WO2012121337A1 - Distance measurement signal processing circuit and distance measuring apparatus - Google Patents

Distance measurement signal processing circuit and distance measuring apparatus Download PDF

Info

Publication number
WO2012121337A1
WO2012121337A1 PCT/JP2012/055986 JP2012055986W WO2012121337A1 WO 2012121337 A1 WO2012121337 A1 WO 2012121337A1 JP 2012055986 W JP2012055986 W JP 2012055986W WO 2012121337 A1 WO2012121337 A1 WO 2012121337A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
time
circuit
signal
delay time
Prior art date
Application number
PCT/JP2012/055986
Other languages
French (fr)
Japanese (ja)
Inventor
川人 祥二
広記 小川
鈴木 高志
Original Assignee
国立大学法人静岡大学
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学, 浜松ホトニクス株式会社 filed Critical 国立大学法人静岡大学
Publication of WO2012121337A1 publication Critical patent/WO2012121337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present invention relates to a signal processing circuit and a distance measuring device for distance measurement.
  • Patent Document 1 discloses a flight time (Time Of Flight (TOF) measuring type distance measuring device is disclosed.
  • the distance measuring device includes a transmitting unit that emits pulsed light and a receiving unit that receives the pulsed light reflected and returned from the object to be measured, and performs measurement based on the time from the transmission time point to the reception time point. Measure the distance to the distance object.
  • TOF Time Of Flight
  • the distance measurement by the TOF method is performed by irradiating a distance measurement object with a light pulse, detecting the reflected light, and obtaining the TOF of the light to the distance measurement object.
  • the light detection element receives the reflected light and outputs a current having a magnitude corresponding to the amount of light (hereinafter referred to as a measurement signal current).
  • the measurement signal current is converted into a voltage signal by an amplifier and then input to an analog / digital conversion circuit.
  • the analog / digital conversion circuit represents the time waveform of the voltage signal by converting the voltage signal into a digital value in a short time interval. Create data. Then, the time centroid of the voltage signal is calculated from this data, and the TOF is calculated based on the time difference between the time centroid and the light pulse irradiation timing.
  • the TOF measured by the above method includes the time from when the reflected light is incident on the light detection element until the digital value is generated, that is, the delay time due to the signal delay in the circuit. That is, the measured TOF (hereinafter referred to as measurement time) T m is represented by the following mathematical formula (1). Note that T TOF is the original TOF, and T d is the delay time in the circuit.
  • FIG. 11 is a graph showing an example of the relationship between the delay time Td and the logarithmic value of the measurement signal current.
  • the delay time Td tends to be shorter as the measurement signal current is larger. Therefore, when a wide range from a short distance to a long distance is a measurement target, a variation in reflected light intensity, that is, a variation in measurement signal current increases, and the delay time Td greatly varies depending on the measurement distance. For this reason, highly accurate TOF measurement becomes difficult.
  • the present invention has been made in view of such problems, and provides a signal processing circuit and a distance measuring device for distance measurement that can measure a wide distance range and can measure TOF with high accuracy. For the purpose.
  • the first signal processing circuit for distance measurement performs the flight until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned.
  • a signal processing circuit used for time-based distance measurement comprising: (1) first-stage to N-th stage amplifier circuits (N is an integer of 2 or more) connected in series with each other; A multi-stage amplifier circuit receiving a measurement signal current having a magnitude corresponding to the light intensity of the pulsed light reflected at the input terminal of the first stage amplifier circuit; and (2) connected to the first stage to the Nth stage amplifier circuit, respectively.
  • N comparison circuits that output a significant value when the measurement signal voltage output from the corresponding amplifier circuit reaches the reference voltage, (3) a signal indicating the emission timing of the pulsed light, and N comparisons Inputs the signal output from the circuit and emits pulsed light
  • a time measurement circuit for measuring each time hereinafter referred to as the first to Nth measurement times) until the output signal of each comparison circuit becomes a significant value, and (4) signal delay in the signal processing circuit.
  • a storage unit that preliminarily stores second data representing the relationship between the measurement signal current
  • a calculation unit that calculates the flight time based on the first to Nth measurement times.
  • the second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits.
  • the calculation unit calculates a delay time difference from at least two measurement times among the first to Nth measurement times measured by the time measurement circuit, and determines the magnitude of the measurement signal current based on the delay time difference and the second data. Then, a delay time included in at least one of the first to Nth measurement times is obtained based on the magnitude of the measurement signal current and the first data, and at least one measurement time is obtained.
  • the flight time is calculated by subtracting the delay time from.
  • the second signal processing circuit for distance measurement is used for distance measurement based on the flight time until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned.
  • N is an integer of 2 or more
  • a multi-stage amplifier circuit that receives a measurement signal current having a magnitude corresponding to the intensity at the input terminal of the first-stage amplifier circuit; and (2) connected to the first-stage to N-th stage amplifier circuits, respectively.
  • N comparison circuits that output a significant value when the output measurement signal voltage reaches the reference voltage, (3) a signal indicating the emission timing of the pulsed light, and a signal output from the N comparison circuits After the pulse light is emitted, the output of each comparison circuit
  • a time measurement circuit for measuring each time until the signal becomes a significant value hereinafter referred to as the first to Nth measurement times
  • a delay time included in each measurement time due to a signal delay in the signal processing circuit a storage unit that preliminarily stores first data representing the relationship between the measurement signal current and (5) a calculation unit that calculates a flight time based on the first to Nth measurement times.
  • the second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits.
  • the arithmetic unit calculates a difference between a delay time included in one measurement time and a delay time included in another measurement time from at least two measurement times among the first to Nth measurement times measured by the time measurement circuit. And calculating the magnitude of the measurement signal current based on the relationship between the delay time difference obtained from the first data and the measurement signal current, and the magnitude of the measurement signal current and the first data Based on the above, a delay time included in at least one of the first to Nth measurement times is obtained, and the flight time is calculated by subtracting the delay time from at least one measurement time.
  • the measurement signal current based on the reflected light is input to the multistage amplifier circuit
  • the measurement signal current is converted into the measurement signal voltage by the first stage amplifier circuit, and this measurement signal voltage is converted to the second stage amplifier circuit. Or they are sequentially amplified by the Nth stage amplifier circuit.
  • the measurement signal voltage output from the amplifier circuit at each stage is input to the comparison circuit connected to each amplifier circuit.
  • the comparison circuit outputs a significant value when the measurement signal voltage exceeds the reference voltage.
  • the amplifier circuit outputs a larger measurement signal voltage as it is located at a later stage
  • the later comparison circuit outputs a significant value earlier. Therefore, a difference occurs in the timing for outputting a significant value among the N comparison circuits. This difference appears as a difference between the first to Nth measurement times output from the time measurement circuit.
  • this difference in measurement time is equal to the difference (delay time difference) between the delay time included in one measurement time and the delay time included in another measurement time. Therefore, as in the first signal processing circuit described above, it is possible to obtain the magnitude of the measurement signal current by preparing in advance the second data representing the relationship between the delay time difference and the measurement signal current. Become. Furthermore, the delay time can be obtained by preparing in advance the first data representing the relationship between the delay time and the measurement signal current. Then, the original accurate TOF can be obtained by calculating the difference between the delay time and the measurement time.
  • the delay time difference and the measurement signal current can be calculated from the first data.
  • the magnitude of the measurement signal current can be obtained from this relationship. Furthermore, it becomes possible to obtain the delay time from the magnitude of the measurement signal current using this first data. Then, the original accurate TOF can be obtained by calculating the difference between the delay time and the measurement time.
  • the multistage amplifier circuit includes first to Nth stage amplifier circuits. According to the configuration in which a plurality of amplifier circuits are connected in this manner, even if the input measurement signal current is weak, a greatly amplified measurement signal voltage is output from the subsequent amplifier circuit. Therefore, the measurement time is suitably measured both when the measurement signal current is weak (that is, when the measurement distance is long) and when the measurement signal current is large (that is, when the measurement distance is short), and an accurate TOF is obtained. Can be calculated.
  • the arithmetic unit obtains a delay time included in two or more measurement times from the first to Nth measurement times based on the measurement signal current and the first data. After calculating two or more flight times by subtracting the delay time from the above measurement time, an average value of the two or more flight times may be calculated. With such a configuration, a more accurate TOF can be calculated.
  • the distance measuring device measures the distance to the distance measuring object based on the flight time until the pulsed light emitted toward the distance measuring object is reflected by the distance measuring object and returned.
  • a distance measuring device comprising: (1) one of the signal processing circuits described above; (2) a light emitting unit that emits pulsed light toward a distance measuring object; and (3) reflected from the distance measuring object.
  • a light detection unit that receives the pulsed light and generates a measurement signal current having a magnitude corresponding to the light intensity of the pulsed light.
  • the signal processing circuit and the distance measuring device for distance measurement according to the present invention, a wide distance range can be measured and the TOF can be measured with high accuracy.
  • FIG. 1 is a schematic diagram showing a configuration of a distance measuring apparatus according to the present embodiment.
  • This distance measuring device 10 emits pulsed light P1 toward the distance measuring object B, and when the light (reflected pulsed light) P2 reflected by the distance measuring object B of the pulsed light P1 returns, the reflected pulsed light P2 , And the distance to the distance measuring object B is measured based on the time (TOF) from the emission of the pulsed light P1 to the detection of the reflected pulsed light P2.
  • the distance measuring device 10 receives a light emitting unit 11 that emits pulsed light P ⁇ b> 1 toward the distance measuring object B, and reflected pulsed light P ⁇ b> 2 reflected by the distance measuring object B. And a light detection unit 12.
  • the light emitting unit 11 includes, for example, a laser diode.
  • the light detection unit 12 includes, for example, a photodiode, and generates a measurement signal current Ip having a magnitude corresponding to the light intensity of the reflected pulsed light P2.
  • the distance measuring device 10 further includes a signal processing circuit 20 that receives the measurement signal current Ip output from the light detection unit 12 and calculates TOF.
  • the signal processing circuit 20 amplifies the voltage signal after converting the measurement signal current Ip into a voltage signal. Then, the TOF is calculated based on the difference between the timing at which the amplified voltage signal exceeds the reference voltage and the timing at which the pulsed light P1 is emitted from the light emitting unit 11.
  • FIG. 2 is a diagram illustrating an example of the internal configuration of the signal processing circuit 20.
  • the signal processing circuit 20 includes a multistage amplifier circuit 30, N (N is an integer of 2 or more) comparison circuits (comparators) 40, N time measurement circuits 50, and a storage unit 60 and a TOF estimation circuit 70.
  • the multistage amplifier circuit 30 includes first to Nth stage amplifier circuits A (1) to A (N). These amplifier circuits A (1) to A (N) are connected in series with each other. In other words, the signal output terminal of the amplifier circuit A (n) and the signal input terminal of the amplifier circuit A (n + 1) are electrically connected to each other. However, n is an integer of 1 or more and (N-1) or less.
  • the measurement signal current Ip is input from the light detection unit 12 to the signal input terminal of the first stage amplifier circuit A (1).
  • the signal input terminals of the N comparison circuits 40 are electrically connected to the signal output terminals of the first to Nth stage amplifier circuits A (1) to A (N), respectively. Also, a common reference voltage Vref is input to these comparison circuits 40. These comparison circuits 40 are provided with voltages output from the corresponding amplifier circuits A (1), A (2),..., Or A (N) (hereinafter referred to as measurement signal voltages) V O (1), V O (2), ⁇ , or if V O (N) has reached the reference voltage Vref, the output signal S C (1), S C (2), ⁇ , or as S C (N) Output a value of significant logic level.
  • Signals S C (1) to S C (N) output from the N comparison circuits 40 are input to the N time measurement circuits 50, respectively.
  • the N time measuring circuits 50 receive a signal Sstart indicating the emission timing of the pulsed light P1. This signal Sstart is provided from the light emitting unit 11 to each time measurement circuit 50, for example.
