WO2012121285A1 - Labeling precursor compound, radioactively labeling compound, and processes for producing those compounds - Google Patents

Labeling precursor compound, radioactively labeling compound, and processes for producing those compounds Download PDF

Info

Publication number
WO2012121285A1
WO2012121285A1 PCT/JP2012/055807 JP2012055807W WO2012121285A1 WO 2012121285 A1 WO2012121285 A1 WO 2012121285A1 JP 2012055807 W JP2012055807 W JP 2012055807W WO 2012121285 A1 WO2012121285 A1 WO 2012121285A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
atom
compound
alkyl group
Prior art date
Application number
PCT/JP2012/055807
Other languages
French (fr)
Japanese (ja)
Inventor
佐治英郎
木村寛之
杉山雄一
前田和哉
Original Assignee
国立大学法人京都大学
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 国立大学法人東京大学 filed Critical 国立大学法人京都大学
Priority to JP2013503574A priority Critical patent/JPWO2012121285A1/en
Publication of WO2012121285A1 publication Critical patent/WO2012121285A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D215/54Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds

Definitions

  • the present invention relates to a labeling precursor compound, a radioactive labeling compound, and a production method thereof.
  • a microdose clinical study is a study in which a test substance with a very low dose (microdose) of 1/100 or 100 ⁇ g or less of the effective dose is administered to a healthy person in a single phase I clinical.
  • microdose very low dose
  • This is an epoch-making test that enables verification of the pharmacokinetics of the test substance in humans by conducting it before the test.
  • the specific purpose is to clarify the absorption, blood kinetics, excretion characteristics, metabolite profile, etc. of the test substance, and to obtain information on the localization of the test substance in the body using molecular imaging technology.
  • pravastatin one of the HMG-CoA reductase inhibitors
  • MRP multi-drug resistance associated protein
  • OATP organic anion transport polypeptide
  • PBPK physiological pharmacokinetic
  • statin drugs such as pravastatin are compounds that are transported from the blood to the liver by OATPs that are liver uptake transporters. For this reason, various attempts have been made to obtain PET probes of these compounds. However, there have been no reports of successful synthesis of PET probes at this time. In the first place, there has been no report on a successful example of a labeled precursor of a statin drug for radiolabeling to obtain a PET probe.
  • the present invention provides a labeled precursor compound, a radiolabeled compound, and a method for producing them, which can provide a PET probe of a statin drug.
  • the present invention provides a compound of formula (I) [In the formula (I), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 .
  • a benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group
  • R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom
  • R 14 represents a hydrogen atom, a C 1-4 alkyl group
  • R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group
  • L 1 represents — (CH 2 ) m —, -O (CH 2) m -, - (AO) n , Or -O (AO) n - indicates, m represents an integer
  • the present invention provides a compound of formula (IV) [In the formula (IV), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 .
  • R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom
  • R 15 represents a C 1-6 alkyl group
  • C 3 -6 represents a cycloalkyl group or a phenyl group
  • Y represents —CH 2 —, —CH 2 CH 2 —, —CH ⁇ CH—, —CH 2 —CH ⁇ CH—, or —CH ⁇ CH—CH 2
  • Z 1 represents —Q—CH 2 —W—CH 2- CO 2
  • R 16 represents a group represented by the following formula (II) or a group represented by the following formula (III
  • R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 .
  • R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom
  • L 2 represents a bond, — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —
  • m represents an integer of 0 to 4
  • AO represents a C 2-4 oxyalkylene group.
  • N represents an integer of 2 to 4
  • X 2 represents a radionuclide
  • R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom
  • R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group
  • R 16 a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are each independently -C (O)-, -CH (OH)-, or -CH (OR 19 )-, R 19 independently represents a C 1-4 alkyl group, R 16 represents a
  • the present invention relates to a method for producing the radiolabeled compound of the present invention, which comprises labeling the label precursor compound of the present invention with a labeling substance.
  • R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 .
  • a benzyloxy group, a fluorine atom, a chlorine atom or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group
  • R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom
  • R 15 represents a C 1-6 alkyl group
  • C 3 -6 represents a cycloalkyl group or a phenyl group
  • Y represents —CH 2 —, —CH 2 CH 2 —, —CH ⁇ CH—, —CH 2 —CH ⁇ CH—, or —CH ⁇ CH—CH 2
  • Z 1 represents —Q—CH 2 —W—CH 2- CO 2
  • R 16 represents a group represented by the following formula (II) or a group represented by the following formula (III
  • a statin drug imaging probe preferably a PET probe of a mevalonolactone derivative can be provided.
  • FIG. 1 is a graph showing the time course and saturation of transport of pitavastatin and PTVS6 by the liver uptake transporter (OATP1B1, OATP1B3).
  • FIG. 2 is a graph showing an example of the results of changes over time in the distribution of [ 18 F] PTVS2.
  • FIG. 3 is a graph showing another example of the results of changes over time in the distribution of [ 18 F] PTVS2.
  • FIG. 4 is an image showing an example of the result of PET imaging using [ 18 F] PTVS2.
  • FIG. 5 is a graph showing an example of the results of metabolic stability evaluation by an in vitro experiment using human liver microsomes.
  • the present invention is based on the finding that a compound represented by formula (I) and formula (IV) can provide a PET probe of a statin drug.
  • MD clinical trials can be carried out with simpler toxicity test data compared to normal clinical trials, and their effective use is expected to contribute greatly to improving the efficiency and success probability of drug development.
  • time transition of the drug concentration in the medicinal target tissue for each individual is important as a factor determining the drug efficacy and side-effect variation of the drug among individuals. Therefore, there is a need for an imaging probe that can quantitatively measure the function of a transporter that takes drugs into tissues.
  • the HMG-CoA reductase inhibitor is a drug that exhibits a medicinal effect (serum cholesterol lowering) by inhibiting HMG-CoA reductase in the liver, such as pravastatin (US4346227), simvastatin, lovastatin, rosuvastatin, and pitavastatin
  • pravastatin US43462257
  • simvastatin simvastatin
  • lovastatin lovastatin
  • rosuvastatin rosuvastatin
  • pitavastatin drugs such as JP-A-1-279866, EP304063, US5856336 and the like are known.
  • pitavastatin and rosuvastatin are known to be taken up mainly by OATP1B1 in human hepatocytes, and the present inventors have focused on pitavastatin and attempted to make a PET probe.
  • Pitavastatin is a quinoline mevalonate compound having the following structure, and is commercially available as
  • the present inventors tried to label pitavastatin using various direct labeling methods. However, the labeling reaction did not proceed, and the target radiolabeled compound was not obtained. Therefore, the present inventors constructed a new synthetic route, and in the process, by using the compounds represented by formula (I) and formula (IV) as a labeling precursor, PET of pitavastatin or a derivative thereof It has been found that a probe can be manufactured.
  • a PET probe radiolabeled with a statin drug can be provided.
  • a PET probe radiolabeled with pitavastatin or a derivative thereof can be provided.
  • human gene expression cells, human frozen hepatocytes, human bile duct side membrane vesicles, and / or Based on in vitro parameters related to transport and metabolism obtained using human liver microsomes it is preferable that a model that predicts the time course of the test drug concentration in the liver in the human body can be constructed. .
  • the pitavastatin derivative which is a cold form of the radiolabeled compound represented by the formula (V)
  • the radiolabeled compound represented by the formula (V) of the present invention is also considered to be metabolically stable. Therefore, it can be said that the radiolabeled compound of the present invention is extremely useful as a PET probe, and can be a very useful PET probe for measuring or evaluating intrahepatic kinetics.
  • the compounds represented by the formulas (I), (IV), (V), and (VI) have at least one or two asymmetric carbon atoms, and each has at least 2, 3 or 4 kinds of Optical isomers exist. Therefore, the compounds represented by the formulas (I), (IV), (V), and (VI) all include all of these optical isomers and all of these mixtures. Similarly, the compounds represented by the formulas (X), (XI), (XII), (XIII) and (XIV) have two asymmetric carbon atoms, and each has at least 2, 3 or 4 kinds of them. Because of the presence of optical isomers, these compounds are intended to encompass all of these optical isomers and all of their mixtures.
  • examples of the “salt of a compound” include alkali metal salts, sulfates, acetates, nitrates, and phosphates.
  • alkali metal salt include sodium salt, potassium salt, and lithium salt.
  • the present invention relates to a labeled precursor compound represented by the formula (I) or a salt thereof (hereinafter also referred to as “labeled precursor compound (I) of the present invention”).
  • the labeled precursor compound (I) of the present invention can provide, for example, a PET probe of a pitavastatin derivative.
  • the PET probe obtained by radioactively labeling the labeled precursor compound (I) of the present invention exhibits, for example, a transport property in a similar liver uptake transporter (OATP) that is very similar to pitavastatin.
  • OATP liver uptake transporter
  • the gene as an inter-individual variation factor of the drug hepatic uptake / excretion process Prediction of polymorphism and / or drug interaction can be performed.
  • the function of an organ preferably the function of a drug transporter in the organ can be evaluated.
  • R 11 is represented by a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18.
  • the C 1-4 alkyl group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group and t-butyl group.
  • Examples of the C 1-3 alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group.
  • R 17 and R 18 each independently represent a C 1-2 alkyl group, and examples thereof include a methyl group and an ethyl group.
  • R 11 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a C 1-3 alkyl group, a C 1-3 alkoxy group, a dimethylamino group, or a benzyloxy group.
  • R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or bromine. Indicates an atom.
  • the C 1-4 alkyl group and the C 1-3 alkoxy group are as R 11 .
  • R 12 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a C 1-3 alkyl group, or a C 1-3 alkoxy group.
  • R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom.
  • the C 1-4 alkyl group is as R 11 .
  • R 14 is preferably a hydrogen atom, a methyl group, or a fluorine atom, and more preferably a hydrogen atom.
  • R 14 is preferably in the ortho or meta position relative to the —L 1 —X 1 group.
  • R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group.
  • the C 1-6 alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a sec-butyl group, a t-butyl group, and an n-pentyl group.
  • n-hexyl C 3-6 cycloalkyl groups include, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • R 15 is preferably a primary or secondary C 1-6 alkyl group or a C 3-6 cycloalkyl group, more preferably an ethyl group, an n-propyl group, an i-propyl group, or a cyclopropyl group. And more preferably an i-propyl group or a cyclopropyl group.
  • L 1 is, - (CH 2) m - , - O (CH 2) m -, - (AO) n -, or -O (AO) n - indicates, in L 1, AO Represents a C 2-4 oxyalkylene group, and examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group, with an oxyethylene group being preferred.
  • m represents an integer of 1 to 4, preferably 1, 2 or 3, more preferably 2.
  • n represents an integer of 2 to 4, preferably 2 or 3.
  • L 1 is preferably — (CH 2 ) 2 — or —O (CH 2 ) m —, more preferably —O (CH 2 ) 2 —.
  • X 1 represents a reactive functional group.
  • the reactive functional group include a functional group capable of reacting with a labeling substance that performs radiolabeling, and examples thereof include a sulfonate group, a halogen atom, a nitro group, a trimethylammonium group, and an alkyl silicon group.
  • the sulfonate group include a mesylate (OMs) group, a tosylate (OTs) group, and a triflate (OTf) group.
  • the halogen atom include a bromine atom, an iodine atom, and a chlorine atom.
  • the —L 1 -X 1 group is any of 2-position, 3-position and 4-position when the carbon connected to the quinoline ring in the phenyl substituted at the 4-position of the quinoline ring is the 1-position. It is preferable that it is in the 3rd or 4th position, more preferably in the 4th position.
  • Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III).
  • Q and W each independently represent —C (O) —, —CH (OH) —, or —CH (OR 19 ) —.
  • R 19 represents a C 1-4 alkyl group, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, and t-butyl. Groups and the like.
  • Z 1 is —CH (OR 19 ) —CH 2 —CH (OR 19 ) —CH 2 —CO 2 R 16 , —CH (OR 19 ) —CH 2 —C (O) —CH 2 —CO 2 R 16
  • a group represented by the following formula (II) or a group represented by the following formula (III) is preferred, and more preferably —CH (OH) —CH 2 —CH (OH) —CH 2 —CO 2 R 16 , —CH (OH) —CH 2 —C (O) —CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III).
  • R 16 represents a hydrogen atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 calcium.
  • the alkyl group is preferably a physiologically hydrolyzable alkyl group, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a t-butyl group.
  • R 16 is preferably a hydrogen atom or a t-butyl group.
  • Examples of the form of the labeled precursor compound (I) include solutions and powders, and powders are preferable from the viewpoint of handling, and lyophilized powders (lyophilized preparations) are more preferable.
  • the labeled precursor compound (I) can be synthesized by referring to the following examples and the description in JP-A No. 5-310700.
  • An example of a preferred form of the labeled precursor compound (I) includes a compound represented by the following formula (X) or a salt thereof.
  • Y, Z 1 and X 1 are the same as those in the labeled precursor compound (I) of the present invention and are as shown in the formula (I).
  • X 1 preferably represents a mesylate group, a tosylate group, a triflate group, or a fluorine atom.
  • —YZ 1 is preferably a group represented by the following formula (II ′) or a group represented by the following formula (III ′).
  • R 16 represents a hydrogen atom, a physiologically hydrolyzable alkyl group, NH 4 , sodium, potassium, or 1/2 calcium.
  • the labeling precursor compound (I) of the present invention can be used as a labeling precursor for producing a radiolabeled compound. Therefore, the present invention provides, as another aspect, the use of compound (I) as a labeling precursor, the use of compound (I) for producing a radiolabeled compound, or the use of compound (I) as a radiolabeling precursor. On how to do.
  • the present invention relates to a labeled precursor compound represented by formula (IV) or a salt thereof (hereinafter also referred to as “labeled precursor compound (IV) of the present invention”).
  • labeled precursor compound (IV) of the present invention for example, a PET probe of pitavastatin or a derivative thereof can be provided.
  • R 11 , R 12 , R 15 , Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention and are as shown in the formula (I).
  • M represents a boronic acid ester group.
  • the “boronic acid ester group” refers to a product obtained by esterification of an alcohol and a corresponding boronic acid.
  • the alcohol include methanol, ethanol, n-propanol, n-butanol, t-butanol, ethylene glycol, and pinacol.
  • the boronic acid ester group include —B (OR 31 ) (OR 32 ), —B (OR 33 O), and groups represented by the following formulae.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , and R 37 are each independently a C 1-6 alkyl group, which may be substituted, and among them, a methyl group is preferable.
  • Examples of the form of the labeled precursor compound (IV) of the present invention include a solution and a powder. From the viewpoint of handling, a powder is preferable, and a lyophilized powder (lyophilized preparation) is more preferable. is there.
  • An example of a preferred form of the labeled precursor compound (IV) includes a compound represented by the following formula (XI) or a salt thereof.
  • Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention and are as shown in the formula (I).
  • —YZ 1 preferably represents a group represented by the above formula (II ′) or a group represented by the above formula (III ′).
  • the labeling precursor compound (IV) of the present invention can be manufactured based on the manufacturing method of the labeling precursor compound described later, Examples and the like.
  • the label precursor compound (IV) of the present invention can be used as a label precursor for producing a radiolabeled compound. Accordingly, the present invention provides, as another aspect, the use of compound (IV) as a radiolabeled precursor, the use of compound (IV) to produce a radiolabeled compound, or compound (IV) as a radiolabeled precursor. Relates to the method used.
  • the present invention provides a method for producing a compound represented by the formula (IV), which further comprises a coupling reaction between a compound represented by the formula (VI) and a boronic acid ester or a diboron ester as another embodiment. (Hereinafter also referred to as “a method for producing a labeled precursor compound of the present invention”). According to the method for producing a labeled precursor compound of the present invention, the labeled precursor compound (IV) of the present invention can be efficiently produced.
  • the production method of the present invention can be carried out, for example, with reference to the following schemes and examples.
  • R 11 , R 12 , R 15 , Y, and Z 1 are as shown in the formula (I).
  • X 3 represents a sulfonate group, a halogen atom, a nitro group, or a quaternary ammonium.
  • the sulfonate group and the halogen atom are as shown in the formula (I).
  • Examples of the quaternary ammonium include trimethylammonium.
  • X 3 is preferably an OMs group, an OTs group, an OTf group, a bromine atom, an iodine atom, or a chlorine atom.
  • the compound represented by the formula (VI) can be appropriately synthesized by referring to the method for producing a mevalonolactone derivative described later and the description in Examples.
  • the coupling reaction can be performed by reacting the compound represented by the formula (VI) with a boronic acid ester or diboron ester in an inert solvent in the presence of a catalyst and a base, for example.
  • Examples of boronic esters include 2- (bromomethyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and 2-allenyl-4,4,5,5-tetramethyl-1 3,2-dioxaborolane and the like.
  • Examples of the diboron ester include bis (pinacolato) diboron, bis (hexylene glycolato) diboron, and bis (neopentyl glycolato) diboron. Especially, it is preferable to perform a coupling reaction using diboron ester, More preferably, it is bis (pinacolato) diboron.
  • Metal compounds such as a palladium compound and platinum / indium, a phase transfer catalyst, etc. can be used.
  • the palladium compound include PdCl 2 (dppf) CH 2 Cl 2 , Pd (PPh 3 ) 4 and the like, and one kind may be used, or two or more kinds may be used in combination.
  • the base include carbon salt, potassium acetate, NaOH, Et 3 N, K 3 PO 4 and the like.
  • the carbonate include sodium carbonate, cesium carbonate, and potassium carbonate. Among these, potassium carbonate is preferable as the base from the viewpoint of efficiently obtaining the target compound.
  • the coupling reaction may be performed under microwave irradiation from the viewpoint of improving the reaction efficiency.
  • Examples of the inert solvent include alcohol solvents, nitrile solvents, amide solvents, halogenated hydrocarbon solvents, ether solvents, and aromatic hydrocarbon solvents.
  • examples of alcohol solvents include methanol, ethanol, propanol, 2-propanol, butanol, isobutanol, and tert-butanol.
  • examples of the nitrile solvent include acetonitrile, propionitrile, and the like.
  • Examples of the amide solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, and the like.
  • halogenated hydrocarbon solvent examples include dichloromethane, chloroform, 1,2-dichloroethane, carbon tetrachloride, and the like.
  • ether solvent examples include diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, and the like.
  • aromatic hydrocarbon solvent include benzene, toluene, and xylene. These may be used alone or in combination of two or more. Among them, the inert solvent is preferably THF and / or dichloromethane.
  • the present invention relates to a radiolabeled compound represented by formula (V) or a salt thereof (hereinafter also referred to as “the radiolabeled compound of the present invention”).
  • the radiolabeled compounds of the present invention exhibit transport properties in similar liver uptake transporters OATP1B1 and OATP1B3, which are very similar to, for example, pitavastatin. For this reason, uptake in OATP1B1 and OATP1B3 can be evaluated in humans by performing PET imaging using the radiolabeled compound of the present invention.
  • the radiolabeled compound of the present invention for example, the construction of a model for predicting the time transition of the test drug concentration of the liver in the human body, the gene polymorphism as an inter-individual variation factor of the hepatic uptake / excretion process of the drug and / or Or prediction of the interaction between drugs can be performed.
  • the function of an organ can be evaluated, and preferably the function of a drug transporter in an organ can be evaluated.
  • R 11 , R 12 , R 14 , R 15 , Y, and Z 1 are the same as the labeled precursor compound (I) of the present invention, and are as shown in the formula (I). is there.
  • L 2 represents a bond, — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —
  • AO represents a C 2-4 oxyalkylene group, and examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group, and preferably an oxyethylene group.
  • m represents an integer of 0 to 4, preferably 0, 1, 2, or 3, more preferably 2.
  • n represents an integer of 2 to 4, preferably 2 or 3.
  • L 2 is preferably a bond, — (CH 2 ) 2 —, or —O (CH 2 ) m —, more preferably a bond or —O (CH 2 ) 2 —.
  • X 2 represents a radionuclide.
  • the radionuclide is not particularly limited, but is preferably a positron emitting nuclide, more preferably 11 C or 18 F, and even more preferably 18 F.
  • the —L 2 —X 2 group is any one of the 2-position, 3-position and 4-position when the carbon connected to the quinoline ring in the phenyl substituted at the 4-position of the quinoline ring is the 1-position. It is preferable that it is in the 3rd or 4th position, more preferably in the 4th position.
  • radiolabeled compound (IV) of the present invention includes a compound represented by the following formula (XII) or a salt thereof.
  • Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention, and are as shown in the formula (I).
  • —YZ 1 preferably represents a group represented by the above formula (II ′) or a group represented by the above formula (III ′).
  • L 2 and X 2 are the same as the labeled precursor compound (IV) of the present invention, and are as shown in the formula (IV).
  • —L 2 —X 2 preferably represents a [ 18 F] fluorine atom or —O— (CH 2 ) 2 — [ 18 F] F.
  • the radiolabeled compound of the present invention can be used for imaging, for example, PET imaging, and preferably performs imaging for evaluation of inter-individual variability and drug metabolism / transport function in a human body. it can.
  • the radiolabeled compound of the present invention can be used as a PET probe.
  • it can be used as a composition, imaging reagent, contrast agent, diagnostic imaging agent, and the like used in the imaging described above.
  • Possible forms of these compositions, diagnostic imaging agents, and the like include, for example, solutions and powders. In view of the half-life of radionuclides and decay of radioactivity, solutions are preferable, and injection solutions are more preferable. .
  • the imaging composition, imaging reagent, contrast agent, and diagnostic imaging agent containing the radiolabeled compound of the present invention may contain, for example, a pharmaceutical additive such as a carrier.
  • a pharmaceutical additive refers to a compound that has been approved as a pharmaceutical additive in the Japanese Pharmacopoeia, the American Pharmacopoeia, and / or the European Pharmacopoeia.
  • the carrier for example, an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent include potassium phosphate buffer, physiological saline, Ringer's solution, and distilled water.
  • the non-aqueous solvent include polyethylene glycol, vegetable oil, ethanol, glycerin, dimethyl sulfoxide, and propylene glycol.
  • the radiolabeled compound of the present invention can be produced, for example, by labeling the labeling precursor compound (I) or (IV) of the present invention with a labeling substance. Accordingly, the present invention, as yet another aspect, relates to a method for producing the radiolabeled compound of the present invention, which comprises labeling the labeled precursor compound (I) or (IV) of the present invention with a labeling substance. According to the production method of the present invention, the radiolabeled compound (V) of the present invention can be efficiently produced.
  • the labeling substance can be appropriately determined according to the type of radionuclide to be labeled and the labeling precursor compound.
  • the radionuclide is 18 F
  • it can be carried out by a known method using, for example, [ 18 F] KF, 1- [ 18 F] fluoro-4-iodobenzene or the like.
  • the labeling reaction can be performed, for example, in the presence of a catalyst and a base in an inert solvent, and examples of the catalyst, the base, and the inert solvent include those described above.
  • the radiolabeled compound of the present invention can be produced, for example, by referring to the following scheme and examples.
  • the radiolabeled compound (V) of the present invention can be used in an imaging method, an OATP uptake function evaluation method, an uptake transporter function observation method, a bile excretion transporter function observation method, etc., which will be described later. Therefore, the present invention provides, as still another aspect, the use of compound (V) as an imaging agent, the use of compound (V) for the production of an imaging agent, the method of using compound (V) as an imaging agent, Alternatively, the present invention relates to the use of the compound (V) used for the imaging method, the evaluation method of the OATP uptake function, the observation method of the uptake transporter function, or the observation method of the bile excretion transporter function.
  • the present invention relates to an imaging method including detecting a radioactive signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention.
  • the imaging method of the present invention for example, it is possible to evaluate inter-individual fluctuations in pharmacokinetics and in vivo drug transport functions in humans. Examples of the subject include humans and / or mammals other than humans.
  • the detection of the signal is preferably performed over time, and more preferably, it is preferably started immediately after administration of the radiolabeled compound of the present invention.
  • the detection of the signal may be performed from the whole subject or may be performed locally, at least, the uptake transporter for taking up the radiolabeled compound of the present invention, and / or the excretion of the radiolabeled compound of the present invention. It is preferably performed in an organ or an in vivo tissue expressing the excretion transporter. Examples of organs that express the transporter include liver, small intestine, brain and kidney.
  • the imaging method of the present invention may include, for example, reconstructing a detected signal to convert it into an image and displaying it, and / or quantifying the detected signal to present an accumulation amount.
  • the display includes, for example, displaying on a monitor and printing.
  • the presentation includes, for example, storing the calculated accumulation amount and outputting it to the outside.
  • the present invention relates to a method for evaluating the uptake function in an organic anion transport polypeptide, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention.
  • a method for evaluating the uptake function in an organic anion transport polypeptide which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention.
  • inter-individual variability and drug transport function can be evaluated in the human body.
  • an optimum prescription design judgment criterion such as a dose and a dose interval according to the drug transport function of the subject. be able to.
  • Examples of the subject include humans and / or mammals other than humans. Signal detection and the like can be performed in the same manner as the imaging method of the present invention.
  • OATP Organic anion transport polypeptides
  • OATP1B1 and OATP1B3 in the case of humans
  • Oats including Oatp1a1, Oatp1a4 and Oatp1b2 in the case of mice and rats.
  • organs for evaluating the uptake function include OATP-expressing organs, such as liver, small intestine, brain and kidney. Among them, as described above, pitavastatin is expressed on the blood vessel side of hepatocytes and is known to be mainly taken up by the liver transporter OATP1B1 involved in the uptake of blood into hepatocytes. Is preferred.
  • the present invention relates to a method for observing an uptake transporter function expressed in hepatocytes, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention.
  • the uptake transporter function expressed in the liver can be observed by imaging using the radiolabeled compound of the present invention.
  • the uptake transporter function can be measured, analyzed, and / or evaluated based on the detected radioactive signal.
  • the observation method of the present invention for example, the inter-individual variation in the liver uptake transporter function and / or the drug transport function can be evaluated in the human body.
  • the dose and the dose interval according to the drug transport function of the subject It is possible to obtain the optimum prescription design criteria.
  • the subject, signal detection, and the like are as described above.
  • the uptake transporter to be observed is preferably OATP.
  • the observation method of the present invention more preferably measures the uptake transporter function in OATP expressed in the liver, and measures and / or evaluates the hepatic uptake function of the subject.
  • the observation of the uptake transporter function is preferably performed by performing imaging over time.
  • the observation method of the present invention includes, for example, measuring, evaluating, or measuring the uptake of the radiolabeled compound of the present invention in the uptake transporter by performing detection of the radioactive signal over time and comparing the detected signal over time. It may include analyzing.
  • Measurement, evaluation or analysis of the uptake of the radiolabeled compound of the present invention includes, for example, comparison of images obtained by reconstructing the detected signal, quantification of the uptake based on the detected signal, etc. Is mentioned.
  • the present invention relates to a method for observing a biliary excretion transporter function, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention. It has been found that the radiolabeled compound of the present invention is metabolically stable with almost no metabolism in the liver. Therefore, according to the measurement method of the present invention, the bile excretion transporter function can be evaluated in vivo by performing imaging using the radiolabeled compound of the present invention.
  • the bile excretion transporter function can be measured, analyzed, and / or evaluated based on the detected radioactive signal.
  • the observation method of the present invention for example, the inter-individual variation in the bile excretion transporter function and / or the drug transport function can be evaluated in the human body.
  • the dose and the dose interval according to the drug transport function of the subject It is possible to obtain the optimum prescription design criteria.
  • the subject, signal detection, and the like are as described above.
  • MDR1 multidrug resistance-1; P-glycoprotein
  • MRP2 multidrug resistance-associated protein 2
  • BCRP breast cancer resistance-protein
  • BSEP bile salmon export-pump
  • the observation of the bile excretion function is preferably performed by performing imaging over time.
  • the observation method of the present invention is, for example, measuring and evaluating the excretion of the radiolabeled compound of the present invention in the bile excretion transporter by performing detection of the radioactive signal over time and comparing the detected signal with time. Or it may include analyzing.
  • Measurement, evaluation, or analysis of the emission of the radiolabeled compound of the present invention includes, for example, comparison of images obtained by reconstructing the detected signal, or quantification of emission based on the detected signal. Can be mentioned.
  • Observation of the uptake transporter function expressed in the liver and observation of the bile excretion transporter function may be performed simultaneously.
  • Observation of the uptake transporter function expressed in the liver and observation of the bile excretion transporter function may be performed simultaneously.
  • the method for observing the transporter function is not particularly limited to the above.
  • the function of the excretion transporter that can be used as a substrate by the labeled compound of the present invention other than the biliary excretion transporter may be observed. .
  • the present invention relates to a kit containing a labeled precursor compound (I), a labeled precursor compound (IV), or a radiolabeled compound (V).
  • the kit of the present invention can be used for, for example, synthesis of radiolabeled compounds, imaging, and measurement or evaluation of OATP uptake function, liver uptake transporter function, and bile excretion transporter function. It is preferable that the kit of this invention contains the instruction manual according to each form. The instruction manual may be included in the kit or may be provided on the web.
  • the kit of the present invention may further include a container for containing the labeled precursor compound (I), the labeled precursor compound (IV), or the radiolabeled compound (V).
  • the container include a syringe and a vial.
  • the kit of the present invention may further include, for example, a component for preparing a molecular probe such as a buffer and an osmotic pressure regulator, and / or a device used for administration of a peptide derivative such as a syringe.
  • a component for preparing a molecular probe such as a buffer and an osmotic pressure regulator
  • a device used for administration of a peptide derivative such as a syringe.
  • the present invention relates to a new method for producing a mevalonolactone derivative. That is, the present invention provides a compound represented by the formula (IV) by a coupling reaction between a compound represented by the formula (VI) and a boronic acid ester or diboron ester (Step 1), and the formula ( The present invention relates to a method for producing a compound represented by formula (VIII), which comprises reacting a compound represented by IV) with a compound represented by formula (VII) (step 2). According to the synthesis method of the present invention, pitavastatin or a derivative thereof can be easily obtained.
  • the manufacturing method of this invention can be performed based on the following scheme, for example.
  • reaction between the compound represented by formula (IV) and the compound represented by formula (VII) can be carried out by reacting these compounds in an inert solvent in the presence of a catalyst and a base.
  • the compound represented by the formula (IV) is the labeled precursor compound (IV) of the present invention.
  • R 13 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a benzyloxy group, a fluorine atom, chlorine An atom, a bromine atom, a trifluoromethyl group, a phenoxy group, or a phenyl group is shown.
  • R 33 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a methyl group, and more preferably a fluorine atom.
  • R 13 may be in any of the 2-position, the 3-position and the 4-position when the carbon to which X 4 is bonded in phenyl is the 1-position, preferably the 3-position or 4-position, and more preferably 4 It is rank.
  • R 14 is as shown in the formula (I). When R 14 is other than a hydrogen atom, R 14 is preferably in the ortho position or the meta position with respect to R 13 .
  • X 4 is a reactive functional group.
  • the reactive functional group include a functional group capable of reacting with a boronic acid ester group.
  • those represented by the above formula (I) can be used, and among them, an iodine atom or the like is preferable.
  • R 11 , R 12 , R 13 , R 14 , R 15 , Y, and Z 1 are as described above.
  • Metal catalysts such as a palladium compound and platinum / indium, etc. can be used.
  • the palladium compound include PdCl 2 (dppf) CH 2 Cl 2 , Pd (PPh 3 ) 4 , and the combined use of PdCl 2 (dppf) CH 2 Cl 2 and Pd (PPh 3 ) 4 .
  • the base include carbon salt, potassium acetate, NaOH, Et 3 N, K 3 PO 4 and the like.
  • the carbonate include sodium carbonate, cerium carbonate, and potassium carbonate. Among these, sodium carbonate is preferable as the base from the viewpoint of efficiently obtaining the target compound. From the viewpoint of greatly shortening the reaction time and improving the production efficiency, the coupling reaction is preferably performed under microwave irradiation.
  • the compound represented by the formula (VI) is obtained by, for example, reacting the compound represented by the formula (IXa) with a base, followed by a condensation reaction with the compound represented by the formula (Xa) or the formula (XIa).
  • the obtained compound can be obtained by deprotection, hydrolysis and / or lactonization. This synthesis can be performed based on the description of the following scheme and examples.
  • Examples of the base include sodium compounds, potassium compounds, and alkyl lithium compounds. Sodium hydride etc. are mentioned as a sodium compound. Examples of the potassium compound include t-butoxy potassium. Examples of the alkyl lithium compound include butyl lithium.
  • R 11 , R 12 , R 15 , and X 3 are as described above.
  • R 38a and R 38b represent a hydroxyl-protecting group.
  • R 38a and R 38b are each independently a methoxymethyl group, a 2-methoxymethyl group, a tetrahydroxypyranyl group, a 4-methocaesitetrahydropyranyl group, a 2-ethoxyethyl group, a 1-methyl-1- It represents a methoxyethyl group, a triphenylmethyl group, or a trimethylsilyl group, or R 38a and R 38b together represent isopropylidene, cyclopentylidene, cyclohexylidene, or benzylidene.
  • R 16 is as described above.
  • -Y 1 represents -P + R 41 R 42 R 43 Hal - or -P (W 1 ) R 44 R 45 .
  • R 41 , R 42 and R 43 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a 2-chloroethyl group, a 2,2,2-trifluoroethyl group, a phenyl group, A methylphenyl group, a methoxyphenyl group, a pentafluorophenyl group, or a benzyl group;
  • Hal represents a chlorine atom, a bromine atom, or an iodine atom.
  • R 44 and R 45 are each independently a methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-chloroethyl group, 2,2,2-trifluoroethyl group, phenyl group, methoxyphenyl group, Methylphenyl, pentafluorophenyl, benzyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, phenoxy, methoxyphenyl Represents an oxy group, a methylphenyloxy group, a pentafluorophenyloxy group, a methylphenyloxy group, or a benzyloxy group, or R 44 and R 45 together form a 5- or 6-membered ring; Also good.
  • W 1 represents an oxygen atom or a sulfur atom.
  • —Y 1 is preferably P (W 1 ) R 44 R 45 , more preferably —POR 44 R 45 , more preferably R 44 and R 45 are methoxy groups. -POR 44 R 45 .
  • the compound represented by the formula (VI) is obtained by, for example, reacting the compound represented by the formula (IXb) with a base, followed by a condensation reaction with the compound represented by the formula (Xb) or the formula (XIb).
  • the obtained compound may be obtained by deprotection, hydrolysis and / or lactonization. This synthesis can be performed based on the description of the following scheme and examples.
  • the present invention relates to a new mevalonolactone derivative. That is, the present invention relates to a compound represented by the formula (XIII) or a salt thereof (hereinafter also referred to as “compound (XIII) of the present invention”). According to the compound (XIII) of the present invention, it can be easily produced as compared with the conventional mevalonolactone derivative, and can be produced at an inexpensive production cost. In addition, the compound (XIII) of the present invention can exhibit the same actions and effects as, for example, conventional pitavastatin.
  • R 11 , R 12 , R 14 , R 15 , Y and Z 1 are the same as those in the labeled precursor compound (I) of the present invention and are as shown in the formula (I).
  • L 3 represents —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —
  • m represents an integer of 0 to 4
  • AO represents , C 2-4 oxyalkylene group
  • n represents an integer of 2-4 .
  • —L 3 — is preferably —O (CH 2 ) m —, more preferably —O (CH 2 ) 2 —.
  • X 5 is a halogen atom, preferably a bromine atom, an iodine atom, or a chlorine atom, more preferably a fluorine atom.
  • An example of a preferred form of the compound (XIII) of the present invention includes a compound represented by the following formula (XIV).
  • —YZ 1 is the same as in the formula (I)
  • X 5 is the same as in the formula (XIII).
  • the compound (XIII) of the present invention can be used, for example, as an HMG-CoA reductase inhibitor.
  • the compound (XIII) of the present invention can also be used for the treatment of hyperlipidemia, arteriosclerosis and the like. Therefore, the present invention provides, as still another aspect, the use of compound (XIII) as an HMG-CoA reductase inhibitor, the use of compound (XIII) for the production of an HMG-CoA reductase inhibitor, compound (XIII ) As a HMG-CoA reductase inhibitor, compound (XIII) for use in a method for treating hyperlipidemia and / or arteriosclerosis, non-pharmacological treatment of hyperlipidemia and / or arteriosclerosis It relates to the use of compound (XIII) for the method or compound (XIII) for the manufacture of a therapeutic agent for hyperlipidemia and / or arteriosclerosis.
  • DMA N, N′-dimethylacetamide KM: methyl 3-cyclopropyl-3-oxopropionate
  • TFA trifluoroacetic acid
  • TBSCl t-butyldimethylsilyl chloride
  • DMF N, N′-dimethylformamide
  • THF tetrahydrofuran KM: 3 -Methyl cyclopropyl-3-oxopropanoate
  • PPh 3 Triphenylphosphine Ph 2 POEt: Ethoxydiphenylphosphine
  • TMP 2,2,6,6-tetramethylpiperidine
  • DIO tert-Butyl (3R, 5S) -6-oxo -3,5-O-isopropylidene-3,5-dihydroxyhexanoate
  • TsCl p-toluenesulfon
  • NMR Spectrometer ADVANCE DRX (BRUKER BIOSPIN) Magnet: UltraShield 400MHz / 54mm Standard substance: TMS (tetramethylsilane) MS Measuring device: Micromass AQ (Waters) Ionization: ESI
  • the organic layer was dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (silica gel: 50 g, developing solvent: chloroform).
  • the target compound (i-5) (1.28 g, 2.49 mmol) was obtained as a yellow oil in a yield of 86%.
  • the target compound (i-7) (569 mg, 844 ⁇ mol) was obtained as a tan oil in a yield of 34%.
  • the target compound (i-8) (294 mg, 525 ⁇ mol) was obtained as a colorless oil in a yield of 65%.
  • the mixture was stirred for 2 hours while gradually warming to room temperature, cooled in an ice-water bath, saturated aqueous sodium bicarbonate (10 mL), and chloroform (12 mL) were added to separate the layers.
  • the organic layer was washed twice with water (10 mL, 10 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure.
  • the target compound (i-9) (285 mg, 399 ⁇ mol) was obtained as a pale yellow amorphous solid in a yield of 90%.
  • the target compound (PTVS1) (100 mg, 166 ⁇ mol) was obtained in a yield of 59% as a reddish white amorphous solid.
  • radiolabeled compound performs radiolabeled PTVS1 obtained in Production Example 1 as a labeling precursor compound was prepared is a radiolabeled compound [18 F] PTVS2.
  • the scheme will be specifically described below.
  • a labeled precursor compound of the present invention could produce [18 F] PTVS2 a radiolabeled compound of high purity in high yield.
  • the aqueous layer was extracted with toluene (200 mL), and the obtained organic layers were combined, washed with 20% brine (200 mL), dried over sodium sulfate, and the solvent was distilled off.
  • the target compound (ii-3) (20.9 g) was obtained as an orange oil in a yield of 58.0%.
  • the aqueous layer was extracted with ethyl acetate (50 mL), and the obtained organic layers were combined, washed with saturated brine (100 mL), dried over sodium sulfate, and the solvent was evaporated.
  • the target compound (ii-7) (4.03 g) was obtained as a yellow oil in a yield of 59.8%.
  • PTVS3 synthetic compound (ii-8) (1.01 g, 2.40 mmol), (BPin) 2 (0.79 g, 3.12 mmol), potassium carbonate (0.99 g, 7.20 mmol), and PdCl 2 (dppf) CH 2 Cl 2 ( 0.19 g, 0.240 mmol) was added, and the system was purged with argon. Dimethyl sulfoxide (40 mL) was added, and degassing and argon substitution were performed three times. The mixture was stirred at 70 ° C. for 4 hours, cooled to room temperature, silica gel (4.14 g) was added, and the mixture was filtered through Celite.
  • the obtained organic layers were combined, dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure.
  • the target compound (iii-3) (1.26 g, 2.83 mmol) was obtained as a light brown solid in a yield of 82%.
  • the target compound (PTVS5) (28.1 mg, 62.8 ⁇ mol) was obtained as a colorless oil in a yield of 20%.
  • liver uptake evaluation PTVS6 was evaluated for liver uptake by transporters (OATP1B1, OATP1B3).
  • OATP1B1, OATP1B3 transporters
  • pitavastatin the following pitavastatin calcium salt
  • OATP1B1 and OATP1B3 stably expressing HEK293 cells were cultured on a 12 well dish coated with collagen type I. 24 hours before the start of the experiment, the medium (DMEM (low glucose)) was replaced with a medium containing 5 mM sodium butyrate to induce transporter expression in the expression cells. 15 minutes before the start of the experiment, after removing the medium, Krebs-Henseleit buffer (KH buffer; 118 mM NaCl, 23.8 mM NaHCO 3 , 4.8 mM KCl, 1.0 mM KH 2 PO 4 , 1.2 mM MgSO 4) heated to 37 ° C.
  • KH buffer 118 mM NaCl, 23.8 mM NaHCO 3
  • 4.8 mM KCl 1.0 mM KH 2 PO 4 , 1.2 mM MgSO 4
  • FIG. 1 is a graph showing the time transition and saturation of pitavastatin and PTVS6 transport by the liver uptake transporter (OATP1B1, OATP1B3), where A and B are the results of pitavastatin, and C and D are the results of PTVS6.
  • OATP1B1, OATP1B3 liver uptake transporter
  • a and B are the results of pitavastatin
  • C and D are the results of PTVS6.
  • uptake of both pitavastatin and PTVS6 was observed in OATP1B1 and OATP1B3-expressing HEK293 cells in a time-dependent manner (A and C: 1B1 tracer, B and D: 1B3 tracer).
  • a and C 1B1 tracer
  • B and D 1B3 tracer
  • its uptake was not observed in control cells (mock). From these, it was confirmed that this intracellular uptake was taken up via OATP1B1 or OATP1B3.
  • both pitavastatin and PTVS6 have reduced uptake (A and C: 1B1 excess, B and D: 1B3 excess). It was further demonstrated that the uptake of pitavastatin and PTVS6 was via a transporter. In addition, the transport properties of PTVS6 were very similar to those of pitavastatin. Therefore, it was suggested that the transport of PTVS6 reflects the transport ability of OATP1B1 and OATP1B3.
  • PTVS2 was used to conduct biodistribution experiments in rats and mice.
  • mice ddY male, 12 weeks old were used instead of rats, and the dose of [ 18 F] PTVS2 was 20 ⁇ Ci / 100 ⁇ L / animal.
  • Table 1 and FIG. 1 An example of the result is shown in Table 1 and FIG.
  • FIGS. 2 and 3 are graphs showing an example of the change with time of accumulation of [ 18 F] PTVS2 in each organ.
  • FIG. 2 shows the results of rats and
  • FIG. 3 shows the results of mice.
  • [ 18 F] PTVS2 was transferred to the liver immediately after administration and then transferred to the intestine and excreted in both rats and mice.
  • migration to other organs was hardly confirmed except in the kidney.
  • PET imaging was performed using [ 18 F] PTVS2 under the following conditions.
  • An example of the result is shown in FIG.
  • the images shown in FIG. 4 are all coronal images, which are images 1 minute, 4 minutes, and 20 minutes after administration in order from the left.
  • FIG. 4 as in the results of the biodistribution experiment, it was confirmed that [ 18 F] PTVS2 quickly migrated to the liver after administration, and then migrated to the intestine to be excreted. In addition, migration to other organs was hardly confirmed except in the kidney.
  • the obtained sample is mixed with 25 ⁇ L of Acetonitrile containing the internal standard for measurement, then the protein is removed by centrifugation, the supernatant is collected, and the residual mass in the sample is measured by LC / MS / MS did. The results are shown in the graph of FIG.
  • FIG. 5 is a graph showing the ratio of the substrate remaining in the sample from the start of metabolic reaction (NADPH addition) to 10 minutes later, and the vertical axis indicates the ratio of the substrate remaining in the sample with respect to the added amount.
  • the horizontal axis indicates time.
  • midazolam which is a CYP3A4 substrate and is known to be well metabolized in humans, has a substrate residual rate of several percent within 10 minutes from the start of metabolic reaction, as in previous reports. Decreased to.
  • both PTVS6 and Pitavastatin showed almost no decrease in substrate within 10 minutes from the start of the metabolic reaction.
  • the extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated.
  • the target compound (PTVS7) (320 mg, 59%) was obtained as a solid.
  • DIO was synthesized according to the following scheme. First, dimethyl sulfoxide (1.64 ml, 23.0 mol) was slowly added dropwise to a solution of oxalyl chloride (813 ⁇ l, 9.6 mol) in methylene chloride (10 ml) under an argon stream at ⁇ 78 ° C. with stirring at the same temperature for 30 minutes. did. After stirring, a solution of Kaneka synthon (500 mg, 1.92 mol) in methylene chloride (2.0 ml) was added dropwise with stirring at ⁇ 78 ° C. and stirred for 1 hour. After stirring, Triethylamine (5.4 ml, 38.4 mol) was added dropwise and stirred for 1 hour.
  • Triphenylphosphine (2.9 g, 10.9 mmol) was added to a solution of compound (i-4) (2.4 g) and carbon tetrabromide (3.6 g, 10.9 mmol) in methylene chloride (20 ml) under an argon stream.
  • methylene chloride (10 ml) was added with stirring at 0 ° C., and the mixture was stirred at the same temperature for 25 minutes. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform.
  • [Toxicity test] According to a conventional method, the compound (PTVS8) obtained in Production Example 7 was administered once into the tail vein of a mouse (male, 5 weeks old). The administration dose was 174 ⁇ g / kg or 400 ⁇ g / kg. As a control, only vehicle (0.1% Tween 80-added physiological saline) was administered. As a result, the body weights of all the administration groups remained steady throughout the experimental period, and the changes caused by administration in hematological examinations, blood biochemical examinations, organ weights, pathological anatomical examinations, and histopathological examinations I was not able to admit. Moreover, local irritation (vein irritation) was not recognized.
  • the target compound (PTVS4) was prepared from the compound (PTVS3) in the same manner as in Production Example 5 except that the catalyst and solvent under the conditions 1 and 2 shown in Table 3 below were used. ) was manufactured.
  • the target compound (PTVS4) was produced from the compound (PTVS3) in the same manner as in Production Example 4 (Condition 3 in Table 3).
  • the target compound (PTVS4) was prepared from the compound (PTVS3) in the same manner as in Production Example 4 except that the catalyst and solvent of Condition 4 shown in Table 3 below were used, the stirring temperature was 90 ° C., and the stirring time was 7 hours. Manufactured.
  • radiolabeled compound performs radiolabeled compound obtained in Production Example 4 (PTVS3) as a labeling precursor compound was prepared PTVS10 a radiolabeled compound.
  • PTVS3 radiolabeled compound obtained in Production Example 4
  • PTVS10 which is a radiolabeled compound can be produced in a short time and with a high yield.
  • the sample analysis method of the present invention is useful in various fields such as the medical field, clinical laboratory field, new drug development, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Quinoline Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a labeling precursor compound which enables the provision of a PET probe comprising a statin compound. A labeling precursor compound represented by formula (I) or formula (IV). In formulae (I) and (IV), R11 and R12 independently represent H, a C1-4 alkyl group, a C1-3 alkoxy group or the like; R15 represents a C3-6 cycloalkyl group or the like; Y represents a C1-2 alkyl group, -CH=CH-, -CH=CH-CH2- or the like; Z1 represents -Q-CH2-W-CH2-CO2R16 or a group represented by formula (II) or (III); Q represents -C(O)- or -CH(OH)-; W represents -C(O)- or -CH(OH)-; and R16 represents H, an alkyl group or the like. In formula (I), L1 represents -O(CH2)m- or the like; m represents an integer of 1-4; X1 represents a reactive functional group; and R14 represents H, a C1-4 alkyl group or the like. In formula (IV), M represents a boronic acid ester.

