WO2012123472A1 - Hydrogenation catalyst - Google Patents

Hydrogenation catalyst Download PDF

Info

Publication number
WO2012123472A1
WO2012123472A1 PCT/EP2012/054420 EP2012054420W WO2012123472A1 WO 2012123472 A1 WO2012123472 A1 WO 2012123472A1 EP 2012054420 W EP2012054420 W EP 2012054420W WO 2012123472 A1 WO2012123472 A1 WO 2012123472A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ion
group
anion
process according
Prior art date
Application number
PCT/EP2012/054420
Other languages
French (fr)
Inventor
Tanja Herrmann
Tobias Herzfeld
Martin Lucas
Peter Claus
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Publication of WO2012123472A1 publication Critical patent/WO2012123472A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a process for treating a supported metal containing catalyst, to a catalyst obtainable by such process and to a process for hydrogenation of unsaturated hydrocarbons wherein such catalyst is used.
  • acetylene is known to reduce the
  • nickel sulfide, tungsten/nickel sulfide or copper containing catalysts were initially used for selective hydrogenation of such undesired unsaturated compounds. Due to their low activity at high temperatures the formation of polymers was increased. It is also known to use supported palladium (Pd) containing catalysts based on an aluminium oxide (alumina) or silicium oxide (silica) for such selective hydrogenation processes.
  • supported catalysts based on an alumina, containing both Pd and silver (Ag) are known for their use in such selective hydrogenation processes.
  • Pd-Ag silver
  • acetylene is selectively hydrogenated meaning that acetylene is hydrogenated to ethylene, and not further to ethane, and that hydrogenation of ethylene from the hydrocarbon feed is avoided as much as possible.
  • the present invention relates to a process for treating a supported metal containing
  • the present invention relates to a catalyst obtainable by the above-mentioned process of the present invention.
  • the invention relates to a supported metal containing catalyst, which contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver and which further contains an ionic liquid.
  • the invention relates to a process for the hydrogenation, preferably for the selective
  • hydrocarbons in the hydrocarbon feed are hydrogenated .
  • ionic liquids are salts which melt at a relatively low temperature. Ionic liquids are therefore already liquid at relatively low temperatures. In addition, they are in general not combustible and have no measurable vapour pressure.
  • ionic liquid means a salt which has a melting point or melting range which is below 200 °C, preferably below 150 °C and particularly preferably below 100 °C.
  • Ionic liquids are formed from positive ions and negative ions (cations and anions, respectively) , but are overall neutral in charge.
  • the positive and also the negative ions are predominantly monovalent, but
  • multivalent anions and/or cations which have up to five, preferably up to four, particularly preferably up to three and particularly preferably up to two electric charges are also possible.
  • respective ions are either localized or delocalized.
  • Kernchen et al . in Chem. Eng. Technol. 2007, 30, No. 8, 985-994 describe the use of a commercial nickel catalyst coated with the ionic liquid [BMIM] [n- C 8 Hi70S0 3 ] in the sequential hydrogenation of
  • the ionic liquid was either hydroxyl-functionalized l-butyl-3-methylimidazolium N- bis (trifluoromethanesulfonyl ) imidate [bmimOH] [TF 2 N] or 1- butyl-3-methylimidazolium hexafluorophosphate
  • the sintered metal fibers comprised nickel, chromium and aluminum.
  • the palladium nanoparticles were tested for the selective hydrogenation of acetylene to ethylene .
  • a "supported metal containing catalyst” means a catalyst comprising a support and containing one or more catalytically active metals .
  • the catalyst contains one or more, preferably two, metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver.
  • said one or more metals is or are selected from the group consisting of copper, gold, platinum, palladium and silver. More preferably, said one or more metals is or are selected from the group
  • the catalyst contains only one metal selected from the group
  • the catalyst may contain nickel only, copper only, gold only, platinum only, palladium only or silver only.
  • the catalyst contains two or more metals wherein one of the metals is palladium and the at least one other metal is selected from the group consisting of nickel, copper, gold, platinum and silver. More preferably, the catalyst contains palladium and/or silver. Even more preferably, the catalyst contains palladium and silver. Most
  • the catalyst solely contains palladium and silver as the catalytically active metals.
  • the catalyst contains palladium in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains palladium in a concentration of from 0.02 to 0.05 wt.%, preferably 0.03 to 0.04 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains platinum in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to
  • the catalyst contains gold in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains silver in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains silver in a concentration of from 0.0068 to 0.03 wt.%, preferably 0.01 to 0.03 wt.% and in particular 0.01 to 0.025 wt . % (based on the total weight of the catalyst) .
  • the catalyst contains copper in a concentration of from 0.01 to 5.00 wt.%, preferably 0.1 to 4.0 wt.%, more preferably 0.5 to 3.0 wt.% and in particular 1.0 to
  • the catalyst contains nickel in a concentration of from 0.01 to 5.00 wt.%, preferably 0.1 to 4.0 wt.%, more preferably 0.5 to 3.0 wt.% and in particular 1.0 to 2.0 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains palladium in a concentration of from 0.02 to 0.05 wt.%, preferably 0.03 to 0.04 wt.%
  • silver in a concentration of from 0.0068 to 0.03 wt.%, preferably 0.01 to 0.03 wt.% and in particular 0.01 to 0.025 wt.% (based on the total weight of the catalyst) .
  • the catalyst contains palladium and silver and the weight ratio of the palladium to the silver is of from 1.5 to 3.0, preferably 2.0 to 3.0.
  • the catalyst further comprises a support.
  • the support is selected from the group consisting of C (carbon) , T1O 2 (titania) , A1 2 0 3 (alumina) , ZrC>2 (zirconia) and S1O2 (silica) .
  • C carbon
  • T1O 2 titanium
  • A1 2 0 3 alumina
  • ZrC>2 zirconia
  • S1O2 sica
  • the catalyst support also modifications of C, T1O2, AI2O3, Zr02 and S1O2 can be used.
  • combinations of the catalyst supports selected from the group consisting of C, T1O 2 , A1 2 0 3 , ZrC> 2 and S1O 2 can be used.
  • the catalyst support is AI 2 O 3 or a modification thereof. More preferably, the catalyst comprises alumina as the support. Most preferably, the catalyst solely comprises alumina as the support.
  • the catalyst may be in the form of hollow cylinders, tablets, spheres or extrudates.
  • the ionic liquid comprises (i) a cation which is an ⁇ , ⁇ '- dialkylimidazolium ion or an N-alkylpyridinium ion and (ii) an anion selected from the group consisting of tetrafluoroborate ion, alkoxyphosphonate ions,
  • alkylsulfonate ions hexafluorophosphate ion and amide ions. More preferably, said anion is selected from the group consisting of alkoxyphosphonate ions and amide ions. Most preferably, said anion is an amide ion.
  • the alkyl groups in the N, N ' -dialkylimidazolium ion and N-alkylpyridinium ion for the ionic liquid may be Ci- Cio alkyl groups, preferably C1-C alkyl groups.
  • suitable C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl , 2 , 4 , 4-trimethylpentyl and decyl .