  • Each of the N time measurement circuits 50 outputs the output signal S C (1) of each comparison circuit 40 after the pulsed light P1 is emitted based on the signals S C (1) to S C (N) and the signal Sstart.
  • To S C (N) are measured each time until it becomes a significant value.
  • the time from when the pulsed light P1 is emitted until the output signal S C (k) becomes a significant value is referred to as “kth measurement time T m (k)”.
  • k is an integer from 1 to N.
  • FIG. 3 is a circuit diagram showing a specific configuration example of the multistage amplifier circuit 30.
  • the first stage amplifier circuit A (1) is configured by an integration circuit including an amplifier 31 and an integration capacitor 32.
  • the integrating capacitive element 32 is connected between the inverting input terminal and the output terminal of the amplifier 31, and the measurement signal current Ip is input to the inverting input terminal of the amplifier 31. Therefore, the measurement signal current Ip is stored in the integration capacitor element 32.
  • the potential of the non-inverting input terminal of the amplifier 31 is set to the reference potential V CM.
  • a voltage corresponding to the integral value of the measurement signal current Ip that is, the measurement signal voltage V O (1) is generated at the output terminal of the amplifier 31.
  • a reset switch 33 is connected in parallel with the integration capacitor element 32 in order to reset the electric charge stored in the integration capacitor element 32.
  • the second to Nth stage amplifier circuits A (2) to A (N) are constituted by non-inverting amplifier circuits including an amplifier 34, a feedback capacitive element 35, and a load capacitive element 36.
  • the feedback capacitive element 35 is connected between the inverting input terminal and the output terminal of the amplifier 34
  • the load capacitive element 36 is connected between the inverting input terminal of the amplifier 34 and the ground potential line. Then, the measurement signal voltages V O (1), V O (2),..., V O from the amplifier circuits A (1), A (2) ,. (N ⁇ 1) is input to the non-inverting input terminal of the amplifier 34.
  • FIG. 4 is a circuit diagram illustrating a specific configuration example of the time measurement circuit 50.
  • the time measuring circuit 50 shown in the figure includes a so-called TDC (Time to Digital Converter) circuit, and includes a plurality of D-type flip-flops 51, a plurality of delay circuits 52 connected in series, an encoder 53, and the like. , A reference clock circuit 54, a counter circuit 55, and a processing circuit 56.
  • the reference clock circuit 54 starts operation in response to the input of a signal Sstart indicating the emission timing of the pulsed light P1.
  • the reference clock CLK output from the reference clock circuit 54 is input to the first delay circuit 52.
  • Each delay circuit 52 outputs a reference clock that is sequentially delayed.
  • each D-type flip-flop 51 These reference clocks are input to the D terminal of each D-type flip-flop 51.
  • a signal that rises in response to a change of the signal S C (k) from the comparison circuit 40 to a significant logic level is input to the CK terminal of each D-type flip-flop 51.
  • the Q output of each D-type flip-flop 51 is provided to the encoder 53.
  • the encoder 53 identifies which delay circuit 52 is outputting the reference clock at the time when the signal S C (k) changes to a significant logic level.
  • the counter circuit 55 counts the reference clock CLK output from the reference clock circuit 54.
  • the count signal output from the counter circuit 55 is input to the processing circuit 56.
  • the processing circuit 56 Based on the information provided from the encoder 53 and the count signal from the counter circuit 55, the processing circuit 56 outputs a significant value of the output signal S C (k) of the comparison circuit 40 after the pulsed light P1 is emitted. Digital data corresponding to the k-th measurement time T m (k) up to is generated.
  • FIG. 5 is a timing chart for explaining the concept of the measurement time measured by the time measurement circuit 50.
  • FIG. 5 shows the time waveform (graph G1) of the pulsed light P1, the time waveform (graph G2) of the reflected pulsed light P2, and the first to third stage amplifier circuits A (1) to A (3).
  • the time waveforms (graphs G3 to G5) of the output measurement signal voltages V O (1) to V O (3) are shown.
  • the pulse light P1 is emitted in a certain time t 1
  • the reflected pulse light P2 is detected at time t 2.
  • the time T TOF from time t 1 to time t 2 is the true time of flight (TOF).
  • the measurement signal voltages V O (1) to V O (3) rise gently with a certain time constant.
  • the TOF estimation circuit 70 is a calculation unit in the present embodiment, and is based on the first to Nth measurement times T m (1) to T m (N) provided from the N time measurement circuits 50. Is calculated.
  • FIG. 6 is a flowchart showing a TOF calculation method in the TOF estimation circuit 70. Hereinafter, the TOF calculation method will be described in detail with reference to FIG.
  • the measurement time T m (n) measured based on the measurement signal voltage V O (n) output from the n-th stage amplifier circuit A (n) is expressed by the following equation (2).
  • the measurement time T m (n + 1) related to the measurement signal voltage V O (n + 1) output from the (n + 1) -th stage amplifier circuit A (n + 1) is expressed by the following equation (3).
  • the distance to the distance measurement object B is constant, so that the true flight time T TOF is equal to each other. Therefore, when the difference between the formula (2) and the formula (3) is obtained, the term relating to the true flight time T TOF can be eliminated as in the following formula (4). As shown in Equation (4), the difference between the measurement time T m (n + 1) and the measurement time T m (n) is equal to the difference between the delay time T d (n + 1) and the delay time T d (n). .
  • FIG. 7 shows the logarithmic value of the measurement signal current Ip and the delay time T d (1) in a six-stage amplifier circuit constituted by six amplifier circuits A (1) to A (6) having the same characteristics.
  • T d (6) is a graph showing an example of the relationship.
  • graphs G11 to G16 respectively show delay times T d (1) to T d (6).
  • the delay times T d (1) to T d (6) tend to become shorter as the current value of the measurement signal current Ip increases. Further, if the relationship between the measurement signal current Ip and the delay time T d (n) as shown in the figure is acquired in advance, the delay time T d (n) can be estimated from the measurement signal current Ip. .
  • FIG. 8 is a graph showing an example of the relationship between the difference between the delay times T d (1) to T d (6) and the logarithmic value of the measurement signal current Ip.
  • the difference between the delay times T d (1) to T d (6) is, for example, the difference between the delay times T d (1) and T d (2) (graph G21), and the delay time T d
  • the difference between (2) and T d (3) (graph G22), the difference between the delay times T d (3) and T d (4) (graph G23), and the delay time T d (4) T is d (5) the difference between (graph G24), which is the difference between the delay time T d (5) and T d (6) (graph G25).
  • the delay time difference tends to become shorter as the measurement signal current Ip increases.
  • the magnitude of the measurement signal current Ip can be estimated from the delay time difference.
  • the difference between the measurement time T m (n + 1) and the measurement time T m (n) is equal to the difference between the delay time T d (n + 1) and the delay time T d (n).
  • the difference between the measurement time T m (n + 1) and the measurement time T m (n) is easily calculated from the measurement result in the time measurement circuit 50.
  • the TOF estimation circuit 70 delays from at least two measurement times T m (n) and T m (n + 1) among the measurement times T m (1) to T m (N) provided from the time measurement circuit 50.
  • the time difference ⁇ T d (n + 1) ⁇ T d (n) ⁇ is calculated (step S11 in FIG. 6).
  • the TOF estimation circuit 70 uses the second data stored in the storage unit 60 to calculate the measurement signal current from the delay time difference ⁇ T d (n + 1) ⁇ T d (n) ⁇ as shown in FIG.
  • the magnitude of Ip is estimated (step S12 in FIG. 6).
  • the TOF estimation circuit 70 uses the first data stored in the storage unit 60 to calculate the delay time T d (n) or T d (n + 1) from the estimated measurement signal current Ip. Is estimated (step S13).
  • the TOF estimation circuit 70 uses the estimated delay time T d (n) or T d (n + 1) as the measurement time T m (n) or T m (n + 1) as shown in the following equation (5). By subtracting from, an accurate flight time T TOF is calculated (step S14).
  • the flight time T is based on the measurement signal voltages V O (n + 1) and V O (n) from the (n + 1) -th and n-th amplifier circuits A (n + 1) and A (n).
  • the TOF is calculated, but the combination of the measurement signal voltages is not limited to this, and is based on the measurement signal voltages output from any two of the N amplifier circuits A (1) to A (N).
  • the flight time T TOF can be obtained by the same procedure.
  • the calculated time of flight T TOF should be equal regardless of the combination of the measurement signal voltages.
  • a quantization error or the like at the time of digital conversion influences, and the flight time T TOF varies depending on the combination of measurement signal voltages. Therefore, the TOF estimation circuit 70, based on the measurement signal current Ip and the first data, measures two or more measurement times T m (p), T m among the measurement times T m (1) to T m (N).
  • the delay time caused by the signal delay of the circuit portion can be suitably removed from the measurement time, so that the flight time T TOF can be obtained with high accuracy.
  • the multistage amplifier circuit 30 includes first to Nth stage amplifier circuits A (1) to A (N). With the configuration in which a plurality of amplifier circuits are connected in this way, even if the input measurement signal current Ip is weak, a greatly amplified measurement signal voltage is output from the subsequent amplifier circuit. Therefore, the measurement time is suitably measured both when the measurement signal current Ip is weak (that is, when the measurement distance is long) and when the measurement signal current Ip is large (that is, when the measurement distance is short). The flight time T TOF can be calculated.
  • the measurement signal current Ip input to the multistage amplifier circuit 30 is inverted and amplified by a first stage amplifier circuit A (1) configured as an integration circuit.
  • the measurement signal voltage V O (1) output from the first stage amplifier circuit A (1) is expressed as the following Expression (7).
  • C f1 is the feedback capacitance value of the first stage amplifier circuit A (1).
  • the measurement signal voltage V O (1) from the first stage amplifier circuit A (1) is directly input to the second stage amplifier circuit A (2) configured as a non-inverting amplifier circuit.
  • the measurement signal voltage V O (2) from the second-stage amplifier circuit A (2) is expressed as the following equation (8).
  • C f2 is the feedback capacitance value of the second stage amplifier circuit A (2)
  • C i2 is the load capacitance value of the second stage amplifier circuit A (2).
  • the amplification factor in the second stage amplifier circuit A (2) is determined by the feedback capacitance value C f2 and the load capacitance value C i2 .
  • the measurement signal voltages V O (3) to V O (N) output from the amplifier circuits A (3) to A (N) after the third stage do not invert the voltage output from the amplifier circuit of the previous stage. Since it is amplified, it is in phase with the measurement signal voltage V O (1).
  • the measurement signal voltage V O (N) output from the Nth stage amplifier circuit A (N) is expressed as the following equation (9).
  • C fN is the feedback capacitance of the Nth stage amplifier circuit A (N)
  • C iN is the load capacitance value of the Nth stage amplifier circuit A (N)
  • C N is C fN and C It is a composite capacity ratio calculated from iN .
  • the measurement signal voltage V O (N) of the Nth stage amplifier circuit A (N) is the second to Nth stage amplifier circuits A (2) to A (N).
  • the measurement signal voltage V O (1) of the first stage amplifier circuit A (1) is the second to Nth stage amplifier circuits A (2) to A (N).
  • the measurement signal voltage V O (N) is greatly amplified in the subsequent amplification circuit A (N) even if the measurement signal current Ip is weak. be able to. Therefore, according to the multistage amplifier circuit 30 of this embodiment, when the reflected pulse light P2 is weak (that is, when the measurement distance is long) and when the reflected pulse light P2 is strong (that is, when the measurement distance is short). In any case, it is possible to suitably measure at least two of the measurement times T m (1) to T m (N) and calculate the flight time T TOF .
  • the graphs G11 to G16 shown in FIG. 7 described above are multi-stage so that the combined capacitance ratios C 2 to C 6 of the amplification circuits A (2) to A (6) after the second stage are 11. This is a result of measuring the delay times T d (1) to T d (6) by fabricating the amplifier circuit 30.
  • the delay time T d (6) of the measurement signal current Ip The change is getting smaller.
  • the signal processing circuit and distance measuring apparatus for distance measurement are not limited to the above-described embodiments, and various other modifications are possible.
  • the first stage amplifier circuit of the multistage amplifier circuit has an inverting configuration, but the first stage amplifier circuit may be a non-inverting type.
  • the storage unit stores in advance second data representing the relationship between the delay time difference and the measurement signal current, and the calculation unit performs measurement based on the calculated delay time difference and the second data.
  • the magnitude of the signal current is obtained.
  • the calculation unit calculates the difference between the delay time and the measurement signal current from the first data. Since the relationship (see FIG. 9) can be obtained by calculation, the magnitude of the measurement signal current can be obtained from this relationship.
  • the present invention can be used as a signal processing circuit for distance measurement and a distance measuring device capable of measuring a wide distance range and measuring TOF with high accuracy.
  • DESCRIPTION OF SYMBOLS 10 Distance measuring device, 11 ... Light emission part, 12 ... Light detection part, 20 ... Signal processing circuit, 30 ... Multistage amplifier circuit, 31, 34 ... Amplifier, 32 ... Integration capacity element, 35 ... Feedback capacity element, 36 ... Load capacitance element, 40 ... comparison circuit, 50 ... time measurement circuit, 51 ... D-type flip-flop, 52 ... delay circuit, 53 ... encoder, 54 ... reference clock circuit, 55 ... counter circuit, 56 ... processing circuit, 60 ... memory 70: TOF estimation circuit, A (1) to A (N) ... amplification circuit, B ... object to be measured, CLK ... reference clock, Ip ... measurement signal current, P1 ... pulse light, P2 ... reflected pulse light, V O (1) to V O (N): measurement signal voltage, Vref: reference voltage.