Description

標識前駆体化合物、放射性標識化合物、及びそれらの製造方法Labeled precursor compound, radiolabeled compound, and production method thereof
 本発明は、標識前駆体化合物、放射性標識化合物、及びそれらの製造方法に関する。 The present invention relates to a labeling precursor compound, a radioactive labeling compound, and a production method thereof.
 臨床試験における成功確率を上げるためには、ヒトにおいて好ましい体内動態特性を示す化合物を開発候補として選択することが最も重要である。この様な状況下、欧米では、本格的な臨床試験開始前にヒトにおける体内動態を検証するための新しい手法として「早期ヒト臨床試験」に関するガイドライン(欧州EMEA;2003年1月,米国FDA; 2006年1月)が策定された。一方、日本においても2008年6月に厚生労働省より「マイクロドーズ臨床試験の実施に関するガイダンス」が公示され(非特許文献1)、国内での早期臨床試験の本格的実施にむけた法的基盤が整備された。マイクロドーズ臨床試験(MD臨床試験)とは、薬効用量の1/100又は100μg以下という非常に低い投与量(マイクロドーズ)の被験物質を健常人に単回投与する試験であり、第I相臨床試験の実施前に行うことによって、被験物質のヒトにおける薬物動態の検証を可能とした画期的な試験である。その具体的な目的としては、被験物質の吸収や血中動態、排泄特性、ヒトにおける代謝物プロファイル等を明らかにすること、分子イメージング技術を用いて被験物質の体内における局在に関する情報を得ること等が挙げられる。また、2010年2月には、早期探索的臨床試験のための非臨床試験、免疫毒性等に関する非臨床試験等についてのガイドラインが示されている(非特許文献2)。 In order to increase the probability of success in clinical trials, it is most important to select compounds that exhibit favorable pharmacokinetic properties in humans as development candidates. Under these circumstances, in Europe and the United States, guidelines for “early human clinical trials” (European EMEA; January 2003, US FDA; 2006) are a new method for verifying the pharmacokinetics in humans before the start of full-scale clinical trials. January). On the other hand, in June 2008, the Ministry of Health, Labor and Welfare announced the “Guidance on Implementation of Microdose Clinical Trials” in June 2008 (Non-Patent Document 1), and has a legal basis for full-scale implementation of early clinical trials in Japan. It was maintained. A microdose clinical study (MD clinical study) is a study in which a test substance with a very low dose (microdose) of 1/100 or 100 μg or less of the effective dose is administered to a healthy person in a single phase I clinical This is an epoch-making test that enables verification of the pharmacokinetics of the test substance in humans by conducting it before the test. The specific purpose is to clarify the absorption, blood kinetics, excretion characteristics, metabolite profile, etc. of the test substance, and to obtain information on the localization of the test substance in the body using molecular imaging technology. Etc. In February 2010, guidelines for non-clinical tests for early exploratory clinical trials, non-clinical tests for immunotoxicity, etc. are shown (Non-patent Document 2).
 薬物の薬効や副作用を決定付ける要因として、薬効標的組織(標的分子近傍)における薬物濃度の時間推移が重要であると考えられる。例えば、HMG-CoA還元酵素阻害剤の一つであるプラバスタチンは、主に取り込みトランスポータである有機アニオン輸送ポリペプチド(OATP)1B1によって肝取り込みされた後、多剤耐性関連タンパク質(MRP)2によって胆汁中へと排泄されることが知られている。このため、プラバスタチンの血中及び肝曝露に対するOATP1B1及びMRP2の輸送活性変化の影響を、血液、肝臓、及び末梢組織を含む生理学的薬物速度論(PBPK)モデルを用いたシミュレーションを行うことが試みられている(例えば、非特許文献3)。さらには、MD臨床試験とポジトロン放射断層撮影(PET)を用いた分子イメージングを行い、これを新たな医薬品開発に活用することが試みられている(例えば、非特許文献4)。 It is considered that the time transition of the drug concentration in the drug target tissue (in the vicinity of the target molecule) is important as a factor determining the drug efficacy and side effects. For example, pravastatin, one of the HMG-CoA reductase inhibitors, is mainly taken up by the multi-drug resistance associated protein (MRP) 2 after hepatic uptake by the organic anion transport polypeptide (OATP) 1B1 which is an uptake transporter. It is known to be excreted in bile. Therefore, an attempt was made to simulate the effect of changes in transport activity of OATP1B1 and MRP2 on blood and liver exposure of pravastatin using a physiological pharmacokinetic (PBPK) model including blood, liver, and peripheral tissues. (For example, Non-Patent Document 3). Furthermore, attempts have been made to perform molecular imaging using MD clinical trials and positron emission tomography (PET) and to utilize them for new drug development (for example, Non-Patent Document 4).
 上記のように、プラバスタチンといったスタチン系薬剤は、肝取り込みトランスポータであるOATP類によって血中から肝臓へと輸送される化合物であることが知られている。このため、これらの化合物のPETプローブを得るための様々な試みがなされている。しかしながら、PETプローブの合成に成功した報告は現時点ではなされていない。そもそも、放射性標識してPETプローブを得るためのスタチン系薬剤の標識前駆体についての成功例についても報告されていない。 As described above, it is known that statin drugs such as pravastatin are compounds that are transported from the blood to the liver by OATPs that are liver uptake transporters. For this reason, various attempts have been made to obtain PET probes of these compounds. However, there have been no reports of successful synthesis of PET probes at this time. In the first place, there has been no report on a successful example of a labeled precursor of a statin drug for radiolabeling to obtain a PET probe.
 本発明は、スタチン系薬剤のPETプローブを提供可能な標識前駆体化合物、放射性標識化合物、及びそれらの製造方法を提供する。 The present invention provides a labeled precursor compound, a radiolabeled compound, and a method for producing them, which can provide a PET probe of a statin drug.
 本発明は、一態様において、式(I)
Figure JPOXMLDOC01-appb-C000016
[式(I)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、R12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R14は、水素原子、C1-4アルキル基、フッ素原子、塩素原子、又は臭素原子を示し、R15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、Lは、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、mは、1~4の整数を示し、AOは、C2-4オキシアルキレン基を示し、nは、2~4の整数を示し、Xは、反応性官能基を示し、Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、Zは、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
Figure JPOXMLDOC01-appb-C000017
で表される標識前駆体化合物又は塩に関する。
In one aspect, the present invention provides a compound of formula (I)
Figure JPOXMLDOC01-appb-C000016
[In the formula (I), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group, R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom; R 14 represents a hydrogen atom, a C 1-4 alkyl group; , A fluorine atom, a chlorine atom, or a bromine atom, R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group, and L 1 represents — (CH 2 ) m —, -O (CH 2) m -, - (AO) n , Or -O (AO) n - indicates, m represents an integer of 1 ~ 4, AO represents an C 2-4 oxyalkylene group, n is an integer of 2 ~ 4, X 1 is represents a reactive functional group, Y, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates, Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are: Each independently represents —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents hydrogen. Atom, alkyl group, NH 4 , sodium, potassium, or 1/2 calcium is shown. ]
Figure JPOXMLDOC01-appb-C000017
It is related with the label | marker precursor compound or salt represented by these.
 本発明は、その他の態様として、式(IV)
Figure JPOXMLDOC01-appb-C000018
[式(IV)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、R12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、Zは、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示し、Mは、ボロン酸エステル基を示す。]
Figure JPOXMLDOC01-appb-C000019
で表される標識前駆体化合物又はその塩に関する。
In another aspect, the present invention provides a compound of formula (IV)
Figure JPOXMLDOC01-appb-C000018
[In the formula (IV), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group, R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom, and R 15 represents a C 1-6 alkyl group, C 3 -6 represents a cycloalkyl group or a phenyl group, Y represents —CH 2 —, —CH 2 CH 2 —, —CH═CH—, —CH 2 —CH═CH—, or —CH═CH—CH 2 Z 1 represents —Q—CH 2 —W—CH 2- CO 2 R 16 represents a group represented by the following formula (II) or a group represented by the following formula (III), and Q and W are each independently —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents a hydrogen atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 represents calcium, and M represents a boronic acid ester group. ]
Figure JPOXMLDOC01-appb-C000019
It is related with the label | marker precursor compound or its salt represented by these.
 本発明は、さらにその他の態様として、式(V)
Figure JPOXMLDOC01-appb-C000020
[式(V)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、R12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、Lは、結合手、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、mは、0~4の整数を示し、AOは、C2-4オキシアルキレン基を示し、nは、2~4の整数を示し、Xは、放射性核種を示し、R14は、水素原子、C1-4アルキル基、フッ素原子、塩素原子、又は臭素原子を示し、R15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、Zは、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
Figure JPOXMLDOC01-appb-C000021
で表される放射性標識化合物又はその塩に関する。
The present invention provides, as still another aspect, the formula (V)
Figure JPOXMLDOC01-appb-C000020
[In the formula (V), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group, R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom, L 2 represents a bond, — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —, m represents an integer of 0 to 4, and AO represents a C 2-4 oxyalkylene group. N represents an integer of 2 to 4, X 2 represents a radionuclide, R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom; R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group; Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates, Z 1 is, -Q-CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are each independently -C (O)-, -CH (OH)-, or -CH (OR 19 )-, R 19 independently represents a C 1-4 alkyl group, R 16 represents a hydrogen atom, alkyl Represents the group NH 4 , sodium, potassium, or 1/2 calcium. ]
Figure JPOXMLDOC01-appb-C000021
The radiolabeled compound represented by these, or its salt.
 本発明は、さらにその他の態様として、本発明の放射性標識化合物を製造する方法であって、本発明の標識前駆体化合物を、標識物質を用いて標識することを含む製造方法に関する。 As another aspect, the present invention relates to a method for producing the radiolabeled compound of the present invention, which comprises labeling the label precursor compound of the present invention with a labeling substance.
 本発明は、さらにその他の態様として、式(VI)
Figure JPOXMLDOC01-appb-C000022
[式(VI)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、R12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、Zは、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示し、Xは、スルホン酸エステル基、ハロゲン原子、ニトロ基、又はトリメチルアンモニウム基を示す。]
Figure JPOXMLDOC01-appb-C000023
で表される化合物又はその塩と、ボロン酸エステル又はジボロンエステルとをカップリング反応させることを含む、
式(IV)
Figure JPOXMLDOC01-appb-C000024
[式(IV)中、R11、R12、R15、Y、及びZは、式(VI)と同義であり、Mは、ボロン酸エステル基を示す。]で表される化合物又はその塩の製造方法に関する。
The present invention provides, as still another aspect, the formula (VI)
Figure JPOXMLDOC01-appb-C000022
[In the formula (VI), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group, R 12 represents a hydrogen atom, C 1-4 An alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom, and R 15 represents a C 1-6 alkyl group, C 3 -6 represents a cycloalkyl group or a phenyl group, Y represents —CH 2 —, —CH 2 CH 2 —, —CH═CH—, —CH 2 —CH═CH—, or —CH═CH—CH 2 Z 1 represents —Q—CH 2 —W—CH 2- CO 2 R 16 represents a group represented by the following formula (II) or a group represented by the following formula (III), and Q and W are each independently —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents a hydrogen atom, an alkyl group, NH 4 , sodium, potassium, or X represents 1/2 calcium, and X 3 represents a sulfonate group, a halogen atom, a nitro group, or a trimethylammonium group. ]
Figure JPOXMLDOC01-appb-C000023
A coupling reaction of a compound represented by the formula or a salt thereof with a boronic acid ester or diboron ester,
Formula (IV)
Figure JPOXMLDOC01-appb-C000024
[In the formula (IV), R 11 , R 12 , R 15 , Y, and Z 1 are as defined in the formula (VI), and M represents a boronic ester group. ] Or a salt thereof.
 本発明によれば、スタチン系薬剤のイメージング用プローブ、好ましくはメバロノラクトン誘導体のPETプローブを提供できる。 According to the present invention, a statin drug imaging probe, preferably a PET probe of a mevalonolactone derivative can be provided.
図1は、肝取り込みトランスポータ(OATP1B1,OATP1B3)によるpitavastatin及びPTVS6の輸送の時間推移及び飽和性を示すグラフである。FIG. 1 is a graph showing the time course and saturation of transport of pitavastatin and PTVS6 by the liver uptake transporter (OATP1B1, OATP1B3). 図2は、[18F]PTVS2の体内分布の経時変化の結果の一例を示すグラフである。FIG. 2 is a graph showing an example of the results of changes over time in the distribution of [ 18 F] PTVS2. 図3は、[18F]PTVS2の体内分布の経時変化の結果のその他の例を示すグラフである。FIG. 3 is a graph showing another example of the results of changes over time in the distribution of [ 18 F] PTVS2. 図4は、[18F]PTVS2を用いたPET撮像の結果の一例を示す画像である。FIG. 4 is an image showing an example of the result of PET imaging using [ 18 F] PTVS2. 図5は、ヒト肝ミクロソームを用いたin vitro実験による代謝安定性の評価の結果の一例を示すグラフである。FIG. 5 is a graph showing an example of the results of metabolic stability evaluation by an in vitro experiment using human liver microsomes.
 本発明は、式(I)及び式(IV)で表される化合物であれば、スタチン系薬剤のPETプローブを提供できるという知見に基づく。 The present invention is based on the finding that a compound represented by formula (I) and formula (IV) can provide a PET probe of a statin drug.
 MD臨床試験は、通常の臨床試験と比較してより簡便な毒性試験データのみで実施できることから、その有効利用によって医薬品開発の効率化・成功確率の向上に大きく貢献するものと期待されている。また、薬物の薬効、副作用の個体間変動を決定付ける要因として、個々人における薬効標的組織における薬物濃度の時間推移が重要であると考えられている。このため、薬物の組織内への取り込みトランスポータの機能を定量的に測定可能なイメージング用プローブが求められている。 MD clinical trials can be carried out with simpler toxicity test data compared to normal clinical trials, and their effective use is expected to contribute greatly to improving the efficiency and success probability of drug development. In addition, it is considered that the time transition of the drug concentration in the medicinal target tissue for each individual is important as a factor determining the drug efficacy and side-effect variation of the drug among individuals. Therefore, there is a need for an imaging probe that can quantitatively measure the function of a transporter that takes drugs into tissues.
 HMG-CoA還元酵素阻害剤は、肝臓内におけるHMG-CoA還元酵素を阻害することによって薬効(血清コレステロール低下)を示す薬剤であって、例えば、プラバスタチン(US4346227)、シンバスタチン、ロバスタチン、ロスバスタチン、及びピタバスタチン(例えば、特開平1-279866号公報、EP304063、US5856336)等の様々なスタチン系薬剤が知られている。中でも、ピタバスタチン及びロスバスタチンは、ヒト肝細胞において主にOATP1B1によって取り込まれることが知られており、本発明者等はピタバスタチンに着目しPETプローブ化を試みた。ピタバスタチンは、下記構造を有するキノリンメバロン酸化合物であって、HMG-CoA還元酵素阻害剤として市販されている。
Figure JPOXMLDOC01-appb-C000025
The HMG-CoA reductase inhibitor is a drug that exhibits a medicinal effect (serum cholesterol lowering) by inhibiting HMG-CoA reductase in the liver, such as pravastatin (US4346227), simvastatin, lovastatin, rosuvastatin, and pitavastatin Various statin drugs such as JP-A-1-279866, EP304063, US5856336 and the like are known. Among these, pitavastatin and rosuvastatin are known to be taken up mainly by OATP1B1 in human hepatocytes, and the present inventors have focused on pitavastatin and attempted to make a PET probe. Pitavastatin is a quinoline mevalonate compound having the following structure, and is commercially available as an HMG-CoA reductase inhibitor.
Figure JPOXMLDOC01-appb-C000025
 PETプローブ化にあたり、本発明者等はピタバスタチンを様々な直接標識法を用いて標識することを試みた。しかしながら、標識化反応が進行せず、目的とする放射性標識化合物が得られなかった。そこで、本発明者等は新たな合成ルートの構築を行い、その過程で、式(I)及び式(IV)で表される化合物を標識前駆体として使用することによって、ピタバスタチン又はその誘導体のPETプローブを製造できることを見出した。 In making the PET probe, the present inventors tried to label pitavastatin using various direct labeling methods. However, the labeling reaction did not proceed, and the target radiolabeled compound was not obtained. Therefore, the present inventors constructed a new synthetic route, and in the process, by using the compounds represented by formula (I) and formula (IV) as a labeling precursor, PET of pitavastatin or a derivative thereof It has been found that a probe can be manufactured.
 本発明によれば、スタチン系薬剤を放射性標識したPETプローブを提供できる。また、本発明によれば、その一態様において、ピタバスタチン又はその誘導体を放射性標識したPETプローブを提供できる。このため、本発明によれば、例えば、本発明の放射性標識化合物を用いたPET撮像により得られたin vivoパラメータと、ヒト遺伝子発現細胞、ヒト凍結肝細胞、ヒト胆管側膜ベシクル、及び/又はヒト肝ミクロソームを用いて得られた輸送・代謝にかかるin vitroパラメータとに基づき、ヒト生体内における肝臓中の被験薬物濃度の時間推移を予測するモデルを構築することができるという効果を好ましくは奏する。さらには、薬物の肝取り込み/排泄過程の個体間変動要因としての遺伝子多型及び/又は薬物間相互作用がある場合の薬物動態の定量的な変動予測を行うことができるという効果を好ましくは奏する。 According to the present invention, a PET probe radiolabeled with a statin drug can be provided. Moreover, according to the present invention, in one aspect thereof, a PET probe radiolabeled with pitavastatin or a derivative thereof can be provided. Thus, according to the present invention, for example, in vivo parameters obtained by PET imaging using the radiolabeled compound of the present invention, human gene expression cells, human frozen hepatocytes, human bile duct side membrane vesicles, and / or Based on in vitro parameters related to transport and metabolism obtained using human liver microsomes, it is preferable that a model that predicts the time course of the test drug concentration in the liver in the human body can be constructed. . Furthermore, it is preferable that quantitative variation prediction of pharmacokinetics can be performed when there is a genetic polymorphism and / or drug-drug interaction as a factor of inter-individual variation in drug hepatic uptake / excretion process. .
 また、ピタバスタチンは、肝臓でほとんど代謝されず、ほとんど変わらない形態で胆汁に排出されることが知られている。さらには、後述する実施例で示すように、式(V)で表される放射性標識化合物のコールド体であるピタバスタチン誘導体についても同様に、肝細胞においてほとんど代謝されることなく、代謝的に安定であるとのデータが得られている。このため、本発明の式(V)で表される放射性標識化合物についても同様に、代謝的に安定であると考えられる。したがって、本発明の放射性標識化合物は、PETプローブとして極めて有用であり、さらには肝内動態の測定又は評価に極めて有用なPETプローブとなりうるといえる。 It is known that pitavastatin is hardly metabolized in the liver and is excreted in bile in a form that hardly changes. Furthermore, as shown in the examples described later, the pitavastatin derivative, which is a cold form of the radiolabeled compound represented by the formula (V), is also metabolically stable with almost no metabolism in hepatocytes. Data that there is. For this reason, the radiolabeled compound represented by the formula (V) of the present invention is also considered to be metabolically stable. Therefore, it can be said that the radiolabeled compound of the present invention is extremely useful as a PET probe, and can be a very useful PET probe for measuring or evaluating intrahepatic kinetics.
 本明細書において、式(I)、(IV)、(V)、及び(VI)で表される化合物は少なくとも1又は2ヶの不斉炭素原子をもっており、各々少なくとも2、3又は4種の光学異性体が存在する。このため、式(I)、(IV)、(V)、及び(VI)で表される化合物は、いずれも、これらの光学異性体の全て及びこれらの混合物の全てを包含するものである。また、式(X)、(XI)、(XII)、(XIII)及び(XIV)で表される化合物についても同様に2ヶの不斉炭素原子をもっており、各々少なくとも2、3又は4種の光学異性体が存在するため、これらの化合物は、いずれも、これらの光学異性体の全て及びこれらの混合物の全てを包含するものである。 In the present specification, the compounds represented by the formulas (I), (IV), (V), and (VI) have at least one or two asymmetric carbon atoms, and each has at least 2, 3 or 4 kinds of Optical isomers exist. Therefore, the compounds represented by the formulas (I), (IV), (V), and (VI) all include all of these optical isomers and all of these mixtures. Similarly, the compounds represented by the formulas (X), (XI), (XII), (XIII) and (XIV) have two asymmetric carbon atoms, and each has at least 2, 3 or 4 kinds of them. Because of the presence of optical isomers, these compounds are intended to encompass all of these optical isomers and all of their mixtures.
 本明細書において「化合物の塩」としては、例えば、アルカリ金属塩、硫酸塩、酢酸塩、硝酸塩、及びリン酸塩等が挙げられる。アルカリ金属塩としては、例えば、ナトリウム塩、カリウム塩、及びリチウム塩等が挙げられる。 As used herein, examples of the “salt of a compound” include alkali metal salts, sulfates, acetates, nitrates, and phosphates. Examples of the alkali metal salt include sodium salt, potassium salt, and lithium salt.
 [標識前駆体化合物(I)]
 本発明は、一態様において、式(I)で表される標識前駆体化合物又はその塩(以下、「本発明の標識前駆体化合物(I)」ともいう)に関する。
Figure JPOXMLDOC01-appb-C000026
[Labeled precursor compound (I)]
In one aspect, the present invention relates to a labeled precursor compound represented by the formula (I) or a salt thereof (hereinafter also referred to as “labeled precursor compound (I) of the present invention”).
Figure JPOXMLDOC01-appb-C000026
 本発明の標識前駆体化合物(I)によれば、例えば、ピタバスタチン誘導体のPETプローブを提供できる。本発明の標識前駆体化合物(I)を放射性標識して得られるPETプローブは、例えば、ピタバスタチンと非常に類似する同様の肝取り込みトランスポータ(OATP)における輸送特性を示す。このため、得られるPETプローブを用いてPET撮像を行うことにより、例えば、ヒトin vivo肝臓中濃度の時間推移を予測するモデルの構築、薬物の肝取り込み/排泄過程の個体間変動要因としての遺伝子多型及び/又は薬物間相互作用の予測等を行うことができる。得られるPETプローブを用いることにより、例えば、臓器の機能評価、好ましくは臓器における薬剤トランスポータの機能評価を行うことができる。 The labeled precursor compound (I) of the present invention can provide, for example, a PET probe of a pitavastatin derivative. The PET probe obtained by radioactively labeling the labeled precursor compound (I) of the present invention exhibits, for example, a transport property in a similar liver uptake transporter (OATP) that is very similar to pitavastatin. For this reason, by performing PET imaging using the obtained PET probe, for example, the construction of a model for predicting the time transition of the concentration in the human in vivo liver, the gene as an inter-individual variation factor of the drug hepatic uptake / excretion process Prediction of polymorphism and / or drug interaction can be performed. By using the obtained PET probe, for example, the function of an organ, preferably the function of a drug transporter in the organ can be evaluated.
 式(I)において、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示す。C1-4アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基及びt-ブチル基が挙げられる。C1-3アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基及びi-プロポキシ基が挙げられる。
17及びR18はそれぞれ独立してC1-2アルキル基を示し、例えば、メチル基、及びエチル基が挙げられる。R11は、好ましくは水素原子、フッ素原子、塩素原子、臭素原子、C1-3アルキル基、C1-3アルコキシ基、ジメチルアミノ基、又はベンジルオキシ基である。
In the formula (I), R 11 is represented by a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18. A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom. Examples of the C 1-4 alkyl group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group and t-butyl group. Examples of the C 1-3 alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group.
R 17 and R 18 each independently represent a C 1-2 alkyl group, and examples thereof include a methyl group and an ethyl group. R 11 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a C 1-3 alkyl group, a C 1-3 alkoxy group, a dimethylamino group, or a benzyloxy group.
 式(I)において、R12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示す。C1-4アルキル基及びC1-3アルコキシ基は、R11の通りである。R12は、好ましくは水素原子、フッ素原子、塩素原子、臭素原子、C1-3アルキル基、又はC1-3アルコキシ基である。 In the formula (I), R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or bromine. Indicates an atom. The C 1-4 alkyl group and the C 1-3 alkoxy group are as R 11 . R 12 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a C 1-3 alkyl group, or a C 1-3 alkoxy group.
 式(I)において、R14は、水素原子、C1-4アルキル基、フッ素原子、塩素原子、又は臭素原子を示す。C1-4アルキル基は、R11の通りである。中でも、R14は、水素原子、メチル基、又はフッ素原子が好ましく、より好ましくは水素原子である。R14が水素原子以外の場合、R14は、-L-X基に対してオルト位又はメタ位であることが好ましい。 In the formula (I), R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom. The C 1-4 alkyl group is as R 11 . Among them, R 14 is preferably a hydrogen atom, a methyl group, or a fluorine atom, and more preferably a hydrogen atom. When R 14 is other than a hydrogen atom, R 14 is preferably in the ortho or meta position relative to the —L 1 —X 1 group.
 式(I)において、R15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示す。C1-6アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル、及びn-ヘキシルが挙げられる。C3-6シクロアルキル基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、及びシクロヘキシルが挙げられる。中でも、R15は、1級又は2級のC1-6アルキル基、又はC3-6シクロアルキル基が好ましく、より好ましくはエチル基、n-プロピル基、i-プロピル基、又はシクロプロピル基、さらに好ましくはi-プロピル基、又はシクロプロピル基である。 In the formula (I), R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group. Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a sec-butyl group, a t-butyl group, and an n-pentyl group. And n-hexyl. C 3-6 cycloalkyl groups include, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. Among them, R 15 is preferably a primary or secondary C 1-6 alkyl group or a C 3-6 cycloalkyl group, more preferably an ethyl group, an n-propyl group, an i-propyl group, or a cyclopropyl group. And more preferably an i-propyl group or a cyclopropyl group.
 式(I)において、Lは、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、Lにおいて、AOは、C2-4オキシアルキレン基を示し、例えば、オキシエチレン基、オキシプロピレン基、及びオキシブチレン基等が挙げられ、好ましくはオキシエチレン基である。mは、1~4の整数を示し、好ましくは1、2又は3であり、より好ましくは2である。nは、2~4の整数を示し、好ましくは2又は3である。Lは、-(CH-、又は-O(CH-が好ましく、より好ましくは-O(CH-である。 In the formula (I), L 1 is, - (CH 2) m - , - O (CH 2) m -, - (AO) n -, or -O (AO) n - indicates, in L 1, AO Represents a C 2-4 oxyalkylene group, and examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group, with an oxyethylene group being preferred. m represents an integer of 1 to 4, preferably 1, 2 or 3, more preferably 2. n represents an integer of 2 to 4, preferably 2 or 3. L 1 is preferably — (CH 2 ) 2 — or —O (CH 2 ) m —, more preferably —O (CH 2 ) 2 —.
 式(I)において、Xは、反応性官能基を示す。反応性官能基としては、放射性標識を行う標識物質と反応しうる官能基が挙げられ、例えば、スルホン酸エステル基、ハロゲン原子、ニトロ基、トリメチルアンモニウム基、及びアルキルケイ素基等が挙げられる。スルホン酸エステル基としては、例えば、メシラート(OMs)基、トシラート(OTs)基、及びトリフラート(OTf)基等が挙げられる。ハロゲン原子としては、例えば、臭素原子、ヨウ素原子、及び塩素原子等が挙げられる。 In the formula (I), X 1 represents a reactive functional group. Examples of the reactive functional group include a functional group capable of reacting with a labeling substance that performs radiolabeling, and examples thereof include a sulfonate group, a halogen atom, a nitro group, a trimethylammonium group, and an alkyl silicon group. Examples of the sulfonate group include a mesylate (OMs) group, a tosylate (OTs) group, and a triflate (OTf) group. Examples of the halogen atom include a bromine atom, an iodine atom, and a chlorine atom.
 式(I)において、-L-X基は、キノリン環の4位に置換されたフェニルにおいてキノリン環と接続する炭素を1位とした場合に、2位、3位及び4位のいずれにあってもよく、好ましくは3位又は4位、より好ましくは4位である。 In the formula (I), the —L 1 -X 1 group is any of 2-position, 3-position and 4-position when the carbon connected to the quinoline ring in the phenyl substituted at the 4-position of the quinoline ring is the 1-position. It is preferable that it is in the 3rd or 4th position, more preferably in the 4th position.
 式(I)において、Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、好ましくは-CHCH-、又は-CH=CH-であり、より好ましくは-CH=CH-である。 In formula (I), Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates, preferably —CH 2 CH 2 — or —CH═CH—, more preferably —CH═CH—.
 式(I)において、Zは、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示す。Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示す。R19は、C1-4アルキル基を示し、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、及びt-ブチル基等が挙げられる。Zは、-CH(OR19)-CH-CH(OR19)-CH-CO16、-CH(OR19)-CH-C(O)-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基が好ましく、より好ましくは-CH(OH)-CH-CH(OH)-CH-CO16、-CH(OH)-CH-C(O)-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基である。
Figure JPOXMLDOC01-appb-C000027
In the formula (I), Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III). . Q and W each independently represent —C (O) —, —CH (OH) —, or —CH (OR 19 ) —. R 19 represents a C 1-4 alkyl group, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, and t-butyl. Groups and the like. Z 1 is —CH (OR 19 ) —CH 2 —CH (OR 19 ) —CH 2 —CO 2 R 16 , —CH (OR 19 ) —CH 2 —C (O) —CH 2 —CO 2 R 16 And a group represented by the following formula (II) or a group represented by the following formula (III) is preferred, and more preferably —CH (OH) —CH 2 —CH (OH) —CH 2 —CO 2 R 16 , —CH (OH) —CH 2 —C (O) —CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000027
 Z及び式(III)において、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。アルキル基としては、生理的に加水分解し得るアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、及びt-ブチル基等が挙げられる。R16は、水素原子、又はt-ブチル基が好ましい。 In Z 1 and formula (III), R 16 represents a hydrogen atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 calcium. The alkyl group is preferably a physiologically hydrolyzable alkyl group, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a t-butyl group. Etc. R 16 is preferably a hydrogen atom or a t-butyl group.
 標識前駆体化合物(I)の形態としては、例えば、溶液、及び粉末等が挙げられ、取扱いの点からは、粉末が好ましく、より好ましくは凍結乾燥された粉末(凍結乾燥製剤)である。標識前駆体化合物(I)は、下記の実施例、及び特開平5-310700号公報等の記載を参照することにより合成することができる。 Examples of the form of the labeled precursor compound (I) include solutions and powders, and powders are preferable from the viewpoint of handling, and lyophilized powders (lyophilized preparations) are more preferable. The labeled precursor compound (I) can be synthesized by referring to the following examples and the description in JP-A No. 5-310700.
 標識前駆体化合物(I)の好ましい形態の一例としては、下記式(X)で表される化合物又はその塩が挙げられる。
Figure JPOXMLDOC01-appb-C000028
An example of a preferred form of the labeled precursor compound (I) includes a compound represented by the following formula (X) or a salt thereof.
Figure JPOXMLDOC01-appb-C000028
 式(X)において、Y、Z、及びXは本発明の標識前駆体化合物(I)と同様であり、式(I)で示した通りである。Xは、好ましくは、メシラート基、トシラート基、トリフラート基、又はフッ素原子を示す。-Y-Zは、好ましくは、下記式(II’)で表される基、又は下記式(III’)で表される基を示す。式(III’)において、R16は、水素原子、生理的に加水分解し得るアルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。
Figure JPOXMLDOC01-appb-C000029
In the formula (X), Y, Z 1 and X 1 are the same as those in the labeled precursor compound (I) of the present invention and are as shown in the formula (I). X 1 preferably represents a mesylate group, a tosylate group, a triflate group, or a fluorine atom. —YZ 1 is preferably a group represented by the following formula (II ′) or a group represented by the following formula (III ′). In the formula (III ′), R 16 represents a hydrogen atom, a physiologically hydrolyzable alkyl group, NH 4 , sodium, potassium, or 1/2 calcium.
Figure JPOXMLDOC01-appb-C000029
 本発明の標識前駆体化合物(I)は、放射性標識化合物を製造するための標識前駆体として使用することができる。したがって、本発明は、その他の態様として、標識前駆体としての化合物(I)の使用、放射性標識化合物を製造するための化合物(I)の使用、又は化合物(I)を放射性標識前駆体として使用する方法に関する。 The labeling precursor compound (I) of the present invention can be used as a labeling precursor for producing a radiolabeled compound. Therefore, the present invention provides, as another aspect, the use of compound (I) as a labeling precursor, the use of compound (I) for producing a radiolabeled compound, or the use of compound (I) as a radiolabeling precursor. On how to do.
 [標識前駆体化合物(IV)]
 本発明は、さらにその他の態様として、式(IV)で表される標識前駆体化合物又はその塩(以下、「本発明の標識前駆体化合物(IV)」ともいう)に関する。本発明の標識前駆体化合物(IV)によれば、例えば、ピタバスタチン又はその誘導体のPETプローブを提供できる。
Figure JPOXMLDOC01-appb-C000030
[Labeled precursor compound (IV)]
In still another aspect, the present invention relates to a labeled precursor compound represented by formula (IV) or a salt thereof (hereinafter also referred to as “labeled precursor compound (IV) of the present invention”). According to the labeled precursor compound (IV) of the present invention, for example, a PET probe of pitavastatin or a derivative thereof can be provided.
Figure JPOXMLDOC01-appb-C000030
 式(IV)において、R11、R12、R15、Y及びZは、本発明の標識前駆体化合物(I)と同様であり、式(I)で示した通りである。Mは、ボロン酸エステル基を示す。本明細書において「ボロン酸エステル基」とは、アルコールと、対応するボロン酸とのエステル化による生成物のことをいう。アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、n-ブタノール、t-ブタノール、エチレングリコール、及びピナコール等が挙げられる。ボロン酸エステル基としては、例えば、-B(OR31)(OR32)、-B(OR33O)、及び下記式で表される基等が挙げられる。R31、R32、R33、R34、R35、R36、及びR37は、それぞれ独立してC1-6アルキル基であり、置換されていてもよく、中でもメチル基が好ましい。
Figure JPOXMLDOC01-appb-C000031
In the formula (IV), R 11 , R 12 , R 15 , Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention and are as shown in the formula (I). M represents a boronic acid ester group. In the present specification, the “boronic acid ester group” refers to a product obtained by esterification of an alcohol and a corresponding boronic acid. Examples of the alcohol include methanol, ethanol, n-propanol, n-butanol, t-butanol, ethylene glycol, and pinacol. Examples of the boronic acid ester group include —B (OR 31 ) (OR 32 ), —B (OR 33 O), and groups represented by the following formulae. R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , and R 37 are each independently a C 1-6 alkyl group, which may be substituted, and among them, a methyl group is preferable.
Figure JPOXMLDOC01-appb-C000031
 本発明の標識前駆体化合物(IV)の形態としては、例えば、溶液、及び粉末等が挙げられ、取扱いの点からは、粉末が好ましく、より好ましくは凍結乾燥された粉末(凍結乾燥製剤)である。 Examples of the form of the labeled precursor compound (IV) of the present invention include a solution and a powder. From the viewpoint of handling, a powder is preferable, and a lyophilized powder (lyophilized preparation) is more preferable. is there.
 標識前駆体化合物(IV)の好ましい形態の一例としては、下記式(XI)で表される化合物又はその塩が挙げられる。式(XI)において、Y、及びZは本発明の標識前駆体化合物(I)と同様であり、式(I)で示した通りである。-Y-Zは、好ましくは、上記式(II’)で表される基、又は上記式(III’)で表される基を示す。
Figure JPOXMLDOC01-appb-C000032
An example of a preferred form of the labeled precursor compound (IV) includes a compound represented by the following formula (XI) or a salt thereof. In the formula (XI), Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention and are as shown in the formula (I). —YZ 1 preferably represents a group represented by the above formula (II ′) or a group represented by the above formula (III ′).
Figure JPOXMLDOC01-appb-C000032
 本発明の標識前駆体化合物(IV)は、後述する標識前駆体化合物の製造方法、及び実施例等に基づき製造することができる。 The labeling precursor compound (IV) of the present invention can be manufactured based on the manufacturing method of the labeling precursor compound described later, Examples and the like.
 本発明の標識前駆体化合物(IV)は、放射性標識化合物を製造するための標識前駆体として使用することができる。したがって、本発明は、その他の態様として、放射性標識前駆体としての化合物(IV)の使用、放射性標識化合物を製造するための化合物(IV)の使用、又は化合物(IV)を放射性標識前駆体として使用する方法に関する。 The label precursor compound (IV) of the present invention can be used as a label precursor for producing a radiolabeled compound. Accordingly, the present invention provides, as another aspect, the use of compound (IV) as a radiolabeled precursor, the use of compound (IV) to produce a radiolabeled compound, or compound (IV) as a radiolabeled precursor. Relates to the method used.
 [標識前駆体化合物(VI)の製造方法]
 本発明は、さらにその他の態様として、式(VI)で表される化合物と、ボロン酸エステル又はジボロンエステルとをカップリング反応させることを含む、式(IV)で表される化合物の製造方法(以下、「本発明の標識前駆体化合物の製造方法」ともいう)に関する。本発明の標識前駆体化合物の製造方法によれば、本発明の標識前駆体化合物(IV)を効率よく製造することができる。本発明の製造方法は、例えば、下記スキーム及び実施例を参照して行うことができる。
Figure JPOXMLDOC01-appb-C000033
[Method for producing labeled precursor compound (VI)]
The present invention provides a method for producing a compound represented by the formula (IV), which further comprises a coupling reaction between a compound represented by the formula (VI) and a boronic acid ester or a diboron ester as another embodiment. (Hereinafter also referred to as “a method for producing a labeled precursor compound of the present invention”). According to the method for producing a labeled precursor compound of the present invention, the labeled precursor compound (IV) of the present invention can be efficiently produced. The production method of the present invention can be carried out, for example, with reference to the following schemes and examples.