  • said cation for the ionic liquid is an N, N ' -dialkylimidazolium ion, preferably an ⁇ , ⁇ '- dialkylimidazolium ion wherein the alkyl groups are C1- C10 alkyl groups as described hereinabove, preferably C1-C4 alkyl groups as described hereinabove.
  • N, N ' -dialkylimidazolium ion is l-butyl-3-methylimidazolium ion (BMIM ion) .
  • a particularly preferred ⁇ , ⁇ '- dialkylimidazolium ion is 1 , 3-dimethylimidazolium ion
  • the anion from the ionic liquid may be tetrafluoroborate ion which is of the formula BF ⁇ .
  • the anion from the ionic liquid may be an alkoxyphosphonate ion.
  • R is an alkyl group, preferably a Ci- Cio alkyl group, more preferably a C1-C alkyl group.
  • suitable C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl , 2 , 4 , 4-trimethylpentyl and decyl .
  • a particularly preferred alkoxyphosphonate ion is methoxyphosphonate ion.
  • the anion from the ionic liquid may be an alkylsulfonate ion.
  • C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2- ethylhexyl, 2 , 4 , 4-trimethylpentyl and decyl.
  • the anion from the ionic liquid may be hexafluorophosphate ion which is of the formula P F 6 ⁇ .
  • the anion from the ionic liquid may be an amide ion.
  • the amide ion is of the formula R-N ⁇ -R ' wherein R and R ' may be the same or different and are preferably electron-withdrawing
  • Electron-withdrawing substituents are substituents that draw electrons away from an electron rich place in a molecule, in this case from the electron rich nitrogen atom in said amide ion.
  • R and R' are selected from the group
  • a particularly preferred amide ion is dicyanamide ion, that is to say an ion of said formula R-N ⁇ -R' wherein both R and R' are cyano.
  • R is an alkyl group, preferably a C 1 -C 1 2 alkyl group, more preferably a C 1 -C4 alkyl group, for example methyl, ethyl or n-butyl .
  • Said alkyl group may be linear or branched. Further, said alkyl group may be substituted with one or more halogen atoms.
  • the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and an amide ion or alkoxyphosphonate ion as described hereinabove as the anion
  • said N, N ' -dialkylimidazolium ion is 1- butyl-3-methylimidazolium ion or 1 , 3-dimethylimidazolium ion.
  • the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and dicyanamide ion as the anion. More preferably, said ionic liquid comprises 1- butyl-3-methylimidazolium ion and dicyanamide ion, which ionic liquid is exemplified in the Examples below.
  • the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and
  • said ionic liquid comprises 1 , 3-dimethylimidazolium ion and methoxyphosphonate ion
  • the catalyst is contacted with a solution comprising a solvent and said ionic liquid.
  • the solvent in said solution comprising an ionic liquid may be any kind of solvent.
  • the solvent may be acetone.
  • contacting said catalyst with the solution comprising solvent and ionic liquid may be performed by spraying the solution onto the catalyst.
  • Said spraying may be carried out with a nozzle capable of finely dispersing liquids.
  • said solvent is to be removed.
  • removal may be performed by any means known to a skilled person, such as drying. Drying of the impregnated catalyst may, for example, be carried out at any temperature between room temperature and 200 °C. Such drying can be carried out under static or dynamic conditions, for instance in a fixed bed, or in a moving bed.
  • the catalyst according to the present invention preferably can be used in a hydrogenation process, in particular a selective hydrogenation of a hydrocarbon feed comprising unsaturated hydrocarbons.
  • the hydrocarbon feed in the hydrogenation process of the present invention comprises a first and a second group of unsaturated hydrocarbons.
  • Said first group may contain undesired, that means highly
  • unsaturated hydrocarbons in particular aromatics, alkynes and/or di-, tri- or polyunsaturated hydrocarbons, particularly alkadienes, alkatrienes or alkapolyenes , such as acetylene, propyne, propadiene, butadienes, vinylacetylene, butynes, phenylacetylene and/or styrene.
  • said second group may contain desired, that means less unsaturated hydrocarbons, in particular monounsaturated hydrocarbons, namely alkenes,
  • said first group comprises acetylene and said second group comprises ethylene .
  • the undesired first group of unsaturated hydrocarbons is removed, in particular hydrogenated, preferably to a desired less unsaturated hydrocarbon, thereby leaving the second group of unsaturated hydrocarbons in their
  • the hydrocarbon feed in the hydrogenation process of the present invention comprises a first and a second group of unsaturated hydrocarbons
  • the first group of unsaturated hydrocarbons comprises acetylene
  • the hydrocarbon feed may comprise in its first group of unsaturated hydrocarbons acetylene, in
  • hydrocarbons preferably ethylene.
  • acetylene is hydrogenated selectively to ethylene.
  • the catalyst according to the present invention can be used in a hydrogenation process, in particular a selective hydrogenation of a hydrocarbon feed comprising unsaturated hydrocarbons as mentioned above, with a particular long catalyst lifetime allowing significantly increased cycle times. Based on the particular high durability of said catalyst,
  • the catalyst according to the present invention reduces the formation of higher hydrocarbons .
  • the present hydrogenation process is carried out in the gas phase.
  • hydrogenation process is carried out according to the conditions of a front-end or tail-end hydrogenation process, preferably for the hydrogenation of C2 to C3 hydrocarbons .
  • the hydrocarbon feed is contacted with the catalyst at a temperature of from 10 to 250 °C, preferably 30 to 200 °C, preferably 50 to 180 °C and in particular 60 to 120 °C.
  • the hydrocarbon feed is contacted with the catalyst at a pressure of from 0.5 to 90 bar, preferably 0.5 to 60 bar, preferably 5 to 20 bar and in particular 10 to 20 bar.
  • the hydrocarbon feed is conducted with the catalyst at a GHSV (gas hourly space velocity) from 1000 to 15000 v/vh, 3000 to 12000 v/vh, preferably 3000 to 7000 v/vh and in particular 3000 to 4000 v/vh.
  • GHSV gas hourly space velocity
  • v/vh stands for volume gas per volume catalyst per hour.
  • the hydrocarbon feed is contacted with a catalyst without the use of carbon monoxide as moderator. Furthermore, the hydrogenation can be carried out without carbon monoxide, namely is a monocarboxide- free process.
  • the molar ratio of hydrogen to acetylene is of from 0.8 to 1.8, preferably 1.0 to 1.5 and in particular 1.0 to 1.3.
  • the molar ratio of hydrogen to acetylene is of from 1.8 to 100, preferably 1.8 to 70, preferably 1.8 to 30 and in particular 1.8 to 10.
  • the hydrocarbon feed is contacted with hydrogen to obtain the hydrogenated products.
  • the invention is further illustrated by the following Examples .
  • BMIM dicyanamide l-butyl-3-methylimidazolium dicyanamide
  • Example 1 The procedure of Example 1 was repeated, with the exception that a solution of 1.0 g of BMIM dicyanamide in 10 ml of acetone was used.
  • S The selectivity towards ethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a process for treating a supported metal containing catalyst, comprising contacting the catalyst with a solution comprising a solvent and an ionic liquid and removing the solvent, wherein the catalyst contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver. Further, the invention relates to the catalyst obtained in said process, and to the use of such catalyst in the selective hydrogenation of unsaturated hydrocarbons, such as acetylene.