Abstract

A signal processing circuit (20) comprises a multistage amplifying circuit (30), N comparing circuits (40), N time measuring circuits (50) and a TOF estimating circuit (70). The second to N-th stage amplifying circuits (A(2) to A(N)) in the multistage amplifying circuit (30) are non-inverting amplifying circuits. The TOF estimating circuit (70) calculates delay time differences {Tm(n) - Tm(n + 1)} from measured times Tm(n) and Tm(n + 1) measured by the time measuring circuits (50), then estimates the magnitudes of measured signal current (Ip) on the basis of the delay time differences, thereafter estimates, on the basis of the magnitudes of the measured signal currents (Ip), delay times Td(n) included in the measured times Tm(n), and subtracts the delay times Td(n) from the measured times Tm(n), thereby calculating a flight time TTOF. In this way, a wide distance range can be measured and the TOF can be measured with high precision.

Description

距離測定用の信号処理回路および距離測定装置Distance measuring signal processing circuit and distance measuring device
 本発明は、距離測定用の信号処理回路および距離測定装置に関する。 The present invention relates to a signal processing circuit and a distance measuring device for distance measurement.
 特許文献1には、飛行時間(Time
Of Flight;TOF)測定方式の測距装置が開示されている。この測距装置は、パルス光を出射する送信手段と、測距対象物において反射して戻ったパルス光を受光する受信手段とを備えており、送信時点から受信時点までの時間に基づいて測距対象物までの距離を測定する。
Patent Document 1 discloses a flight time (Time
Of Flight (TOF) measuring type distance measuring device is disclosed. The distance measuring device includes a transmitting unit that emits pulsed light and a receiving unit that receives the pulsed light reflected and returned from the object to be measured, and performs measurement based on the time from the transmission time point to the reception time point. Measure the distance to the distance object.
特開2001-108747号公報JP 2001-108747 A
 TOF方式による距離の測定は、測距対象物に光パルスを照射し、その反射光を検出し、測距対象物までの光のTOFを求めることにより行われる。具体的には、光検出素子が反射光を受光し、その光量に応じた大きさの電流(以下、測定信号電流という)を出力する。この測定信号電流は、増幅器によって電圧信号に変換されたのち、アナログ/ディジタル変換回路に入力される。増幅器から出力される電圧信号の大きさが或る閾値に達すると、アナログ/ディジタル変換回路は、この電圧信号を短い時間間隔でもってディジタル値に変換することにより、この電圧信号の時間波形を表すデータを作成する。そして、このデータから電圧信号の時間重心が算出され、この時間重心と光パルスの照射タイミングとの時間差に基づいてTOFが算出される。 The distance measurement by the TOF method is performed by irradiating a distance measurement object with a light pulse, detecting the reflected light, and obtaining the TOF of the light to the distance measurement object. Specifically, the light detection element receives the reflected light and outputs a current having a magnitude corresponding to the amount of light (hereinafter referred to as a measurement signal current). The measurement signal current is converted into a voltage signal by an amplifier and then input to an analog / digital conversion circuit. When the magnitude of the voltage signal output from the amplifier reaches a certain threshold value, the analog / digital conversion circuit represents the time waveform of the voltage signal by converting the voltage signal into a digital value in a short time interval. Create data. Then, the time centroid of the voltage signal is calculated from this data, and the TOF is calculated based on the time difference between the time centroid and the light pulse irradiation timing.
 しかしながら、上記方式によって測定されるTOFには、光検出素子に反射光が入射してからディジタル値が生成されるまでの時間、すなわち回路内での信号遅延に起因する遅延時間が含まれる。すなわち、測定されたTOF(以下、測定時間という)Tは、下記の数式(1)によって表される。なお、TTOFは本来のTOF、Tは回路内での遅延時間である。
Figure JPOXMLDOC01-appb-M000001
However, the TOF measured by the above method includes the time from when the reflected light is incident on the light detection element until the digital value is generated, that is, the delay time due to the signal delay in the circuit. That is, the measured TOF (hereinafter referred to as measurement time) T m is represented by the following mathematical formula (1). Note that T TOF is the original TOF, and T d is the delay time in the circuit.
Figure JPOXMLDOC01-appb-M000001
 図11は、遅延時間Tと測定信号電流の対数値との関係の一例を示すグラフである。図11に示されるように、遅延時間Tは、測定信号電流が大きいほど短くなる傾向がある。したがって、近距離から遠距離までの広範囲が測定対象である場合には、反射光強度の変動すなわち測定信号電流の変動が大きくなり、遅延時間Tが測定距離によって大きく変動してしまう。このため、高精度のTOF測定が困難となる。 FIG. 11 is a graph showing an example of the relationship between the delay time Td and the logarithmic value of the measurement signal current. As shown in FIG. 11, the delay time Td tends to be shorter as the measurement signal current is larger. Therefore, when a wide range from a short distance to a long distance is a measurement target, a variation in reflected light intensity, that is, a variation in measurement signal current increases, and the delay time Td greatly varies depending on the measurement distance. For this reason, highly accurate TOF measurement becomes difficult.
 本発明は、このような問題点に鑑みてなされたものであり、広い距離範囲を測定でき、且つTOFを高い精度で測定することができる距離測定用の信号処理回路および距離測定装置を提供することを目的とする。 The present invention has been made in view of such problems, and provides a signal processing circuit and a distance measuring device for distance measurement that can measure a wide distance range and can measure TOF with high accuracy. For the purpose.
 上述した課題を解決するために、本発明による距離測定用の第1の信号処理回路は、測距対象物に向けて出射されたパルス光が測距対象物にて反射して戻るまでの飛行時間に基づく距離測定に用いられる信号処理回路であって、(1)互いに直列に接続された第1段ないし第N段の増幅回路(Nは2以上の整数)を有し、測距対象物において反射したパルス光の光強度に応じた大きさの測定信号電流を第1段の増幅回路の入力端に受ける多段増幅回路と、(2)第1段ないし第N段の増幅回路にそれぞれ接続され、対応する増幅回路から出力される測定信号電圧が基準電圧に達した場合に有意値を出力するN個の比較回路と、(3)パルス光の出射タイミングを示す信号と、N個の比較回路から出力される信号とを入力し、パルス光が出射されてから各比較回路の出力信号が有意値となるまでの各時間(以下、第1ないし第Nの測定時間という)を測定する時間測定回路と、(4)当該信号処理回路における信号遅延により各測定時間に含まれる遅延時間と測定信号電流との関係を表す第1のデータ、並びに、一の測定時間に含まれる遅延時間と別の測定時間に含まれる遅延時間との差である遅延時間差と測定信号電流との関係を表す第2のデータを予め記憶する記憶部と、(5)第1ないし第Nの測定時間に基づいて飛行時間を算出する演算部とを備えている。多段増幅回路の第2段ないし第N段の増幅回路は非反転増幅回路によって構成されている。演算部は、時間測定回路によって測定された第1ないし第Nの測定時間のうち少なくとも二つの測定時間から遅延時間差を算出し、該遅延時間差と第2のデータとに基づいて測定信号電流の大きさを求めたのち、該測定信号電流の大きさと第1のデータとに基づいて、第1ないし第Nの測定時間のうち少なくとも一つの測定時間に含まれる遅延時間を求め、少なくとも一つの測定時間から遅延時間を減ずることによって飛行時間を算出する。 In order to solve the above-described problem, the first signal processing circuit for distance measurement according to the present invention performs the flight until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned. A signal processing circuit used for time-based distance measurement, comprising: (1) first-stage to N-th stage amplifier circuits (N is an integer of 2 or more) connected in series with each other; A multi-stage amplifier circuit receiving a measurement signal current having a magnitude corresponding to the light intensity of the pulsed light reflected at the input terminal of the first stage amplifier circuit; and (2) connected to the first stage to the Nth stage amplifier circuit, respectively. N comparison circuits that output a significant value when the measurement signal voltage output from the corresponding amplifier circuit reaches the reference voltage, (3) a signal indicating the emission timing of the pulsed light, and N comparisons Inputs the signal output from the circuit and emits pulsed light A time measurement circuit for measuring each time (hereinafter referred to as the first to Nth measurement times) until the output signal of each comparison circuit becomes a significant value, and (4) signal delay in the signal processing circuit. First data representing a relationship between a delay time included in each measurement time and a measurement signal current, and a delay time difference which is a difference between a delay time included in one measurement time and a delay time included in another measurement time And a storage unit that preliminarily stores second data representing the relationship between the measurement signal current and (5) a calculation unit that calculates the flight time based on the first to Nth measurement times. The second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits. The calculation unit calculates a delay time difference from at least two measurement times among the first to Nth measurement times measured by the time measurement circuit, and determines the magnitude of the measurement signal current based on the delay time difference and the second data. Then, a delay time included in at least one of the first to Nth measurement times is obtained based on the magnitude of the measurement signal current and the first data, and at least one measurement time is obtained. The flight time is calculated by subtracting the delay time from.
 また、本発明による距離測定用の第2の信号処理回路は、測距対象物に向けて出射されたパルス光が測距対象物にて反射して戻るまでの飛行時間に基づく距離測定に用いられる信号処理回路であって、(1)互いに直列に接続された第1段ないし第N段の増幅回路(Nは2以上の整数)を有し、測距対象物において反射したパルス光の光強度に応じた大きさの測定信号電流を第1段の増幅回路の入力端に受ける多段増幅回路と、(2)第1段ないし第N段の増幅回路にそれぞれ接続され、対応する増幅回路から出力される測定信号電圧が基準電圧に達した場合に有意値を出力するN個の比較回路と、(3)パルス光の出射タイミングを示す信号と、N個の比較回路から出力される信号とを入力し、パルス光が出射されてから各比較回路の出力信号が有意値となるまでの各時間(以下、第1ないし第Nの測定時間という)を測定する時間測定回路と、(4)当該信号処理回路における信号遅延により各測定時間に含まれる遅延時間と測定信号電流との関係を表す第1のデータを予め記憶する記憶部と、(5)第1ないし第Nの測定時間に基づいて飛行時間を算出する演算部とを備えている。多段増幅回路の第2段ないし第N段の増幅回路は非反転増幅回路によって構成されている。演算部は、時間測定回路によって測定された第1ないし第Nの測定時間のうち少なくとも二つの測定時間から、一の測定時間に含まれる遅延時間と別の測定時間に含まれる遅延時間との差である遅延時間差を算出し、第1のデータから求められる遅延時間差と測定信号電流との関係に基づいて測定信号電流の大きさを求めたのち、該測定信号電流の大きさと第1のデータとに基づいて第1ないし第Nの測定時間のうち少なくとも一つの測定時間に含まれる遅延時間を求め、少なくとも一つの測定時間から該遅延時間を減ずることによって飛行時間を算出する。 In addition, the second signal processing circuit for distance measurement according to the present invention is used for distance measurement based on the flight time until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned. (1) a first-stage to N-th stage amplifier circuit (N is an integer of 2 or more) connected in series with each other, and light of pulsed light reflected from a distance measuring object A multi-stage amplifier circuit that receives a measurement signal current having a magnitude corresponding to the intensity at the input terminal of the first-stage amplifier circuit; and (2) connected to the first-stage to N-th stage amplifier circuits, respectively. N comparison circuits that output a significant value when the output measurement signal voltage reaches the reference voltage, (3) a signal indicating the emission timing of the pulsed light, and a signal output from the N comparison circuits After the pulse light is emitted, the output of each comparison circuit A time measurement circuit for measuring each time until the signal becomes a significant value (hereinafter referred to as the first to Nth measurement times); and (4) a delay time included in each measurement time due to a signal delay in the signal processing circuit. And a storage unit that preliminarily stores first data representing the relationship between the measurement signal current and (5) a calculation unit that calculates a flight time based on the first to Nth measurement times. The second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits. The arithmetic unit calculates a difference between a delay time included in one measurement time and a delay time included in another measurement time from at least two measurement times among the first to Nth measurement times measured by the time measurement circuit. And calculating the magnitude of the measurement signal current based on the relationship between the delay time difference obtained from the first data and the measurement signal current, and the magnitude of the measurement signal current and the first data Based on the above, a delay time included in at least one of the first to Nth measurement times is obtained, and the flight time is calculated by subtracting the delay time from at least one measurement time.
 これらの信号処理回路では、反射光に基づく測定信号電流が多段増幅回路に入力されると、第1段の増幅回路によって測定信号電流が測定信号電圧に変換され、この測定信号電圧が第2段ないし第N段の増幅回路によって順次増幅される。そして、各段の増幅回路から出力された測定信号電圧は、各増幅回路に接続された比較回路にそれぞれ入力される。比較回路は、測定信号電圧が基準電圧を超えると、有意値を出力する。このとき、増幅回路はより後段に位置するほど大きな測定信号電圧を出力するので、後段の比較回路ほど有意値を早く出力する。したがって、N個の比較回路の間で有意値を出力するタイミングに差が生じる。この差は、時間測定回路から出力される第1ないし第Nの測定時間の差として現れる。 In these signal processing circuits, when the measurement signal current based on the reflected light is input to the multistage amplifier circuit, the measurement signal current is converted into the measurement signal voltage by the first stage amplifier circuit, and this measurement signal voltage is converted to the second stage amplifier circuit. Or they are sequentially amplified by the Nth stage amplifier circuit. Then, the measurement signal voltage output from the amplifier circuit at each stage is input to the comparison circuit connected to each amplifier circuit. The comparison circuit outputs a significant value when the measurement signal voltage exceeds the reference voltage. At this time, since the amplifier circuit outputs a larger measurement signal voltage as it is located at a later stage, the later comparison circuit outputs a significant value earlier. Therefore, a difference occurs in the timing for outputting a significant value among the N comparison circuits. This difference appears as a difference between the first to Nth measurement times output from the time measurement circuit.