Figure JPOXMLDOC01-appb-C000033
 式(VI)において、R11、R12、R15、Y、及びZは、式(I)で示した通りである。式(VI)において、Xは、スルホン酸エステル基、ハロゲン原子、ニトロ基、又は第4級アンモニウムを示す。スルホン酸エステル基、及びハロゲン原子は、式(I)で示した通りである。第4級アンモニウムとしては、例えば、トリメチルアンモニウム等が挙げられる。Xは、OMs基、OTs基、OTf基、臭素原子、ヨウ素原子、又は塩素原子が好ましい。 In the formula (VI), R 11 , R 12 , R 15 , Y, and Z 1 are as shown in the formula (I). In the formula (VI), X 3 represents a sulfonate group, a halogen atom, a nitro group, or a quaternary ammonium. The sulfonate group and the halogen atom are as shown in the formula (I). Examples of the quaternary ammonium include trimethylammonium. X 3 is preferably an OMs group, an OTs group, an OTf group, a bromine atom, an iodine atom, or a chlorine atom.
 式(VI)で表される化合物は、後述するメバロノラクトン誘導体の製造方法及び実施例の記載を参照することにより適宜合成することができる。 The compound represented by the formula (VI) can be appropriately synthesized by referring to the method for producing a mevalonolactone derivative described later and the description in Examples.
 カップリング反応は、式(VI)で表される化合物と、ボロン酸エステル又はジボロンエステルとを、例えば、触媒及び塩基存在下で不活性溶媒中で反応させることにより行うことができる。 The coupling reaction can be performed by reacting the compound represented by the formula (VI) with a boronic acid ester or diboron ester in an inert solvent in the presence of a catalyst and a base, for example.
 ボロン酸エステルとしては、例えば、2-(ブロモメチル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン、及び2-アレニル-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等が挙げられる。ジボロンエステルとしては、例えば、ビス(ピナコラト)ジボロン、ビス(ヘキシレングリコラト)ジボロン、及びビス(ネオペンチルグリコラト)ジボロン等が挙げられる。中でも、カップリング反応は、ジボロンエステルを用いて行うことが好ましく、より好ましくはビス(ピナコラト)ジボロンである。 Examples of boronic esters include 2- (bromomethyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and 2-allenyl-4,4,5,5-tetramethyl-1 3,2-dioxaborolane and the like. Examples of the diboron ester include bis (pinacolato) diboron, bis (hexylene glycolato) diboron, and bis (neopentyl glycolato) diboron. Especially, it is preferable to perform a coupling reaction using diboron ester, More preferably, it is bis (pinacolato) diboron.
 触媒としては、特に制限されないが、パラジウム化合物、白金/インジウム等の金属触媒、及び相間移動触媒等が使用できる。パラジウム化合物としては、例えば、PdCl2(dppf)CH2Cl2、及びPd(PPh3)4等が挙げられ、1種で用いてもよいし、2種類以上を併用してもよい。塩基としては、炭素塩、酢酸カリウム、NaOH、EtN、及びKPO等が挙げられる。炭酸塩としては、例えば、炭酸ナトリウム、炭酸セシウム、及び炭酸カリウム等が挙げられる。これらの中でも、塩基としては、効率よく目的化合物を得る点からは、炭酸カリウムが好ましい。カップリング反応は、反応効率を向上させる観点から、マイクロウェーブ照射下で行ってもよい。 Although it does not restrict | limit especially as a catalyst, Metal compounds, such as a palladium compound and platinum / indium, a phase transfer catalyst, etc. can be used. Examples of the palladium compound include PdCl 2 (dppf) CH 2 Cl 2 , Pd (PPh 3 ) 4 and the like, and one kind may be used, or two or more kinds may be used in combination. Examples of the base include carbon salt, potassium acetate, NaOH, Et 3 N, K 3 PO 4 and the like. Examples of the carbonate include sodium carbonate, cesium carbonate, and potassium carbonate. Among these, potassium carbonate is preferable as the base from the viewpoint of efficiently obtaining the target compound. The coupling reaction may be performed under microwave irradiation from the viewpoint of improving the reaction efficiency.
 不活性溶媒としては、例えば、アルコール系溶媒、ニトリル系溶媒、アミド系溶媒、ハロゲン化炭化水素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒等が挙げられる。アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、イソブタノール、及びtert-ブタノール等が挙げられる。ニトリル系溶媒としては、例えば、アセトニトリル、及びプロピオニトリル等が挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、及びN-メチルピロリドン等が挙げられる。ハロゲン化炭化水素系溶媒としては、例えば、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、及び四塩化炭素等が挙げられる。エーテル系溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、及び1,2-ジメトキシエタン等が挙げられる。芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、及びキシレン等が挙げられる。これらは、単独で使用してもよいし、二種以上を混合して用いてもよい。中でも、不活性溶媒は、THF、及び/又はジクロロメタン等が好ましい。 Examples of the inert solvent include alcohol solvents, nitrile solvents, amide solvents, halogenated hydrocarbon solvents, ether solvents, and aromatic hydrocarbon solvents. Examples of alcohol solvents include methanol, ethanol, propanol, 2-propanol, butanol, isobutanol, and tert-butanol. Examples of the nitrile solvent include acetonitrile, propionitrile, and the like. Examples of the amide solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, and the like. Examples of the halogenated hydrocarbon solvent include dichloromethane, chloroform, 1,2-dichloroethane, carbon tetrachloride, and the like. Examples of the ether solvent include diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran (THF), 1,4-dioxane, 1,2-dimethoxyethane, and the like. Examples of the aromatic hydrocarbon solvent include benzene, toluene, and xylene. These may be used alone or in combination of two or more. Among them, the inert solvent is preferably THF and / or dichloromethane.
 [放射性標識化合物]
 本発明は、その他の態様として、式(V)で表される放射性標識化合物又はその塩(以下、「本発明の放射性標識化合物」ともいう)に関する。本発明の放射性標識化合物は、例えば、ピタバスタチンと非常に類似する同様の肝取り込みトランスポータOATP1B1及びOATP1B3における輸送特性を示す。このため、本発明の放射性標識化合物を用いてPET撮像を行うことにより、ヒトではOATP1B1及びOATP1B3における取り込みを評価することができる。本発明の放射性標識化合物によれば、例えば、ヒト生体内における肝臓の被験薬物濃度の時間推移を予測するモデルの構築、薬物の肝取り込み/排泄過程の個体間変動要因としての遺伝子多型及び/又は薬物間相互作用の予測等を行うことができる。本発明の放射性標識化合物によれば、例えば、臓器の機能評価、好ましくは臓器における薬剤トランスポータの機能評価を行うことができる。
Figure JPOXMLDOC01-appb-C000034
[Radiolabeled compound]
As another aspect, the present invention relates to a radiolabeled compound represented by formula (V) or a salt thereof (hereinafter also referred to as “the radiolabeled compound of the present invention”). The radiolabeled compounds of the present invention exhibit transport properties in similar liver uptake transporters OATP1B1 and OATP1B3, which are very similar to, for example, pitavastatin. For this reason, uptake in OATP1B1 and OATP1B3 can be evaluated in humans by performing PET imaging using the radiolabeled compound of the present invention. According to the radiolabeled compound of the present invention, for example, the construction of a model for predicting the time transition of the test drug concentration of the liver in the human body, the gene polymorphism as an inter-individual variation factor of the hepatic uptake / excretion process of the drug and / or Or prediction of the interaction between drugs can be performed. According to the radiolabeled compound of the present invention, for example, the function of an organ can be evaluated, and preferably the function of a drug transporter in an organ can be evaluated.
Figure JPOXMLDOC01-appb-C000034
 式(V)において、R11、R12、R14、R15、Y、及びZは、本発明の標識前駆体化合物(I)と同様であって、式(I)で示した通りである。 In the formula (V), R 11 , R 12 , R 14 , R 15 , Y, and Z 1 are the same as the labeled precursor compound (I) of the present invention, and are as shown in the formula (I). is there.
 式(V)において、Lは、結合手、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、Lにおいて、AOは、C2-4オキシアルキレン基を示し、例えば、オキシエチレン基、オキシプロピレン基及びオキシブチレン基等が挙げられ、好ましくはオキシエチレン基である。mは、0~4の整数を示し、好ましくは0、1、2又は3であり、より好ましくは2である。nは、2~4の整数を示し、好ましくは2又は3である。Lは、結合手、-(CH-、又は-O(CH-が好ましく、より好ましくは結合手、又は-O(CH-である。 In the formula (V), L 2 represents a bond, — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —, and L 2 In the formula, AO represents a C 2-4 oxyalkylene group, and examples thereof include an oxyethylene group, an oxypropylene group, and an oxybutylene group, and preferably an oxyethylene group. m represents an integer of 0 to 4, preferably 0, 1, 2, or 3, more preferably 2. n represents an integer of 2 to 4, preferably 2 or 3. L 2 is preferably a bond, — (CH 2 ) 2 —, or —O (CH 2 ) m —, more preferably a bond or —O (CH 2 ) 2 —.
 式(V)において、Xは、放射性核種を示す。放射性核種としては、特に制限されるものではないが、ポジトロン放出核種が好ましく、中でも11C、又は18Fがより好ましく、18Fがさらに好ましい。 In the formula (V), X 2 represents a radionuclide. The radionuclide is not particularly limited, but is preferably a positron emitting nuclide, more preferably 11 C or 18 F, and even more preferably 18 F.
 式(V)において、-L-X基は、キノリン環の4位に置換されたフェニルにおいてキノリン環と接続する炭素を1位とした場合に、2位、3位及び4位のいずれにあってもよく、好ましくは3位又は4位であり、より好ましくは4位である。 In the formula (V), the —L 2 —X 2 group is any one of the 2-position, 3-position and 4-position when the carbon connected to the quinoline ring in the phenyl substituted at the 4-position of the quinoline ring is the 1-position. It is preferable that it is in the 3rd or 4th position, more preferably in the 4th position.
 本発明の放射性標識化合物(IV)の好ましい形態の一例としては、下記式(XII)で表される化合物又はその塩が挙げられる。
Figure JPOXMLDOC01-appb-C000035
An example of a preferred form of the radiolabeled compound (IV) of the present invention includes a compound represented by the following formula (XII) or a salt thereof.
Figure JPOXMLDOC01-appb-C000035
 式(XII)において、式(XII)において、Y、及びZは本発明の標識前駆体化合物(I)と同様であり、式(I)で示した通りである。-Y-Zは、好ましくは、上記式(II’)で表される基、又は上記式(III’)で表される基を示す。式(XII)において、L、及びXは本発明の標識前駆体化合物(IV)と同様であり、式(IV)で示した通りである。-L-Xは、好ましくは、[18F]フッ素原子、又は-O-(CH-[18F]Fを示す。 In the formula (XII), in the formula (XII), Y and Z 1 are the same as in the labeled precursor compound (I) of the present invention, and are as shown in the formula (I). —YZ 1 preferably represents a group represented by the above formula (II ′) or a group represented by the above formula (III ′). In the formula (XII), L 2 and X 2 are the same as the labeled precursor compound (IV) of the present invention, and are as shown in the formula (IV). —L 2 —X 2 preferably represents a [ 18 F] fluorine atom or —O— (CH 2 ) 2 — [ 18 F] F.
 本発明の放射性標識化合物は、イメージング、例えば、PET撮像に用いることができ、好ましくは体内動態の個体間変動、ヒトにおける生体内での薬物代謝・輸送機能の評価のためのイメージングを行うことができる。本発明の放射性標識化合物は、PETプローブとして使用でき、例えば、上述するイメージングに用いる組成物、イメージング用試薬、造影剤、画像診断剤等として用いることができる。これらの組成物、画像診断剤等の取り得る形態としては、例えば、溶液、及び粉末等が挙げられ、放射性核種の半減期及び放射能減衰等を考慮すると、溶液が好ましく、注射液がより好ましい。 The radiolabeled compound of the present invention can be used for imaging, for example, PET imaging, and preferably performs imaging for evaluation of inter-individual variability and drug metabolism / transport function in a human body. it can. The radiolabeled compound of the present invention can be used as a PET probe. For example, it can be used as a composition, imaging reagent, contrast agent, diagnostic imaging agent, and the like used in the imaging described above. Possible forms of these compositions, diagnostic imaging agents, and the like include, for example, solutions and powders. In view of the half-life of radionuclides and decay of radioactivity, solutions are preferable, and injection solutions are more preferable. .
 本発明の放射性標識化合物を含むイメージング用組成物、イメージング用試薬、造影剤、及び画像診断剤は、例えば、担体等の医薬品添加物を含んでいてもよい。本明細書において医薬品添加物は、日本薬局方、アメリカ薬局方及び/又はヨーロッパ薬局方等で医薬品添加物として許認可を受けている化合物をいう。担体としては、例えば、水性溶媒及び非水性溶媒が使用できる。水性溶媒としては、例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、及び蒸留水等が挙げられる。非水性溶媒としては、例えば、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、及びプロピレングリコール等が挙げられる。 The imaging composition, imaging reagent, contrast agent, and diagnostic imaging agent containing the radiolabeled compound of the present invention may contain, for example, a pharmaceutical additive such as a carrier. In this specification, a pharmaceutical additive refers to a compound that has been approved as a pharmaceutical additive in the Japanese Pharmacopoeia, the American Pharmacopoeia, and / or the European Pharmacopoeia. As the carrier, for example, an aqueous solvent and a non-aqueous solvent can be used. Examples of the aqueous solvent include potassium phosphate buffer, physiological saline, Ringer's solution, and distilled water. Examples of the non-aqueous solvent include polyethylene glycol, vegetable oil, ethanol, glycerin, dimethyl sulfoxide, and propylene glycol.
 本発明の放射性標識化合物は、例えば、本発明の標識前駆体化合物(I)又は(IV)を標識物質を用いて標識することによって製造することができる。したがって、本発明は、さらにその他の態様として、本発明の標識前駆体化合物(I)又は(IV)を、標識物質を用いて標識することを含む本発明の放射性標識化合物の製造方法に関する。本発明の製造方法によれば、本発明の放射性標識化合物(V)を効率よく製造することができる。 The radiolabeled compound of the present invention can be produced, for example, by labeling the labeling precursor compound (I) or (IV) of the present invention with a labeling substance. Accordingly, the present invention, as yet another aspect, relates to a method for producing the radiolabeled compound of the present invention, which comprises labeling the labeled precursor compound (I) or (IV) of the present invention with a labeling substance. According to the production method of the present invention, the radiolabeled compound (V) of the present invention can be efficiently produced.
 標識物質は、標識する放射性核種及び標識前駆体化合物の種類に応じて適宜決定できる。放射性核種が、18Fである場合は、例えば、[18F]KF、又は1-[18F]フルオロ-4-ヨードベンゼン等を用いて公知の方法により行うことができる。標識反応は、例えば、触媒及び塩基存在下で不活性溶媒中で行うことができ、触媒、塩基、及び不活性溶媒としては、上記のものが挙げられる。 The labeling substance can be appropriately determined according to the type of radionuclide to be labeled and the labeling precursor compound. When the radionuclide is 18 F, it can be carried out by a known method using, for example, [ 18 F] KF, 1- [ 18 F] fluoro-4-iodobenzene or the like. The labeling reaction can be performed, for example, in the presence of a catalyst and a base in an inert solvent, and examples of the catalyst, the base, and the inert solvent include those described above.
 本発明の放射性標識化合物は、例えば、下記スキーム及び実施例を参照することにより、製造することができる。
Figure JPOXMLDOC01-appb-C000036
The radiolabeled compound of the present invention can be produced, for example, by referring to the following scheme and examples.
Figure JPOXMLDOC01-appb-C000036
 本発明の放射性標識化合物(V)は、後述するイメージング方法、OATP取り込み機能の評価方法、取り込みトランスポータ機能の観察方法、又は胆汁排泄トランスポータ機能の観察方法等に用いることができる。このため、本発明は、さらにその他の態様として、イメージング剤としての化合物(V)の使用、イメージング剤の製造のための化合物(V)の使用、化合物(V)をイメージング剤として使用する方法、又は、イメージング方法、OATP取り込み機能の評価方法、取り込みトランスポータ機能の観察方法若しくは胆汁排泄トランスポータ機能の観察方法のために用いる化合物(V)の使用に関する。 The radiolabeled compound (V) of the present invention can be used in an imaging method, an OATP uptake function evaluation method, an uptake transporter function observation method, a bile excretion transporter function observation method, etc., which will be described later. Therefore, the present invention provides, as still another aspect, the use of compound (V) as an imaging agent, the use of compound (V) for the production of an imaging agent, the method of using compound (V) as an imaging agent, Alternatively, the present invention relates to the use of the compound (V) used for the imaging method, the evaluation method of the OATP uptake function, the observation method of the uptake transporter function, or the observation method of the bile excretion transporter function.
 [イメージング方法]
 本発明は、さらにその他の態様として、本発明の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含むイメージング方法に関する。本発明のイメージング方法によれば、例えば、体内動態の個体間変動、ヒトにおける生体内での薬物輸送機能の評価を行うことができる。被検体としては、例えば、ヒト及び/又はヒト以外の哺乳類が挙げられる。
[Imaging method]
In still another aspect, the present invention relates to an imaging method including detecting a radioactive signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention. According to the imaging method of the present invention, for example, it is possible to evaluate inter-individual fluctuations in pharmacokinetics and in vivo drug transport functions in humans. Examples of the subject include humans and / or mammals other than humans.
 シグナルの検出は、経時的に行うことが好ましく、より好ましくは本発明の放射性標識化合物を投与後、速やかに開始することが好ましい。 The detection of the signal is preferably performed over time, and more preferably, it is preferably started immediately after administration of the radiolabeled compound of the present invention.
 シグナルの検出は、被検体の全体から行ってもよく、局所的に行ってもよく、少なくとも、本発明の放射性標識化合物の取り込みを行う取り込みトランスポータ、及び/又は本発明の放射性標識化合物の排出を行う排泄トランスポータが発現する臓器又は生体内の組織において行うことが好ましい。該トランスポータが発現する臓器としては、例えば、肝臓、小腸、脳及び腎臓等が挙げられる。 The detection of the signal may be performed from the whole subject or may be performed locally, at least, the uptake transporter for taking up the radiolabeled compound of the present invention, and / or the excretion of the radiolabeled compound of the present invention. It is preferably performed in an organ or an in vivo tissue expressing the excretion transporter. Examples of organs that express the transporter include liver, small intestine, brain and kidney.
 本発明のイメージング方法は、例えば、検出されたシグナルを再構成処理して画像に変換し表示すること、及び/又は検出されたシグナルを数値化して集積量を提示することを含んでいてもよい。表示には、例えば、モニタに表示すること、及び印字すること等を含む。提示には、例えば、算出した集積量を保存すること、及び外部に出力することを含む。 The imaging method of the present invention may include, for example, reconstructing a detected signal to convert it into an image and displaying it, and / or quantifying the detected signal to present an accumulation amount. . The display includes, for example, displaying on a monitor and printing. The presentation includes, for example, storing the calculated accumulation amount and outputting it to the outside.
 [OATP取り込み機能の評価方法]
 本発明は、さらにその他の態様として、本発明の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む、有機アニオン輸送ポリペプチドにおける取り込み機能の評価方法に関する。本発明の評価方法によれば、体内動態の個体間変動、薬物輸送機能の評価をヒトの生体内で行うことができる。本発明の評価方法により得られた結果に基づき、例えば、他の同様の輸送経路を持つ薬剤について、被検体の薬物輸送機能に応じた投与量や投与間隔など最適な処方設計の判断基準を得ることができる。被検体としては、例えば、ヒト及び/又はヒト以外の哺乳類が挙げられる。シグナルの検出等は、本発明のイメージング方法と同様に行うことができる。
[Evaluation method of OATP uptake function]
In still another aspect, the present invention relates to a method for evaluating the uptake function in an organic anion transport polypeptide, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention. . According to the evaluation method of the present invention, inter-individual variability and drug transport function can be evaluated in the human body. Based on the results obtained by the evaluation method of the present invention, for example, for a drug having another similar transport route, obtain an optimum prescription design judgment criterion such as a dose and a dose interval according to the drug transport function of the subject. be able to. Examples of the subject include humans and / or mammals other than humans. Signal detection and the like can be performed in the same manner as the imaging method of the present invention.
 有機アニオン輸送ポリペプチド(OATP)としては、ヒトの場合、OATP1B1及びOATP1B3をはじめとする各種OATP類であり、マウス及びラットの場合、Oatp1a1、Oatp1a4、Oatp1b2をはじめとする各種Oatp類である。 Organic anion transport polypeptides (OATP) are various OATPs including OATP1B1 and OATP1B3 in the case of humans, and various Oats including Oatp1a1, Oatp1a4 and Oatp1b2 in the case of mice and rats.
 取り込み機能を評価する臓器としては、例えば、OATPが発現する臓器であり、肝臓、小腸、脳及び腎臓等が挙げられる。中でも、上記の通りピタバスタチンは肝細胞の血管側に発現し血液から肝細胞への取り込みに関与する肝トランスポータOATP1B1によって主に取り込まれることが知られていることから、肝取り込み機能を評価することが好ましい。 Examples of organs for evaluating the uptake function include OATP-expressing organs, such as liver, small intestine, brain and kidney. Among them, as described above, pitavastatin is expressed on the blood vessel side of hepatocytes and is known to be mainly taken up by the liver transporter OATP1B1 involved in the uptake of blood into hepatocytes. Is preferred.
 [取り込みトランスポータ機能の観察方法]
 本発明は、さらにその他の態様として、本発明の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む肝細胞に発現する取り込みトランスポータ機能の観察方法に関する。本発明の観察方法によれば、本発明の放射性標識化合物を用いたイメージングを行うことにより、肝臓に発現する取り込みトランスポータ機能を観察することができる。
[Observation method of import transporter function]
In still another aspect, the present invention relates to a method for observing an uptake transporter function expressed in hepatocytes, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention. . According to the observation method of the present invention, the uptake transporter function expressed in the liver can be observed by imaging using the radiolabeled compound of the present invention.
 本発明の観察方法によれば、検出した放射性シグナルに基づき取り込みトランスポータ機能を測定、分析、及び/又は評価することができる。これにより、本発明の観察方法によれば、例えば、肝取り込みトランスポータ機能における個体間変動及び/又は薬物輸送機能の評価をヒトの生体内で行うことができる。また、本発明の観察方法により得られた測定、分析、及び/又は評価結果に基づき、例えば、他の同様の輸送経路を持つ薬剤について、被検体の薬物輸送機能に応じた投与量や投与間隔など最適な処方設計の判断基準を得ることができる。被検体、シグナルの検出等は、上述のとおりである。 According to the observation method of the present invention, the uptake transporter function can be measured, analyzed, and / or evaluated based on the detected radioactive signal. Thereby, according to the observation method of the present invention, for example, the inter-individual variation in the liver uptake transporter function and / or the drug transport function can be evaluated in the human body. In addition, based on the measurement, analysis, and / or evaluation results obtained by the observation method of the present invention, for example, for drugs having other similar transport routes, the dose and the dose interval according to the drug transport function of the subject It is possible to obtain the optimum prescription design criteria. The subject, signal detection, and the like are as described above.
 本発明の観察方法において、観察対象となる取り込みトランスポータは、OATPが好ましい。本発明の観察方法は、肝臓に発現するOATPにおける取り込みトランスポータ機能を測定し、被検体の肝取り込み機能を測定及び/又は評価することがより好ましい。 In the observation method of the present invention, the uptake transporter to be observed is preferably OATP. The observation method of the present invention more preferably measures the uptake transporter function in OATP expressed in the liver, and measures and / or evaluates the hepatic uptake function of the subject.
 取り込みトランスポータ機能の観察は、イメージングを経時的に行うことによって行うことが好ましい。本発明の観察方法は、例えば、放射性シグナルの検出を経時的に行うこと、及び検出されたシグナルを経時的に比較することによって取り込みトランスポータにおける本発明の放射性標識化合物の取り込みを測定、評価又は分析することを含んでいてもよい。本発明の放射性標識化合物の取り込みの測定、評価又は分析は、例えば、検出されたシグナルを再構成処理して得られた画像の比較、検出されたシグナルに基づく取り込み量の定量化等を行うことが挙げられる。 The observation of the uptake transporter function is preferably performed by performing imaging over time. The observation method of the present invention includes, for example, measuring, evaluating, or measuring the uptake of the radiolabeled compound of the present invention in the uptake transporter by performing detection of the radioactive signal over time and comparing the detected signal over time. It may include analyzing. Measurement, evaluation or analysis of the uptake of the radiolabeled compound of the present invention includes, for example, comparison of images obtained by reconstructing the detected signal, quantification of the uptake based on the detected signal, etc. Is mentioned.
 [胆汁排泄トランスポータ機能の観察方法]
 本発明は、さらにその他の態様として、本発明の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む胆汁排泄トランスポータ機能の観察方法に関する。本発明の放射性標識化合物は、肝臓においてほとんど代謝されることなく、代謝的に安定であるとの知見が得られている。このため、本発明の測定方法によれば、本発明の放射性標識化合物を用いたイメージングを行うことにより、胆汁排泄トランスポータ機能の評価を生体内で行うことができる。
[Observation of bile excretion transporter function]
In still another aspect, the present invention relates to a method for observing a biliary excretion transporter function, which comprises detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound of the present invention. It has been found that the radiolabeled compound of the present invention is metabolically stable with almost no metabolism in the liver. Therefore, according to the measurement method of the present invention, the bile excretion transporter function can be evaluated in vivo by performing imaging using the radiolabeled compound of the present invention.
 本発明の観察方法によれば、検出した放射性シグナルに基づき胆汁排泄トランスポータ機能を測定、分析、及び/又は評価することができる。これにより、本発明の観察方法によれば、例えば、胆汁排泄トランスポータ機能における個体間変動及び/又は薬物輸送機能の評価をヒトの生体内で行うことができる。また、本発明の観察方法により得られた測定、分析、及び/又は評価結果に基づき、例えば、他の同様の輸送経路を持つ薬剤について、被検体の薬物輸送機能に応じた投与量や投与間隔など最適な処方設計の判断基準を得ることができる。被検体、シグナルの検出等は、上述のとおりである。 According to the observation method of the present invention, the bile excretion transporter function can be measured, analyzed, and / or evaluated based on the detected radioactive signal. Thereby, according to the observation method of the present invention, for example, the inter-individual variation in the bile excretion transporter function and / or the drug transport function can be evaluated in the human body. In addition, based on the measurement, analysis, and / or evaluation results obtained by the observation method of the present invention, for example, for drugs having other similar transport routes, the dose and the dose interval according to the drug transport function of the subject It is possible to obtain the optimum prescription design criteria. The subject, signal detection, and the like are as described above.
 胆汁排泄トランスポータとしては、例えば、MDR1(multidrug resistance 1; P-glycoprotein)、MRP2(multidrug resistance-associated protein 2)、BCRP(breast cancer resistance protein)、及びBSEP(bile salt export pump)等が知られている。 As bile excretion transporters, for example, MDR1 (multidrug resistance-1; P-glycoprotein), MRP2 (multidrug resistance-associated protein 2), BCRP (breast cancer resistance-protein), and BSEP (bile salmon export-pump) are known. ing.
 胆汁排泄機能の観察は、イメージングを経時的に行うことによって行うことが好ましい。本発明の観察方法は、例えば、放射性シグナルの検出を経時的に行うこと、及び検出されたシグナルを経時的に比較することによって胆汁排泄トランスポータにおける本発明の放射性標識化合物の排出を測定、評価又は分析することを含んでいてもよい。本発明の放射性標識化合物の排出の測定、評価又は分析は、例えば、検出されたシグナルを再構成処理して得られた画像の比較、又は検出されたシグナルに基づく排出量の定量化等を行うことが挙げられる。 The observation of the bile excretion function is preferably performed by performing imaging over time. The observation method of the present invention is, for example, measuring and evaluating the excretion of the radiolabeled compound of the present invention in the bile excretion transporter by performing detection of the radioactive signal over time and comparing the detected signal with time. Or it may include analyzing. Measurement, evaluation, or analysis of the emission of the radiolabeled compound of the present invention includes, for example, comparison of images obtained by reconstructing the detected signal, or quantification of emission based on the detected signal. Can be mentioned.
 肝臓に発現する取り込みトランスポータ機能の観察と、胆汁排泄トランスポータ機能の観察とを同時に行ってもよい。取り込みトランスポータと胆汁排泄トランスポータとについてそのトランスポータ機能を同時に観察することにより、例えば、肝細胞における胆汁排泄機構をより正確に評価することができる可能性がある。 Observation of the uptake transporter function expressed in the liver and observation of the bile excretion transporter function may be performed simultaneously. By simultaneously observing the transporter function of the uptake transporter and the bile excretion transporter, for example, there is a possibility that the bile excretion mechanism in hepatocytes can be more accurately evaluated.
 なお、本発明において、トランスポータ機能の観察方法は上記に特に限定されることなく、例えば、胆汁排泄トランスポータ以外の本発明の標識化合物が基質となりうる排出トランスポータの機能を観察してもよい。 In the present invention, the method for observing the transporter function is not particularly limited to the above. For example, the function of the excretion transporter that can be used as a substrate by the labeled compound of the present invention other than the biliary excretion transporter may be observed. .
 [キット]
 本発明は、さらにその他の態様として、標識前駆体化合物(I)、標識前駆体化合物(IV)又は放射性標識化合物(V)を含むキットに関する。本発明のキットは、例えば、放射性標識化合物の合成、イメージング、並びにOATP取り込み機能、肝取り込みトランスポータ機能、胆汁排泄トランスポータ機能の測定又は評価等に用いることができる。本発明のキットは、それぞれの形態に応じた取扱い説明書を含むことが好ましい。取扱い説明書は、キットに同梱されてもよいし、ウェブ上で提供されてもよい。
[kit]
In still another aspect, the present invention relates to a kit containing a labeled precursor compound (I), a labeled precursor compound (IV), or a radiolabeled compound (V). The kit of the present invention can be used for, for example, synthesis of radiolabeled compounds, imaging, and measurement or evaluation of OATP uptake function, liver uptake transporter function, and bile excretion transporter function. It is preferable that the kit of this invention contains the instruction manual according to each form. The instruction manual may be included in the kit or may be provided on the web.
 本発明のキットは、標識前駆体化合物(I)、標識前駆体化合物(IV)又は放射性標識化合物(V)を入れるための容器をさらに含んでいてもよい。容器としては、例えば、シリンジやバイアル瓶等が挙げられる。 The kit of the present invention may further include a container for containing the labeled precursor compound (I), the labeled precursor compound (IV), or the radiolabeled compound (V). Examples of the container include a syringe and a vial.
 本発明のキットは、例えば、バッファー、浸透圧調整剤等の分子プローブを調製するための成分、及び/又は注射器等のペプチド誘導体の投与に使用する器具等をさらに含んでいてもよい。 The kit of the present invention may further include, for example, a component for preparing a molecular probe such as a buffer and an osmotic pressure regulator, and / or a device used for administration of a peptide derivative such as a syringe.
 [メバロノラクトン誘導体の新規製造方法]
 本発明は、さらにその他の態様として、メバロノラクトン誘導体の新たな製造方法に関する。すなわち、本発明は、式(VI)で表される化合物とボロン酸エステル又はジボロンエステルとをカップリング反応させて式(IV)で表される化合物を得ること(工程1)、及び式(IV)で表される化合物と式(VII)で表される化合物とを反応させること(工程2)を含む式(VIII)で表される化合物の製造方法に関する。本発明の合成方法によれば、ピタバスタチン又はその誘導体を容易に得ることができる。
[New production method of mevalonolactone derivatives]
In still another aspect, the present invention relates to a new method for producing a mevalonolactone derivative. That is, the present invention provides a compound represented by the formula (IV) by a coupling reaction between a compound represented by the formula (VI) and a boronic acid ester or diboron ester (Step 1), and the formula ( The present invention relates to a method for producing a compound represented by formula (VIII), which comprises reacting a compound represented by IV) with a compound represented by formula (VII) (step 2). According to the synthesis method of the present invention, pitavastatin or a derivative thereof can be easily obtained.
 本発明の製造方法は、例えば、下記スキームに基づき行うことができる。
Figure JPOXMLDOC01-appb-C000037
The manufacturing method of this invention can be performed based on the following scheme, for example.
Figure JPOXMLDOC01-appb-C000037
 (工程1)
 式(VI)で表される化合物と、ボロン酸エステル又はジボロンエステルとのカップリング反応は、本発明の標識前駆体化合物の製造方法と同様に行うことができる。式(VI)におけるR11、R12、R15、Y、Z及びX、ボロン酸エステル、並びにジボロンエステルは、上記のとおりである。
(Process 1)
The coupling reaction between the compound represented by the formula (VI) and the boronic acid ester or diboron ester can be carried out in the same manner as in the method for producing a labeled precursor compound of the present invention. R 11 , R 12 , R 15 , Y, Z 1 and X 3 , the boronic acid ester, and the diboron ester in the formula (VI) are as described above.
 (工程2)
 式(IV)で表される化合物と式(VII)で表される化合物との反応は、触媒及び塩基存在下で不活性溶媒中でこれらの化合物を反応させることで行うことができる。式(IV)で表される化合物は、本発明の標識前駆体化合物(IV)である。
(Process 2)
The reaction between the compound represented by formula (IV) and the compound represented by formula (VII) can be carried out by reacting these compounds in an inert solvent in the presence of a catalyst and a base. The compound represented by the formula (IV) is the labeled precursor compound (IV) of the present invention.
 式(VII)において、R13は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、ベンジルオキシ基、フッ素原子、塩素原子、臭素原子、トリフルオロメチル基、フェノキシ基、又はフェニル基を示す。R33は、水素原子、フッ素原子、塩素原子、又はメチル基が好ましく、より好ましくはフッ素原子である。R13は、フェニルにおいてXが結合する炭素を1位とした場合に、2位、3位及び4位のいずれにあってもよく、好ましくは3位又は4位であり、より好ましくは4位である。 In the formula (VII), R 13 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a benzyloxy group, a fluorine atom, chlorine An atom, a bromine atom, a trifluoromethyl group, a phenoxy group, or a phenyl group is shown. R 33 is preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a methyl group, and more preferably a fluorine atom. R 13 may be in any of the 2-position, the 3-position and the 4-position when the carbon to which X 4 is bonded in phenyl is the 1-position, preferably the 3-position or 4-position, and more preferably 4 It is rank.
 式(VII)において、R14は、式(I)で示したとおりである。R14が水素原子以外の場合、R14は、R13に対してオルト位又はメタ位であることが好ましい。 In the formula (VII), R 14 is as shown in the formula (I). When R 14 is other than a hydrogen atom, R 14 is preferably in the ortho position or the meta position with respect to R 13 .
 式(VII)において、Xは、反応性官能基である。反応性官能基としては、ボロン酸エステル基と反応しうる官能基が挙げられ、例えば、上記式(I)で示したものが使用でき、中でも、ヨウ素原子等が好ましい。 In the formula (VII), X 4 is a reactive functional group. Examples of the reactive functional group include a functional group capable of reacting with a boronic acid ester group. For example, those represented by the above formula (I) can be used, and among them, an iodine atom or the like is preferable.
 式(VIII)において、R11、R12、R13、R14、R15、Y、及びZは、上記したとおりである。 In the formula (VIII), R 11 , R 12 , R 13 , R 14 , R 15 , Y, and Z 1 are as described above.
 触媒としては、特に制限されないが、パラジウム化合物、白金/インジウム等の金属触媒等が使用できる。パラジウム化合物としては、例えば、PdCl2(dppf)CH2Cl2、Pd(PPh3)4、及びPdCl2(dppf)CH2Cl2とPd(PPh3)4との併用等が挙げられる。塩基としては、炭素塩、酢酸カリウム、NaOH、EtN、及びKPO等が挙げられる。炭酸塩としては、例えば、炭酸ナトリウム、炭酸セリウム、及び炭酸カリウム等が挙げられる。これらの中でも、塩基としては、効率よく目的化合物を得る点からは、炭酸ナトリウムが好ましい。反応時間を大幅に短縮でき、製造効率の向上の点から、カップリング反応は、マイクロウェーブ照射下で行うことが好ましい。 Although it does not restrict | limit especially as a catalyst, Metal catalysts, such as a palladium compound and platinum / indium, etc. can be used. Examples of the palladium compound include PdCl 2 (dppf) CH 2 Cl 2 , Pd (PPh 3 ) 4 , and the combined use of PdCl 2 (dppf) CH 2 Cl 2 and Pd (PPh 3 ) 4 . Examples of the base include carbon salt, potassium acetate, NaOH, Et 3 N, K 3 PO 4 and the like. Examples of the carbonate include sodium carbonate, cerium carbonate, and potassium carbonate. Among these, sodium carbonate is preferable as the base from the viewpoint of efficiently obtaining the target compound. From the viewpoint of greatly shortening the reaction time and improving the production efficiency, the coupling reaction is preferably performed under microwave irradiation.
 式(VI)で表される化合物は、例えば、式(IXa)で表される化合物を塩基と反応させた後、式(Xa)又は式(XIa)で表される化合物と縮合反応させ、ついで得られた化合物を脱保護、加水分解及び/又はラクトン化することによって得ることができる。この合成は、下記スキーム及び実施例の記載に基づき行うことができる。
Figure JPOXMLDOC01-appb-C000038
The compound represented by the formula (VI) is obtained by, for example, reacting the compound represented by the formula (IXa) with a base, followed by a condensation reaction with the compound represented by the formula (Xa) or the formula (XIa). The obtained compound can be obtained by deprotection, hydrolysis and / or lactonization. This synthesis can be performed based on the description of the following scheme and examples.
Figure JPOXMLDOC01-appb-C000038
 塩基としては、例えば、ナトリウム化合物、カリウム化合物、及びアルキルリチウム化合物等が挙げられる。ナトリウム化合物としては、水素化ナトリウム等が挙げられる。カリウム化合物としては、例えば、t-ブトキシカリウム等が挙げられる。アルキルリチウム化合物としては、例えば、ブチルリチウム等が挙げられる。 Examples of the base include sodium compounds, potassium compounds, and alkyl lithium compounds. Sodium hydride etc. are mentioned as a sodium compound. Examples of the potassium compound include t-butoxy potassium. Examples of the alkyl lithium compound include butyl lithium.
 式(IXa)において、R11、R12、R15、及びXは、上記したとおりである。 In the formula (IXa), R 11 , R 12 , R 15 , and X 3 are as described above.
