording media also fall within the scope of the present invention.
 本発明は、複数のセンサから計測データを収集するセンサシステムに利用することができる。 The present invention can be used in a sensor system that collects measurement data from a plurality of sensors.
1    データ処理システム(センサシステム)
100  センサモジュール
100A センサモジュール
101  センサ制御部
102  電源部
103  センサ部
104  センサ通信部
105  計測データ記憶部
106  入力部
107  動作設定パラメータ記憶部
111  計測管理部
112  センサ通信制御部
113  再生回数カウント部
200  サーバ装置
200A サーバ装置
200B サーバ装置
201  サーバ制御部
202  サーバ通信部
203  動作設定パラメータ記憶部
204  センサ通信部
204  計測データ履歴記憶部
205  送信タイミング設定部(送信タイミング設定手段)
205A 送信タイミング設定部(送信タイミング設定手段)
205B 送信タイミング設定部(送信タイミング設定手段)
206  割当時間算出部(第1割当時間算出手段)
206A 割当時間算出部(第2割当時間算出手段)
207  送信オフセット値算出部(送信タイミング設定手段)
207A 送信オフセット値算出部(送信タイミング設定手段)
208  サーバ通信制御部(管理情報記憶手段)
209  変更検出部(変更検出手段)
210  優遇センサ指定部
211  ズレ量検出部(ズレ量検出手段)
212  送信時間間隔変更部(送信時間間隔変更手段)
300  サーバ装置
305  送信タイミング設定部
1 Data processing system (sensor system)
DESCRIPTION OF SYMBOLS 100 Sensor module 100A Sensor module 101 Sensor control part 102 Power supply part 103 Sensor part 104 Sensor communication part 105 Measurement data storage part 106 Input part 107 Operation setting parameter storage part 111 Measurement management part 112 Sensor communication control part 113 Reproduction count counting part 200 Server Device 200A Server device 200B Server device 201 Server control unit 202 Server communication unit 203 Operation setting parameter storage unit 204 Sensor communication unit 204 Measurement data history storage unit 205 Transmission timing setting unit (transmission timing setting means)
205A Transmission timing setting unit (transmission timing setting means)
205B Transmission timing setting unit (transmission timing setting means)
206 Allocation time calculation unit (first allocation time calculation means)
206A Allocation time calculation unit (second allocation time calculation means)
207 Transmission offset value calculation unit (transmission timing setting means)
207A Transmission offset value calculation unit (transmission timing setting means)
208 Server communication control unit (management information storage means)
209 Change detection unit (change detection means)
210 Preferential sensor designation unit 211 Deviation amount detection unit (deviation amount detection means)
212 Transmission time interval changing unit (transmission time interval changing means)
300 Server device 305 Transmission timing setting unit

Claims (15)