Description

HYDROGENATION CATALYST
The present invention relates to a process for treating a supported metal containing catalyst, to a catalyst obtainable by such process and to a process for hydrogenation of unsaturated hydrocarbons wherein such catalyst is used.
In refineries and petrochemical facilities large amounts of hydrocarbons are produced and stored which comprise significant amounts of unsaturated hydrocarbons causing problems during the further processing steps and its storage. Such unsaturated compounds are for instance acetylene, propyne, propadiene, butadienes,
vinylacetylene, butynes, phenylacetylene and styrene.
For example, acetylene is known to reduce the
catalyst activity in polymerisation processes and the quality of the polymers is deteriorated. Thus, in the synthesis of polyethylene from ethylene the concentration of acetylene should be minimized.
These undesired unsaturated compounds are removed mainly by selective hydrogenation wherein these compounds are hydrogenated, preferably to a content of less than a few parts per million (ppm) . It is important for the efficiency of the selective acetylene hydrogenation in ethylene feeds that the selective hydrogenation of ethylene to ethane and the oligomerization to higher hydrocarbons and the production of coke are avoided.
In the art, nickel sulfide, tungsten/nickel sulfide or copper containing catalysts were initially used for selective hydrogenation of such undesired unsaturated compounds. Due to their low activity at high temperatures the formation of polymers was increased. It is also known to use supported palladium (Pd) containing catalysts based on an aluminium oxide (alumina) or silicium oxide (silica) for such selective hydrogenation processes.
Further, supported catalysts based on an alumina, containing both Pd and silver (Ag) , are known for their use in such selective hydrogenation processes. Such Pd-
Ag-Al2C>3 catalysts and their use are for example
described in US2802889, US3243387, US4484015, EP0722776 and US20040248732.
According to the state of the art catalysts exhibit an unsatisfactory selectivity, in particular when
employed in a hydrogenation process, in particular in selective hydrogenation processes for hydrogenating acetylene, propyne, propadiene, butadienes,
vinylacetylene, butynes, phenylacetylene and styrene. For example, in the case of hydrogenation of acetylene from a hydrocarbon feed comprising ethylene, it is important that acetylene is selectively hydrogenated meaning that acetylene is hydrogenated to ethylene, and not further to ethane, and that hydrogenation of ethylene from the hydrocarbon feed is avoided as much as possible.
Therefore, the technical problem underlying the present invention is to overcome the above-identified
disadvantage, in particular to provide a catalyst for the hydrogenation of a hydrocarbon feed that has such higher selectivity.
Surprisingly it was found that such selectivity is increased by first treating the catalyst with an ionic liquid .
Accordingly, the present invention relates to a process for treating a supported metal containing
catalyst, comprising contacting the catalyst with a solution comprising a solvent and an ionic liquid and removing the solvent, wherein the catalyst contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver. Further, the present invention relates to a catalyst obtainable by the above-mentioned process of the present invention.
Further, the invention relates to a supported metal containing catalyst, which contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver and which further contains an ionic liquid.
Further, the invention relates to a process for the hydrogenation, preferably for the selective
hydrogenation, of a hydrocarbon feed, preferably
comprising a first and a second group of unsaturated hydrocarbons, wherein the hydrocarbon feed is contacted under suitable hydrogenating conditions with the catalyst obtained by the above-mentioned process of the present invention, or with the above-mentioned catalyst
obtainable by the above-mentioned process of the present invention or with the above-mentioned supported metal containing catalyst, which contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver and which further contains an ionic liquid, and the unsaturated
hydrocarbons in the hydrocarbon feed, preferably in the first group, are hydrogenated .
As defined by Wasserscheid and Keim in "Angewandte Chemie" 2000, 112, pages 3926-3945, ionic liquids are salts which melt at a relatively low temperature. Ionic liquids are therefore already liquid at relatively low temperatures. In addition, they are in general not combustible and have no measurable vapour pressure. Within the present specification, "ionic liquid" means a salt which has a melting point or melting range which is below 200 °C, preferably below 150 °C and particularly preferably below 100 °C.
Ionic liquids are formed from positive ions and negative ions (cations and anions, respectively) , but are overall neutral in charge. The positive and also the negative ions are predominantly monovalent, but
multivalent anions and/or cations which have up to five, preferably up to four, particularly preferably up to three and particularly preferably up to two electric charges are also possible. The charges within the
respective ions are either localized or delocalized.
It is known to treat a supported metal containing catalyst with an ionic liquid.
For example, in US20090264691 it is described that it was found that by coating with an ionic liquid the activity of the catalyst can be reduced so markedly that even shaped bodies with a diameter of up to 2 cm can be used without significant losses in respect of product selectivity having to be accepted. In the Examples of said US20090264691, a supported nickel catalyst was coated with l-butyl-3-methylimidazolium octyl sulfate (BMIM octyl sulfate) as an ionic liquid. The coated catalyst was used in the hydrogenation of cyclooctadiene .