 式(Xa)及び(XIa)において、R38a及びR38bは、水酸基の保護基を意味する。R38a及びR38bとしては、それぞれ独立して、メトキシメチル基、2-メトキシメチル基、テトラヒドロキシピラニル基、4-メトカエシテトラヒドロピラニル基、2-エトキシエチル基、1-メチル-1-メトキシエチル基、トリフェニルメチル基、又はトリメチルシリル基を示すか、R38a及びR38bが一緒になって、イソプロピリデン、シクロペンチリデン、シクロヘキシリデン、又はベンジリデンを示す。式(Xa)において、R16は、上記したとおりである。 In the formulas (Xa) and (XIa), R 38a and R 38b represent a hydroxyl-protecting group. R 38a and R 38b are each independently a methoxymethyl group, a 2-methoxymethyl group, a tetrahydroxypyranyl group, a 4-methocaesitetrahydropyranyl group, a 2-ethoxyethyl group, a 1-methyl-1- It represents a methoxyethyl group, a triphenylmethyl group, or a trimethylsilyl group, or R 38a and R 38b together represent isopropylidene, cyclopentylidene, cyclohexylidene, or benzylidene. In the formula (Xa), R 16 is as described above.
 式(Xa)及び(XIa)において、-Yは、-P414243Hal又は-P(W)R4445を示す。R41、R42、及びR43は、それぞれ独立して、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-クロロエチル基、2,2,2-トリフルオロエチル基、フェニル基、メチルフェニル基、メトキシフェニル基、ペンタフルオロフェニル基、又はベンジル基を示す。Halは、塩素原子、臭素原子、又はヨウ素原子を示す。R44及びR45は、それぞれ独立して、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-クロロエチル基、2,2,2-トリフルオロエチル基、フェニル基、メトキシフェニル基、メチルフェニル基、ペンタフルオロフェニル基、ベンジル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、2-クロロエトキシ基、2,2,2-トリフルオロエトキシ基、フェノキシ基、メトキシフェニルオキシ基、メチルフェニルオキシ基、ペンタフルオロフェニルオキシ基、メチルフェニルオキシ基、又はベンジルオキシ基を示すか、又はR44及びR45が一緒になって5員環又は6員環を形成していてもよい。Wは、酸素原子又は硫黄原子を示す。式(Xa)及び(XIa)において、-Yは、P(W)R4445が好ましく、より好ましくは-POR4445であり、より好ましくはR44及びR45がメトキシ基である-POR4445である。 In the formulas (Xa) and (XIa), -Y 1 represents -P + R 41 R 42 R 43 Hal - or -P (W 1 ) R 44 R 45 . R 41 , R 42 and R 43 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a 2-chloroethyl group, a 2,2,2-trifluoroethyl group, a phenyl group, A methylphenyl group, a methoxyphenyl group, a pentafluorophenyl group, or a benzyl group; Hal represents a chlorine atom, a bromine atom, or an iodine atom. R 44 and R 45 are each independently a methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-chloroethyl group, 2,2,2-trifluoroethyl group, phenyl group, methoxyphenyl group, Methylphenyl, pentafluorophenyl, benzyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, phenoxy, methoxyphenyl Represents an oxy group, a methylphenyloxy group, a pentafluorophenyloxy group, a methylphenyloxy group, or a benzyloxy group, or R 44 and R 45 together form a 5- or 6-membered ring; Also good. W 1 represents an oxygen atom or a sulfur atom. In the formulas (Xa) and (XIa), —Y 1 is preferably P (W 1 ) R 44 R 45 , more preferably —POR 44 R 45 , more preferably R 44 and R 45 are methoxy groups. -POR 44 R 45 .
 式(VI)で表される化合物は、例えば、式(IXb)で表される化合物を塩基と反応させた後、式(Xb)又は式(XIb)で表される化合物と縮合反応させ、ついで得られた化合物を脱保護、加水分解及び/又はラクトン化することによって得てもよい。この合成は、下記スキーム及び実施例の記載に基づき行うことができる。
Figure JPOXMLDOC01-appb-C000039
The compound represented by the formula (VI) is obtained by, for example, reacting the compound represented by the formula (IXb) with a base, followed by a condensation reaction with the compound represented by the formula (Xb) or the formula (XIb). The obtained compound may be obtained by deprotection, hydrolysis and / or lactonization. This synthesis can be performed based on the description of the following scheme and examples.
Figure JPOXMLDOC01-appb-C000039
 式(IXb)におけるR11、R12、R15、Y、及びX、式(Xb)及び式(XIb)におけるR38a、R38b、及びR16、使用する塩基は、上記のとおりである。 R 11 , R 12 , R 15 , Y 1 , and X 3 in formula (IXb), R 38a , R 38b , and R 16 in formula (Xb) and formula (XIb), the bases used are as described above. is there.
 [新たなメバロノラクトン誘導体]
 本発明は、さらにその他の態様として、新たなメバロノラクトン誘導体に関する。すなわち、本発明は、式(XIII)で表される化合物又はその塩(以下、「本発明の化合物(XIII)」ともいう)に関する。本発明の化合物(XIII)によれば、従来のメバロノラクトン誘導体と比較して容易に製造することができ、また安価な製造コストで製造できるという効果を奏しうる。また、本発明の化合物(XIII)は、例えば、従来のピタバスタチンと同等の作用・効果を奏しうる。
Figure JPOXMLDOC01-appb-C000040
[New mevalonolactone derivatives]
In still another aspect, the present invention relates to a new mevalonolactone derivative. That is, the present invention relates to a compound represented by the formula (XIII) or a salt thereof (hereinafter also referred to as “compound (XIII) of the present invention”). According to the compound (XIII) of the present invention, it can be easily produced as compared with the conventional mevalonolactone derivative, and can be produced at an inexpensive production cost. In addition, the compound (XIII) of the present invention can exhibit the same actions and effects as, for example, conventional pitavastatin.
Figure JPOXMLDOC01-appb-C000040
 式(XIII)において、R11、R12、R14、R15、Y及びZは、本発明の標識前駆体化合物(I)と同様であり、式(I)で示した通りである。式(XIII)において、Lは、-O(CH-、-(AO)-、又は-O(AO)-を示し、mは、0~4の整数を示し、AOは、C2-4オキシアルキレン基を示し、nは、2~4の整数を示す。-L-は、-O(CH-が好ましく、より好ましくは-O(CH-である。式(XIII)において、Xは、ハロゲン原子であり、好ましくは臭素原子、ヨウ素原子、及び塩素原子であり、より好ましくはフッ素原子である。 In the formula (XIII), R 11 , R 12 , R 14 , R 15 , Y and Z 1 are the same as those in the labeled precursor compound (I) of the present invention and are as shown in the formula (I). In the formula (XIII), L 3 represents —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —, m represents an integer of 0 to 4, and AO represents , C 2-4 oxyalkylene group, n represents an integer of 2-4 . —L 3 — is preferably —O (CH 2 ) m —, more preferably —O (CH 2 ) 2 —. In the formula (XIII), X 5 is a halogen atom, preferably a bromine atom, an iodine atom, or a chlorine atom, more preferably a fluorine atom.
 本発明の化合物(XIII)の好ましい形態の一例としては、下記式(XIV)で表される化合物が挙げられる。式(XIV)において、-Y-Zは式(I)と同様であり、Xは式(XIII)と同様である。
Figure JPOXMLDOC01-appb-C000041
An example of a preferred form of the compound (XIII) of the present invention includes a compound represented by the following formula (XIV). In the formula (XIV), —YZ 1 is the same as in the formula (I), and X 5 is the same as in the formula (XIII).
Figure JPOXMLDOC01-appb-C000041
 本発明の化合物(XIII)は、例えば、HMG-CoA還元酵素阻害剤として使用することができる。また、本発明の化合物(XIII)は、例えば、高脂血症、及び動脈硬化症等の治療にも用いることができうる。したがって、本発明は、さらにその他の態様として、HMG-CoA還元酵素阻害剤としての化合物(XIII)の使用、HMG-CoA還元酵素阻害剤の製造のための化合物(XIII)の使用、化合物(XIII)をHMG-CoA還元酵素阻害剤として使用する方法、高脂血症及び又は動脈硬化症の治療方法に用いるための化合物(XIII)、高脂血症及び又は動脈硬化症の非医薬的な処置方法のための化合物(XIII)、又は、高脂血症及び又は動脈硬化症の治療薬を製造するための化合物(XIII)の使用に関する。 The compound (XIII) of the present invention can be used, for example, as an HMG-CoA reductase inhibitor. The compound (XIII) of the present invention can also be used for the treatment of hyperlipidemia, arteriosclerosis and the like. Therefore, the present invention provides, as still another aspect, the use of compound (XIII) as an HMG-CoA reductase inhibitor, the use of compound (XIII) for the production of an HMG-CoA reductase inhibitor, compound (XIII ) As a HMG-CoA reductase inhibitor, compound (XIII) for use in a method for treating hyperlipidemia and / or arteriosclerosis, non-pharmacological treatment of hyperlipidemia and / or arteriosclerosis It relates to the use of compound (XIII) for the method or compound (XIII) for the manufacture of a therapeutic agent for hyperlipidemia and / or arteriosclerosis.
 以下に、実施例を用いて本発明をさらに説明する。但し、本発明は以下の実施例に限定して解釈されない。 Hereinafter, the present invention will be further described using examples. However, the present invention is not construed as being limited to the following examples.
 本明細書の記載において、以下の略語を使用する。
DMA:N,N’-ジメチルアセトアミド
KM:3-シクロプロピル-3-オキソプロピオン酸メチル
TFA:トリフルオロ酢酸
TBSCl:t-ブチルジメチルシリルクロリド
DMF:N,N’-ジメチルホルムアミド
THF:テトラヒドロフラン
KM:3-シクロプロピル-3-オキソプロパン酸メチル
PPh:トリフェニルホスフィン
PhPOEt:エトキシジフェニルホスフィン
TMP:2,2,6,6-テトラメチルピペリジン
DIO:tert-Butyl (3R, 5S)-6-oxo-3,5-O-isopropylidene-3,5-dihydroxyhexanoate
TBAF:テトラブチルアンモニウムフロリド
TsCl:p-トルエンスルホニルクロリド
Kryptofix(登録商標)2.2.2(製品名:Merck社製):4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane
BuONO:亜硝酸t-ブチル
DIBAL:水素化ジイソブチルアンモニウム
TBAB:テトラブチルアンモニウムブロミド
TEMPO:[(2,2,6,6-テトラメチルピペリジニル)オキシ]ラジカル
(Bpin):ビスピナコラトジボロン
DMSO:ジメチルスルホキシド
MsCl:メタンスルフォニルクロリド
The following abbreviations are used in the description of the present specification.
DMA: N, N′-dimethylacetamide KM: methyl 3-cyclopropyl-3-oxopropionate TFA: trifluoroacetic acid TBSCl: t-butyldimethylsilyl chloride DMF: N, N′-dimethylformamide THF: tetrahydrofuran KM: 3 -Methyl cyclopropyl-3-oxopropanoate PPh 3 : Triphenylphosphine Ph 2 POEt: Ethoxydiphenylphosphine TMP: 2,2,6,6-tetramethylpiperidine DIO: tert-Butyl (3R, 5S) -6-oxo -3,5-O-isopropylidene-3,5-dihydroxyhexanoate
TBAF: tetrabutylammonium fluoride TsCl: p-toluenesulfonyl chloride
Kryptofix (registered trademark) 2.2.2 (product name: manufactured by Merck): 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane
BuONO: t-butyl nitrite DIBAL: diisobutylammonium hydride TBAB: tetrabutylammonium bromide TEMPO: [(2,2,6,6-tetramethylpiperidinyl) oxy] radical (Bpin) 2 : bispinacolato diboron DMSO: dimethyl sulfoxide MsCl: methanesulfonyl chloride
 本明細書において、測定機器は以下の機器を用いた。
NMR
分光計:ADVANCE DRX (BRUKER BIOSPIN)
マグネット:UltraShield 400MHz/54mm
標準物質:TMS(テトラメチルシラン)
MS
測定装置:Micromass AQ(Waters)
イオン化:ESI
In this specification, the following devices were used as measuring devices.
NMR
Spectrometer: ADVANCE DRX (BRUKER BIOSPIN)
Magnet: UltraShield 400MHz / 54mm
Standard substance: TMS (tetramethylsilane)
MS
Measuring device: Micromass AQ (Waters)
Ionization: ESI
 (製造例1)標識前駆体化合物の製造
 下記のスキームに従い、標識前駆体化合物であるPTVS1を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000042
Production Example 1 Production of Label Precursor Compound According to the following scheme, PTVS1, which is a label precursor compound, was produced. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000042
 化合物(i-2)の合成
 窒素気流下、化合物(i-1)(2.57g,6.27mmol)の塩化メチレン(10mL)溶液を氷水浴にて冷却し、TFA/チオアニソール=10/1(10mL)を滴下した。室温まで徐々に昇温しながら2日間撹拌し、TFA/チオアニソール=10/1(10mL)を追加して一晩撹拌した後、反応液を濃縮した。氷水浴にて冷却した飽和重曹水(200mL)に濃縮物を滴下し、酢酸エチル(140mL,50mL)にて2回抽出した。得られた有機層を合わせ、飽和食塩水(100mL)にて洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:35g,展開溶媒:n-ヘキサン/酢酸エチル=4/1→0/1)にて精製した。薄茶色固体として目的とする化合物(i-2)を収率63%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.02-1.09 (m, 2H), 1.34-1.39 (m, 2H), 2.16-2.22 (m, 1H), 3.67 (s, 3H), 5.64 (br. s., 1H), 6.92-6.96 (m, 2H), 7.24-7.28 (m, 2H), 7.36-7.40 (m, 1H), 7.59-7.61 (m, 1H), 7.65-7.69 (m, 1H), 7.97-8.01 (m, 1H). 
Synthesis of Compound (i-2) Under a nitrogen stream, a solution of Compound (i-1) (2.57 g, 6.27 mmol) in methylene chloride (10 mL) was cooled in an ice-water bath, and TFA / thioanisole = 10/1 (10 mL). ) Was added dropwise. The mixture was stirred for 2 days while gradually warming to room temperature, TFA / thioanisole = 10/1 (10 mL) was added and stirred overnight, and then the reaction solution was concentrated. The concentrate was added dropwise to saturated aqueous sodium bicarbonate (200 mL) cooled in an ice-water bath, and extracted twice with ethyl acetate (140 mL, 50 mL). The obtained organic layers were combined, washed with saturated brine (100 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 35 g, developing solvent: n-hexane / ethyl acetate = 4/1 → 0/1). The target compound (i-2) was obtained as a light brown solid in a yield of 63%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.02-1.09 (m, 2H), 1.34-1.39 (m, 2H), 2.16-2.22 (m, 1H), 3.67 (s, 3H), 5.64 ( br. s., 1H), 6.92-6.96 (m, 2H), 7.24-7.28 (m, 2H), 7.36-7.40 (m, 1H), 7.59-7.61 (m, 1H), 7.65-7.69 (m, 1H), 7.97-8.01 (m, 1H).
 化合物(i-3)の合成
 窒素気流下、2-ブロモエタノール(3.00g,24.0mmol)のDMF(15mL)溶液に、イミダゾール(4.08g,60.0mmol)、及びTBSCl(4.34g,28.8mmol)を加えて室温にて3.5時間撹拌した。反応液に水(50mL)を加え、酢酸エチル(50mL)にて抽出した。有機層を0.5M塩酸(30mL)、水(30mL)、飽和重曹水(50mL)、水(30mL)、飽和食塩水(30mL)にて順次洗浄し、それぞれの水層を酢酸エチル(50mL)にて抽出した。有機層を合わせ、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。無色油状物として(2-ブロモエトキシ)(t-ブチル)ジメチルシラン(5.30g,22.1mmol)を収率92%にて得た。
Synthesis of Compound (i-3) Under a nitrogen stream, 2-bromoethanol (3.00 g, 24.0 mmol) in DMF (15 mL) solution was charged with imidazole (4.08 g, 60.0 mmol) and TBSCl (4.34 g, 28.8 mmol). In addition, the mixture was stirred at room temperature for 3.5 hours. Water (50 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed successively with 0.5M hydrochloric acid (30mL), water (30mL), saturated aqueous sodium bicarbonate (50mL), water (30mL) and saturated brine (30mL), and each aqueous layer was washed with ethyl acetate (50mL). Extracted in The organic layers were combined, dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. (2-Bromoethoxy) (t-butyl) dimethylsilane (5.30 g, 22.1 mmol) was obtained as a colorless oil in a yield of 92%.
 窒素気流下、化合物(i-2)(1.27g,3.97mmol)のDMF(13mL)溶液に、炭酸カリウム(1.10g,7.96mmol)を加え、(2-ブロモエトキシ)(t-ブチル)ジメチルシラン(1.73g,7.23mmol)を滴下した。室温にて13.5時間撹拌した後、55℃の水浴にて3時間加熱撹拌した。反応液に酢酸エチル(50mL)を加え、水(50mL)、飽和食塩水(30mL)にて順次洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:30g,展開溶媒:トルエン/酢酸エチル=40/1)にて精製した。淡黄色固体として目的とする化合物(i-3)(1.65g,3.45mmol)を収率86%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.15 (s, 6H), 0.95 (s, 9H), 1.03-1.10 (m, 2H), 1.35-1.56 (m, 2H), 2.17-2.21 (m, 1H), 3.65 (s, 3H), 4.04 (t, J=5.04 Hz, 2H), 4.13 (t, J=5.04 Hz, 2H), 7.02-7.04 (m, 2H), 7.29-7.31 (m, 2H), 7.36-7.39 (m, 1H), 7.58-7.60 (m, 1H), 7.64-7.68 (m, 1H), 7.97-7.99 (m, 1H). 
Under a nitrogen stream, potassium carbonate (1.10 g, 7.96 mmol) was added to a DMF (13 mL) solution of compound (i-2) (1.27 g, 3.97 mmol), and (2-bromoethoxy) (t-butyl) dimethylsilane was added. (1.73 g, 7.23 mmol) was added dropwise. After stirring at room temperature for 13.5 hours, the mixture was heated and stirred in a 55 ° C. water bath for 3 hours. Ethyl acetate (50 mL) was added to the reaction solution, washed successively with water (50 mL) and saturated brine (30 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 30 g, developing solvent: toluene / ethyl acetate = 40/1). The target compound (i-3) (1.65 g, 3.45 mmol) was obtained as a pale yellow solid in a yield of 86%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.15 (s, 6H), 0.95 (s, 9H), 1.03-1.10 (m, 2H), 1.35-1.56 (m, 2H), 2.17-2.21 ( m, 1H), 3.65 (s, 3H), 4.04 (t, J = 5.04 Hz, 2H), 4.13 (t, J = 5.04 Hz, 2H), 7.02-7.04 (m, 2H), 7.29-7.31 (m , 2H), 7.36-7.39 (m, 1H), 7.58-7.60 (m, 1H), 7.64-7.68 (m, 1H), 7.97-7.99 (m, 1H).
 化合物(i-4)の合成
 窒素気流下、化合物(i-3)(1.50g,3.13mmol)のTHF(30mL)溶液を氷水浴にて冷却した。水素化リチウムアンモニウム(360mg、9.48mmol)を3回に分けて加え、氷水浴にて20分間、室温にて1.5時間撹拌した。反応液を氷水浴にて冷却し、水(360μL)、15%水酸化ナトリウム水溶液(360μL)、水(1mL)を順次滴下した。酢酸エチル(20mL)を加えてセライト濾過し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。黄色油状物として目的とする化合物(i-4)(1.45g,3.22mmol)を粗体収率102%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.15 (s, 6H), 0.95 (s, 9H), 1.09-1.11 (m, 2H), 1.37-1.39 (m, 2H), 2.05 (s, 2H), 2.55-2.65 (m, 1H), 4.05 (t, J=5.04 Hz, 2H), 4.14 (t, J=5.04 Hz, 2H), 4.79 (br. s., 1H), 7.06-7.09 (m, 2H), 7.23-7.25 (m, 2H), 7.32-7.34 (m, 1H), 7.38-7.42 (m, 1H), 7.58-7.63 (m, 1H), 7.96-7.98 (m, 1H). MS(ES+) 450.1
Synthesis of Compound (i-4) A THF (30 mL) solution of Compound (i-3) (1.50 g, 3.13 mmol) was cooled in an ice-water bath under a nitrogen stream. Lithium ammonium hydride (360 mg, 9.48 mmol) was added in three portions, and the mixture was stirred for 20 minutes in an ice-water bath and 1.5 hours at room temperature. The reaction solution was cooled in an ice-water bath, and water (360 μL), 15% aqueous sodium hydroxide solution (360 μL), and water (1 mL) were successively added dropwise. Ethyl acetate (20 mL) was added, and the mixture was filtered through Celite, dried over sodium sulfate, filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The target compound (i-4) (1.45 g, 3.22 mmol) was obtained as a yellow oil in a crude yield of 102%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.15 (s, 6H), 0.95 (s, 9H), 1.09-1.11 (m, 2H), 1.37-1.39 (m, 2H), 2.05 (s, 2H), 2.55-2.65 (m, 1H), 4.05 (t, J = 5.04 Hz, 2H), 4.14 (t, J = 5.04 Hz, 2H), 4.79 (br.s., 1H), 7.06-7.09 ( m, 2H), 7.23-7.25 (m, 2H), 7.32-7.34 (m, 1H), 7.38-7.42 (m, 1H), 7.58-7.63 (m, 1H), 7.96-7.98 (m, 1H). MS (ES + ) 450.1
 化合物(i-5)の合成
 窒素気流下、化合物(i-4)(1.30g,2.89mmol)の塩化メチレン(15mL)懸濁液に四臭化炭素(1.83g,5.82mmol)を加えた。氷水浴にて冷却し、PPh3(1.52g,5.79mmol)の塩化メチレン(1.5mL)溶液を滴下した。氷水浴にて30分間撹拌した後、飽和重曹水(40mL)を滴下し、クロロホルム(35mL,15mL)にて2回抽出した。有機層を硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:50g,展開溶媒:クロロホルム)にて精製した。黄色油状物として目的とする化合物(i-5)(1.28g,2.49mmol)を収率86%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.16 (s, 6H), 0.96 (s, 9H), 1.13-1.16 (m, 2H), 1.38-1.40 (m, 2H), 2.50-2.54 (m, 1H), 4.06 (t, J=5.04 Hz, 2H), 4.17 (t, J=5.04 Hz, 2H), 4.65 (s, 2H), 7.09-7.11 (m, 2H), 7.30-7.36 (m, 4H), 7.59-7.64 (m, 1H), 7.95-7.97 (m, 1H). MS(ES+) 512.3
Synthesis of Compound (i-5) Carbon tetrabromide (1.83 g, 5.82 mmol) was added to a suspension of compound (i-4) (1.30 g, 2.89 mmol) in methylene chloride (15 mL) under a nitrogen stream. The solution was cooled in an ice-water bath, and a solution of PPh 3 (1.52 g, 5.79 mmol) in methylene chloride (1.5 mL) was added dropwise. After stirring in an ice water bath for 30 minutes, saturated aqueous sodium hydrogen carbonate (40 mL) was added dropwise, and the mixture was extracted twice with chloroform (35 mL, 15 mL). The organic layer was dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 50 g, developing solvent: chloroform). The target compound (i-5) (1.28 g, 2.49 mmol) was obtained as a yellow oil in a yield of 86%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.16 (s, 6H), 0.96 (s, 9H), 1.13-1.16 (m, 2H), 1.38-1.40 (m, 2H), 2.50-2.54 ( m, 1H), 4.06 (t, J = 5.04 Hz, 2H), 4.17 (t, J = 5.04 Hz, 2H), 4.65 (s, 2H), 7.09-7.11 (m, 2H), 7.30-7.36 (m , 4H), 7.59-7.64 (m, 1H), 7.95-7.97 (m, 1H). MS (ES + ) 512.3
 化合物(i-6)の合成
 窒素気流下、化合物(i-5)(1.28g,2.49mmol)のトルエン(28mL)溶液に、PhPOEt(0.70g,3.04mmol)を加え、撹拌下3時間還流した。室温まで冷却後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:20g,展開溶媒:クロロホルム/酢酸エチル=50/1→1/3)にて精製した。黄色アモルファス状固体として目的とする化合物(i-6)(1.55g,2.44mmol)を粗体収率97%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.18 (s, 6H), 0.93-0.98 (m, 2H), 0.97 (s, 9H), 1.23-1.29 (m, 2H), 2.50-2.54 (m, 1H), 4.05-4.16 (m, 6H), 6.69-6.87 (m, 4H), 7.13-7.58 (m, 12H), 7.81-7.86 (m, 1H), 7.93-7.95 (m, 1H). MS(ES+) 634.2
Synthesis of Compound (i-6) Under a nitrogen stream, Ph 2 POEt (0.70 g, 3.04 mmol) was added to a toluene (28 mL) solution of Compound (i-5) (1.28 g, 2.49 mmol) and stirred for 3 hours. Refluxed. After cooling to room temperature, the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 20 g, developing solvent: chloroform / ethyl acetate = 50/1 → 1/3). The target compound (i-6) (1.55 g, 2.44 mmol) was obtained as a yellow amorphous solid in a crude yield of 97%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.18 (s, 6H), 0.93-0.98 (m, 2H), 0.97 (s, 9H), 1.23-1.29 (m, 2H), 2.50-2.54 ( m, 1H), 4.05-4.16 (m, 6H), 6.69-6.87 (m, 4H), 7.13-7.58 (m, 12H), 7.81-7.86 (m, 1H), 7.93-7.95 (m, 1H). MS (ES + ) 634.2
 化合物(i-7)の合成
 窒素気流下、TMP(0.45g,3.18mmol)のTHF(10mL)溶液をドライアイス-アセトン浴にて冷却し、1.6M n-BuLiのn-ヘキサン溶液(3.50mL,5.62mmol)を滴下し、-20℃にて10分間撹拌した。-70℃以下まで冷却し、化合物(i-6)(1.55g,2.44mmol)のTHF(20mL)溶液を滴下後、同温にて30分間撹拌した。同温にてDIO(1.00g,3.90mmol)のTHF(10mL)溶液を滴下し、室温まで徐々に昇温しながら一晩撹拌後、飽和重曹水(20mL)を滴下し、水(40mL)を加え、酢酸エチル(60mL,30mL)にて2回抽出した。得られた有機層を合わせて飽和食塩水(60mL)にて洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:40g,展開溶媒:トルエン/酢酸エチル=50/1→1/1)にて精製した。黄褐色油状物として目的とする化合物(i-7)(569mg,844μmol)を収率34%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.16 (s, 6H), 0.96 (s, 9H), 1.00-1.13 (m, 2H), 1.23-1.35 (m, 2H), 1.40 (s, 3H), 1.46 (s, 9H), 1.57 (s, 3H), 2.29-2.47 (m, 5H), 4.02-4.07 (m, 2H), 4.10-4.16 (m, 2H), 4.20-4.30 (m, 1H), 4.35-4.45 (m, 1H), 5.68 (dd, J=16.37, 6.04 Hz, 1H), 6.56 (dd, J=16.37, 1.13 Hz, 1H), 6.99-7.03 (m, 2H), 7.10-7.31 (m, 3H), 7.42-7.44 (m, 1H), 7.55-7.60 (m, 1H), 7.93-7.95 (m, 1H). 
Synthesis of Compound (i-7) Under a nitrogen stream, a solution of TMP (0.45 g, 3.18 mmol) in THF (10 mL) was cooled in a dry ice-acetone bath, and 1.6 M n-BuLi in n-hexane (3.50). mL, 5.62 mmol) was added dropwise, and the mixture was stirred at −20 ° C. for 10 minutes. After cooling to −70 ° C. or lower, a solution of compound (i-6) (1.55 g, 2.44 mmol) in THF (20 mL) was added dropwise, followed by stirring at the same temperature for 30 minutes. At the same temperature, a solution of DIO (1.00 g, 3.90 mmol) in THF (10 mL) was added dropwise. After stirring overnight while gradually warming to room temperature, saturated aqueous sodium bicarbonate (20 mL) was added dropwise, and water (40 mL) was added. In addition, the mixture was extracted twice with ethyl acetate (60 mL, 30 mL). The obtained organic layers were combined, washed with saturated brine (60 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 40 g, developing solvent: toluene / ethyl acetate = 50/1 → 1/1). The target compound (i-7) (569 mg, 844 μmol) was obtained as a tan oil in a yield of 34%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.16 (s, 6H), 0.96 (s, 9H), 1.00-1.13 (m, 2H), 1.23-1.35 (m, 2H), 1.40 (s, 3H), 1.46 (s, 9H), 1.57 (s, 3H), 2.29-2.47 (m, 5H), 4.02-4.07 (m, 2H), 4.10-4.16 (m, 2H), 4.20-4.30 (m, 1H), 4.35-4.45 (m, 1H), 5.68 (dd, J = 16.37, 6.04 Hz, 1H), 6.56 (dd, J = 16.37, 1.13 Hz, 1H), 6.99-7.03 (m, 2H), 7.10 -7.31 (m, 3H), 7.42-7.44 (m, 1H), 7.55-7.60 (m, 1H), 7.93-7.95 (m, 1H).
 化合物(i-8)の合成
 窒素気流下、化合物(i-7)(540mg,801μmol)のTHF(6mL)溶液を氷水浴にて冷却し、1M TBAFのTHF溶液(1.60mL,1.60mmol)を滴下し、室温にて40分間撹拌した。反応液に10%塩化アンモニウム水溶液(6mL)を加え、酢酸エチル(36mL,10mL)にて2回抽出した。得られた有機層を合わせ、飽和食塩水(10mL)で洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:10g,展開溶媒:トルエン/酢酸エチル=4/1)にて精製した。無色油状物として目的とする化合物(i-8)(294mg,525μmol)を収率65%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.96-1.06 (m, 2H), 1.25-1.32 (m, 1H), 1.37 (s, 3H), 1.47 (s, 9H), 1.57 (s, 3H), 2.23-2.31 (m, 2H), 2.40-2.48 (m, 3H), 4.02-4.14 (m, 2H), 4.16-4.27 (m, 3H), 4.35-4.45 (m, 1H), 5.62 (dd, J=16.37, 6.04 Hz, 1H), 6.56 (dd, J=16.37, 1.13 Hz, 1H), 6.99-7.05 (m, 2H), 7.10-7.22 (m, 2H), 7.28-7.32 (m, 1H), 7.26-7.32 (m, 1H), 7.42-7.46 (m, 1H), 7.56-7.62 (m, 1H), 7.93-7.95 (m, 1H). MS(ES+) 559.69
Synthesis of Compound (i-8) Under a nitrogen stream, a solution of Compound (i-7) (540 mg, 801 μmol) in THF (6 mL) was cooled in an ice-water bath, and 1M TBAF in THF (1.60 mL, 1.60 mmol) was added. The solution was added dropwise and stirred at room temperature for 40 minutes. To the reaction solution was added 10% aqueous ammonium chloride solution (6 mL), and the mixture was extracted twice with ethyl acetate (36 mL, 10 mL). The obtained organic layers were combined, washed with saturated brine (10 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 10 g, developing solvent: toluene / ethyl acetate = 4/1). The target compound (i-8) (294 mg, 525 μmol) was obtained as a colorless oil in a yield of 65%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.96-1.06 (m, 2H), 1.25-1.32 (m, 1H), 1.37 (s, 3H), 1.47 (s, 9H), 1.57 (s, 3H), 2.23-2.31 (m, 2H), 2.40-2.48 (m, 3H), 4.02-4.14 (m, 2H), 4.16-4.27 (m, 3H), 4.35-4.45 (m, 1H), 5.62 ( dd, J = 16.37, 6.04 Hz, 1H), 6.56 (dd, J = 16.37, 1.13 Hz, 1H), 6.99-7.05 (m, 2H), 7.10-7.22 (m, 2H), 7.28-7.32 (m, 1H), 7.26-7.32 (m, 1H), 7.42-7.46 (m, 1H), 7.56-7.62 (m, 1H), 7.93-7.95 (m, 1H). MS (ES + ) 559.69
 化合物(i-9)の合成
 窒素気流下、化合物(i-8)(246mg,439μg)の塩化メチレン(4mL)溶液に、N-メチルイミダゾール(70μL,886μmol)、及びトリエチルアミン(122μL,880μmol)を加え、氷水浴にて冷却し、p-トルエンスルホニルクロリド(169mg,886μmol)のアセトニトリル(1.5mL)溶液を滴下した。室温まで徐々に昇温しながら2時間撹拌した後、氷水浴にて冷却し、飽和重曹水(10mL)、及びクロロホルム(12mL)を加えて分液した。有機層を水(10mL,10mL)にて2回洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:10g,展開溶媒:トルエン/酢酸エチル=4/1)にて精製した。淡黄色アモルファス状固体として目的とする化合物(i-9)(285mg,399μmol)を収率90%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.00-1.11 (m, 2H), 1.25-1.32 (m, 2H), 1.37 (s, 3H), 1.45-1.46 (m, 1H), 1.46 (s, 9H), 1.56 (s, 3H), 2.22-2.32 (m, 2H), 2.34-2.43 (m, 2H), 2.47 (s, 3H), 4.26-4.45 (m, 6H), 5.66 (dd, J=16.24, 6.17 Hz, 1H), 6.54 (dd, J=16.37, 1.26 Hz, 1H), 6.88-6.93 (m, 2H), 7.10-7.40 (m, 6H), 7.56-7.62 (m, 1H), 7.86-7.90 (m, 2H), 7.93-7.95 (m, 1H). MS(ES+) 714.4
Synthesis of Compound (i-9) Under a nitrogen stream, N-methylimidazole (70 μL, 886 μmol) and triethylamine (122 μL, 880 μmol) were added to a solution of compound (i-8) (246 mg, 439 μg) in methylene chloride (4 mL). The mixture was cooled in an ice-water bath, and a solution of p-toluenesulfonyl chloride (169 mg, 886 μmol) in acetonitrile (1.5 mL) was added dropwise. The mixture was stirred for 2 hours while gradually warming to room temperature, cooled in an ice-water bath, saturated aqueous sodium bicarbonate (10 mL), and chloroform (12 mL) were added to separate the layers. The organic layer was washed twice with water (10 mL, 10 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 10 g, developing solvent: toluene / ethyl acetate = 4/1). The target compound (i-9) (285 mg, 399 μmol) was obtained as a pale yellow amorphous solid in a yield of 90%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.00-1.11 (m, 2H), 1.25-1.32 (m, 2H), 1.37 (s, 3H), 1.45-1.46 (m, 1H), 1.46 ( s, 9H), 1.56 (s, 3H), 2.22-2.32 (m, 2H), 2.34-2.43 (m, 2H), 2.47 (s, 3H), 4.26-4.45 (m, 6H), 5.66 (dd, J = 16.24, 6.17 Hz, 1H), 6.54 (dd, J = 16.37, 1.26 Hz, 1H), 6.88-6.93 (m, 2H), 7.10-7.40 (m, 6H), 7.56-7.62 (m, 1H) , 7.86-7.90 (m, 2H), 7.93-7.95 (m, 1H). MS (ES + ) 714.4
 PTVS1の合成
 窒素気流下、化合物(i-9)(201mg,281μmol)の塩化メチレン(2mL)溶液を氷水浴にて冷却し、TFA(2mL,26.9mmol)を滴下した。室温まで徐々に昇温しながら20時間撹拌した。反応液を氷水浴にて冷却し、飽和重曹水(20mL)にて2回洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:10g,展開溶媒:トルエン/酢酸エチル=1/1)にて精製した。赤みを帯びた白色アモルファス状固体として目的とする化合物(PTVS1)(100mg,166μmol)を収率59%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.02-1.09 (m, 2H), 1.32-1.35 (m, 2H), 1.61-1.78 (m, 2H), 2.05 (s, 3H), 2.37-2.75 (m, 5H), 4.29-4.32 (m, 2H), 4.41-4.43 (m, 2H), 5.12-5.20 (m, 1H), 5.61 (dd, J=16.24, 6.17 Hz, 1H), 6.71 (dd, J=16.24, 1.38 Hz, 1H), 6.93-6.99 (m, 1H), 7.13-7.41 (m, 8H), 7.58-7.62 (m, 1H), 7.84-7.88 (m, 1H), 7.95-7.97 (m, 1H). MS(ES+) 600.2
Under a synthetic nitrogen stream of PTVS1, a solution of compound (i-9) (201 mg, 281 μmol) in methylene chloride (2 mL) was cooled in an ice-water bath, and TFA (2 mL, 26.9 mmol) was added dropwise. The mixture was stirred for 20 hours while gradually warming to room temperature. The reaction solution was cooled in an ice-water bath, washed twice with saturated aqueous sodium hydrogen carbonate (20 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 10 g, developing solvent: toluene / ethyl acetate = 1/1). The target compound (PTVS1) (100 mg, 166 μmol) was obtained in a yield of 59% as a reddish white amorphous solid.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.02-1.09 (m, 2H), 1.32-1.35 (m, 2H), 1.61-1.78 (m, 2H), 2.05 (s, 3H), 2.37- 2.75 (m, 5H), 4.29-4.32 (m, 2H), 4.41-4.43 (m, 2H), 5.12-5.20 (m, 1H), 5.61 (dd, J = 16.24, 6.17 Hz, 1H), 6.71 ( dd, J = 16.24, 1.38 Hz, 1H), 6.93-6.99 (m, 1H), 7.13-7.41 (m, 8H), 7.58-7.62 (m, 1H), 7.84-7.88 (m, 1H), 7.95- 7.97 (m, 1H). MS (ES + ) 600.2
 (製造例2)放射性標識化合物の製造
 下記のスキームに従い、製造例1で得られたPTVS1を標識前駆体化合物として放射性標識を行い、放射性標識化合物である[18F]PTVS2を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000043
According to the manufacturer following scheme (Production Example 2) radiolabeled compound performs radiolabeled PTVS1 obtained in Production Example 1 as a labeling precursor compound was prepared is a radiolabeled compound [18 F] PTVS2. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000043
 Heガス気流下、[18F]KFにKryptofix(登録商標)2.2.2(10.0mg)のアセトニトリル(0.5mL)溶液を加え、減圧加熱して溶媒を留去した。PTVS1(0.5mg)のアセトニトリル(0.05mL)溶液を加え、80~100℃で10分間フッ素化反応を行った。室温に冷却後、EtOH(0.08mL)と1N NaOH(0.06mL)を加え室温で15分間反応させた。反応終了後、HPLCに導入して分離精製した。目的とする放射性標識化合物([18F]PTVS2)を放射化学的収率79%、放射化学的純度>99%にて得た。 Under a He gas stream, a solution of Kryptofix (registered trademark) 2.2.2 (10.0 mg) in acetonitrile (0.5 mL) was added to [ 18 F] KF, and the solvent was distilled off by heating under reduced pressure. A solution of PTVS1 (0.5 mg) in acetonitrile (0.05 mL) was added, and a fluorination reaction was performed at 80 to 100 ° C. for 10 minutes. After cooling to room temperature, EtOH (0.08 mL) and 1N NaOH (0.06 mL) were added and reacted at room temperature for 15 minutes. After completion of the reaction, it was introduced into HPLC and separated and purified. The desired radiolabeled compound ([ 18 F] PTVS2) was obtained with a radiochemical yield of 79% and a radiochemical purity of> 99%.
 本発明の標識前駆体化合物であるPTVS1を用いて放射性標識を行うことにより、高い収率で高純度の放射性標識化合物である[18F]PTVS2を製造できた。 By performing the radiolabeling using PTVS1 a labeled precursor compound of the present invention could produce [18 F] PTVS2 a radiolabeled compound of high purity in high yield.
 (製造例3)放射性標識化合物の製造
 下記のスキームに従い、製造例1で得られた化合物(i-9)を標識前駆体化合物として放射性標識を行い、放射性標識化合物である[18F]PTVS2を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000044
(Production Example 3) Production of Radiolabeled Compound According to the following scheme, the compound (i-9) obtained in Production Example 1 was subjected to radiolabeling as a labeled precursor compound, and [ 18 F] PTVS2 as a radiolabeled compound was obtained. Manufactured. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000044
 Heガス気流下、[18F]KFにKryptofix(登録商標)2.2.2(10.0mg)のアセトニトリル(0.5mL)溶液を加え、減圧加熱して溶媒を留去した。化合物(i-9)(0.5mg)のアセトニトリル(0.05mL)溶液を加え、80~100℃で10分間フッ素化反応を行った。室温に冷却後、TFA(0.05mL)溶液を加え、室温で15分間反応させた。反応終了後、HPLCに導入して分離精製した。目的とする放射性標識化合物([18F]PTVS2)を放射化学的収率70%、放射化学的純度>99%にて得た。 Under a He gas stream, a solution of Kryptofix (registered trademark) 2.2.2 (10.0 mg) in acetonitrile (0.5 mL) was added to [ 18 F] KF, and the solvent was distilled off by heating under reduced pressure. A solution of compound (i-9) (0.5 mg) in acetonitrile (0.05 mL) was added, and a fluorination reaction was performed at 80 to 100 ° C. for 10 minutes. After cooling to room temperature, a TFA (0.05 mL) solution was added and reacted at room temperature for 15 minutes. After completion of the reaction, it was introduced into HPLC and separated and purified. The desired radiolabeled compound ([ 18 F] PTVS2) was obtained with a radiochemical yield of 70% and a radiochemical purity> 99%.
 本発明の標識前駆体化合物である化合物(i-9)を用いて放射性標識を行うことにより、高い収率で高純度の放射性標識化合物である[18F]PTVS2を製造できた。 By performing the radiolabeling using labeling precursor compound, compound of the present invention (i-9), it was able to produce [18 F] PTVS2 a radiolabeled compound of high purity in high yield.
 (製造例4)PTVS3及びPTVS4の製造
 下記のスキームに従い、標識前駆体化合物であるPTVS3とPTVS4とを製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000045
(Production Example 4) Production of PTVS3 and PTVS4 According to the following scheme, labeled precursor compounds PTVS3 and PTVS4 were produced. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000045
 化合物(ii-2)の合成
 窒素気流中、KM(20.0g,140mmol)のトルエン(280mL)溶液に化合物(ii-1)(16.6g,140mmol)を加えた。反応容器を水浴(15℃)に浸し、塩化スズ(IV)(73.3g,281mmol)を滴下した。室温にて30分間撹拌後、還流温度にて3時間撹拌した。室温まで冷却し、飽和炭酸ナトリウム水溶液(700g)を滴下して析出した固形物を粉砕した。反応液をセライト濾過して得られた濾液を分液し、水層を酢酸エチル(300mL)にて抽出した。合わせた有機層を20%食塩水(300mL)にて洗浄し、硫酸ナトリウムにて乾燥して溶媒を留去した。紫色固体として目的とする化合物(ii-2)(28.5g)を収率83.9%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.93-0.96 (m, 2H), 1.21-1.29 (m, 2H), 2.59-2.66 (m, 2H), 3.98 (s, 3H), 6.61 (br. s., 2H), 7.34-7.40 (m, 1H), 7.61-7.65 (m, 1H). MS(ES+) 243.2 
Synthesis of Compound (ii-2) Compound (ii-1) (16.6 g, 140 mmol) was added to a toluene (280 mL) solution of KM (20.0 g, 140 mmol) in a nitrogen stream. The reaction vessel was immersed in a water bath (15 ° C.), and tin (IV) chloride (73.3 g, 281 mmol) was added dropwise. After stirring at room temperature for 30 minutes, the mixture was stirred at reflux temperature for 3 hours. The mixture was cooled to room temperature, and a saturated sodium carbonate aqueous solution (700 g) was added dropwise to grind the precipitated solid. The filtrate obtained by filtering the reaction solution through Celite was separated, and the aqueous layer was extracted with ethyl acetate (300 mL). The combined organic layers were washed with 20% brine (300 mL), dried over sodium sulfate, and the solvent was distilled off. The target compound (ii-2) (28.5 g) was obtained as a purple solid in a yield of 83.9%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.93-0.96 (m, 2H), 1.21-1.29 (m, 2H), 2.59-2.66 (m, 2H), 3.98 (s, 3H), 6.61 ( br. s., 2H), 7.34-7.40 (m, 1H), 7.61-7.65 (m, 1H). MS (ES + ) 243.2
 化合物(ii-3)の合成
 窒素気流中、化合物(ii-2)(28.5g,117mmol)にアセトニトリル(350mL)及び臭化銅(I)(29.5g,206mmol)を加えた。反応容器を水浴(15℃)に浸し、亜硝酸t-ブチル(18.2g,176mmol)を滴下した。40℃にて2.5時間撹拌後、室温にて一晩撹拌した。トルエン(200mL)及び5%炭酸水素ナトリウム水溶液(200mL)を加えてセライト濾過し、得られた濾液を分液した。水層をトルエン(200mL)にて抽出し、得られた有機層を合わせ、20%食塩水(200mL)にて洗浄し、硫酸ナトリウムにて乾燥して溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:300g,展開溶媒:トルエン/酢酸エチル=20/1)にて精製した。橙色油状物として目的とする化合物(ii-3)(20.9g)を収率58.0%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.02-1.19 (m, 2H), 1.27-1.36 (m, 2H), 2.03-2.10 (m, 1H), 4.07 (s, 3H), 7.54-7.58 (m, 1H), 7.70-7.74 (m, 1H), 7.91-7.96 (m, 1H), 8.14-8.16 (m, 1H). MS(ES+) 306.1
Synthesis of Compound (ii-3) In a nitrogen stream, acetonitrile (350 mL) and copper (I) bromide (29.5 g, 206 mmol) were added to Compound (ii-2) (28.5 g, 117 mmol). The reaction vessel was immersed in a water bath (15 ° C.), and t-butyl nitrite (18.2 g, 176 mmol) was added dropwise. After stirring at 40 ° C. for 2.5 hours, the mixture was stirred overnight at room temperature. Toluene (200 mL) and 5% aqueous sodium hydrogen carbonate solution (200 mL) were added and the mixture was filtered through Celite, and the resulting filtrate was separated. The aqueous layer was extracted with toluene (200 mL), and the obtained organic layers were combined, washed with 20% brine (200 mL), dried over sodium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (silica gel: 300 g, developing solvent: toluene / ethyl acetate = 20/1). The target compound (ii-3) (20.9 g) was obtained as an orange oil in a yield of 58.0%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.02-1.19 (m, 2H), 1.27-1.36 (m, 2H), 2.03-2.10 (m, 1H), 4.07 (s, 3H), 7.54- 7.58 (m, 1H), 7.70-7.74 (m, 1H), 7.91-7.96 (m, 1H), 8.14-8.16 (m, 1H). MS (ES + ) 306.1
 化合物(ii-4)の合成