  1.  計測により得られたデータを外部に送信する複数のセンサモジュールとネットワークを介して接続され、上記複数のセンサモジュールと通信してデータを収集する情報処理装置であって、
     上記複数のセンサモジュールの各々は、データを送信する送信時間間隔が等しく設定されており、
     上記複数のセンサモジュールと通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールの識別情報とを、少なくとも上記送信時間間隔の時間分、記憶部に記憶する受信時刻記憶手段と、
     上記複数のセンサモジュールの各々について、上記記憶部から読み出した受信時刻及び識別情報と上記送信時間間隔とに基づいてデータを送信する送信タイミングを設定する送信タイミング設定手段を備え、
     上記送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定することを特徴とする情報処理装置。
    An information processing apparatus that is connected to a plurality of sensor modules that transmit data obtained by measurement to the outside via a network and that collects data by communicating with the plurality of sensor modules,
    In each of the plurality of sensor modules, transmission time intervals for transmitting data are set to be equal,
    Reception time storage means for storing the reception time at which data is received and the identification information of the sensor module that has transmitted the data in the storage unit at least for the transmission time interval when communicating with the plurality of sensor modules When,
    For each of the plurality of sensor modules, comprising a transmission timing setting means for setting a transmission timing for transmitting data based on the reception time and identification information read from the storage unit and the transmission time interval,
    The transmission timing setting means divides the time of the transmission time interval into a plurality of equal allocation times based on the number of the plurality of sensor modules, and data transmission of one sensor module is performed within the allocation time. In addition, an information processing apparatus is characterized in that transmission timing is set for each of the plurality of sensor modules.
  2.  上記送信タイミング設定手段は、
     上記識別情報より接続されているセンサモジュールの数を判定し、上記送信時間間隔の時間をセンサモジュールの数で割って上記割当時間を算出する第1割当時間算出手段を備えることを特徴とする請求項1に記載の情報処理装置。
    The transmission timing setting means includes
    A first allocation time calculation unit that determines the number of sensor modules connected from the identification information and calculates the allocation time by dividing the time of the transmission time interval by the number of sensor modules is provided. Item 4. The information processing apparatus according to Item 1.
  3.  上記送信タイミング設定手段は、
     上記識別情報より接続されているセンサモジュールの数を判定し、上記送信時間間隔の時間を、接続されているセンサモジュールの数に架空のセンサモジュールの数を加算した値で割って上記割当時間を算出する第2割当時間算出手段を備え、
     上記複数のセンサモジュールのうちの所定のセンサモジュールのデータ送信の前後に、上記架空のセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定することを特徴とする請求項1に記載の情報処理装置。
    The transmission timing setting means includes
    The number of sensor modules connected is determined from the identification information, and the transmission time interval is divided by the number of sensor modules connected to the number of sensor modules connected to the allocated time. A second allocated time calculating means for calculating,
    A transmission timing is set for each of the plurality of sensor modules so that data transmission of the fictitious sensor module is performed before and after data transmission of a predetermined sensor module among the plurality of sensor modules. The information processing apparatus according to claim 1.
  4.  上記送信タイミング設定手段は、
     上記割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について、次回の測定データを送信するまでの待機時間であるオフセット値を算出するオフセット値算出手段を備え、
     上記オフセット値算出手段で算出されたオフセット値を設定することにより、上記複数のセンサモジュールの各々について送信タイミングを設定することを特徴とする請求項1~3の何れか1項に記載の情報処理装置。
    The transmission timing setting means includes
    Offset value calculation means for calculating an offset value that is a waiting time until the next measurement data is transmitted for each of the plurality of sensor modules so that data transmission of one sensor module is performed within the allocated time. Prepared,