Further, Kernchen et al . in Chem. Eng. Technol. 2007, 30, No. 8, 985-994 describe the use of a commercial nickel catalyst coated with the ionic liquid [BMIM] [n- C8Hi70S03] in the sequential hydrogenation of
cyclooctadiene to cyclooctene (COE) and cyclooctane. It is said that compared to the uncoated catalyst, the coating with the ionic liquid enhanced the maximum intrinsic COE yield from 40 to 70%. Further, Ruta et al . in J. Phys . Chem. C 2008, 112, 17814-17819 describe that palladium nanoparticles were obtained via reduction of Pd(acac)2 dissolved in an ionic liquid supported on carbon nanofibers anchored to
sintered metal fibers. The ionic liquid was either hydroxyl-functionalized l-butyl-3-methylimidazolium N- bis (trifluoromethanesulfonyl ) imidate [bmimOH] [TF2N] or 1- butyl-3-methylimidazolium hexafluorophosphate
[bmim] [PFe] . The sintered metal fibers comprised nickel, chromium and aluminum. The palladium nanoparticles were tested for the selective hydrogenation of acetylene to ethylene .
Within the present specification, a "supported metal containing catalyst" means a catalyst comprising a support and containing one or more catalytically active metals .
In the present invention, the catalyst contains one or more, preferably two, metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver. Preferably, said one or more metals is or are selected from the group consisting of copper, gold, platinum, palladium and silver. More preferably, said one or more metals is or are selected from the group
consisting of gold, platinum, palladium and silver.
In case, in the present invention, the catalyst contains only one metal selected from the group
consisting of nickel, copper, gold, platinum, palladium and silver, the catalyst may contain nickel only, copper only, gold only, platinum only, palladium only or silver only.
In a preferred embodiment of the present invention, the catalyst contains two or more metals wherein one of the metals is palladium and the at least one other metal is selected from the group consisting of nickel, copper, gold, platinum and silver. More preferably, the catalyst contains palladium and/or silver. Even more preferably, the catalyst contains palladium and silver. Most
preferably, the catalyst solely contains palladium and silver as the catalytically active metals.
In a preferred embodiment of the present invention, the catalyst contains palladium in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains palladium in a concentration of from 0.02 to 0.05 wt.%, preferably 0.03 to 0.04 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains platinum in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to
1.2 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains gold in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains silver in a concentration of from 0.01 to 2.50 wt.%, preferably 0.1 to 2.0 wt.%, more preferably 0.5 to 1.5 wt.% and in particular 0.8 to 1.2 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains silver in a concentration of from 0.0068 to 0.03 wt.%, preferably 0.01 to 0.03 wt.% and in particular 0.01 to 0.025 wt . % (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains copper in a concentration of from 0.01 to 5.00 wt.%, preferably 0.1 to 4.0 wt.%, more preferably 0.5 to 3.0 wt.% and in particular 1.0 to
2.0 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains nickel in a concentration of from 0.01 to 5.00 wt.%, preferably 0.1 to 4.0 wt.%, more preferably 0.5 to 3.0 wt.% and in particular 1.0 to 2.0 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains palladium in a concentration of from 0.02 to 0.05 wt.%, preferably 0.03 to 0.04 wt.%
(based on the total weight of the catalyst) and silver in a concentration of from 0.0068 to 0.03 wt.%, preferably 0.01 to 0.03 wt.% and in particular 0.01 to 0.025 wt.% (based on the total weight of the catalyst) .
In a preferred embodiment of the present invention, the catalyst contains palladium and silver and the weight ratio of the palladium to the silver is of from 1.5 to 3.0, preferably 2.0 to 3.0.
In the present invention, the catalyst further comprises a support. In a preferred embodiment of the present invention, the support is selected from the group consisting of C (carbon) , T1O2 (titania) , A1203 (alumina) , ZrC>2 (zirconia) and S1O2 (silica) . As catalyst support, also modifications of C, T1O2, AI2O3, Zr02 and S1O2 can be used. Preferably, combinations of the catalyst supports selected from the group consisting of C, T1O2, A1203, ZrC>2 and S1O2 can be used. In a preferred embodiment of the present invention, the catalyst support is AI2O3 or a modification thereof. More preferably, the catalyst comprises alumina as the support. Most preferably, the catalyst solely comprises alumina as the support.
In a preferred embodiment of the present invention, the catalyst may be in the form of hollow cylinders, tablets, spheres or extrudates.
Preferably, in the present invention, the ionic liquid comprises (i) a cation which is an Ν,Ν'- dialkylimidazolium ion or an N-alkylpyridinium ion and (ii) an anion selected from the group consisting of tetrafluoroborate ion, alkoxyphosphonate ions,
alkylsulfonate ions, hexafluorophosphate ion and amide ions. More preferably, said anion is selected from the group consisting of alkoxyphosphonate ions and amide ions. Most preferably, said anion is an amide ion.
The alkyl groups in the N, N ' -dialkylimidazolium ion and N-alkylpyridinium ion for the ionic liquid may be Ci- Cio alkyl groups, preferably C1-C alkyl groups. Examples of suitable C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl , 2 , 4 , 4-trimethylpentyl and decyl . Preferably, said cation for the ionic liquid is an N, N ' -dialkylimidazolium ion, preferably an Ν,Ν'- dialkylimidazolium ion wherein the alkyl groups are C1- C10 alkyl groups as described hereinabove, preferably C1-C4 alkyl groups as described hereinabove.
A particularly preferred N, N ' -dialkylimidazolium ion is l-butyl-3-methylimidazolium ion (BMIM ion) .
Further, a particularly preferred Ν,Ν'- dialkylimidazolium ion is 1 , 3-dimethylimidazolium ion
(DMIM ion) . In the present invention, the anion from the ionic liquid may be tetrafluoroborate ion which is of the formula BF ~.
In the present invention, the anion from the ionic liquid may be an alkoxyphosphonate ion. The
alkoxyphosphonate ion is of the formula RO- PH(=0)0~ wherein R is an alkyl group, preferably a Ci- Cio alkyl group, more preferably a C1-C alkyl group. Examples of suitable C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl , 2 , 4 , 4-trimethylpentyl and decyl . A particularly preferred alkoxyphosphonate ion is methoxyphosphonate ion.
In the present invention, the anion from the ionic liquid may be an alkylsulfonate ion. The alkylsulfonate ion is of the formula R- S(=0)20~ wherein R is an alkyl group, preferably a C1- C10 alkyl group, more preferably a C1-C4 alkyl group. Examples of suitable C1- C10 alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2- ethylhexyl, 2 , 4 , 4-trimethylpentyl and decyl.
In the present invention, the anion from the ionic liquid may be hexafluorophosphate ion which is of the formula P F6 ~ .
In the present invention, the anion from the ionic liquid may be an amide ion. The amide ion is of the formula R-N~-R ' wherein R and R ' may be the same or different and are preferably electron-withdrawing
substituents . Electron-withdrawing substituents , in general, are substituents that draw electrons away from an electron rich place in a molecule, in this case from the electron rich nitrogen atom in said amide ion. Preferably, R and R' are selected from the group
consisting of cyano and alkanesulfonyl .
A particularly preferred amide ion is dicyanamide ion, that is to say an ion of said formula R-N~-R' wherein both R and R' are cyano.
Said alkanesulfonyl substituent in said amide ion is of the formula R-S(=0)2~ wherein R is an alkyl group, preferably a C1-C12 alkyl group, more preferably a C1-C4 alkyl group, for example methyl, ethyl or n-butyl . Said alkyl group may be linear or branched. Further, said alkyl group may be substituted with one or more halogen atoms. Said alkanesulfonyl substituent is preferably a trihalogenmethanesulfonyl substituent which is of the formula CX3-S(=0)2_ wherein X is a halogen atom selected from the group consisting of fluorine, chlorine, bromine and iodine. More preferably, said halogen atom is
fluorine. Most preferably, said trihalogenmethanesulfonyl substituent is trifluoromethanesulfonyl (CF3-S (=0) 2 - ) · In the present invention, preferably, the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and an amide ion or alkoxyphosphonate ion as described hereinabove as the anion Preferably, said N, N ' -dialkylimidazolium ion is 1- butyl-3-methylimidazolium ion or 1 , 3-dimethylimidazolium ion.
It is particularly preferred that the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and dicyanamide ion as the anion. More preferably, said ionic liquid comprises 1- butyl-3-methylimidazolium ion and dicyanamide ion, which ionic liquid is exemplified in the Examples below.
Further, it is particularly preferred that the ionic liquid comprises an N, N ' -dialkylimidazolium ion as described hereinabove as the cation and
methoxyphosphonate ion as the anion. More preferably, said ionic liquid comprises 1 , 3-dimethylimidazolium ion and methoxyphosphonate ion
In the present invention, the catalyst is contacted with a solution comprising a solvent and said ionic liquid. The solvent in said solution comprising an ionic liquid may be any kind of solvent. For example, the solvent may be acetone.
In the present invention, contacting said catalyst with the solution comprising solvent and ionic liquid may be performed by spraying the solution onto the catalyst. Said spraying may be carried out with a nozzle capable of finely dispersing liquids.
In the present invention, after contacting the catalyst with the solution comprising solvent and ionic liquid, said solvent is to be removed. Such removal may be performed by any means known to a skilled person, such as drying. Drying of the impregnated catalyst may, for example, be carried out at any temperature between room temperature and 200 °C. Such drying can be carried out under static or dynamic conditions, for instance in a fixed bed, or in a moving bed.
The catalyst according to the present invention preferably can be used in a hydrogenation process, in particular a selective hydrogenation of a hydrocarbon feed comprising unsaturated hydrocarbons.
Accordingly, the technical problem of the present invention is also solved by a process for the
hydrogenation, preferably for the selective
hydrogenation, of a hydrocarbon feed, preferably
comprising a first and a second group of unsaturated hydrocarbons, wherein the hydrocarbon feed is contacted under suitable hydrogenating conditions with the catalyst according to the present invention and the unsaturated hydrocarbons in the hydrocarbon feed, preferably in the first group, are hydrogenated .
Preferably, the hydrocarbon feed in the hydrogenation process of the present invention comprises a first and a second group of unsaturated hydrocarbons. Said first group may contain undesired, that means highly
unsaturated hydrocarbons, in particular aromatics, alkynes and/or di-, tri- or polyunsaturated hydrocarbons, particularly alkadienes, alkatrienes or alkapolyenes , such as acetylene, propyne, propadiene, butadienes, vinylacetylene, butynes, phenylacetylene and/or styrene. Further, said second group may contain desired, that means less unsaturated hydrocarbons, in particular monounsaturated hydrocarbons, namely alkenes,
particularly ethylene. In particular, said first group comprises acetylene and said second group comprises ethylene .
Advantageously, in such preferred embodiment, the undesired first group of unsaturated hydrocarbons is removed, in particular hydrogenated, preferably to a desired less unsaturated hydrocarbon, thereby leaving the second group of unsaturated hydrocarbons in their