 窒素気流中、化合物(ii-3)(21.9g,71.8mmol)のトルエン(165mL)溶液を塩氷浴にて冷却した。1.01M DIBALのトルエン溶液(156mL,158mmol)を滴下し、室温にて1時間撹拌した。塩氷浴にて再度冷却し、エタノール(5mL)及び5%ロッシェル塩水溶液(10mL)を続けて滴下した。室温にて15%ロッシェル塩水溶液(340mL)及び酢酸エチル(100mL)を加えて分液し、有機層を飽和食塩水(200mL)にて洗浄した。水層をそれぞれ酢酸エチル(100mL)にて抽出し、有機層を合わせて硫酸ナトリウムにて乾燥し、溶媒を留去した。淡黄色固体として化合物(ii-4)(19.4g)を収率97.5%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.02-1.15 (m, 2H), 1.24-1.31 (m, 2H), 2.23 (br. s., 1H), 2.51-2.571 (m, 1H), 5.24 (s, 2H), 7.49-7.53 (m, 1H), 7.63-7.67 (m, 1H), 7.88-7.94 (m, 1H), 8.11-8.13 (m, 1H). MS(ES+) 278.1
Synthesis of Compound (ii-4) In a nitrogen stream, a solution of compound (ii-3) (21.9 g, 71.8 mmol) in toluene (165 mL) was cooled in a salt ice bath. A toluene solution (156 mL, 158 mmol) of 1.01 M DIBAL was added dropwise and stirred at room temperature for 1 hour. The mixture was cooled again in a salt ice bath, and ethanol (5 mL) and 5% Rochelle salt aqueous solution (10 mL) were successively added dropwise. A 15% aqueous Rochelle salt solution (340 mL) and ethyl acetate (100 mL) were added and separated at room temperature, and the organic layer was washed with saturated brine (200 mL). The aqueous layers were extracted with ethyl acetate (100 mL), the organic layers were combined and dried over sodium sulfate, and the solvent was distilled off. Compound (ii-4) (19.4 g) was obtained as a pale yellow solid in a yield of 97.5%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.02-1.15 (m, 2H), 1.24-1.31 (m, 2H), 2.23 (br.s., 1H), 2.51-2.571 (m, 1H) , 5.24 (s, 2H), 7.49-7.53 (m, 1H), 7.63-7.67 (m, 1H), 7.88-7.94 (m, 1H), 8.11-8.13 (m, 1H). MS (ES + ) 278.1
 化合物(ii-5)の合成
 窒素気流中、化合物(ii-4)(7.01g,25.2mmol)に塩化メチレン(50mL)、臭化カリウム(0.60g,5.04mmol)、5%炭酸水素ナトリウム水溶液(30mL)、TBAB(170mg,0.527mmol)、及びTEMPO(473mg,3.02mmol)を加えた。反応液を氷冷し、10%次亜塩素酸ナトリウム水溶液を滴下して室温撹拌する操作を、原料が消失するまで繰り返した。反応液を分液し、水層をクロロホルム(40mL)にて抽出した。有機層を合わせて硫酸ナトリウムにて乾燥し、溶媒を留去し、得られた固体をn-ヘプタンにて洗浄した。淡黄色固体として目的とする化合物(ii-5)(57.9g)を収率83.3%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.01-1.14 (m, 2H), 1.30-1.37 (m, 2H), 3.00-3.07 (m, 1H), 7.57-7.62 (m, 1H), 7.77-7.81 (m, 1H), 7.91-7.93 (m, 1H), 8.28-8.31 (m, 1H), 10.77 (s, 1H). MS(ES+) 276.1
Synthesis of Compound (ii-5) In a nitrogen stream, compound (ii-4) (7.01 g, 25.2 mmol) was added to methylene chloride (50 mL), potassium bromide (0.60 g, 5.04 mmol), 5% aqueous sodium bicarbonate solution ( 30 mL), TBAB (170 mg, 0.527 mmol), and TEMPO (473 mg, 3.02 mmol) were added. The reaction solution was ice-cooled, and a 10% sodium hypochlorite aqueous solution was added dropwise and stirred at room temperature until the raw materials disappeared. The reaction solution was separated, and the aqueous layer was extracted with chloroform (40 mL). The organic layers were combined and dried over sodium sulfate, the solvent was distilled off, and the resulting solid was washed with n-heptane. The target compound (ii-5) (57.9 g) was obtained as a pale yellow solid in a yield of 83.3%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.01-1.14 (m, 2H), 1.30-1.37 (m, 2H), 3.00-3.07 (m, 1H), 7.57-7.62 (m, 1H), 7.77-7.81 (m, 1H), 7.91-7.93 (m, 1H), 8.28-8.31 (m, 1H), 10.77 (s, 1H). MS (ES + ) 276.1
 化合物(ii-6)の合成
 窒素気流中、60%水素化ナトリウム(0.73g,18.2mmol)にTHF(12.5mL)を加えて氷冷した。(R)-ketophosphonate(7.00g,18.3mmol)のTHF(48mL)溶液を滴下し、同温度にて1時間撹拌した。化合物(ii-5)のTHF(75mL)溶液を滴下し、同温度にて30分間撹拌し、室温にて3.5時間撹拌した。反応液を再度氷冷し、飽和塩化アンモニウム水溶液(70mL)を滴下してクエンチした。反応液にTHF(40mL)及び水(20mL)を加えて分液し、水層を酢酸エチル(40mL)にて抽出した。有機層を合わせて飽和食塩水(100mL)にて洗浄後、硫酸ナトリウムにて乾燥し、溶媒を留去した。得られた赤褐色油状物の残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:100g,展開溶媒:トルエン/酢酸エチル=100/1→50/1)にて精製した。黄色油状物として目的とする化合物(ii-6)(8.57g)を収率92.5%にて得た。
1H NMR (400 MHz, CDCL3-d)δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.86 (s, 9H), 1.01-1.08 (m, 2H), 1.33-1.37 (m, 2H), 2.28-2.34 (m, 1H), 2.59 (dd, J=15.11, 6.04 Hz, 1H), 2.66 (dd, J=15.11, 6.04 Hz, 1H), 2.98 (dd, J=15.61, 5.79 Hz, 1H), 3.07 (dd, J=15.61, 6.55 Hz, 1H), 3.71 (s, 3H), 4.74-4.80 (m, 1H), 6.72 (d, J=16.62 Hz, 1H), 7.53-7.58 (m, 1H), 7.68-7.72 (m, 1H), 7.90-7.93 (m, 1H), 7.93 (d, J=16.62 Hz, 1H), 8.17-8.19 (m, 1H). MS(ES+) 532.2
Synthesis of Compound (ii-6) In a nitrogen stream, THF (12.5 mL) was added to 60% sodium hydride (0.73 g, 18.2 mmol) and ice-cooled. A solution of (R) -ketophosphonate (7.00 g, 18.3 mmol) in THF (48 mL) was added dropwise, and the mixture was stirred at the same temperature for 1 hour. A solution of compound (ii-5) in THF (75 mL) was added dropwise, and the mixture was stirred at the same temperature for 30 minutes and then stirred at room temperature for 3.5 hours. The reaction solution was ice-cooled again and quenched by dropwise addition of saturated aqueous ammonium chloride solution (70 mL). To the reaction solution, THF (40 mL) and water (20 mL) were added for liquid separation, and the aqueous layer was extracted with ethyl acetate (40 mL). The organic layers were combined, washed with saturated brine (100 mL), dried over sodium sulfate, and the solvent was evaporated. The resulting reddish brown oily residue was purified by silica gel column chromatography (silica gel: 100 g, developing solvent: toluene / ethyl acetate = 100/1 → 50/1). The target compound (ii-6) (8.57 g) was obtained as a yellow oil in a yield of 92.5%.
1 H NMR (400 MHz, CDCL 3 -d) δ: 0.10 (s, 3H), 0.11 (s, 3H), 0.86 (s, 9H), 1.01-1.08 (m, 2H), 1.33-1.37 (m, 2H), 2.28-2.34 (m, 1H), 2.59 (dd, J = 15.11, 6.04 Hz, 1H), 2.66 (dd, J = 15.11, 6.04 Hz, 1H), 2.98 (dd, J = 15.61, 5.79 Hz , 1H), 3.07 (dd, J = 15.61, 6.55 Hz, 1H), 3.71 (s, 3H), 4.74-4.80 (m, 1H), 6.72 (d, J = 16.62 Hz, 1H), 7.53-7.58 ( m, 1H), 7.68-7.72 (m, 1H), 7.90-7.93 (m, 1H), 7.93 (d, J = 16.62 Hz, 1H), 8.17-8.19 (m, 1H). MS (ES + ) 532.2
 化合物(ii-7)の合成
 窒素気流中、化合物(ii-6)(8.57g,16.0mmol)のTHF(80mL)溶液を氷冷し、酢酸(0.76g,12.6mmol)及びトリエチルアミン(1.21g,11.9mmol)のTHF(30mL)溶液を加えた。同温度にて1M TBAFのTHF溶液(24mL,24mmol)を滴下し、同温度にて10分間撹拌し、室温にて3時間撹拌した。反応液を再度氷冷し、水(120mL)を加えて酢酸エチル(130mL)にて抽出した。水層を酢酸エチル(50mL)にて抽出し、得られた有機層を合わせ、飽和食塩水(100mL)にて洗浄後、硫酸ナトリウムにて乾燥し、溶媒を留去した。得られた赤褐色油状物の残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:110g,展開溶媒:トルエン/酢酸エチル=5/1)にて精製した。黄色油状物として目的とする化合物(ii-7)(4.03g)を収率59.8%にて得た。
1H NMR (400 MHz, CDCL3-d)δ: 1.04-1.09 (m, 2H), 1.33-1.38 (m, 2H), 2.27-2.37 (m, 1H), 2.66 (d, J=6.29 Hz, 2H), 3.00-3.06 (m, 2H), 3.75 (s, 3H), 4.64-4.68 (m, 1H), 6.72 (d, J=16.62 Hz, 1H), 7.53-7.57 (m, 1H), 7.68-7.72 (m, 1H), 7.90-7.94 (m, 1H), 7.95 (d, J=16.62 Hz, 1H), 8.16-8.19 (m, 1H). MS(ES+) 418.1
Synthesis of compound (ii-7) In a nitrogen stream, a solution of compound (ii-6) (8.57 g, 16.0 mmol) in THF (80 mL) was ice-cooled, and acetic acid (0.76 g, 12.6 mmol) and triethylamine (1.21 g, A solution of 11.9 mmol) in THF (30 mL) was added. 1M TBAF in THF (24 mL, 24 mmol) was added dropwise at the same temperature, and the mixture was stirred at the same temperature for 10 minutes and then at room temperature for 3 hours. The reaction mixture was ice-cooled again, water (120 mL) was added, and the mixture was extracted with ethyl acetate (130 mL). The aqueous layer was extracted with ethyl acetate (50 mL), and the obtained organic layers were combined, washed with saturated brine (100 mL), dried over sodium sulfate, and the solvent was evaporated. The resulting reddish brown oily residue was purified by silica gel column chromatography (silica gel: 110 g, developing solvent: toluene / ethyl acetate = 5/1). The target compound (ii-7) (4.03 g) was obtained as a yellow oil in a yield of 59.8%.
1 H NMR (400 MHz, CDCL 3 -d) δ: 1.04-1.09 (m, 2H), 1.33-1.38 (m, 2H), 2.27-2.37 (m, 1H), 2.66 (d, J = 6.29 Hz, 2H), 3.00-3.06 (m, 2H), 3.75 (s, 3H), 4.64-4.68 (m, 1H), 6.72 (d, J = 16.62 Hz, 1H), 7.53-7.57 (m, 1H), 7.68 -7.72 (m, 1H), 7.90-7.94 (m, 1H), 7.95 (d, J = 16.62 Hz, 1H), 8.16-8.19 (m, 1H). MS (ES + ) 418.1
 化合物(ii-8)の合成
 窒素気流中、化合物(ii-7)(4.03g,9.63mmol)のTHF(30mL)溶液にメタノール(6mL)を加え、ドライアイス-アセトン浴にて冷却した。1.0M EtBOMeのTHF溶液(10.8mL,108mmol)を加え、同温度にて20分間撹拌した。水素化ホウ素ナトリウム(452mg,10.7mmol)を加え、同温度にて1時間撹拌した。酢酸(5.7mL)の酢酸エチル(27mL)溶液を滴下し、同温度にて10分間撹拌後、室温にて3時間撹拌した。5%炭酸水素ナトリウム水溶液(100mL)を加え、酢酸エチル(10mL)にて抽出した。水層を酢酸エチル(40mL)にて抽出し、得られた有機層を合わせ、飽和食塩水(100mL)にて洗浄後、硫酸ナトリウムにて乾燥した。溶媒を留去し、メタノールを加えて濃縮する操作を3回繰り返し、得られた黄色個体をジイソプロピルエーテルにて洗浄した。黄色固体として化合物(ii-8)(2.93g)を収率72.0%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.00-1.05 (m, 2H), 1.26-1.32 (m, 2H), 1.81-1.94 (m, 2H), 2.41-2.47 (m, 1H), 2.59 (d, J=6.29 Hz, 2H), 3.50 (br. s., 1H), 3.74 (br. s., 1H), 3.75 (s, 3H), 4.40-4.48 (m, 1H), 4.73-4.78 (m, 1H), 6.11 (dd, J=16.11, 5.79 Hz, 1H), 6.90 (dd, J=16.24, 1.38 Hz, 1H), 7.49-7.53 (m, 1H), 7.62-7.66 (m, 1H), 7.88-7.90 (m, 1H), 8.14-8.16 (m, 1H). MS(ES+) 420.1
Synthesis of Compound (ii-8) In a nitrogen stream, methanol (6 mL) was added to a THF (30 mL) solution of Compound (ii-7) (4.03 g, 9.63 mmol) and cooled in a dry ice-acetone bath. 1.0 M Et 2 BOMe in THF (10.8 mL, 108 mmol) was added, and the mixture was stirred at the same temperature for 20 min. Sodium borohydride (452 mg, 10.7 mmol) was added and stirred at the same temperature for 1 hour. A solution of acetic acid (5.7 mL) in ethyl acetate (27 mL) was added dropwise, and the mixture was stirred at the same temperature for 10 min and then at room temperature for 3 hr. 5% Aqueous sodium hydrogen carbonate solution (100 mL) was added, and the mixture was extracted with ethyl acetate (10 mL). The aqueous layer was extracted with ethyl acetate (40 mL), and the resulting organic layers were combined, washed with saturated brine (100 mL), and dried over sodium sulfate. The operation of distilling off the solvent, adding methanol and concentrating was repeated three times, and the resulting yellow solid was washed with diisopropyl ether. Compound (ii-8) (2.93 g) was obtained as a yellow solid in a yield of 72.0%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.00-1.05 (m, 2H), 1.26-1.32 (m, 2H), 1.81-1.94 (m, 2H), 2.41-2.47 (m, 1H), 2.59 (d, J = 6.29 Hz, 2H), 3.50 (br. S., 1H), 3.74 (br. S., 1H), 3.75 (s, 3H), 4.40-4.48 (m, 1H), 4.73- 4.78 (m, 1H), 6.11 (dd, J = 16.11, 5.79 Hz, 1H), 6.90 (dd, J = 16.24, 1.38 Hz, 1H), 7.49-7.53 (m, 1H), 7.62-7.66 (m, 1H), 7.88-7.90 (m, 1H), 8.14-8.16 (m, 1H). MS (ES + ) 420.1
 PTVS3の合成
 化合物(ii-8)(1.01g,2.40mmol)、(BPin)(0.79g,3.12mmol)、炭酸カリウム(0.99g,7.20mmol)、及びPdCl2(dppf)CH2Cl2(0.19g,0.240mmol)を加え、系内をアルゴン置換した。ジメチルスルホキシド(40mL)を加え、脱気及びアルゴン置換を3回実施した。70℃にて4時間撹拌し、室温に冷却してシリカゲル(4.14g)を加えてセライト濾過した。濾液に酢酸エチル(40mL)を加え、水で2回、飽和食塩水で1回洗浄して硫酸ナトリウムにて乾燥した。溶媒を留去し、メタノール共沸を3回実施後にODSカラムにて精製した。得られた褐色あめ状物をジイソプロピルエーテル/n-ヘプタン=1/1にて粉末化し、濾取した。淡褐色固体として目的とする化合物(PTVS3)(0.29g)を収率25.9%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.98-1.01 (m, 2H), 1.23-1.26 (m, 2H), 1.47 (s, 12H),1.79-1.89 (m, 2H), 2.26-2.47 (m, 1H), 2.55-2.57 (m, 2H), 3.31 (br. s., 1H), 3.74 (s, 3H), 3.75 (br. s., 1H), 4.35-4.48 (m, 1H), 4.65-4.78 (m, 1H), 6.05 (dd, J=15.86, 5.54 Hz, 1H), 7.21 (dd, J=16.24, 1.38 Hz, 1H), 7.39-7.43 (m, 1H), 7.55-7.59 (m, 1H), 7.89-7.94 (m, 2H). MS(ES+) 467.3
PTVS3 synthetic compound (ii-8) (1.01 g, 2.40 mmol), (BPin) 2 (0.79 g, 3.12 mmol), potassium carbonate (0.99 g, 7.20 mmol), and PdCl 2 (dppf) CH 2 Cl 2 ( 0.19 g, 0.240 mmol) was added, and the system was purged with argon. Dimethyl sulfoxide (40 mL) was added, and degassing and argon substitution were performed three times. The mixture was stirred at 70 ° C. for 4 hours, cooled to room temperature, silica gel (4.14 g) was added, and the mixture was filtered through Celite. Ethyl acetate (40 mL) was added to the filtrate, washed twice with water and once with saturated brine, and dried over sodium sulfate. The solvent was distilled off, and methanol azeotropy was performed 3 times, and then purified with an ODS column. The obtained brown candy was powdered with diisopropyl ether / n-heptane = 1/1 and collected by filtration. The target compound (PTVS3) (0.29 g) was obtained as a light brown solid in a yield of 25.9%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.98-1.01 (m, 2H), 1.23-1.26 (m, 2H), 1.47 (s, 12H), 1.79-1.89 (m, 2H), 2.26- 2.47 (m, 1H), 2.55-2.57 (m, 2H), 3.31 (br. S., 1H), 3.74 (s, 3H), 3.75 (br. S., 1H), 4.35-4.48 (m, 1H ), 4.65-4.78 (m, 1H), 6.05 (dd, J = 15.86, 5.54 Hz, 1H), 7.21 (dd, J = 16.24, 1.38 Hz, 1H), 7.39-7.43 (m, 1H), 7.55- 7.59 (m, 1H), 7.89-7.94 (m, 2H). MS (ES + ) 467.3
 PTVS4の合成
 PTVS3(36.9mg,0.0789mmol)、1-フルオロ-4-ヨードベンゼン(26.2mg,0.118mmol)、炭酸ナトリウム(25.0mg,0.236mmol)、及びPd(PPh3)4(9.1mg,0.00789mmol)を加え、系内をアルゴン置換した。ジメチルスルホキシド(0.5mL)を加え、脱気及びアルゴン置換を3回実施した。80℃にて8時間撹拌し、室温に冷却して水を加えた。酢酸エチルにて抽出し、水及び飽和食塩水で洗浄して硫酸ナトリウムにて乾燥した。溶媒を留去し、ODSカラムにて精製した。あめ状物として目的とする化合物(PTVS4)(2.3mg)を得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.01-1.10 (m, 2H), 1.22-1.37 (m, 5H), 1.41-1.54 (m, 1H), 2.37-2.51 (m, 3H), 3.74 (s, 3H), 4.10-4.16 (m, 1H), 4.385-4.43 (m, 1H), 5.58 (dd, J=16.24, 6.17 Hz, 1H), 6.64 (dd, J=16.11, 1.26 Hz, 1H), 7.14-7.35 (m, 6H), 7.57-7.61 (m, 1H), 7.94-7.96 (m, 1H). MS(ES+) 436.3
Synthesis of PTVS4 PTVS3 (36.9 mg, 0.0789 mmol), 1-fluoro-4-iodobenzene (26.2 mg, 0.118 mmol), sodium carbonate (25.0 mg, 0.236 mmol), and Pd (PPh 3 ) 4 (9.1 mg, 0.00789 mmol) was added, and the system was purged with argon. Dimethyl sulfoxide (0.5 mL) was added, and degassing and argon substitution were performed three times. The mixture was stirred at 80 ° C. for 8 hours, cooled to room temperature, and water was added. The mixture was extracted with ethyl acetate, washed with water and saturated brine, and dried over sodium sulfate. The solvent was distilled off and purified with an ODS column. The target compound (PTVS4) (2.3 mg) was obtained as a candy.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.01-1.10 (m, 2H), 1.22-1.37 (m, 5H), 1.41-1.54 (m, 1H), 2.37-2.51 (m, 3H), 3.74 (s, 3H), 4.10-4.16 (m, 1H), 4.385-4.43 (m, 1H), 5.58 (dd, J = 16.24, 6.17 Hz, 1H), 6.64 (dd, J = 16.11, 1.26 Hz, 1H), 7.14-7.35 (m, 6H), 7.57-7.61 (m, 1H), 7.94-7.96 (m, 1H). MS (ES + ) 436.3
 (製造例5)PTVS4の製造
 PTVS3(20mg,0.0429mmol)、1-フルオロ-4-ヨードベンゼン(14.2mg,0.0641mmol)、炭酸ナトリウム(13.5mg,0.128mmol)、及びPd(PPh3)4(3.4mg,0.00427mmol)を加え、系内をアルゴン置換した。ジメチルスルホキシド(2mL)を加え、脱気及びアルゴン置換を3回実施した。マイクロウェーブ照射下で120℃にて10分間反応させた。LC-MSを用いて反応の進行を確認したところ、目的とする化合物(PTVS4)を収率10%にて得た。マイクロウェーブ照射下でカップリング反応を行うことにより、マイクロウェーブを照射しない場合と比較して極めて短時間で目的とする化合物(PTVS4)を得ることができた。
(Production Example 5) Production of PTVS4 PTVS3 (20 mg, 0.0429 mmol), 1-fluoro-4-iodobenzene (14.2 mg, 0.0641 mmol), sodium carbonate (13.5 mg, 0.128 mmol), and Pd (PPh 3 ) 4 ( 3.4 mg, 0.00427 mmol) was added, and the system was purged with argon. Dimethyl sulfoxide (2 mL) was added, and degassing and argon substitution were performed three times. The reaction was carried out at 120 ° C. for 10 minutes under microwave irradiation. When the progress of the reaction was confirmed using LC-MS, the target compound (PTVS4) was obtained in a yield of 10%. By performing the coupling reaction under microwave irradiation, the target compound (PTVS4) could be obtained in a very short time compared to the case without microwave irradiation.
 (製造例6)PTVS5及びPTVS6の製造
 下記のスキームに従い、PTVS5及びPTVS6を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000046
According (Production Example 6) PTVS5 and PTVS6 of manufacturing the scheme below, was prepared PTVS5 and PTVS6. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000046
 化合物(iii-2)の合成
 窒素気流下、化合物(iii-1)(540mg,1.32mmol)のTHF(10mL)溶液を氷水浴にて冷却した。水素化リチウムアンモニウム(99.3mg、2.61mmol)を3回に分けて加え、室温にて3時間撹拌した。反応液を氷水浴にて冷却し、水(110μL)、15%水酸化ナトリウム水溶液(110μL)、水(330μL)を順次滴下した。酢酸エチル(16mL)を加えてセライト濾過し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をイソプロピルエーテル/ヘプタン=1/1溶液(15mL)にて洗浄後、濾取、乾燥した。薄茶色固体として目的とする化合物(iii-2)(401mg,1.05mmol)を粗体収率79%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.09-1.12 (m, 2H), 1.36-1.41 (m, 2H), 1.62 (br.s., 1H), 2.59-2.64 (m, 1H), 4.80 (s, 2H), 5.17 (s, 2H), 7.12-7.98 (m, 13H).
Synthesis of Compound (iii-2) A THF (10 mL) solution of compound (iii-1) (540 mg, 1.32 mmol) was cooled in an ice-water bath under a nitrogen stream. Lithium ammonium hydride (99.3 mg, 2.61 mmol) was added in three portions, and the mixture was stirred at room temperature for 3 hours. The reaction solution was cooled in an ice-water bath, and water (110 μL), a 15% aqueous sodium hydroxide solution (110 μL), and water (330 μL) were successively added dropwise. Ethyl acetate (16 mL) was added, and the mixture was filtered through Celite, dried over sodium sulfate, filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was washed with isopropyl ether / heptane = 1/1 solution (15 mL), collected by filtration and dried. The target compound (iii-2) (401 mg, 1.05 mmol) was obtained as a light brown solid in a crude yield of 79%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.09-1.12 (m, 2H), 1.36-1.41 (m, 2H), 1.62 (br.s., 1H), 2.59-2.64 (m, 1H) , 4.80 (s, 2H), 5.17 (s, 2H), 7.12-7.98 (m, 13H).
 化合物(iii-3)の合成
 窒素気流下、化合物(iii-2)(1.30g,3.41mmol)の塩化メチレン(14mL)懸濁液に四臭化炭素(2.28g,6.87mmol)を加えた。氷水浴にて冷却し、PPh3(1.79g,6.82mmol)の塩化メチレン(10mL)溶液を滴下した。氷水浴にて20分間撹拌した後、飽和重曹水(20mL)を滴下し、クロロホルム(20mL,10mL)にて2回抽出した。得られた有機層を合わせ、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:50g,展開溶媒:クロロホルム/n-ヘキサン=7/1)にて精製した。薄茶色固体として目的とする化合物(iii-3)(1.26g,2.83mmol)を収率82%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.11-1.16 (m, 2H), 1.36-1.40 (m, 2H), 2.50-2.55 (m, 1H), 4.64 (s, 2H), 5.17 (s, 2H), 7.15-7.96 (m, 13H).
Synthesis of Compound (iii-3) Carbon tetrabromide (2.28 g, 6.87 mmol) was added to a suspension of compound (iii-2) (1.30 g, 3.41 mmol) in methylene chloride (14 mL) under a nitrogen stream. The solution was cooled in an ice-water bath, and a solution of PPh 3 (1.79 g, 6.82 mmol) in methylene chloride (10 mL) was added dropwise. After stirring for 20 minutes in an ice-water bath, saturated aqueous sodium hydrogen carbonate (20 mL) was added dropwise, and the mixture was extracted twice with chloroform (20 mL, 10 mL). The obtained organic layers were combined, dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 50 g, developing solvent: chloroform / n-hexane = 7/1). The target compound (iii-3) (1.26 g, 2.83 mmol) was obtained as a light brown solid in a yield of 82%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.11-1.16 (m, 2H), 1.36-1.40 (m, 2H), 2.50-2.55 (m, 1H), 4.64 (s, 2H), 5.17 ( s, 2H), 7.15-7.96 (m, 13H).
 化合物(iii-4)の合成
 窒素気流下、化合物(iii-3)(1.25g,2.81mmol)のトルエン(26mL)溶液に、Ph2POEt(3.09g,13.4mmol)を加え、撹拌下3.5時間還流した。室温まで冷却し、減圧下40℃にて溶媒を留去した。得られた残渣をイソプロピルエーテル(30mL)で洗浄後、濾取、乾燥した。赤みを帯びた白色固体として目的とする化合物(iii-4)(1.52g,2.69mmol)を粗体収率95%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.93-0.96 (m, 2H), 1.22-1.26 (m, 2H), 2.68-2.74 (m, 1H), 4.09 (d, J=14.35 Hz, 2H), 5.15 (s, 2H), 6.68-6.70 (m, 2H), 6.91-6.93 (m, 2H), 7.13-7.16 (m, 1H), 7.21-7.58 (m, 17H), 7.94-7.96 (m, 1H).
2. Synthesis of Compound (iii-4) Under a nitrogen stream, Ph 2 POEt (3.09 g, 13.4 mmol) was added to a toluene (26 mL) solution of Compound (iii-3) (1.25 g, 2.81 mmol) and stirred. Refluxed for 5 hours. After cooling to room temperature, the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was washed with isopropyl ether (30 mL), collected by filtration and dried. The target compound (iii-4) (1.52 g, 2.69 mmol) was obtained as a reddish white solid in a crude yield of 95%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.93-0.96 (m, 2H), 1.22-1.26 (m, 2H), 2.68-2.74 (m, 1H), 4.09 (d, J = 14.35 Hz, 2H), 5.15 (s, 2H), 6.68-6.70 (m, 2H), 6.91-6.93 (m, 2H), 7.13-7.16 (m, 1H), 7.21-7.58 (m, 17H), 7.94-7.96 ( m, 1H).
 化合物(iii-5)の合成
 窒素気流下、TMP(148mg,1.04mmol)のTHF(4mL)溶液をドライアイス-アセトン浴にて冷却し、1.6M n-BuLiのn-ヘキサン溶液(1.15mL,1.84mmol)を滴下し、-20℃にて10分間撹拌した。-70℃以下まで冷却し、化合物(iii-4)(456mg,806μmol)のTHF(14mL)溶液を滴下後、同温にて30分間撹拌した。同温にてDIO(354mg,1.37mmol)のTHF(3mL)溶液を滴下し、室温まで徐々に昇温しながら15.5時間撹拌後、飽和重曹水(6mL)を滴下し、酢酸エチル(30mL)にて抽出した。得られた有機層を飽和食塩水(6mL)にて洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:35g,展開溶媒:トルエン/酢酸エチル=15/1→2/3)にて精製した。無色油状物として目的とする化合物(iii-5)(226mg,343μmol)を収率46%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 1.01-1.12 (m, 2H), 1.25-1.35 (m, 2H), 1.38-1.41 (m, 5H), 1.46 (s, 9H), 1.48 (s, 3H), 2.25-2.45 (m, 3H), 4.21-4.42 (m, 2H), 5.16 (s, 2H), 5.66 (dd, J=16.24, 6.17 Hz, 1H), 6.57 (dd, J=16.24, 1.13 Hz, 1H), 7.06-7.58 (m, 12H), 7.93-7.95 (m, 1H). MS(ES+) 605.76
Synthesis of Compound (iii-5) Under a nitrogen stream, TMP (148 mg, 1.04 mmol) in THF (4 mL) was cooled in a dry ice-acetone bath and 1.6 M n-BuLi in n-hexane (1.15 mL). , 1.84 mmol) was added dropwise, and the mixture was stirred at −20 ° C. for 10 minutes. After cooling to −70 ° C. or lower, a solution of compound (iii-4) (456 mg, 806 μmol) in THF (14 mL) was added dropwise, and the mixture was stirred at the same temperature for 30 min. At the same temperature, a solution of DIO (354 mg, 1.37 mmol) in THF (3 mL) was added dropwise, stirred for 15.5 hours while gradually warming to room temperature, saturated aqueous sodium hydrogen carbonate (6 mL) was added dropwise, and ethyl acetate (30 mL) was added. ). The obtained organic layer was washed with saturated brine (6 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 35 g, developing solvent: toluene / ethyl acetate = 15/1 → 2/3). The target compound (iii-5) (226 mg, 343 μmol) was obtained as a colorless oil in a yield of 46%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 1.01-1.12 (m, 2H), 1.25-1.35 (m, 2H), 1.38-1.41 (m, 5H), 1.46 (s, 9H), 1.48 ( s, 3H), 2.25-2.45 (m, 3H), 4.21-4.42 (m, 2H), 5.16 (s, 2H), 5.66 (dd, J = 16.24, 6.17 Hz, 1H), 6.57 (dd, J = 16.24, 1.13 Hz, 1H), 7.06-7.58 (m, 12H), 7.93-7.95 (m, 1H). MS (ES + ) 605.76
 化合物(iii-6)の合成
 窒素気流下、化合物(iii-5)(701mg,1.15mmol)の塩化メチレン(1mL)溶液を氷水浴にて冷却し、TFA/チアニソール=10/1(6mL)溶液を滴下した。室温まで徐々に昇温しながら17時間撹拌した。氷水浴にて冷却した飽和重曹水(90mL)に反応溶液を滴下し、酢酸エチル(30mL,25mL,30mL)にて3回抽出した。得られた有機層を合わせ飽和食塩水(50mL)にて洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:10g,展開溶媒:クロロホルム/酢酸エチ=1/1→0/1)にて精製した。淡黄色アモルファス状固体として化合物(iii-6)(280mg,697μmol)を収率60%にて得た。
1H NMR (400 MHz, DMSO-d6)δ: 1.01-1.07 (m, 2H), 1.21-1.23 (m, 2H), 1.57-1.68 (m, 2H), 2.31-2.65 (m, 4H), 3.47 (br.s., 1H), 5.05-5.21 (m, 1H), 5.71 (dd, J=16.24, 6.55 Hz, 1H), 6.65 (dd, J=16.24, 1.13 Hz, 1H), 6.88-7.87 (m, 8H), 9.66 (br.s., 1H). MS(ES+) 401.45
Synthesis of Compound (iii-6) Under a nitrogen stream, a solution of Compound (iii-5) (701 mg, 1.15 mmol) in methylene chloride (1 mL) was cooled in an ice-water bath, and TFA / thianisol = 10/1 (6 mL) solution. Was dripped. The mixture was stirred for 17 hours while gradually warming to room temperature. The reaction solution was added dropwise to saturated aqueous sodium bicarbonate (90 mL) cooled in an ice-water bath, and extracted three times with ethyl acetate (30 mL, 25 mL, 30 mL). The obtained organic layers were combined, washed with saturated brine (50 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 10 g, developing solvent: chloroform / ethyl acetate = 1/1 → 0/1). Compound (iii-6) (280 mg, 697 μmol) was obtained as a pale yellow amorphous solid in a yield of 60%.
1 H NMR (400 MHz, DMSO-d 6 ) δ: 1.01-1.07 (m, 2H), 1.21-1.23 (m, 2H), 1.57-1.68 (m, 2H), 2.31-2.65 (m, 4H), 3.47 (br.s., 1H), 5.05-5.21 (m, 1H), 5.71 (dd, J = 16.24, 6.55 Hz, 1H), 6.65 (dd, J = 16.24, 1.13 Hz, 1H), 6.88-7.87 (m, 8H), 9.66 (br.s., 1H). MS (ES + ) 401.45
 PTVS5の合成
 窒素気流下、2-フルオロエタノール(1.00g,15.6mmol)のクロロホルム(10mL)溶液にトリエチルアミン(1.80mL,12.8mmol)を加え、氷水浴にて冷却し、MsCl(1.00mL,12.8mmol)を加えた。室温にて1時間撹拌後、濃縮し、酢酸エチル(50mL)、水(40mL)を加え分液した。得られた有機層を水(40mL)、飽和重曹水(30mL)にて順次洗浄し、流酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。無色油状物としてメタンスルホン酸2-フルオロエチル(1.75g,12.3mmol)を粗体収率96%にて得た。
In a nitrogen stream of PTVS5, triethylamine (1.80 mL, 12.8 mmol) was added to a chloroform (10 mL) solution of 2-fluoroethanol (1.00 g, 15.6 mmol), cooled in an ice-water bath, and MsCl (1.00 mL, 12.8 mmol). ) Was added. After stirring at room temperature for 1 hour, the mixture was concentrated, and ethyl acetate (50 mL) and water (40 mL) were added to separate the layers. The obtained organic layer was washed successively with water (40 mL) and saturated aqueous sodium hydrogen carbonate (30 mL), dried over sodium sulfate and filtered, and then the solvent was distilled off at 40 ° C. under reduced pressure. As a colorless oil, 2-fluoroethyl methanesulfonate (1.75 g, 12.3 mmol) was obtained in a crude yield of 96%.
 窒素気流下、化合物(iii-6)(126mg,314μmol)のDMF(1.9mL)溶液に炭酸カリウム(86.6mg,626μmol)、メタンスルホン酸2-フルオロエチル(170μL,956μmol)を順次加えた。40℃の水浴にて21.5時間撹拌した。反応液に酢酸エチル(4mL)を加え、水(4mL)、飽和食塩水(4mL)にて順次洗浄し、硫酸ナトリウムにて乾燥、濾過した後、減圧下40℃にて溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(シリカゲル:10g,展開溶媒:トルエン/酢酸エチル=1/2×2回)にて精製した。無色油状物として目的とする化合物(PTVS5)(28.1mg,62.8μmol)を収率20%にて得た。
1H NMR (400 MHz, CDCl3-d)δ: 0.98-1.15 (m, 2H), 1.18-1.43 (m, 2H), 1.52-1.72 (m, 2H), 1.76-1.86 (m, 1H), 1.96 (br.s., 1H), 2.32-2.42 (m, 1H), 2.55 (ddd, J=17.69, 4.60, 1.38 Hz, 1H),2.70 (dd, J=17.75, 4.91 Hz, 1H), 4.25-4.38 (m, 2H), 4.70-4.90 (m, 2H), 5.14-5.19 (m, 1H), 5.63 (dd, J=16.24, 6.17 Hz, 1H), 6.70 (dd, J=16.24, 1.38 Hz, 1H), 6.98-7.08 (m, 2H), 7.12-7.20 (m, 2H), 7.29-7.34 (m, 1H), 7.37-7.46 (m, 1H), 7.57-7.61 (m, 1H), 7.91-8.00 (m, 1H). MS(ES+) 448.2
Under a nitrogen stream, potassium carbonate (86.6 mg, 626 μmol) and 2-fluoroethyl methanesulfonate (170 μL, 956 μmol) were sequentially added to a DMF (1.9 mL) solution of compound (iii-6) (126 mg, 314 μmol). The mixture was stirred in a 40 ° C. water bath for 21.5 hours. Ethyl acetate (4 mL) was added to the reaction mixture, washed successively with water (4 mL) and saturated brine (4 mL), dried over sodium sulfate and filtered, and the solvent was evaporated at 40 ° C. under reduced pressure. The obtained residue was purified by silica gel column chromatography (silica gel: 10 g, developing solvent: toluene / ethyl acetate = 1/2 × 2 times). The target compound (PTVS5) (28.1 mg, 62.8 μmol) was obtained as a colorless oil in a yield of 20%.
1 H NMR (400 MHz, CDCl 3 -d) δ: 0.98-1.15 (m, 2H), 1.18-1.43 (m, 2H), 1.52-1.72 (m, 2H), 1.76-1.86 (m, 1H), 1.96 (br.s., 1H), 2.32-2.42 (m, 1H), 2.55 (ddd, J = 17.69, 4.60, 1.38 Hz, 1H), 2.70 (dd, J = 17.75, 4.91 Hz, 1H), 4.25 -4.38 (m, 2H), 4.70-4.90 (m, 2H), 5.14-5.19 (m, 1H), 5.63 (dd, J = 16.24, 6.17 Hz, 1H), 6.70 (dd, J = 16.24, 1.38 Hz , 1H), 6.98-7.08 (m, 2H), 7.12-7.20 (m, 2H), 7.29-7.34 (m, 1H), 7.37-7.46 (m, 1H), 7.57-7.61 (m, 1H), 7.91 -8.00 (m, 1H). MS (ES + ) 448.2
 PTVS6の合成
 PTVS5(19.2mg,42.9μmol)のエタノール(80μL)溶液に1M水酸化ナトリウム水溶液(65μL,65μmol)を加え、室温にて15分間撹拌した。水(80μL)を加えた後、濃縮し、水(0.2mL)、0.1M塩化カルシウム水溶液(236μL,23.6μmol)を順次加え、室温にて30分間撹拌した。析出固体を濾取し、水(5mL)にて洗浄した後、減圧下40℃にて乾燥した。淡黄色固体として目的とする化合物(PTVS6)(12.7mg,13.1μmol)を収率61%にて得た。
1H NMR (400 MHz, DMSO-d6)δ: 0.99-1.05 (m, 2H), 1.12-1.23 (m, 3H), 1.38-1.46 (m, 2H), 1.83-1.91 (m, 1H), 1.98-2.05 (m, 1H), 2.52-2.56 (m, 1H), 3.58-3.63 (m, 1H), 4.09-4.17 (m, 1H), 4.26-4.42 (m, 2H), 4.73-4.87 (m, 2H), 5.66 (dd, J=16.11, 6.17 Hz, 1H), 6.48 (dd, J=16.11, 1.38 Hz, 1H), 7.02-7.20 (m, 4H), 7.30-7.38 (m, 2H), 7.59-7.64 (m, 1H), 7.78-7.86 (m, 1H). MS(ES+) 466.1
Synthesis of PTVS6 To a solution of PTVS5 (19.2 mg, 42.9 μmol) in ethanol (80 μL) was added 1M aqueous sodium hydroxide solution (65 μL, 65 μmol), and the mixture was stirred at room temperature for 15 minutes. Water (80 μL) was added, and the mixture was concentrated. Water (0.2 mL) and 0.1 M aqueous calcium chloride solution (236 μL, 23.6 μmol) were successively added, and the mixture was stirred at room temperature for 30 min. The precipitated solid was collected by filtration, washed with water (5 mL), and dried at 40 ° C. under reduced pressure. The target compound (PTVS6) (12.7 mg, 13.1 μmol) was obtained as a pale yellow solid in a yield of 61%.
1 H NMR (400 MHz, DMSO-d 6 ) δ: 0.99-1.05 (m, 2H), 1.12-1.23 (m, 3H), 1.38-1.46 (m, 2H), 1.83-1.91 (m, 1H), 1.98-2.05 (m, 1H), 2.52-2.56 (m, 1H), 3.58-3.63 (m, 1H), 4.09-4.17 (m, 1H), 4.26-4.42 (m, 2H), 4.73-4.87 (m , 2H), 5.66 (dd, J = 16.11, 6.17 Hz, 1H), 6.48 (dd, J = 16.11, 1.38 Hz, 1H), 7.02-7.20 (m, 4H), 7.30-7.38 (m, 2H), 7.59-7.64 (m, 1H), 7.78-7.86 (m, 1H). MS (ES + ) 466.1
 [肝取り込み評価]
 PTVS6について、トランスポータ(OATP1B1,OATP1B3)による肝取り込みの評価を行った。なお、コントロールとしては、下記のピタバスタチンのカルシウム塩(以下、「pitavastatin」という)を準備した。
Figure JPOXMLDOC01-appb-C000047
[Liver uptake evaluation]
PTVS6 was evaluated for liver uptake by transporters (OATP1B1, OATP1B3). As a control, the following pitavastatin calcium salt (hereinafter referred to as “pitavastatin”) was prepared.
Figure JPOXMLDOC01-appb-C000047
 OATP1B1,OATP1B3安定発現HEK293細胞をcollagen type Iでコートした12well dish上に培養した。実験開始24時間前に、培地(DMEM(low glucose))を、5mM sodium butyrate入り培地に置換することによって発現細胞におけるトランスポータの発現を誘導した。実験開始15分前に、培地を取り除いた後、37℃に加温したKrebs-Henseleit buffer(KH buffer;118mM NaCl,23.8mM NaHCO3,4.8mM KCl,1.0mM KH2PO4,1.2mM MgSO4,12.5mM HEPES,5.0mM glucose,1.5mM CaCl2、pH7.4)に置換して2度細胞を洗浄した後、37℃に加温したKH bufferと共に、プレインキュベーションを行った。次に、KH bufferを取り除き、基質(pitavastatin又はPTVS6)(tracer条件:final 0.5mM,excess条件:100mM)を含むKH bufferを細胞の播種されたwellに入れることで、取り込みを開始させた。一定時間、37℃条件下で培養後、KH bufferを取り除き、氷冷KH bufferで細胞を3回洗浄した。その後、0.2N NaOH 500μLをwellに入れて細胞を溶解後、2N HCl 50μLで中和したサンプルをLC/MSにて測定を行った。その結果を図1のグラフに示す。 OATP1B1 and OATP1B3 stably expressing HEK293 cells were cultured on a 12 well dish coated with collagen type I. 24 hours before the start of the experiment, the medium (DMEM (low glucose)) was replaced with a medium containing 5 mM sodium butyrate to induce transporter expression in the expression cells. 15 minutes before the start of the experiment, after removing the medium, Krebs-Henseleit buffer (KH buffer; 118 mM NaCl, 23.8 mM NaHCO 3 , 4.8 mM KCl, 1.0 mM KH 2 PO 4 , 1.2 mM MgSO 4) heated to 37 ° C. , 12.5 mM HEPES, 5.0 mM glucose, 1.5 mM CaCl 2 , pH 7.4), the cells were washed twice, and preincubated with KH buffer heated to 37 ° C. Next, the KH buffer was removed, and uptake was started by placing a KH buffer containing a substrate (pitavastatin or PTVS6) (tracer condition: final 0.5 mM, excess condition: 100 mM) in the wells where the cells were seeded. After culturing at 37 ° C. for a fixed time, the KH buffer was removed, and the cells were washed three times with ice-cold KH buffer. Thereafter, 500 μL of 0.2N NaOH was added to the well to lyse the cells, and a sample neutralized with 50 μL of 2N HCl was measured by LC / MS. The result is shown in the graph of FIG.
 図1は、肝取り込みトランスポータ(OATP1B1,OATP1B3)によるpitavastatin及びPTVS6の輸送の時間推移及び飽和性を示すグラフであって、A及びBがpitavastatin、C及びDがPTVS6の結果を示す。図1に示すように、tracer条件下においては、pitavastatin及びPTVS6はいずれも、時間依存的にOATP1B1,OATP1B3発現HEK293細胞に取り込みが観察された(A及びC:1B1 tracer、B及びD:1B3 tracer)。また、その取り込みは、対照細胞(mock)では観察されなかった。これらのことから、この細胞内取り込みは、OATP1B1又はOATP1B3を介した取り込みであることが確認された。さらに、図1に示すように、excess条件下においては、pitavastatin及びPTVS6はいずれも、その取り込みが低下したことから(A及びC:1B1 excess、B及びD:1B3 excess)、この輸送は飽和性を示すことが明らかとなり、pitavastatin及びPTVS6の取り込みがトランスポータを介した取り込みであることをさらに支持された。また、PTVS6の輸送特性は、pitavastatinの輸送特性と非常に類似していた。したがって、PTVS6の輸送は、OATP1B1,OATP1B3の輸送能力を反映するものになることが示唆された。 FIG. 1 is a graph showing the time transition and saturation of pitavastatin and PTVS6 transport by the liver uptake transporter (OATP1B1, OATP1B3), where A and B are the results of pitavastatin, and C and D are the results of PTVS6. As shown in FIG. 1, under tracer conditions, uptake of both pitavastatin and PTVS6 was observed in OATP1B1 and OATP1B3-expressing HEK293 cells in a time-dependent manner (A and C: 1B1 tracer, B and D: 1B3 tracer). ). Also, its uptake was not observed in control cells (mock). From these, it was confirmed that this intracellular uptake was taken up via OATP1B1 or OATP1B3. Furthermore, as shown in FIG. 1, under excess conditions, both pitavastatin and PTVS6 have reduced uptake (A and C: 1B1 excess, B and D: 1B3 excess). It was further demonstrated that the uptake of pitavastatin and PTVS6 was via a transporter. In addition, the transport properties of PTVS6 were very similar to those of pitavastatin. Therefore, it was suggested that the transport of PTVS6 reflects the transport ability of OATP1B1 and OATP1B3.
 [体内分布実験]
 [18F]PTVS2を用いてラット及びマウスの体内分布実験を行った。[18F]PTVS2(100μCi/100μL/匹)を無麻酔の6週齢SDラット(雄性)に静脈注射(尾静脈)により投与した。投与2分後、5分後、10分後、15分後、30分後、60分後に各臓器を摘出した(n=5)。各臓器の放射能を測定し、各臓器あたりの放射能の集積量(%dose/organ)を算出した。その結果の一例を図2に示す。
[Body distribution experiment]
[ 18 F] PTVS2 was used to conduct biodistribution experiments in rats and mice. [ 18 F] PTVS2 (100 μCi / 100 μL / mouse) was administered by intravenous injection (tail vein) to unanesthetized 6-week-old SD rats (male). Each organ was removed 2 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 60 minutes after administration (n = 5). The radioactivity of each organ was measured, and the amount of radioactivity accumulated per organ (% dose / organ) was calculated. An example of the result is shown in FIG.
 ラットに替えてマウス(ddY系雄性、12週齢)を用い、[18F]PTVS2の投与量を20μCi/100μL/匹とした以外は、同様に体内分布実験を行った(n=5)。その結果の一例を表1及び図3に示す。 A biodistribution experiment was similarly performed (n = 5) except that mice (ddY male, 12 weeks old) were used instead of rats, and the dose of [ 18 F] PTVS2 was 20 μCi / 100 μL / animal. An example of the result is shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 図2及び3は、各臓器への[18F]PTVS2の集積の経時変化の一例を示すグラフであって、図2がラットの結果を示し、図3がマウスの結果を示す。図2及び3に示すように、ラット及びマウスのいずれにおいても、[18F]PTVS2は、投与後速やかに肝臓に移行し、その後腸に移行して排出されていることが確認できた。また、その他の臓器への移行は、腎臓以外はほとんど確認されなかった。 2 and 3 are graphs showing an example of the change with time of accumulation of [ 18 F] PTVS2 in each organ. FIG. 2 shows the results of rats and FIG. 3 shows the results of mice. As shown in FIGS. 2 and 3, it was confirmed that [ 18 F] PTVS2 was transferred to the liver immediately after administration and then transferred to the intestine and excreted in both rats and mice. In addition, migration to other organs was hardly confirmed except in the kidney.
 [PET撮像]
 [18F]PTVS2を用いて下記の条件でPET撮像を行った。その結果の一例を図4に示す。
投与量:122μCi
6週齢SDラット(雄性)
撮像装置:eXplore Vista(製品名、GE社製)
撮像方法:Static Scan、60秒ごと1フレーム
リコンストラクション:2DOSEM(Dynamic OS-EM)
[PET imaging]
PET imaging was performed using [ 18 F] PTVS2 under the following conditions. An example of the result is shown in FIG.
Dose: 122 μCi