 後述するように、この測定時間の差は、一の測定時間に含まれる遅延時間と別の測定時間に含まれる遅延時間との差(遅延時間差)に等しい。したがって、上述した第1の信号処理回路のように、遅延時間差と測定信号電流との関係を表す第2のデータを予め用意しておくことによって、測定信号電流の大きさを求めることが可能となる。更に、遅延時間と測定信号電流との関係を表す第1のデータを予め用意しておくことによって、遅延時間を求めることが可能となる。そして、この遅延時間と測定時間との差を演算することにより、本来の正確なTOFを得ることができる。 As will be described later, this difference in measurement time is equal to the difference (delay time difference) between the delay time included in one measurement time and the delay time included in another measurement time. Therefore, as in the first signal processing circuit described above, it is possible to obtain the magnitude of the measurement signal current by preparing in advance the second data representing the relationship between the delay time difference and the measurement signal current. Become. Furthermore, the delay time can be obtained by preparing in advance the first data representing the relationship between the delay time and the measurement signal current. Then, the original accurate TOF can be obtained by calculating the difference between the delay time and the measurement time.
 或いは、上述した第2の信号処理回路のように、遅延時間と測定信号電流との関係を表す第1のデータを予め用意しておくことによって、この第1のデータから遅延時間差と測定信号電流との関係を求め、この関係から測定信号電流の大きさを求めることが可能となる。更に、この第1のデータを使用して測定信号電流の大きさから遅延時間を求めることが可能となる。そして、この遅延時間と測定時間との差を演算することにより、本来の正確なTOFを得ることができる。 Alternatively, as in the second signal processing circuit described above, by preparing first data representing the relationship between the delay time and the measurement signal current in advance, the delay time difference and the measurement signal current can be calculated from the first data. And the magnitude of the measurement signal current can be obtained from this relationship. Furthermore, it becomes possible to obtain the delay time from the magnitude of the measurement signal current using this first data. Then, the original accurate TOF can be obtained by calculating the difference between the delay time and the measurement time.
 また、これらの信号処理回路では、多段増幅回路が第1段ないし第N段の増幅回路を有している。このように複数の増幅回路が接続された構成によれば、入力された測定信号電流が微弱であっても、後段の増幅回路からは大きく増幅された測定信号電圧が出力される。したがって、測定信号電流が微弱である場合(すなわち測定距離が長い場合)、及び測定信号電流が大きい場合(すなわち測定距離が短い場合)のいずれにおいても測定時間を好適に測定し、正確なTOFを算出することができる。 Further, in these signal processing circuits, the multistage amplifier circuit includes first to Nth stage amplifier circuits. According to the configuration in which a plurality of amplifier circuits are connected in this manner, even if the input measurement signal current is weak, a greatly amplified measurement signal voltage is output from the subsequent amplifier circuit. Therefore, the measurement time is suitably measured both when the measurement signal current is weak (that is, when the measurement distance is long) and when the measurement signal current is large (that is, when the measurement distance is short), and an accurate TOF is obtained. Can be calculated.
 このように、上述した距離測定用の第1及び第2の信号処理回路によれば、広い距離範囲を測定でき、且つTOFを高い精度で測定することができる。 Thus, according to the first and second signal processing circuits for distance measurement described above, a wide distance range can be measured, and TOF can be measured with high accuracy.
 また、これらの信号処理回路は、演算部が、測定信号電流と第1のデータとに基づいて、第1ないし第Nの測定時間のうち二以上の測定時間に含まれる遅延時間を求め、二以上の測定時間から遅延時間を減ずることによって二以上の飛行時間を算出したのち、二以上の飛行時間の平均値を算出してもよい。このような構成によって、更に正確なTOFを算出することができる。 Further, in these signal processing circuits, the arithmetic unit obtains a delay time included in two or more measurement times from the first to Nth measurement times based on the measurement signal current and the first data. After calculating two or more flight times by subtracting the delay time from the above measurement time, an average value of the two or more flight times may be calculated. With such a configuration, a more accurate TOF can be calculated.
 また、本発明による距離測定装置は、測距対象物に向けて出射されたパルス光が測距対象物にて反射して戻るまでの飛行時間に基づいて測距対象物までの距離を測定する距離測定装置であって、(1)上述したいずれかの信号処理回路と、(2)測距対象物に向けてパルス光を出射する光出射部と、(3)測距対象物において反射したパルス光を受け、該パルス光の光強度に応じた大きさの測定信号電流を生成する光検出部とを備える。この距離測定装置によれば、上述したいずれかの信号処理回路を備えることによって、広い距離範囲を測定でき、且つTOFを高い精度で測定することができる。 The distance measuring device according to the present invention measures the distance to the distance measuring object based on the flight time until the pulsed light emitted toward the distance measuring object is reflected by the distance measuring object and returned. A distance measuring device comprising: (1) one of the signal processing circuits described above; (2) a light emitting unit that emits pulsed light toward a distance measuring object; and (3) reflected from the distance measuring object. A light detection unit that receives the pulsed light and generates a measurement signal current having a magnitude corresponding to the light intensity of the pulsed light. According to this distance measuring device, by providing any of the signal processing circuits described above, a wide distance range can be measured, and TOF can be measured with high accuracy.
 本発明による距離測定用の信号処理回路および距離測定装置によれば、広い距離範囲を測定でき、且つTOFを高い精度で測定することができる。 According to the signal processing circuit and the distance measuring device for distance measurement according to the present invention, a wide distance range can be measured and the TOF can be measured with high accuracy.
一実施形態に係る距離測定装置の構成を示す概略図である。It is the schematic which shows the structure of the distance measuring device which concerns on one Embodiment. 信号処理回路の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of a signal processing circuit. 多段増幅回路の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of a multistage amplifier circuit. 時間測定回路の具体的な構成例を示す回路図である。It is a circuit diagram which shows the specific structural example of a time measurement circuit. 時間測定回路によって測定される測定時間の概念を説明するためのタイミングチャートであって、パルス光の時間波形、反射パルス光の時間波形、及び第1段ないし第3段の増幅回路から出力される測定信号電圧の時間波形が示されている。4 is a timing chart for explaining the concept of measurement time measured by the time measurement circuit, which is output from the time waveform of the pulsed light, the time waveform of the reflected pulsed light, and the first to third stage amplifier circuits. A time waveform of the measurement signal voltage is shown. TOF推定回路におけるTOF算出方法を示すフローチャートである。It is a flowchart which shows the TOF calculation method in a TOF estimation circuit. 互いに同じ特性を有する6個の増幅回路によって構成される6段増幅回路における、測定信号電流と遅延時間との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a measurement signal current and delay time in the 6-stage amplifier circuit comprised by 6 amplifier circuits which have the mutually same characteristic. 遅延時間差と測定信号電流との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between delay time difference and measurement signal current. 遅延時間差から測定信号電流の大きさを推定する方法を概略的に示す図である。It is a figure which shows roughly the method of estimating the magnitude | size of a measurement signal current from a delay time difference. 測定信号電流から遅延時間を推定する方法を概略的に示す図である。It is a figure which shows roughly the method of estimating delay time from a measurement signal current. 遅延時間と測定信号電流との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between delay time and a measurement signal current.
 以下、添付図面を参照しながら本発明による距離測定用の信号処理回路および距離測定装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of a signal processing circuit and a distance measuring device for distance measurement according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本実施形態に係る距離測定装置の構成を示す概略図である。この距離測定装置10は、測距対象物Bに向けてパルス光P1を出射し、パルス光P1のうち測距対象物Bにおいて反射した光(反射パルス光)P2が戻るとその反射パルス光P2を検出し、パルス光P1の出射から反射パルス光P2の検出までの時間(TOF)に基づいて、測距対象物Bまでの距離を測定する装置である。図1に示されるように、この距離測定装置10は、測距対象物Bに向けてパルス光P1を出射する光出射部11と、測距対象物Bにて反射した反射パルス光P2を受ける光検出部12とを備えている。光出射部11は、例えばレーザダイオードを含んで構成される。光検出部12は、例えばフォトダイオードを含んで構成され、反射パルス光P2の光強度に応じた大きさの測定信号電流Ipを生成する。 FIG. 1 is a schematic diagram showing a configuration of a distance measuring apparatus according to the present embodiment. This distance measuring device 10 emits pulsed light P1 toward the distance measuring object B, and when the light (reflected pulsed light) P2 reflected by the distance measuring object B of the pulsed light P1 returns, the reflected pulsed light P2 , And the distance to the distance measuring object B is measured based on the time (TOF) from the emission of the pulsed light P1 to the detection of the reflected pulsed light P2. As shown in FIG. 1, the distance measuring device 10 receives a light emitting unit 11 that emits pulsed light P <b> 1 toward the distance measuring object B, and reflected pulsed light P <b> 2 reflected by the distance measuring object B. And a light detection unit 12. The light emitting unit 11 includes, for example, a laser diode. The light detection unit 12 includes, for example, a photodiode, and generates a measurement signal current Ip having a magnitude corresponding to the light intensity of the reflected pulsed light P2.
 また、距離測定装置10は、光検出部12から出力された測定信号電流Ipを受けてTOFを算出する信号処理回路20を更に備えている。信号処理回路20は、測定信号電流Ipを電圧信号に変換したのち、この電圧信号を増幅する。そして、増幅後の電圧信号が基準電圧を超えるタイミングと、光出射部11からパルス光P1が出射されたタイミングとの差に基づいてTOFを算出する。 The distance measuring device 10 further includes a signal processing circuit 20 that receives the measurement signal current Ip output from the light detection unit 12 and calculates TOF. The signal processing circuit 20 amplifies the voltage signal after converting the measurement signal current Ip into a voltage signal. Then, the TOF is calculated based on the difference between the timing at which the amplified voltage signal exceeds the reference voltage and the timing at which the pulsed light P1 is emitted from the light emitting unit 11.
 図2は、信号処理回路20の内部構成の一例を示す図である。図2に示されるように、信号処理回路20は、多段増幅回路30と、N個(Nは2以上の整数)の比較回路(コンパレータ)40と、N個の時間測定回路50と、記憶部60と、TOF推定回路70とを備えている。 FIG. 2 is a diagram illustrating an example of the internal configuration of the signal processing circuit 20. As shown in FIG. 2, the signal processing circuit 20 includes a multistage amplifier circuit 30, N (N is an integer of 2 or more) comparison circuits (comparators) 40, N time measurement circuits 50, and a storage unit 60 and a TOF estimation circuit 70.
 多段増幅回路30は、第1段ないし第N段の増幅回路A(1)~A(N)を有している。これらの増幅回路A(1)~A(N)は、互いに直列に接続されている。換言すれば、増幅回路A(n)の信号出力端と、増幅回路A(n+1)の信号入力端とが互いに電気的に接続されている。但し、nは1以上(N-1)以下の整数である。第1段の増幅回路A(1)の信号入力端には、光検出部12から測定信号電流Ipが入力される。 The multistage amplifier circuit 30 includes first to Nth stage amplifier circuits A (1) to A (N). These amplifier circuits A (1) to A (N) are connected in series with each other. In other words, the signal output terminal of the amplifier circuit A (n) and the signal input terminal of the amplifier circuit A (n + 1) are electrically connected to each other. However, n is an integer of 1 or more and (N-1) or less. The measurement signal current Ip is input from the light detection unit 12 to the signal input terminal of the first stage amplifier circuit A (1).
 N個の比較回路40の信号入力端は、第1段ないし第N段の増幅回路A(1)~A(N)の信号出力端にそれぞれ電気的に接続されている。また、これらの比較回路40には、互いに共通の基準電圧Vrefが入力される。これらの比較回路40は、対応する増幅回路A(1)、A(2)、・・・、又はA(N)から出力される電圧(以下、測定信号電圧という)V(1)、V(2)、・・・、又はV(N)が基準電圧Vrefに達した場合に、出力信号S(1)、S(2)、・・・、又はS(N)として有意な論理レベルの値を出力する。 The signal input terminals of the N comparison circuits 40 are electrically connected to the signal output terminals of the first to Nth stage amplifier circuits A (1) to A (N), respectively. Also, a common reference voltage Vref is input to these comparison circuits 40. These comparison circuits 40 are provided with voltages output from the corresponding amplifier circuits A (1), A (2),..., Or A (N) (hereinafter referred to as measurement signal voltages) V O (1), V O (2), ···, or if V O (N) has reached the reference voltage Vref, the output signal S C (1), S C (2), ···, or as S C (N) Output a value of significant logic level.
 N個の時間測定回路50それぞれには、N個の比較回路40それぞれから出力される信号S(1)~S(N)が入力される。また、N個の時間測定回路50には、パルス光P1の出射タイミングを示す信号Sstartが入力される。この信号Sstartは、例えば光出射部11から各時間測定回路50へ提供される。N個の時間測定回路50それぞれは、これらの信号S(1)~S(N)及び信号Sstartに基づいて、パルス光P1が出射されてから各比較回路40の出力信号S(1)~S(N)が有意値となるまでの各時間を測定する。なお、以下の説明において、パルス光P1が出射されてから出力信号S(k)が有意値となるまでの時間を「第kの測定時間T(k)」という。但し、kは1以上N以下の整数である。 Signals S C (1) to S C (N) output from the N comparison circuits 40 are input to the N time measurement circuits 50, respectively. The N time measuring circuits 50 receive a signal Sstart indicating the emission timing of the pulsed light P1. This signal Sstart is provided from the light emitting unit 11 to each time measurement circuit 50, for example. Each of the N time measurement circuits 50 outputs the output signal S C (1) of each comparison circuit 40 after the pulsed light P1 is emitted based on the signals S C (1) to S C (N) and the signal Sstart. ) To S C (N) are measured each time until it becomes a significant value. In the following description, the time from when the pulsed light P1 is emitted until the output signal S C (k) becomes a significant value is referred to as “kth measurement time T m (k)”. However, k is an integer from 1 to N.
 ここで、図3は、多段増幅回路30の具体的な構成例を示す回路図である。同図に示される多段増幅回路30において、第1段の増幅回路A(1)は、増幅器31及び積分容量素子32を含む積分回路によって構成されている。なお、積分容量素子32は増幅器31の反転入力端子と出力端子との間に接続されており、また、測定信号電流Ipは増幅器31の反転入力端子に入力される。したがって、測定信号電流Ipは積分容量素子32に蓄えられる。増幅器31の非反転入力端子の電位は基準電位VCMに設定される。このような構成により、増幅器31の出力端子では、測定信号電流Ipの積分値に相当する電圧すなわち測定信号電圧V(1)が生成される。なお、積分容量素子32に蓄えられた電荷をリセットする為に、リセットスイッチ33が積分容量素子32と並列に接続されている。 Here, FIG. 3 is a circuit diagram showing a specific configuration example of the multistage amplifier circuit 30. In the multistage amplifier circuit 30 shown in FIG. 1, the first stage amplifier circuit A (1) is configured by an integration circuit including an amplifier 31 and an integration capacitor 32. The integrating capacitive element 32 is connected between the inverting input terminal and the output terminal of the amplifier 31, and the measurement signal current Ip is input to the inverting input terminal of the amplifier 31. Therefore, the measurement signal current Ip is stored in the integration capacitor element 32. The potential of the non-inverting input terminal of the amplifier 31 is set to the reference potential V CM. With such a configuration, a voltage corresponding to the integral value of the measurement signal current Ip, that is, the measurement signal voltage V O (1) is generated at the output terminal of the amplifier 31. Note that a reset switch 33 is connected in parallel with the integration capacitor element 32 in order to reset the electric charge stored in the integration capacitor element 32.