    The information processing according to any one of claims 1 to 3, wherein a transmission timing is set for each of the plurality of sensor modules by setting an offset value calculated by the offset value calculation means. apparatus.
  5.  上記所定のセンサモジュールは、任意に設定可能であり、
     上記送信タイミング設定手段は、各センサモジュールの識別情報に基づいて、所定のセンサモジュールを特定することを特徴とする請求項3に記載の情報処理装置。
    The predetermined sensor module can be arbitrarily set,
    The information processing apparatus according to claim 3, wherein the transmission timing setting unit specifies a predetermined sensor module based on identification information of each sensor module.
  6.  上記複数のセンサモジュールの各々は、上記データの送信に失敗した場合に当該データを再度送信する再送処理を行い、上記再送処理の回数である再送回数をデータと共に情報処理装置に送信し、
     上記送信タイミング設定手段は、取得した再送回数を基に、再送回数が閾値を超えるセンサモジュールを上記所定のセンサモジュールとすることを特徴とする請求項3に記載の情報処理装置。
    Each of the plurality of sensor modules performs retransmission processing to transmit the data again when transmission of the data fails, and transmits the number of retransmissions that is the number of retransmission processing to the information processing apparatus together with the data,
    The information processing apparatus according to claim 3, wherein the transmission timing setting unit sets, as the predetermined sensor module, a sensor module whose number of retransmissions exceeds a threshold value based on the acquired number of retransmissions.
  7.  複数のセンサモジュールの各々の受信時刻を記憶部に蓄積して記憶させ、センサモジュール毎の送信時間間隔のズレ量を検出するズレ量検出手段を備え、
     上記送信タイミング設定手段は、上記ズレ量検出手段で検出されたズレ量を基に、ズレ量が閾値を超えるセンサモジュールを上記所定のセンサモジュールとすることを特徴とする請求項3に記載の情報処理装置。
    The reception time of each of the plurality of sensor modules is accumulated and stored in the storage unit, and includes a deviation amount detecting means for detecting the deviation amount of the transmission time interval for each sensor module,
    4. The information according to claim 3, wherein the transmission timing setting means sets the sensor module whose deviation amount exceeds a threshold value as the predetermined sensor module based on the deviation amount detected by the deviation amount detection means. Processing equipment.
  8.  上記受信時刻記憶手段は、上記複数のセンサモジュールのうちの1つと通信する毎に、上記受信時刻及び識別情報を更新することを特徴とする請求項1~7の何れか1項に記載の情報処理装置。 The information according to any one of claims 1 to 7, wherein the reception time storage means updates the reception time and the identification information every time communication is performed with one of the plurality of sensor modules. Processing equipment.
  9.  上記記憶部から読み出した上記識別情報より接続されている上記複数のセンサモジュールに変更があったことを検出する変更検出手段をさらに備え、
     上記送信タイミング設定手段は、上記変更検出手段にて変更が検出された場合に、各センサモジュールの各々について、送信タイミングの設定を行うことを特徴とする請求項1~8の何れか1項に記載の情報処理装置。
    It further comprises change detection means for detecting that there is a change in the plurality of sensor modules connected from the identification information read from the storage unit,
    9. The transmission timing setting unit according to claim 1, wherein when a change is detected by the change detection unit, the transmission timing is set for each of the sensor modules. The information processing apparatus described.
  10.  上記送信タイミング設定手段は、上記割当時間が、上記複数のセンサモジュールの各々にて送信タイミングを設定可能な単位時間よりも小さくなる場合には、上記複数のセンサモジュールを、送信時間間隔の時間を上記単位時間で割った値であるN(正の整数)個を1グループとしてグループ化し、グループ内の各センサモジュールについては、上記単位時間を上記割当時間として送信タイミングを設定し、
     端数のセンサモジュールについては、端数のセンサモジュールの数に応じて上記割当時間を求め、該割当時間に基づいて送信タイミングを設定することを特徴とする請求項1~9の何れか1項に記載の情報処理装置。