6-week-old SD rat (male)
Imaging device: eXplore Vista (product name, manufactured by GE)
Imaging method: Static Scan, 1 frame every 60 seconds Construction: 2DOSEM (Dynamic OS-EM)
 図4に示す画像は、いずれもcoronal画像であって、左から順に投与1分後、4分後、及び20分後の画像である。図4に示すように、体内分布実験の結果と同様に、[18F]PTVS2は、投与後速やかに肝臓に移行し、その後腸に移行し排出されていることが確認できた。また、その他の臓器への移行は、腎臓以外はほとんど確認されなかった。 The images shown in FIG. 4 are all coronal images, which are images 1 minute, 4 minutes, and 20 minutes after administration in order from the left. As shown in FIG. 4, as in the results of the biodistribution experiment, it was confirmed that [ 18 F] PTVS2 quickly migrated to the liver after administration, and then migrated to the intestine to be excreted. In addition, migration to other organs was hardly confirmed except in the kidney.
 以上に示すように、PTVS6及び[18F]PTVS2の輸送特性は、pitavastatinの輸送特性と非常に類似していた。また、pitavastatinは、ヒト肝細胞において主にOATP1B1によって取り込まれるとの報告がなされている。このため、PTVS6及び[18F]PTVS2についても同様に、ヒト肝細胞において主にOATP1B1によって取り込まれうることが示唆された。 As shown above, the transport properties of PTVS6 and [ 18 F] PTVS2 were very similar to those of pitavastatin. It has been reported that pitavastatin is taken up mainly by OATP1B1 in human hepatocytes. For this reason, it was suggested that PTVS6 and [ 18 F] PTVS2 can also be taken up mainly by OATP1B1 in human hepatocytes.
 [代謝安定性の評価]
 PTVS6について、ヒト肝ミクロソームを用いたin vitro実験による代謝安定性の評価を行った。なお、in vitro実験による代謝安定性の評価は、既に報告されている方法(Obach et al. Drug Metab Dispos 30:831-837(2002))に準じる形で行った。
[Evaluation of metabolic stability]
PTVS6 was evaluated for metabolic stability by in vitro experiments using human liver microsomes. In addition, the evaluation of metabolic stability by in vitro experiments was performed in a manner according to a method already reported (Obach et al. Drug Metab Dispos 30: 831-837 (2002)).
 まず、基質として、PTVS6、Pitavastatin、及びCYP3A4基質であるmidazolamを準備し、各基質(final 3 μM)と、ヒト肝ミクロソーム(final 1 mg protein/mL)と、3.3mM MgCl2を含む100 mM potassium phosphate buffer(pH 7.4)とを混合し、5分間37℃でプレインキュベーションを行った。ついで、代謝反応に必要な駆動力となるNADPHをfinal 1.3mMになるように添加して最終的に500μLとし、37℃でインキュベーションを行いつつ、NADPH添加直後、2分後及び10分後にそれぞれ25μLずつサンプルを採取した。得られたサンプルを、測定のための内部標準を含むAcetonitrile 25μLと混合した後、遠心分離によるタンパク質除去を行い、上清を採取し、LC/MS/MSでサンプル中に残存する基質量を測定した。その結果を図5のグラフに示す。 First, prepare PTVS6, Pitavastatin and CYP3A4 substrate midazolam as substrates, each substrate (final 3 μM), human liver microsome (final 1 mg protein / mL), and 100 mM potassium containing 3.3 mM MgCl 2 Phosphate buffer (pH 7.4) was mixed and preincubated for 5 minutes at 37 ° C. Next, NADPH, which is a driving force necessary for metabolic reaction, is added to final 1.3 mM to finally make 500 μL, and after incubation at 37 ° C., immediately after NADPH addition, 25 μL each after 2 minutes and 10 minutes. Samples were taken one by one. The obtained sample is mixed with 25 μL of Acetonitrile containing the internal standard for measurement, then the protein is removed by centrifugation, the supernatant is collected, and the residual mass in the sample is measured by LC / MS / MS did. The results are shown in the graph of FIG.
 図5は、代謝反応開始(NADPH添加)から10分後までの間におけるサンプル中に残存する基質の割合を示すグラフであって、縦軸が添加した量に対するサンプル中に残存する基質の割合を示し、横軸が時間を示す。図5のグラフに示すように、CYP3A4基質であってヒトにおいてよく代謝されることが知られているmidazolamは、過去の報告同様に、代謝反応開始から10分の間に基質残存率が数%にまで減少した。一方、PTVS6及びPitavastatinはいずれも代謝反応開始から10分の間に基質の減少はほとんど見られなかった。 FIG. 5 is a graph showing the ratio of the substrate remaining in the sample from the start of metabolic reaction (NADPH addition) to 10 minutes later, and the vertical axis indicates the ratio of the substrate remaining in the sample with respect to the added amount. The horizontal axis indicates time. As shown in the graph of FIG. 5, midazolam, which is a CYP3A4 substrate and is known to be well metabolized in humans, has a substrate residual rate of several percent within 10 minutes from the start of metabolic reaction, as in previous reports. Decreased to. On the other hand, both PTVS6 and Pitavastatin showed almost no decrease in substrate within 10 minutes from the start of the metabolic reaction.
 図5のグラフに示すように、ヒトにおいてよく代謝されるmidazolamについては、in vitro実験系においても極めて速やかに代謝されていたことから、本実験系がヒトにおける代謝反応を反映するものであることが確認された。そして、この実験系において、PTVS6及びpitavastatinは共に代謝的に極めて安定であることが示された。したがって、PTVS6及びpitavastatinは、PETプローブとしての理想的な性質の一つである親化合物としての安定性が担保されていることが示唆された。このことから、PTVS6及びpitavastatinを放射性標識して得られるPETプローブは、代謝的に安定であり、該PETプローブを用いたイメージングにより得られた放射能の定量値がこれらの化合物の量を主に反映しうるという極めて理想的な性質を有していることが示唆された。 As shown in the graph of FIG. 5, midazolam, which is often metabolized in humans, was metabolized very rapidly even in the in vitro experimental system, and this experimental system reflects the metabolic reaction in humans. Was confirmed. In this experimental system, both PTVS6 and pitavastatin were shown to be extremely stable metabolically. Therefore, it was suggested that PTVS6 and pitavastatin have guaranteed stability as a parent compound, which is one of the ideal properties as a PET probe. Therefore, the PET probe obtained by radiolabeling PTVS6 and pitavastatin is metabolically stable, and the quantitative value of radioactivity obtained by imaging using the PET probe is mainly based on the amount of these compounds. It was suggested that it has a very ideal property that can be reflected.
 以上の結果により、[18F]PTVS2を用いた肝内動態をMD及び/又は臨床投与量で行うことによって、[18F]PTVS2を用いて得られたin vivoパラメータと、ヒト遺伝子発現細胞、ヒト凍結肝細胞、ヒト胆管側膜ベシクル、及び/又はヒト肝ミクロソームを用いて得られた輸送・代謝にかかるin vitroパラメータとに基づき、ヒト生体内の肝臓における被験薬物濃度の時間推移を予測するモデルを構築することが可能になることが示唆された。さらには、薬物の肝取り込み/排泄過程の個体間変動要因としての遺伝子多型及び/又は薬物間相互作用がある場合の薬物動態の定量的な変動予測が可能になることが示唆された。 Based on the above results, by performing intrahepatic kinetics using [ 18 F] PTVS2 at MD and / or clinical dose, in vivo parameters obtained using [ 18 F] PTVS2 and human gene-expressing cells, Predict the time course of the concentration of a test drug in the liver in the human body based on in vitro parameters related to transport and metabolism obtained using human frozen hepatocytes, human biliary vesicle vesicles, and / or human liver microsomes It was suggested that it would be possible to build a model. Furthermore, it was suggested that quantitative variation prediction of pharmacokinetics in the presence of genetic polymorphism and / or drug-drug interaction as an inter-individual variation factor of drug hepatic uptake / excretion process becomes possible.
 (製造例7)PTVS7、PTVS5及びPTVS8の製造
 下記のスキームに従い、PTVS7,PTVS5及びPTVS8を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000049
Production Example 7 Production of PTVS7, PTVS5 and PTVS8 PTVS7, PTVS5 and PTVS8 were produced according to the following scheme. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000049
 化合物(vi-2)の合成
 アルゴン気流下、化合物(iv-1)(2.2g,5.4mmol)の塩化メチレン(20ml)/メタノール(20ml)溶液にパラジウム炭素(2.2g)を加えた後、反応容器内を水素で置換した。水素気流下、室温で1時間激しく攪拌した。攪拌後、不溶物をHyflo Super-Celによる濾過で除去し、酢酸エチルで洗浄後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:4)で精製し、無色固体として目的とする化合物(iv-2)(1.5g,87%)を得た。
1H-NMR (500 MHz, CDCl3)δ: 7.96 (d, J = 8.6 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.35 (br dd, J = 8.0 Hz, 7.4 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.64 (s, 3H), 2.16 (tt, J = 8.0 Hz, 4.6 Hz, 1H), 1.33 (ddd, J = 4.6 Hz, 4.6 Hz, 1.7 Hz, 1H), 1.03 (ddd, J = 6.3 Hz, 6.3 Hz, 2.9 Hz, 1H); MS (EI+, 70 eV): m/z: 319 (M+, 68), 293 (100), 260 (81), 234 (36); HRMS calcd for C20H17NO3 (M+): 319.1208, found 319.1200.
Synthesis of Compound (vi-2) After adding palladium carbon (2.2 g) to a methylene chloride (20 ml) / methanol (20 ml) solution of Compound (iv-1) (2.2 g, 5.4 mmol) under an argon stream, the reaction The inside of the container was replaced with hydrogen. The mixture was vigorously stirred at room temperature for 1 hour under a hydrogen stream. After stirring, the insoluble material was removed by filtration through Hyflo Super-Cel, washed with ethyl acetate, the solvent was distilled off, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 4). The target compound (iv-2) (1.5 g, 87%) was obtained as a colorless solid.
1 H-NMR (500 MHz, CDCl 3 ) δ: 7.96 (d, J = 8.6 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.35 (br dd, J = 8.0 Hz, 7.4 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.64 (s, 3H), 2.16 (tt, J = 8.0 Hz, 4.6 Hz, 1H), 1.33 (ddd, J = 4.6 Hz, 4.6 Hz, 1.7 Hz, 1H), 1.03 (ddd, J = 6.3 Hz, 6.3 Hz, 2.9 Hz, 1H); MS (EI + , 70 eV): m / z: 319 (M + , 68), 293 (100), 260 (81), 234 (36); HRMS calcd for C 20 H 17 NO 3 (M + ): 319.1208, found 319.1200.
 化合物(vi-3)の合成
 アルゴン気流下、化合物(iv-2)(1.5mg,4.7mmol)及び2-Fluoroethyl 4-methylbenzenesulfonate(986μl,5.6mmol)のN,N,-dimethylformamide(15ml)溶液に炭酸カリウム(1.3g,9.3mmol)を室温攪拌下にて加え、同温にて10分攪拌後、70℃にて20時間攪拌した。反応終了後、蒸留水を加え、ジエチルエーテルで4回抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、淡黄色固体として目的とする化合物(iv-3)(1.3g,76%)を得た。
1H-NMR (400 MHz, CDCl3)δ: 7.97 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 4.81 (dt, JF = 47.3 Hz, J = 4.1 Hz, 2H), 4.30 (dt, JF = 27.6 Hz, J = 4.1 Hz, 2H), 3.64 (s, 3H), 2.18 (tt, J = 8.2 Hz, 4.6 Hz, 1H), 1.36 (ddd, J = 4.6 Hz, 4.6 Hz, 1.7 Hz, 1H), 1.05 (ddd, J = 6.3 Hz, 6.3 Hz, 2.9 Hz, 1H); MS (EI+, 70 eV): m/z: 365 (M+, 99), 337 (100), 322 (34), 306 (57), 269 (22); HRMS calcd for C22H20FNO3(M+): 365.1427, found 365.1424
Synthesis of Compound (vi-3) In a stream of argon, compound (iv-2) (1.5 mg, 4.7 mmol) and 2-Fluoroethyl 4-methylbenzenesulfonate (986 μl, 5.6 mmol) in N, N, -dimethylformamide (15 ml) solution. Potassium carbonate (1.3 g, 9.3 mmol) was added with stirring at room temperature, stirred at the same temperature for 10 minutes, and then stirred at 70 ° C. for 20 hours. After completion of the reaction, distilled water was added and extracted four times with diethyl ether. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5) to give a pale yellow solid. As a target compound (iv-3) (1.3 g, 76%).
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.97 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 6.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 4.81 (dt, JF = 47.3 Hz, J = 4.1 Hz, 2H ), 4.30 (dt, JF = 27.6 Hz, J = 4.1 Hz, 2H), 3.64 (s, 3H), 2.18 (tt, J = 8.2 Hz, 4.6 Hz, 1H), 1.36 (ddd, J = 4.6 Hz, 4.6 Hz, 1.7 Hz, 1H), 1.05 (ddd, J = 6.3 Hz, 6.3 Hz, 2.9 Hz, 1H); MS (EI + , 70 eV): m / z: 365 (M +, 99), 337 (100 ), 322 (34), 306 (57), 269 (22); HRMS calcd for C 22 H 20 FNO 3 (M + ): 365.1427, found 365.1424
 化合物(vi-5)の合成
 アルゴン気流下、lithium aluminum hydride(270mg,98%,7.1mmol)のテトラヒドロフラン(15ml)懸濁液に化合物(iv-3)(1.3g,3.55mmol)のテトラヒドロフラン(10.0ml)溶液を0℃攪拌下にて加え、同温にて1時間撹拌後、室温で2.5時間攪拌した。反応終了後、ジエチルエーテルで希釈し、飽和硫酸ナトリウム水溶液を0℃攪拌下でゆっくり加え、硫酸ナトリウムで乾燥した。濾過後、溶媒を留去し無色固体の粗精製物として化合物(iv-4)(1.2g)を得た。
Synthesis of Compound (vi-5) Under a stream of argon, a suspension of lithium aluminum hydride (270 mg, 98%, 7.1 mmol) in tetrahydrofuran (15 ml) was added to a suspension of compound (iv-3) (1.3 g, 3.55 mmol) in tetrahydrofuran (10.0 ml) solution was added under stirring at 0 ° C., stirred at the same temperature for 1 hour, and then stirred at room temperature for 2.5 hours. After completion of the reaction, the reaction mixture was diluted with diethyl ether, and a saturated aqueous sodium sulfate solution was slowly added with stirring at 0 ° C., followed by drying over sodium sulfate. After filtration, the solvent was distilled off to obtain compound (iv-4) (1.2 g) as a crude purified product of colorless solid.
 アルゴン気流下、化合物(iv-4)(1.2g)及び四臭化炭素(2.35g,7.1mmol)の塩化メチレン(12ml)溶液にtriphenylphosphine(1.9g,7.1mmol)の塩化メチレン溶液(6.0 ml)を0℃攪拌下にて加え、同温下30分攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)で精製し、淡黄色固体として目的とする化合物(iv-5)(1.1g,76%)を得た。
1H-NMR (400 MHz, CDCl3)δ: 7.95 (d, J = 8.5 Hz, 1H), 7.65 - 7.59 (m, 1H), 7.37 - 7.30 (m, 4H), 7.11 (dd, J = 8.8 Hz, 2.7 Hz, 1H), 4.84 (dt, JF = 47.3 Hz, J = 3.9 Hz, 2H), 4.71 (s, 1H), 4.63 (s, 1H), 4.34 (dt, JF = 27.8 Hz, J = 4.1 Hz, 2H), 2.52 (tt, J = 8.0 Hz, 4.0 Hz, 1H), 1.38 - 1.37 (m, 2H), 1.15 - 1.05 (m, 2H); MS (EI+, 70 eV): m/z: 399 (M+, 5.7), 355 (26), 320 (100), 273 (17), 244 (21); HRMS calcd for C21H19BrFNO (M+): 399.0634, found 399.0637
Under a stream of argon, a solution of compound (iv-4) (1.2 g) and carbon tetrabromide (2.35 g, 7.1 mmol) in methylene chloride (12 ml) in methylene chloride solution (6.0 ml) of triphenylphosphine (1.9 g, 7.1 mmol) Was added with stirring at 0 ° C., and the mixture was stirred at the same temperature for 30 minutes. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10) to give a pale yellow solid. As a target compound (iv-5) (1.1 g, 76%).
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.95 (d, J = 8.5 Hz, 1H), 7.65-7.59 (m, 1H), 7.37-7.30 (m, 4H), 7.11 (dd, J = 8.8 Hz, 2.7 Hz, 1H), 4.84 (dt, JF = 47.3 Hz, J = 3.9 Hz, 2H), 4.71 (s, 1H), 4.63 (s, 1H), 4.34 (dt, JF = 27.8 Hz, J = 4.1 Hz, 2H), 2.52 (tt, J = 8.0 Hz, 4.0 Hz, 1H), 1.38-1.37 (m, 2H), 1.15-1.05 (m, 2H); MS (EI + , 70 eV): m / z: 399 (M + , 5.7), 355 (26), 320 (100), 273 (17), 244 (21); HRMS calcd for C 21 H 19 BrFNO (M + ): 399.0634, found 399.0637
 化合物(vi-6)の合成
 アルゴン気流下、化合物(iv-5)(1.1g,2.7mmol)のトルエン(20ml)溶液にethoxydiphenylphosphine(2.9ml,13.6mmol)を室温攪拌下にて加え、120℃にて20時間攪拌した。溶媒を留去し得られた油状物へジエチルエーテルを加え、析出した結晶をジエチルエーテルで洗浄し、無色結晶として目的とする化合物(vi-6)(1.3g,91%)を得た。
1H-NMR (400 MHz, CDCl3)δ: 7.93 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 7.3 Hz, 1H), 7.46 (qt, J = 7.0 Hz, 1.5 Hz, 1H), 7.40 - 7.30 (m, 9H), 7.22 (t, J = 7.1 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.9 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 4.83 (dt, JF = 47.3 Hz, J = 4.0 Hz, 2H), 4.28 (dt, JF = 27.9 Hz, J = 4.1 Hz, 2H), 4.08 (d, J = 14.1 Hz, 1H), 2.64 (tt, J = 8.0 Hz, 4.0 Hz, 1H), 1.23 - 1.20 (m, 2H), 0.93 - 0.90 (m, 2H); MS (EI+, 70 eV): m/z: 521 (M+, 50), 396 (100), 320 (41), 280 (23), 244 (21), 201 (37); HRMS calcd for C33H29FNO2P (M+): 521.1920, found 521.1927
Synthesis of compound (vi-6) Under a stream of argon, ethoxydiphenylphosphine (2.9 ml, 13.6 mmol) was added to a toluene (20 ml) solution of compound (iv-5) (1.1 g, 2.7 mmol) with stirring at room temperature. For 20 hours. Diethyl ether was added to the oily substance obtained by evaporating the solvent, and the precipitated crystals were washed with diethyl ether to obtain the desired compound (vi-6) (1.3 g, 91%) as colorless crystals.
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.93 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 7.3 Hz, 1H), 7.46 (qt, J = 7.0 Hz, 1.5 Hz, 1H ), 7.40-7.30 (m, 9H), 7.22 (t, J = 7.1 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.9 Hz, 1H), 6.73 (d , J = 8.2 Hz, 1H), 4.83 (dt, JF = 47.3 Hz, J = 4.0 Hz, 2H), 4.28 (dt, JF = 27.9 Hz, J = 4.1 Hz, 2H), 4.08 (d, J = 14.1 Hz, 1H), 2.64 (tt, J = 8.0 Hz, 4.0 Hz, 1H), 1.23-1.20 (m, 2H), 0.93-0.90 (m, 2H); MS (EI + , 70 eV): m / z : 521 (M + , 50), 396 (100), 320 (41), 280 (23), 244 (21), 201 (37); HRMS calcd for C 33 H 29 FNO 2 P (M + ): 521.1920 , found 521.1927
 PTVS7の合成
 アルゴン気流下、2,2,6,6-tetramethylpiperidine(TMP)(212μl,1.2mmol)のテトラヒドロフラン(4.0 ml)溶液に、n-butyllithium(2.69M in hexane,2.2mmol,820μl)を-78℃攪拌下にて滴下し、同温にて10分攪拌後、0℃で1時間攪拌した。攪拌後、化合物(vi-6)(500mg,0.96mmol)のテトラヒドロフラン(15ml)溶液を-78℃攪拌下にて20分間かけて滴下し、同温にて30分攪拌した。撹拌後、DIO(421mg,1.63mmol)のテトラヒドロフラン溶液(4.0ml)を-78℃攪拌下にて滴下し、自然昇温させ、室温下で24時間攪拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液に注ぎ込み、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:7)で精製し、無色アモルファス状固体として目的とする化合物(PTVS7)(320mg,59%)を得た。
1H-NMR (400 MHz, CDCl3) (major : minor = 9 : 1) δ; 8.00 - 7.85 (m, 1H), 7.61 - 7.55 (m, 1H), 7.47 - 7.27 (m, 2H), 7.15 (dd, J = 23 Hz, 7.7 Hz, 2H), 7.04 - 6.96 (m, 2H), 6.55 (dd, J = 16.3 Hz, 1.1 Hz, 0.9H), 6.42 (d,  = 11.4 Hz, 0.1H), 5.64 (dd, J = 16.3 Hz, 6.0 Hz, 1H), 4.88 - 4.75 (m, 2H), 4.37 - 4.21 (m, 4H), 2.46 - 2.17 (m, 3H), 1.46 (s, 9H), 1.41 - 1.25 (m, 9H), 1.08 - 0.93 (m, 3H) 13C-NMR (100 MHz, CDCl3)δ170.1, 160.6, 157.8, 146.7, 145.0, 137.5, 131.6, 131.2, 130.1, 129.1, 128.7, 128.5, 126.2, 125.1, 114.5, 114.1, 98.7, 82.5, 81.2, 80.5, 69.9, 67.2, 65.8, 42.6, 36.4, 29.9, 28.0 (3),19.7, 16.0, 15.2, 10.4, 10.1; MS (EI+, 70 eV): m/z: 561 (M+, 6.7), 490 (17), 430 (36), 388 (31), 332 (100), 319 (82); HRMS calcd for C34H40FNO5(M+): 561.2890, found 561.2882
Synthesizing PTVS7 with 2,2,6,6-tetramethylpiperidine (TMP) (212 μl, 1.2 mmol) in tetrahydrofuran (4.0 ml) with n-butyllithium (2.69 M in hexane, 2.2 mmol, 820 μl) The mixture was added dropwise with stirring at 78 ° C., stirred at the same temperature for 10 minutes, and then stirred at 0 ° C. for 1 hour. After stirring, a solution of compound (vi-6) (500 mg, 0.96 mmol) in tetrahydrofuran (15 ml) was added dropwise over 20 minutes with stirring at −78 ° C., and the mixture was stirred at the same temperature for 30 minutes. After stirring, a tetrahydrofuran solution (4.0 ml) of DIO (421 mg, 1.63 mmol) was added dropwise with stirring at −78 ° C., allowed to warm naturally, and stirred at room temperature for 24 hours. After completion of the reaction, the reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated. The resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 7) to give a colorless amorphous product. The target compound (PTVS7) (320 mg, 59%) was obtained as a solid.
1 H-NMR (400 MHz, CDCl 3 ) (major: minor = 9: 1) δ; 8.00-7.85 (m, 1H), 7.61-7.55 (m, 1H), 7.47-7.27 (m, 2H), 7.15 (dd, J = 23 Hz, 7.7 Hz, 2H), 7.04-6.96 (m, 2H), 6.55 (dd, J = 16.3 Hz, 1.1 Hz, 0.9H), 6.42 (d, = 11.4 Hz, 0.1H) , 5.64 (dd, J = 16.3 Hz, 6.0 Hz, 1H), 4.88-4.75 (m, 2H), 4.37-4.21 (m, 4H), 2.46-2.17 (m, 3H), 1.46 (s, 9H), 1.41-1.25 (m, 9H), 1.08-0.93 (m, 3H) 13 C-NMR (100 MHz, CDCl 3 ) δ170.1, 160.6, 157.8, 146.7, 145.0, 137.5, 131.6, 131.2, 130.1, 129.1, 128.7, 128.5, 126.2, 125.1, 114.5, 114.1, 98.7, 82.5, 81.2, 80.5, 69.9, 67.2, 65.8, 42.6, 36.4, 29.9, 28.0 (3), 19.7, 16.0, 15.2, 10.4, 10.1; MS (EI + , 70 eV): m / z: 561 (M + , 6.7), 490 (17), 430 (36), 388 (31), 332 (100), 319 (82); HRMS calcd for C 34 H 40 FNO 5 (M + ): 561.2890, found 561.2882
 なお、DIOは下記スキームに従い合成した。
Figure JPOXMLDOC01-appb-C000050
 まず、アルゴン気流下、oxalyl chloride(813μl,9.6mol)の塩化メチレン(10ml)溶液に-78℃攪拌下にてDimethyl sulfoxide(1.64ml,23.0mol)をゆっくり滴下し、同温にて30分撹拌した。撹拌後、カネカシントン(500mg,1.92mol)の塩化メチレン(2.0ml)溶液を-78℃攪拌下にて滴下し、1時間攪拌した。攪拌後、Triethylamine(5.4ml,38.4mol)を滴下し、1時間攪拌した。反応終了後、-25℃まで自然昇温させ、-25℃攪拌下で20%食塩水(6.0ml)を滴下し、室温まで昇温した。その後、20%食塩水(6.0ml)でニ回洗浄し、溶媒を留去し得られた淡黄色油状物にイソプロピルエーテル(12ml)を加え、セライト濾過を行い、濾液を無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2)で精製し、無色針状結晶として目的とする化合物(DIO)(448mg,90%)を得た。
DIO was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000050
First, dimethyl sulfoxide (1.64 ml, 23.0 mol) was slowly added dropwise to a solution of oxalyl chloride (813 μl, 9.6 mol) in methylene chloride (10 ml) under an argon stream at −78 ° C. with stirring at the same temperature for 30 minutes. did. After stirring, a solution of Kaneka synthon (500 mg, 1.92 mol) in methylene chloride (2.0 ml) was added dropwise with stirring at −78 ° C. and stirred for 1 hour. After stirring, Triethylamine (5.4 ml, 38.4 mol) was added dropwise and stirred for 1 hour. After completion of the reaction, the temperature was naturally raised to −25 ° C., 20% brine (6.0 ml) was added dropwise with stirring at −25 ° C., and the temperature was raised to room temperature. After washing twice with 20% brine (6.0 ml), the solvent was distilled off, isopropyl ether (12 ml) was added to the resulting pale yellow oil, celite filtration was performed, and the filtrate was dried over anhydrous magnesium sulfate. The crude product obtained by distilling off the solvent was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2) to give the target compound (DIO) (448 mg, 90%) as colorless needle crystals. Obtained.
 PTVS5の合成
 アルゴン気流下、PTVS7(80mg,0.14mmol)の塩化メチレン(2.0ml)溶液にトリフルオロ酢酸(1.0ml)を0℃攪拌下にて加え、室温下で1時間攪拌した。反応終了後、反応液を氷冷下で飽和炭水素ナトリウム水溶液に注ぎ込み、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物を分取薄層クロマトグラフィー(酢酸エチル:トルエン=4:1)で精製し、淡黄色油状物として目的とする化合物(PTVS5)(45mg,70%)を得た。
Synthesis of PTVS5 Under a stream of argon, trifluoroacetic acid (1.0 ml) was added to a solution of PTVS7 (80 mg, 0.14 mmol) in methylene chloride (2.0 ml) with stirring at 0 ° C., and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution under ice cooling, and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was distilled off, and the resulting crude product was purified by preparative thin layer chromatography (ethyl acetate: toluene = 4: 1) The target compound (PTVS5) (45 mg, 70%) was obtained as a yellow oil.
 PTVS8の合成
 PTVS5(45mg,100μmol)のメタノール(1.0 ml)溶液に2N水酸化ナトリウム水溶液(1.0ml,1.0mmol)を加え、室温にて30分間撹拌した。反応終了後、HPLCで精製を行い、目的とする化合物(PTVS8)(45mg,100%)を得た。
Synthesis of PTVS8 To a solution of PTVS5 (45 mg, 100 μmol) in methanol (1.0 ml) was added 2N aqueous sodium hydroxide solution (1.0 ml, 1.0 mmol), and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, purification was performed by HPLC to obtain the target compound (PTVS8) (45 mg, 100%).
 (製造例8)標識前駆体化合物の製造
 下記のスキームに従い、標識前駆体化合物であるPTVS9を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000051
Production Example 8 Production of Label Precursor Compound According to the following scheme, PTVS9, which is a label precursor compound, was produced. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000051
 化合物(i-3)の合成
 アルゴン気流下、化合物(i-2)(2.1g,6.6mmol)及び(2-Bromoethoxy)-tert-butyldimethylsilane(1.7ml,7.9mmol)のN,N,-dimethylformamide(30ml)溶液に炭酸カリウム(1.8g,13.1mmol)を室温攪拌下にて加え、同温にて10分攪拌後、70℃にて13時間攪拌した。反応終了後、蒸留水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)で精製し、無色油状物として目的とする化合物(i-3)(2.5g,79%)を得た。
Synthesis of Compound (i-3) N, N, -dimethylformamide of Compound (i-2) (2.1 g, 6.6 mmol) and (2-Bromoethoxy) -tert-butyldimethylsilane (1.7 ml, 7.9 mmol) under an argon stream 30 ml) was added potassium carbonate (1.8 g, 13.1 mmol) with stirring at room temperature, stirred at the same temperature for 10 minutes, and then stirred at 70 ° C. for 13 hours. After completion of the reaction, distilled water was added and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10) to give a colorless oil. As a target compound (i-3) (2.5 g, 79%).
 化合物(i-4)の合成
 アルゴン気流下、lithium aluminum hydride(400mg,98%,10.5 mmol)のテトラヒドロフラン(25ml)懸濁液に化合物(i-3)(2.5g,5.2mmol)のTHF(15.0ml)溶液を0℃攪拌下にて加え、室温で5時間攪拌した。反応終了後、ジエチルエーテルで希釈し、飽和硫酸ナトリウム水溶液を0℃攪拌下でゆっくり加え、硫酸ナトリウムで乾燥した。濾過後、溶媒を留去し無色固体の粗精製物として化合物(i-4)(2.4g)を得た。
Synthesis of Compound (i-4) Under a stream of argon, lithium (25 mg) suspension of lithium aluminum hydride (400 mg, 98%, 10.5 mmol) was dissolved in THF (15.0) of compound (i-3) (2.5 g, 5.2 mmol). ml) solution was added under stirring at 0 ° C. and stirred at room temperature for 5 hours. After completion of the reaction, the reaction mixture was diluted with diethyl ether, and a saturated aqueous sodium sulfate solution was slowly added with stirring at 0 ° C., followed by drying over sodium sulfate. After filtration, the solvent was distilled off to obtain compound (i-4) (2.4 g) as a crude purified product of colorless solid.
 化合物(i-5)の合成
 アルゴン気流下、化合物(i-4)(2.4g)及び四臭化炭素(3.6g,10.9mmol)の塩化メチレン(20ml)溶液にtriphenylphosphine(2.9g,10.9mmol)の塩化メチレン溶液(10ml)を0℃攪拌下にて加え、同温下で25分攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:15)で精製し、淡黄色固体として目的とする化合物(i-5)(1.9g,69%)を得た。
Synthesis of compound (i-5) Triphenylphosphine (2.9 g, 10.9 mmol) was added to a solution of compound (i-4) (2.4 g) and carbon tetrabromide (3.6 g, 10.9 mmol) in methylene chloride (20 ml) under an argon stream. Of methylene chloride (10 ml) was added with stirring at 0 ° C., and the mixture was stirred at the same temperature for 25 minutes. After completion of the reaction, a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with chloroform. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was evaporated, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 15) to give a pale yellow solid. As a target compound (i-5) (1.9 g, 69%).
 化合物(i-6)の合成
 アルゴン気流下、化合物(i-5)(1.9g,3.8mmol)のトルエン(35ml)溶液にethoxydiphenylphosphine(4.1ml,19.9mmol)を室温攪拌下にて加え、120℃にて4.5時間攪拌した。溶媒を留去し得られた油状物へジエチルエーテルを加え、析出した結晶をジエチルエーテルで洗浄し、無色結晶として化合物(i-6)(2.2g,92%)を得た。
Synthesis of compound (i-6) Under a stream of argon, ethoxydiphenylphosphine (4.1 ml, 19.9 mmol) was added to a toluene (35 ml) solution of compound (i-5) (1.9 g, 3.8 mmol) with stirring at room temperature. For 4.5 hours. Diethyl ether was added to the oily substance obtained by evaporating the solvent, and the precipitated crystals were washed with diethyl ether to obtain compound (i-6) (2.2 g, 92%) as colorless crystals.
 化合物(i-7)の合成
 アルゴン気流下、2,2,6,6-tetramethylpiperidine (TMP)(698μl,4.1mmol)のテトラヒドロフラン(20ml)溶液にn-butyllithium(2.69M in hexane,7.3mmol,2.7ml)を-78℃攪拌下にて滴下し、同温にて10分攪拌後、0℃で1時間攪拌した。攪拌後、化合物(i-6)(4.2g,18.5mmol)のテトラヒドロフラン(50ml)溶液を-78℃攪拌下にて15分かけて滴下した。同温にて45分攪拌後、DIO(1.4g,5.4mmol)のテトラヒドロフラン(15ml)溶液を-78℃攪拌下にて滴下し、室温まで自然昇温させた後、12時間攪拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液に注ぎ込み、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:20)で精製し、無色アモルファス状固体として目的とする化合物(i-7)(1.0g,47%)を得た。
Synthesis of Compound (i-7) Under a stream of argon, 2,2,6,6-tetramethylpiperidine (TMP) (698 μl, 4.1 mmol) in tetrahydrofuran (20 ml) in n-butyllithium (2.69 M in hexane, 7.3 mmol, 2.7 ml) was added dropwise with stirring at −78 ° C., stirred at the same temperature for 10 minutes, and then stirred at 0 ° C. for 1 hour. After stirring, a solution of compound (i-6) (4.2 g, 18.5 mmol) in tetrahydrofuran (50 ml) was added dropwise over 15 minutes with stirring at −78 ° C. After stirring at the same temperature for 45 minutes, a solution of DIO (1.4 g, 5.4 mmol) in tetrahydrofuran (15 ml) was added dropwise with stirring at −78 ° C., allowed to warm to room temperature, and then stirred for 12 hours. After completion of the reaction, the reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was distilled off, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20) to give a colorless amorphous form. The target compound (i-7) (1.0 g, 47%) was obtained as a solid.
 化合物(i-8)の合成
 アルゴン気流下、化合物(i-6)(1.0g,1.5mmol)のTHF(15ml)溶液にフッ化テトラブチルアンモニウム1.0M テトラヒドロフラン溶液(1.8ml,1.8mmol)を0℃攪拌下にて加え、室温下で1.5時間攪拌した。反応終了後、反応液に蒸留水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し、無色油状物として目的とする化合物(i-8)(827mg)を得た。
Synthesis of Compound (i-8) Under a stream of argon, Compound (i-6) (1.0 g, 1.5 mmol) in THF (15 ml) was added with tetrabutylammonium fluoride 1.0 M tetrahydrofuran solution (1.8 ml, 1.8 mmol). The mixture was added with stirring at ° C. and stirred at room temperature for 1.5 hours. After completion of the reaction, distilled water was added to the reaction solution and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated to give the desired compound (i-8) (827 mg) as a colorless oil.
 PTVS9の合成
 アルゴン気流下、化合物(i-8)(827mg,1.5mmol)及びtriethylamine(414μl,3.0mmol)の塩化メチレン(15ml)溶液に、塩化p-トルエンスルホン酸(329mg,1.8mmol)及びN,N-Dimethylaminopyridine(18mg,0.15mmol)を0℃攪拌下にて加え、室温下で18時間攪拌した。反応終了後、反応液を飽和炭酸水素ナトリウム水溶液に注ぎ込み、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去し得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:10)で精製し、目的とする化合物(PTVS9)(900mg,85%)を得た。
Synthesis of PTVS9 N-Dimethylaminopyridine (18 mg, 0.15 mmol) was added with stirring at 0 ° C., and the mixture was stirred at room temperature for 18 hours. After completion of the reaction, the reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, the solvent was distilled off, and the resulting crude product was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10) to obtain the target. Compound (PTVS9) (900 mg, 85%) was obtained.
 [毒性試験]
 常法に従って、マウス(雄性、5週齢)に、製造例7で得られた化合物(PTVS8)を尾静脈内に1回投与した。投与用量は174μg/kg又は400μg/kgとした。コントロールには媒体(0.1% Tween80添加生理食塩水)のみを投与した。その結果、いずれの投与郡も実験期間を通じて体重が順調に推移し、血液学的検査、血液生化学的検査、器官重量、病理解剖検査、及び病理組織学的検査においても投与に起因した変化は認められなかった。また、局所刺激性(静脈刺激性)は認められなかった。
[Toxicity test]
According to a conventional method, the compound (PTVS8) obtained in Production Example 7 was administered once into the tail vein of a mouse (male, 5 weeks old). The administration dose was 174 μg / kg or 400 μg / kg. As a control, only vehicle (0.1% Tween 80-added physiological saline) was administered. As a result, the body weights of all the administration groups remained steady throughout the experimental period, and the changes caused by administration in hematological examinations, blood biochemical examinations, organ weights, pathological anatomical examinations, and histopathological examinations I was not able to admit. Moreover, local irritation (vein irritation) was not recognized.
 (製造例11)PTVS4の製造
 下記表3に示す条件1及び2の触媒及び溶媒を用いた以外は、下記のスキームに従い、製造例5と同様にして化合物(PTVS3)から目的とする化合物(PTVS4)を製造した。製造例4と同様にして化合物(PTVS3)から目的とする化合物(PTVS4)を製造した(表3の条件3)。下記表3に示す条件4の触媒及び溶媒を用い、攪拌温度を90℃、攪拌時間を7時間とした以外は、製造例4と同様にして化合物(PTVS3)から目的とする化合物(PTVS4)を製造した。
Figure JPOXMLDOC01-appb-C000052
(Production Example 11) Production of PTVS4 According to the following scheme, the target compound (PTVS4) was prepared from the compound (PTVS3) in the same manner as in Production Example 5 except that the catalyst and solvent under the conditions 1 and 2 shown in Table 3 below were used. ) Was manufactured. The target compound (PTVS4) was produced from the compound (PTVS3) in the same manner as in Production Example 4 (Condition 3 in Table 3). The target compound (PTVS4) was prepared from the compound (PTVS3) in the same manner as in Production Example 4 except that the catalyst and solvent of Condition 4 shown in Table 3 below were used, the stirring temperature was 90 ° C., and the stirring time was 7 hours. Manufactured.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 得られた化合物の収率を下記表3に示す。表3に示すように、触媒としてPdCl2(dppf)CH2Cl2/Pd(PPh3)4を用いると、もっとも高い収率でPTVS4が製造できた。 The yield of the obtained compound is shown in Table 3 below. As shown in Table 3, when PdCl 2 (dppf) CH 2 Cl 2 / Pd (PPh 3 ) 4 was used as a catalyst, PTVS4 could be produced with the highest yield.
 (製造例11)放射性標識化合物の製造
 下記のスキームに従い、製造例4で得られた化合物(PTVS3)を標識前駆体化合物として放射性標識を行い、放射性標識化合物であるPTVS10を製造した。以下に、当該スキームを具体的に説明する。
Figure JPOXMLDOC01-appb-C000054
According to the manufacturer following scheme (Production Example 11) radiolabeled compound performs radiolabeled compound obtained in Production Example 4 (PTVS3) as a labeling precursor compound was prepared PTVS10 a radiolabeled compound. The scheme will be specifically described below.
Figure JPOXMLDOC01-appb-C000054
 [ 18 F]4-Fluoroiodobenzenの合成
 [18F]4-Fluoroiodobenzeneを下記スキームに従い製造した。
Figure JPOXMLDOC01-appb-C000055
[18 F] 4-Fluoroiodobenzen synthesis of [18 F] was prepared 4-Fluoroiodobenzene according to the following scheme.
Figure JPOXMLDOC01-appb-C000055
 Kryptofix(登録商標)222(2.0mg,6.9μmol)のAcetonitrile(Merck,Lot.K41266036,50ml,max10ppm H2O)(300μl)溶液に[18F]KFの炭酸カリウム水溶液(20μl,2.23mCi)を加え、Acetonitrile(300μlx3)による共沸脱水を120℃、15分で行った(1.963mCi)。(4-iodophenyl)diphenylsulfoniumtriflate(1.0mg,1.9μmol)、Acetonitrile(100μl)を加え、120℃にて15分加熱した。反応終了後、高速液体クロマトグラフィー(ナカライテスク社製Cosmosil 5C18-AR-II,10x250mm,Acetonitrile:phosphate buffer=70:30,Flow rate=5.0ml/min,column oven temperature=30℃)で精製し、[18F]4-FluoroiodobenzeneのAcetonitrile/Phosphate buffer溶液(0.695mCi,RCY 31%)を得た。 [ 18 F] KF in potassium carbonate (20 μl, 2.23 mCi) was added to a solution of Kryptofix (registered trademark) 222 (2.0 mg, 6.9 μmol) in Acetonitrile (Merck, Lot. K41266036, 50 ml, max 10 ppm H 2 O) (300 μl). In addition, azeotropic dehydration with Acetonitrile (300 μl × 3) was performed at 120 ° C. for 15 minutes (1.963 mCi). (4-iodophenyl) diphenylsulfoniumtriflate (1.0 mg, 1.9 μmol) and Acetonitrile (100 μl) were added, and the mixture was heated at 120 ° C. for 15 minutes. After completion of the reaction, it is purified by high performance liquid chromatography (Cosmosil 5C 18 -AR-II, 10x250mm, Acetonitrile: phosphate buffer = 70: 30, Flow rate = 5.0ml / min, column oven temperature = 30 ° C, manufactured by Nacalai Tesque). Acetonitrile / Phosphate buffer solution (0.695 mCi, RCY 31%) of [ 18 F] 4-Fluoroiodobenzene was obtained.
 Sep-pak Plus PS-2にAcetonitrile(5.0ml),Milli-Q水(5.0ml)の順で通した後、Milli-Q水で30倍に希釈した[18F]4-FluoroiodobenzeneのAcetonitrile/Phosphate buffer溶液(0.9mCi)、Milli-Q水(30ml)の順で通した。次に、DMF(1.0ml)を通し、最後にDMF(200μl)を通した液を回収した(0.275mCi)。 After passing through Sep-pak Plus PS-2 in the order of Acetonitrile (5.0 ml) and Milli-Q water (5.0 ml), it was diluted 30-fold with Milli-Q water [ 18 F] 4-Fluoroiodobenzene Acetonitrile / Phosphate A buffer solution (0.9 mCi) and Milli-Q water (30 ml) were passed in this order. Next, DMF (1.0 ml) was passed through, and finally the liquid through which DMF (200 μl) was passed was collected (0.275 mCi).
 PTVS10の合成
 PTVS3(1.0mg,2.1μmol)、[18F]4-Fluoroiodobenzene(300μCi)、炭酸ナトリウム(1.0mg,9.4μmol)、及びPdCl2(dppf)CH2Cl2(1.0mg,1.2μmol)を加え、系内をアルゴン置換した。ジメチルホルムアミド(DMF)/H2O(=90/10)(0.25mL)を加え、脱気及びアルゴン置換を3回実施した。マイクロウェーブ照射下で120℃にて20分間反応させた。反応終了後、HPLCに導入して分離精製した。目的とする放射性標識化合物(PTVS10)を放射化学的収率12%にて得た。
Synthesis of PTVS10 PTVS3 (1.0 mg, 2.1 μmol), [ 18 F] 4-Fluoroiodobenzene (300 μCi), sodium carbonate (1.0 mg, 9.4 μmol), and PdCl 2 (dppf) CH 2 Cl 2 (1.0 mg, 1.2 μmol) And the inside of the system was replaced with argon. Dimethylformamide (DMF) / H 2 O (= 90/10) (0.25 mL) was added, and degassing and argon substitution were performed three times. The reaction was performed at 120 ° C. for 20 minutes under microwave irradiation. After completion of the reaction, it was introduced into HPLC and separated and purified. The target radiolabeled compound (PTVS10) was obtained with a radiochemical yield of 12%.
 本発明の標識前駆体化合物である化合物(PTVS3)を用いて放射性標識を行うことにより、短時間かつ高い収率で放射性標識化合物であるPTVS10を製造できた。 By performing radiolabeling using the compound (PTVS3) which is a labeling precursor compound of the present invention, PTVS10 which is a radiolabeled compound can be produced in a short time and with a high yield.
 本発明の試料分析方法は、例えば、医療分野、臨床検査の分野、新薬開発等の様々な分野に有用である。 The sample analysis method of the present invention is useful in various fields such as the medical field, clinical laboratory field, new drug development, and the like.