 第2段ないし第N段の増幅回路A(2)~A(N)は、増幅器34、帰還容量素子35、及び負荷容量素子36を含む非反転増幅回路によって構成されている。帰還容量素子35は増幅器34の反転入力端子と出力端子との間に接続されており、負荷容量素子36は増幅器34の反転入力端子と接地電位線との間に接続されている。そして、前段の増幅回路A(1)、A(2)、・・・、又はA(N-1)からの測定信号電圧V(1)、V(2)、・・・、V(N-1)は、増幅器34の非反転入力端子に入力される。このような構成によって、これらの増幅回路A(2)~A(N)の増幅器34の出力端子では、前段の増幅回路A(1)~A(N-1)からの測定信号電圧V(1)~V(N-1)が増幅された同相の測定信号電圧V(2)~V(N)が生成される。なお、帰還容量素子35に蓄えられた電荷をリセットする為に、リセットスイッチ37が帰還容量素子35と並列に接続されている。 The second to Nth stage amplifier circuits A (2) to A (N) are constituted by non-inverting amplifier circuits including an amplifier 34, a feedback capacitive element 35, and a load capacitive element 36. The feedback capacitive element 35 is connected between the inverting input terminal and the output terminal of the amplifier 34, and the load capacitive element 36 is connected between the inverting input terminal of the amplifier 34 and the ground potential line. Then, the measurement signal voltages V O (1), V O (2),..., V O from the amplifier circuits A (1), A (2) ,. (N−1) is input to the non-inverting input terminal of the amplifier 34. With this configuration, at the output terminals of the amplifiers 34 of these amplifier circuits A (2) to A (N), the measurement signal voltage V O (from the previous amplifier circuits A (1) to A (N−1) is obtained. In-phase measurement signal voltages V O (2) to V O (N) in which 1) to V O (N-1) are amplified are generated. Note that a reset switch 37 is connected in parallel with the feedback capacitive element 35 in order to reset the charge stored in the feedback capacitive element 35.
 図4は、時間測定回路50の具体的な構成例を示す回路図である。同図に示される時間測定回路50は、いわゆるTDC(Time to Digital Converter)回路を含んでおり、複数のD型フリップフロップ51と、互いに直列に接続された複数の遅延回路52と、エンコーダ53と、リファレンスクロック回路54と、カウンタ回路55と、処理回路56とを有している。リファレンスクロック回路54は、パルス光P1の出射タイミングを示す信号Sstartの入力に応じて動作を開始する。リファレンスクロック回路54から出力されるリファレンスクロックCLKは、初段の遅延回路52に入力される。各遅延回路52からは、順次遅延されたリファレンスクロックが出力される。これらのリファレンスクロックは各D型フリップフロップ51のD端子に入力される。また、各D型フリップフロップ51のCK端子には、比較回路40からの信号S(k)の有意な論理レベルへの変化に応じて立ち上がる信号が入力される。各D型フリップフロップ51のQ出力は、エンコーダ53に提供される。これにより、信号S(k)の有意な論理レベルへの変化の時点で何れの遅延回路52がリファレンスクロックを出力しているかがエンコーダ53において特定される。一方、カウンタ回路55は、リファレンスクロック回路54から出力されるリファレンスクロックCLKをカウントする。カウンタ回路55から出力されるカウント信号は、処理回路56に入力される。処理回路56は、エンコーダ53から提供される情報と、カウンタ回路55からのカウント信号とに基づいて、パルス光P1が出射されてから比較回路40の出力信号S(k)が有意値となるまでの第kの測定時間T(k)に相当するディジタルデータを生成する。 FIG. 4 is a circuit diagram illustrating a specific configuration example of the time measurement circuit 50. The time measuring circuit 50 shown in the figure includes a so-called TDC (Time to Digital Converter) circuit, and includes a plurality of D-type flip-flops 51, a plurality of delay circuits 52 connected in series, an encoder 53, and the like. , A reference clock circuit 54, a counter circuit 55, and a processing circuit 56. The reference clock circuit 54 starts operation in response to the input of a signal Sstart indicating the emission timing of the pulsed light P1. The reference clock CLK output from the reference clock circuit 54 is input to the first delay circuit 52. Each delay circuit 52 outputs a reference clock that is sequentially delayed. These reference clocks are input to the D terminal of each D-type flip-flop 51. In addition, a signal that rises in response to a change of the signal S C (k) from the comparison circuit 40 to a significant logic level is input to the CK terminal of each D-type flip-flop 51. The Q output of each D-type flip-flop 51 is provided to the encoder 53. As a result, the encoder 53 identifies which delay circuit 52 is outputting the reference clock at the time when the signal S C (k) changes to a significant logic level. On the other hand, the counter circuit 55 counts the reference clock CLK output from the reference clock circuit 54. The count signal output from the counter circuit 55 is input to the processing circuit 56. Based on the information provided from the encoder 53 and the count signal from the counter circuit 55, the processing circuit 56 outputs a significant value of the output signal S C (k) of the comparison circuit 40 after the pulsed light P1 is emitted. Digital data corresponding to the k-th measurement time T m (k) up to is generated.
 図5は、時間測定回路50によって測定される測定時間の概念を説明するためのタイミングチャートである。図5には、パルス光P1の時間波形(グラフG1)と、反射パルス光P2の時間波形(グラフG2)と、第1段ないし第3段の増幅回路A(1)~A(3)から出力される測定信号電圧V(1)~V(3)の時間波形(グラフG3~G5)とが示されている。図5では、或る時刻tにパルス光P1が出射され、時刻tに反射パルス光P2が検出されている。時刻tから時刻tまでの時間TTOFが、真の飛行時間(TOF)である。また、測定信号電圧V(1)~V(3)は、或る時定数でもってなだらかに立ち上がる。これは、主に光検出部12(図2を参照)から比較回路40までの回路内を信号が通過する際に生じる遅延に起因している。測定信号電圧V(1)~V(3)は後段のものほど絶対値が大きくなるので、同一の時定数であれば、或る基準電圧Vrefに達するまでの時間(遅延時間)は後段のものほど早くなる。同図では、測定信号電圧V(1)~V(3)それぞれが基準電圧Vrefに達するまでの遅延時間T(1)~T(3)が示されており、T(1)>T(2)>T(3)である。 FIG. 5 is a timing chart for explaining the concept of the measurement time measured by the time measurement circuit 50. FIG. 5 shows the time waveform (graph G1) of the pulsed light P1, the time waveform (graph G2) of the reflected pulsed light P2, and the first to third stage amplifier circuits A (1) to A (3). The time waveforms (graphs G3 to G5) of the output measurement signal voltages V O (1) to V O (3) are shown. In Figure 5, the pulse light P1 is emitted in a certain time t 1, the reflected pulse light P2 is detected at time t 2. The time T TOF from time t 1 to time t 2 is the true time of flight (TOF). Further, the measurement signal voltages V O (1) to V O (3) rise gently with a certain time constant. This is mainly due to a delay that occurs when a signal passes through the circuit from the light detection unit 12 (see FIG. 2) to the comparison circuit 40. Since the measurement signal voltages V O (1) to V O (3) have larger absolute values as the latter stage, the time (delay time) until reaching a certain reference voltage Vref is the latter stage if the time constant is the same. The faster you get. In the figure, delay times T d (1) to T d (3) until each of the measurement signal voltages V O (1) to V O (3) reaches the reference voltage Vref are shown, and T d (1 )> T d (2)> T d (3).
 時間測定回路50において測定される測定時間は、図5に示された真の飛行時間TTOFと遅延時間T(1)~T(3)との和となる。すなわち、測定信号電圧V(1)について測定される測定時間T(1)=TTOF+T(1)であり、測定信号電圧V(2)について測定される測定時間T(2)=TTOF+T(2)であり、測定信号電圧V(3)について測定される測定時間T(3)=TTOF+T(3)である。 The measurement time measured by the time measurement circuit 50 is the sum of the true flight time T TOF and the delay times T d (1) to T d (3) shown in FIG. That is, the measurement time T m (1) measured for the measurement signal voltage V O (1) = T TOF + T d (1), and the measurement time T m (2) measured for the measurement signal voltage V O (2). ) = T TOF + T d (2) and the measurement time T m (3) measured for the measurement signal voltage V O (3) = T TOF + T d (3).
 図2を再び参照する。TOF推定回路70は、本実施形態における演算部であり、N個の時間測定回路50から提供される第1ないし第Nの測定時間T(1)~T(N)に基づいて、TOFを算出する。図6は、TOF推定回路70におけるTOF算出方法を示すフローチャートである。以下、図6を参照しつつ、このTOF算出方法について詳細に説明する。 Reference is again made to FIG. The TOF estimation circuit 70 is a calculation unit in the present embodiment, and is based on the first to Nth measurement times T m (1) to T m (N) provided from the N time measurement circuits 50. Is calculated. FIG. 6 is a flowchart showing a TOF calculation method in the TOF estimation circuit 70. Hereinafter, the TOF calculation method will be described in detail with reference to FIG.
 いま、第n段の増幅回路A(n)から出力される測定信号電圧V(n)に基づいて測定される測定時間T(n)は、次の数式(2)によって表される。
Figure JPOXMLDOC01-appb-M000002
また、第(n+1)段の増幅回路A(n+1)から出力される測定信号電圧V(n+1)に関する測定時間T(n+1)は、次の数式(3)によって表される。
Figure JPOXMLDOC01-appb-M000003
Now, the measurement time T m (n) measured based on the measurement signal voltage V O (n) output from the n-th stage amplifier circuit A (n) is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
The measurement time T m (n + 1) related to the measurement signal voltage V O (n + 1) output from the (n + 1) -th stage amplifier circuit A (n + 1) is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
 数式(2)及び(3)において、測距対象物Bまでの距離は一定なので真の飛行時間TTOFは互いに等しい。したがって、数式(2)と数式(3)との差を求めると、次の数式(4)のように、真の飛行時間TTOFに関する項を消去することができる。
Figure JPOXMLDOC01-appb-M000004
数式(4)に示されるように、測定時間T(n+1)と測定時間T(n)との差は、遅延時間T(n+1)と遅延時間T(n)との差に等しい。
In the formulas (2) and (3), the distance to the distance measurement object B is constant, so that the true flight time T TOF is equal to each other. Therefore, when the difference between the formula (2) and the formula (3) is obtained, the term relating to the true flight time T TOF can be eliminated as in the following formula (4).
Figure JPOXMLDOC01-appb-M000004
As shown in Equation (4), the difference between the measurement time T m (n + 1) and the measurement time T m (n) is equal to the difference between the delay time T d (n + 1) and the delay time T d (n). .
 ここで、図7は、互いに同じ特性を有する6個の増幅回路A(1)~A(6)によって構成される6段増幅回路における、測定信号電流Ipの対数値と遅延時間T(1)~T(6)との関係の一例を示すグラフである。同図において、グラフG11~G16それぞれは、遅延時間T(1)~T(6)それぞれを示している。また、同図では、第1段の増幅回路A(1)の帰還容量Cを0.1[pF]とし、測定信号電流Ipのパルス幅を10[nsec]とし、その測定信号電流Ipの電流値を変化させながら、遅延時間T(1)~T(6)を測定した。 Here, FIG. 7 shows the logarithmic value of the measurement signal current Ip and the delay time T d (1) in a six-stage amplifier circuit constituted by six amplifier circuits A (1) to A (6) having the same characteristics. ) To T d (6) is a graph showing an example of the relationship. In the drawing, graphs G11 to G16 respectively show delay times T d (1) to T d (6). Further, in the figure, a feedback capacitor C 1 of the amplification circuit A (1) of the first stage and 0.1 [pF], the pulse width of the measurement signal current Ip and 10 [nsec], of the measured signal current Ip While changing the current value, the delay times T d (1) to T d (6) were measured.
 図7に示されるように、測定信号電流Ipの電流値が大きくなるほど、遅延時間T(1)~T(6)が短くなる傾向がある。また、同図のような測定信号電流Ipと遅延時間T(n)との関係を予め取得しておけば、測定信号電流Ipから遅延時間T(n)を推定することが可能となる。 As shown in FIG. 7, the delay times T d (1) to T d (6) tend to become shorter as the current value of the measurement signal current Ip increases. Further, if the relationship between the measurement signal current Ip and the delay time T d (n) as shown in the figure is acquired in advance, the delay time T d (n) can be estimated from the measurement signal current Ip. .
 また、図8は、遅延時間T(1)~T(6)の相互の差と測定信号電流Ipの対数値との関係の一例を示すグラフである。なお、遅延時間T(1)~T(6)の相互の差とは、例えば遅延時間T(1)とT(2)との差(グラフG21)であり、遅延時間T(2)とT(3)との差(グラフG22)であり、遅延時間T(3)とT(4)との差(グラフG23)であり、遅延時間T(4)とT(5)との差(グラフG24)であり、遅延時間T(5)とT(6)との差(グラフG25)である。図8においても図7と同様に、測定信号電流Ipが大きくなるほど遅延時間差が短くなる傾向がある。 FIG. 8 is a graph showing an example of the relationship between the difference between the delay times T d (1) to T d (6) and the logarithmic value of the measurement signal current Ip. The difference between the delay times T d (1) to T d (6) is, for example, the difference between the delay times T d (1) and T d (2) (graph G21), and the delay time T d The difference between (2) and T d (3) (graph G22), the difference between the delay times T d (3) and T d (4) (graph G23), and the delay time T d (4) T is d (5) the difference between (graph G24), which is the difference between the delay time T d (5) and T d (6) (graph G25). Also in FIG. 8, as in FIG. 7, the delay time difference tends to become shorter as the measurement signal current Ip increases.
 図8から明らかなように、遅延時間差と測定信号電流Ipとの関係を予め取得しておけば、遅延時間差から測定信号電流Ipの大きさを推定することが可能となる。前述したように、測定時間T(n+1)と測定時間T(n)との差は、遅延時間T(n+1)と遅延時間T(n)との差に等しい。また、測定時間T(n+1)と測定時間T(n)との差は、時間測定回路50における測定結果から容易に算出される。 As is clear from FIG. 8, if the relationship between the delay time difference and the measurement signal current Ip is acquired in advance, the magnitude of the measurement signal current Ip can be estimated from the delay time difference. As described above, the difference between the measurement time T m (n + 1) and the measurement time T m (n) is equal to the difference between the delay time T d (n + 1) and the delay time T d (n). Further, the difference between the measurement time T m (n + 1) and the measurement time T m (n) is easily calculated from the measurement result in the time measurement circuit 50.
 そこで、本実施形態では、図7のように遅延時間T(n)と測定信号電流Ipとの関係を表す第1のデータ、及び図8のように遅延時間差と測定信号電流Ipとの関係を表す第2のデータを、記憶部60に予め記憶させる。そして、TOF推定回路70は、時間測定回路50から提供された測定時間T(1)~T(N)のうち少なくとも二つの測定時間T(n)及びT(n+1)から、遅延時間差{T(n+1)-T(n)}を算出する(図6のステップS11)。その後、TOF推定回路70は、記憶部60に記憶された第2のデータを用いて、図9に示されるように、遅延時間差{T(n+1)-T(n)}から測定信号電流Ipの大きさを推定する(図6のステップS12)。TOF推定回路70は、記憶部60に記憶された第1のデータを用いて、図10に示されるように、この推定した測定信号電流Ipから遅延時間T(n)又はT(n+1)を推定する(ステップS13)。最後に、TOF推定回路70は、次の数式(5)に示されるように、推定した遅延時間T(n)又はT(n+1)を測定時間T(n)又はT(n+1)から減ずることによって、正確な飛行時間TTOFを算出する(ステップS14)。
Figure JPOXMLDOC01-appb-M000005