    The transmission timing setting means sets the plurality of sensor modules to a transmission time interval when the allocated time is smaller than a unit time in which the transmission timing can be set in each of the plurality of sensor modules. N (positive integer) values divided by the unit time are grouped as one group, and for each sensor module in the group, the transmission timing is set using the unit time as the allocated time,
    10. The fractional sensor module, wherein the allocation time is obtained according to the number of fractional sensor modules, and transmission timing is set based on the allocation time. Information processing device.
  11.  上記割当時間が、上記複数のセンサモジュールの各々にて送信タイミングを設定可能な単位時間よりも小さくなる場合に、上記割当時間が上記単位時間以上となるように、上記送信時間間隔を変更する送信時間間隔変更手段をさらに備え、
     上記送信タイミング設定手段は、上記複数のセンサモジュールの数に基づいて、上記送信時間間隔変更手段にて変更された送信時間間隔の時間を複数の均等な割当時間に分割して、各センサモジュールの送信タイミングを設定することを特徴とする請求項1~9の何れか1項に記載の情報処理装置。
    Transmission for changing the transmission time interval so that the allocated time becomes equal to or longer than the unit time when the allocated time is smaller than a unit time for which transmission timing can be set in each of the plurality of sensor modules. It further comprises a time interval changing means,
    The transmission timing setting means divides the time of the transmission time interval changed by the transmission time interval changing means into a plurality of equal allocated times based on the number of the plurality of sensor modules, 10. The information processing apparatus according to claim 1, wherein transmission timing is set.
  12.  請求項1~11の何れか1項に記載の情報処理装置と、
     複数のセンサモジュールとを備えることを特徴とするセンサシステム。
    An information processing apparatus according to any one of claims 1 to 11,
    A sensor system comprising a plurality of sensor modules.
  13.  計測により得られたデータを外部に送信する送信時間間隔が等しく設定された複数のセンサモジュールの各々について、上記データを送信する送信タイミングを設定する設定方法であって、
     上記複数のセンサモジュールと通信を行った際の、データを受信した受信時刻とデータを送信したセンサモジュールの識別情報とを、少なくとも上記送信時間間隔の時間分、取得する取得ステップと、
     上記複数のセンサモジュールの各々について、上記取得ステップにて取得した受信時刻及び識別情報と上記含み、
     上記設定ステップにおいては、上記複数のセンサモジュールの数に基づいて、送信時間間隔の時間を複数の均等な割当時間に分割し、該割当時間内に1つのセンサモジュールのデータ送信が行われるように、上記複数のセンサモジュールの各々について送信タイミングを設定することを特徴とする設定方法。
    A setting method for setting a transmission timing for transmitting the data for each of a plurality of sensor modules in which transmission time intervals for transmitting data obtained by measurement are set to be equal,
    An acquisition step of acquiring the reception time when data was received and the identification information of the sensor module that transmitted the data at the time of the transmission time interval when communicating with the plurality of sensor modules;
    For each of the plurality of sensor modules, including the reception time and identification information acquired in the acquisition step,
    In the setting step, based on the number of the plurality of sensor modules, the time of the transmission time interval is divided into a plurality of equal allocation times, and data transmission of one sensor module is performed within the allocation time. A setting method comprising: setting a transmission timing for each of the plurality of sensor modules.
  14.  請求項1から11の何れか1項に記載の情報処理装置が備える上記各手段としてコンピュータを機能させるためのプログラム。 The program for functioning a computer as said each means with which the information processing apparatus of any one of Claim 1 to 11 is provided.
  15.  請求項14に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 14 is recorded.
PCT/JP2011/056632 2011-03-15 2011-03-18 Information processing device, sensor system, program and recording medium WO2012124128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057278 2011-03-15
JP2011057278A JP4835802B1 (en) 2011-03-15 2011-03-15 Information processing apparatus, sensor system, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2012124128A1 true WO2012124128A1 (en) 2012-09-20