Claims (12)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、
    12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、
    14は、水素原子、C1-4アルキル基、フッ素原子、塩素原子、又は臭素原子を示し、
    15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、
    は、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、mは、1~4の整数を示し、AOは、C2-4オキシアルキレン基を示し、nは、2~4の整数を示し、
    は、反応性官能基を示し、
    Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、
    は、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
    Figure JPOXMLDOC01-appb-C000002
    で表される標識前駆体化合物又はその塩。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group,
    R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group,
    L 1 represents — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —, m represents an integer of 1 to 4, AO represents a C 2-4 oxyalkylene group, n represents an integer of 2 to 4,
    X 1 represents a reactive functional group,
    Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates,
    Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are: Each independently represents —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents hydrogen. Atom, alkyl group, NH 4 , sodium, potassium, or 1/2 calcium is shown. ]
    Figure JPOXMLDOC01-appb-C000002
    Or a precursor thereof.
  2. 式(IV)
    Figure JPOXMLDOC01-appb-C000003
    [式(IV)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、
    12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、
    15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、
    Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、
    は、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示し、
    Mは、ボロン酸エステル基を示す。]
    Figure JPOXMLDOC01-appb-C000004
    で表される標識前駆体化合物又はその塩。
    Formula (IV)
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (IV), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group,
    R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group,
    Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates,
    Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are: Each independently represents —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents hydrogen. Represents an atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 calcium;
    M represents a boronic acid ester group. ]
    Figure JPOXMLDOC01-appb-C000004
    Or a precursor thereof.
  3. 式(V)
    Figure JPOXMLDOC01-appb-C000005
    [式(V)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、
    12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、
    14は、水素原子、C1-4アルキル基、フッ素原子、塩素原子、又は臭素原子を示し、
    15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、
    は、結合手、-(CH-、-O(CH-、-(AO)-、又は-O(AO)-を示し、mは、0~4の整数を示し、AOは、C2-4オキシアルキレン基を示し、nは、2~4の整数を示し、
    は、放射性核種を示し、
    Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、
    は、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
    Figure JPOXMLDOC01-appb-C000006
    で表される放射性標識化合物又はその塩。
    Formula (V)
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (V), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group,
    R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 14 represents a hydrogen atom, a C 1-4 alkyl group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group,
    L 2 represents a bond, — (CH 2 ) m —, —O (CH 2 ) m —, — (AO) n —, or —O (AO) n —, and m is an integer of 0 to 4 AO represents a C 2-4 oxyalkylene group, n represents an integer of 2 to 4,
    X 2 represents a radionuclide,
    Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates,
    Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the group represented by the following formula (III), Q and W each independently represent —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, R 16 represents a hydrogen atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 calcium. ]
    Figure JPOXMLDOC01-appb-C000006
    Or a salt thereof.
  4. 請求項3記載の放射性標識化合物を製造する方法であって、
    請求項1又は2に記載の標識前駆体化合物を、標識物質を用いて標識することを含む、製造方法。
    A method for producing the radiolabeled compound according to claim 3, comprising:
    A production method comprising labeling the labeling precursor compound according to claim 1 or 2 with a labeling substance.
  5. 式(VI)
    Figure JPOXMLDOC01-appb-C000007
    [式(VI)中、R11は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、-NR1718で表される基、ベンジルオキシ基、フッ素原子、塩素原子、又は臭素原子を示し、R17及びR18はそれぞれ独立してC1-2アルキル基を示し、
    12は、水素原子、C1-4アルキル基、C1-3アルコキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、フッ素原子、塩素原子、又は臭素原子を示し、
    15は、C1-6アルキル基、C3-6シクロアルキル基、又はフェニル基を示し、
    Yは、-CH-、-CHCH-、-CH=CH-、-CH-CH=CH-、又は-CH=CH-CH-を示し、
    は、-Q-CH-W-CH-CO16、下記式(II)で表される基、又は下記式(III)で表される基を示し、Q及びWは、それぞれ独立して-C(O)-、-CH(OH)-、又は-CH(OR19)-を示し、R19は、独立してC1-4アルキル基を示し、R16は、水素原子、アルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示し、
    は、スルホン酸エステル基、ハロゲン原子、ニトロ基、又はトリメチルアンモニウム基を示す。]
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物又はその塩と、ボロン酸エステル又はジボロンエステルとをカップリング反応させることを含む、
    式(IV)
    Figure JPOXMLDOC01-appb-C000009
    [式(IV)中、R11、R12、R15、Y、及びZは、式(VI)と同義であり、Mは、ボロン酸エステル基を示す。]
    で表される化合物又はその塩の製造方法。
    Formula (VI)
    Figure JPOXMLDOC01-appb-C000007
    [In the formula (VI), R 11 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, or —NR 17 R 18 . A benzyloxy group, a fluorine atom, a chlorine atom, or a bromine atom, R 17 and R 18 each independently represent a C 1-2 alkyl group,
    R 12 represents a hydrogen atom, a C 1-4 alkyl group, a C 1-3 alkoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a fluorine atom, a chlorine atom, or a bromine atom,
    R 15 represents a C 1-6 alkyl group, a C 3-6 cycloalkyl group, or a phenyl group,
    Y is, -CH 2 -, - CH 2 CH 2 -, - CH = CH -, - CH 2 -CH = CH-, or -CH = CH-CH 2 - indicates,
    Z 1 represents —Q—CH 2 —W—CH 2 —CO 2 R 16 , a group represented by the following formula (II), or a group represented by the following formula (III), and Q and W are: Each independently represents —C (O) —, —CH (OH) —, or —CH (OR 19 ) —, R 19 independently represents a C 1-4 alkyl group, and R 16 represents hydrogen. Represents an atom, an alkyl group, NH 4 , sodium, potassium, or 1/2 calcium;
    X 3 represents a sulfonate group, a halogen atom, a nitro group, or a trimethylammonium group. ]
    Figure JPOXMLDOC01-appb-C000008
    A coupling reaction of a compound represented by the formula or a salt thereof with a boronic acid ester or diboron ester,
    Formula (IV)
    Figure JPOXMLDOC01-appb-C000009
    [In the formula (IV), R 11 , R 12 , R 15 , Y, and Z 1 are as defined in the formula (VI), and M represents a boronic ester group. ]
    The manufacturing method of the compound or its salt represented by these.
  6. 請求項3記載の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む、イメージング方法。 An imaging method comprising detecting a radioactive signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound according to claim 3.
  7. 請求項3記載の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む、有機アニオン輸送ポリペプチド(OATP)における取り込み機能の評価方法。 A method for evaluating an uptake function in an organic anion transport polypeptide (OATP), comprising detecting a radio signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound according to claim 3.
  8. 請求項3記載の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む、肝臓に発現する取り込みトランスポータ機能の観察方法。 A method for observing the uptake transporter function expressed in the liver, comprising detecting a radioactive signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound according to claim 3.
  9. 請求項3記載の放射性標識化合物を予め投与された被検体から前記放射性標識化合物の放射性シグナルを検出することを含む、胆汁排泄トランスポータ機能の観察方法。 A method for observing a biliary excretion transporter function, comprising detecting a radioactive signal of the radiolabeled compound from a subject previously administered with the radiolabeled compound according to claim 3.
  10. 式(X)
    Figure JPOXMLDOC01-appb-C000010
    [式(X)中、Xは、メシラート基、トシラート基、トリフラート基、又はフッ素原子を示し、
    -Y-Zは、下記式(II’)で表される基、又は下記式(III’)で表される基を示す。]
    Figure JPOXMLDOC01-appb-C000011
    [式(III’)中、R16は、水素原子、生理的に加水分解し得るアルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
    で表される化合物又はその塩。
    Formula (X)
    Figure JPOXMLDOC01-appb-C000010
    [In the formula (X), X 1 represents a mesylate group, a tosylate group, a triflate group, or a fluorine atom,
    —YZ 1 represents a group represented by the following formula (II ′) or a group represented by the following formula (III ′). ]
    Figure JPOXMLDOC01-appb-C000011
    [In the formula (III ′), R 16 represents a hydrogen atom, a physiologically hydrolyzable alkyl group, NH 4 , sodium, potassium, or 1/2 calcium. ]
    Or a salt thereof.
  11. 式(XI)
    Figure JPOXMLDOC01-appb-C000012
    [式(XI)中、-Y-Zは、下記式(II’)で表される基、又は下記式(III’)で表される基を示す。]
    Figure JPOXMLDOC01-appb-C000013
    [式(III’)中、R16は、水素原子、生理的に加水分解し得るアルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
    で表される化合物又はその塩。
    Formula (XI)
    Figure JPOXMLDOC01-appb-C000012
    [In the formula (XI), —YZ 1 represents a group represented by the following formula (II ′) or a group represented by the following formula (III ′). ]
    Figure JPOXMLDOC01-appb-C000013
    [In the formula (III ′), R 16 represents a hydrogen atom, a physiologically hydrolyzable alkyl group, NH 4 , sodium, potassium, or 1/2 calcium. ]
    Or a salt thereof.
  12. 式(XII)
    Figure JPOXMLDOC01-appb-C000014
    [式(XII)中、-Y-Zは、下記式(II’)で表される基、又は下記式(III’)で表される基を示し、-L-Xは、[18F]フッ素原子、又は-O-(CH-[18F]Fを示す。]
    Figure JPOXMLDOC01-appb-C000015
    [式(III’)中、R16は、水素原子、生理的に加水分解し得るアルキル基、NH、ナトリウム、カリウム、又は1/2カルシウムを示す。]
    で表される放射性標識化合物又はその塩。
     