Therefore, in the present embodiment, first data representing the relationship between the delay time T d (n) and the measurement signal current Ip as shown in FIG. 7, and the relationship between the delay time difference and the measurement signal current Ip as shown in FIG. Is stored in advance in the storage unit 60. Then, the TOF estimation circuit 70 delays from at least two measurement times T m (n) and T m (n + 1) among the measurement times T m (1) to T m (N) provided from the time measurement circuit 50. The time difference {T d (n + 1) −T d (n)} is calculated (step S11 in FIG. 6). Thereafter, the TOF estimation circuit 70 uses the second data stored in the storage unit 60 to calculate the measurement signal current from the delay time difference {T d (n + 1) −T d (n)} as shown in FIG. The magnitude of Ip is estimated (step S12 in FIG. 6). As shown in FIG. 10, the TOF estimation circuit 70 uses the first data stored in the storage unit 60 to calculate the delay time T d (n) or T d (n + 1) from the estimated measurement signal current Ip. Is estimated (step S13). Finally, the TOF estimation circuit 70 uses the estimated delay time T d (n) or T d (n + 1) as the measurement time T m (n) or T m (n + 1) as shown in the following equation (5). By subtracting from, an accurate flight time T TOF is calculated (step S14).
Figure JPOXMLDOC01-appb-M000005
 なお、上記の例では第(n+1)段及び第n段の各増幅回路A(n+1),A(n)からの測定信号電圧V(n+1),V(n)に基づいて飛行時間TTOFを算出しているが、測定信号電圧の組み合わせはこれに限られず、N個の増幅回路A(1)~A(N)のうち任意の二つの増幅回路から出力される測定信号電圧に基づいて、同様の手順により飛行時間TTOFを求めることができる。 In the above example, the flight time T is based on the measurement signal voltages V O (n + 1) and V O (n) from the (n + 1) -th and n-th amplifier circuits A (n + 1) and A (n). The TOF is calculated, but the combination of the measurement signal voltages is not limited to this, and is based on the measurement signal voltages output from any two of the N amplifier circuits A (1) to A (N). Thus, the flight time T TOF can be obtained by the same procedure.
 また、理想的には、測定信号電圧のどのような組み合わせであっても算出される飛行時間TTOFは等しくなる筈である。しかしながら、実際には、ディジタル変換の際の量子化誤差などが影響し、測定信号電圧の組み合わせによって飛行時間TTOFにばらつきが生じてしまう。そこで、TOF推定回路70は、測定信号電流Ipと第1のデータとに基づいて、測定時間T(1)~T(N)のうち二以上の測定時間T(p),T(q)(但し、p、qは1以上N以下の整数であり、p≠q)に含まれる遅延時間T(p),T(q)を求め、二以上の測定時間T(p),T(q)から該遅延時間T(p),T(q)を減ずることによって二以上の飛行時間TTOFを算出したのち、これらの平均値を算出してもよい。より好ましくは、次の数式(6)に示されるように、全ての測定時間T(1)~T(N)と遅延時間T(1)~T(N)との差の平均値を、飛行時間TTOFとして求めるとよい。これにより、更に正確な飛行時間TTOFを求めることができる。
Figure JPOXMLDOC01-appb-M000006
Ideally, the calculated time of flight T TOF should be equal regardless of the combination of the measurement signal voltages. However, in practice, a quantization error or the like at the time of digital conversion influences, and the flight time T TOF varies depending on the combination of measurement signal voltages. Therefore, the TOF estimation circuit 70, based on the measurement signal current Ip and the first data, measures two or more measurement times T m (p), T m among the measurement times T m (1) to T m (N). (Q) (where p and q are integers of 1 or more and N or less, and delay times T d (p) and T d (q) included in p ≠ q) are obtained, and two or more measurement times T m ( After calculating two or more flight times T TOF by subtracting the delay times T d (p) and T d (q) from p) and T m (q), an average value of these may be calculated. More preferably, as shown in the following formula (6), the average of the differences between all the measurement times T m (1) to T m (N) and the delay times T d (1) to T d (N) The value may be obtained as the time of flight TTOF . As a result, a more accurate flight time T TOF can be obtained.
Figure JPOXMLDOC01-appb-M000006
 以上に説明したように、本実施形態の信号処理回路20によれば、回路部分の信号遅延に起因する遅延時間を計測時間から好適に除去することができるので、飛行時間TTOFを高い精度で測定することができる。また、この信号処理回路20では、多段増幅回路30が第1段ないし第N段の増幅回路A(1)~A(N)を有している。このように複数の増幅回路が接続された構成によって、入力された測定信号電流Ipが微弱であっても、後段の増幅回路からは大きく増幅された測定信号電圧が出力される。したがって、測定信号電流Ipが微弱である場合(すなわち測定距離が長い場合)、及び測定信号電流Ipが大きい場合(すなわち測定距離が短い場合)のいずれにおいても測定時間を好適に測定し、正確な飛行時間TTOFを算出することができる。 As described above, according to the signal processing circuit 20 of the present embodiment, the delay time caused by the signal delay of the circuit portion can be suitably removed from the measurement time, so that the flight time T TOF can be obtained with high accuracy. Can be measured. In the signal processing circuit 20, the multistage amplifier circuit 30 includes first to Nth stage amplifier circuits A (1) to A (N). With the configuration in which a plurality of amplifier circuits are connected in this way, even if the input measurement signal current Ip is weak, a greatly amplified measurement signal voltage is output from the subsequent amplifier circuit. Therefore, the measurement time is suitably measured both when the measurement signal current Ip is weak (that is, when the measurement distance is long) and when the measurement signal current Ip is large (that is, when the measurement distance is short). The flight time T TOF can be calculated.
 多段増幅回路30によるこのようなダイナミックレンジの拡大効果について、更に詳細に説明する。多段増幅回路30に入力された測定信号電流Ipは、積分回路として構成された第1段の増幅回路A(1)によって反転増幅される。このとき、第1段の増幅回路A(1)から出力される測定信号電圧V(1)は、次の数式(7)のように表される。なお、数式(7)において、Cf1は第1段の増幅回路A(1)の帰還容量値である。
Figure JPOXMLDOC01-appb-M000007
The effect of expanding the dynamic range by the multistage amplifier circuit 30 will be described in more detail. The measurement signal current Ip input to the multistage amplifier circuit 30 is inverted and amplified by a first stage amplifier circuit A (1) configured as an integration circuit. At this time, the measurement signal voltage V O (1) output from the first stage amplifier circuit A (1) is expressed as the following Expression (7). In Equation (7), C f1 is the feedback capacitance value of the first stage amplifier circuit A (1).
Figure JPOXMLDOC01-appb-M000007
 また、非反転増幅回路として構成された第2段の増幅回路A(2)には、第1段の増幅回路A(1)からの測定信号電圧V(1)がそのまま入力される。第2段の増幅回路A(2)からの測定信号電圧V(2)は、次の数式(8)のように表される。なお、数式(8)において、Cf2は第2段の増幅回路A(2)の帰還容量値、Ci2は第2段の増幅回路A(2)の負荷容量値である。
Figure JPOXMLDOC01-appb-M000008
数式(8)から明らかなように、第2段の増幅回路A(2)における増幅率は、帰還容量値Cf2及び負荷容量値Ci2によって定まる。
Further, the measurement signal voltage V O (1) from the first stage amplifier circuit A (1) is directly input to the second stage amplifier circuit A (2) configured as a non-inverting amplifier circuit. The measurement signal voltage V O (2) from the second-stage amplifier circuit A (2) is expressed as the following equation (8). In Equation (8), C f2 is the feedback capacitance value of the second stage amplifier circuit A (2), and C i2 is the load capacitance value of the second stage amplifier circuit A (2).
Figure JPOXMLDOC01-appb-M000008
As is clear from Equation (8), the amplification factor in the second stage amplifier circuit A (2) is determined by the feedback capacitance value C f2 and the load capacitance value C i2 .
 第3段以降の増幅回路A(3)~A(N)から出力される測定信号電圧V(3)~V(N)は、前段の増幅回路から出力された電圧を反転させずに増幅するので、測定信号電圧V(1)と同相となる。第N段の増幅回路A(N)から出力される測定信号電圧V(N)は、次の数式(9)のように表される。なお、数式(9)において、CfNは第N段の増幅回路A(N)の帰還容量、CiNは第N段の増幅回路A(N)の負荷容量値、CはCfN及びCiNから算出される合成容量比である。
Figure JPOXMLDOC01-appb-M000009
数式(9)から明らかなように、第N段の増幅回路A(N)の測定信号電圧V(N)は、第2段ないし第N段の増幅回路A(2)~A(N)の合成容量比C~Cと、第1段の増幅回路A(1)の測定信号電圧V(1)との積によって算出される。
The measurement signal voltages V O (3) to V O (N) output from the amplifier circuits A (3) to A (N) after the third stage do not invert the voltage output from the amplifier circuit of the previous stage. Since it is amplified, it is in phase with the measurement signal voltage V O (1). The measurement signal voltage V O (N) output from the Nth stage amplifier circuit A (N) is expressed as the following equation (9). In Equation (9), C fN is the feedback capacitance of the Nth stage amplifier circuit A (N), C iN is the load capacitance value of the Nth stage amplifier circuit A (N), and C N is C fN and C It is a composite capacity ratio calculated from iN .
Figure JPOXMLDOC01-appb-M000009
As is clear from Equation (9), the measurement signal voltage V O (N) of the Nth stage amplifier circuit A (N) is the second to Nth stage amplifier circuits A (2) to A (N). Of the combined capacitance ratios C 2 to C N and the measurement signal voltage V O (1) of the first stage amplifier circuit A (1).
 このように、複数の非反転増幅回路を多段に接続することにより、測定信号電流Ipが微弱であっても、後段の増幅回路A(N)では測定信号電圧V(N)を大きく増幅することができる。したがって、本実施形態のような多段増幅回路30によれば、反射パルス光P2が微弱である場合(すなわち測定距離が長い場合)、及び反射パルス光P2が強い場合(すなわち測定距離が短い場合)のいずれにおいても、測定時間T(1)~T(N)のうち少なくとも二つを好適に測定し、飛行時間TTOFを算出することができる。 In this way, by connecting a plurality of non-inverting amplifier circuits in multiple stages, the measurement signal voltage V O (N) is greatly amplified in the subsequent amplification circuit A (N) even if the measurement signal current Ip is weak. be able to. Therefore, according to the multistage amplifier circuit 30 of this embodiment, when the reflected pulse light P2 is weak (that is, when the measurement distance is long) and when the reflected pulse light P2 is strong (that is, when the measurement distance is short). In any case, it is possible to suitably measure at least two of the measurement times T m (1) to T m (N) and calculate the flight time T TOF .
 なお、先に述べた図7に示されたグラフG11~G16は、第2段以降の増幅回路A(2)~A(6)の合成容量比C~Cが11となるように多段増幅回路30を作製して、各遅延時間T(1)~T(6)を測定した結果である。図7を参照すると、6段増幅回路によって、10[nA]から1[mA]までといった5桁にわたる範囲の測定信号電流Ipを検出することが可能となっている。また、第6段の増幅回路A(6)における遅延時間T(6)に着目すると、測定信号電流が100[μA]を越える領域では、測定信号電流Ipに対する遅延時間T(6)の変化が小さくなっている。これは、第6段の増幅回路A(6)が飽和していることを示す。なお、このような場合であっても、飽和していない他の増幅回路A(1)~A(5)からの測定信号電圧V(1)~V(5)を用いることによって、一つの測定信号電流Ipに対して複数の測定時間T(1)~T(5)を取得することができ、これらの測定時間T(1)~T(5)に基づいて飛行時間TTOFを求めることができる。 Note that the graphs G11 to G16 shown in FIG. 7 described above are multi-stage so that the combined capacitance ratios C 2 to C 6 of the amplification circuits A (2) to A (6) after the second stage are 11. This is a result of measuring the delay times T d (1) to T d (6) by fabricating the amplifier circuit 30. Referring to FIG. 7, it is possible to detect a measurement signal current Ip in a range of 5 digits from 10 [nA] to 1 [mA] by a 6-stage amplifier circuit. When attention is paid to the delay time T d (6) in the sixth-stage amplifier circuit A (6), in the region where the measurement signal current exceeds 100 [μA], the delay time T d (6) of the measurement signal current Ip The change is getting smaller. This indicates that the sixth stage amplifier circuit A (6) is saturated. Even in such a case, by using the measurement signal voltages V O (1) to V O (5) from the other non-saturated amplifier circuits A (1) to A (5), A plurality of measurement times T m (1) to T m (5) can be obtained for one measurement signal current Ip, and the flight time is based on these measurement times T m (1) to T m (5). T TOF can be determined.
 本発明による距離測定用の信号処理回路および距離測定装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では多段増幅回路の第1段の増幅回路が反転型の構成を有しているが、第1段の増幅回路は非反転型であってもよい。 The signal processing circuit and distance measuring apparatus for distance measurement according to the present invention are not limited to the above-described embodiments, and various other modifications are possible. For example, in the above embodiment, the first stage amplifier circuit of the multistage amplifier circuit has an inverting configuration, but the first stage amplifier circuit may be a non-inverting type.
 また、上記実施形態では遅延時間差と前記測定信号電流との関係を表す第2のデータを記憶部が予め記憶しており、演算部は、算出した遅延時間差と第2のデータとに基づいて測定信号電流の大きさを求めている。しかしながら、遅延時間と測定信号電流との関係を表す第1のデータのみが記憶部に記憶されている場合であっても、演算部は、この第1のデータから遅延時間差と測定信号電流との関係(図9参照)を演算により求めることができるので、この関係から測定信号電流の大きさを求めることが可能となる。 In the above embodiment, the storage unit stores in advance second data representing the relationship between the delay time difference and the measurement signal current, and the calculation unit performs measurement based on the calculated delay time difference and the second data. The magnitude of the signal current is obtained. However, even in the case where only the first data representing the relationship between the delay time and the measurement signal current is stored in the storage unit, the calculation unit calculates the difference between the delay time and the measurement signal current from the first data. Since the relationship (see FIG. 9) can be obtained by calculation, the magnitude of the measurement signal current can be obtained from this relationship.
 この発明は、広い距離範囲を測定でき、且つTOFを高い精度で測定することができる距離測定用の信号処理回路および距離測定装置として利用可能である。 The present invention can be used as a signal processing circuit for distance measurement and a distance measuring device capable of measuring a wide distance range and measuring TOF with high accuracy.
 10…距離測定装置、11…光出射部、12…光検出部、20…信号処理回路、30…多段増幅回路、31,34…増幅器、32…積分容量素子、35…帰還容量素子、36…負荷容量素子、40…比較回路、50…時間測定回路、51…D型フリップフロップ、52…遅延回路、53…エンコーダ、54…リファレンスクロック回路、55…カウンタ回路、56…処理回路、60…記憶部、70…TOF推定回路、A(1)~A(N)…増幅回路、B…測距対象物、CLK…リファレンスクロック、Ip…測定信号電流、P1…パルス光、P2…反射パルス光、V(1)~V(N)…測定信号電圧、Vref…基準電圧。 DESCRIPTION OF SYMBOLS 10 ... Distance measuring device, 11 ... Light emission part, 12 ... Light detection part, 20 ... Signal processing circuit, 30 ... Multistage amplifier circuit, 31, 34 ... Amplifier, 32 ... Integration capacity element, 35 ... Feedback capacity element, 36 ... Load capacitance element, 40 ... comparison circuit, 50 ... time measurement circuit, 51 ... D-type flip-flop, 52 ... delay circuit, 53 ... encoder, 54 ... reference clock circuit, 55 ... counter circuit, 56 ... processing circuit, 60 ... memory 70: TOF estimation circuit, A (1) to A (N) ... amplification circuit, B ... object to be measured, CLK ... reference clock, Ip ... measurement signal current, P1 ... pulse light, P2 ... reflected pulse light, V O (1) to V O (N): measurement signal voltage, Vref: reference voltage.