monounsaturated form. Thus, the present invention
provides a process for the selective hydrogenation of highly unsaturated hydrocarbons in the presence of less unsaturated hydrocarbons characterized by the use of a catalyst according to the present invention.
Preferably, the hydrocarbon feed in the hydrogenation process of the present invention comprises a first and a second group of unsaturated hydrocarbons, the first group of unsaturated hydrocarbons comprises acetylene, and the unsaturated hydrocarbons in the first group of
unsaturated hydrocarbons are selectively hydrogenated . Thus, the hydrocarbon feed may comprise in its first group of unsaturated hydrocarbons acetylene, in
particular in the presence of less unsaturated
hydrocarbons. Further, such hydrogenation process foresees to preferably reduce acetylene to ethylene, in particular in the presence of less unsaturated
hydrocarbons, preferably ethylene.
In a preferred embodiment acetylene is hydrogenated selectively to ethylene.
Further, the catalyst according to the present invention can be used in a hydrogenation process, in particular a selective hydrogenation of a hydrocarbon feed comprising unsaturated hydrocarbons as mentioned above, with a particular long catalyst lifetime allowing significantly increased cycle times. Based on the particular high durability of said catalyst,
hydrogenation processes can be repeated more often, before the catalyst has to be regenerated or in a continuous fixed bed the lifetime and/or conversion is increased. Advantageously, the catalyst according to the present invention reduces the formation of higher hydrocarbons .
In a preferred embodiment, the present hydrogenation process is carried out in the gas phase.
In a further preferred embodiment, the present
hydrogenation process is carried out according to the conditions of a front-end or tail-end hydrogenation process, preferably for the hydrogenation of C2 to C3 hydrocarbons .
In a preferred embodiment of the present
hydrogenation process, the hydrocarbon feed is contacted with the catalyst at a temperature of from 10 to 250 °C, preferably 30 to 200 °C, preferably 50 to 180 °C and in particular 60 to 120 °C.
In a preferred embodiment of the present
hydrogenation process, the hydrocarbon feed is contacted with the catalyst at a pressure of from 0.5 to 90 bar, preferably 0.5 to 60 bar, preferably 5 to 20 bar and in particular 10 to 20 bar.
In a preferred embodiment of the present
hydrogenation process, the hydrocarbon feed is conducted with the catalyst at a GHSV (gas hourly space velocity) from 1000 to 15000 v/vh, 3000 to 12000 v/vh, preferably 3000 to 7000 v/vh and in particular 3000 to 4000 v/vh. "v/vh" stands for volume gas per volume catalyst per hour.
In a preferred embodiment of the present
hydrogenation process, the hydrocarbon feed is contacted with a catalyst without the use of carbon monoxide as moderator. Furthermore, the hydrogenation can be carried out without carbon monoxide, namely is a monocarboxide- free process.
In a preferred embodiment of the present
hydrogenation process, the molar ratio of hydrogen to acetylene is of from 0.8 to 1.8, preferably 1.0 to 1.5 and in particular 1.0 to 1.3.
In a preferred embodiment of the present
hydrogenation process, the molar ratio of hydrogen to acetylene is of from 1.8 to 100, preferably 1.8 to 70, preferably 1.8 to 30 and in particular 1.8 to 10.
In a preferred embodiment of the present
hydrogenation process, the hydrocarbon feed is contacted with hydrogen to obtain the hydrogenated products. The invention is further illustrated by the following Examples .
Example 1
20 g of a supported metal containing catalyst, comprising alpha-alumina as the support and containing
0.035 wt . % of palladium and 0.015 wt . % of silver as the catalytically active metals (based on the total weight of the catalyst), were placed on a plate. Said catalyst was manufactured by consecutive impregnation of palladium and silver on the alumina support with a drying step after each impregnation. The drying steps were carried out in air between 120 and 150 °C. The dried catalyst
impregnated with palladium and silver was calcined in nitrogen at 630 °C for 5 hours.
A solution of 0.5 g of l-butyl-3-methylimidazolium dicyanamide (BMIM dicyanamide) in 10 ml of acetone was prepared. The catalyst on the plate was contacted with said solution by applying the solution onto the catalyst dropwise during a period of time of 30 minutes. The resulting impregnated catalyst was dried at room
temperature for 24 hours.
Example 2
The procedure of Example 1 was repeated, with the exception that a solution of 1.0 g of BMIM dicyanamide in 10 ml of acetone was used.
Hydrogenation experiments
The catalytic performances of the catalysts obtained in Examples 1 and 2 were measured, and compared with that of the untreated catalyst (which had not been treated with an ionic liquid) , in the following hydrogenation experiment. Experimental conditions were chosen which closely resembled those of a first reactor of a technical tail end reactor: 1.3 g catalyst
dilution (silica beads)
GHSV 4,000 v/vh
feed composition (mole %) : C2H4 (30), C2H2 (1.0), H2 (1.0), C3H8 (1.0), Ar (rest)
pressure: 10 bar
In the table below, the conversion of acetylene ("X") and the selectivity towards ethylene ("S") at different temperatures are shown for the catalysts of Examples 1 and 2 and for the untreated catalyst (Comparison
Example) .
The conversion of acetylene ("X") was calculated as follows: [(acetylene inlet concentration - acetylene outlet concentration) /acetylene inlet concentration] *100.
The selectivity towards ethylene ("S") was calculated as follows: [(ethylene outlet concentration - ethylene inlet concentration) / (acetylene inlet concentration - acetylene outlet concentration) ] *100.
Figure imgf000017_0001
From the table it is evident that the treatment according to the present invention results in catalysts which exhibit a better selectivity.

Claims

C L A I M S
1. Process for treating a supported metal containing catalyst, comprising contacting the catalyst with a solution comprising a solvent and an ionic liquid and removing the solvent, wherein the catalyst contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver.
2. Process according to claim 1, wherein the catalyst contains palladium and silver.
3. Process according to claim 1 or 2, wherein the catalyst comprises alumina as the support.
4. Process according to any one of the preceding claims, wherein the ionic liquid comprises (i) a cation which is an N, N ' -dialkylimidazolium ion or an N-alkylpyridinium ion and (ii) an anion selected from the group consisting of tetrafluoroborate ion, alkoxyphosphonate ions, alkylsulfonate ions, hexafluorophosphate ion and amide ions .
5. Process according to claim 4, wherein the anion is an amide ion of the formula R-N~-R' wherein R and R' are the same or different and are selected from the group
consisting of cyano and alkanesulfonyl .
6. Process according to claim 5, wherein the anion is dicyanamide ion.
7. Process according to claim 5 or 6, wherein the cation is an N, N ' -dialkylimidazolium ion.
8. Process according to claim 7, wherein the cation is l-butyl-3-methylimidazolium ion and the anion is
dicyanamide ion.
9. Catalyst obtainable by the process according to any one of the preceding claims.
10. Supported metal containing catalyst, which contains one or more metals selected from the group consisting of nickel, copper, gold, platinum, palladium and silver and which further contains an ionic liquid.
11. Catalyst according to claim 10, wherein the catalyst contains palladium and silver.
12. Catalyst according to claim 10 or 11, wherein the catalyst comprises alumina as the support.
13. Catalyst according to any one of claims 10 to 12, wherein the ionic liquid comprises (i) a cation which is an N, N ' -dialkylimidazolium ion or an N-alkylpyridinium ion and (ii) an anion selected from the group consisting of tetrafluoroborate ion, alkoxyphosphonate ions, alkylsulfonate ions, hexafluorophosphate ion and amide ions.
14. Catalyst according to claim 13, wherein the anion is an amide ion of the formula R-N~-R' wherein R and R' are the same or different and are selected from the group consisting of cyano and alkanesulfonyl .
15. Catalyst according to claim 14, wherein the anion is dicyanamide ion.
16. Catalyst according to claim 14 or 15, wherein the cation is an N, N ' -dialkylimidazolium ion.
17. Catalyst according to claim 16, wherein the cation is l-butyl-3-methylimidazolium ion and the anion is
dicyanamide ion.
18. Process for the hydrogenation, preferably for the selective hydrogenation, of a hydrocarbon feed,
preferably comprising a first and a second group of unsaturated hydrocarbons, wherein the hydrocarbon feed is contacted under suitable hydrogenating conditions with the catalyst obtained by the process according to any one of claims 1 to 8 or with the catalyst according to any one of claims 9 to 17 and the unsaturated hydrocarbons in the hydrocarbon feed, preferably in the first group, are hydrogenated .
19. Process according to claim 18, wherein the
hydrocarbon feed comprises a first and a second group of unsaturated hydrocarbons, the first group of unsaturated hydrocarbons comprises acetylene, and the unsaturated hydrocarbons in the first group of unsaturated
hydrocarbons are selectively hydrogenated.
PCT/EP2012/054420 2011-03-15 2012-03-14 Hydrogenation catalyst WO2012123472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11158251 2011-03-15
EP11158251.6 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012123472A1 true WO2012123472A1 (en) 2012-09-20

Family

ID=44310256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054420 WO2012123472A1 (en) 2011-03-15 2012-03-14 Hydrogenation catalyst

Country Status (1)

Country Link
WO (1) WO2012123472A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013864A (en) * 2011-07-05 2013-01-24 Toyota Motor Corp Method for manufacturing metal cluster supported catalyst
CN107954814A (en) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 The method of phenylacetylene selection hydrogenation in eight fraction of carbon
WO2015091816A3 (en) * 2013-12-20 2019-02-07 Dsm Ip Assets B. V. Selective hydrogenation catalyst comprising palladium, copper and ionic liquid on porous glass particles and the use thereof
CN110560156A (en) * 2019-08-30 2019-12-13 浙江工业大学 supported ionic liquid-bimetallic palladium-based catalyst and preparation method and application thereof
CN110560157A (en) * 2019-08-30 2019-12-13 浙江工业大学 alumina-loaded ionic liquid-palladium-silver bimetallic catalyst and preparation method and application thereof
WO2020086564A1 (en) * 2018-10-23 2020-04-30 Clariant International Ltd, Selective hydrogenation methods
CN111710881A (en) * 2020-05-29 2020-09-25 新疆大学 Preparation method of imidazole type dinitrile amine salt ionic liquid functionalized graphene supported platinum catalyst
CN112403518A (en) * 2020-11-30 2021-02-26 泉州师范学院 Synthesis of dicyandiamide-modified palladium nano catalyst and application of palladium nano catalyst in catalyzing phenylacetylene semi-hydrogenation
CN113769792A (en) * 2021-08-25 2021-12-10 浙江工业大学 Regeneration method of supported platinum group metal catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802889A (en) 1954-06-01 1957-08-13 Dow Chemical Co Selective hydrogenation of acetylene in ethylene and catalyst therefor
US3243387A (en) 1963-04-25 1966-03-29 Leuna Werke Veb Palladium-silver-iron oxide on alphaalumina catalyst composition for the selective hydrogenation of acetylene
US4484015A (en) 1981-05-06 1984-11-20 Phillips Petroleum Company Selective hydrogenation
EP0722776A1 (en) 1995-01-20 1996-07-24 Phillips Petroleum Company Alkyne hydrogenation process
US20040248732A1 (en) 2000-08-22 2004-12-09 Phillips Petroleum Company Selective hydrogenation catalyst and processes therefor and therewith
US20090264691A1 (en) 2006-04-26 2009-10-22 Sud Chemie Ag Porous heterogeneous catalyst coated with an ionic liquid
CN101906015A (en) * 2009-09-15 2010-12-08 中国石油天然气股份有限公司 Selective hydrogenation method of C3 fractions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802889A (en) 1954-06-01 1957-08-13 Dow Chemical Co Selective hydrogenation of acetylene in ethylene and catalyst therefor
US3243387A (en) 1963-04-25 1966-03-29 Leuna Werke Veb Palladium-silver-iron oxide on alphaalumina catalyst composition for the selective hydrogenation of acetylene
US4484015A (en) 1981-05-06 1984-11-20 Phillips Petroleum Company Selective hydrogenation
EP0722776A1 (en) 1995-01-20 1996-07-24 Phillips Petroleum Company Alkyne hydrogenation process
US20040248732A1 (en) 2000-08-22 2004-12-09 Phillips Petroleum Company Selective hydrogenation catalyst and processes therefor and therewith
US20090264691A1 (en) 2006-04-26 2009-10-22 Sud Chemie Ag Porous heterogeneous catalyst coated with an ionic liquid
CN101906015A (en) * 2009-09-15 2010-12-08 中国石油天然气股份有限公司 Selective hydrogenation method of C3 fractions

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE, vol. 112, 2000, pages 3926 - 3945
DATABASE WPI Week 201128, Derwent World Patents Index; AN 2011-A43568, XP002655849 *
KERNCHEN ET AL., CHEM. ENG. TECHNOL., vol. 30, no. 8, 2007, pages 985 - 994
KERNCHEN U ET AL: "Solid catalyst ionic liquid layer (SCILL) - A new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene", CHEMICAL ENGINEERING AND TECHNOLOGY, vol. 30, no. 8, August 2007 (2007-08-01), WILEY-VCH VERLAG DE, pages 985 - 994, XP002655851, DOI: 10.1002/CEAT.200700050 *
RUTA ET AL., J. PHYS. CHEM. C, vol. 112, 2008, pages 17814 - 17819
RUTA M ET AL: "Pd nanoparticles in a supported ionic liquid phase: Highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, no. 46, 20 November 2008 (2008-11-20), AMERICAN CHEMICAL SOCIETY US, pages 17814 - 17819, XP002655850, DOI: 10.1021/JP806603F *
WORZ N ET AL: "Continuous selective hydrogenation of citral in a trickle-bed reactor using ionic liquid modified catalysts", APPLIED CATALYSIS A: GENERAL, vol. 391, no. 1-2, 4 January 2011 (2011-01-04), ELSEVIER NLD, pages 319 - 324, XP002655848, DOI: 10.1016/J.APCATA.2010.06.025 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013864A (en) * 2011-07-05 2013-01-24 Toyota Motor Corp Method for manufacturing metal cluster supported catalyst
WO2015091816A3 (en) * 2013-12-20 2019-02-07 Dsm Ip Assets B. V. Selective hydrogenation catalyst comprising palladium, copper and ionic liquid on porous glass particles and the use thereof
CN107954814A (en) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 The method of phenylacetylene selection hydrogenation in eight fraction of carbon
WO2020086564A1 (en) * 2018-10-23 2020-04-30 Clariant International Ltd, Selective hydrogenation methods
US11634370B2 (en) 2018-10-23 2023-04-25 Clariant International Ltd Selective hydrogenation methods
CN110560157B (en) * 2019-08-30 2022-12-09 浙江工业大学 Alumina-supported ionic liquid-palladium-silver bimetallic catalyst and preparation method and application thereof
CN110560156A (en) * 2019-08-30 2019-12-13 浙江工业大学 supported ionic liquid-bimetallic palladium-based catalyst and preparation method and application thereof
CN110560157A (en) * 2019-08-30 2019-12-13 浙江工业大学 alumina-loaded ionic liquid-palladium-silver bimetallic catalyst and preparation method and application thereof
CN111710881A (en) * 2020-05-29 2020-09-25 新疆大学 Preparation method of imidazole type dinitrile amine salt ionic liquid functionalized graphene supported platinum catalyst
CN111710881B (en) * 2020-05-29 2022-06-14 新疆大学 Preparation method of imidazole type dinitrile amine salt ionic liquid functionalized graphene supported platinum catalyst
CN112403518A (en) * 2020-11-30 2021-02-26 泉州师范学院 Synthesis of dicyandiamide-modified palladium nano catalyst and application of palladium nano catalyst in catalyzing phenylacetylene semi-hydrogenation
CN113769792A (en) * 2021-08-25 2021-12-10 浙江工业大学 Regeneration method of supported platinum group metal catalyst
CN113769792B (en) * 2021-08-25 2024-03-26 浙江工业大学 Regeneration method of supported platinum group metal catalyst

Similar Documents

Publication Publication Date Title
WO2012123472A1 (en) Hydrogenation catalyst
JP6131267B2 (en) Process for the preparation of a Group VIII metal-based catalyst prepared with at least one organic additive, and a selective hydrogenation process using said catalyst
US20200094226A1 (en) Catalyst composition for selective hydrogenation with improved characteristics
US7919431B2 (en) Catalyst formulation for hydrogenation
EP2583751B1 (en) Catalyst composition for selective hydrogenation with improved characteristics
JP4553727B2 (en) Palladium / silver catalyst for hydrogenation and production method thereof
WO2006023142A1 (en) Selective hydrogenation catalyst designed for raw gas feed streams
EP2689843A1 (en) Alkane dehydrogenation catalyst and process for its preparation
EP2547443A2 (en) Hydrogenation catalyst
WO2014016811A1 (en) Alkane dehydrogenation catalyst and process for its preparation
JP7145207B2 (en) Use of phosphorus ylides to enhance acetylene hydrogenation catalysts
CA2933499C (en) Heterogeneous alkane dehydrogenation catalyst
JP2022542956A (en) A catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
WO2005000773A1 (en) Selective hydrocarbon hydrogenation catalyst and process
WO2011107565A1 (en) Hydrogenation catalyst
US3444256A (en) Selective hydrogenation with minimum acidity catalyst
EP3496850B1 (en) Catalytically active compositions of matter
US8772561B2 (en) Methods for selective hydrogenation performance using a layered sphere catalyst with new formulations
US5994257A (en) Hydrotreating catalyst composition and processes therefor and therewith
JPH0529504B2 (en)
EP2673248A1 (en) Liquid phase hydrogenation of alkynes
WO2010059273A1 (en) Layered sphere catalyst formulations for selective hydrogenation performance
JPS59227829A (en) Selective hydrogenation process
CN107486201B (en) Catalyst for selective hydrogenation of pyrolysis gasoline and preparation and application thereof
EP2570470A1 (en) Hydrogenation catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12708338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12708338

Country of ref document: EP

Kind code of ref document: A1