    Formula (XII)
    Figure JPOXMLDOC01-appb-C000014
    [In the formula (XII), —YZ 1 represents a group represented by the following formula (II ′) or a group represented by the following formula (III ′), and —L 2 —X 2 represents 18 F] represents a fluorine atom, or —O— (CH 2 ) 2 — [ 18 F] F. ]
    Figure JPOXMLDOC01-appb-C000015
    [In the formula (III ′), R 16 represents a hydrogen atom, a physiologically hydrolyzable alkyl group, NH 4 , sodium, potassium, or 1/2 calcium. ]
    Or a salt thereof.
PCT/JP2012/055807 2011-03-07 2012-03-07 Labeling precursor compound, radioactively labeling compound, and processes for producing those compounds WO2012121285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503574A JPWO2012121285A1 (en) 2011-03-07 2012-03-07 Labeled precursor compound, radiolabeled compound, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011049549 2011-03-07
JP2011-049549 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012121285A1 true WO2012121285A1 (en) 2012-09-13

Family

ID=46798241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055807 WO2012121285A1 (en) 2011-03-07 2012-03-07 Labeling precursor compound, radioactively labeling compound, and processes for producing those compounds

Country Status (2)

Country Link
JP (1) JPWO2012121285A1 (en)
WO (1) WO2012121285A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749403A (en) * 2016-12-08 2017-05-31 广东省测试分析研究所(中国广州分析测试中心) A kind of flame-retardant luminous bifunctional material of difluorophenyl quinoline phosphine oxide and preparation method thereof
JP2018062475A (en) * 2016-10-11 2018-04-19 学校法人 聖マリアンナ医科大学 Complex of nonionic iodine contrast medium
JP2019064986A (en) * 2017-10-04 2019-04-25 国立大学法人京都大学 MOLECULE PROBE FOR Bcr-Abl PROTEIN IMAGING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279866A (en) * 1987-08-20 1989-11-10 Nissan Chem Ind Ltd Quinoline-based mevalonolactones
WO2010033196A2 (en) * 2008-09-16 2010-03-25 The Regent Of The University Of California Simplified one-pot synthesis of [18f]sfb for radiolabeling
WO2010131745A1 (en) * 2009-05-15 2010-11-18 独立行政法人理化学研究所 18f-labeled azide compound, reagent for 18f-labeling and method for 18f-labeling of alkyne compound using same
WO2011002096A1 (en) * 2009-07-03 2011-01-06 独立行政法人理化学研究所 Labeling compound for pet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279866A (en) * 1987-08-20 1989-11-10 Nissan Chem Ind Ltd Quinoline-based mevalonolactones
WO2010033196A2 (en) * 2008-09-16 2010-03-25 The Regent Of The University Of California Simplified one-pot synthesis of [18f]sfb for radiolabeling
WO2010131745A1 (en) * 2009-05-15 2010-11-18 独立行政法人理化学研究所 18f-labeled azide compound, reagent for 18f-labeling and method for 18f-labeling of alkyne compound using same
WO2011002096A1 (en) * 2009-07-03 2011-01-06 独立行政法人理化学研究所 Labeling compound for pet

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIRANO, M.: "Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the Hepatic Uptake of Pitavastatin in Humans", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 311, no. 1, 2004, pages 139 - 146 *
SUZUKI, M.: "Synthesis and biological evaluations of quinoline-based HMG-CoA reductase inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 9, no. 10, 2001, pages 2727 - 2743 *
TADAYUKI TAKASHIMA: "[11C]Telmisartan o Mochiita Positron Emission Tomograph (PET) ni yoru Kantankei Yuso Hyoka", BASIC PHARMACOLOGY & THERAPEUTICS, vol. 38, no. 2, 2010, pages S-103 - S-109 *
TADAYUKI TAKASHIMA: "Yakubutsukan Sogo Sayo Kenkyu eno Positron Emission Tomography (PET) no Oyo", JOURNAL OF PHARMACEUTICAL SCIENCE AND TECHNOLOGY, JAPAN, vol. 70, 2010, pages 61 *
YUICHI SUGIYAMA: "PET Probe 15R-[11C]TIC no Kantankei Yuso ni Kan'yo suru Transporter no Dotei Narabini Hito Sogo Sayo Shikenji no Kessho -Kanzonai Nodo Hendo Oyobi in vitro Shiken kara no Yosoku", BASIC PHARMACOLOGY & THERAPEUTICS, vol. 37, 2009, pages S-71 - S-78 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062475A (en) * 2016-10-11 2018-04-19 学校法人 聖マリアンナ医科大学 Complex of nonionic iodine contrast medium
CN106749403A (en) * 2016-12-08 2017-05-31 广东省测试分析研究所(中国广州分析测试中心) A kind of flame-retardant luminous bifunctional material of difluorophenyl quinoline phosphine oxide and preparation method thereof
JP2019064986A (en) * 2017-10-04 2019-04-25 国立大学法人京都大学 MOLECULE PROBE FOR Bcr-Abl PROTEIN IMAGING
JP7024960B2 (en) 2017-10-04 2022-02-24 国立大学法人京都大学 Molecular probe for Bcr-Abl protein imaging

Also Published As

Publication number Publication date
JPWO2012121285A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
RU2527037C2 (en) Method and process of preparation and production of deuterated omega-diphenylurea
TWI465449B (en) Modulators of cystic fibrosis transmembrane conductance regulator
CN107412788B (en) Novel compound for imaging Tau protein accumulated in brain
KR101123178B1 (en) 2-aryl benzothiophene derivatives or pharmaceutically acceptable salts thereof, preparation method thereof, and phrmaceutical composition for the diagnosis or treatment of degenerative brain disease containing the same as an active ingredient
JP2010523599A (en) Development of molecular imaging probe for carbonic anhydrase-IX using click chemistry
EA018655B1 (en) Inhibitors of human immunodeficiency virus replication
EP3438105B1 (en) Diaryl- -lactam compound and preparation method and pharmaceutical use thereof
KR20060111494A (en) Nitric oxide donating derivatives for the treatment of cardiovascular disorders
CN101505751A (en) 8-hydroxyquinoline compounds and methods thereof
JP2014519489A (en) Radiolabeled amino acids for diagnostic imaging
EP3870160A1 (en) Compounds and methods to attenuate tumor progression and metastasis
CN110092779B (en) Substituted phenyl compound and application thereof
Krasavin et al. Novel free fatty acid receptor 1 (GPR40) agonists based on 1, 3, 4-thiadiazole-2-carboxamide scaffold
Yang et al. Synthesis and biological evaluation of GPR40/FFAR1 agonists containing 3, 5-dimethylisoxazole
Luo et al. Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents
JP2015516965A (en) Novel targeting agents for diagnostic and therapeutic indicators
JP7224293B2 (en) ROR gamma modulators and uses thereof
WO2012121285A1 (en) Labeling precursor compound, radioactively labeling compound, and processes for producing those compounds
JP6602364B2 (en) Compounds and methods of their use
Zhu et al. Discovery of aryl-substituted indole and indoline derivatives as RORγt agonists
WO2002051820A1 (en) Dihydronaphthalene derivative compounds and drugs containing these compounds as the active ingredient
Kamenecka et al. Potent anti-diabetic actions of a novel non-agonist PPARγ ligand that blocks cdk5-mediated phosphorylation
JP7138647B2 (en) ROR gamma modulators and uses thereof
JP7254703B2 (en) ROR gamma modulators and uses thereof
JP5311739B2 (en) 3- [3- (Benzoylamido) benzyloxy] aspartic acid derivative having radioactive label group and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754406

Country of ref document: EP

Kind code of ref document: A1