Family

ID=45418205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056632 WO2012124128A1 (en) 2011-03-15 2011-03-18 Information processing device, sensor system, program and recording medium

Country Status (2)

Country Link
JP (1) JP4835802B1 (en)
WO (1) WO2012124128A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175233A1 (en) * 2013-04-22 2014-10-30 株式会社テイエルブイ Terminal control system
JP2015050634A (en) * 2013-09-02 2015-03-16 株式会社国際電気通信基礎技術研究所 Radio communication system and sensor device
JP2015126302A (en) * 2013-12-26 2015-07-06 日本電気株式会社 Data collection system and data collection method
CN109672590A (en) * 2019-01-10 2019-04-23 平安科技(深圳)有限公司 Collecting method, device, equipment and computer readable storage medium

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814154B2 (en) * 2012-02-17 2015-11-17 Kddi株式会社 Gateway, sensor network system, sensor control method, and program
JP5790555B2 (en) * 2012-03-15 2015-10-07 オムロン株式会社 Sensor module, sensor network system, data transmission method, data transmission program, and data collection method in sensor network system
JP5778621B2 (en) * 2012-05-15 2015-09-16 日本電信電話株式会社 Data distribution management system
JP6191117B2 (en) * 2012-10-18 2017-09-06 日本電気株式会社 Wireless communication apparatus, wireless communication system, wireless communication method, and program
CN105283911A (en) * 2013-03-14 2016-01-27 一般财团法人微机械中心 Sensor terminal
US9195616B2 (en) * 2013-10-29 2015-11-24 Nokia Technologies Oy Apparatus and method for copying rules between devices
JP6376680B2 (en) * 2014-02-19 2018-08-22 公立大学法人広島市立大学 Communication system and communication method
JP6450541B2 (en) * 2014-08-29 2019-01-09 古野電気株式会社 Biological monitoring device
KR101950456B1 (en) 2015-01-19 2019-04-22 엘에스산전 주식회사 Data collecting device for photovoltaic device
JP6616588B2 (en) * 2015-05-08 2019-12-04 株式会社テイエルブイ Terminal control system
JP6590590B2 (en) * 2015-08-26 2019-10-16 シャープ株式会社 Information collection system, terminal device, and program
KR101720993B1 (en) * 2016-02-24 2017-03-29 (주)지트론시스템 A two-way wireless transmitter
JP6520766B2 (en) * 2016-03-09 2019-05-29 オムロン株式会社 Wireless communication apparatus, wireless information collection system, and wireless communication method
JP6750498B2 (en) * 2016-12-21 2020-09-02 富士通株式会社 Control device, control method, control program, and control system
JP2019062413A (en) * 2017-09-27 2019-04-18 三浦工業株式会社 Remote monitoring system
JP7247747B2 (en) * 2019-05-23 2023-03-29 富士通株式会社 Originating Terminal Control Device, Network System, and Originating Terminal Control Program
JP7329403B2 (en) * 2019-09-26 2023-08-18 日清紡マイクロデバイス株式会社 Information gathering system
CN112533207B (en) * 2021-02-05 2021-05-07 浙江地芯引力科技有限公司 Data verification method, device and system of wireless sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260436A (en) * 1986-05-06 1987-11-12 Nec Corp Mobile communication system
JP2007528683A (en) * 2004-03-09 2007-10-11 クゥアルコム・インコーポレイテッド Access channel with restricted arrival time
JP2009218861A (en) * 2008-03-11 2009-09-24 Fujitsu Ltd Radio communication apparatus, radio communication method, and radio communication control program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260436A (en) * 1986-05-06 1987-11-12 Nec Corp Mobile communication system
JP2007528683A (en) * 2004-03-09 2007-10-11 クゥアルコム・インコーポレイテッド Access channel with restricted arrival time
JP2009218861A (en) * 2008-03-11 2009-09-24 Fujitsu Ltd Radio communication apparatus, radio communication method, and radio communication control program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175233A1 (en) * 2013-04-22 2014-10-30 株式会社テイエルブイ Terminal control system
JP2014225897A (en) * 2013-04-22 2014-12-04 株式会社テイエルブイ Terminal control system
JP5684956B1 (en) * 2013-04-22 2015-03-18 株式会社テイエルブイ Terminal control system
US9871689B2 (en) 2013-04-22 2018-01-16 Tlv Co., Ltd. Terminal control system with optimized startup timing of each terminal device based on communication times of other terminal devices
JP2015050634A (en) * 2013-09-02 2015-03-16 株式会社国際電気通信基礎技術研究所 Radio communication system and sensor device
JP2015126302A (en) * 2013-12-26 2015-07-06 日本電気株式会社 Data collection system and data collection method
CN109672590A (en) * 2019-01-10 2019-04-23 平安科技(深圳)有限公司 Collecting method, device, equipment and computer readable storage medium

Also Published As

Publication number Publication date
JP2012195705A (en) 2012-10-11
JP4835802B1 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835802B1 (en) Information processing apparatus, sensor system, program, and recording medium
US11696206B2 (en) Probability forwarding in a flood fill mesh radio network
CN106559739B (en) Lightweight data transmission method suitable for Bluetooth low-power wireless communication system
KR20120032648A (en) Device and method and for transmitting rach preamble
US20230022791A1 (en) Detecting Device Interfering with Security Device
JP2002124935A (en) Method and system for controlling retransmission for multicast distribution service, retransmission controller, radio base station and radio terminal equipment
JP5772597B2 (en) Information sharing system
US9407552B2 (en) Device and system for preventing congestion in ad-hoc network
EP2107713B1 (en) Method and system for reliable broadcast or multicast communication in wireless networks
CN102237978A (en) Collaborative link establishment and maintenance method and related device
US20190132763A1 (en) Method and device for transmitting data
WO2012105062A1 (en) Information processing device, sensor system, setting method, program and recording medium
US10187179B1 (en) System for configuring a packet detection threshold of an audio device
JP5029928B2 (en) Wireless communication device, wireless communication system
EP3840454A1 (en) Computer-implemented method and product for determining a gateway beacon transmission scheme in a low power wide area network
CN107534681A (en) Message processing device, communication system, information processing method and program
CN103222315A (en) Reduced power consumption in a wireless network device
CN102106105A (en) Protocols for multi-hop relay system with centralized scheduling
CN110582060B (en) Communication method, communication device, node equipment and storage medium thereof
US9894180B2 (en) Device, device management apparatus, relay apparatus, and terminal apparatus that are connected with content centric network, and communication method
US11617120B2 (en) Communication system, node, communication method, and computer program product
Miller et al. Reliable and efficient reprogramming in sensor networks
JP4563210B2 (en) Communication control method, communication node, and communication system
JPWO2012046318A1 (en) Wireless station, communication system, and communication method
US20130308544A1 (en) Radio communication system, radio communication method, radio communication device, control method therefor, and storage medium storing control program therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860765

Country of ref document: EP

Kind code of ref document: A1