Claims (4)

  1.  測距対象物に向けて出射されたパルス光が前記測距対象物にて反射して戻るまでの飛行時間に基づく距離測定に用いられる信号処理回路であって、
     互いに直列に接続された第1段ないし第N段の増幅回路(Nは2以上の整数)を有し、前記測距対象物において反射した前記パルス光の光強度に応じた大きさの測定信号電流を前記第1段の増幅回路の入力端に受ける多段増幅回路と、
     前記第1段ないし第N段の増幅回路にそれぞれ接続され、対応する前記増幅回路から出力される測定信号電圧が基準電圧に達した場合に有意値を出力するN個の比較回路と、
     前記パルス光の出射タイミングを示す信号と、前記N個の比較回路から出力される信号とを入力し、前記パルス光が出射されてから各比較回路の出力信号が前記有意値となるまでの各時間(以下、第1ないし第Nの測定時間という)を測定する時間測定回路と、
     当該信号処理回路における信号遅延により各測定時間に含まれる遅延時間と前記測定信号電流との関係を表す第1のデータ、並びに、一の前記測定時間に含まれる前記遅延時間と別の前記測定時間に含まれる前記遅延時間との差である遅延時間差と前記測定信号電流との関係を表す第2のデータを予め記憶する記憶部と、
     前記第1ないし第Nの測定時間に基づいて前記飛行時間を算出する演算部と
    を備え、
     前記多段増幅回路の前記第2段ないし第N段の増幅回路が非反転増幅回路によって構成されており、
     前記演算部は、前記時間測定回路によって測定された前記第1ないし第Nの測定時間のうち少なくとも二つの前記測定時間から前記遅延時間差を算出し、該遅延時間差と前記第2のデータとに基づいて前記測定信号電流の大きさを求めたのち、該測定信号電流の大きさと前記第1のデータとに基づいて前記第1ないし第Nの測定時間のうち少なくとも一つの前記測定時間に含まれる前記遅延時間を求め、前記少なくとも一つの測定時間から該遅延時間を減ずることによって前記飛行時間を算出する
    ことを特徴とする、距離測定用の信号処理回路。
    A signal processing circuit used for distance measurement based on a flight time until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned.
    A measurement signal having first to Nth stage amplification circuits (N is an integer of 2 or more) connected in series, and having a magnitude corresponding to the light intensity of the pulsed light reflected from the distance measuring object. A multi-stage amplifier circuit receiving current at an input terminal of the first-stage amplifier circuit;
    N comparison circuits connected to the first to Nth stage amplifier circuits, respectively, for outputting a significant value when the measurement signal voltage output from the corresponding amplifier circuit reaches a reference voltage;
    A signal indicating the emission timing of the pulsed light and a signal output from the N comparison circuits are input, and each signal from when the pulsed light is emitted until the output signal of each comparison circuit reaches the significant value. A time measurement circuit for measuring time (hereinafter referred to as first to Nth measurement times);
    First data representing a relationship between a delay time included in each measurement time and the measurement signal current due to a signal delay in the signal processing circuit, and the measurement time different from the delay time included in one measurement time A storage unit that preliminarily stores second data representing a relationship between a delay time difference that is a difference from the delay time included in the measurement signal current;
    A calculation unit that calculates the flight time based on the first to Nth measurement times;
    The second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits,
    The computing unit calculates the delay time difference from at least two of the first to Nth measurement times measured by the time measurement circuit, and based on the delay time difference and the second data. The magnitude of the measurement signal current is obtained and then included in at least one of the first to Nth measurement times based on the magnitude of the measurement signal current and the first data. A signal processing circuit for distance measurement, wherein a delay time is obtained and the flight time is calculated by subtracting the delay time from the at least one measurement time.
  2.  測距対象物に向けて出射されたパルス光が前記測距対象物にて反射して戻るまでの飛行時間に基づく距離測定に用いられる信号処理回路であって、
     互いに直列に接続された第1段ないし第N段の増幅回路(Nは2以上の整数)を有し、前記測距対象物において反射した前記パルス光の光強度に応じた大きさの測定信号電流を前記第1段の増幅回路の入力端に受ける多段増幅回路と、
     前記第1段ないし第N段の増幅回路にそれぞれ接続され、対応する前記増幅回路から出力される測定信号電圧が基準電圧に達した場合に有意値を出力するN個の比較回路と、
     前記パルス光の出射タイミングを示す信号と、前記N個の比較回路から出力される信号とを入力し、前記パルス光が出射されてから各比較回路の出力信号が前記有意値となるまでの各時間(以下、第1ないし第Nの測定時間という)を測定する時間測定回路と、
     当該信号処理回路における信号遅延により各測定時間に含まれる遅延時間と前記測定信号電流との関係を表す第1のデータを予め記憶する記憶部と、
     前記第1ないし第Nの測定時間に基づいて前記飛行時間を算出する演算部と
    を備え、
     前記多段増幅回路の前記第2段ないし第N段の増幅回路が非反転増幅回路によって構成されており、
     前記演算部は、前記時間測定回路によって測定された前記第1ないし第Nの測定時間のうち少なくとも二つの前記測定時間から、一の前記測定時間に含まれる前記遅延時間と別の前記測定時間に含まれる前記遅延時間との差である遅延時間差を算出し、前記第1のデータから求められる前記遅延時間差と前記測定信号電流との関係に基づいて前記測定信号電流の大きさを求めたのち、該測定信号電流の大きさと前記第1のデータとに基づいて前記第1ないし第Nの測定時間のうち少なくとも一つの前記測定時間に含まれる前記遅延時間を求め、前記少なくとも一つの測定時間から該遅延時間を減ずることによって前記飛行時間を算出する
    ことを特徴とする、距離測定用の信号処理回路。
    A signal processing circuit used for distance measurement based on a flight time until the pulsed light emitted toward the distance measurement object is reflected by the distance measurement object and returned.
    A measurement signal having first to Nth stage amplification circuits (N is an integer of 2 or more) connected in series, and having a magnitude corresponding to the light intensity of the pulsed light reflected from the distance measuring object. A multi-stage amplifier circuit receiving current at an input terminal of the first-stage amplifier circuit;
    N comparison circuits connected to the first to Nth stage amplifier circuits, respectively, for outputting a significant value when the measurement signal voltage output from the corresponding amplifier circuit reaches a reference voltage;
    A signal indicating the emission timing of the pulsed light and a signal output from the N comparison circuits are input, and each signal from when the pulsed light is emitted until the output signal of each comparison circuit reaches the significant value. A time measurement circuit for measuring time (hereinafter referred to as first to Nth measurement times);
    A storage unit that stores in advance first data representing a relationship between a delay time included in each measurement time and the measurement signal current due to a signal delay in the signal processing circuit;
    A calculation unit that calculates the flight time based on the first to Nth measurement times;
    The second to Nth stage amplifier circuits of the multistage amplifier circuit are constituted by non-inverting amplifier circuits,
    The computing unit may change the measurement time different from the delay time included in one measurement time from at least two of the first to N measurement times measured by the time measurement circuit. After calculating a delay time difference that is a difference from the included delay time, after obtaining the magnitude of the measurement signal current based on the relationship between the delay time difference obtained from the first data and the measurement signal current, Based on the magnitude of the measurement signal current and the first data, the delay time included in at least one of the first to Nth measurement times is obtained, and the delay time is calculated from the at least one measurement time. A signal processing circuit for distance measurement, wherein the flight time is calculated by reducing a delay time.
  3.  前記演算部が、前記測定信号電流と前記第1のデータとに基づいて、前記第1ないし第Nの測定時間のうち二以上の前記測定時間に含まれる前記遅延時間を求め、前記二以上の測定時間から該遅延時間を減ずることによって二以上の前記飛行時間を算出したのち、前記二以上の飛行時間の平均値を算出することを特徴とする、請求項1または2に記載の距離測定用の信号処理回路。 The calculation unit obtains the delay time included in two or more of the first to Nth measurement times based on the measurement signal current and the first data, and the two or more 3. The distance measurement device according to claim 1, wherein after calculating the two or more flight times by subtracting the delay time from the measurement time, an average value of the two or more flight times is calculated. Signal processing circuit.
  4.  測距対象物に向けて出射されたパルス光が前記測距対象物にて反射して戻るまでの飛行時間に基づいて前記測距対象物までの距離を測定する距離測定装置であって、
     請求項1~3のいずれか一項に記載された信号処理回路と、
     前記測距対象物に向けて前記パルス光を出射する光出射部と、
     前記測距対象物において反射した前記パルス光を受け、該パルス光の光強度に応じた大きさの前記測定信号電流を生成する光検出部と
    を備えることを特徴とする、距離測定装置。
    A distance measuring device for measuring a distance to the distance measuring object based on a flight time until the pulsed light emitted toward the distance measuring object is reflected by the distance measuring object and returned.
    A signal processing circuit according to any one of claims 1 to 3,
    A light emitting unit that emits the pulsed light toward the object to be measured;
    A distance measuring device comprising: a light detection unit that receives the pulsed light reflected from the distance measuring object and generates the measurement signal current having a magnitude corresponding to the light intensity of the pulsed light.
PCT/JP2012/055986 2011-03-08 2012-03-08 Distance measurement signal processing circuit and distance measuring apparatus WO2012121337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011050506A JP2014102072A (en) 2011-03-08 2011-03-08 Signal processing circuit for distance measurement and distance measurement device
JP2011-050506 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012121337A1 true WO2012121337A1 (en) 2012-09-13

Family

ID=46798292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055986 WO2012121337A1 (en) 2011-03-08 2012-03-08 Distance measurement signal processing circuit and distance measuring apparatus

Country Status (2)

Country Link
JP (1) JP2014102072A (en)
WO (1) WO2012121337A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142340A (en) * 2013-01-24 2014-08-07 Sick Ag Photoelectric sensor and method for detecting object in monitoring region
JP2015075453A (en) * 2013-10-11 2015-04-20 株式会社キーエンス Photoelectric sensor
WO2019014896A1 (en) 2017-07-20 2019-01-24 SZ DJI Technology Co., Ltd. Systems and methods for optical distance measurement
WO2020150961A1 (en) * 2019-01-24 2020-07-30 深圳市大疆创新科技有限公司 Detection device and movable platform
CN112558095A (en) * 2020-11-30 2021-03-26 广东博智林机器人有限公司 Laser ranging method, device and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003461A (en) 2015-06-11 2017-01-05 東芝テック株式会社 Distance measurement device
EP3185038B1 (en) * 2015-12-23 2018-02-14 Sick Ag Optoelectronic sensor and method for measuring a distance
DE102017200803A1 (en) * 2017-01-19 2018-07-19 Robert Bosch Gmbh Monitoring device of a lidar system
KR102019382B1 (en) 2017-09-29 2019-09-06 현대오트론 주식회사 Distance detection sensor and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365678A (en) * 1989-08-02 1991-03-20 Nippon Soken Inc Distance measuring apparatus using wave
JPH0735859A (en) * 1993-07-19 1995-02-07 Stanley Electric Co Ltd Distance correcting method for radar distance measuring system
JPH11142519A (en) * 1997-11-06 1999-05-28 Omron Corp Optical range finder
JP2003075534A (en) * 2001-08-31 2003-03-12 Omron Corp Distance measurement signal and light receiving signal circuit
JP2008076145A (en) * 2006-09-20 2008-04-03 Topcon Corp Device for measuring pulse light reception time

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365678A (en) * 1989-08-02 1991-03-20 Nippon Soken Inc Distance measuring apparatus using wave
JPH0735859A (en) * 1993-07-19 1995-02-07 Stanley Electric Co Ltd Distance correcting method for radar distance measuring system
JPH11142519A (en) * 1997-11-06 1999-05-28 Omron Corp Optical range finder
JP2003075534A (en) * 2001-08-31 2003-03-12 Omron Corp Distance measurement signal and light receiving signal circuit
JP2008076145A (en) * 2006-09-20 2008-04-03 Topcon Corp Device for measuring pulse light reception time

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142340A (en) * 2013-01-24 2014-08-07 Sick Ag Photoelectric sensor and method for detecting object in monitoring region
JP2015075453A (en) * 2013-10-11 2015-04-20 株式会社キーエンス Photoelectric sensor
WO2019014896A1 (en) 2017-07-20 2019-01-24 SZ DJI Technology Co., Ltd. Systems and methods for optical distance measurement
EP3455645A4 (en) * 2017-07-20 2019-04-24 SZ DJI Technology Co., Ltd. Systems and methods for optical distance measurement
US10371802B2 (en) 2017-07-20 2019-08-06 SZ DJI Technology Co., Ltd. Systems and methods for optical distance measurement
WO2020150961A1 (en) * 2019-01-24 2020-07-30 深圳市大疆创新科技有限公司 Detection device and movable platform
CN111742240A (en) * 2019-01-24 2020-10-02 深圳市大疆创新科技有限公司 Detection device and movable platform
CN112558095A (en) * 2020-11-30 2021-03-26 广东博智林机器人有限公司 Laser ranging method, device and system

Also Published As

Publication number Publication date
JP2014102072A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012121337A1 (en) Distance measurement signal processing circuit and distance measuring apparatus
KR102526443B1 (en) Histogram reading method and circuit for determining photon time-of-flight
US11125863B2 (en) Correction device, correction method, and distance measuring device
US10809395B2 (en) Photon measurement front-end circuit with integral module and a negative feedback module
CN107968658B (en) Analog-to-digital converter for LIDAR system
CN107843903B (en) Multi-threshold TDC high-precision laser pulse distance measuring method
JP2016188869A (en) Gamma ray detection system
US11381246B2 (en) Time-to-digital converter and converting methods
US11287518B2 (en) Optical sensor and electronic device
US10078134B2 (en) ADC design for differential and common mode signals
CN109581401B (en) Distance detection sensor and working method thereof
CN107817484B (en) Amplification factor processing method and device of laser radar amplification circuit
CN111819464B (en) Light detection device, light detection method, and optical distance measurement sensor
CN115469295A (en) Laser radar receiving circuit, analog front end, laser radar and signal processing method
JP5945245B2 (en) Signal pulse detection device, mass spectrometer, and signal pulse detection method
US20080048641A1 (en) Peak voltage detector circuit and binarizing circuit including the same circuit
US8477291B2 (en) System and method for ranging of targets
US11635531B2 (en) Apparatus for measuring photon information and photon measurement device
JPH08189974A (en) Apparatus for measuring radiation energy spectrum
US10545462B2 (en) Time-to-voltage converter
JP4775214B2 (en) ΣΔ AD converter circuit
Kurtti et al. Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder
JP6173106B2 (en) Frequency detector
CN110865057A (en) Non-uniform time-to-digital converter applied to fluorescence lifetime imaging
CN112558095A (en) Laser ranging method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP