WO2012121178A1 - Tumor angiogenesis inhibitor - Google Patents

Tumor angiogenesis inhibitor Download PDF

Info

Publication number
WO2012121178A1
WO2012121178A1 PCT/JP2012/055476 JP2012055476W WO2012121178A1 WO 2012121178 A1 WO2012121178 A1 WO 2012121178A1 JP 2012055476 W JP2012055476 W JP 2012055476W WO 2012121178 A1 WO2012121178 A1 WO 2012121178A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
nucleic acid
nucleotide sequence
inhibitor
seq
Prior art date
Application number
PCT/JP2012/055476
Other languages
French (fr)
Japanese (ja)
Inventor
孝広 落谷
展慶 小坂
晴久 井口
Original Assignee
独立行政法人国立がん研究センター
大日本住友製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立がん研究センター, 大日本住友製薬株式会社 filed Critical 独立行政法人国立がん研究センター
Priority to JP2013503525A priority Critical patent/JPWO2012121178A1/en
Publication of WO2012121178A1 publication Critical patent/WO2012121178A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a drug that suppresses tumor angiogenesis, a drug using the drug, a method for determining malignant cancer, an agent for determining malignant cancer, and a substance having an action of inhibiting tumor angiogenesis It is related with the screening method of this.
  • Non-patent Documents 1 and 2 The importance of intercellular signal transmitters derived from cancer cells has been suggested.
  • Tumor blood vessels are blood vessels that develop disorderly and have structural imperfections such as unequal caliber and insufficiency, not only failing to achieve the original purpose of blood vessels such as oxygen and nutrient supply to tissues.
  • the cancer microenvironment is maintained at low oxygen, and cancer cells present therein acquire high drug resistance and invasion / metastasis ability (Non-patent Document 3).
  • DLL4 (Delta-like ligand 4) is a single-transmembrane type membrane protein that also functions as a ligand for the single-transmembrane Notch protein.
  • Notch protein is cleaved by ADAM metalloproteinase and ⁇ -secretase by DLL4 stimulation, and intracellular domain Notch intracellular domain (NICD) is produced.
  • NICD intracellular domain Notch intracellular domain
  • Sphingomyelin phosphodiesterase (SMPD) 3 is a membrane-bound enzyme having two transmembrane domains, and its physiological functions are diverse such as intracellular signal transduction and oxidative stress response. Although the primary sequence has little homology with bacterial SMPD as a whole, the limited amino acid residues of the enzyme activity center are conserved. As a role of SMPD3 in vivo, it has been clarified from studies of genetically-mutated mice that it is involved in bone formation and tooth formation (Non-patent Document 4). Regarding the relationship between cancer and SMPD3, only some methylation of the SMPD3 gene has been reported in some breast cancer cells (Non-Patent Document 5), and no report suggesting its function has been made.
  • MicroRNAs are known to play a very important role in cancer development, and so far many oncogenic microRNAs such as miR-16, miR-21, let-7 have been identified. Yes.
  • miR-126 and miR-210 have been identified as microRNAs that control angiogenesis (Non-Patent Document 6), but the relationship between microRNAs and angiogenesis shown below is not known.
  • miR-29b-1 is known to be negatively regulated by c-Myc, Hedgehog, and NF-KappaB in bile duct cancer (Non-patent Document 7), miR-29b is a passenger sequence. There is no report on the expression fluctuation or physiological function of -1 * in cancer cells. Although miR-221 * is known to exist in vivo as a passenger sequence of miR-221, it has not been reported to have a physiological effect as a microRNA. It has been suggested by Srivastava et al. that miR-138 plays an important role in the myocardial development stage (Non-patent Document 8).
  • HNSCC cells Head and Neck squamous cell carcinoma
  • miR-584 has a suppressed expression level in RCC cells, which are renal cancer cells, compared to HK-2 cells, which are normal kidney cells, and the ROCK-1 gene, which is a factor that promotes cell proliferation, Since it is a target gene, it is reported to be one of tumor suppressor genes in renal cancer (Non-patent Document 10).
  • NGX6 Nasopharyngeal carcinoma-associated gene 6
  • Non-Patent Document 11 Although miR-30a is reported to have increased expression in a cancer cell line called A549, a type of cancer cell, cell proliferation ability even when miR-30a is transduced into normal cancer cells No changes were observed in tumorigenicity, drug sensitivity, etc. (Non-patent Document 12). Moreover, although it has been reported that the expression is increased in other cancer types such as esophageal cancer, the physiological action has not been shown yet (Non-patent Document 13). miR-146a is known to be highly expressed not only in cancers such as papilloma thyroid cancer but also in autoimmune diseases such as rheumatism and psoriasis.
  • Non-patent Document 14 miR-151-3p has been reported to be upregulated in liver cancer, and miR-151-5p present on the same gene has been shown to have an effect of promoting metastasis (Non-patent literature) 15) However, there has been no report on the function of miR-151-3p.
  • miR-886-3p has a binding sequence on the 3'UTR sequence of Stromal Derived Factor 1 (SDF1, CXCL12), a cell chemotactic factor, and is known to negatively regulate its expression in human stromal cells. It has been.
  • SDF1, CXCL12 Stromal Derived Factor 1
  • Non-Patent Document 16 In recent years, it is becoming clear that microRNA is secreted from cells and functions as a signal transduction substance between cells (Non-patent Document 22). It has also been reported that secretory microRNAs are secreted in large quantities from cancer cells (Non-patent Document 23), so that secretory microRNAs derived from cancer cells are used to form cancer microenvironments such as tumor angiogenesis. Expected to be involved. However, a method for suppressing the function of these cancer cell-derived secreted microRNAs has not been established.
  • an anti-miR method using a nucleic acid having a complementary sequence of the microRNA anti-miR
  • a nucleic acid having a complementary sequence of a target mRNA of the microRNA target -mask
  • target-mask a nucleic acid having a complementary sequence of a target mRNA of the microRNA
  • target-mask a target-mask method that inhibits the binding of the microRNA to its target mRNA
  • a vector sponge vector or decoy vector
  • a sponge method or a decoy method for trapping RNA is known (Non-patent Document 24).
  • anti-miR is a chemically modified single-stranded nucleic acid designed to specifically bind to endogenous microRNA and inhibit its function. Chemical modification is performed with the aim of conferring resistance of anti-miR to in vivo nuclease and improving the stability of the duplex formed with microRNA.
  • 2'-O-methyl RNA, locked nucleic acid ( LNA), Peptide nucleic acid (PNA), etc. (Non-patent Document 25).
  • LNA modified nucleic acid refers to a nucleic acid derivative having two circular structures in which the 2′-position oxygen atom and the 4′-position carbon atom of the nucleic acid are bridged via a methylene residue.
  • LNA locked nucleic acid
  • 2 ', 4'-BNA 2'-O, 4'-C-methylene bridged nucleic acid
  • LNA-modified anti-miR has been successfully systemically administered to non-human primates to successfully and effectively silence target microRNAs (Non-patents) Reference 26).
  • Natural nucleic acids (DNA and RNA) have a greater degree of freedom in form (conformation freedom) due to their chemical structure. For this reason, DNA-DNA and RNA-RNA duplex formation (hybridization) is thermodynamically disadvantageous, and improving binding affinity (hybridization ability) is a problem for nucleic acid drugs. .
  • Non-patent Document 27 LNA increases the binding affinity for target DNA and RNA by thermodynamically stabilizing the 2 'oxygen atom and the 4' carbon atom via a methylene bridge, and It is known that nuclease (nucleolytic enzyme) resistance can be imparted (Non-patent Document 27). However, specifically, it is not clear which nucleic acid in anti-miR can be maximally brought out by applying LNA modification (Non-patent Documents 28 and 29).
  • An object of the present invention is to provide a drug that suppresses tumor angiogenesis, a drug using the drug, a method for determining malignant cancer, an agent for determining malignant cancer, and an effect of inhibiting tumor angiogenesis. It is to provide a method for screening a substance having the same.
  • microRNAs miR-29b-1 *, miR-221 *, miR-138, miR- 584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR-593, miR-483-3p) and identified these microRNAs When miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a are introduced into cells, angiogenesis is suppressed, miR-151-3p or miR-886-3p It was found that angiogenesis is promoted when introduced into cells.
  • the present inventors have found that when breast cancer cells in which the SMPD3 gene is knocked down are transplanted into nude mice, angiogenesis in the tumor is suppressed and metastatic potential is also suppressed. Based on these findings, the present inventors have confirmed that SMR3 inhibitors such as miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, and SMPD3 siRNA are tumors. It is useful as a therapeutic agent, and miR-151-3p inhibitors such as anti-miR-151-3p and miR-886-3p inhibitors such as anti-miR-886-3p are thought to inhibit angiogenesis. Therefore, the present invention was completed by finding that it is useful as a tumor therapeutic agent.
  • the present invention relates to the following.
  • a nucleic acid comprising a nucleotide sequence having a nucleotide sequence having 70% or more identity and having a target gene expression suppressing activity, or (2) a nucleic acid that is a vector capable of expressing the nucleic acid of (1) above.
  • the miR-151-3p inhibitor is the nucleic acid according to the following (1) or (2): (1) a nucleic acid comprising a nucleotide sequence comprising 70% or more of the nucleotide sequence represented by SEQ ID NO: 9, and comprising a nucleotide having an activity of suppressing the function of miR-151-3p, (2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
  • the miR-886-3p inhibitor is the nucleic acid according to (1) or (2) below: (1) a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10, and comprising a nucleotide having an activity of suppressing the function of miR-886-3p, (2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
  • the agent according to [1], wherein the SMPD3 inhibitor is a substance selected from the group consisting of the following (1) to (5): (1) an antisense nucleic acid against a transcription product of a gene encoding SMPD3, (2) a ribozyme nucleic acid for the transcription product of the gene encoding SMPD3, (3) a nucleic acid having RNAi activity for a transcription product of a gene encoding SMPD3 or a precursor thereof, (4) an antibody that binds to SMPD3, (5) A low molecular weight compound that binds to SMPD3.
  • the nucleic acid is any one of [1] to [3], wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10 or a partial sequence thereof, or a modified form thereof.
  • Agent [7] The nucleic acid according to any one of [1] to [3] and [6], wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10, or a modified form thereof.
  • Agent is any one of [1] to [3] and [6]
  • nucleic acid is a single-stranded RNA comprising the nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54 or a modified product thereof.
  • nucleic acid is a single-stranded RNA containing at least one or more modified nucleotides, either 2′-OMe modified nucleotides or LNA modified nucleotides.
  • the single-stranded RNA contains 3 or more LNA-modified nucleotides.
  • the single-stranded RNA contains 4 or more LNA-modified nucleotides.
  • the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
  • the agent according to [10], wherein the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 43 to 48 and 50.
  • the agent according to any one of [1] to [17] which inhibits angiogenesis.
  • [20] The agent according to any one of [1] to [17] for suppressing tumor metastasis.
  • a method for treating a tumor in a human comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
  • a method for inhibiting angiogenesis in a human comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
  • a method for inhibiting tumor angiogenesis in a human comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
  • a method for suppressing tumor metastasis in a human comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
  • a method for determining cancer comprising determining the presence or absence of cancer.
  • An agent for determining malignant cancer comprising a nucleic acid probe capable of specifically detecting miR-593 or miR-483-3p.
  • a method for searching for a substance capable of suppressing tumor angiogenesis comprising the following steps: (1) contacting a test substance with a cell capable of measuring secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a; (2) measuring the amount of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a secreted or expressed in cells contacted with the test substance, Comparing the amount of secretion or expression with the amount of secretion or expression in control cells not contacted with the test substance; and (3) based on the comparison result of (2) above, miR-29b-1 *, miR-221 * Select a test substance that up-regulates the secretion or expression level of miR-138, miR-584, miR-30a, or miR-146a as a substance that can suppress tumor
  • a method for searching for a substance capable of suppressing tumor angiogenesis comprising the following steps: (1) contacting a test substance with a cell capable of measuring the secretion, expression or function of miR-151-3p, miR-886-3p or SMPD3; (2) Measure the secretion amount, expression level or function of miR-151-3p, miR-886-3p or SMPD3 in cells contacted with the test substance, and determine the secretion amount, expression level or function of the test substance Comparing with the secreted amount, expression level or function in the non-contacted control cells; and (3) secreted amount, expression of miR-151-3p, miR-886-3p or SMPD3 based on the comparison result of (2) above
  • a test substance that down-regulates the amount or function is selected as a substance capable of suppressing tumor angiogenesis.
  • [41] consisting of the nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54, wherein all nucleotides consist of modified nucleotides of either 2′-OMe modified nucleotides or LNA modified nucleotides, and 3 to 12 LNAs Single-stranded RNA comprising modified nucleotides.
  • [42] The single-stranded RNA according to [41], wherein the single-stranded RNA comprises 4 to 12 LNA-modified nucleotides.
  • [43] The single-stranded RNA according to [41] or [42], wherein the single-stranded RNA contains at least one LNA-modified nucleotide at both the 5 ′ end and the 3 ′ end.
  • the single-stranded RNA according to [42] comprising a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
  • an agent that suppresses tumor angiogenesis in particular, a tumor therapeutic agent effective for breast cancer, and a medicine using the agent.
  • a cancer determination method capable of determining the presence or absence of malignant cancer, an agent for carrying out the determination method, and a screening method for a substance having an action of suppressing tumor angiogenesis.
  • FIG. 5 shows that SMPD3 knockdown does not suppress breast cancer cell metastasis in the tail vein administration model. It is the figure which showed the evaluation result of intracellular miR-151-3p activity inhibitory activity of Anti- mmu-miR-151-3p. It is the figure which showed the result of stability evaluation in serum of Anti- mmu-miR-151-3p. It is the figure which showed the evaluation result of the double strand formation ability of Anti- mmu-miR-151-3p and mature type miR-151-3p.
  • miR-151 such as miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, anti-miR-151-3p
  • miR-886-3p inhibitors such as -3p inhibitors, anti-miR-886-3p, and SMPD3 inhibitors inhibit tumor angiogenesis and are useful as excellent tumor therapeutic agents.
  • the present invention (A) miR-151-3p inhibitor, miR-886-3p inhibitor, or SMPD3 inhibitor, and (b) (1) miR-29b-1 *, miR-221 *, miR-138, miR-584 MiR-30a, miR-146a, or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 and having a target gene expression-suppressing activity, Or (2) a nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above, Is to provide.
  • the agent of the present invention is useful as a therapeutic agent for tumors, and particularly useful for breast cancer. Since the agent of the present invention has angiogenesis inhibitory activity, it is expected to suppress tumor metastasis.
  • the nucleic acid is RNA, a chimeric nucleic acid of RNA and DNA (hereinafter referred to as a chimeric nucleic acid) or a hybrid nucleic acid.
  • the chimera nucleic acid means a single-stranded or double-stranded nucleic acid containing RNA and DNA in one nucleic acid
  • the hybrid nucleic acid is a double-stranded nucleic acid having one strand of RNA or DNA. It refers to a nucleic acid in which the other strand is a DNA or a chimeric nucleic acid.
  • the nucleic acid of the present invention is single-stranded or double-stranded.
  • Double-stranded embodiments include double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid, and chimeric nucleic acid / DNA hybrid.
  • the nucleic acid of the present invention is preferably a single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or chimeric nucleic acid / DNA hybrid, more preferably single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or RNA / chimeric nucleic acid hybrid .
  • the length of the nucleic acid of the present invention is not limited as long as it has an activity to suppress angiogenesis in mammals (preferably humans). However, considering the ease of synthesis, antigenicity problems, etc., the length of the nucleic acid of the present invention is, for example, about 200 bases or less, preferably about 130 bases or less, more preferably about 50 bases or less, and most preferably 30 bases or less.
  • the lower limit is, for example, 15 bases or more, preferably 17 bases or more. That is, the length of the nucleic acid of the present invention is preferably 15 to 50 bases, more preferably 15 to 30 bases, and further preferably 17 to 30 bases.
  • the length of a nucleic acid when a nucleic acid forms a double stranded structure by taking a hairpin loop type structure shall be considered as the length of a single strand.
  • the nucleic acid of the present invention has an activity of inhibiting angiogenesis when taken into cells, and particularly has an activity of inhibiting angiogenesis of tumor cells when taken into tumor cells.
  • the tumor cells are usually mammalian cells (for example, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys, humans, preferably humans).
  • Tumor types include breast cancer including breast and ductal cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, Colon cancer, ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxilla
  • solid cancers such as cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, myoma, skin cancer, myeloma, leukemia and the like.
  • the tumor is preferably breast cancer.
  • the nucleic acid has the activity of suppressing cell angiogenesis should be confirmed, for example, by using normal human umbilical vein endothelial cells (HUVEC cells) or normal human skin microvascular endothelial cells (HMVEC cells). I can do it.
  • HMVEC cells normal human umbilical vein endothelial cells
  • HMVEC cells normal human skin microvascular endothelial cells
  • the nucleic acid miR-29b-1 * which has a nucleotide sequence having the same identity and contains nucleotides that suppress target gene expression , is already a known molecule and is typically called a mature miRNA Is mentioned.
  • miR-29b-1 * includes microRNAs (isomers) having the same sequence as miR-29b-1 * and present at different positions on the genome.
  • the mature miR-29b-1 * means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 1.
  • MiR-221 * is an already known molecule and typically means what is called mature miRNA.
  • miR-221 * includes microRNAs (isomers) having the same sequence as miR-221 * and present at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 2 (registered in miRBase as Accession No. MIMAT0004568).
  • Mature miR-221 * means single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 2.
  • MiR-138 is an already known molecule, and typically refers to what is called mature miRNA.
  • miR-138 includes microRNAs (isomers) having the same sequence as miR-138 and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 3 (registered as accession No. MIMAT0000430 in miRBase).
  • Mature miR-138 means single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 3.
  • MiR-584 is a known molecule and typically means what is called mature miRNA.
  • miR-584 includes microRNAs (isomers) having the same sequence as miR-584 and present at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 4 (registered as AccessionBaseNo. MIMAT0003249 in miRBase).
  • the mature miR-584 means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 4.
  • MiR-30a is an already known molecule, and typically means what is called mature miRNA.
  • miR-30a includes microRNAs (isomers) having the same sequence as miR-30a and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 5 (registered in miRBase as Accession No. MIMAT0000087).
  • the mature miR-30a means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 5.
  • MiR-146a is a known molecule, and typically refers to what is called mature miRNA.
  • miR-146a includes microRNAs (isomers) having the same sequence as miR-146a and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 6 (registered as Accession No. MIMAT0000449 in miRBase).
  • Mature miR-146a means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 6.
  • a nucleic acid comprising a nucleotide consisting of a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 is a nucleotide represented by any of SEQ ID NOs: 1 to 6
  • the nucleic acid preferably has an activity of suppressing angiogenesis.
  • target gene expression inhibitory activity refers to an activity of suppressing the expression of a target gene having a nucleotide sequence complementary to the target miRNA in mRNA.
  • the nucleotide represented by SEQ ID NO: 1 has the target gene expression suppressing activity. It has the activity which suppresses the expression of the target gene which has a nucleotide sequence complementary to a sequence in mRNA.
  • the activity is, for example, by introducing into a cell both an expression vector having a synthetic sequence complementary to the target miRNA on the 3 ′ end side of the reporter gene (eg, luciferase) and a vector expressing the target miRNA.
  • a reporter protein for example, luciferase
  • any method may be used as long as it is a known method used for evaluating the target gene expression inhibitory activity.
  • “having an activity to suppress angiogenesis” specifically means miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a. It means a nucleotide having an activity of forming a hybrid under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and suppressing angiogenesis.
  • a hybrid is formed with a nucleic acid comprising the nucleotide sequence represented by any one of SEQ ID NOS: 1 to 6 under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.), and When taken into a tumor cell, it means a nucleotide having an activity of suppressing angiogenesis of the cell. Whether or not the angiogenesis of cells is suppressed can be evaluated by a known method such as the method described in Examples.
  • nucleotide sequence of “nucleotide having activity to suppress angiogenesis” used in the present invention is the sequence of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a It has 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more identity with the nucleotide sequence represented by any of Nos. 1-6.
  • Identity refers to an optimal alignment when two nucleotide sequences are aligned using mathematical algorithms known in the art (preferably the algorithm uses one or the other of the sequences for optimal alignment). The ratio of the same nucleotide residue to the total overlapping nucleotide residues in the case of introducing gaps into both).
  • NCBI BLAST-2 National Center for Biotechnology Information Basic Local Alignment Search Tool
  • nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6 one or more nucleotides are missing from the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6.
  • Nucleotide sequences deleted, substituted, inserted or added for example, (1) 1 to 6 (preferably 1 to 3, more preferably 1 or 1 in the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6) (2) nucleotide sequence from which nucleotides are deleted, (2) 1 to 6 nucleotides represented by any one of SEQ ID NOs: 1 to 6 (preferably 1 to 3, more preferably 1 or 2) (3) 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6 Insert (4) 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6 are other nucleotides. Or (5) a nucleotide sequence in which the mutations of (1) to (4) above are combined (in this case, the sum of the mutated nucleotides is 1 to 6 (preferably 1 to 3, More preferably
  • the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 is preferably a contiguous 15 nucleotide sequence contained in the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6.
  • a partial sequence of at least bases preferably at least 17 bases, more preferably at least 19 bases, most preferably at least 20 bases or a sequence containing it.
  • the nucleic acid of the present invention may be modified so as to be resistant to various degrading enzymes.
  • the modified product of the present invention has 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6, and has the above-mentioned target gene expression inhibitory activity or angiogenesis inhibitory activity In the range of nucleotides having a, a modified product having various modifications including a modification of the sequence is included.
  • modifications in the modified form include, for example, those in which the sugar chain moiety is modified (for example, 2'-O methylation, LNA), those in which the base moiety is modified, phosphate moieties or hydroxyl moieties Examples thereof include, but are not limited to, modified ones (for example, biotin, amino group, lower alkylamine group, acetyl group).
  • modified ones for example, biotin, amino group, lower alkylamine group, acetyl group.
  • the 5 ′ end and 3 ′ end of the nucleotide chain may be modified with an amino group, polyethylene glycol, cholesterol, or the like.
  • the nucleic acid of the present invention may have an additional base at the 5 'or 3' end.
  • the length of the additional base is usually 5 bases or less.
  • the additional base may be DNA or RNA, but the use of DNA may improve the stability of the nucleic acid. Examples of such additional base sequences include ug-3 ', uu-3', tg-3 ', tt-3', ggg-3 ', guuu-3', gttt-3 ', ttttt-3 Examples include, but are not limited to, ', uuuuuu-3'.
  • nucleic acid of the present invention include nucleic acids such as mature miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a, and precursors thereof. Can do.
  • Another preferred embodiment of the nucleic acid of the present invention is a nucleic acid comprising a nucleotide having the same activity as that of the mature miRNA, such as endogenous mature miR-29b-1 *, miR-221 *, miR-138, miR Nucleic acids that are synthesized so as to mimic -584, miR-30a, or miR-146a and retain these target gene expression-suppressing activities can be used. Commercially available products can also be used. For example, Pre-miR TM miRNA precursor molecule (Applied systems) can be exemplified.
  • miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a precursor is the intracellular processing or cleavage of double-stranded nucleic acids as a result of intracellular processing.
  • the precursor include pri-miRNA and pre-miRNA of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a.
  • a pri-miRNA is a primary transcript (single-stranded RNA) of a miRNA gene, and usually has a length of about several hundred to several thousand bases.
  • Pre-miRNA is a single-stranded RNA having a hairpin structure generated by pri-miRNA undergoing intracellular processing, and usually has a length of 90 to 110 bases.
  • miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a pri-miRNA and pre-miRNA are well-known molecules. MiRBase database: http://microrna.sanger.ac.uk/ etc.
  • first sequence represented by any one of SEQ ID NOS: 1 to 6 and its complementary sequence (second sequence)
  • second sequence its complementary sequence
  • a nucleic acid which has a hairpin loop type structure, so that the first sequence has a double-stranded structure with the second sequence is also a preferred embodiment of the nucleic acid of the present invention.
  • the nucleic acid of the present invention is obtained by isolating from a mammalian cell (human cell or the like) using a known method, or by chemically synthesizing, or by using a gene recombination technique. be able to. It is also possible to use commercially available nucleic acids as appropriate.
  • Vectors designed for can be mentioned.
  • An “expression vector” in the present specification includes, for example, genetic information that can be replicated in a host cell, can be propagated autonomously, and can be easily isolated and purified from the host cell.
  • an expression vector having a functionable promoter and a detectable marker, into which the nucleic acid of the present invention is introduced so as to be placed under the control of the promoter Specifically, autonomous origins of replication derived from viruses such as plasmids such as pRC / RSV and pRC / CMV (manufactured by Invitrogen), bovine papillomavirus plasmid pBPV (manufactured by Amersham Bioscience), and EB virus plasmid pCEP4 (manufactured by Invitrogen) And vectors such as vaccinia virus and the like.
  • viruses such as plasmids such as pRC / RSV and pRC / CMV (manufactured by Invitrogen), bovine papillomavirus plasmid pBPV (manufactured by Amersham Bioscience), and EB virus plasmid pCEP4 (manufactured by Invitrogen)
  • a promoter capable of functioning in a host cell is operably linked upstream of the nucleic acid of the present invention, and this is incorporated into a vector as described above, whereby the nucleic acid of the present invention is incorporated into the host.
  • Expression vectors that can be expressed in cells can be constructed.
  • “to be operably linked” means that the nucleic acid of the present invention is transcribed and expressed in the host cell under the control of a promoter when the expression vector is introduced into the host cell. It means that the promoter and the nucleic acid of the present invention are bound.
  • the promoter used here may be any promoter that can function in the cell into which the nucleic acid of the present invention is introduced.
  • SV40 virus promoter cytomegalovirus promoter (CMV promoter), Rous sarcoma virus promoter (RSV promoter), ⁇ Pol II promoters such as actin gene promoter, CMV early enhancer / chicken beta actin (CAG) promoter, SR ⁇ promoter, Thymidine Kinase (TK) promoter, elongation factor-1 ⁇ promoter, or mouse papilloma virus (MMTV) promoter
  • CMV early enhancer / chicken beta actin (CAG) promoter CMV early enhancer / chicken beta actin (CAG) promoter, SR ⁇ promoter, Thymidine Kinase (TK) promoter, elongation factor-1 ⁇ promoter, or mouse papilloma virus (MMTV) promoter
  • TK Thymidine Kinase
  • MMTV mouse papilloma virus
  • a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
  • transduce the nucleic acid of this invention into an expression vector from Takara Shuzo etc. suitably.
  • a commercially available vector containing such a promoter upstream of the multiple cloning site may be used.
  • a DNA in which a promoter capable of functioning in a host cell and the nucleic acid of the present invention are operably linked is incorporated into a vector that can be used in the host cell and introduced into the host cell. .
  • the nucleic acid of the present invention When using a vector that already has a promoter that can function in the host cell, the nucleic acid of the present invention is placed downstream of the promoter so that the promoter of the vector and the nucleic acid of the present invention are operably linked. Insert it.
  • the aforementioned plasmids pRC / RSV, pRC / CMV, etc. have a cloning site downstream of a promoter that can function in animal cells, and the nucleic acid of the present invention is inserted into the cloning site and introduced into animal cells.
  • the nucleic acid of the present invention can be expressed. If it is necessary to induce further high expression, a ribosome binding region may be linked upstream of the nucleic acid of the present invention.
  • ribosome-binding region examples include those described in reports by Guarente, L. et al. (Cell 1980; 20: 543-53) and Taniguchi et al. (Genetics of Industrial Microorganisms, 1982, p202, Kodansha). .
  • the miR-151-3p inhibitor miR-151-3p is a known molecule, and representative examples include what are called mature miRNAs.
  • miR-151-3p includes microRNA (miR-151-3p isomer) having the same sequence as miR-151-3p and present at different positions on the genome.
  • human miR-151-3p hsa-miR-151-3p
  • mature miR-151-3p includes single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 7.
  • miR-151-3p in addition to human miR-151-3p consisting of the nucleotide sequence represented by SEQ ID NO: 7 above, SEQ ID NO: 53 (registered in miRBase as Accession No. MIMAT0000161) And orthologs of other animal species such as mouse miR-151-3p (mmu-miR-151-3p) having the nucleotide sequence represented by
  • the miR-151-3p inhibitor may be any substance that inhibits the function of miR-151-3p, and its action mechanism is not limited.
  • function of miR-151-3p (1) Activity to suppress expression of a target gene having a nucleotide sequence complementary to miR-151-3p in mRNA (hereinafter, miR-151-3p target gene expression suppression activity), or (2) Cell angiogenesis Promoting activity, Is mentioned.
  • the target gene expression suppression activity of miR-151-3p is, for example, an expression vector having a synthetic sequence complementary to miR-151-3p on the 3 ′ end side of a reporter gene (for example, luciferase) and miR-151-
  • a vector expressing 3p can be introduced into a cell, and the effect of miR-151-3p expression on target gene expression can be confirmed by measuring the activity of a reporter protein (eg, luciferase). (See the method described in Example 6 or 9).
  • the activity of promoting cell angiogenesis is achieved by, for example, introducing a vector expressing miR-151-3p into vascular endothelial cells capable of tube formation (for example, human umbilical vein endothelial cells HUVEC) on the extracellular matrix.
  • “Inhibiting the function of miR-151-3p” means having the activity of suppressing the above-mentioned function of miR-151-3p, and whether or not to inhibit the function of miR-151-3p. It can be confirmed by a known method such as the method described in Examples.
  • miR-151-3p inhibitors include the following nucleic acids.
  • A a nucleic acid comprising a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-151-3p, and comprising a nucleotide that inhibits the function of miR-151-3p, or (b) the above (a) A nucleic acid that is an expression vector that expresses.
  • the complementary strand of miR-151-3p specifically refers to a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 9.
  • “Nucleotide inhibiting the function of miR-151-3p” means a hybrid with miR-151-3p under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.), and miR- Means what suppresses the function of 151-3p. More specifically, when miR-151-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and taken up into tumor cells, miR in the cells -151-3p means a nucleotide having the activity of suppressing the function of 3p.
  • nucleotide sequence of “nucleotide having the activity of suppressing the function of miR-151-3p” used in the present invention is 70% or more of the nucleotide sequence represented by SEQ ID NO: 9 which is a complementary strand of miR-151-3p. , Preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. Specific examples include nucleotides consisting of the nucleotide sequence represented by SEQ ID NO: 54.
  • nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 9 one or more nucleotides in the nucleotide sequence represented by SEQ ID NO: 9 have been deleted, substituted, inserted or added
  • a sequence for example, (1) a nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by SEQ ID NO: 9 have been deleted, (2) A nucleotide sequence obtained by adding 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides to the nucleotide sequence represented by SEQ ID NO: 9, and (3) a nucleotide represented by SEQ ID NO: 9 A nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides are inserted in the sequence; (4) 1 to 6 in the nucleotide sequence represented by SEQ ID NO: 9 A nucleotide sequence in which nucleotides (
  • the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 9 is preferably 15 or more consecutive nucleotides (preferably 17 or more nucleotides or more, preferably included in the nucleotide sequence represented by SEQ ID NO: 9).
  • nucleic acid of the present invention examples include, for example, decoy RNA for anti-miR-151-3p and miR-151-3p.
  • anti-miR-151-3p is a form of miR-151-3p microRNA activity-inhibiting molecule and refers to a nucleic acid that is complementary to the miR-151-3p sequence.
  • anti-miR is a chemically modified single-stranded nucleic acid designed to specifically bind to endogenous microRNA and inhibit its function. Therefore, the anti-miR-151-3p of the present invention may be modified so as to be resistant to various degrading enzymes.
  • the modified product of the present invention includes a nucleotide sequence having the identity of 70% or more with the nucleotide sequence represented by SEQ ID NO: 9 and having the activity of suppressing the function of miR-151-3p. Modifications including various modifications including modifications are included.
  • the phosphate residue (phosphate) of each nucleotide constituting the nucleic acid can be replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, and the like.
  • the 2′-position hydroxyl group of each sugar is changed to OR (R ⁇ CH 3 (2′-O-Me), F (2′-F), CH 2 CH 2 OCH 3 (2′- O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.).
  • the base moiety pyrimidine, purine
  • PNA Peptide nucleic acid
  • Singh SK Nielsen P, Koshkin A, et al. LNA (locked nucleic acid). acids
  • the nucleic acid of the present invention may have an additional base at the 5 'or 3' end.
  • the length of the additional base is usually 5 bases or less.
  • the additional base may be DNA or RNA, but the use of DNA may improve the stability of the nucleic acid. Examples of such additional base sequences include ug-3 ', uu-3', tg-3 ', tt-3', ggg-3 ', guuu-3', gttt-3 ', ttttt-3 Examples include, but are not limited to, ', uuuuuu-3'.
  • the anti-miR-151-3p of the present invention comprises a modified nucleotide, preferably a 2′-O methyl modified nucleotide or an LNA modified nucleotide at any position of a single stranded nucleic acid (preferably a single stranded RNA). It may also contain two or more different modified nucleotides.
  • the LNA-modified nucleotide represents a modified nucleotide in which the 2′-position oxygen atom and the 4′-position carbon atom are cross-linked via a methylene group in RNA.
  • a preferred form is a nucleic acid containing 3 or more (more preferably 4 or more), more preferably 3 to 12 (more preferably 4 to 12) LNA-modified nucleotides of single-stranded RNA.
  • the strand RNA is a single-stranded RNA containing 3 or more LNA-modified nucleotides, it is preferably a nucleic acid containing at least one LNA-modified nucleotide at both the 5 ′ end and the 3 ′ end.
  • the single-stranded RNA contains LNA-modified nucleotides, it is preferable that all remaining nucleotides that are not LNA-modified are 2′-O methyl-modified.
  • anti-miR-151-3p examples include a modified nucleic acid consisting of a nucleotide sequence represented by SEQ ID NOs: 43 to 50 (preferably SEQ ID NOs: 43 to 48 and 50) described in Example 10, and Examples And a modified nucleic acid having the nucleotide sequence represented by SEQ ID NOs: 30 to 38 described in FIG.
  • the anti-miR-151-3p of the present invention determines the target sequence of mRNA or initial transcript based on the sequence of miR-151-3p, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman). Etc.) can be prepared by synthesizing a complementary sequence thereto.
  • anti-miR-151-3p containing the various modifications described above can be chemically synthesized by any known method.
  • anti-miR-151-3p is a cell or non-human animal (eg rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey, human, preferably human) In animals (eg, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys, etc.) by forming a double strand with the target microRNA (ie, miR-151-3p), the cells or It is considered that the amount of the target microRNA that can exert a function of promoting angiogenesis in a non-human animal (ie, an effective amount) is decreased, and as a result, the function of miR-151-3p is inhibited.
  • target microRNA ie, miR-151-3p
  • miR-151-3p when miR-151-3p is overexpressed, angiogenesis abnormalities are caused.
  • overexpression of miR-151-3p can be a state in which the secretion level or concentration of miR-151-3p found in malignant cancer cells is higher than that of normal cells or benign cancer cells.
  • MiR-151-3p overexpression can also be caused by transfecting cells with miR-151-3p or miR-151-3p expression vectors.
  • anti-miR-151-3p can suppress angiogenesis abnormalities due to such overexpression of miR-151-3p.
  • the angiogenesis abnormality due to the overexpression of miR-151-3p refers to the promotion of angiogenesis due to the overexpression of miR-151-3p.
  • the promotion of blood vessel formation can be confirmed using, for example, a known method such as the method described in the below-described examples, using as an index the increase in the length of the blood vessel and / or the number of branch points.
  • decoy RNA for miR-151-3p has a partially complementary sequence to miR-151-3p, and is cleaved and degraded even after base pairing with miR-151-3p.
  • Decoy RNA is the same as anti-miR in that its function is inhibited by binding to target microRNA, but its structure is a hairpin RNA strand, and multiple target microRNAs are included in one molecule of decoy RNA. It differs from anti-miR in that it has an RNA binding sequence.
  • a typical decoy RNA includes a stem-loop structure in which a bubble portion is formed by opposing microRNA binding sequences.
  • a sequence that is not completely complementary to the target microRNA for example, a sequence in which 4 bases are inserted between the 10th and 11th bases from the 3 ′ end of the completely complementary sequence, etc.
  • a sequence that is not completely complementary to the target microRNA for example, a sequence in which 4 bases are inserted between the 10th and 11th bases from the 3 ′ end of the completely complementary sequence, etc.
  • Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Haraguchi T, Ozaki Y, Iba H. Nucleic Acids Res. 2009 Apr; 37 (6) e43).
  • the nucleic acid of the present invention can be obtained by chemically synthesizing using a conventionally known method or by producing using a gene recombination technique.
  • nucleic acid comprising a nucleotide to do includes, for example, genetic information that can be replicated in a host cell and can be propagated autonomously, and can be isolated and purified from the host cell. Examples thereof include those in which the nucleic acid of (a) is introduced into an expression vector having a promoter that is easy and can function in a host cell and has a detectable marker.
  • a polIII promoter such as U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter as a promoter, the decoy RNA for anti-miR-151-3p and miR-151-3p
  • the linker sequence and the gap sequence to avoid cleavage should be designed so that 4 or more U are not consecutive.
  • a commercially available miR-151-3p inhibitor can also be used.
  • Anti-miR-151-3p is commercially available as Anti-miR TM miRNA inhibitor (Applied Biosystems), and commercially available decoy RNA against miR-151-3p is miArrest TM miRNA inhibitors (Catalog No. HmiR-AN0211- SN-5, -10, -20 (synthetic oligo), HmiR-AN0211-AM01, 02, 03, 04 (expression vector) (both manufactured by Genecopoeia)).
  • miR-886-3p inhibitor miR-886-3p is a molecule already known and typically means what is called mature miRNA.
  • miR-886-3p includes microRNA (miR-886-3p isomer) having the same sequence as miR-886-3p and present at different positions on the genome. Specifically, for example, it means a nucleotide comprising the nucleotide sequence represented by SEQ ID NO: 8 (registered as Accession No. MIMAT0004906 in miRBase).
  • the mature miR-886-3p means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 8.
  • the miR-886-3p inhibitor may be any substance that inhibits the function of miR-886-3p, and its action mechanism is not limited.
  • “Functions of miR-886-3p” (1) Activity to suppress the expression of a target gene having a nucleotide sequence complementary to miR-886-3p in mRNA (hereinafter, miR-886-3p target gene expression suppression activity), or (2) Cell angiogenesis Promoting activity, Means.
  • “Inhibiting the function of miR-886-3p” means having the activity of suppressing the function of miR-886-3p, and whether to inhibit the function of miR-886-3p It can confirm by well-known methods, such as the method as described in an example.
  • miR-886-3p inhibitors include the following nucleic acids.
  • A a nucleic acid comprising a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-886-3p, and comprising a nucleotide that inhibits the function of miR-886-3p, or (b) above
  • the complementary strand of miR-886-3p specifically refers to a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10.
  • “Nucleotide inhibiting the function of miR-886-3p” means that miR-886-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and miR- It means something that suppresses the function of 886-3p. More specifically, when miR-886-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and taken up into tumor cells, miR in the cells -886-3p means a nucleotide having the activity of suppressing the function of 3p.
  • nucleotide sequence of “nucleotide that inhibits the function of miR-886-3p” used in the present invention is 70% or more, preferably 70% or more, preferably the nucleotide sequence represented by SEQ ID NO: 10, which is the complementary strand of miR-886-3p. 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10 one or more nucleotides in the nucleotide sequence represented by SEQ ID NO: 10 have been deleted, substituted, inserted or added
  • a sequence for example, (1) a nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by SEQ ID NO: 10 have been deleted, (2) A nucleotide sequence obtained by adding 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides to the nucleotide sequence represented by SEQ ID NO: 10, and (3) a nucleotide represented by SEQ ID NO: 10.
  • the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10 is preferably 15 or more consecutive nucleotides (preferably 17 or more nucleotides or more, preferably included in the nucleotide sequence represented by SEQ ID NO: 10).
  • nucleic acid of the present invention examples include, for example, decoy RNA for anti-miR-886-3p and miR-886-3p.
  • anti-miR-886-3p is a form of miR-886-3p microRNA activity-inhibiting molecule, and refers to a nucleic acid that is complementary to the miR-886-3p sequence. Similar to the anti-miR-151-3p described above, the anti-miR-886-3p of the present invention may be modified so as to be resistant to various degrading enzymes.
  • decoy RNA for miR-886-3p has a partially complementary sequence to miR-886-3p, and is cleaved and degraded even after base pairing with miR-886-3p.
  • RNA with a secondary structure that is difficult to receive Similar to the decoy RNA for miR-151-3p above, a sequence that is not completely complementary to the target microRNA (eg, 4 bases were inserted between the 10th and 11th bases from the 3 ′ end of the fully complementary sequence) Sequence) and the like, it is possible to avoid cleaving the decoy RNA by the RISC complex containing the target microRNA.
  • nucleic acid comprising a nucleotide to do
  • expression vector includes, for example, genetic information that can be replicated in a host cell and can be propagated autonomously, and can be isolated and purified from the host cell. Examples thereof include those in which the nucleic acid of (a) is introduced into an expression vector having a promoter that is easy and can function in a host cell and has a detectable marker.
  • the linker sequence and the gap sequence to avoid cleavage should be designed so that 4 or more U are not consecutive.
  • a commercially available miR-886-3p inhibitor can also be used.
  • Anti-miR-886-3p is commercially available as Anti-miR TM miRNA inhibitor (Applied Biosystems), and miRrest TM miRNA inhibitors (catalog No. HmiR-AN0813- SN-5, -10, -20 (synthetic oligo), HmiR-AN0813-AM01, 02, 03, 04 (expression vector) (both manufactured by Genecopoeia)).
  • the SMPD3 inhibitor may be any substance that suppresses the expression of SMPD3 or a substance that suppresses the function of SMPD3, and its action mechanism is not limited.
  • SMPD3 is known to regulate the secretion of microRNA in membrane vesicles called exosomes (J Biol Chem. 2010 Jun 4; 285 (23): 17442-52).
  • a substance that suppresses the expression or function of SMPD3 is useful for tumor therapy because it suppresses tumor metastasis by suppressing tumor angiogenesis.
  • SMPD3 is a known molecule and means a neutral sphingomyelinase 2.
  • SMPD3 is a protein comprising the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 12.
  • proteins and peptides are described with the N-terminus (amino terminus) at the left end and the C-terminus (carboxyl terminus) at the right end according to the convention of peptide designation.
  • a human protein consisting of the amino acid sequence represented by SEQ ID NO: 12 (RefSeq No. NP_061137), or an ortholog thereof (for example, mouse (RefSeq No.
  • NP_067466 rhesus monkey
  • rhesus monkey RefSeq No. XP_001091683
  • dogs RefSeq No. XP_546863
  • rats RefSeq No. NP_446057
  • cows RefSeq No. NP_001179292
  • etc. their splice variants and allelic variants.
  • SMPD3 is a human or other warm-blooded animal (eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.) cell (eg, MCF7 cell, vascular cell, brain cell) or those May be isolated and purified from any tissue (eg, mammary gland tissue, small pulmonary artery, brain) and the like by a known protein separation and purification technique.
  • warm-blooded animal eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.
  • MCF7 cell vascular cell, brain cell
  • any tissue eg, mammary gland tissue, small pulmonary artery, brain
  • amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 12 (a) an amino acid sequence having about 80% or more homology with the amino acid sequence represented by SEQ ID NO: 12; (b) in the amino acid sequence represented by SEQ ID NO: 12, an amino acid sequence in which 1 to 50 amino acids are substituted and / or deleted and / or inserted and / or added; (c) the amino acid sequence of an ortholog in another mammal of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 12; or (d) The amino acid sequence of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 12 or the orthologue splice variant, allelic variant or polymorphism of (c) above.
  • homology refers to an optimal alignment when two amino acid sequences are aligned using a mathematical algorithm known in the art (preferably the algorithm uses a sequence of sequences for optimal alignment). The percentage of identical and similar amino acid residues relative to all overlapping amino acid residues in which one or both of the gaps can be considered).
  • Similar amino acids means amino acids that are similar in physicochemical properties, such as aromatic amino acids (Phe, Trp, Tyr), aliphatic amino acids (Ala, Leu, Ile, Val), polar amino acids (Gln, Asn) ), Basic amino acids (Lys, Arg, His), acidic amino acids (Glu, Asp), amino acids with hydroxyl groups (Ser, Thr), amino acids with small side chains (Gly, Ala, Ser, Thr, Met), etc. Examples include amino acids classified into groups. It is expected that substitution with such similar amino acids will not change the phenotype of the protein (ie, is a conservative amino acid substitution). Specific examples of conservative amino acid substitutions are well known in the art and are described in various literature (see, for example, Bowie et al., Science, 247: 1306-1310 (1990)).
  • NCBI BLAST National Center for Biotechnology Information Basic Local Alignment Search Tool
  • Other algorithms for determining amino acid sequence homology include, for example, the algorithm described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) [the algorithms include NBLAST and XBLAST] Embedded in the program (version 2.0) (Altschul et al., Nucleic Acids Res., 25: 3389-3402 1997 (1997))], Needleman et al., J. Mol.
  • the “amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 12” is about 80% or more of the amino acid sequence represented by SEQ ID NO: 12;
  • the amino acid sequence preferably has about 90% or more, more preferably about 95% or more, still more preferably about 97% or more, particularly preferably about 98% or more, and most preferably about 99% or more.
  • a protein comprising the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 12 includes an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 12 It is a protein having substantially the same activity as the protein consisting of the amino acid sequence represented by No. 12
  • “activity” refers to the activity of hydrolyzing the phosphodiester bond of sphingomyelin.
  • substantially the same quality means that the properties are qualitatively the same, for example, physiologically or pharmacologically.
  • the sphingomyelin hydrolyzing activity can be measured by measuring and comparing the amount of phosphorylcholine produced by hydrolyzing sphingomyelin according to a method known per se. For example, it can be measured using a commercially available Sphingomyelinase Assay kit (Cayman).
  • SMPD3 in the present invention as shown in (b) above, for example, (i) 1 to 50, preferably 1 to 30, more preferably 1 to 1 in the amino acid sequence represented by SEQ ID NO: 12 Amino acid sequence in which 10 amino acids, more preferably 1 to several (5, 4, 3 or 2) amino acids have been deleted, (ii) 1 to 50 amino acid sequences represented by SEQ ID NO: 12, preferably 1 To 30 amino acids, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acids, (iii) the amino acid sequence represented by SEQ ID NO: 12 An amino acid sequence in which 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acids are inserted, (iv) SEQ ID NO: : 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably in the amino acid sequence represented by 12 Also included are so-called muteins such as proteins containing amino acid sequences in which one to several (5, 4, 3, or 2)
  • the “substance that suppresses the expression of SMPD3” acts at any stage such as the transcription level of SMPD3 gene encoding SMPD3, the level of post-transcriptional regulation, the level of translation into SMPD3, the level of post-translational modification, etc. It may be. Therefore, examples of substances that suppress SMPD3 expression include substances that inhibit transcription of the SMPD3 gene (eg, antigenes), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm.
  • substances that suppress SMPD3 expression include substances that inhibit transcription of the SMPD3 gene (eg, antigenes), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm.
  • Substance that inhibits translation from mRNA to SMPD3 eg, antisense nucleic acid, miRNA
  • degrades mRNA eg, siRNA, ribozyme, miRNA
  • substance that inhibits post-translational modification of the initial translation product etc.
  • Any substance that acts at any stage can be preferably used, but a substance that binds complementarily to mRNA and inhibits translation into SMPD3 or decomposes mRNA is preferable.
  • a base sequence complementary to or substantially complementary to the base sequence of these mRNAs or a part thereof The nucleic acid containing is mentioned.
  • the base sequence substantially complementary to the base sequence of the mRNA of the SMPD3 gene can bind to the target sequence of the mRNA and inhibit its translation under physiological conditions in mammals (or cleave the target sequence).
  • a base sequence having a degree of complementarity specifically, for example, a region that overlaps with a base sequence that is completely complementary to the base sequence of the mRNA (that is, a base sequence of the complementary strand of the mRNA).
  • the base sequence complementary or substantially complementary to the base sequence of the mRNA of the SMPD3 gene is (a) complementary or substantially complementary to the base sequence represented by SEQ ID NO: 11. Or (b) a base sequence that hybridizes with a complementary strand of the base sequence represented by SEQ ID NO: 11 under stringent conditions, comprising the amino acid sequence represented by SEQ ID NO: 12.
  • a base sequence that hybridizes with a complementary strand of the base sequence represented by SEQ ID NO: 11 under stringent conditions comprising the amino acid sequence represented by SEQ ID NO: 12.
  • substantially the same quality of activity has the same meaning as described above.
  • the stringent conditions are, for example, the conditions described in Current Protocols in Molecular Biology, John Wiley and Sons, 6.3.1-6.3.6, 1999, for example, 6 ⁇ SSC (sodium chloride / sodium citrate) / 45 ° C. Hybridization, followed by one or more washes at 0.2 ⁇ SSC / 0.1% SDS / 50 to 65 ° C., those skilled in the art will know the conditions for hybridization that will give the same stringency. It can be selected appropriately.
  • mRNA of the SMPD3 gene a human SMPD3 gene (RefSeq No. NM_018667) containing the nucleotide sequence represented by SEQ ID NO: 11 or an ortholog thereof (for example, mouse (RefSeq No. NM_021491) in other mammals. ), Rhesus monkeys (RefSeq No. XM_001091683), dogs (RefSeq No. XM_546863), rats (RefSeq No. NM_053605), cattle (RefSeq No. NM_001192363)), and their splice variants, allelic variants, polymorphisms, etc. Of mRNA.
  • Part of the base sequence complementary to or substantially complementary to the base sequence of the mRNA of the SMPD3 gene means that it can specifically bind to the mRNA of the SMPD3 gene and translates the protein from the mRNA.
  • the length and the position are not particularly limited as long as they can inhibit (or degrade the mRNA), but at least 10 bases that are complementary or substantially complementary to the target sequence from the viewpoint of sequence specificity. As mentioned above, it contains about 15 bases or more, more preferably about 20 bases or more.
  • the nucleic acid containing any one of the following (a) to (c) is preferably exemplified as a nucleic acid complementary to or substantially complementary to the nucleotide sequence of the mRNA of the SMPD3 gene or a part thereof: Is done.
  • the “antisense nucleic acid against SMPD3 gene mRNA” in the present invention includes a base sequence complementary to or substantially complementary to the base sequence of the mRNA or a part thereof. It is a nucleic acid and has a function of suppressing protein synthesis by forming a specific and stable duplex with a target mRNA.
  • Antisense nucleic acids are polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, other types of polynucleotides that are N-glycosides of purine or pyrimidine bases, Other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers) or other polymers containing special linkages, provided that the polymer is a base such as found in DNA or RNA And a nucleotide having a configuration that allows attachment of a base).
  • RNA double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, unmodified polynucleotides (or unmodified oligonucleotides), known modifications Additions, such as those with labels known in the art, capped, methylated, one or more natural nucleotides replaced with analogs, intramolecular nucleotide modifications Such as those having uncharged bonds (eg methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged bonds or sulfur-containing bonds (eg phosphorothioates, phosphorodithioates, etc.) Things such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-rigid Having a side chain group such as sugar (eg, monosaccharide), having an intercurrent compound (eg, acridine, psoralen
  • nucleoside may include not only purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, for example, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted.
  • the antisense nucleic acid may be DNA or RNA, or may be a DNA / RNA chimera.
  • the RNA DNA hybrid formed by the target RNA and the antisense DNA can be recognized by endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the SMPD3 gene.
  • the intron sequence can be determined by comparing the genomic sequence with the cDNA base sequence of the SMPD3 gene using a homology search program such as BLAST or FASTA.
  • the length of the target region of the antisense nucleic acid of the present invention is not particularly limited as long as the antisense nucleic acid hybridizes, and as a result, the translation into SMPD3 is inhibited.
  • MRNA encoding SMPD3 The short sequence may be about 10 bases, and the long sequence may be the entire mRNA or initial transcription product sequence.
  • an oligonucleotide consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases is preferred, but is not limited thereto.
  • 5 'end hairpin loop of SMPD3 gene 5' end 6-base pair repeat, 5 'end untranslated region, translation start codon, protein coding region, ORF translation stop codon, 3' end untranslated region , 3 ′ end palindromic region or 3 ′ end hairpin loop, etc. may be selected as a preferred target region of the antisense nucleic acid, but is not limited thereto.
  • the antisense nucleic acid of the present invention not only hybridizes with the mRNA of the SMPD3 gene and the initial transcription product to inhibit translation into protein, but also binds to these genes that are double-stranded DNA to form triple strands ( A triplex) that can inhibit transcription to RNA (antigene).
  • the nucleotide molecule constituting the antisense nucleic acid may be natural DNA or RNA, but various chemicals may be used to improve stability (chemical and / or enzyme) and specific activity (affinity with RNA). Modifications can be included.
  • the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be substituted with a phosphate residue.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate etc. It can be substituted with a phosphate residue.
  • the 2′-position hydroxyl group of each sugar is changed to OR (R ⁇ CH 3 (2′-O-Me), F (2′-F), CH 2 CH 2 OCH 3 (2′- O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.).
  • the base moiety pyrimidine, purine
  • the antisense oligonucleotide of the present invention determines the target sequence of mRNA or initial transcript based on the cDNA sequence or genomic DNA sequence of SMPD3 gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman) Etc.) can be prepared by synthesizing a complementary sequence thereto.
  • any of the above-described antisense nucleic acids containing various modifications can be chemically synthesized by a method known per se.
  • Ribozyme nucleic acid for mRNA of SMPD3 gene As another preferred example of a nucleic acid comprising a base sequence complementary to or substantially complementary to the base sequence of mRNA of SMPD3 gene or a part thereof, the mRNA is used as a coding region. Examples include ribozyme nucleic acids that can be cleaved specifically inside. “Ribozyme” refers to RNA having an enzyme activity that cleaves nucleic acids in a narrow sense, but in this specification, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity.
  • the most versatile ribozyme nucleic acids include self-splicing RNAs found in infectious RNAs such as viroids and virusoids, and hammerhead and hairpin types are known.
  • the hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends (about 10 bases in total) adjacent to the part having the hammerhead structure are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA.
  • This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate.
  • the target sequence is made single-stranded by using a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase.
  • a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)].
  • ribozymes are used in the form of expression vectors containing the DNA that encodes them, they should be hybrid ribozymes in which tRNA-modified sequences are further linked in order to promote the transfer of transcripts to the cytoplasm. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
  • RNAi RNA interference
  • SiRNA can be designed according to the rules proposed by Elbashir et al. (Genes Dev., 15, 188-200 (2001)) based on the cDNA sequence information of the target gene.
  • Examples of siRNA target sequences include, but are not limited to, AA + (N) 19, AA + (N) 21 or NA + (N) 21 (N is an arbitrary base).
  • the position of the target sequence is not particularly limited.
  • For the selected target sequence candidate group whether or not there is homology in the 16-17 base sequence in the non-target mRNA is determined by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/ ) And the like, and the specificity of the selected target sequence is confirmed.
  • AA + (N) 19 AA + (N) 21 or NA + (N) 21 (N is an arbitrary base) is used as the target sequence
  • the target sequence whose specificity has been confirmed is AA (or NA) or later.
  • Two strands consisting of a sense strand having a TT or UU 3 'end overhang at 19-21 bases and an antisense strand having a sequence complementary to the 19-21 base and a TT or UU 3' end overhang Strand RNA may be designed as siRNA.
  • siRNA short hairpin RNA
  • an arbitrary linker sequence for example, about 5-25 bases
  • the sense strand and the antisense strand are combined with each other. It can be designed by linking via a linker sequence.
  • siRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites. Examples of such sites include siRNAsiTarget Finder (http://www.ambion.com/jp/techlib/misc/siRNA_finder.html) and pSilencerTM Expression Vector insert design tools (http: // www.ambion.com/techlib/misc/psilencer_converter.html), GeneSeer (http://codex.cshl.edu/scripts/newsearchhairpin.cgi) provided by RNAi Codex, but not limited to these.
  • the ribonucleoside molecule constituting siRNA may also be modified in the same manner as in the above-described antisense nucleic acid in order to improve stability, specific activity and the like.
  • the siRNA is synthesized by synthesizing a sense strand and an antisense strand of a target sequence on mRNA with a DNA / RNA automatic synthesizer, denatured at about 90 to about 95 ° C. for about 1 minute in an appropriate annealing buffer, It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. Alternatively, it can be prepared by synthesizing a single hairpin RNA (shRNA) serving as a siRNA precursor and cleaving it with a dicer.
  • shRNA single hairpin RNA
  • a nucleic acid designed to generate an siRNA against the mRNA of the SMPD3 gene in vivo is also a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the mRNA of the SMPD3 gene.
  • a nucleic acid containing a moiety examples include expression vectors constructed so as to express the above-mentioned shRNA and siRNA.
  • shRNA is an oligo containing a base sequence in which the sense strand and the antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence (for example, about 5 to 25 bases) long enough to form an appropriate loop structure.
  • Vectors expressing shRNA include tandem type and stem loop (hairpin) type.
  • siRNA sense and antisense strand expression cassettes are linked in tandem, and each strand is expressed and annealed in the cell to form a double-stranded siRNA (dsRNA).
  • dsRNA double-stranded siRNA
  • the latter is one in which an shRNA expression cassette is inserted into a vector, in which shRNA is expressed in cells and processed by dicer to form dsRNA.
  • a pol II promoter for example, a CMV immediate early promoter
  • a pol III promoter is generally used.
  • the polIII promoter include mouse and human U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter, and the like.
  • a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
  • the siRNA or shRNA expression cassette thus constructed is then inserted into a plasmid vector or viral vector.
  • vectors include retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors, animal cell expression plasmids, and the like.
  • Nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of mRNA of the SMPD3 gene or a part thereof is provided in a special form such as a liposome or a microsphere, applied to gene therapy, It can be given in an added form.
  • the additional form includes polycationic substances such as polylysine that acts to neutralize the charge of the phosphate group skeleton, lipids that enhance interaction with cell membranes and increase nucleic acid uptake ( Examples include hydrophobic ones such as phospholipid and cholesterol.
  • Preferred lipids for addition include cholesterol and derivatives thereof (eg, cholesteryl chloroformate, cholic acid, etc.).
  • nucleic acids can be attached via bases, sugars, intramolecular nucleoside linkages.
  • examples of the other group include a cap group specifically arranged at the 3 'end or 5' end of a nucleic acid, which prevents degradation by nucleases such as exonuclease and RNase.
  • capping groups include, but are not limited to, hydroxyl protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
  • the SMPD3 expression-suppressing activity of these nucleic acids can be examined using a transformant introduced with an SMPD3 gene, an SMPD3 gene expression system in vivo or in vitro, or an SMPD3 translation system in vivo or in vitro.
  • the substance that suppresses the expression of SMPD3 in the present invention is not limited to a nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of mRNA of the SMPD3 gene as described above or a part thereof, and SMPD3 production Other substances such as low molecular weight compounds may be used as long as they are directly or indirectly inhibited. Such a substance can be obtained, for example, by the screening method of the present invention described later.
  • the “substance that suppresses the function of SMPD3” means that once functionally produced SMPD3 suppresses angiogenesis, suppresses microRNA secretion, or suppresses tumor metastasis. Any thing is acceptable. Whether or not to suppress the function of SMPD3 can be confirmed by a known method such as the method described in Examples.
  • Examples of a substance that suppresses the function of SMPD3 include a substance that binds to SMPD3 and suppresses tumor angiogenesis, GW4869 (3,3 ′-(1,4-Phenylene) bis [N- [4- (4, Examples include substances that inhibit sphingomyelin hydrolysis such as 5-dihydro-1H-imidazol-2-yl) phenyl] -2-propenamide]).
  • examples of the substance that suppresses the function of SMPD3 include an antibody against SMPD3.
  • the antibody may be a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to per se known antibody or antiserum production methods.
  • the isotype of the antibody is not particularly limited, but preferably IgG, IgM or IgA, particularly preferably IgG.
  • the antibody is not particularly limited as long as it has at least a complementarity determining region (CDR) for specifically recognizing and binding a target antigen.
  • CDR complementarity determining region
  • the antibody against SMPD3 is used as a pharmaceutical for human administration, the antibody (preferably a monoclonal antibody) is an antibody with reduced risk of showing antigenicity when administered to humans.
  • the antibody preferably a monoclonal antibody
  • the antibody is an antibody with reduced risk of showing antigenicity when administered to humans.
  • Specific examples include fully human antibodies, humanized antibodies, mouse-human chimeric antibodies, and particularly preferably fully human antibodies.
  • Humanized antibodies and chimeric antibodies can be produced by genetic engineering according to conventional methods.
  • fully human antibodies can be produced from human-human (or mouse) hybridomas, but in order to provide a large amount of antibodies stably and at low cost, human antibody-producing mice and phage display methods are used. It is desirable to manufacture using.
  • SMPD3 plays an important role in tumor metastasis, especially in the process of cancer cell overflow from the primary lesion to the bloodstream, by controlling tumor angiogenesis, substances that inhibit SMPD3 function as cell membranes. It is desirable that the material has excellent permeability. Therefore, a more preferable substance that suppresses the function of SMPD3 is a low molecular compound suitable for Lipinski's Rule. Such a compound can be obtained, for example, using the screening method of the present invention described later.
  • nucleic acid containing the nucleic acid, siRNA and precursor thereof of the present invention
  • the agent of the present invention comprises an effective amount of the nucleic acid of any one of (A) to (D) above or the expression of SMPD3 of (E) above
  • any carrier such as a pharmaceutically acceptable carrier, can be included and applied as a pharmaceutical in the form of a pharmaceutical composition.
  • Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Although diluents, such as physiological saline, base wax, etc. are mentioned, it is not limited to them.
  • the agent of the present invention can further contain a reagent for nucleic acid introduction.
  • the nucleic acid introduction reagent includes atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
  • the nucleic acid of the present invention can be efficiently delivered to the target tumor cells and efficiently incorporated into the cells.
  • the agent of the present invention can be administered to mammals orally or parenterally, but the agent of the present invention is preferably administered parenterally.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • the preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials.
  • the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
  • a spray etc. can be mentioned.
  • the content of the agent of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
  • the dosage of the agent of the present invention varies depending on the purpose of administration, administration method, tumor type, size, and the situation of the subject of administration (sex, age, body weight, etc.).
  • the amount of the nucleic acid of the present invention is preferably 1 pmol / kg or more and 10 nmol / kg or less, and 2 nmol / kg or more and 50 nmol / kg or less for systemic administration. It is desirable to administer such dose 1 to 10 times, more preferably 5 to 10 times.
  • the agent of the present invention is a mammal (eg, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, so that the nucleic acid of the present invention, which is an active ingredient thereof, is delivered to tumor tissue (tumor cells). It is safely administered to monkeys and humans.
  • Antibodies to SMPD3 and low molecular compounds that suppress SMPD3 expression or function inhibit SMPD3 production or activity can do. Accordingly, these substances suppress the expression or function of SMPD3 in vivo and suppress tumor angiogenesis or metastasis, and thus can be used as a prophylactic and / or therapeutic agent for tumors.
  • the medicine containing the above antibody or low molecular weight compound can be used as a liquid or as a pharmaceutical composition of an appropriate dosage form as a human or mammal (eg, rat, rabbit, sheep, pig, cow, cat, dog, monkey). Etc.) orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
  • the above-described antibodies and low-molecular compounds may be administered per se, or may be administered as an appropriate pharmaceutical composition.
  • the pharmaceutical composition used for administration may contain the above antibody or low molecular compound or a salt thereof and a pharmacologically acceptable carrier, diluent or excipient.
  • Such pharmaceutical compositions are provided as dosage forms suitable for oral or parenteral administration.
  • composition for parenteral administration for example, injection, suppository, intranasal administration, etc. are used, and the injection is intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, drip injection. You may include dosage forms, such as an agent.
  • Such an injection can be prepared according to a known method. As a method for preparing an injection, it can be prepared by, for example, dissolving, suspending or emulsifying the antibody or low molecular compound of the present invention or a salt thereof in a sterile aqueous liquid or oily liquid usually used for injection.
  • an aqueous solution for injection for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination.
  • alcohol eg, ethanol
  • polyalcohol eg, Propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)
  • oily liquid for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solub
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like.
  • Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • a carrier and excipient for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
  • the above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dose of the active ingredient.
  • dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories.
  • the antibody or low molecular weight compound is preferably contained in an amount of usually 0.1 to 500 mg, particularly 5 to 100 mg for injections and 10 to 250 mg for other dosage forms per dosage unit form.
  • the dose of the above-mentioned medicament containing the above-mentioned antibody or low-molecular compound or a salt thereof varies depending on the administration subject, target disease, symptom, administration route, etc., but for example, when used for treatment / prevention of tumors Is usually about 0.0001 to 20 mg / kg body weight for a single dose of antibody or low molecular weight compound, about 1 to 5 times a day for low molecular weight compound, orally or parenterally, 1 to several days for antibody Conveniently administered once a month by intravenous injection. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
  • tumors to which the agent of the present invention can be applied include breast cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, colon cancer, Ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxillary cancer, tongue Cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, muscle tumor, skin cancer, retinoblastoma and other solid cancer, myeloma, leukemia, malignant lymphoma, myeloma, malignant melanoma, Examples include hemangioma, polycythemia vera, neuroblastoma and the like.
  • the tumor to which the agent of the present invention can be applied is preferably cancer, and more preferably breast cancer. Since the agent of the present invention has an activity of suppressing angiogenesis, tumors can be treated by administering the agent of the present invention to cancer patients, particularly breast cancer patients. Moreover, since it has an activity of suppressing angiogenesis, it can suppress tumor metastasis. Therefore, the agent of the present invention is extremely useful as a therapeutic agent for tumors.
  • the present invention provides a tumor therapeutic agent comprising the above-described nucleic acid of the present invention and an antitumor agent in combination.
  • the antitumor agent that can be used in the concomitant drug of the present invention is not particularly limited, but preferably has an activity of suppressing the growth of the tumor itself.
  • antitumor agents include not only microtubule agonists such as taxanes, but also antimetabolites, DNA alkylating agents, DNA binding agents (platinum preparations), anticancer antibiotics, and the like.
  • amrubicin hydrochloride irinotecan hydrochloride, ifosfamide, etoposiderstat, gefinitib, cyclophosphamide, cisplatin, trastuzumab, fluorouracil, mitomycin C, imatinib mesylate, methotrexate, rituxan and adriamycin.
  • the administration timing of the nucleic acid of the present invention and the antitumor agent is not limited, and the nucleic acid of the present invention and the antitumor agent are administered simultaneously to the administration subject. Alternatively, administration may be performed with a time difference.
  • a breast cancer patient can be mentioned preferably.
  • the relative levels of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p or miR-886-3p Patients with high cancer are desirable.
  • the dosage of the active ingredient of the agent of the present invention is not particularly limited as long as it can achieve prevention / treatment of the applicable disease, and can be administered within the dosage range described in the above section (1. Agent of the present invention). is there.
  • the dose of the antitumor agent can be determined according to the dose adopted when the antitumor agent is administered as a single agent in the clinic.
  • the dosage form of the agent of the present invention and the antitumor agent is not particularly limited as long as the agent of the present invention and the antitumor agent are combined at the time of administration.
  • dosage forms include: (1) Administration of a single preparation obtained by simultaneously formulating the agent of the present invention and an antitumor agent, (2) Simultaneous administration by the same administration route of two types of preparations obtained by separately formulating the agent of the present invention and the antitumor agent, (3) Administration of the two preparations obtained by separately formulating the agent of the present invention and the antitumor agent with a time difference in the same administration route, (4) Simultaneous administration of two kinds of preparations obtained by separately formulating the agent of the present invention and the antitumor agent through different administration routes, (5) Administration of the two preparations obtained by separately formulating the agent of the present invention and the antitumor agent at different time intervals in different administration routes (for example, in the order of the agent of the present invention ⁇ the antitumor agent) Administration, or administration in the reverse
  • agent of the present invention can be formulated by a conventional method according to the description in the above section (1. Agent of the present invention).
  • agent of the present invention When the agent of the present invention and the antitumor agent are formulated separately, the dosage form of the antitumor agent is selected according to the dosage form adopted when the antitumor agent is administered as a single agent in clinical practice. I can do it.
  • the agent of the present invention and the antitumor agent may be administered at the same time, but the antitumor agent is administered first. Thereafter, the agent of the present invention may be administered, or the agent of the present invention may be administered first, followed by administration of the antitumor agent.
  • the time difference varies depending on the active ingredient to be administered, dosage form, and administration method.
  • Examples include a method of administering the agent of the present invention within 3 days, preferably within 10 minutes to 1 day, more preferably within 15 minutes to 1 hour.
  • the agent of the present invention is administered first, the antitumor agent is administered within 1 minute to 1 day, preferably within 10 minutes to 6 hours, more preferably within 15 minutes to 1 hour after the administration of the agent of the present invention.
  • the method of administration is mentioned.
  • the combination agent of the present invention two or more kinds of antitumor agents may be used.
  • the concomitant drug of the present invention can be applied to tumors described in detail as “tumor to which the agent of the present invention can be applied” in the above section (1. Agent of the present invention).
  • the concomitant drug of the present invention is preferably applied to breast cancer.
  • the present invention relates to miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886 in test samples. -3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280 , Based on measuring the secretion level or concentration of miR-210, miR-140-3p, miR-593 or miR-483-3p and a positive correlation between the secretion level or the concentration and malignant cancer Providing a method for determining malignant cancer, comprising determining whether the cancer is malignant. The method of the present invention is particularly useful for the determination of malignant breast cancer.
  • malignant cancer refers to a cancer that has higher tumor forming ability, higher metastatic ability, and higher patient mortality than benign cancer.
  • test sample is a cell, blood or tissue collected from a measurement subject.
  • the test sample can be collected from the measurement subject according to a known method.
  • the test sample is not particularly limited, but is preferably a mammary gland, and more preferably a mammary gland cell.
  • the miRNA whose secretion level or concentration is measured in the determination method of the present invention includes mature type, pri-miRNA and pre-miRNA, but preferably the sum of all these types of secretion levels or mature type secretion. Level, more preferably mature secretion level, is measured.
  • the secretion level or concentration of miR-593 or miR-483-3p can be measured by a method known per se using a nucleic acid probe capable of specifically detecting the miRNA.
  • the measuring method examples include RT-PCR, Northern blotting, in situ hybridization, nucleic acid array and the like. Alternatively, it can be measured by a commercially available kit (for example, TaqMan (registered trademark) MicroRNA Cells-to-CT TM Kit).
  • the nucleic acid probe capable of specifically detecting miR-29b-1 * is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most contained in the nucleotide sequence represented by SEQ ID NO: 1.
  • the polynucleotide includes a full-length continuous nucleotide sequence or a complementary sequence thereof.
  • the nucleic acid probe capable of specifically detecting miR-221 * is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 2. Mention may be made of polynucleotides comprising the full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-138 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 3. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-584 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 4. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-30a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 5. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-146a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 6. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-151-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 7. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-886-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 8. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
  • nucleic acid probe capable of specifically detecting miR-100, 15 nucleotides or more, preferably 18 nucleotides or more, more preferably about 20 nucleotides or more, most preferably, included in the nucleotide sequence represented by SEQ ID NO: 13 Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-221 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, and most preferably the nucleotide sequence represented by SEQ ID NO: 14. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-126 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 15. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-130a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 16. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-222 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence contained in the nucleotide sequence represented by SEQ ID NO: 17. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-125b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 18. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-29a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 19. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • nucleic acid probe capable of specifically detecting miR-720 it is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 20. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-224 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence contained in the nucleotide sequence represented by SEQ ID NO: 21. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-29b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 22. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-1274b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 23. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-1280 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 24. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-210 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 25. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-140-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 26. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-593 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 27. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe capable of specifically detecting miR-483-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 28. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
  • the nucleic acid probe may contain an additional sequence (a nucleotide sequence that is not complementary to the polynucleotide to be detected) as long as specific detection is not hindered.
  • the nucleic acid probe may be an appropriate labeling agent such as a radioisotope (eg, 125 I, 131 I, 3 H, 14 C, 32 P, 33 P, 35 S, etc.), an enzyme (eg, ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase, etc.), fluorescent substances (eg, fluorescamine, fluorescein isothiocyanate, etc.), luminescent substances (eg, luminol, luminol derivatives, luciferin, lucigenin, etc.), etc.
  • a radioisotope eg, 125 I, 131 I, 3 H, 14 C, 32 P, 33 P, 35 S, etc.
  • a quencher quenching substance
  • FAM fluorescence energy emitted by the fluorescent substance
  • VIC quenching substance
  • the nucleic acid probe may be any of DNA, RNA, and chimeric nucleic acid, and may be single-stranded or double-stranded.
  • the nucleic acid probe or primer can be synthesized according to a conventional method using a DNA / RNA automatic synthesizer based on the information of the nucleotide sequence represented by SEQ ID NOs: 1 to 8 or 13 to 28, for example.
  • malignant cancer cells are miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a compared to normal cells and benign cancers.
  • MiR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR -29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR-593 and miR-483-3p have high secretion levels or concentrations.
  • a correlation diagram between the secretion level of miR-140-3p, miR-593 or miR-483-3p and malignant cancer is prepared in advance, and the secretion level in the test sample collected from the target patient is compared with the correlation diagram May be.
  • the comparison of the secretion level is preferably performed based on the presence or absence of a significant difference. From the comparison results of the secretion level, the measurement target miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886- 3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, If the secretion level of miR-210, miR-140-3p, miR-593 or miR-483-3p is relatively high, determine that the test sample is relatively likely to have malignant cancer Can do.
  • the secretion level of 140-3p, miR-593 or miR-483-3p is relatively low, it can be determined that the possibility that the test sample is malignant cancer is relatively low.
  • the therapeutic target of the agent of the present invention includes miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p or miR in the test sample. Since cancer patients with a relatively high secretion level of -886-3p are desirable, the methods of the present invention are useful for patient screening.
  • the present invention also includes miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR- 100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210,
  • An agent for determining the presence or malignancy of cancer (hereinafter referred to as “the agent of the present invention”) comprising a nucleic acid probe capable of specifically detecting miR-140-3p, miR-593 or miR-483-3p (II) ").).
  • the agent (II) of the present invention can be a kit for determining the presence or absence of malignant cancer in a test sample or the degree of malignancy. By using the agent (II) of the present invention, it is possible to easily determine whether the test sample has malignant cancer by the above-described determination method.
  • the nucleic acid probe is usually in the form of an aqueous solution dissolved at an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.), or the nucleic acid probe is immobilized on a solid phase carrier. In the embodiment of the nucleic acid array, it is included in the agent (II) of the present invention.
  • the agent (II) of the present invention is miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR -100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210
  • the composition may further contain other components necessary for carrying out the method.
  • the agent (II) of the present invention can further contain a blotting buffer, a labeling reagent, a blotting membrane, and the like.
  • the agent (II) of the present invention can further contain a labeling reagent, a chromogenic substrate, and the like.
  • the present invention relates to a method of searching for a substance capable of suppressing tumor angiogenesis.
  • the present invention relates to the secretion of a test substance miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a.
  • the present invention provides a method for searching for a substance that suppresses angiogenesis, including evaluating whether to enhance expression, and a substance that can be obtained by the method.
  • a substance that upregulates the secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a suppresses angiogenesis Drug, ie, a substance capable of suppressing tumor metastasis or a tumor therapeutic agent.
  • the search method of the present invention includes the following steps: (1) contacting a test substance with a cell capable of measuring secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a; (2) measuring the amount of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a secreted or expressed in cells contacted with the test substance, Comparing the amount of secretion or expression with the amount of secretion or expression in control cells not contacted with the test substance; and (3) based on the comparison result of (2) above, miR-29b-1 *, miR-221 * Select a test substance that up-regulates the secretion or expression level of miR-138, miR-584, miR-30a, or miR-146a as a substance that can suppress tumor angiogenesis.
  • the present invention also provides a substance that suppresses angiogenesis, comprising evaluating whether a test substance suppresses the secretion, expression level or function of miR-151-3p, miR-886-3p or SMPD3.
  • a method for searching and a substance obtainable by the method are provided.
  • the substance that down-regulates the secretion or function of miR-151-3p, miR-886-3p or SMPD3 is an agent that suppresses angiogenesis, that is, a substance or tumor that can suppress tumor metastasis Selected as a therapeutic agent.
  • the search method of the present invention includes the following steps: (1) contacting a test substance with a cell capable of measuring secretion or expression of miR-151-3p, miR-886-3p or SMPD3; (2) Measure the secretion amount, expression level or function of miR-151-3p, miR-886-3p or SMPD3 in cells contacted with the test substance, and determine the secretion amount, expression level or function of the test substance Comparing with the secreted amount, expression level or function in the non-contacted control cells; and (3) secreted amount, expression of miR-151-3p, miR-886-3p or SMPD3 based on the comparison result of (2) above
  • a test substance that down-regulates the amount or function is selected as a substance capable of suppressing tumor angiogenesis.
  • the present invention provides a dual VEGF signal and its feedback signal, the Akt3-DLL4 pathway, comprising evaluating whether a test substance suppresses the secretion, expression level or function of miR-151-3p.
  • the present invention provides a method for searching for a substance that suppresses abnormal angiogenesis by inhibiting it as well as a substance that can be obtained by the method.
  • a substance that down-regulates the secretion or function of miR-151-3p is selected as an agent that suppresses angiogenesis abnormality, that is, a substance that can suppress tumor metastasis or a tumor therapeutic agent.
  • the search method of the present invention may further include a step of measuring the expression level of Akt3 and / or DLL4.
  • the expression level of Akt3 and / or DLL4 can be measured by a method known per se using, for example, an antibody that specifically recognizes Akt3 and / or DLL4.
  • the search method of the present invention includes the following steps: (1) contacting a test substance with a cell capable of measuring secretion or expression of miR-151-3p; (2) measuring the secretion amount, expression amount or function of miR-151-3p in a cell contacted with a test substance, and the secretion amount, expression amount or function in a control cell not contacting the test substance; Comparing with the expression level or function; and (3) based on the comparison result of (2) above, a test substance that down-regulates the secretion amount, expression level or function of miR-151-3p, Select as a substance that can suppress abnormalities.
  • test substance used in the search method of the present invention may be any known compound and novel compound, for example, using nucleic acids, carbohydrates, lipids, proteins, peptides, organic low molecular weight compounds, combinatorial chemistry techniques.
  • the prepared compound library, random peptide library, natural components derived from microorganisms, animals and plants, marine organisms, and the like can be mentioned.
  • microRNAs (miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151 whose secretion level or expression level is measured are measured.
  • -3p or miR-886-3p) include mature, pri-miRNA and pre-miRNA, but preferably the sum of all these types of secretion levels or expression levels or mature secretion levels or expression The level, more preferably the mature secretion level or expression level, is measured.
  • Cells capable of measuring secretion or expression '' are miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, A cell capable of evaluating the secretion level or expression level of miR-886-3p or SMPD3.
  • the cells include miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 to be measured. Cells that can be secreted or expressed in nature are mentioned.
  • Cells capable of expression are potentially miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3
  • the cell is not particularly limited as long as it is secreted or expressed, and as the cell, a primary cultured cell of a mammal (eg, human, mouse, etc.), a cell line derived from the primary cultured cell, or the like can be used.
  • Culture medium can measure miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 secretion
  • a minimal essential medium containing about 5 to 20% fetal calf serum, Dulbecco's modified Eagle medium (DMEM), or the like is selected.
  • the culture conditions are appropriately determined in the same manner.
  • the pH of the medium is about 6 to about 8
  • the culture temperature is usually about 30 to about 40 ° C.
  • the culture time is about 12 to about 72 hours.
  • Measurement of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 , (2. Method for determining cancer) can be performed according to a known method such as the method described in the section.
  • the function level of SMPD3 can be measured by evaluating the function of the known SMPD3 described in the section (1. Agent of the present invention).
  • the comparison of the secretion amount or the expression amount can be preferably performed based on the presence or absence of a significant difference.
  • the amount of SMPD3 secreted or expressed is miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151 in cells contacted with the test substance.
  • miR-886-3p or SMPD3 secretion amount or expression level measurement may be a secretion amount or expression level measured in advance, or simultaneously measured secretion amount or expression level, From the viewpoint of the accuracy and reproducibility of the experiment, the amount of secretion or expression measured simultaneously is preferable.
  • miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a obtained as a result of the comparison up-regulated, or miR- Substances that down-regulate the secretion, expression, or function of 151-3p, miR-886-3p or SMPD3 are substances that can suppress angiogenesis, especially those that can inhibit tumor angiogenesis, or tumor metastasis It is selected as a substance that can be suppressed.
  • the compound obtained by the search method of the present invention is useful as a candidate substance for the development of a new tumor therapeutic agent.
  • nucleotide sequence is described using the RNA sequence for the sake of convenience, but this does not mean that the nucleic acid identified by the SEQ ID NO represents only RNA, and U It should be understood that (uracil) is replaced with T (thymine) to indicate the nucleotide sequence of DNA or chimeric nucleic acid.
  • Reference Example 1 Preparation of firefly luciferase stable expression 4T1 cells (4T1-luc cells) Using 1 ⁇ g of pNeoLuc containing firefly luciferase gene, using LipofectamineLTX kit (Invitrogen) according to the procedure attached to the reagent kit. The cells were introduced into 4T1 cells (ATCC CRL-2539), a mouse breast cancer cell line seeded at a concentration of 6 cells / well (6-well plate). On the next day, the medium was changed to a 10% FBS / RPMI medium (Invitrogen) containing 0.5 mg / mL Geneticin (Invitrogen), and the cells were stably cultured for 2 weeks to select stably expressing cells.
  • 4T1 cells ATCC CRL-2539
  • a mouse breast cancer cell line seeded at a concentration of 6 cells / well (6-well plate).
  • the medium was changed to a 10% FBS / RPMI medium (Invitrogen) containing
  • Firefly luciferase activities of a plurality of stably expressing cells were measured using Bright Glo reaction solution (Promega) and Envision 2101 MultiLabel Reader (Wallac), and the most active cells were selected. As a result, it was possible to establish cells exhibiting a luminescence amount of about 3,000 RLU per 10,000 cells. Thereafter, the cell line was used as firefly luciferase stably expressing 4T1 cells (4T1-luc cells).
  • mice SMPD3 gene in a plurality of stably expressing cells was quantified using mouse SMPD3 TaqMan Reagent (Applied Biosystems).
  • total RNA was prepared from stably expressing cells using RNeasy mini kit (Qiagen).
  • cDNA synthesis was performed based on the total RNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
  • CDNA synthesis was carried out by carrying out a heat retention step of 25 ° C. for 10 minutes, 37 ° C. for 2 hours, and 85 ° C. for 5 seconds.
  • TaqMan RT-PCR reaction was performed using the cDNA as a template.
  • Example 1 Effect of SMPD3 Knockdown on Metastasis Assay in a Subcutaneous Transplant Model 1 ⁇ 10 6 4T1-luc mSMPD3 suspended in PBS subcutaneously in both inguinal regions of 5 7-week-old female Balb / c athymic nude mice KD cells were transplanted.
  • Balb / cathic nude mice transplanted with 1 ⁇ 10 6 4T1-luc cells were used. 14 days after transplantation, luciferase activity in lungs extracted from mice was measured using in vivo imaging, and it was found that lung metastasis in mice transplanted with 4T1-luc mSMPD3 KD cells was significantly reduced compared to the control group. I understand ( Figure 1).
  • Example 2 Effect of SMPD3 Knockdown on Metastasis Assay in Tail Vein Administration Model 1 ⁇ 10 6 4T1-luc mSMPD3 KD suspended in PBS from the tail vein of five 7-week-old female Balb / c athymic nude mice Cells were transplanted. As a control group, Balb / cathic nude mice transplanted with 1 ⁇ 10 6 4T1-luc cells were used. Twenty-six days after transplantation, luciferase activity in lungs isolated from mice was measured using in vivo imaging, and it was found that lung metastasis in mice transplanted with 4T1-luc mSMPD3 KD cells was similar to that in the control group (FIG. 2). ). This suggests that SMPD3 knockdown 4T1-luc cells have suppressed the process of overflow from the primary lesion to the bloodstream.
  • Example 3 Effect of SMPD3 Knockdown on Tumor Angiogenesis in a Subcutaneous Transplant Model 4T1-luc mSMPD3
  • Tumor masses in the inguinal region of Balb / cathic nude mice 20 days after transplantation of KD cells were extracted and fixed in formalin. After that, 5 ⁇ m paraffin-embedded sections were immunostained with the antibody against CD31, a vascular endothelium-specific protein (Rabbit polyclonal to CD31 ab28364 (Abcam)), according to the following procedure, and the ability to form tumor blood vessels was confirmed. evaluated.
  • a tumor mass at the groin part of Balb / cathic nude mice transplanted with 4T1-luc cells was used.
  • TBS-T solution 0.05M Tris, 0.3M NaCl, 0.1% Tween20 aqueous solution
  • the amount of fluorescence per unit area was measured by ACT-1C for DXM1200C, and it was found that the amount of fluorescence emitted from the 4T1-luc mSMPD3 KD tumor mass was 58% of the control. From the above results, it was found that tumor blood vessel formation was inhibited by suppressing the expression level of SMPD3 in the tumor.
  • MDA-MB-231 is a cell line isolated from human breast cancer and has lost estrogen sensitivity. It is used as a model for breast cancer with high malignancy and is known to metastasize to lymph nodes.
  • MCF-7 cells are estrogen-sensitive breast cancer cells, have low malignancy and no metastatic potential.
  • MCF-10A cells are mammary epithelium-derived cells and are known as normal cells without tumorigenicity (Soule HD et al. Cancer Research 50: 6075-6086, 1990).
  • MDA-MB-231 cells, MCF7 cells, and MCF-10A cells are cultured in a medium containing 10% fetal bovine serum (FBS) in RPMI medium, 1 x 10 6 cells After adding 1 fmol of synthetic Cel-miR-39 (miScript miRNA Mimic: manufactured by QIAGEN), microRNA was extracted using RNeasy mini kit (Qiagen) according to the protocol attached to the kit.
  • FBS fetal bovine serum
  • microRNA solution 3.3 ⁇ L, 100 mM dNTPs (with dTTP) 0.05 ⁇ L, MultiScribe Reverse Transcriptase (50 U / ⁇ L) 0.33 ⁇ L, 10 ⁇ Reverse Transcription Buffer 0.5 ⁇ L, RNase Inhibitor (20 U / ⁇ L) 0.063 ⁇ L, Nuclease-free water 1.387 ⁇ L and TaqMan MicroRNA Assay (5 ⁇ ) 1 ⁇ L were mixed and incubated at 16 ° C. for 30 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes.
  • Example 5 Evaluation of Angiogenesis Inhibitory Activity of MicroRNA 100 ⁇ L of pre-miR (Applied Biosystems) and 100 ⁇ L OPTI-MEM described in Example 4, mixed solution of 4 ⁇ L DharmaFECT1 (Thermo Scientific) and 196 ⁇ L OPTI-MEM The mixture was mixed at room temperature and allowed to stand for 30 minutes. Next, after adding the mixture to a 6-well plate, 1 ⁇ 10 6 cells suspended in endothelial cell basal medium-2 (Lonza) supplemented with 2 mL of endothelial cell addition factor set-2 (Lonza) MicroRNA transfection was performed by adding normal human umbilical vein endothelial cells (HUVEC cells) (Lonza).
  • ECM gel from Engelbreth-Holm-Swarm mouse sarcoma (Sigma) per hole in a 24-well plate and leave it in a CO 2 incubator for 30 minutes. Solidified.
  • control cells cells transfected with NC1 control miRNA (Applied Biosystems) were used.
  • an angiogenesis state of each well was photographed with a microscope (Nikon ECLIPSE TE200) at a magnification of 50 times.
  • the blood vessel length and the number of branch points per certain area in the photograph were measured using image analysis software ImageJ.
  • Table 2 shows the relative values of the length of blood vessels and the number of branch points formed by cells into which each microRNA has been introduced relative to control cells, and the evaluation results of promotion and suppression are the number of + (promoting activity) and-(suppressing activity). Indicated by A large number of + and-symbols indicates strong activity. The blank represents that neither activity nor inhibition was shown.
  • miR-151-3p and miR-886-3p are microRNAs that promote angiogenesis
  • miR-29b-1 *, miR-221 *, miR-138, miR-584, and miR are microRNAs that suppress angiogenesis.
  • miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a and miR-146a have been found to be useful as tumor therapeutic agents because they inhibit angiogenesis.
  • miR-151-3p and miR-886-3p promote angiogenesis, so miR-151-3p inhibitors such as anti-miR-151-3p and miR- such as anti-miR-886-3p 886-3p inhibitors are thought to suppress angiogenesis and have been found to be useful as tumor therapeutic agents.
  • Example 6 Evaluation of Inhibitory Activity of Anti-mmu-miR-151-3p in Intracellular miR-151-3p
  • SEQ ID NO: 53 Twelve types of Anti-mmu-miR-151-3p oligonucleotides that are completely complementary to mouse miR-151-3p (mmu-miR-151-3p) and have different chemical modifications Synthesized by Design (Table 3).
  • the underlined portion indicates a nucleic acid subjected to LNA modification
  • the non-underlined portion indicates a nucleic acid subjected to 2′-OMe modification.
  • the microRNA sensor vector refers to a plasmid vector in which a sequence complementary to a seed sequence that plays an important role when microRNA binds to a target mRNA is repeatedly inserted into the 3′UTR region of the Kaisei luciferase gene.
  • Example 7 Stability Evaluation of Anti-mmu-miR-151-3p in Serum After keeping 100 pmol of various anti-mmu-miR-151-3p in a 25% FBS aqueous solution at 37 ° C. for a predetermined period, Analysis of acrylamide gel electrophoresis was performed using the method described above, and the stability was evaluated. Set 15% TBE-Urea Gel 12well (invitrogen CatNo: EC68852BOX) in XCell SureLock Mini-Cell (invitrogen), and 1 ⁇ TBE Running Buffer (10 ⁇ TBE Running Buffer (invitrogen) diluted with distilled water). Poured.
  • anti-miR oligonucleotides mmu-3mer LNA-1 (corresponding to 3mer-1 in Fig. 4) and mmu-3mer LNA-2 (corresponding to 3mer-2 in Fig. 4), also with 3mer LNA modification
  • mmu-3mer LNA-2 with LNA modification on both 5 'and 3' ends (2mer at 5 'end and 1mer at 3' end) is one end (3mer at 5 'end)
  • the effect of improving serum stability was higher than that of mmu-3mer LNA-1 with LNA modification alone.
  • Example 8 Evaluation of duplex-forming ability of Anti-mmu-miR-151-3p and mature miR-151-3p 100 pmol of mature miR-151- in the same amount as various anti-mmu-miR-151-3p After mixing 3p, the mixture was incubated at 70 ° C. for 5 minutes, and then returned to room temperature to form anti-mmu-miR-151-3p and miR-151-3p duplexes. Subsequently, acrylamide gel electrophoresis analysis was performed by the method described in Example 7 to separate the double-stranded nucleic acid from the single-stranded nucleic acid, and the double-stranded forming ability was evaluated. As a result, the effect of improving the ability to form a double strand was clearly recognized by applying a 4mer or more LNA modification (FIG. 5).
  • Example 9 Evaluation of Anti-mmu-miR-151-3p Secretory-type mmu-miR-151-3p Activity Inhibitory Activity 5 ⁇ g of mmu-miR-151-3p expression plasmid was transferred to 5 ⁇ 10 6 / T- HEK293 cells seeded at a concentration of 75 flasks were transfected using Lipofectamine2000. The next day, the cells were washed with PBS, 15 mL of Advanced-RPMI medium was added, and the culture supernatant was recovered after 2 days. The supernatant was filtered through a 0.2 ⁇ m filter to obtain secreted mmu-miR-151-3p.
  • 0.01 ⁇ g of miR-151-3p sensor vector was mixed with 20 ⁇ L of OPTI-MEM medium containing 0.25 ⁇ g of Lipofectamine 2000 and added to a 96-well plate along with 5 ⁇ 10 4 HEK293 cells.
  • the next day after removing the medium, 100 ⁇ L of secreted mmu-miR-151-3p obtained by the above-described method was added, and various anti-mmu-miR-151-3p in the amounts shown in FIG. 6 were further added. .
  • the luciferase activity was measured by the method described in Example 6, and the microRNA activity in each well was evaluated.
  • Example 10 Evaluation of Anti-hsa-miR-151-3p Secretion Type hsa-miR-151-3p Inhibition of Angiogenesis Human miR-151-3p (hsa- comprising the nucleotide sequence represented by SEQ ID NO: 7 Twelve types of Anti-hsa-miR-151-3p oligonucleotides that were completely complementary to miR-151-3p) and differed in chemical modification were synthesized by Gene Design (Table 4).
  • the underlined portion indicates a nucleic acid subjected to LNA modification
  • the non-underlined portion indicates a nucleic acid subjected to 2′-OMe modification.
  • Table 3 shows the relative values of the blood vessel length and the number of branch points formed by the cells into which each anti-hsa-miR-151-3p was introduced relative to the control cells in%.
  • Example 11 Effect on Metastasis Assay in Subcutaneous Transplantation Model of miR-151-3p Hypersecretory Cells Using 1 ⁇ g of mmu-miR-151-3p expression plasmid containing mouse miR-151-3p, using LipofectamineLTX kit (Invitrogen) According to the procedure attached to the reagent kit, it was introduced into MDA-MB-231-luc D3H1 cells (Xenogen) seeded at a concentration of 1 ⁇ 10 6 cells / well (6-well plate).
  • the medium was replaced with 10% FBS / RPMI medium (Invitrogen) containing 2 ⁇ g / mL Puromycin (Invitrogen), and the cells were stably cultured for 2 weeks to select stably expressing cells.
  • 1 fmol of synthetic Cel-miR-39 (miScript miRNA Mimic: manufactured by QIAGEN) was added to 100 ⁇ L of the culture supernatant, RNA was extracted using RNeasy mini kit (Qiagen) according to the protocol attached to the kit.
  • microRNA solution 3.3 ⁇ L, 100 mM dNTPs (with dTTP) 0.05 ⁇ L, MultiScribe Reverse Transcriptase (50 U / ⁇ L) 0.33 ⁇ L, 10 ⁇ Reverse Transcription Buffer 0.5 ⁇ L, RNase Inhibitor (20 U / ⁇ L) 0.063 ⁇ L, Nuclease-free water 1.387 ⁇ L and TaqMan MicroRNA Assay (5 ⁇ ) 1 ⁇ L were mixed and incubated at 16 ° C. for 30 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes.
  • mice Five 7-week-old male Balb / cathymic nude mice were transplanted with 1 ⁇ 10 6 miR-151-3p hypersecreting cells suspended in PBS subcutaneously in both inguinal regions.
  • Balb / cathic nude mice transplanted with 1 ⁇ 10 6 MDA-MB-231-luc D3H1 cells were used. 14 days after transplantation, when measuring luciferase activity in the vicinity of lymph nodes using in vivo imaging method (IVIS Xenogen), lymph node metastasis of mice transplanted with miR-151-3p hypersecretory cells was compared with the control group, It was found that there was a significant increase (FIG. 7).
  • Example 12 Effect of miR-151-3p oversecretory cells on tumor angiogenesis in a subcutaneous transplantation model
  • TBS-T solution 0.05M Tris, 0.3M NaCl, 0.1% Tween20 aqueous solution
  • Example 13 Mechanism analysis of angiogenesis-promoting action of miR-151-3p
  • hsa-miR-151-3p was transfected and an in vitro angiogenesis assay was performed by the method described in Example 5, VEGF receptor 2
  • KI 8751 Tocris Bioscience
  • a phosphorylation inhibitor was added at a concentration of 10 nM, it was found that the effect of promoting angiogenesis by hsa-miR-151-3p disappeared (Table 6). This suggests that miR-151-3 exerts an angiogenesis promoting action by regulating the VEGF signal pathway.
  • Example 14 Suppression of DLL4 signal by miR-151-3p Whether or not the DLL4 signal pathway is blocked by hsa-miR-151-3p was examined by the Western analysis method described below, hsa-miR-151- Suppression of DLL4 expression in HUVEC cells was observed by 3p transfection (FIG. 9).
  • a lysate of 10 ⁇ g of HUVEC cells per well was electrophoresed at 200 V for 1 hour using polyacrylamide gel (Supersep Ace 10% 13 well Wako Pure Chemical Industries). The obtained acrylamide gel was transferred to a PVDF membrane at 20 V for 30 minutes using a semi-driving system.
  • the antibody diluted appropriately (anti-hDLL4 antibody (DLL4 Antibody (C-term): ABGENT, AP9964a) 1 / 1,000 dilution, Anti-hactin antibody (Anti-Actin, clone C4: MILLIPORE, MAB1501) was treated with 1 / 10,000 dilution for 1 hour at room temperature. After washing with T-TBS solution for 10 minutes three times, the mixture was incubated with a secondary antibody (HRP-conjugated anti-mouse IgG antibody or HRP-conjugated anti-rabbit IgG antibody) diluted 1 / 3,000. Furthermore, after washing with a T-TBS solution for 10 minutes three times, a protein bound to an antibody was detected using a reagent for measuring HRP activity (Applied Biosystems) (LAS2000 Fuji Film).
  • HRP activity Applied Biosystems
  • Example 15 Identification of miR-151-3p Target Genes Among miR-151-3p target gene groups predicted based on a target gene prediction program for microRNAs Targetscan (http://www.targetscan.org/) We tried to extract genes related to angiogenesis. As a result, it was found that a sequence complementary to the seed sequence of miR-151-3p exists on the 3 ′ UTR of the Akt3 gene constituting the VEGF signaling pathway. Therefore, whether or not has-miR-151-3p can act on the 3′UTR of hAkt3 was determined using the hAkt3 3′UTR vector (miTarget miRNA 3′UTR Target Sequence Expression Clone: GeneCopia) as described in Example 6. A luciferase assay was performed to investigate.
  • miR-151-3p was found to suppress the luciferase activity of HEK293 cells into which the hAkt3 3′UTR vector was introduced in a concentration-dependent manner (FIG. 10).
  • the endogenous hAkt3 protein level when hsa-miR-151-3p was introduced into HUVEC cells was examined by the Western blotting method described below. A lysate of 10 ⁇ g of HUVEC cells per well was electrophoresed at 200 V for 1 hour using polyacrylamide gel (Supersep Ace 10% 13 well Wako Pure Chemical Industries). The obtained acrylamide gel was transferred to a PVDF membrane at 20 V for 30 minutes using a semi-driving system.
  • the PVDF membrane was blocked with a 3% skim milk / T-TBS solution at room temperature for 1 hour, and then diluted appropriately (anti-hAkt3 antibody (Anti-Akt3 / PKB ⁇ , clone GMA104: MILLIPORE, 05-780)
  • the solution was treated with an anti-hactin antibody (Anti-Actin, clone C4: MILLIPORE, MAB1501) at 1,000 dilution for 1 hour at room temperature.
  • T-TBS solution After washing with T-TBS solution for 10 minutes three times, the mixture was incubated with a secondary antibody (HRP-conjugated anti-mouse IgG antibody or HRP-conjugated anti-rabbit IgG antibody) diluted 1 / 3,000.
  • the tumor therapeutic agent of the present invention suppresses tumor angiogenesis and is useful for tumor metastasis and prevention, particularly for breast cancer treatment and prevention. Further, malignant cancer, particularly malignant breast cancer can be determined by the cancer determination method of the present invention. Furthermore, the present invention can also provide an agent for determining malignant cancer and a method for screening a substance having an action of suppressing tumor angiogenesis.

Abstract

An inhibitor cited in (a) below, or a tumor therapeutic agent containing a nucleic acid cited in (b) below: (a) an miR-151-3p inhibitor, an miR-886-3p inhibitor, or an SMPD3 inhibitor; and (b) (1) a nucleic acid comprising a nucleotide sequence having at least 70% identity with a nucleotide sequence represented by any of SEQ ID NO: 1 to 6, or miR-29b-1*, has-miR-221*, miR-138, miR-584, miR-30a, or miR-146a, the nucleic acid containing a nucleotide having inhibitory activity on the expression of a target gene; or (2) a nucleic acid that is an expression vector capable of expressing the nucleic acid of (1).

Description

腫瘍血管形成阻害剤Tumor angiogenesis inhibitor
 本発明は、腫瘍の血管形成を抑制する薬剤、前記薬剤を利用した医薬、悪性がんを判定する方法、悪性がんを判定するための剤、及び腫瘍の血管形成を阻害する作用を有する物質のスクリーニング方法等に関する。 The present invention relates to a drug that suppresses tumor angiogenesis, a drug using the drug, a method for determining malignant cancer, an agent for determining malignant cancer, and a substance having an action of inhibiting tumor angiogenesis It is related with the screening method of this.
 近年、がん細胞は自らの増殖、浸潤、転移に都合のよいように周辺細胞を飼い馴らし、所謂“がん微小環境”を形成するという仮説が提唱されており(非特許文献1、2)、がん細胞由来の細胞間情報伝達物質の重要性が示唆されている。
 腫瘍血管とは、無秩序に発達し、口径不同、接合不全といった構造的な不完全性を有する血管をいい、組織への酸素、栄養供給といった血管本来の目的を達成できないだけでなく、結果的にがん微小環境が低酸素に維持され、そこに存在するがん細胞は高い薬剤抵抗性と浸潤・転移能を獲得することとなる(非特許文献3)。しかしながら、その分子メカニズムは明らかとされておらず、腫瘍血管の是正をする治療法も十分なものは得られていない。
 最近の血管新生に関する研究から、正常に形成された血管では、過剰な血管形成を防ぐために、血管内皮細胞増殖因子(VEGF)シグナルを適度に抑制するメカニズムが存在することが分かってきた(非特許文献17、18)。その機構の一つとして、DLL4-Notchシグナル経路がいわゆるネガティブフィードバックシグナルとしてVEGFシグナルを抑制することが示唆されている(非特許文献19)。DLL4-Notchシグナルが阻害されると、血管形成異常が引き起こされることが知られている。
 DLL4(Delta-like ligand 4)は1回膜貫通型の膜タンパク質で、同じく1回膜貫通型Notchタンパクのリガンドとして機能する。DLL4刺激によりNotchタンパクはADAM metalloproteinaseとγ-secretaseにより切断され、細胞内ドメインNotch intracellular domain (NICD)が産生される。次いで、NICDが核内に移行し、RBPJ/CSL転写因子を活性化することで、様々な遺伝子発現を制御することが知られている(非特許文献20)。また、DLL4の発現はVEGFにより増加することが知られており、その活性化にはAkt3が介在するとの報告がなされている(非特許文献21)。
In recent years, hypotheses have been proposed that cancer cells are familiar with surrounding cells so as to be convenient for their own proliferation, invasion, and metastasis, and form a so-called “cancer microenvironment” (Non-patent Documents 1 and 2). The importance of intercellular signal transmitters derived from cancer cells has been suggested.
Tumor blood vessels are blood vessels that develop disorderly and have structural imperfections such as unequal caliber and insufficiency, not only failing to achieve the original purpose of blood vessels such as oxygen and nutrient supply to tissues. The cancer microenvironment is maintained at low oxygen, and cancer cells present therein acquire high drug resistance and invasion / metastasis ability (Non-patent Document 3). However, the molecular mechanism has not been elucidated, and a sufficient treatment for correcting tumor blood vessels has not been obtained.
Recent angiogenesis studies have shown that there is a mechanism to moderately suppress vascular endothelial growth factor (VEGF) signaling in normally formed blood vessels to prevent excessive angiogenesis (non-patented) References 17, 18). As one of the mechanisms, it has been suggested that the DLL4-Notch signal pathway suppresses the VEGF signal as a so-called negative feedback signal (Non-patent Document 19). It is known that angiogenesis abnormalities are caused when DLL4-Notch signal is inhibited.
DLL4 (Delta-like ligand 4) is a single-transmembrane type membrane protein that also functions as a ligand for the single-transmembrane Notch protein. Notch protein is cleaved by ADAM metalloproteinase and γ-secretase by DLL4 stimulation, and intracellular domain Notch intracellular domain (NICD) is produced. Next, it is known that NICD moves into the nucleus and activates the RBPJ / CSL transcription factor to control various gene expressions (Non-patent Document 20). Moreover, it is known that the expression of DLL4 is increased by VEGF, and it has been reported that the activation is mediated by Akt3 (Non-patent Document 21).
 スフィンゴミエリンホスホジエステラーゼ(SMPD)3は2つの膜貫通ドメインを有する膜結合型酵素であり、その生理作用は、細胞内シグナル伝達、酸化ストレス応答等多岐にわたる。その一次配列は全体的には細菌由来のSMPDとはほとんど相同性が無いものの、酵素活性中心の限られたアミノ酸残基は保存されている。生体内におけるSMPD3の役割としては、骨形成、歯質形成に関与することが、遺伝子変異マウスの研究から明らかとなってきている(非特許文献4)。がんとSMPD3との関わりとしては、一部の乳がん細胞においてSMPD3遺伝子のメチル化が報告されているのみ(非特許文献5)であり、その機能を示唆するような報告はなされていない。 Sphingomyelin phosphodiesterase (SMPD) 3 is a membrane-bound enzyme having two transmembrane domains, and its physiological functions are diverse such as intracellular signal transduction and oxidative stress response. Although the primary sequence has little homology with bacterial SMPD as a whole, the limited amino acid residues of the enzyme activity center are conserved. As a role of SMPD3 in vivo, it has been clarified from studies of genetically-mutated mice that it is involved in bone formation and tooth formation (Non-patent Document 4). Regarding the relationship between cancer and SMPD3, only some methylation of the SMPD3 gene has been reported in some breast cancer cells (Non-Patent Document 5), and no report suggesting its function has been made.
 マイクロRNAはがん発症において非常に重要な役割をしていることが知られており、これまでに、miR-16、miR-21、let-7等多くのがん原マイクロRNAが同定されている。加えて、血管新生を制御するマイクロRNAとして、miR-126、miR-210が同定されている(非特許文献6)が、以下に示すマイクロRNAと血管新生との関わりは知られていない。 MicroRNAs are known to play a very important role in cancer development, and so far many oncogenic microRNAs such as miR-16, miR-21, let-7 have been identified. Yes. In addition, miR-126 and miR-210 have been identified as microRNAs that control angiogenesis (Non-Patent Document 6), but the relationship between microRNAs and angiogenesis shown below is not known.
 miR-29b-1は、胆管がんにおいてc-Myc、Hedgehog、NF-KappaBにより発現が負に制御されていることが知られている(非特許文献7)ものの、パッセンジャー配列であるmiR-29b-1*のがん細胞における発現変動、生理機能については報告がない。
 miR-221*は、miR-221のパッセンジャー配列として生体内に存在することは知られていたが、マイクロRNAとしての生理作用を有することは報告されていなかった。
 miR-138は、Srivastava等により、心筋の発生段階で重要な働きをすることが示唆されている(非特許文献8)。がんとの関わりにおいては、Head and Neck squamous cell carcinoma(HNSCC細胞)の転移を抑制することが示されている(非特許文献9)ものの、血管新生に対する作用は知られていない。
 miR-584は、正常腎臓細胞であるHK-2細胞と比較して、腎がん細胞であるRCC細胞において発現量が抑制されており、更に細胞増殖を促進する因子であるROCK-1遺伝子が標的遺伝子であることから腎がんにおけるがん抑制遺伝子の一つであると報告されている(非特許文献10)。また、がん抑制遺伝子の一つであるNasopharyngeal carcinoma-associated gene 6 (NGX6) により発現量が抑制されるとの報告からもがん細胞内では、腫瘍増殖に抑制的に働くことが示唆されている(非特許文献11)。
 miR-30aは、がん細胞の1種であるA549というがん細胞株で発現が増加しているとの報告があるものの、正常がん細胞にmiR-30aを形質導入しても細胞増殖能、腫瘍形成能、薬剤感受性などに変化が認められなかった(非特許文献12)。また、食道がん等、別のがん種でも発現増加していることは報告されているものの、生理作用はいまだ示されていない(非特許文献13)。
 miR-146aは、パピローマ甲状腺がんなどのがんだけでなく、リウマチ、乾癬などの自己免疫疾患でも高発現することが知られている。そして、標的遺伝子の中で最も重要なのは免疫活性化、細胞増殖促進活性を有するNF-κBという転写因子であることが分かっている(非特許文献14)。
 miR-151-3pは、肝がんにおいて発現上昇することが報告されており、同一遺伝子上に存在するmiR-151-5pは転移を促進する効果を有することが示されている(非特許文献15)が、miR-151-3pの機能についての報告はなされていない。
 miR-886-3pは、ヒトストローマ細胞において、細胞走化性因子であるStromal Derived Factor 1 (SDF1,CXCL12) の3’UTR配列上に結合配列があり、その発現を負に制御することが知られている。実際に、HS27a細胞にmiR-886-3pを形質導入すると、Jurkat細胞の遊走が抑制され、逆に、anti-miR-886-3pを導入するとJurkat細胞の遊走が促進されることが知られている(非特許文献16)。
 近年、マイクロRNAが細胞から分泌されて、細胞間のシグナル伝達物質として機能することが明らかとなりつつある(非特許文献22)。分泌型マイクロRNAががん細胞から大量に分泌されることも報告されている(非特許文献23)ことから、がん細胞由来の分泌型マイクロRNAが腫瘍血管形成等のがん微小環境形成に関与することが予想される。しかし、これらがん細胞由来分泌型マイクロRNAの機能を抑制する方法は確立されていない。
 一方、細胞内のマイクロRNAの活性を抑制する方法として、当該マイクロRNAの相補配列を有する核酸(anti-miR)を用いるanti-miR法、当該マイクロRNAの標的mRNAの相補配列を有する核酸(target-mask)によりマイクロRNAとその標的mRNAとの結合を阻害するtarget-mask法、当該マイクロRNAの5’末端部分配列(シード配列)を複数発現するベクター(sponge vector又はdecoy vector)により、当該マイクロRNA をトラップするsponge法又はdecoy法等が知られている(非特許文献24)。
 一般に、anti-miRは化学修飾された一本鎖の核酸で、内在性のマイクロRNAに特異的に結合し、その機能を阻害するように設計されている。化学修飾はanti-miRの生体内ヌクレアーゼに対する耐性の付与、マイクロRNAとの間で形成された二重鎖の安定性の向上を目的として行われ、2’-O-メチルRNA、locked nucleic acid(LNA)、Peptide nucleic acid(PNA)などを挙げることが出来る (非特許文献25)。ここで、LNA修飾核酸とは、核酸の2’位の酸素原子と4’位の炭素原子がメチレン残基を介して架橋した2つの環状構造を持つ核酸誘導体を指す。locked nucleic acid(LNA)は2',4'-BNA(2'-O,4'-C-methylene bridged nucleic acid)とも呼ばれている。非臨床試験において、LNA修飾を施したanti-miRを非ヒト霊長類に全身投与することにより、効率的で持続的な標的マイクロRNAのサイレンシングに成功したとの報告もなされている(非特許文献26)。
 天然核酸(DNAやRNA)は化学構造上形の自由度(コンフォメーションの自由度)が大きくなっている。そのためDNA-DNA、RNA-RNA間の二重鎖形成(ハイブリダイズ)において熱力学的に不利となっており、結合親和性(ハイブリダイズ能)を向上させる事が核酸医薬の課題となっている。LNAは、2' 位の酸素原子と 4' 位の炭素原子がメチレンを介して架橋することで、熱力学的に安定化させることで、標的となるDNAやRNAに対する結合親和性を高め、かつヌクレアーゼ(核酸分解酵素)耐性を付与出来ることが知られている (非特許文献27)。
 しかし、具体的に、anti-miR中のどの核酸にLNA修飾を施せば、上記した効果を最大限に引き出すことが出来るのかは明確にはなっていない(非特許文献28、29)。
Although miR-29b-1 is known to be negatively regulated by c-Myc, Hedgehog, and NF-KappaB in bile duct cancer (Non-patent Document 7), miR-29b is a passenger sequence. There is no report on the expression fluctuation or physiological function of -1 * in cancer cells.
Although miR-221 * is known to exist in vivo as a passenger sequence of miR-221, it has not been reported to have a physiological effect as a microRNA.
It has been suggested by Srivastava et al. that miR-138 plays an important role in the myocardial development stage (Non-patent Document 8). In relation to cancer, it has been shown to suppress metastasis of Head and Neck squamous cell carcinoma (HNSCC cells) (Non-patent Document 9), but its effect on angiogenesis is not known.
miR-584 has a suppressed expression level in RCC cells, which are renal cancer cells, compared to HK-2 cells, which are normal kidney cells, and the ROCK-1 gene, which is a factor that promotes cell proliferation, Since it is a target gene, it is reported to be one of tumor suppressor genes in renal cancer (Non-patent Document 10). In addition, a report that the expression level is suppressed by Nasopharyngeal carcinoma-associated gene 6 (NGX6), one of the tumor suppressor genes, suggests that it suppresses tumor growth in cancer cells. (Non-Patent Document 11).
Although miR-30a is reported to have increased expression in a cancer cell line called A549, a type of cancer cell, cell proliferation ability even when miR-30a is transduced into normal cancer cells No changes were observed in tumorigenicity, drug sensitivity, etc. (Non-patent Document 12). Moreover, although it has been reported that the expression is increased in other cancer types such as esophageal cancer, the physiological action has not been shown yet (Non-patent Document 13).
miR-146a is known to be highly expressed not only in cancers such as papilloma thyroid cancer but also in autoimmune diseases such as rheumatism and psoriasis. It has been found that the most important target gene is a transcription factor called NF-κB having immune activation and cell growth promoting activity (Non-patent Document 14).
miR-151-3p has been reported to be upregulated in liver cancer, and miR-151-5p present on the same gene has been shown to have an effect of promoting metastasis (Non-patent literature) 15) However, there has been no report on the function of miR-151-3p.
miR-886-3p has a binding sequence on the 3'UTR sequence of Stromal Derived Factor 1 (SDF1, CXCL12), a cell chemotactic factor, and is known to negatively regulate its expression in human stromal cells. It has been. In fact, transduction of miR-886-3p into HS27a cells suppresses Jurkat cell migration, and conversely, introduction of anti-miR-886-3p promotes Jurkat cell migration. (Non-Patent Document 16).
In recent years, it is becoming clear that microRNA is secreted from cells and functions as a signal transduction substance between cells (Non-patent Document 22). It has also been reported that secretory microRNAs are secreted in large quantities from cancer cells (Non-patent Document 23), so that secretory microRNAs derived from cancer cells are used to form cancer microenvironments such as tumor angiogenesis. Expected to be involved. However, a method for suppressing the function of these cancer cell-derived secreted microRNAs has not been established.
On the other hand, as a method for suppressing the activity of microRNA in the cell, an anti-miR method using a nucleic acid having a complementary sequence of the microRNA (anti-miR), a nucleic acid having a complementary sequence of a target mRNA of the microRNA (target -mask), a target-mask method that inhibits the binding of the microRNA to its target mRNA, and a vector (sponge vector or decoy vector) that expresses multiple 5 ′ end partial sequences (seed sequences) of the microRNA. A sponge method or a decoy method for trapping RNA is known (Non-patent Document 24).
In general, anti-miR is a chemically modified single-stranded nucleic acid designed to specifically bind to endogenous microRNA and inhibit its function. Chemical modification is performed with the aim of conferring resistance of anti-miR to in vivo nuclease and improving the stability of the duplex formed with microRNA. 2'-O-methyl RNA, locked nucleic acid ( LNA), Peptide nucleic acid (PNA), etc. (Non-patent Document 25). Here, the LNA modified nucleic acid refers to a nucleic acid derivative having two circular structures in which the 2′-position oxygen atom and the 4′-position carbon atom of the nucleic acid are bridged via a methylene residue. The locked nucleic acid (LNA) is also called 2 ', 4'-BNA (2'-O, 4'-C-methylene bridged nucleic acid). In non-clinical studies, it has been reported that LNA-modified anti-miR has been successfully systemically administered to non-human primates to successfully and effectively silence target microRNAs (Non-patents) Reference 26).
Natural nucleic acids (DNA and RNA) have a greater degree of freedom in form (conformation freedom) due to their chemical structure. For this reason, DNA-DNA and RNA-RNA duplex formation (hybridization) is thermodynamically disadvantageous, and improving binding affinity (hybridization ability) is a problem for nucleic acid drugs. . LNA increases the binding affinity for target DNA and RNA by thermodynamically stabilizing the 2 'oxygen atom and the 4' carbon atom via a methylene bridge, and It is known that nuclease (nucleolytic enzyme) resistance can be imparted (Non-patent Document 27).
However, specifically, it is not clear which nucleic acid in anti-miR can be maximally brought out by applying LNA modification (Non-patent Documents 28 and 29).
 本発明の目的は、腫瘍の血管形成を抑制する薬剤、前記薬剤を利用した医薬、悪性がんを判定する方法、悪性がんを判定するための剤、及び腫瘍の血管形成を阻害する作用を有する物質のスクリーニング方法等を提供することにある。 An object of the present invention is to provide a drug that suppresses tumor angiogenesis, a drug using the drug, a method for determining malignant cancer, an agent for determining malignant cancer, and an effect of inhibiting tumor angiogenesis. It is to provide a method for screening a substance having the same.
 本発明者等は、鋭意検討を行った結果、悪性度の高いがん細胞で高い分泌量を示す24種のマイクロRNA(miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593、miR-483-3p)を同定し、これらのマイクロRNAのうちmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aを細胞に導入すると血管新生が抑制され、miR-151-3pまたはmiR-886-3pを細胞に導入すると血管新生は促進されることを見出した。
 更に、本発明者等は、SMPD3遺伝子をノックダウンした乳がん細胞をヌードマウスに移植したところ、腫瘍内の血管新生が抑制されかつ、転移能も抑制されることを見出した。
 本発明者等は、これらの知見により、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、SMPD3のsiRNAなどのSMPD3阻害剤等は腫瘍治療剤として有用であり、また、anti-miR-151-3pなどのmiR-151-3p阻害剤やanti-miR-886-3pなどのmiR-886-3p阻害剤も血管形成を阻害すると考えられることから、腫瘍治療剤として有用であるということを見出して本発明を完成させた。
As a result of intensive studies, the present inventors have found that 24 types of microRNAs (miR-29b-1 *, miR-221 *, miR-138, miR- 584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR-593, miR-483-3p) and identified these microRNAs When miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a are introduced into cells, angiogenesis is suppressed, miR-151-3p or miR-886-3p It was found that angiogenesis is promoted when introduced into cells.
Furthermore, the present inventors have found that when breast cancer cells in which the SMPD3 gene is knocked down are transplanted into nude mice, angiogenesis in the tumor is suppressed and metastatic potential is also suppressed.
Based on these findings, the present inventors have confirmed that SMR3 inhibitors such as miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, and SMPD3 siRNA are tumors. It is useful as a therapeutic agent, and miR-151-3p inhibitors such as anti-miR-151-3p and miR-886-3p inhibitors such as anti-miR-886-3p are thought to inhibit angiogenesis. Therefore, the present invention was completed by finding that it is useful as a tumor therapeutic agent.
 即ち、本発明は以下に関する。
[1]以下の(a)に記載の阻害剤、あるいは(b)に記載の核酸を含有する腫瘍治療剤:
(a)miR-151-3p阻害剤、miR-886-3p阻害剤、またはSMPD3阻害剤、
(b)(1)miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、または配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つ標的遺伝子発現抑制活性を有するヌクレオチドを含む核酸、又は(2)上記(1)の核酸を発現し得るベクターである核酸。
[2]miR-151-3p阻害剤が、以下の(1)又は(2)に記載の核酸である、[1]に記載の剤:
(1)配列番号9で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-151-3pの機能を抑制する活性を有するヌクレオチドを含む核酸、
(2)上記(1)の核酸を発現し得る発現ベクターである核酸。
[3]miR-886-3p阻害剤が、以下の(1)又は(2)に記載の核酸である、[1]に記載の剤:
(1)配列番号10で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-886-3pの機能を抑制する活性を有するヌクレオチドを含む核酸、
(2)上記(1)の核酸を発現し得る発現ベクターである核酸。
[4]SMPD3阻害剤が、以下の(1)~(5)からなる群より選択される物質である、[1]に記載の剤:
(1)SMPD3をコードする遺伝子の転写産物に対するアンチセンス核酸、
(2)SMPD3をコードする遺伝子の転写産物に対するリボザイム核酸、
(3)SMPD3をコードする遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体、
(4)SMPD3と結合する抗体、
(5)SMPD3と結合する低分子化合物。
[5]核酸が一本鎖または二本鎖である、[1]~[4]のいずれかに記載の剤。
[6]核酸が配列番号1~6、9、10のいずれかで表されるヌクレオチド配列またはその部分配列からなるRNA、あるいはその修飾体である、[1]~[3]のいずれかに記載の剤。
[7]核酸が配列番号1~6、9、10のいずれかで表されるヌクレオチド配列からなるRNAまたはその修飾体である、[1]~[3]および[6]のいずれかに記載の剤。
[8]核酸が配列番号9または配列番号54で表されるヌクレオチド配列からなる一本鎖RNAまたはその修飾体である、[2]記載の剤。
[9]核酸が、少なくとも1以上の、2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドを含む一本鎖RNAである、[8]記載の剤。
[10]一本鎖RNAが3個以上のLNA修飾ヌクレオチドを含む、[9]記載の剤。
[11]一本鎖RNAが4個以上のLNA修飾ヌクレオチドを含む、[9]記載の剤。
[12]一本鎖RNAが3から12個のLNA修飾ヌクレオチドを含む、[9]記載の剤。
[13]一本鎖RNAが4から12個のLNA修飾ヌクレオチドを含む、[9]記載の剤。
[14]一本鎖RNAがその5’末端と3’末端の両方に少なくとも1個のLNA修飾ヌクレオチドを含む、[8]~[13]記載の剤。
[15]全てのヌクレオチドが2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドからなる一本鎖RNAである、[8]~[14]記載の剤。
[16]一本鎖RNAが配列番号:30~38、及び43~50から選択されるいずれかで表されるヌクレオチド配列からなる一本鎖RNAである、[10]記載の剤。
[17]一本鎖RNAが配列番号:43~48および50から選択されるいずれかで表されるヌクレオチド配列からなる一本鎖RNAである、[10]記載の剤。
[18]血管形成を阻害するための、[1]~[17]のいずれかに記載の剤。
[19]腫瘍血管新生を阻害するための、[1]~[17]のいずれかに記載の剤。
[20]腫瘍転移を抑制するための、[1]~[17]のいずれかに記載の剤。
[21]腫瘍が乳がんである、[1]~[20]のいずれかに記載の剤。
[22]miR-151-3pの過剰発現による血管形成異常を抑制するための、[3]および[8]~[17]のいずれかに記載の阻害剤または核酸。
[23]腫瘍を治療するための、[1]~[17]のいずれかに記載の阻害剤または核酸。
[24]血管形成を阻害するための、[1]~[17]のいずれかに記載の阻害剤または核酸。
[25]腫瘍血管新生を阻害するための、[1]~[17]のいずれかに記載の阻害剤または核酸。
[26]腫瘍転移を抑制するための、[1]~[17]のいずれかに記載の阻害剤または核酸。
[27]腫瘍治療剤を製造するための、[1]~[17]のいずれかに記載の阻害剤または核酸の使用。
[28]血管形成阻害剤を製造するための、[1]~[17]のいずれかに記載の阻害剤または核酸の使用。
[29]腫瘍血管新生阻害剤を製造するための、[1]~[17]のいずれかに記載の阻害剤または核酸の使用。
[30]腫瘍転移抑制剤を製造するための、[1]~[17]のいずれかに記載の阻害剤または核酸の使用。
[31][1]~[17]のいずれかに記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍の治療方法。
[32][1]~[17]のいずれかに記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける血管形成を阻害する方法。
[33][1]~[17]のいずれかに記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍血管新生を阻害する方法。
[34][1]~[17]のいずれかに記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍転移を抑制する方法。
[35]被検試料におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルもしくは濃度を測定すること、および該分泌レベルもしくは該濃度と悪性がんとの間の正の相関に基づき、悪性がんの罹患の有無を判定することを含む、がんの判定方法。
[36]がんが、乳がんである[35]記載の方法。
[37]miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pを特異的に検出し得る核酸プローブを含む、悪性がんを判定するための剤。
[38]がんが、乳がんである[37]記載の剤。
[39]以下の工程を含む、腫瘍の血管形成を抑制し得る物質を探索する方法:
(1)被検物質とmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌または発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を測定し、該分泌量または発現量を被検物質を接触させない対照細胞における分泌量または発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を上方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
[40]以下の工程を含む、腫瘍の血管形成を抑制し得る物質を探索する方法:
(1)被検物質とmiR-151-3p、miR-886-3pまたはSMPD3の分泌、発現または機能を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を測定し、該分泌量、発現量または機能を被検物質を接触させない対照細胞における分泌量、発現量または機能と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を下方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
[41]配列番号9または配列番号54で表されるヌクレオチド配列からなり、全てのヌクレオチドが2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドからなり、且つ、3から12個のLNA修飾ヌクレオチドを含む、一本鎖RNA。
[42]一本鎖RNAが4から12個のLNA修飾ヌクレオチドを含む、[41]記載の一本鎖RNA。
[43]一本鎖RNAがその5’末端と3’末端の両方に少なくとも1個のLNA修飾ヌクレオチドを含む、[41]又は[42]記載の一本鎖RNA。
[44]配列番号:30~38および43~50から選択されるいずれかで表されるヌクレオチド配列からなる[42]記載の一本鎖RNA。
That is, the present invention relates to the following.
[1] The following (a) inhibitor or tumor therapeutic agent containing the nucleic acid according to (b):
(A) an miR-151-3p inhibitor, an miR-886-3p inhibitor, or an SMPD3 inhibitor,
(B) (1) a nucleotide sequence represented by any of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, or SEQ ID NOs: 1-6 A nucleic acid comprising a nucleotide sequence having a nucleotide sequence having 70% or more identity and having a target gene expression suppressing activity, or (2) a nucleic acid that is a vector capable of expressing the nucleic acid of (1) above.
[2] The agent according to [1], wherein the miR-151-3p inhibitor is the nucleic acid according to the following (1) or (2):
(1) a nucleic acid comprising a nucleotide sequence comprising 70% or more of the nucleotide sequence represented by SEQ ID NO: 9, and comprising a nucleotide having an activity of suppressing the function of miR-151-3p,
(2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
[3] The agent according to [1], wherein the miR-886-3p inhibitor is the nucleic acid according to (1) or (2) below:
(1) a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10, and comprising a nucleotide having an activity of suppressing the function of miR-886-3p,
(2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
[4] The agent according to [1], wherein the SMPD3 inhibitor is a substance selected from the group consisting of the following (1) to (5):
(1) an antisense nucleic acid against a transcription product of a gene encoding SMPD3,
(2) a ribozyme nucleic acid for the transcription product of the gene encoding SMPD3,
(3) a nucleic acid having RNAi activity for a transcription product of a gene encoding SMPD3 or a precursor thereof,
(4) an antibody that binds to SMPD3,
(5) A low molecular weight compound that binds to SMPD3.
[5] The agent according to any one of [1] to [4], wherein the nucleic acid is single-stranded or double-stranded.
[6] The nucleic acid is any one of [1] to [3], wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10 or a partial sequence thereof, or a modified form thereof. Agent.
[7] The nucleic acid according to any one of [1] to [3] and [6], wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10, or a modified form thereof. Agent.
[8] The agent according to [2], wherein the nucleic acid is a single-stranded RNA comprising the nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54 or a modified product thereof.
[9] The agent according to [8], wherein the nucleic acid is a single-stranded RNA containing at least one or more modified nucleotides, either 2′-OMe modified nucleotides or LNA modified nucleotides.
[10] The agent according to [9], wherein the single-stranded RNA contains 3 or more LNA-modified nucleotides.
[11] The agent according to [9], wherein the single-stranded RNA contains 4 or more LNA-modified nucleotides.
[12] The agent according to [9], wherein the single-stranded RNA comprises 3 to 12 LNA modified nucleotides.
[13] The agent according to [9], wherein the single-stranded RNA comprises 4 to 12 LNA modified nucleotides.
[14] The agent according to [8] to [13], wherein the single-stranded RNA contains at least one LNA-modified nucleotide at both the 5 ′ end and the 3 ′ end.
[15] The agent according to [8] to [14], wherein all nucleotides are single-stranded RNAs consisting of modified nucleotides of either 2′-OMe modified nucleotides or LNA modified nucleotides.
[16] The agent according to [10], wherein the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
[17] The agent according to [10], wherein the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 43 to 48 and 50.
[18] The agent according to any one of [1] to [17], which inhibits angiogenesis.
[19] The agent according to any one of [1] to [17] for inhibiting tumor angiogenesis.
[20] The agent according to any one of [1] to [17] for suppressing tumor metastasis.
[21] The agent according to any one of [1] to [20], wherein the tumor is breast cancer.
[22] The inhibitor or nucleic acid according to any one of [3] and [8] to [17] for suppressing angiogenesis abnormality due to overexpression of miR-151-3p.
[23] The inhibitor or nucleic acid according to any one of [1] to [17] for treating a tumor.
[24] The inhibitor or nucleic acid according to any one of [1] to [17] for inhibiting angiogenesis.
[25] The inhibitor or nucleic acid according to any one of [1] to [17] for inhibiting tumor angiogenesis.
[26] The inhibitor or nucleic acid according to any one of [1] to [17] for suppressing tumor metastasis.
[27] Use of the inhibitor or nucleic acid according to any one of [1] to [17] for producing a tumor therapeutic agent.
[28] Use of the inhibitor or nucleic acid according to any one of [1] to [17] for producing an angiogenesis inhibitor.
[29] Use of the inhibitor or nucleic acid according to any one of [1] to [17] for producing a tumor angiogenesis inhibitor.
[30] Use of the inhibitor or nucleic acid according to any one of [1] to [17] for producing a tumor metastasis inhibitor.
[31] A method for treating a tumor in a human, comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
[32] A method for inhibiting angiogenesis in a human, comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
[33] A method for inhibiting tumor angiogenesis in a human, comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
[34] A method for suppressing tumor metastasis in a human, comprising administering the inhibitor or nucleic acid according to any one of [1] to [17] to the human.
[35] miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100 in the test sample , MiR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR -140-3p, miR-593 or miR-483-3p is measured and the incidence of malignant cancer based on a positive correlation between the secreted level or concentration and malignant cancer A method for determining cancer, comprising determining the presence or absence of cancer.
[36] The method of [35], wherein the cancer is breast cancer.
[37] miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221 , MiR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p An agent for determining malignant cancer, comprising a nucleic acid probe capable of specifically detecting miR-593 or miR-483-3p.
[38] The agent according to [37], wherein the cancer is breast cancer.
[39] A method for searching for a substance capable of suppressing tumor angiogenesis, comprising the following steps:
(1) contacting a test substance with a cell capable of measuring secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a;
(2) measuring the amount of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a secreted or expressed in cells contacted with the test substance, Comparing the amount of secretion or expression with the amount of secretion or expression in control cells not contacted with the test substance; and (3) based on the comparison result of (2) above, miR-29b-1 *, miR-221 * Select a test substance that up-regulates the secretion or expression level of miR-138, miR-584, miR-30a, or miR-146a as a substance that can suppress tumor angiogenesis.
[40] A method for searching for a substance capable of suppressing tumor angiogenesis, comprising the following steps:
(1) contacting a test substance with a cell capable of measuring the secretion, expression or function of miR-151-3p, miR-886-3p or SMPD3;
(2) Measure the secretion amount, expression level or function of miR-151-3p, miR-886-3p or SMPD3 in cells contacted with the test substance, and determine the secretion amount, expression level or function of the test substance Comparing with the secreted amount, expression level or function in the non-contacted control cells; and (3) secreted amount, expression of miR-151-3p, miR-886-3p or SMPD3 based on the comparison result of (2) above A test substance that down-regulates the amount or function is selected as a substance capable of suppressing tumor angiogenesis.
[41] consisting of the nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54, wherein all nucleotides consist of modified nucleotides of either 2′-OMe modified nucleotides or LNA modified nucleotides, and 3 to 12 LNAs Single-stranded RNA comprising modified nucleotides.
[42] The single-stranded RNA according to [41], wherein the single-stranded RNA comprises 4 to 12 LNA-modified nucleotides.
[43] The single-stranded RNA according to [41] or [42], wherein the single-stranded RNA contains at least one LNA-modified nucleotide at both the 5 ′ end and the 3 ′ end.
[44] The single-stranded RNA according to [42], comprising a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
 本発明により、腫瘍の血管形成を抑制する剤、特に乳がんに有効な腫瘍治療剤、および前記剤を利用した医薬を提供することができる。
 また本発明により、悪性がんの罹患の有無を判定することができるがんの判定方法、当該判定する方法を実施するための剤、腫瘍の血管形成を抑制する作用を有する物質のスクリーニング方法も提供することができる。
According to the present invention, it is possible to provide an agent that suppresses tumor angiogenesis, in particular, a tumor therapeutic agent effective for breast cancer, and a medicine using the agent.
Further, according to the present invention, there are also a cancer determination method capable of determining the presence or absence of malignant cancer, an agent for carrying out the determination method, and a screening method for a substance having an action of suppressing tumor angiogenesis. Can be provided.
SMPD3ノックダウンによる、皮下移植モデルにおける乳がん細胞の転移抑制を示した図である。It is the figure which showed the metastasis | transition suppression of the breast cancer cell in a subcutaneous transplant model by SMPD3 knockdown. SMPD3ノックダウンは、尾静脈投与モデルにおいては乳がん細胞の転移を抑制しないことを示した図である。FIG. 5 shows that SMPD3 knockdown does not suppress breast cancer cell metastasis in the tail vein administration model. Anti- mmu-miR-151-3pの細胞内miR-151-3p活性抑制活性の評価結果を示した図である。It is the figure which showed the evaluation result of intracellular miR-151-3p activity inhibitory activity of Anti- mmu-miR-151-3p. Anti- mmu-miR-151-3pの血清中の安定性評価の結果を示した図である。It is the figure which showed the result of stability evaluation in serum of Anti- mmu-miR-151-3p. Anti- mmu-miR-151-3pと成熟型miR-151-3pの2本鎖形成能の評価結果を示した図である。It is the figure which showed the evaluation result of the double strand formation ability of Anti- mmu-miR-151-3p and mature type miR-151-3p. Anti- mmu-miR-151-3pの分泌型mmu-miR-151-3p活性抑制活性の評価結果を示した図である。It is the figure which showed the evaluation result of the secretion-type mmu-miR-151-3p activity inhibitory activity of Anti- mmu-miR-151-3p. miR-151-3p過剰分泌細胞の皮下移植モデルにおけるリンパ節転移の評価結果を示した図である。It is the figure which showed the evaluation result of the lymph node metastasis in the subcutaneous transplantation model of miR-151-3p hypersecretion cell. miR-151-3p過剰分泌細胞の皮下移植モデルにおける腫瘍血管形成の評価結果を示した図である。It is the figure which showed the evaluation result of tumor angiogenesis in the subcutaneous transplantation model of miR-151-3p hypersecretory cell. miR-151-3pによるDLL4シグナルの抑制を示した図である。It is the figure which showed suppression of DLL4 signal by miR-151-3p. miR-151-3pがhAkt3 3’UTRベクターを導入したHEK293細胞のルシフェラーゼ活性を抑制することを示した図である。It is the figure which showed that miR-151-3p suppresses the luciferase activity of HEK293 cell which introduce | transduced hAkt3 | 3'UTR vector. hsa-miR-151-3pの導入により内因性のhAkt3タンパク量が減少することを示した図である。It is the figure which showed that endogenous hAkt3 protein amount decreased by introduction of hsa-miR-151-3p. Akt3遺伝子のノックダウンによりDLL4の発現上昇がキャンセルされることを示した図である。It is the figure which showed that the expression increase of DLL4 was canceled by knockdown of Akt3 gene.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
1.本発明の剤
 本発明者等は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、anti-miR-151-3pなどのmiR-151-3p阻害剤、anti-miR-886-3pなどのmiR-886-3p阻害剤、およびSMPD3阻害剤は腫瘍の血管形成を阻害し、優れた腫瘍治療剤として有用であることを見出した。
 即ち、本発明は、
(a)miR-151-3p阻害剤、miR-886-3p阻害剤、またはSMPD3阻害剤、および
(b)(1)miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、もしくは配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つ標的遺伝子発現抑制活性を有するヌクレオチドを含む核酸、又は(2)上記(1)の核酸を発現し得る発現ベクターである核酸、
を提供するものである。
 本発明の剤は、腫瘍の治療剤として有用であり、特に乳がんに対して有用である。本発明の剤は、血管形成阻害活性を有するために腫瘍の転移を抑制することが期待される。
1. Agents of the present inventionThe inventors have miR-151 such as miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, anti-miR-151-3p It has been found that miR-886-3p inhibitors such as -3p inhibitors, anti-miR-886-3p, and SMPD3 inhibitors inhibit tumor angiogenesis and are useful as excellent tumor therapeutic agents.
That is, the present invention
(A) miR-151-3p inhibitor, miR-886-3p inhibitor, or SMPD3 inhibitor, and (b) (1) miR-29b-1 *, miR-221 *, miR-138, miR-584 MiR-30a, miR-146a, or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 and having a target gene expression-suppressing activity, Or (2) a nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above,
Is to provide.
The agent of the present invention is useful as a therapeutic agent for tumors, and particularly useful for breast cancer. Since the agent of the present invention has angiogenesis inhibitory activity, it is expected to suppress tumor metastasis.
 本発明において核酸は、RNA、RNAとDNAのキメラ核酸(以下、キメラ核酸と称する)またはハイブリッド核酸である。ここにおいて、キメラ核酸とは、一本鎖又は二本鎖の核酸において一本の核酸の中にRNAとDNAを含むことをいい、ハイブリッド核酸とは、二本鎖において、一方の鎖がRNAまたはキメラ核酸でもう一方の鎖がDNAまたはキメラ核酸である核酸をいう。 In the present invention, the nucleic acid is RNA, a chimeric nucleic acid of RNA and DNA (hereinafter referred to as a chimeric nucleic acid) or a hybrid nucleic acid. Here, the chimera nucleic acid means a single-stranded or double-stranded nucleic acid containing RNA and DNA in one nucleic acid, and the hybrid nucleic acid is a double-stranded nucleic acid having one strand of RNA or DNA. It refers to a nucleic acid in which the other strand is a DNA or a chimeric nucleic acid.
 本発明の核酸は、一本鎖または二本鎖である。二本鎖の態様には、二本鎖RNA、二本鎖キメラ核酸、RNA/DNAハイブリッド、RNA/キメラ核酸ハイブリッド、キメラ核酸/キメラ核酸ハイブリッドおよびキメラ核酸/DNAハイブリッドが含まれる。本発明の核酸は、好ましくは一本鎖RNA、一本鎖キメラ核酸、二本鎖RNA、二本鎖キメラ核酸、RNA/DNAハイブリッド、RNA/キメラ核酸ハイブリッド、キメラ核酸/キメラ核酸ハイブリッドまたはキメラ核酸/DNAハイブリッドであり、より好ましくは一本鎖RNA、一本鎖キメラ核酸、二本鎖RNA、二本鎖キメラ核酸、RNA/DNAハイブリッド、キメラ核酸/キメラ核酸ハイブリッドまたはRNA/キメラ核酸ハイブリッドである。 The nucleic acid of the present invention is single-stranded or double-stranded. Double-stranded embodiments include double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid, and chimeric nucleic acid / DNA hybrid. The nucleic acid of the present invention is preferably a single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, RNA / chimeric nucleic acid hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or chimeric nucleic acid / DNA hybrid, more preferably single-stranded RNA, single-stranded chimeric nucleic acid, double-stranded RNA, double-stranded chimeric nucleic acid, RNA / DNA hybrid, chimeric nucleic acid / chimeric nucleic acid hybrid or RNA / chimeric nucleic acid hybrid .
 本発明の核酸の長さは、哺乳動物(好ましくはヒト)の血管形成を抑制する活性を有する限り、その長さに上限はない。しかし、合成の容易さや抗原性の問題等を考慮すると、本発明の核酸の長さは、例えば約200塩基以下、好ましくは約130塩基以下、より好ましくは約50塩基以下であり、最も好ましくは30塩基以下である。下限としては、例えば15塩基以上、好ましくは、17塩基以上である。すなわち、本発明の核酸の長さは、好ましくは15~50塩基、より好ましくは15~30塩基、さらに好ましくは17~30塩基である。なお、核酸がヘアピンループ型の構造をとることにより二本鎖構造を形成する場合の核酸の長さは、一本鎖の長さとして考えるものとする。 The length of the nucleic acid of the present invention is not limited as long as it has an activity to suppress angiogenesis in mammals (preferably humans). However, considering the ease of synthesis, antigenicity problems, etc., the length of the nucleic acid of the present invention is, for example, about 200 bases or less, preferably about 130 bases or less, more preferably about 50 bases or less, and most preferably 30 bases or less. The lower limit is, for example, 15 bases or more, preferably 17 bases or more. That is, the length of the nucleic acid of the present invention is preferably 15 to 50 bases, more preferably 15 to 30 bases, and further preferably 17 to 30 bases. In addition, the length of a nucleic acid when a nucleic acid forms a double stranded structure by taking a hairpin loop type structure shall be considered as the length of a single strand.
 本発明の核酸は、細胞内へ取り込まれると血管形成を阻害する活性、特に腫瘍細胞内へ取り込まれると、腫瘍細胞の血管形成を阻害する活性を有する。 The nucleic acid of the present invention has an activity of inhibiting angiogenesis when taken into cells, and particularly has an activity of inhibiting angiogenesis of tumor cells when taken into tumor cells.
 腫瘍細胞は、通常、哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒト、好ましくはヒト)の細胞である。腫瘍の種類としては、乳腺がんや乳管がんを含めた乳がん、肺がん、膵臓がん、前立腺がん、骨肉腫、食道がん、肝臓がん、胃がん、大腸がん、直腸がん、結腸がん、尿管腫瘍、脳腫瘍、胆嚢がん、胆管がん、胆道がん、腎がん、膀胱がん、卵巣がん、子宮頸がん、甲状腺がん、睾丸腫瘍、カポジ肉腫、上顎がん、舌がん、口唇がん、口腔がん、咽頭がん、喉頭がん、筋肉腫、皮膚がんなどの固形がん、骨髄腫、白血病等が例示できる。腫瘍は、具体的には乳がんが好ましい。核酸が細胞の血管形成を抑制する活性を有するか否かは、例えば正常ヒト臍帯静脈内皮細胞(HUVEC細胞)や正常ヒト皮膚微小血管内皮細胞(HMVEC細胞)の細胞株を用いることにより確認することが出来る。 The tumor cells are usually mammalian cells (for example, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys, humans, preferably humans). Tumor types include breast cancer including breast and ductal cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, Colon cancer, ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxilla Examples thereof include solid cancers such as cancer, tongue cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, myoma, skin cancer, myeloma, leukemia and the like. Specifically, the tumor is preferably breast cancer. Whether or not the nucleic acid has the activity of suppressing cell angiogenesis should be confirmed, for example, by using normal human umbilical vein endothelial cells (HUVEC cells) or normal human skin microvascular endothelial cells (HMVEC cells). I can do it.
(A)miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、または配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つ標的遺伝子発現抑制活性を有するヌクレオチドを含む核酸
 miR-29b-1*は、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものが挙げられる。ここでmiR-29b-1*には、miR-29b-1*と同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号1(miRBaseにAccession No. MIMAT0004514として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-29b-1*とは、配列番号1で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。
(A) Nucleotide sequence represented by miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, or any one of SEQ ID NOs: 1 to 6 and 70% or more The nucleic acid miR-29b-1 *, which has a nucleotide sequence having the same identity and contains nucleotides that suppress target gene expression , is already a known molecule and is typically called a mature miRNA Is mentioned. Here, miR-29b-1 * includes microRNAs (isomers) having the same sequence as miR-29b-1 * and present at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 (registered as accession No. MIMAT0004514 in miRBase). The mature miR-29b-1 * means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 1.
 miR-221*は、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-221*には、miR-221*と同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号2(miRBaseにAccession No. MIMAT0004568として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-221*とは、配列番号2で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。 MiR-221 * is an already known molecule and typically means what is called mature miRNA. Here, miR-221 * includes microRNAs (isomers) having the same sequence as miR-221 * and present at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 2 (registered in miRBase as Accession No. MIMAT0004568). Mature miR-221 * means single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 2.
 miR-138は、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-138には、miR-138と同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号3(miRBaseにAccession No. MIMAT0000430として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-138とは、配列番号3で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。 MiR-138 is an already known molecule, and typically refers to what is called mature miRNA. Here, miR-138 includes microRNAs (isomers) having the same sequence as miR-138 and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 3 (registered as accession No. MIMAT0000430 in miRBase). Mature miR-138 means single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 3.
 miR-584は、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-584には、miR-584と同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号4(miRBaseにAccession No. MIMAT0003249として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-584とは、配列番号4で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。 MiR-584 is a known molecule and typically means what is called mature miRNA. Here, miR-584 includes microRNAs (isomers) having the same sequence as miR-584 and present at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 4 (registered as AccessionBaseNo. MIMAT0003249 in miRBase). The mature miR-584 means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 4.
 miR-30aは、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-30aには、miR-30aと同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号5(miRBaseにAccession No. MIMAT0000087として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-30aとは、配列番号5で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。 MiR-30a is an already known molecule, and typically means what is called mature miRNA. Here, miR-30a includes microRNAs (isomers) having the same sequence as miR-30a and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 5 (registered in miRBase as Accession No. MIMAT0000087). The mature miR-30a means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 5.
 miR-146aは、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-146aには、miR-146aと同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(isomer)も含まれる。具体的には、例えば、配列番号6(miRBaseにAccession No. MIMAT0000449として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-146aとは、配列番号6で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。 MiR-146a is a known molecule, and typically refers to what is called mature miRNA. Here, miR-146a includes microRNAs (isomers) having the same sequence as miR-146a and existing at different positions on the genome. Specifically, for example, it means a nucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 6 (registered as Accession No. MIMAT0000449 in miRBase). Mature miR-146a means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 6.
 本発明において、配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなるヌクレオチドを含む核酸は、配列番号1~6のいずれかで表されるヌクレオチド配列からなるmiRNAが有する当該ヌクレオチド配列に相補的なヌクレオチド配列をmRNAに有する標的遺伝子発現抑制活性を有するものであれば限定はない。当該核酸は、好ましくは血管形成を抑制する活性を有する。
 本発明において、「標的遺伝子発現抑制活性」は、対象miRNAに相補的なヌクレオチド配列をmRNAに有する標的遺伝子の発現を抑制する活性をいう。一例として、配列番号1で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなるヌクレオチドを含む核酸の場合、標的遺伝子発現抑制活性を有するとは、配列番号1で表されるヌクレオチド配列に相補的なヌクレオチド配列をmRNAに有する標的遺伝子の発現を抑制する活性を有することをいう。当該活性は、例えば、レポーター遺伝子(例えば、ルシフェラーゼ)の3'末端側に対象miRNAに対して相補的な合成配列を有する発現ベクターと対象miRNAを発現するベクターを共に細胞に導入し、対象miRNAの発現が標的遺伝子の発現に及ぼす影響を、レポータータンパク質(例えば、ルシフェラーゼ)の活性を測定することにより確認することができる(実施例6又は9記載の方法を参照)が、これに限定されるものではなく、標的遺伝子発現抑制活性を評価するために使用される公知の方法であればいずれの方法を用いてもよい。
 本発明において、「血管形成を抑制する活性を有する」とは、具体的には、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aと生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つ血管形成を抑制する活性を有するヌクレオチドを意味する。より具体的には、配列番号1~6のいずれかで表されるヌクレオチド配列からなる核酸と生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つ腫瘍細胞内に取り込まれると、該細胞の血管形成を抑制する活性を有するヌクレオチドを意味する。細胞の血管形成を抑制するか否かについては、実施例に記載の方法などの公知の方法で評価することができる。
In the present invention, a nucleic acid comprising a nucleotide consisting of a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 is a nucleotide represented by any of SEQ ID NOs: 1 to 6 There is no limitation as long as the mRNA has a target gene expression suppressing activity having a nucleotide sequence complementary to the nucleotide sequence of the miRNA comprising the sequence. The nucleic acid preferably has an activity of suppressing angiogenesis.
In the present invention, “target gene expression inhibitory activity” refers to an activity of suppressing the expression of a target gene having a nucleotide sequence complementary to the target miRNA in mRNA. As an example, in the case of a nucleic acid comprising a nucleotide consisting of a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 1, the nucleotide represented by SEQ ID NO: 1 has the target gene expression suppressing activity. It has the activity which suppresses the expression of the target gene which has a nucleotide sequence complementary to a sequence in mRNA. The activity is, for example, by introducing into a cell both an expression vector having a synthetic sequence complementary to the target miRNA on the 3 ′ end side of the reporter gene (eg, luciferase) and a vector expressing the target miRNA. The effect of the expression on the expression of the target gene can be confirmed by measuring the activity of a reporter protein (for example, luciferase) (see the method described in Example 6 or 9), but is not limited thereto Instead, any method may be used as long as it is a known method used for evaluating the target gene expression inhibitory activity.
In the present invention, “having an activity to suppress angiogenesis” specifically means miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a. It means a nucleotide having an activity of forming a hybrid under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and suppressing angiogenesis. More specifically, a hybrid is formed with a nucleic acid comprising the nucleotide sequence represented by any one of SEQ ID NOS: 1 to 6 under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.), and When taken into a tumor cell, it means a nucleotide having an activity of suppressing angiogenesis of the cell. Whether or not the angiogenesis of cells is suppressed can be evaluated by a known method such as the method described in Examples.
 本発明において用いられる「血管形成を抑制する活性を有するヌクレオチド」のヌクレオチド配列は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの配列番号1~6のいずれかで表されるヌクレオチド配列と、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の同一性を有する。 The nucleotide sequence of “nucleotide having activity to suppress angiogenesis” used in the present invention is the sequence of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a It has 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more identity with the nucleotide sequence represented by any of Nos. 1-6.
 「同一性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのヌクレオチド配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮し得るものである)における、オーバーラップする全ヌクレオチド残基に対する、同一ヌクレオチド残基の割合(%)を意味する。 “Identity” refers to an optimal alignment when two nucleotide sequences are aligned using mathematical algorithms known in the art (preferably the algorithm uses one or the other of the sequences for optimal alignment). The ratio of the same nucleotide residue to the total overlapping nucleotide residues in the case of introducing gaps into both).
 本明細書において、ヌクレオチド配列における同一性は、例えば相同性計算アルゴリズムNCBI BLAST-2(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(ギャップオープン=5ペナルティ;ギャップエクステンション=2ペナルティ;x_ドロップオフ=50;期待値=10;フィルタリング=ON)にて2つのヌクレオチド配列をアラインすることにより、計算することができる。 In this specification, the identity in the nucleotide sequence is determined using, for example, the homology calculation algorithm NCBI BLAST-2 (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (gap open = 5 penalty; gap extension = 2) Penalty; x_dropoff = 50; Expected value = 10; Filtering = ON) can be calculated by aligning the two nucleotide sequences.
 配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列としては、配列番号1~6のいずれかで表されるヌクレオチド配列において1もしくは複数のヌクレオチドが欠失、置換、挿入または付加されたヌクレオチド配列、例えば、(1)配列番号1~6のいずれかで表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが欠失したヌクレオチド配列、(2)配列番号1~6のいずれかで表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが付加されたヌクレオチド配列、(3)配列番号1~6のいずれかで表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが挿入されたヌクレオチド配列、(4)配列番号1~6のいずれかで表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが他のヌクレオチドで置換されたヌクレオチド配列、または(5)上記(1)~(4)の変異が組み合わせられたヌクレオチド配列(この場合、変異したヌクレオチドの総和が、1~6個(好ましくは1~3個、より好ましくは1または2個))である。 As the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, one or more nucleotides are missing from the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6. Nucleotide sequences deleted, substituted, inserted or added, for example, (1) 1 to 6 (preferably 1 to 3, more preferably 1 or 1 in the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6) (2) nucleotide sequence from which nucleotides are deleted, (2) 1 to 6 nucleotides represented by any one of SEQ ID NOs: 1 to 6 (preferably 1 to 3, more preferably 1 or 2) (3) 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6 Insert (4) 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6 are other nucleotides. Or (5) a nucleotide sequence in which the mutations of (1) to (4) above are combined (in this case, the sum of the mutated nucleotides is 1 to 6 (preferably 1 to 3, More preferably, 1 or 2)).
 配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列は、好ましくは、配列番号1~6のいずれかで表されるヌクレオチド配列に含まれる連続する15塩基以上(好ましくは17塩基以上、より好ましくは19塩基以上、最も好ましくは20塩基)の部分配列またはそれを含む配列である。 The nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 is preferably a contiguous 15 nucleotide sequence contained in the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6. A partial sequence of at least bases (preferably at least 17 bases, more preferably at least 19 bases, most preferably at least 20 bases) or a sequence containing it.
 天然型の核酸は、細胞中に存在する核酸分解酵素によって容易に分解されるので、本発明の核酸は、各種分解酵素に対して抵抗性となるように修飾し、修飾体としてもよい。本発明の修飾体には、配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有し、且つ、前述の標的遺伝子発現抑制活性、又は血管形成を抑制する活性を有するヌクレオチドの範囲で、配列の修飾も含めた各種修飾をされた修飾体が含まれる。修飾体における修飾の例としては、例えば、糖鎖部分が修飾されているもの(例えば、2’-Oメチル化、LNA化)、塩基部分が修飾されているもの、リン酸部分やヒドロキシル部分が修飾されているもの(例えば、ビオチン、アミノ基、低級アルキルアミン基、アセチル基等)を挙げることができるが、これに限定されない。
 また、ヌクレオチド鎖の5’末端、3’末端をアミノ基修飾、ポリエチレングリコール修飾、コレステロール修飾等してもよい。
Since a natural nucleic acid is easily degraded by a nucleolytic enzyme present in a cell, the nucleic acid of the present invention may be modified so as to be resistant to various degrading enzymes. The modified product of the present invention has 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6, and has the above-mentioned target gene expression inhibitory activity or angiogenesis inhibitory activity In the range of nucleotides having a, a modified product having various modifications including a modification of the sequence is included. Examples of modifications in the modified form include, for example, those in which the sugar chain moiety is modified (for example, 2'-O methylation, LNA), those in which the base moiety is modified, phosphate moieties or hydroxyl moieties Examples thereof include, but are not limited to, modified ones (for example, biotin, amino group, lower alkylamine group, acetyl group).
In addition, the 5 ′ end and 3 ′ end of the nucleotide chain may be modified with an amino group, polyethylene glycol, cholesterol, or the like.
 本発明の核酸は、5’または3’末端に、付加的な塩基を有していてもよい。該付加的塩基の長さは、通常5塩基以下である。該付加的塩基は、DNAでもRNAでもよいが、DNAを用いると核酸の安定性を向上させることができる場合がある。このような付加的塩基の配列としては、例えばug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、ttttt-3’、uuuuu-3’などの配列が挙げられるが、これらに限定されるものではない。 The nucleic acid of the present invention may have an additional base at the 5 'or 3' end. The length of the additional base is usually 5 bases or less. The additional base may be DNA or RNA, but the use of DNA may improve the stability of the nucleic acid. Examples of such additional base sequences include ug-3 ', uu-3', tg-3 ', tt-3', ggg-3 ', guuu-3', gttt-3 ', ttttt-3 Examples include, but are not limited to, ', uuuuu-3'.
 本発明の核酸の好ましい態様としては、成熟型miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146a、それらの前駆体等の核酸を挙げることができる。本発明の核酸の好ましい別の態様としては、成熟型miRNAと同様の活性を有するヌクレオチドを含む核酸、例えば、内在性の成熟型miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aを模倣するように合成され、これらの標的遺伝子発現抑制活性を保持した核酸などを使用することができる。また、市販のものを利用することもできる。例えば、Pre-miRTM miRNA precursor molecule(Applied systems社)が例示できる。 Preferred embodiments of the nucleic acid of the present invention include nucleic acids such as mature miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a, and precursors thereof. Can do. Another preferred embodiment of the nucleic acid of the present invention is a nucleic acid comprising a nucleotide having the same activity as that of the mature miRNA, such as endogenous mature miR-29b-1 *, miR-221 *, miR-138, miR Nucleic acids that are synthesized so as to mimic -584, miR-30a, or miR-146a and retain these target gene expression-suppressing activities can be used. Commercially available products can also be used. For example, Pre-miR miRNA precursor molecule (Applied systems) can be exemplified.
 miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの前駆体とは、細胞内のプロセシングや、二本鎖核酸の開裂の結果、細胞内において成熟型miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aを生じ得る核酸を意味する。該前駆体としては、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aのpri-miRNAやpre-miRNA等を挙げることができる。pri-miRNAはmiRNA遺伝子の一次転写産物(一本鎖RNA)であり、通常数百~数千塩基程度の長さを有する。pre-miRNAは、pri-miRNAが細胞内プロセシングを受けることにより生じるヘアピン構造を有する一本鎖RNAであり、通常90~110塩基の長さを有する。
 miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aのpri-miRNAやpre-miRNAは公知の分子であり、例えばサンガー研究所が作成しているmiRBaseデータベース:http://microrna.sanger.ac.uk/等に開示されている。
miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a precursor is the intracellular processing or cleavage of double-stranded nucleic acids as a result of intracellular processing. Means a nucleic acid capable of giving rise to mature forms miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a. Examples of the precursor include pri-miRNA and pre-miRNA of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a. A pri-miRNA is a primary transcript (single-stranded RNA) of a miRNA gene, and usually has a length of about several hundred to several thousand bases. Pre-miRNA is a single-stranded RNA having a hairpin structure generated by pri-miRNA undergoing intracellular processing, and usually has a length of 90 to 110 bases.
miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a pri-miRNA and pre-miRNA are well-known molecules. MiRBase database: http://microrna.sanger.ac.uk/ etc.
 また、ヘアピンループ部分を介して、例えば、配列番号1~6のいずれかで表されるヌクレオチド配列(第1の配列)と、その相補配列(第2の配列)とが連結された一本鎖核酸であって、ヘアピンループ型の構造をとることにより、第1の配列が第2の配列と二本鎖構造状の形状を有する核酸も本発明の核酸の好ましい態様の1つである。 Further, for example, a single strand in which the nucleotide sequence (first sequence) represented by any one of SEQ ID NOS: 1 to 6 and its complementary sequence (second sequence) are linked via a hairpin loop portion A nucleic acid which has a hairpin loop type structure, so that the first sequence has a double-stranded structure with the second sequence is also a preferred embodiment of the nucleic acid of the present invention.
 本発明の核酸は、従来公知の手法を用いて、哺乳動物細胞(ヒト細胞等)から単離することにより、または化学的に合成することにより、または遺伝子組み換え技術を用いて産生することにより得ることができる。また、適宜市販されている核酸を用いることも可能である。 The nucleic acid of the present invention is obtained by isolating from a mammalian cell (human cell or the like) using a known method, or by chemically synthesizing, or by using a gene recombination technique. be able to. It is also possible to use commercially available nucleic acids as appropriate.
(B)上記(A)の核酸を発現し得る発現ベクター
 本発明の別の具体例として、上記の「miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、または配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つ標的遺伝子発現抑制活性を有するヌクレオチドを含む核酸」を発現するように設計されたベクターを、挙げることができる。
 本明細書における「発現ベクター」は、例えば、宿主細胞中で複製可能な遺伝情報を含み、自律的に増殖できるものであって、宿主細胞からの単離・精製が容易であり、宿主細胞中で機能可能なプロモーターを有し、かつ検出可能なマーカーをもつ発現ベクターに、前記プロモーターの制御下に置かれるように本発明の核酸が導入されたものを挙げることができる。
 具体的には、pRC/RSV、pRC/CMV(Invitrogen社製)等のプラスミド、ウシパピローマウイルスプラスミドpBPV(Amersham Bioscience社製)、EBウイルスプラスミドpCEP4(Invitrogen社製)等のウイルス由来の自律複製起点を含むベクター、ワクシニアウイルス等のウイルスなどをあげることができる。
(B) Expression vector capable of expressing nucleic acid of (A) As another specific example of the present invention, the above-mentioned “miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a” , MiR-146a, or a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by any of SEQ ID NOs: 1 to 6 and having a target gene expression inhibitory activity " Vectors designed for can be mentioned.
An “expression vector” in the present specification includes, for example, genetic information that can be replicated in a host cell, can be propagated autonomously, and can be easily isolated and purified from the host cell. And an expression vector having a functionable promoter and a detectable marker, into which the nucleic acid of the present invention is introduced so as to be placed under the control of the promoter.
Specifically, autonomous origins of replication derived from viruses such as plasmids such as pRC / RSV and pRC / CMV (manufactured by Invitrogen), bovine papillomavirus plasmid pBPV (manufactured by Amersham Bioscience), and EB virus plasmid pCEP4 (manufactured by Invitrogen) And vectors such as vaccinia virus and the like.
 本明細書における発現ベクターは、本発明の核酸の上流に、宿主細胞で機能可能なプロモーターを機能可能な形で結合させ、これを上述のようなベクターに組み込むことにより、本発明の核酸を宿主細胞で発現させることが可能な発現ベクターを構築することができる。ここで、「機能可能な形で結合させる」とは、該発現ベクターが宿主細胞に導入された際に、該宿主細胞において本発明の核酸がプロモーターの制御下に転写され発現するように、当該プロモーターと本発明の核酸とを結合させることを意味する。
 ここで用いられるプロモーターは、本発明の核酸が導入される細胞で機能可能なものであればよく、例えばSV40ウイルスプロモーター、サイトメガロウイルスプロモーター(CMVプロモーター)、ラウス肉腫ウイルスプロモーター(RSVプロモーター)、βアクチン遺伝子プロモーター、CMV early enhancer/chicken beta actin (CAG) プロモーター、SRαプロモーター、Thymidine Kinase (TK) プロモーター、elongation factor-1 αプロモーター、又はマウス乳頭腫ウイルス(MMTV)プロモーター等のpolII系のプロモーターが挙げられるが、短いRNAの転写を正確に行わせるために、polIII系プロモーターを使用するのが一般的である。polIII系プロモーターとしては、マウスおよびヒトのU6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどが挙げられる。また、転写終結シグナルとして4個以上Tが連続した配列が用いられる。
 発現ベクターに本発明の核酸を導入するために用いられる制限酵素は、宝酒造等から市販されているものを適宜用いればよい。又、このようなプロモーターをマルチクローニング部位の上流に含む市販のベクターを利用してもよい。
 一般的には、宿主細胞で機能可能なプロモーターと本発明の核酸とが機能可能な形で結合されてなるDNAを、宿主細胞で利用可能なベクターに組込んで、これを宿主細胞に導入する。宿主細胞において機能可能なプロモーターをあらかじめ保有するベクターを使用する場合には、ベクター保有のプロモーターと本発明の核酸とが機能可能な形で結合するように、該プロモーターの下流に本発明の核酸を挿入すればよい。例えば、前述のプラスミドpRC/RSV、pRC/CMV等は、動物細胞で機能可能なプロモーターの下流にクローニング部位が設けられており、該クローニング部位に本発明の核酸を挿入し動物細胞へ導入することにより、本発明の核酸を発現させることができる。さらなる高発現を導くことが必要な場合には、本発明の核酸の上流にリボゾーム結合領域を連結してもよい。用いられるリボゾーム結合領域としては、Guarente, L.ら(Cell 1980; 20: 543-53)や谷口ら(Genetics of Industrial Microorganisms,1982, p202, 講談社)による報告に記載されたものを挙げることができる。
In the expression vector of the present specification, a promoter capable of functioning in a host cell is operably linked upstream of the nucleic acid of the present invention, and this is incorporated into a vector as described above, whereby the nucleic acid of the present invention is incorporated into the host. Expression vectors that can be expressed in cells can be constructed. Here, “to be operably linked” means that the nucleic acid of the present invention is transcribed and expressed in the host cell under the control of a promoter when the expression vector is introduced into the host cell. It means that the promoter and the nucleic acid of the present invention are bound.
The promoter used here may be any promoter that can function in the cell into which the nucleic acid of the present invention is introduced. For example, SV40 virus promoter, cytomegalovirus promoter (CMV promoter), Rous sarcoma virus promoter (RSV promoter), β Pol II promoters such as actin gene promoter, CMV early enhancer / chicken beta actin (CAG) promoter, SRα promoter, Thymidine Kinase (TK) promoter, elongation factor-1 α promoter, or mouse papilloma virus (MMTV) promoter However, it is common to use a polIII promoter in order to perform transcription of short RNA accurately. Examples of the polIII promoter include mouse and human U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter, and the like. Further, a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
What is necessary is just to use suitably the restriction enzyme used in order to introduce | transduce the nucleic acid of this invention into an expression vector from Takara Shuzo etc. suitably. A commercially available vector containing such a promoter upstream of the multiple cloning site may be used.
In general, a DNA in which a promoter capable of functioning in a host cell and the nucleic acid of the present invention are operably linked is incorporated into a vector that can be used in the host cell and introduced into the host cell. . When using a vector that already has a promoter that can function in the host cell, the nucleic acid of the present invention is placed downstream of the promoter so that the promoter of the vector and the nucleic acid of the present invention are operably linked. Insert it. For example, the aforementioned plasmids pRC / RSV, pRC / CMV, etc. have a cloning site downstream of a promoter that can function in animal cells, and the nucleic acid of the present invention is inserted into the cloning site and introduced into animal cells. Thus, the nucleic acid of the present invention can be expressed. If it is necessary to induce further high expression, a ribosome binding region may be linked upstream of the nucleic acid of the present invention. Examples of the ribosome-binding region used include those described in reports by Guarente, L. et al. (Cell 1980; 20: 543-53) and Taniguchi et al. (Genetics of Industrial Microorganisms, 1982, p202, Kodansha). .
 本発明の核酸を発現する発現ベクターとして市販のものを利用することもできる。例えば、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aおよびmiR-146aの各前駆体の発現ベクターの市販品として、Precursor miRNA clones カタログNo. HmiR0120-MR01, 04(miR-29b-1*)、HmiR0369-MR01, 04(miR-221*)、HmiR0431-MR01, 04(miR-138)、HmiR0083-MR01, 04(miR-584)、HmiR0096-MR01, 04(miR-30a)およびHmiR0087-MR01, 04(miR-146a)(いずれもGenecopoeia社製)が例示できる。 Commercially available expression vectors for expressing the nucleic acid of the present invention can also be used. For example, as a commercial product of an expression vector for each of the precursors miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a and miR-146a, Precursor miRNA clones catalog No. HmiR0120-MR01 , 04 (miR-29b-1 *), HmiR0369-MR01, 04 (miR-221 *), HmiR0431-MR01, 04 (miR-138), HmiR0083-MR01, 04 (miR-584), HmiR0096-MR01, 04 (MiR-30a) and HmiR0087-MR01, 04 (miR-146a) (both manufactured by Genecopoeia).
(C)miR-151-3p阻害剤
 miR-151-3pは、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものが挙げられる。ここでmiR-151-3pには、miR-151-3pと同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(miR-151-3p isomer)も含まれる。具体的には、例えば、配列番号7(miRBaseにAccession No. MIMAT0000757として登録されている)で表されるヌクレオチド配列からなるヒトmiR-151-3p(hsa-miR-151-3p)が挙げられる。すなわち、成熟型miR-151-3pとしては、配列番号7で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAが挙げられる。また、miR-151-3pの具体例として、上記の配列番号7で表されるヌクレオチド配列からなるヒトmiR-151-3pの他、配列番号53(miRBaseにAccession No. MIMAT0000161として登録されている)で表されるヌクレオチド配列からなるマウスmiR-151-3p (mmu-miR-151-3p)等の他の動物種のオルソログを挙げることができる。
(C) The miR-151-3p inhibitor miR-151-3p is a known molecule, and representative examples include what are called mature miRNAs. Here, miR-151-3p includes microRNA (miR-151-3p isomer) having the same sequence as miR-151-3p and present at different positions on the genome. Specifically, for example, human miR-151-3p (hsa-miR-151-3p) consisting of a nucleotide sequence represented by SEQ ID NO: 7 (registered as accession No. MIMAT0000757 in miRBase) can be mentioned. That is, mature miR-151-3p includes single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 7. Moreover, as a specific example of miR-151-3p, in addition to human miR-151-3p consisting of the nucleotide sequence represented by SEQ ID NO: 7 above, SEQ ID NO: 53 (registered in miRBase as Accession No. MIMAT0000161) And orthologs of other animal species such as mouse miR-151-3p (mmu-miR-151-3p) having the nucleotide sequence represented by
 miR-151-3p阻害剤は、miR-151-3pの機能を阻害する物質であれば良く、その作用機序については限定されない。
 「miR-151-3pの機能」としては、
(1)miR-151-3pに相補的なヌクレオチド配列をmRNAに有する標的遺伝子の発現を抑制する活性(以下、miR-151-3pの標的遺伝子発現抑制活性)、または
(2)細胞の血管形成を促進する活性、
が挙げられる。
 miR-151-3pの標的遺伝子発現抑制活性は、例えば、レポーター遺伝子(例えば、ルシフェラーゼ)の3'末端側にmiR-151-3pに対して相補的な合成配列を有する発現ベクターとmiR-151-3pを発現するベクターを共に細胞に導入し、miR-151-3pの発現が標的遺伝子の発現に及ぼす影響を、レポータータンパク質(例えば、ルシフェラーゼ)の活性を測定することにより確認することができる(実施例6又は9記載の方法を参照)。また、細胞の血管形成を促進する活性は、例えば、管形成能のある血管内皮細胞(例えば、ヒト臍帯静脈内皮細胞HUVEC)にmiR-151-3pを発現するベクターを導入し、細胞外マトリックス上での管形成の程度を測定することにより確認することができる(実施例10記載の方法を参照)が、これに限定されるものではなく、血管形成能を評価するために使用される公知の方法であればいずれの方法を用いてもよい。
 「miR-151-3pの機能を阻害する」とは、miR-151-3pの上記の機能を抑制する活性を有することを意味し、miR-151-3pの機能を阻害するか否かについては、実施例に記載の方法などの公知の方法で確認することができる。
The miR-151-3p inhibitor may be any substance that inhibits the function of miR-151-3p, and its action mechanism is not limited.
As "function of miR-151-3p",
(1) Activity to suppress expression of a target gene having a nucleotide sequence complementary to miR-151-3p in mRNA (hereinafter, miR-151-3p target gene expression suppression activity), or (2) Cell angiogenesis Promoting activity,
Is mentioned.
The target gene expression suppression activity of miR-151-3p is, for example, an expression vector having a synthetic sequence complementary to miR-151-3p on the 3 ′ end side of a reporter gene (for example, luciferase) and miR-151- A vector expressing 3p can be introduced into a cell, and the effect of miR-151-3p expression on target gene expression can be confirmed by measuring the activity of a reporter protein (eg, luciferase). (See the method described in Example 6 or 9). In addition, the activity of promoting cell angiogenesis is achieved by, for example, introducing a vector expressing miR-151-3p into vascular endothelial cells capable of tube formation (for example, human umbilical vein endothelial cells HUVEC) on the extracellular matrix. Can be confirmed by measuring the degree of tube formation (see the method described in Example 10), but is not limited thereto, and is a known one used to evaluate angiogenic ability. Any method may be used as long as it is a method.
“Inhibiting the function of miR-151-3p” means having the activity of suppressing the above-mentioned function of miR-151-3p, and whether or not to inhibit the function of miR-151-3p. It can be confirmed by a known method such as the method described in Examples.
 miR-151-3p阻害物質としては、具体的には、以下の核酸が例示される。
(a)miR-151-3pの相補鎖配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-151-3pの機能を阻害するヌクレオチドを含む核酸、または
(b)上記(a)を発現する発現ベクターである核酸。
 本発明において、miR-151-3pの相補鎖とは、具体的には、配列番号9で表されるヌクレオチド配列からなるヌクレオチドが示される。
Specific examples of miR-151-3p inhibitors include the following nucleic acids.
(A) a nucleic acid comprising a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-151-3p, and comprising a nucleotide that inhibits the function of miR-151-3p, or (b) the above (a) A nucleic acid that is an expression vector that expresses.
In the present invention, the complementary strand of miR-151-3p specifically refers to a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 9.
 「miR-151-3pの機能を阻害するヌクレオチド」とは、miR-151-3pと生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つmiR-151-3pの機能を抑制するものを意味する。より具体的には、miR-151-3pと生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つ腫瘍細胞内に取り込まれると、該細胞におけるmiR-151-3pの機能を抑制する活性を有するヌクレオチドを意味する。 “Nucleotide inhibiting the function of miR-151-3p” means a hybrid with miR-151-3p under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.), and miR- Means what suppresses the function of 151-3p. More specifically, when miR-151-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and taken up into tumor cells, miR in the cells -151-3p means a nucleotide having the activity of suppressing the function of 3p.
 本発明において用いられる「miR-151-3pの機能を抑制する活性を有するヌクレオチド」のヌクレオチド配列は、miR-151-3pの相補鎖である配列番号9で表されるヌクレオチド配列と、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の同一性を有する。具体的には、配列番号54で表されるヌクレオチド配列からなるヌクレオチドが挙げられる。 The nucleotide sequence of “nucleotide having the activity of suppressing the function of miR-151-3p” used in the present invention is 70% or more of the nucleotide sequence represented by SEQ ID NO: 9 which is a complementary strand of miR-151-3p. , Preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. Specific examples include nucleotides consisting of the nucleotide sequence represented by SEQ ID NO: 54.
 配列番号9で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列としては、配列番号9で表されるヌクレオチド配列において1もしくは複数のヌクレオチドが欠失、置換、挿入または付加されたヌクレオチド配列、例えば、(1)配列番号9で表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが欠失したヌクレオチド配列、(2)配列番号9で表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが付加されたヌクレオチド配列、(3)配列番号9で表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが挿入されたヌクレオチド配列、(4)配列番号9で表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが他のヌクレオチドで置換されたヌクレオチド配列、または(5)上記(1)~(4)の変異が組み合わせられたヌクレオチド配列(この場合、変異したヌクレオチドの総和が、1~6個(好ましくは1~3個、より好ましくは1または2個))である。 As a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 9, one or more nucleotides in the nucleotide sequence represented by SEQ ID NO: 9 have been deleted, substituted, inserted or added A sequence, for example, (1) a nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by SEQ ID NO: 9 have been deleted, (2) A nucleotide sequence obtained by adding 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides to the nucleotide sequence represented by SEQ ID NO: 9, and (3) a nucleotide represented by SEQ ID NO: 9 A nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides are inserted in the sequence; (4) 1 to 6 in the nucleotide sequence represented by SEQ ID NO: 9 A nucleotide sequence in which nucleotides (preferably 1 to 3, more preferably 1 or 2) are substituted with other nucleotides, or (5) a nucleotide sequence in which the mutations (1) to (4) above are combined ( In this case, the total number of mutated nucleotides is 1 to 6 (preferably 1 to 3, more preferably 1 or 2).
 配列番号9で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列は、好ましくは、配列番号9で表されるヌクレオチド配列に含まれる連続する15塩基以上(好ましくは17塩基以上、より好ましくは19塩基以上、最も好ましくは21塩基)の部分配列またはそれを含む配列である。 The nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 9 is preferably 15 or more consecutive nucleotides (preferably 17 or more nucleotides or more, preferably included in the nucleotide sequence represented by SEQ ID NO: 9). A partial sequence of preferably 19 bases or more, most preferably 21 bases) or a sequence containing it.
 本発明の核酸の具体例としては、例えば、anti-miR-151-3pやmiR-151-3pに対するデコイRNAが挙げられる。
 本明細書において「anti-miR-151-3p」とは、miR-151-3pのマイクロRNA活性阻害分子の1形態であり、miR-151-3p配列に対して相補性を持つ核酸をいう。
 一般にanti-miRは化学修飾された一本鎖の核酸で、内在性のマイクロRNAに特異的に結合し、その機能を阻害するように設計されている。従って、本発明のanti-miR-151-3pは、各種分解酵素に対して抵抗性となるように修飾し、修飾体としてもよい。本発明の修飾体には、配列番号9で表されるヌクレオチド配列と70%以上の同一性を有し、且つ、miR-151-3pの機能を抑制する活性を有するヌクレオチドの範囲で、配列の修飾も含めた各種修飾をされた修飾体が含まれる。
 例えば、核酸を構成する各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖(リボース)の2’位の水酸基を、OR(R=CH3(2’-O-Me)、F(2'-F)、CH2CH2OCH3(2’-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。
Specific examples of the nucleic acid of the present invention include, for example, decoy RNA for anti-miR-151-3p and miR-151-3p.
As used herein, “anti-miR-151-3p” is a form of miR-151-3p microRNA activity-inhibiting molecule and refers to a nucleic acid that is complementary to the miR-151-3p sequence.
In general, anti-miR is a chemically modified single-stranded nucleic acid designed to specifically bind to endogenous microRNA and inhibit its function. Therefore, the anti-miR-151-3p of the present invention may be modified so as to be resistant to various degrading enzymes. The modified product of the present invention includes a nucleotide sequence having the identity of 70% or more with the nucleotide sequence represented by SEQ ID NO: 9 and having the activity of suppressing the function of miR-151-3p. Modifications including various modifications including modifications are included.
For example, the phosphate residue (phosphate) of each nucleotide constituting the nucleic acid can be replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, and the like. In addition, the 2′-position hydroxyl group of each sugar (ribose) is changed to OR (R═CH 3 (2′-O-Me), F (2′-F), CH 2 CH 2 OCH 3 (2′- O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.). Furthermore, the base moiety (pyrimidine, purine) may be chemically modified, for example, introduction of a methyl group or a cationic functional group at the 5-position of the pyrimidine base, or substitution of the carbonyl group at the 2-position with thiocarbonyl. Is mentioned.
 核酸の糖部のコンフォーメーションはC2’-endo(S型)とC3’-endo(N型)の2つが支配的であり、一本鎖核酸ではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2’酸素と4’炭素をメチレン残基を介して架橋することにより、糖部のコンフォーメーションをN型に固定したLNA(Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotides, 14, 130-46, 2004;Singh SK, Nielsen P, Koshkin A, et al. LNA(locked nucleic acids): Synthesis and high-affinity nucleic acid recognition. Chem Commun.455, 1998)や2’酸素と4’炭素をエチレン残基を介して架橋することにより、糖部のコンフォーメーションをN型に固定したENA(Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003)もまた、好ましく用いられ得る。
 また、ヌクレオチド鎖の5’末端、3’末端をアミノ基修飾、ポリエチレングリコール修飾、コレステロール修飾等してもよい。
 さらに、リン酸糖エステルの代わりに、ペプチド鎖を骨格として合成された核酸であるPeptide nucleic acid(PNA)なども用いることが出来る(Singh SK, Nielsen P, Koshkin A, et al. LNA(locked nucleic acids): Synthesis and high-affinity nucleic acid recognition. Chem Commun.455, 1998)。
The conformation of the sugar part of nucleic acids is dominated by C2'-endo (S-type) and C3'-endo (N-type). In single-stranded nucleic acids, they exist as an equilibrium between them, but double-stranded Is fixed to the N type. Therefore, in order to confer strong binding ability to the target RNA, LNA (Imanishi, which fixed the conformation of the sugar moiety to the N-type by cross-linking the 2 ′ oxygen and the 4 ′ carbon via a methylene residue. T. et al., Chem. Commun., 1653-9, 2002; Jepsen, JS et al., Oligonucleotides, 14, 130-46, 2004; Singh SK, Nielsen P, Koshkin A, et al. LNA (locked nucleic acid acids): Synthesis and high-affinity nucleic acid recognition. Chem Commun. 455, 1998) and 2 'oxygen and 4' carbon were cross-linked via ethylene residues to fix the sugar conformation to N-type. ENA (Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003) can also be preferably used.
In addition, the 5 ′ end and 3 ′ end of the nucleotide chain may be modified with an amino group, polyethylene glycol, cholesterol, or the like.
Furthermore, Peptide nucleic acid (PNA), which is a nucleic acid synthesized with a peptide chain as a skeleton, can be used in place of phosphate sugar ester (Singh SK, Nielsen P, Koshkin A, et al. LNA (locked nucleic acid). acids): Synthesis and high-affinity nucleic acid recognition. Chem Commun. 455, 1998).
 本発明の核酸は、5’または3’末端に、付加的な塩基を有していてもよい。該付加的塩基の長さは、通常5塩基以下である。該付加的塩基は、DNAでもRNAでもよいが、DNAを用いると核酸の安定性を向上させることができる場合がある。このような付加的塩基の配列としては、例えばug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、ttttt-3’、uuuuu-3’などの配列が挙げられるが、これらに限定されるものではない。 The nucleic acid of the present invention may have an additional base at the 5 'or 3' end. The length of the additional base is usually 5 bases or less. The additional base may be DNA or RNA, but the use of DNA may improve the stability of the nucleic acid. Examples of such additional base sequences include ug-3 ', uu-3', tg-3 ', tt-3', ggg-3 ', guuu-3', gttt-3 ', ttttt-3 Examples include, but are not limited to, ', uuuuu-3'.
 例えば、本発明のanti-miR-151-3pは、一本鎖核酸(好ましくは一本鎖RNA)の任意の位置に修飾ヌクレオチド、好ましくは、2’-Oメチル修飾ヌクレオチドまたはLNA修飾ヌクレオチドを含んでいてもよく、2個以上の異なる修飾ヌクレオチドを含んでいてもよい。ここで、LNA修飾ヌクレオチドとは、RNAにおいて、2’位の酸素原子と4’位の炭素原子がメチレン基を介して架橋された修飾ヌクレオチドを表す。好ましい形態としては、一本鎖RNAが3個以上(より好ましくは4個以上)、より好ましくは3~12個(より好ましくは4~12個)のLNA修飾ヌクレオチドを含む核酸であり、一本鎖RNAが3個以上のLNA修飾ヌクレオチドを含む一本鎖RNAの場合は、その5‘末端と3’末端の両方に少なくとも1個のLNA修飾ヌクレオチドを含む核酸であることが好ましい。また、一本鎖RNAがLNA修飾ヌクレオチドを含む場合、LNA修飾されていない残り全てのヌクレオチドが2’-Oメチル修飾されていることが好ましい。
 具体的なanti-miR-151-3pとしては、実施例10に記載の配列番号43~50(好ましくは、配列番号43~48および50)で表されるヌクレオチド配列からなる修飾核酸、および実施例6に記載の配列番号30~38で表されるヌクレオチド配列からなる修飾核酸が挙げられる。
For example, the anti-miR-151-3p of the present invention comprises a modified nucleotide, preferably a 2′-O methyl modified nucleotide or an LNA modified nucleotide at any position of a single stranded nucleic acid (preferably a single stranded RNA). It may also contain two or more different modified nucleotides. Here, the LNA-modified nucleotide represents a modified nucleotide in which the 2′-position oxygen atom and the 4′-position carbon atom are cross-linked via a methylene group in RNA. A preferred form is a nucleic acid containing 3 or more (more preferably 4 or more), more preferably 3 to 12 (more preferably 4 to 12) LNA-modified nucleotides of single-stranded RNA. When the strand RNA is a single-stranded RNA containing 3 or more LNA-modified nucleotides, it is preferably a nucleic acid containing at least one LNA-modified nucleotide at both the 5 ′ end and the 3 ′ end. In addition, when the single-stranded RNA contains LNA-modified nucleotides, it is preferable that all remaining nucleotides that are not LNA-modified are 2′-O methyl-modified.
Specific examples of anti-miR-151-3p include a modified nucleic acid consisting of a nucleotide sequence represented by SEQ ID NOs: 43 to 50 (preferably SEQ ID NOs: 43 to 48 and 50) described in Example 10, and Examples And a modified nucleic acid having the nucleotide sequence represented by SEQ ID NOs: 30 to 38 described in FIG.
 本発明のanti-miR-151-3pは、miR-151-3pの配列に基づいてmRNAもしくは初期転写産物の標的配列を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。また、上記した各種修飾を含むanti-miR-151-3pも、いずれも自体公知の手法により、化学的に合成することができる。 The anti-miR-151-3p of the present invention determines the target sequence of mRNA or initial transcript based on the sequence of miR-151-3p, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman). Etc.) can be prepared by synthesizing a complementary sequence thereto. In addition, anti-miR-151-3p containing the various modifications described above can be chemically synthesized by any known method.
 いかなる理論にも拘束されないが、anti-miR-151-3pは、動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒト、好ましくはヒト)の細胞または非ヒト動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サルなど)において、標的マイクロRNA(即ち、miR-151-3p)と二本鎖を形成することにより、当該細胞または非ヒト動物において血管形成を促進する機能を発揮し得る当該標的マイクロRNAの量(即ち有効量)を減少させ、その結果、miR-151-3pの機能を阻害すると考えられる。後述の実施例に記載するようにmiR-151-3pが過剰発現すると血管形成異常が引き起こされる。ここでmiR-151-3pの過剰発現は、悪性がん細胞において見られるmiR-151-3pの分泌レベルまたは濃度が正常細胞や良性がん細胞に比べて高い状態であり得る。またmiR-151-3pの過剰発現は、miR-151-3pまたはmiR-151-3p発現ベクターを細胞にトランスフェクションすることによっても引き起こされ得る。anti-miR-151-3pは、そのようなmiR-151-3pの過剰発現による血管形成異常を抑制することができる。
 ここでmiR-151-3pの過剰発現による血管形成異常とは、miR-151-3pの過剰発現による血管形成の促進をいう。血管形成の促進は、例えば後述の実施例に記載の方法などの公知の方法により、血管の長さ及び/又は分岐点数の増加等を指標として確認することができる。
Without being bound by any theory, anti-miR-151-3p is a cell or non-human animal (eg rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey, human, preferably human) In animals (eg, rats, mice, guinea pigs, rabbits, sheep, horses, pigs, cows, monkeys, etc.) by forming a double strand with the target microRNA (ie, miR-151-3p), the cells or It is considered that the amount of the target microRNA that can exert a function of promoting angiogenesis in a non-human animal (ie, an effective amount) is decreased, and as a result, the function of miR-151-3p is inhibited. As described in Examples below, when miR-151-3p is overexpressed, angiogenesis abnormalities are caused. Here, overexpression of miR-151-3p can be a state in which the secretion level or concentration of miR-151-3p found in malignant cancer cells is higher than that of normal cells or benign cancer cells. MiR-151-3p overexpression can also be caused by transfecting cells with miR-151-3p or miR-151-3p expression vectors. anti-miR-151-3p can suppress angiogenesis abnormalities due to such overexpression of miR-151-3p.
Here, the angiogenesis abnormality due to the overexpression of miR-151-3p refers to the promotion of angiogenesis due to the overexpression of miR-151-3p. The promotion of blood vessel formation can be confirmed using, for example, a known method such as the method described in the below-described examples, using as an index the increase in the length of the blood vessel and / or the number of branch points.
 本明細書において「miR-151-3pに対するデコイRNA」とは、miR-151-3pに部分的に相補的な配列を持ち、かつmiR-151-3pと塩基対を形成後も切断、分解を受けにくい2次構造を持ったRNAをいう。デコイRNAは、標的マイクロRNAと結合することでその機能を阻害する点はanti-miRと同じであるが、その構造がヘアピン型のRNA鎖であり、1分子のデコイRNA中に複数の標的マイクロRNA結合配列を有する点で、anti-miRと異なる。代表的なデコイRNAとして、対向するマイクロRNA結合配列によりバブル部分が形成されたステムループ構造が挙げられる。マイクロRNA結合配列とステム構造との間に1-5塩基のリンカー配列を挿入することにより、マイクロRNA結合配列と標的マイクロRNAとの結合を容易にすることができる。また、マイクロRNA結合配列として、標的マイクロRNAと完全相補的でない配列(例えば、完全相補的な配列の3’端から10番目と11番目の塩基の間に4塩基を挿入した配列等)を使用することにより、標的マイクロRNAを含むRISC複合体によるデコイRNAの切断を回避することができる(Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Haraguchi T, Ozaki Y, Iba H. Nucleic Acids Res. 2009 Apr;37(6) e43)。 As used herein, “decoy RNA for miR-151-3p” has a partially complementary sequence to miR-151-3p, and is cleaved and degraded even after base pairing with miR-151-3p. RNA with a secondary structure that is difficult to receive. Decoy RNA is the same as anti-miR in that its function is inhibited by binding to target microRNA, but its structure is a hairpin RNA strand, and multiple target microRNAs are included in one molecule of decoy RNA. It differs from anti-miR in that it has an RNA binding sequence. A typical decoy RNA includes a stem-loop structure in which a bubble portion is formed by opposing microRNA binding sequences. By inserting a 1-5 base linker sequence between the microRNA binding sequence and the stem structure, the binding between the microRNA binding sequence and the target microRNA can be facilitated. In addition, as a microRNA binding sequence, a sequence that is not completely complementary to the target microRNA (for example, a sequence in which 4 bases are inserted between the 10th and 11th bases from the 3 ′ end of the completely complementary sequence, etc.) is used. By doing this, it is possible to avoid the decoy RNA cleavage by the RISC complex containing the target microRNA (Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Haraguchi T, Ozaki Y, Iba H. Nucleic Acids Res. 2009 Apr; 37 (6) e43).
 本発明の核酸は、従来公知の手法を用いて、化学的に合成することにより、または遺伝子組換え技術を用いて産生することにより得ることができる。 The nucleic acid of the present invention can be obtained by chemically synthesizing using a conventionally known method or by producing using a gene recombination technique.
 また、本発明の別の具体例として、上記の「(a)miR-151-3pの相補鎖配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-151-3pの機能を阻害するヌクレオチドを含む核酸」を発現するように設計されたベクターを、挙げることができる。ここで「発現ベクター」としては、上記(B)と同様に、例えば、宿主細胞中で複製可能な遺伝情報を含み、自立的に増殖できるものであって、宿主細胞からの単離・精製が容易であり、宿主細胞中で機能可能なプロモーターを有し、検出可能なマーカーをもつ発現用ベクターに、上記(a)の核酸が導入されたものを挙げることができる。尚、プロモーターとして、U6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどのpolIII系プロモーターを使用する場合、anti-miR-151-3pやmiR-151-3pに対するデコイRNAについて前記したリンカー配列や切断回避のためのギャップ配列は、4個以上Uが連続しないように設計すべきである。 As another specific example of the present invention, “(a) a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-151-3p and inhibiting the function of miR-151-3p” Vectors designed to express a “nucleic acid comprising a nucleotide to do” can be mentioned. As used herein, the “expression vector” includes, for example, genetic information that can be replicated in a host cell and can be propagated autonomously, and can be isolated and purified from the host cell. Examples thereof include those in which the nucleic acid of (a) is introduced into an expression vector having a promoter that is easy and can function in a host cell and has a detectable marker. In the case of using a polIII promoter such as U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter as a promoter, the decoy RNA for anti-miR-151-3p and miR-151-3p The linker sequence and the gap sequence to avoid cleavage should be designed so that 4 or more U are not consecutive.
 miR-151-3p阻害剤として、市販のものを利用することもできる。anti-miR-151-3pの市販品としてはAnti-miRTM miRNA inhibitor(Applied Biosystems社製)、miR-151-3pに対するデコイRNAの市販品としてはmiArrestTM miRNA inhibitors(カタログNo. HmiR-AN0211-SN-5, -10, -20 (合成オリゴ), HmiR-AN0211-AM01, 02, 03, 04 (発現ベクター)(いずれもGenecopoeia社製))が例示できる。 A commercially available miR-151-3p inhibitor can also be used. Anti-miR-151-3p is commercially available as Anti-miR miRNA inhibitor (Applied Biosystems), and commercially available decoy RNA against miR-151-3p is miArrest miRNA inhibitors (Catalog No. HmiR-AN0211- SN-5, -10, -20 (synthetic oligo), HmiR-AN0211-AM01, 02, 03, 04 (expression vector) (both manufactured by Genecopoeia)).
(D)miR-886-3p阻害剤
 miR-886-3pは、すでに公知の分子であり、代表的には、成熟型miRNAと呼ばれているものを意味する。ここでmiR-886-3pには、miR-886-3pと同じ配列を有し、ゲノム上の異なる位置に存在するマイクロRNA(miR-886-3p isomer)も含まれる。具体的には、例えば、配列番号8(miRBaseにAccession No. MIMAT0004906として登録されている)で表されるヌクレオチド配列からなるヌクレオチドを意味する。成熟型miR-886-3pとは、配列番号8で表されるヌクレオチド配列からなる一本鎖または二本鎖のRNAを意味する。
(D) The miR-886-3p inhibitor miR-886-3p is a molecule already known and typically means what is called mature miRNA. Here, miR-886-3p includes microRNA (miR-886-3p isomer) having the same sequence as miR-886-3p and present at different positions on the genome. Specifically, for example, it means a nucleotide comprising the nucleotide sequence represented by SEQ ID NO: 8 (registered as Accession No. MIMAT0004906 in miRBase). The mature miR-886-3p means a single-stranded or double-stranded RNA consisting of the nucleotide sequence represented by SEQ ID NO: 8.
 miR-886-3p阻害剤は、miR-886-3pの機能を阻害する物質であれば良く、その作用機序については限定されない。
 「miR-886-3pの機能」とは、
(1)miR-886-3pに相補的なヌクレオチド配列をmRNAに有する標的遺伝子の発現を抑制する活性(以下、miR-886-3pの標的遺伝子発現抑制活性)、または
(2)細胞の血管形成を促進する活性、
を意味する。
 「miR-886-3pの機能を阻害する」とは、miR-886-3pの機能を抑制する活性を有することを意味し、miR-886-3pの機能を阻害するか否かについては、実施例に記載の方法などの公知の方法で確認することができる。
The miR-886-3p inhibitor may be any substance that inhibits the function of miR-886-3p, and its action mechanism is not limited.
“Functions of miR-886-3p”
(1) Activity to suppress the expression of a target gene having a nucleotide sequence complementary to miR-886-3p in mRNA (hereinafter, miR-886-3p target gene expression suppression activity), or (2) Cell angiogenesis Promoting activity,
Means.
“Inhibiting the function of miR-886-3p” means having the activity of suppressing the function of miR-886-3p, and whether to inhibit the function of miR-886-3p It can confirm by well-known methods, such as the method as described in an example.
 miR-886-3p阻害物質としては、具体的には、以下の核酸が例示される。
(a)miR-886-3pの相補鎖配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-886-3pの機能を阻害するヌクレオチドを含む核酸、または
(b)上記(a)を発現する発現ベクターである核酸。
 本発明において、miR-886-3pの相補鎖とは、具体的には、配列番号10で表されるヌクレオチド配列からなるヌクレオチドが示される。
Specific examples of miR-886-3p inhibitors include the following nucleic acids.
(A) a nucleic acid comprising a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-886-3p, and comprising a nucleotide that inhibits the function of miR-886-3p, or (b) above (a) A nucleic acid that is an expression vector that expresses.
In the present invention, the complementary strand of miR-886-3p specifically refers to a nucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10.
 「miR-886-3pの機能を阻害するヌクレオチド」とは、miR-886-3pと生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つmiR-886-3pの機能を抑制するものを意味する。より具体的には、miR-886-3pと生体条件で(例えば0.1Mリン酸緩衝液(pH7.0) 25℃で)ハイブリッドを形成し、且つ腫瘍細胞内に取り込まれると、該細胞におけるmiR-886-3pの機能を抑制する活性を有するヌクレオチドを意味する。 “Nucleotide inhibiting the function of miR-886-3p” means that miR-886-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and miR- It means something that suppresses the function of 886-3p. More specifically, when miR-886-3p is hybridized under biological conditions (for example, 0.1 M phosphate buffer (pH 7.0) at 25 ° C.) and taken up into tumor cells, miR in the cells -886-3p means a nucleotide having the activity of suppressing the function of 3p.
 本発明において用いられる「miR-886-3pの機能を阻害するヌクレオチド」のヌクレオチド配列は、miR-886-3pの相補鎖である配列番号10で表されるヌクレオチド配列と、70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上の同一性を有する。 The nucleotide sequence of “nucleotide that inhibits the function of miR-886-3p” used in the present invention is 70% or more, preferably 70% or more, preferably the nucleotide sequence represented by SEQ ID NO: 10, which is the complementary strand of miR-886-3p. 80% or more, more preferably 90% or more, and still more preferably 95% or more.
 配列番号10で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列としては、配列番号10で表されるヌクレオチド配列において1もしくは複数のヌクレオチドが欠失、置換、挿入または付加されたヌクレオチド配列、例えば、(1)配列番号10で表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが欠失したヌクレオチド配列、(2)配列番号10で表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが付加されたヌクレオチド配列、(3)配列番号10で表されるヌクレオチド配列に1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが挿入されたヌクレオチド配列、(4)配列番号10で表されるヌクレオチド配列中の1~6個(好ましくは1~3個、より好ましくは1または2個)のヌクレオチドが他のヌクレオチドで置換されたヌクレオチド配列、または(5)上記(1)~(4)の変異が組み合わされたヌクレオチド配列(この場合、変異したヌクレオチドの総和が、1~6個(好ましくは1~3個、より好ましくは1または2個))である。 As the nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10, one or more nucleotides in the nucleotide sequence represented by SEQ ID NO: 10 have been deleted, substituted, inserted or added A sequence, for example, (1) a nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the nucleotide sequence represented by SEQ ID NO: 10 have been deleted, (2) A nucleotide sequence obtained by adding 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides to the nucleotide sequence represented by SEQ ID NO: 10, and (3) a nucleotide represented by SEQ ID NO: 10. A nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides are inserted into the sequence, (4) a nucleotide represented by SEQ ID NO: 10 A nucleotide sequence in which 1 to 6 (preferably 1 to 3, more preferably 1 or 2) nucleotides in the sequence are substituted with other nucleotides, or (5) the mutations (1) to (4) above Are combined nucleotide sequences (in this case, the sum of the mutated nucleotides is 1 to 6 (preferably 1 to 3, more preferably 1 or 2)).
 配列番号10で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列は、好ましくは、配列番号10で表されるヌクレオチド配列に含まれる連続する15塩基以上(好ましくは17塩基以上、より好ましくは19塩基以上、最も好ましくは21塩基)の部分配列またはそれを含む配列である。 The nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10 is preferably 15 or more consecutive nucleotides (preferably 17 or more nucleotides or more, preferably included in the nucleotide sequence represented by SEQ ID NO: 10). A partial sequence of preferably 19 bases or more, most preferably 21 bases) or a sequence containing it.
 本発明の核酸の具体例としては、例えば、anti-miR-886-3pやmiR-886-3pに対するデコイRNAが挙げられる。
 本明細書において「anti-miR-886-3p」とは、miR-886-3pのマイクロRNA活性阻害分子の1形態であり、miR-886-3p配列に対して相補性を持つ核酸をいう。
 上記のanti-miR-151-3pと同様、本発明のanti-miR-886-3pは、各種分解酵素に対して抵抗性となるように修飾し、修飾体としてもよい。
 本明細書において「miR-886-3pに対するデコイRNA」とは、miR-886-3pに部分的に相補的な配列を持ち、かつmiR-886-3pと塩基対を形成後も切断、分解を受けにくい2次構造を持ったRNAをいう。上記のmiR-151-3pに対するデコイRNAと同様、標的マイクロRNAと完全相補的でない配列(例えば、完全相補的な配列の3’端から10番目と11番目の塩基の間に4塩基を挿入した配列等)を使用することにより、標的マイクロRNAを含むRISC複合体によるデコイRNAの切断を回避することができる。
Specific examples of the nucleic acid of the present invention include, for example, decoy RNA for anti-miR-886-3p and miR-886-3p.
As used herein, “anti-miR-886-3p” is a form of miR-886-3p microRNA activity-inhibiting molecule, and refers to a nucleic acid that is complementary to the miR-886-3p sequence.
Similar to the anti-miR-151-3p described above, the anti-miR-886-3p of the present invention may be modified so as to be resistant to various degrading enzymes.
As used herein, “decoy RNA for miR-886-3p” has a partially complementary sequence to miR-886-3p, and is cleaved and degraded even after base pairing with miR-886-3p. RNA with a secondary structure that is difficult to receive. Similar to the decoy RNA for miR-151-3p above, a sequence that is not completely complementary to the target microRNA (eg, 4 bases were inserted between the 10th and 11th bases from the 3 ′ end of the fully complementary sequence) Sequence) and the like, it is possible to avoid cleaving the decoy RNA by the RISC complex containing the target microRNA.
 また、本発明の別の具体例として、上記の「(a)miR-886-3pの相補鎖配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-886-3pの機能を阻害するヌクレオチドを含む核酸」を発現するように設計されたベクターを、挙げることができる。ここで「発現ベクター」としては、上記(B)と同様に、例えば、宿主細胞中で複製可能な遺伝情報を含み、自立的に増殖できるものであって、宿主細胞からの単離・精製が容易であり、宿主細胞中で機能可能なプロモーターを有し、検出可能なマーカーをもつ発現用ベクターに、上記(a)の核酸が導入されたものを挙げることができる。尚、プロモーターとして、U6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどのpolIII系プロモーターを使用する場合、anti-miR-886-3pやmiR-886-3pに対するデコイRNAについて前記したリンカー配列や切断回避のためのギャップ配列は、4個以上Uが連続しないように設計すべきである。 As another specific example of the present invention, “(a) a nucleotide sequence having 70% or more identity with the complementary strand sequence of miR-886-3p and inhibiting the function of miR-886-3p” Vectors designed to express a “nucleic acid comprising a nucleotide to do” can be mentioned. As used herein, the “expression vector” includes, for example, genetic information that can be replicated in a host cell and can be propagated autonomously, and can be isolated and purified from the host cell. Examples thereof include those in which the nucleic acid of (a) is introduced into an expression vector having a promoter that is easy and can function in a host cell and has a detectable marker. In addition, when using a polIII promoter such as U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter as a promoter, the above-mentioned decoy RNA for anti-miR-886-3p and miR-886-3p The linker sequence and the gap sequence to avoid cleavage should be designed so that 4 or more U are not consecutive.
 miR-886-3p阻害剤として、市販のものを利用することもできる。anti-miR-886-3pの市販品としてはAnti-miRTM miRNA inhibitor(Applied Biosystems社製)、miR-886-3pに対するデコイRNAの市販品としてはmiArrestTM miRNA inhibitors (カタログNo. HmiR-AN0813-SN-5, -10, -20 (合成オリゴ), HmiR-AN0813-AM01, 02, 03, 04 (発現ベクター)(いずれもGenecopoeia社製))が例示できる。 A commercially available miR-886-3p inhibitor can also be used. Anti-miR-886-3p is commercially available as Anti-miR TM miRNA inhibitor (Applied Biosystems), and miRrest TM miRNA inhibitors (catalog No. HmiR-AN0813- SN-5, -10, -20 (synthetic oligo), HmiR-AN0813-AM01, 02, 03, 04 (expression vector) (both manufactured by Genecopoeia)).
(E)SMPD3阻害剤
 SMPD3阻害剤は、SMPD3の発現を抑制する物質またはSMPD3の機能を抑制する物質であれば良く、その作用機序については限定されない。SMPD3は、エキソソームと呼ばれる膜小胞中のマイクロRNAの分泌を制御することが知られている (J Biol Chem. 2010 Jun 4;285(23):17442-52)。
 SMPD3の発現もしくは機能を抑制する物質は、腫瘍血管新生を抑制することによって、腫瘍の転移を抑制するので、腫瘍の治療に有用である。
(E) SMPD3 inhibitor The SMPD3 inhibitor may be any substance that suppresses the expression of SMPD3 or a substance that suppresses the function of SMPD3, and its action mechanism is not limited. SMPD3 is known to regulate the secretion of microRNA in membrane vesicles called exosomes (J Biol Chem. 2010 Jun 4; 285 (23): 17442-52).
A substance that suppresses the expression or function of SMPD3 is useful for tumor therapy because it suppresses tumor metastasis by suppressing tumor angiogenesis.
 SMPD3は、すでに公知の分子であり、中性スフィンゴミエリナーゼ2と呼ばれているものを意味する。SMPD3は、配列番号:12で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含むタンパク質である。本明細書において、タンパク質およびペプチドは、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)で記載される。
 具体的には、例えば、配列番号:12で表されるアミノ酸配列からなるヒトタンパク質(RefSeq No. NP_061137)、あるいは他の哺乳動物におけるそれらのオルソログ(例えば、マウス(RefSeq No. NP_067466)、アカゲザル(RefSeq No. XP_001091683)、イヌ(RefSeq No. XP_546863)、ラット(RefSeq No. NP_446057)、ウシ(RefSeq No. NP_001179292) 等)、さらにはそれらのスプライスバリアント、アレル変異体などがあげられる。
 SMPD3は、ヒトや他の温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、イヌ、ブタ、ヒツジ、ウシ、サルなど)の細胞(例えば、MCF7細胞、血管細胞、脳細胞)もしくはそれらの細胞が存在するあらゆる組織(例えば、乳腺組織、小肺動脈、脳)等から、自体公知のタンパク質分離精製技術により単離・精製されるものであってもよい。
SMPD3 is a known molecule and means a neutral sphingomyelinase 2. SMPD3 is a protein comprising the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 12. In the present specification, proteins and peptides are described with the N-terminus (amino terminus) at the left end and the C-terminus (carboxyl terminus) at the right end according to the convention of peptide designation.
Specifically, for example, a human protein consisting of the amino acid sequence represented by SEQ ID NO: 12 (RefSeq No. NP_061137), or an ortholog thereof (for example, mouse (RefSeq No. NP_067466), rhesus monkey ( RefSeq No. XP_001091683), dogs (RefSeq No. XP_546863), rats (RefSeq No. NP_446057), cows (RefSeq No. NP_001179292), etc.), and their splice variants and allelic variants.
SMPD3 is a human or other warm-blooded animal (eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.) cell (eg, MCF7 cell, vascular cell, brain cell) or those May be isolated and purified from any tissue (eg, mammary gland tissue, small pulmonary artery, brain) and the like by a known protein separation and purification technique.
 「配列番号:12で表されるアミノ酸配列と実質的に同一のアミノ酸配列」とは、
(a) 配列番号:12で表されるアミノ酸配列と約80%以上の相同性を有するアミノ酸配列;
(b) 配列番号:12で表されるアミノ酸配列において、1~50個のアミノ酸が置換および/または欠失および/または挿入および/または付加されたアミノ酸配列;
(c) 配列番号:12で表されるアミノ酸配列からなるヒトタンパク質の他の哺乳動物におけるオルソログのアミノ酸配列;または
(d) 配列番号:12で表されるアミノ酸配列からなるヒトタンパク質もしくは上記(c)のオルソログのスプライスバリアント、アレル変異体もしくは多型におけるアミノ酸配列を意味する。
“Amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 12”
(a) an amino acid sequence having about 80% or more homology with the amino acid sequence represented by SEQ ID NO: 12;
(b) in the amino acid sequence represented by SEQ ID NO: 12, an amino acid sequence in which 1 to 50 amino acids are substituted and / or deleted and / or inserted and / or added;
(c) the amino acid sequence of an ortholog in another mammal of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 12; or
(d) The amino acid sequence of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 12 or the orthologue splice variant, allelic variant or polymorphism of (c) above.
 ここで「相同性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのアミノ酸配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮し得るものである)における、オーバーラップする全アミノ酸残基に対する同一アミノ酸および類似アミノ酸残基の割合(%)を意味する。「類似アミノ酸」とは物理化学的性質において類似したアミノ酸を意味し、例えば、芳香族アミノ酸(Phe、Trp、Tyr)、脂肪族アミノ酸(Ala、Leu、Ile、Val)、極性アミノ酸(Gln、Asn)、塩基性アミノ酸(Lys、Arg、His)、酸性アミノ酸(Glu、Asp)、水酸基を有するアミノ酸(Ser、Thr)、側鎖の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)などの同じグループに分類されるアミノ酸が挙げられる。このような類似アミノ酸による置換はタンパク質の表現型に変化をもたらさない(即ち、保存的アミノ酸置換である)ことが予測される。保存的アミノ酸置換の具体例は当該技術分野で周知であり、種々の文献に記載されている(例えば、Bowieら,Science, 247:1306-1310 (1990)を参照)。 As used herein, “homology” refers to an optimal alignment when two amino acid sequences are aligned using a mathematical algorithm known in the art (preferably the algorithm uses a sequence of sequences for optimal alignment). The percentage of identical and similar amino acid residues relative to all overlapping amino acid residues in which one or both of the gaps can be considered). "Similar amino acids" means amino acids that are similar in physicochemical properties, such as aromatic amino acids (Phe, Trp, Tyr), aliphatic amino acids (Ala, Leu, Ile, Val), polar amino acids (Gln, Asn) ), Basic amino acids (Lys, Arg, His), acidic amino acids (Glu, Asp), amino acids with hydroxyl groups (Ser, Thr), amino acids with small side chains (Gly, Ala, Ser, Thr, Met), etc. Examples include amino acids classified into groups. It is expected that substitution with such similar amino acids will not change the phenotype of the protein (ie, is a conservative amino acid substitution). Specific examples of conservative amino acid substitutions are well known in the art and are described in various literature (see, for example, Bowie et al., Science, 247: 1306-1310 (1990)).
 本明細書におけるアミノ酸配列の相同性は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて計算することができる。アミノ酸配列の相同性を決定するための他のアルゴリズムとしては、例えば、Karlinら, Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993)に記載のアルゴリズム[該アルゴリズムはNBLASTおよびXBLASTプログラム(version 2.0)に組み込まれている(Altschulら, Nucleic Acids Res., 25: 3389-3402 (1997))]、Needlemanら, J. Mol. Biol., 48: 444-453 (1970)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のGAPプログラムに組み込まれている]、MyersおよびMiller, CABIOS, 4: 11-17 (1988)に記載のアルゴリズム[該アルゴリズムはCGC配列アラインメントソフトウェアパッケージの一部であるALIGNプログラム(version 2.0)に組み込まれている]、Pearsonら, Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のFASTAプログラムに組み込まれている]等が挙げられ、それらも同様に好ましく用いられ得る。 The homology of the amino acid sequences in this specification is determined using the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (expected value = 10; allow gap; matrix = BLOSUM62; filtering) = OFF). Other algorithms for determining amino acid sequence homology include, for example, the algorithm described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) [the algorithms include NBLAST and XBLAST] Embedded in the program (version 2.0) (Altschul et al., Nucleic Acids Res., 25: 3389-3402 1997 (1997))], Needleman et al., J. Mol. Biol., 48: 444-453 (1970) [The algorithm is incorporated into the GAP program in the GCG software package], Myers and Miller, CABIOS, 4: 11-17 (1988) [The algorithm is part of the CGC sequence alignment software package Embedded in the ALIGN program (version 2.0)], Pearson et al., C Proc. Natl. Acad. Sci. USA, 85: 2444-2448 1988 (1988) [the algorithm is a GCG software package. Embedded in the FASTA program in the cage] and the like, and these can be preferably used as well.
 上記(a)において、より好ましくは、「配列番号:12で表されるアミノ酸配列と実質的に同一のアミノ酸配列」とは、配列番号:12で表されるアミノ酸配列と、約80%以上、好ましくは約90%以上、より好ましくは約95%以上、いっそう好ましくは約97%以上、特に好ましくは約98%以上、最も好ましくは約99%以上の同一性を有するアミノ酸配列である。 In the above (a), more preferably, the “amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 12” is about 80% or more of the amino acid sequence represented by SEQ ID NO: 12; The amino acid sequence preferably has about 90% or more, more preferably about 95% or more, still more preferably about 97% or more, particularly preferably about 98% or more, and most preferably about 99% or more.
 「配列番号:12で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含むタンパク質」は、配列番号:12で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含み、かつ配列番号:12で表されるアミノ酸配列からなるタンパク質と実質的に同質の活性を有するタンパク質である。
 ここで「活性」とは、スフィンゴミエリンのホスホジエステル結合を加水分解する活性をいう。また、「実質的に同質」とは、例えば生理学的に、あるいは薬理学的にみて、その性質が定性的に同じであることを意味する。
 スフィンゴミエリン加水分解活性の測定は、自体公知の方法に準じて、スフィンゴミエリンを加水分解することで産生されるホスホリルコリン量を測定し、比較することによって行うことができる。例えば、市販のSphingomyelinase Assay kit(Cayman)を用いて測定することが出来る。
“A protein comprising the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 12” includes an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 12 It is a protein having substantially the same activity as the protein consisting of the amino acid sequence represented by No. 12
Here, “activity” refers to the activity of hydrolyzing the phosphodiester bond of sphingomyelin. Further, “substantially the same quality” means that the properties are qualitatively the same, for example, physiologically or pharmacologically.
The sphingomyelin hydrolyzing activity can be measured by measuring and comparing the amount of phosphorylcholine produced by hydrolyzing sphingomyelin according to a method known per se. For example, it can be measured using a commercially available Sphingomyelinase Assay kit (Cayman).
 また、本発明におけるSMPD3として、上記(b)に示すとおり、例えば、(i)配列番号:12で表されるアミノ酸配列中の1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が欠失したアミノ酸配列、(ii)配列番号:12で表されるアミノ酸配列に1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が付加したアミノ酸配列、(iii)配列番号:12で表されるアミノ酸配列に1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が挿入されたアミノ酸配列、(iv)配列番号:12で表されるアミノ酸配列中の1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または(v)それらを組み合わせたアミノ酸配列を含有するタンパク質などのいわゆるムテインも含まれる。
 上記のようにアミノ酸配列が挿入、付加、欠失または置換されている場合、その挿入、付加、欠失または置換の位置は、スフィンゴミエリン加水分解活性が保持される限り、特に限定されない。
In addition, as SMPD3 in the present invention, as shown in (b) above, for example, (i) 1 to 50, preferably 1 to 30, more preferably 1 to 1 in the amino acid sequence represented by SEQ ID NO: 12 Amino acid sequence in which 10 amino acids, more preferably 1 to several (5, 4, 3 or 2) amino acids have been deleted, (ii) 1 to 50 amino acid sequences represented by SEQ ID NO: 12, preferably 1 To 30 amino acids, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acids, (iii) the amino acid sequence represented by SEQ ID NO: 12 An amino acid sequence in which 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acids are inserted, (iv) SEQ ID NO: : 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably in the amino acid sequence represented by 12 Also included are so-called muteins such as proteins containing amino acid sequences in which one to several (5, 4, 3, or 2) amino acids are substituted with other amino acids, or (v) amino acid sequences combining them.
When the amino acid sequence is inserted, added, deleted or substituted as described above, the position of the insertion, addition, deletion or substitution is not particularly limited as long as the sphingomyelin hydrolysis activity is maintained.
 本発明において「SMPD3の発現を抑制する物質」とは、SMPD3をコードするSMPD3遺伝子の転写レベル、転写後調節のレベル、SMPD3への翻訳レベル、翻訳後修飾のレベル等のいかなる段階で作用するものであってもよい。従って、SMPD3の発現を抑制する物質としては、例えば、SMPD3遺伝子の転写を阻害する物質(例、アンチジーン)、初期転写産物からmRNAへのプロセッシングを阻害する物質、mRNAの細胞質への輸送を阻害する物質、mRNAからSMPD3への翻訳を阻害するか(例、アンチセンス核酸、miRNA)あるいはmRNAを分解する(例、siRNA、リボザイム、miRNA)物質、初期翻訳産物の翻訳後修飾を阻害する物質などが含まれる。いずれの段階で作用するものであっても好ましく用いることができるが、mRNAに相補的に結合してSMPD3への翻訳を阻害するかあるいはmRNAを分解する物質が好ましい。 In the present invention, the “substance that suppresses the expression of SMPD3” acts at any stage such as the transcription level of SMPD3 gene encoding SMPD3, the level of post-transcriptional regulation, the level of translation into SMPD3, the level of post-translational modification, etc. It may be. Therefore, examples of substances that suppress SMPD3 expression include substances that inhibit transcription of the SMPD3 gene (eg, antigenes), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm. Substance that inhibits translation from mRNA to SMPD3 (eg, antisense nucleic acid, miRNA) or degrades mRNA (eg, siRNA, ribozyme, miRNA), substance that inhibits post-translational modification of the initial translation product, etc. Is included. Any substance that acts at any stage can be preferably used, but a substance that binds complementarily to mRNA and inhibits translation into SMPD3 or decomposes mRNA is preferable.
 SMPD3遺伝子のmRNAからSMPD3への翻訳を特異的に阻害する(あるいはmRNAを分解する)物質として、好ましくは、これらのmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸が挙げられる。
 SMPD3遺伝子のmRNAの塩基配列と実質的に相補的な塩基配列とは、哺乳動物の生理的条件下において、該mRNAの標的配列に結合してその翻訳を阻害し得る(あるいは該標的配列を切断する)程度の相補性を有する塩基配列を意味し、具体的には、例えば、該mRNAの塩基配列と完全相補的な塩基配列(すなわち、mRNAの相補鎖の塩基配列)と、オーバーラップする領域に関して、約80%以上、好ましくは約90%以上、より好ましくは約95%以上、特に好ましくは約97%以上の相同性を有する塩基配列である。
 本発明における「塩基配列の相同性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。
As a substance that specifically inhibits translation of SMPD3 gene from mRNA to SMPD3 (or degrades mRNA), preferably a base sequence complementary to or substantially complementary to the base sequence of these mRNAs or a part thereof The nucleic acid containing is mentioned.
The base sequence substantially complementary to the base sequence of the mRNA of the SMPD3 gene can bind to the target sequence of the mRNA and inhibit its translation under physiological conditions in mammals (or cleave the target sequence). A base sequence having a degree of complementarity, specifically, for example, a region that overlaps with a base sequence that is completely complementary to the base sequence of the mRNA (that is, a base sequence of the complementary strand of the mRNA). The nucleotide sequence having a homology of about 80% or more, preferably about 90% or more, more preferably about 95% or more, and particularly preferably about 97% or more.
The “base sequence homology” in the present invention uses the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (expected value = 10; allow gaps; filtering = ON; It can be calculated by match score = 1; mismatch score = -3).
 より具体的には、SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列としては、(a)配列番号:11で表される塩基配列と相補的もしくは実質的に相補的な塩基配列、または(b)「配列番号:11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、配列番号:12で表されるアミノ酸配列からなるタンパク質と実質的に同質の活性を有するタンパク質をコードする配列」と、相補的もしくは実質的に相補的な塩基配列が挙げられる。ここで「実質的に同質の活性」とは前記と同義である。 More specifically, the base sequence complementary or substantially complementary to the base sequence of the mRNA of the SMPD3 gene is (a) complementary or substantially complementary to the base sequence represented by SEQ ID NO: 11. Or (b) a base sequence that hybridizes with a complementary strand of the base sequence represented by SEQ ID NO: 11 under stringent conditions, comprising the amino acid sequence represented by SEQ ID NO: 12. Examples of the sequence that encodes a protein having substantially the same quality of activity as a protein and complementary or substantially complementary base sequences. Here, “substantially the same quality of activity” has the same meaning as described above.
 ストリンジェントな条件とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6, 1999に記載される条件、例えば、6×SSC(sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられるが、当業者であれば、これと同等のストリンジェンシーを与えるハイブリダイゼーションの条件を適宜選択することができる。 The stringent conditions are, for example, the conditions described in Current Protocols in Molecular Biology, John Wiley and Sons, 6.3.1-6.3.6, 1999, for example, 6 × SSC (sodium chloride / sodium citrate) / 45 ° C. Hybridization, followed by one or more washes at 0.2 × SSC / 0.1% SDS / 50 to 65 ° C., those skilled in the art will know the conditions for hybridization that will give the same stringency. It can be selected appropriately.
 SMPD3遺伝子のmRNAの好ましい例としては、配列番号:11で表される塩基配列を含むヒトSMPD3遺伝子(RefSeq No. NM_018667)、あるいは他の哺乳動物におけるそれらのオルソログ(例えば、マウス(RefSeq No. NM_021491)、アカゲザル(RefSeq No. XM_001091683)、イヌ(RefSeq No. XM_546863)、ラット(RefSeq No. NM_053605)、ウシ(RefSeq No. NM_001192363) 等)、さらにはそれらのスプライスバリアント、アレル変異体、多型などのmRNAがあげられる。 As a preferred example of mRNA of the SMPD3 gene, a human SMPD3 gene (RefSeq No. NM_018667) containing the nucleotide sequence represented by SEQ ID NO: 11 or an ortholog thereof (for example, mouse (RefSeq No. NM_021491) in other mammals. ), Rhesus monkeys (RefSeq No. XM_001091683), dogs (RefSeq No. XM_546863), rats (RefSeq No. NM_053605), cattle (RefSeq No. NM_001192363)), and their splice variants, allelic variants, polymorphisms, etc. Of mRNA.
 「SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列の一部」とは、SMPD3遺伝子のmRNAに特異的に結合することができ、且つ該mRNAからのタンパク質の翻訳を阻害(あるいは該mRNAを分解)し得るものであれば、その長さや位置に特に制限はないが、配列特異性の面から、標的配列に相補的もしくは実質的に相補的な部分を少なくとも10塩基以上、好ましくは約15塩基以上、より好ましくは約20塩基以上含むものである。 “Part of the base sequence complementary to or substantially complementary to the base sequence of the mRNA of the SMPD3 gene” means that it can specifically bind to the mRNA of the SMPD3 gene and translates the protein from the mRNA. The length and the position are not particularly limited as long as they can inhibit (or degrade the mRNA), but at least 10 bases that are complementary or substantially complementary to the target sequence from the viewpoint of sequence specificity. As mentioned above, it contains about 15 bases or more, more preferably about 20 bases or more.
 具体的には、SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸として、以下の(a)~(c)のいずれかのものが好ましく例示される。
(a) SMPD3遺伝子のmRNAに対するアンチセンス核酸
(b) SMPD3遺伝子のmRNAに対するリボザイム核酸
(c) SMPD3遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体
Specifically, the nucleic acid containing any one of the following (a) to (c) is preferably exemplified as a nucleic acid complementary to or substantially complementary to the nucleotide sequence of the mRNA of the SMPD3 gene or a part thereof: Is done.
(a) Antisense nucleic acid against mRNA of SMPD3 gene
(b) Ribozyme nucleic acid for mRNA of SMPD3 gene
(c) a nucleic acid having RNAi activity against mRNA of the SMPD3 gene or a precursor thereof
(a) SMPD3遺伝子のmRNAに対するアンチセンス核酸
 本発明における「SMPD3遺伝子のmRNAに対するアンチセンス核酸」とは、該mRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸であって、標的mRNAと特異的かつ安定した二重鎖を形成して結合することにより、タンパク質合成を抑制する機能を有するものである。
 アンチセンス核酸は、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリンまたはピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、非ヌクレオチド骨格を有するその他のポリマー(例えば、市販のタンパク質核酸および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、DNA:RNAハイブリッドであってもよく、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド)、公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結合(例、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例えばタンパク質(例、ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど)や糖(例、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例、アクリジン、ソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。このような修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、またはエーテル、アミンなどの官能基に変換されていてよい。
(a) Antisense nucleic acid against SMPD3 gene mRNA The “antisense nucleic acid against SMPD3 gene mRNA” in the present invention includes a base sequence complementary to or substantially complementary to the base sequence of the mRNA or a part thereof. It is a nucleic acid and has a function of suppressing protein synthesis by forming a specific and stable duplex with a target mRNA.
Antisense nucleic acids are polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, other types of polynucleotides that are N-glycosides of purine or pyrimidine bases, Other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers) or other polymers containing special linkages, provided that the polymer is a base such as found in DNA or RNA And a nucleotide having a configuration that allows attachment of a base). They may be double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, unmodified polynucleotides (or unmodified oligonucleotides), known modifications Additions, such as those with labels known in the art, capped, methylated, one or more natural nucleotides replaced with analogs, intramolecular nucleotide modifications Such as those having uncharged bonds (eg methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged bonds or sulfur-containing bonds (eg phosphorothioates, phosphorodithioates, etc.) Things such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-rigid Having a side chain group such as sugar (eg, monosaccharide), having an intercurrent compound (eg, acridine, psoralen), chelate compound (eg, metal, having radioactivity) It may be one containing a metal, boron, oxidizing metal, etc., one containing an alkylating agent, or one having a modified bond (for example, α-anomeric nucleic acid etc.). Here, the “nucleoside”, “nucleotide” and “nucleic acid” may include not only purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, for example, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted.
 上記の通り、アンチセンス核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。アンチセンス核酸がDNAの場合、標的RNAとアンチセンスDNAとによって形成されるRNA:DNAハイブリッドは、内在性RNase Hに認識されて標的RNAの選択的な分解を引き起こすことができる。したがって、RNase Hによる分解を指向するアンチセンスDNAの場合、標的配列は、mRNA中の配列だけでなく、SMPD3遺伝子の初期翻訳産物におけるイントロン領域の配列であってもよい。イントロン配列は、ゲノム配列と、SMPD3遺伝子のcDNA塩基配列とをBLAST、FASTA等のホモロジー検索プログラムを用いて比較することにより、決定することができる。 As described above, the antisense nucleic acid may be DNA or RNA, or may be a DNA / RNA chimera. When the antisense nucleic acid is DNA, the RNA: DNA hybrid formed by the target RNA and the antisense DNA can be recognized by endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the SMPD3 gene. The intron sequence can be determined by comparing the genomic sequence with the cDNA base sequence of the SMPD3 gene using a homology search program such as BLAST or FASTA.
 本発明のアンチセンス核酸の標的領域は、該アンチセンス核酸がハイブリダイズすることにより、結果としてSMPD3への翻訳が阻害されるものであればその長さに特に制限はなく、SMPD3をコードするmRNAの全配列であっても部分配列であってもよく、短いもので約10塩基程度、長いものでmRNAもしくは初期転写産物の全配列が挙げられる。合成の容易さや抗原性、細胞内移行性の問題等を考慮すれば、約10~約40塩基、特に約15~約30塩基からなるオリゴヌクレオチドが好ましいが、それに限定されない。具体的には、SMPD3遺伝子の5’端ヘアピンループ、5’端6-ベースペア・リピート、5’端非翻訳領域、翻訳開始コドン、タンパク質コード領域、ORF翻訳終止コドン、3’端非翻訳領域、3’端パリンドローム領域または3’端ヘアピンループなどを、アンチセンス核酸の好ましい標的領域として選択しうるが、それらに限定されない。 The length of the target region of the antisense nucleic acid of the present invention is not particularly limited as long as the antisense nucleic acid hybridizes, and as a result, the translation into SMPD3 is inhibited. MRNA encoding SMPD3 The short sequence may be about 10 bases, and the long sequence may be the entire mRNA or initial transcription product sequence. In view of easiness of synthesis, antigenicity, intracellular migration, etc., an oligonucleotide consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases is preferred, but is not limited thereto. Specifically, 5 'end hairpin loop of SMPD3 gene, 5' end 6-base pair repeat, 5 'end untranslated region, translation start codon, protein coding region, ORF translation stop codon, 3' end untranslated region , 3 ′ end palindromic region or 3 ′ end hairpin loop, etc. may be selected as a preferred target region of the antisense nucleic acid, but is not limited thereto.
 さらに、本発明のアンチセンス核酸は、SMPD3遺伝子のmRNAや初期転写産物とハイブリダイズしてタンパク質への翻訳を阻害するだけでなく、二本鎖DNAであるこれらの遺伝子と結合して三重鎖(トリプレックス)を形成し、RNAへの転写を阻害し得るもの(アンチジーン)であってもよい。 Furthermore, the antisense nucleic acid of the present invention not only hybridizes with the mRNA of the SMPD3 gene and the initial transcription product to inhibit translation into protein, but also binds to these genes that are double-stranded DNA to form triple strands ( A triplex) that can inhibit transcription to RNA (antigene).
 アンチセンス核酸を構成するヌクレオチド分子は、天然型のDNAもしくはRNAでもよいが、安定性(化学的および/または対酵素)や比活性(RNAとの親和性)を向上させるために、種々の化学修飾を含むことができる。例えば、ヌクレアーゼなどの加水分解酵素による分解を防ぐために、アンチセンス核酸を構成する各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖(リボース)の2’位の水酸基を、OR(R=CH3(2’-O-Me)、F(2'-F)、CH2CH2OCH3(2’-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。 The nucleotide molecule constituting the antisense nucleic acid may be natural DNA or RNA, but various chemicals may be used to improve stability (chemical and / or enzyme) and specific activity (affinity with RNA). Modifications can be included. For example, in order to prevent degradation by a hydrolase such as nuclease, the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be substituted with a phosphate residue. In addition, the 2′-position hydroxyl group of each sugar (ribose) is changed to OR (R═CH 3 (2′-O-Me), F (2′-F), CH 2 CH 2 OCH 3 (2′- O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.). Furthermore, the base moiety (pyrimidine, purine) may be chemically modified, for example, introduction of a methyl group or a cationic functional group at the 5-position of the pyrimidine base, or substitution of the carbonyl group at the 2-position with thiocarbonyl. Is mentioned.
 核酸の糖部のコンフォーメーションはC2’-endo(S型)とC3’-endo(N型)の2つが支配的であり、一本鎖核酸ではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2’酸素と4’炭素をメチレン残基を介して架橋することにより、糖部のコンフォーメーションをN型に固定した核酸誘導体であるLNA(Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotides, 14, 130-46, 2004)や2’酸素と4’炭素をエチレン残基を介して架橋することにより、糖部のコンフォーメーションをN型に固定した核酸誘導体であるENA(Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003)もまた、好ましく用いられ得る。 The conformation of the sugar part of nucleic acids is dominated by C2'-endo (S-type) and C3'-endo (N-type). In single-stranded nucleic acids, they exist as an equilibrium between them, but double-stranded Is fixed to the N type. Therefore, in order to give strong binding ability to the target RNA, it is a nucleic acid derivative in which the 2 'oxygen and 4' carbons are cross-linked via a methylene residue to fix the sugar conformation to the N type. LNA (Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, JS et al., Oligonucleotides, 14, 130-46, 2004) and 2 'oxygen and 4' carbon with ethylene residues ENA (Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003), which is a nucleic acid derivative in which the conformation of the sugar moiety is fixed to the N-type by crosslinking via the Can be used.
 本発明のアンチセンスオリゴヌクレオチドは、SMPD3遺伝子のcDNA配列もしくはゲノミックDNA配列に基づいてmRNAもしくは初期転写産物の標的配列を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。また、上記した各種修飾を含むアンチセンス核酸も、いずれも自体公知の手法により、化学的に合成することができる。 The antisense oligonucleotide of the present invention determines the target sequence of mRNA or initial transcript based on the cDNA sequence or genomic DNA sequence of SMPD3 gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman) Etc.) can be prepared by synthesizing a complementary sequence thereto. In addition, any of the above-described antisense nucleic acids containing various modifications can be chemically synthesized by a method known per se.
(b) SMPD3遺伝子のmRNAに対するリボザイム核酸
 SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸の他の好ましい例としては、該mRNAをコード領域の内部で特異的に切断し得るリボザイム核酸が挙げられる。「リボザイム」とは、狭義には、核酸を切断する酵素活性を有するRNAをいうが、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイム核酸として最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイム核酸は、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。SMPD3遺伝子のmRNAが自身で二本鎖構造をとる場合には、RNAヘリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる[Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる[Nucleic Acids Res., 29(13): 2780-2788 (2001)]。
(b) Ribozyme nucleic acid for mRNA of SMPD3 gene As another preferred example of a nucleic acid comprising a base sequence complementary to or substantially complementary to the base sequence of mRNA of SMPD3 gene or a part thereof, the mRNA is used as a coding region. Examples include ribozyme nucleic acids that can be cleaved specifically inside. “Ribozyme” refers to RNA having an enzyme activity that cleaves nucleic acids in a narrow sense, but in this specification, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity. The most versatile ribozyme nucleic acids include self-splicing RNAs found in infectious RNAs such as viroids and virusoids, and hammerhead and hairpin types are known. The hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends (about 10 bases in total) adjacent to the part having the hammerhead structure are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA. This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate. When the mRNA of the SMPD3 gene has a double-stranded structure itself, the target sequence is made single-stranded by using a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase. [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)]. Furthermore, when ribozymes are used in the form of expression vectors containing the DNA that encodes them, they should be hybrid ribozymes in which tRNA-modified sequences are further linked in order to promote the transfer of transcripts to the cytoplasm. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
(c) SMPD3遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体
 本明細書においては、SMPD3遺伝子のmRNAに相補的なオリゴRNAとその相補鎖とからなる二本鎖RNA、いわゆるsiRNAもまた、SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸に包含されるものとして定義される。短い二本鎖RNAを細胞内に導入するとそのRNAに相補的なmRNAが分解される、いわゆるRNA干渉(RNAi)と呼ばれる現象は、以前から線虫、昆虫、植物等で知られていたが、この現象が動物細胞でも広く起こることが確認されて以来[Nature, 411(6836): 494-498 (2001)]、リボザイムの代替技術として汎用されている。
(c) Nucleic acid having RNAi activity against mRNA of SMPD3 gene or a precursor thereof In this specification, double-stranded RNA consisting of oligo RNA complementary to mRNA of SMPD3 gene and its complementary strand, so-called siRNA is also included. Further, it is defined as being included in a nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of mRNA of SMPD3 gene or a part thereof. When a short double-stranded RNA is introduced into a cell, the mRNA complementary to that RNA is degraded. So-called RNA interference (RNAi) has long been known in nematodes, insects, plants, etc. Since this phenomenon has been confirmed to occur widely in animal cells [Nature, 411 (6836): 494-498 (2001)], it has been widely used as an alternative to ribozyme.
 siRNAは、標的遺伝子のcDNA配列情報に基づいて、例えば、Elbashirら(Genes Dev., 15, 188-200 (2001))の提唱する規則に従って設計することができる。siRNAの標的配列としては、例えばAA+(N)19、AA+(N)21もしくはNA+(N)21(Nは任意の塩基)等が挙げられるが、それらに限定されない。標的配列の位置も特に制限されるわけではない。選択された標的配列の候補群について、標的以外のmRNAにおいて16-17塩基の連続した配列に相同性がないかどうかを、BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)等のホモロジー検索ソフトを用いて調べ、選択した標的配列の特異性を確認する。例えば、AA+(N)19、AA+(N)21もしくはNA+(N)21(Nは任意の塩基)を標的配列とする場合、特異性の確認された標的配列について、AA(もしくはNA)以降の19-21塩基にTTもしくはUUの3’末端オーバーハングを有するセンス鎖と、該19-21塩基に相補的な配列及びTTもしくはUUの3’末端オーバーハングを有するアンチセンス鎖とからなる二本鎖RNAをsiRNAとして設計してもよい。また、siRNAの前駆体であるショートヘアピンRNA(shRNA)は、ループ構造を形成しうる任意のリンカー配列(例えば、5-25塩基程度)を適宜選択し、上記センス鎖とアンチセンス鎖とを該リンカー配列を介して連結することにより設計することができる。 SiRNA can be designed according to the rules proposed by Elbashir et al. (Genes Dev., 15, 188-200 (2001)) based on the cDNA sequence information of the target gene. Examples of siRNA target sequences include, but are not limited to, AA + (N) 19, AA + (N) 21 or NA + (N) 21 (N is an arbitrary base). The position of the target sequence is not particularly limited. For the selected target sequence candidate group, whether or not there is homology in the 16-17 base sequence in the non-target mRNA is determined by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/ ) And the like, and the specificity of the selected target sequence is confirmed. For example, when AA + (N) 19, AA + (N) 21 or NA + (N) 21 (N is an arbitrary base) is used as the target sequence, the target sequence whose specificity has been confirmed is AA (or NA) or later. Two strands consisting of a sense strand having a TT or UU 3 'end overhang at 19-21 bases and an antisense strand having a sequence complementary to the 19-21 base and a TT or UU 3' end overhang Strand RNA may be designed as siRNA. In addition, for short hairpin RNA (shRNA) which is a precursor of siRNA, an arbitrary linker sequence (for example, about 5-25 bases) capable of forming a loop structure is appropriately selected, and the sense strand and the antisense strand are combined with each other. It can be designed by linking via a linker sequence.
 siRNA及び/又はshRNAの配列は、種々のwebサイト上に無料で提供される検索ソフトを用いて検索が可能である。このようなサイトとしては、例えば、Ambionが提供するsiRNA Target Finder(http://www.ambion.com/jp/techlib/misc/siRNA_finder.html)及びpSilencerTM Expression Vector用インサートデザインツール(http://www.ambion.com/jp/techlib/misc/psilencer_converter.html)、RNAi Codexが提供するGeneSeer(http://codex.cshl.edu/scripts/newsearchhairpin.cgi)が挙げられるが、これらに限定されない。 The siRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites. Examples of such sites include siRNAsiTarget Finder (http://www.ambion.com/jp/techlib/misc/siRNA_finder.html) and pSilencerTM Expression Vector insert design tools (http: // www.ambion.com/techlib/misc/psilencer_converter.html), GeneSeer (http://codex.cshl.edu/scripts/newsearchhairpin.cgi) provided by RNAi Codex, but not limited to these.
 siRNAを構成するリボヌクレオシド分子もまた、安定性、比活性などを向上させるために、上記のアンチセンス核酸の場合と同様の修飾を受けていてもよい。 The ribonucleoside molecule constituting siRNA may also be modified in the same manner as in the above-described antisense nucleic acid in order to improve stability, specific activity and the like.
 siRNAは、mRNA上の標的配列のセンス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせることにより調製することができる。また、siRNAの前駆体となるシングルヘアピンRNA(shRNA)を合成し、これをダイサー(dicer)を用いて切断することにより調製することもできる。 The siRNA is synthesized by synthesizing a sense strand and an antisense strand of a target sequence on mRNA with a DNA / RNA automatic synthesizer, denatured at about 90 to about 95 ° C. for about 1 minute in an appropriate annealing buffer, It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. Alternatively, it can be prepared by synthesizing a single hairpin RNA (shRNA) serving as a siRNA precursor and cleaving it with a dicer.
 本明細書においては、生体内でSMPD3遺伝子のmRNAに対するsiRNAを生成し得るようにデザインされた核酸もまた、SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸に包含されるものとして定義される。そのような核酸としては、上記したshRNAやsiRNAを発現するように構築された発現ベクターなどが挙げられる。shRNAは、mRNA上の標的配列のセンス鎖およびアンチセンス鎖を適当なループ構造を形成しうる長さ(例えば5~25塩基程度)のスペーサー配列を間に挿入して連結した塩基配列を含むオリゴRNAをデザインし、これをDNA/RNA自動合成機で合成することにより調製することができる。shRNAを発現するベクターには、タンデムタイプとステムループ(ヘアピン)タイプとがある。前者はsiRNAのセンス鎖の発現カセットとアンチセンス鎖の発現カセットをタンデムに連結したもので、細胞内で各鎖が発現してアニーリングすることにより二本鎖のsiRNA(dsRNA)を形成するというものである。一方、後者はshRNAの発現カセットをベクターに挿入したもので、細胞内でshRNAが発現しdicerによるプロセシングを受けてdsRNAを形成するというものである。プロモーターとしては、polII系プロモーター(例えば、CMV前初期プロモーター)を使用することもできるが、短いRNAの転写を正確に行わせるために、polIII系プロモーターを使用するのが一般的である。polIII系プロモーターとしては、マウスおよびヒトのU6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどが挙げられる。また、転写終結シグナルとして4個以上Tが連続した配列が用いられる。
 このようにして構築したsiRNAもしくはshRNA発現カセットを、次いでプラスミドベクターやウイルスベクターに挿入する。このようなベクターとしては、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクターや、動物細胞発現プラスミドなどが用いられる。
In the present specification, a nucleic acid designed to generate an siRNA against the mRNA of the SMPD3 gene in vivo is also a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the mRNA of the SMPD3 gene. Defined as encompassed by a nucleic acid containing a moiety. Examples of such nucleic acids include expression vectors constructed so as to express the above-mentioned shRNA and siRNA. shRNA is an oligo containing a base sequence in which the sense strand and the antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence (for example, about 5 to 25 bases) long enough to form an appropriate loop structure. It can be prepared by designing RNA and synthesizing it with an automatic DNA / RNA synthesizer. Vectors expressing shRNA include tandem type and stem loop (hairpin) type. In the former, siRNA sense and antisense strand expression cassettes are linked in tandem, and each strand is expressed and annealed in the cell to form a double-stranded siRNA (dsRNA). It is. On the other hand, the latter is one in which an shRNA expression cassette is inserted into a vector, in which shRNA is expressed in cells and processed by dicer to form dsRNA. As a promoter, a pol II promoter (for example, a CMV immediate early promoter) can be used, but in order to perform transcription of a short RNA accurately, a pol III promoter is generally used. Examples of the polIII promoter include mouse and human U6-snRNA promoter, human H1-RNase P RNA promoter, human valine-tRNA promoter, and the like. Further, a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
The siRNA or shRNA expression cassette thus constructed is then inserted into a plasmid vector or viral vector. Examples of such vectors include retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors, animal cell expression plasmids, and the like.
 SMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸は、リポソーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療に適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例、ホスホリピド、コレステロールなど)などの疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3’端または5’端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3’端または5’端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。 Nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of mRNA of the SMPD3 gene or a part thereof is provided in a special form such as a liposome or a microsphere, applied to gene therapy, It can be given in an added form. In this way, the additional form includes polycationic substances such as polylysine that acts to neutralize the charge of the phosphate group skeleton, lipids that enhance interaction with cell membranes and increase nucleic acid uptake ( Examples include hydrophobic ones such as phospholipid and cholesterol. Preferred lipids for addition include cholesterol and derivatives thereof (eg, cholesteryl chloroformate, cholic acid, etc.). These can be attached to the 3 'or 5' end of nucleic acids and can be attached via bases, sugars, intramolecular nucleoside linkages. Examples of the other group include a cap group specifically arranged at the 3 'end or 5' end of a nucleic acid, which prevents degradation by nucleases such as exonuclease and RNase. Such capping groups include, but are not limited to, hydroxyl protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
 これらの核酸のSMPD3発現抑制活性は、SMPD3遺伝子を導入した形質転換体、生体内や生体外のSMPD3遺伝子発現系、または生体内や生体外のSMPD3翻訳系を用いて調べることができる。 The SMPD3 expression-suppressing activity of these nucleic acids can be examined using a transformant introduced with an SMPD3 gene, an SMPD3 gene expression system in vivo or in vitro, or an SMPD3 translation system in vivo or in vitro.
 本発明におけるSMPD3の発現を抑制する物質は、上記のようなSMPD3遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列またはその一部を含む核酸に限定されず、SMPD3の産生を直接的または間接的に阻害する限り、低分子化合物などの他の物質であってもよい。そのような物質は、例えば、後述する本発明のスクリーニング方法により取得することができる。 The substance that suppresses the expression of SMPD3 in the present invention is not limited to a nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of mRNA of the SMPD3 gene as described above or a part thereof, and SMPD3 production Other substances such as low molecular weight compounds may be used as long as they are directly or indirectly inhibited. Such a substance can be obtained, for example, by the screening method of the present invention described later.
 本発明において「SMPD3の機能を抑制する物質」とは、いったん機能的に産生されたSMPD3が、血管形成を促進するのを抑制する、マイクロRNAの分泌を抑制する、あるいは腫瘍の転移を抑制する限りいかなるものでもよい。SMPD3の機能を抑制するか否かについては、実施例に記載の方法などの公知の方法で確認することができる。SMPD3の機能を抑制する物質としては、例えば、SMPD3に結合して腫瘍の血管形成を抑制する物質、GW4869(3,3'-(1,4-Phenylene)bis[N-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]-2-propenamide] )などのスフィンゴミエリン加水分解を阻害する物質を挙げることができる。 In the present invention, the “substance that suppresses the function of SMPD3” means that once functionally produced SMPD3 suppresses angiogenesis, suppresses microRNA secretion, or suppresses tumor metastasis. Any thing is acceptable. Whether or not to suppress the function of SMPD3 can be confirmed by a known method such as the method described in Examples. Examples of a substance that suppresses the function of SMPD3 include a substance that binds to SMPD3 and suppresses tumor angiogenesis, GW4869 (3,3 ′-(1,4-Phenylene) bis [N- [4- (4, Examples include substances that inhibit sphingomyelin hydrolysis such as 5-dihydro-1H-imidazol-2-yl) phenyl] -2-propenamide]).
 具体的には、SMPD3の機能を抑制する物質として、例えば、SMPD3に対する抗体が挙げられる。該抗体はポリクローナル抗体、モノクローナル抗体の何れであってもよい。これらの抗体は、自体公知の抗体または抗血清の製造法に従って製造することができる。抗体のアイソタイプは特に限定されないが、好ましくはIgG、IgMまたはIgA、特に好ましくはIgGが挙げられる。また、該抗体は、標的抗原を特異的に認識し結合するための相補性決定領域(CDR)を少なくとも有するものであれば特に制限はなく、完全抗体分子の他、例えばFab、Fab'、F(ab’)2等のフラグメント、scFv、scFv-Fc、ミニボディー、ダイアボディー等の遺伝子工学的に作製されたコンジュゲート分子、あるいはポリエチレングリコール(PEG)等のタンパク質安定化作用を有する分子等で修飾されたそれらの誘導体などであってもよい。
 好ましい一実施態様において、SMPD3に対する抗体はヒトを投与対象とする医薬品として使用されることから、該抗体(好ましくはモノクローナル抗体)はヒトに投与した場合に抗原性を示す危険性が低減された抗体、具体的には、完全ヒト抗体、ヒト化抗体、マウス-ヒトキメラ抗体などであり、特に好ましくは完全ヒト抗体である。ヒト化抗体およびキメラ抗体は、常法に従って遺伝子工学的に作製することができる。また、完全ヒト抗体は、ヒト-ヒト(もしくはマウス)ハイブリドーマより製造することも可能ではあるが、大量の抗体を安定に且つ低コストで提供するためには、ヒト抗体産生マウスやファージディスプレイ法を用いて製造することが望ましい。
Specifically, examples of the substance that suppresses the function of SMPD3 include an antibody against SMPD3. The antibody may be a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to per se known antibody or antiserum production methods. The isotype of the antibody is not particularly limited, but preferably IgG, IgM or IgA, particularly preferably IgG. The antibody is not particularly limited as long as it has at least a complementarity determining region (CDR) for specifically recognizing and binding a target antigen. In addition to a complete antibody molecule, for example, Fab, Fab ′, F (ab ') 2 fragments, scFv, scFv-Fc, conjugation molecules prepared by genetic engineering such as minibodies and diabodies, or molecules having protein stabilizing action such as polyethylene glycol (PEG) They may be modified derivatives thereof.
In a preferred embodiment, since the antibody against SMPD3 is used as a pharmaceutical for human administration, the antibody (preferably a monoclonal antibody) is an antibody with reduced risk of showing antigenicity when administered to humans. Specific examples include fully human antibodies, humanized antibodies, mouse-human chimeric antibodies, and particularly preferably fully human antibodies. Humanized antibodies and chimeric antibodies can be produced by genetic engineering according to conventional methods. In addition, fully human antibodies can be produced from human-human (or mouse) hybridomas, but in order to provide a large amount of antibodies stably and at low cost, human antibody-producing mice and phage display methods are used. It is desirable to manufacture using.
 SMPD3は腫瘍血管形成を制御することによって、腫瘍の転移、特に、原発巣から血流へのがん細胞の溢出過程において重要な役割を担っているので、SMPD3の機能を抑制する物質は、細胞膜透過性に優れた物質であることが望ましい。したがって、SMPD3の機能を抑制するより好ましい物質は、Lipinski's Ruleに見合った低分子化合物である。そのような化合物は、例えば、後述する本発明のスクリーニング法を用いて取得することができる。 Since SMPD3 plays an important role in tumor metastasis, especially in the process of cancer cell overflow from the primary lesion to the bloodstream, by controlling tumor angiogenesis, substances that inhibit SMPD3 function as cell membranes. It is desirable that the material has excellent permeability. Therefore, a more preferable substance that suppresses the function of SMPD3 is a low molecular compound suitable for Lipinski's Rule. Such a compound can be obtained, for example, using the screening method of the present invention described later.
(1-1)本発明の核酸、siRNAおよびその前駆体を含有する医薬
 本発明の剤は、有効量の上記(A)~(D)のいずれかの核酸または上記(E)のSMPD3の発現を阻害する核酸に加え、任意の担体、例えば医薬上許容される担体を含むことができ、医薬組成物の形態で医薬として適用される。
(1-1) Pharmaceutical containing the nucleic acid, siRNA and precursor thereof of the present invention The agent of the present invention comprises an effective amount of the nucleic acid of any one of (A) to (D) above or the expression of SMPD3 of (E) above In addition to the nucleic acid that inhibits, any carrier, such as a pharmaceutically acceptable carrier, can be included and applied as a pharmaceutical in the form of a pharmaceutical composition.
 医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリド等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。 Examples of pharmaceutically acceptable carriers include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, lubricants such as magnesium stearate and aerosil, citric acid, Fragrances such as menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspensions such as methylcellulose and polyvinylpyrrolide, dispersants such as surfactants, water, Although diluents, such as physiological saline, base wax, etc. are mentioned, it is not limited to them.
 本発明の剤の腫瘍細胞内への導入を促進するために、本発明の剤は更に核酸導入用試薬を含むことができる。該核酸導入用試薬としては、アテロコラーゲン;リポソーム;ナノパーティクル;リポフェクチン、リプフェクタミン(lipofectamine)、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、あるいはポリ(エチレンイミン)(PEI)等の陽イオン性脂質等を用いることが出来る。 In order to promote introduction of the agent of the present invention into tumor cells, the agent of the present invention can further contain a reagent for nucleic acid introduction. The nucleic acid introduction reagent includes atelocollagen; liposome; nanoparticle; lipofectin, lipofectamine, DOGS (transfectum), DOPE, DOTAP, DDAB, DHDEAB, HDEAB, polybrene, or poly (ethyleneimine) (PEI) Cationic lipids such as can be used.
 本発明の剤をアテロコラーゲンに含ませることにより、標的となる腫瘍細胞に、本発明の核酸を効率よく送達し、当該細胞に効率よく取り込ませることができる。 By including the agent of the present invention in atelocollagen, the nucleic acid of the present invention can be efficiently delivered to the target tumor cells and efficiently incorporated into the cells.
 本発明の剤は、経口的にまたは非経口的に、哺乳動物に対して投与することが可能であるが、本発明の剤は、非経口的に投与するのが望ましい。 The agent of the present invention can be administered to mammals orally or parenterally, but the agent of the present invention is preferably administered parenterally.
 非経口的な投与(例えば、皮下注射、筋肉注射、局所注入、腹腔内投与など)に好適な製剤としては、水性および非水性の等張な無菌の注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていてもよい。また、水性および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。当該製剤は、アンプルやバイアルのように単位投与量あるいは複数回投与量ずつ容器に封入することができる。また、有効成分および医薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解または懸濁すればよい状態で保存することもできる。
 非経口的な投与に好適な別の製剤としては、噴霧剤等を挙げることが出来る。
Formulations suitable for parenteral administration (eg, subcutaneous injection, intramuscular injection, local infusion, intraperitoneal administration, etc.) include aqueous and non-aqueous isotonic sterile injection solutions, which include antioxidants Further, a buffer solution, an antibacterial agent, an isotonic agent and the like may be contained. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like. The preparation can be enclosed in a container in unit doses or multiple doses like ampoules and vials. Alternatively, the active ingredient and a pharmaceutically acceptable carrier can be lyophilized and stored in a state that may be dissolved or suspended in a suitable sterile vehicle immediately before use.
As another preparation suitable for parenteral administration, a spray etc. can be mentioned.
 医薬組成物中の本発明の剤の含有量は、例えば、医薬組成物全体の約0.1ないし100重量%である。 The content of the agent of the present invention in the pharmaceutical composition is, for example, about 0.1 to 100% by weight of the whole pharmaceutical composition.
 本発明の剤の投与量は、投与の目的、投与方法、腫瘍の種類、大きさ、投与対象者の状況(性別、年齢、体重など)によって異なるが、成人に注射により局所投与する場合、通常、本発明の核酸の量として1pmol/kg以上10nmol/kg以下、全身投与では2nmol/kg以上50nmol/kg以下が望ましい。かかる投与量を1~10回、より好ましくは5~10回投与することが望ましい。 The dosage of the agent of the present invention varies depending on the purpose of administration, administration method, tumor type, size, and the situation of the subject of administration (sex, age, body weight, etc.). The amount of the nucleic acid of the present invention is preferably 1 pmol / kg or more and 10 nmol / kg or less, and 2 nmol / kg or more and 50 nmol / kg or less for systemic administration. It is desirable to administer such dose 1 to 10 times, more preferably 5 to 10 times.
 本発明の剤は、その有効成分である本発明の核酸が腫瘍組織(腫瘍細胞)に送達されるように、哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒト)に対して安全に投与される。 The agent of the present invention is a mammal (eg, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, so that the nucleic acid of the present invention, which is an active ingredient thereof, is delivered to tumor tissue (tumor cells). It is safely administered to monkeys and humans.
(1-2)SMPD3に対する抗体、SMPD3の発現もしくは機能を抑制する低分子化合物等を含有する医薬
 SMPD3に対する抗体や、SMPD3の発現もしくは機能を抑制する低分子化合物は、SMPD3の産生または活性を阻害することができる。したがって、これらの物質は、生体内におけるSMPD3の発現もしくは機能を抑制し、腫瘍の血管形成または転移を抑制するので、腫瘍の予防および/または治療剤として使用することができる。
 上記の抗体や低分子化合物を含有する医薬は、そのまま液剤として、または適当な剤型の医薬組成物として、ヒトまたは哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的または非経口的(例、血管内投与、皮下投与など)に投与することができる。
(1-2) Drugs containing SMPD3 antibodies, low molecular compounds that suppress SMPD3 expression or function, etc. Antibodies to SMPD3 and low molecular compounds that suppress SMPD3 expression or function inhibit SMPD3 production or activity can do. Accordingly, these substances suppress the expression or function of SMPD3 in vivo and suppress tumor angiogenesis or metastasis, and thus can be used as a prophylactic and / or therapeutic agent for tumors.
The medicine containing the above antibody or low molecular weight compound can be used as a liquid or as a pharmaceutical composition of an appropriate dosage form as a human or mammal (eg, rat, rabbit, sheep, pig, cow, cat, dog, monkey). Etc.) orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
 上記の抗体や低分子化合物は、それ自体を投与してもよいし、または適当な医薬組成物として投与してもよい。投与に用いられる医薬組成物としては、上記の抗体もしくは低分子化合物またはその塩と薬理学的に許容され得る担体、希釈剤もしくは賦形剤とを含むものであってもよい。このような医薬組成物は、経口または非経口投与に適する剤形として提供される。 The above-described antibodies and low-molecular compounds may be administered per se, or may be administered as an appropriate pharmaceutical composition. The pharmaceutical composition used for administration may contain the above antibody or low molecular compound or a salt thereof and a pharmacologically acceptable carrier, diluent or excipient. Such pharmaceutical compositions are provided as dosage forms suitable for oral or parenteral administration.
 非経口投与のための組成物としては、例えば、注射剤、坐剤、鼻腔内投与剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を包含しても良い。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の抗体もしくは低分子化合物またはその塩を通常注射剤に用いられる無菌の水性液、または油性液に溶解、懸濁または乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil)〕等と併用してもよい。油性液としては、例えば、ゴマ油、大豆油等が用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。直腸投与に用いられる坐剤は、上記抗体またはその塩を通常の坐薬用基剤に混合することによって調製されても良い。 As a composition for parenteral administration, for example, injection, suppository, intranasal administration, etc. are used, and the injection is intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, drip injection. You may include dosage forms, such as an agent. Such an injection can be prepared according to a known method. As a method for preparing an injection, it can be prepared by, for example, dissolving, suspending or emulsifying the antibody or low molecular compound of the present invention or a salt thereof in a sterile aqueous liquid or oily liquid usually used for injection. As an aqueous solution for injection, for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination. As the oily liquid, for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The prepared injection solution is preferably filled in a suitable ampoule. A suppository used for rectal administration may be prepared by mixing the above-described antibody or a salt thereof with an ordinary suppository base.
 経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムが用いられる。 Compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like. Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field. As the carrier and excipient for tablets, for example, lactose, starch, sucrose, and magnesium stearate are used.
 上記の非経口用または経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。このような投薬単位の剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤が挙げられる。抗体や低分子化合物は、投薬単位剤形当たり通常0.1~500mg、とりわけ注射剤では5~100mg、その他の剤形では10~250mg含有されていることが好ましい。 The above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dose of the active ingredient. Examples of the dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories. The antibody or low molecular weight compound is preferably contained in an amount of usually 0.1 to 500 mg, particularly 5 to 100 mg for injections and 10 to 250 mg for other dosage forms per dosage unit form.
 上記の抗体もしくは低分子化合物またはその塩を含有する上記医薬の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、腫瘍の治療・予防のために使用する場合には、抗体もしくは低分子化合物を1回量として、通常0.0001~20mg/kg体重程度、低分子化合物であれば1日1~5回程度、経口または非経口で、抗体であれば1日~数ヶ月に1回、静脈注射により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。 The dose of the above-mentioned medicament containing the above-mentioned antibody or low-molecular compound or a salt thereof varies depending on the administration subject, target disease, symptom, administration route, etc., but for example, when used for treatment / prevention of tumors Is usually about 0.0001 to 20 mg / kg body weight for a single dose of antibody or low molecular weight compound, about 1 to 5 times a day for low molecular weight compound, orally or parenterally, 1 to several days for antibody Conveniently administered once a month by intravenous injection. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
 本発明の剤が適用できる腫瘍としては、例えば、乳がん、肺がん、膵臓がん、前立腺がん、骨肉腫、食道がん、肝臓がん、胃がん、大腸がん、直腸がん、結腸がん、尿管腫瘍、脳腫瘍、胆嚢がん、胆管がん、胆道がん、腎がん、膀胱がん、卵巣がん、子宮頸がん、甲状腺がん、睾丸腫瘍、カポジ肉腫、上顎がん、舌がん、口唇がん、口腔がん、咽頭がん、喉頭がん、筋肉腫、皮膚がん、網膜芽腫などの固形がん、骨髄腫、白血病、悪性リンパ腫、骨髄腫、悪性黒色腫、血管腫、真性多血症、神経芽腫等が例示できる。 Examples of tumors to which the agent of the present invention can be applied include breast cancer, lung cancer, pancreatic cancer, prostate cancer, osteosarcoma, esophageal cancer, liver cancer, stomach cancer, colon cancer, rectal cancer, colon cancer, Ureteral tumor, brain tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, renal cancer, bladder cancer, ovarian cancer, cervical cancer, thyroid cancer, testicular tumor, Kaposi sarcoma, maxillary cancer, tongue Cancer, lip cancer, oral cancer, pharyngeal cancer, laryngeal cancer, muscle tumor, skin cancer, retinoblastoma and other solid cancer, myeloma, leukemia, malignant lymphoma, myeloma, malignant melanoma, Examples include hemangioma, polycythemia vera, neuroblastoma and the like.
 本発明の剤が適用できる腫瘍としては、具体的には、がんが好ましく、乳がんがより好ましい。
 本発明の剤は、血管形成を抑制する活性を有するので、本発明の剤をがんの患者、特に乳がん患者に対して投与することにより、腫瘍を治療することができる。また、血管形成を抑制する活性を有するので、腫瘍の転移を抑制できる。
 従って、本発明の剤は、腫瘍の治療剤として極めて有用である。
Specifically, the tumor to which the agent of the present invention can be applied is preferably cancer, and more preferably breast cancer.
Since the agent of the present invention has an activity of suppressing angiogenesis, tumors can be treated by administering the agent of the present invention to cancer patients, particularly breast cancer patients. Moreover, since it has an activity of suppressing angiogenesis, it can suppress tumor metastasis.
Therefore, the agent of the present invention is extremely useful as a therapeutic agent for tumors.
2.本発明の剤と抗腫瘍剤との併用
 本発明の核酸と抗腫瘍剤とを併用することによって、腫瘍そのものの増大をより効果的に抑制する効果が得られるため、根治的に腫瘍を治療することができる。従って、本発明は、上述の本発明の核酸と抗腫瘍剤とを併用してなる腫瘍治療剤を提供するものである。
2. Combined use of the agent of the present invention and an antitumor agent The combined use of the nucleic acid of the present invention and an antitumor agent provides an effect of more effectively suppressing the growth of the tumor itself, so that the tumor is treated radically. be able to. Accordingly, the present invention provides a tumor therapeutic agent comprising the above-described nucleic acid of the present invention and an antitumor agent in combination.
 本発明の併用剤に使用することのできる抗腫瘍剤としては、特に制限はないが、腫瘍そのものの増殖を抑制する活性を有するものが好ましい。そのような抗腫瘍剤としては、タキサン類等の微小管作用薬だけでなく、代謝拮抗剤、DNAアルキル化剤、DNA結合剤(白金製剤)、抗がん性抗生物質などが挙げられる。具体的には、塩酸アムルビシン、塩酸イリノテカン、イホスファミド、エトポシドラステット、ゲフィニチブ、シクロフォスファミド、シスプラチン、トラスツズマブ、フルオロウラシル、マイトマイシンC、メシル酸イマチニブ、メソトレキサート、リツキサン、アドリアマイシンなどが挙げられる。 The antitumor agent that can be used in the concomitant drug of the present invention is not particularly limited, but preferably has an activity of suppressing the growth of the tumor itself. Examples of such antitumor agents include not only microtubule agonists such as taxanes, but also antimetabolites, DNA alkylating agents, DNA binding agents (platinum preparations), anticancer antibiotics, and the like. Specific examples include amrubicin hydrochloride, irinotecan hydrochloride, ifosfamide, etoposiderstat, gefinitib, cyclophosphamide, cisplatin, trastuzumab, fluorouracil, mitomycin C, imatinib mesylate, methotrexate, rituxan and adriamycin.
 本発明の核酸と抗腫瘍剤との併用に際しては、本発明の核酸と抗腫瘍剤の投与時期は限定されず、本発明の核酸と抗腫瘍剤とを、投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。
 投与対象としては、好ましくは乳がん患者を挙げることができる。また、投与対象として、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3pまたはmiR-886-3pの分泌レベルが相対的に高いがんの患者が望ましい。
In the combined use of the nucleic acid of the present invention and the antitumor agent, the administration timing of the nucleic acid of the present invention and the antitumor agent is not limited, and the nucleic acid of the present invention and the antitumor agent are administered simultaneously to the administration subject. Alternatively, administration may be performed with a time difference.
As an administration subject, a breast cancer patient can be mentioned preferably. In addition, the relative levels of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p or miR-886-3p Patients with high cancer are desirable.
 本発明の剤の有効成分の投与量は、適用疾患の予防・治療を達成し得る範囲で特に限定されず、上記(1.本発明の剤)の項で記載した投与量範囲で投与可能である。 The dosage of the active ingredient of the agent of the present invention is not particularly limited as long as it can achieve prevention / treatment of the applicable disease, and can be administered within the dosage range described in the above section (1. Agent of the present invention). is there.
 抗腫瘍剤の投与量は、臨床において当該抗腫瘍剤を単剤で投与する際に採用される投与量に準じて決定することが出来る。 The dose of the antitumor agent can be determined according to the dose adopted when the antitumor agent is administered as a single agent in the clinic.
 本発明の剤と抗腫瘍剤の投与形態は、特に限定されず、投与時に、本発明の剤と抗腫瘍剤とが組み合わされていればよい。このような投与形態としては、例えば、
(1)本発明の剤と抗腫瘍剤とを同時に製剤化して得られる単一の製剤の投与、
(2)本発明の剤と抗腫瘍剤とを別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、
(3)本発明の剤と抗腫瘍剤とを別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、
(4)本発明の剤と抗腫瘍剤とを別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、
(5)本発明の剤と抗腫瘍剤とを別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与(例えば、本発明の剤→抗腫瘍剤の順序での投与、あるいは逆の順序での投与)等が挙げられる。
The dosage form of the agent of the present invention and the antitumor agent is not particularly limited as long as the agent of the present invention and the antitumor agent are combined at the time of administration. Examples of such dosage forms include:
(1) Administration of a single preparation obtained by simultaneously formulating the agent of the present invention and an antitumor agent,
(2) Simultaneous administration by the same administration route of two types of preparations obtained by separately formulating the agent of the present invention and the antitumor agent,
(3) Administration of the two preparations obtained by separately formulating the agent of the present invention and the antitumor agent with a time difference in the same administration route,
(4) Simultaneous administration of two kinds of preparations obtained by separately formulating the agent of the present invention and the antitumor agent through different administration routes,
(5) Administration of the two preparations obtained by separately formulating the agent of the present invention and the antitumor agent at different time intervals in different administration routes (for example, in the order of the agent of the present invention → the antitumor agent) Administration, or administration in the reverse order).
 本発明の剤と抗腫瘍剤とを併用してなる剤は、上記(1.本発明の剤)の項の記載に準じ、常法により製剤化することが出来る。本発明の剤と抗腫瘍剤とを別々に製剤化する場合には、抗腫瘍剤の剤型は、臨床において当該抗腫瘍剤を単剤で投与する際に採用される剤型に準じて選択することが出来る。 An agent comprising the agent of the present invention and an antitumor agent in combination can be formulated by a conventional method according to the description in the above section (1. Agent of the present invention). When the agent of the present invention and the antitumor agent are formulated separately, the dosage form of the antitumor agent is selected according to the dosage form adopted when the antitumor agent is administered as a single agent in clinical practice. I can do it.
 上述の本発明の剤と抗腫瘍剤をそれぞれ別々に製剤化して併用投与するに際しては、本発明の剤と抗腫瘍剤とを同時期に投与してもよいが、抗腫瘍剤を先に投与した後、本発明の剤を投与してもよいし、本発明の剤を先に投与し、その後で抗腫瘍剤をを投与してもよい。時間差をおいて投与する場合、時間差は投与する有効成分、剤形、投与方法により異なるが、例えば、抗腫瘍剤を先に投与する場合、抗腫瘍剤を含有する製剤を投与した後1分~3日以内、好ましくは10分~1日以内、より好ましくは15分~1時間以内に本発明の剤を投与する方法が挙げられる。本発明の剤を先に投与する場合、本発明の剤を投与した後、1分~1日以内、好ましくは10分~6時間以内、より好ましくは15分~1時間以内に抗腫瘍剤を投与する方法が挙げられる。 When the above-mentioned agent of the present invention and the antitumor agent are separately formulated and administered together, the agent of the present invention and the antitumor agent may be administered at the same time, but the antitumor agent is administered first. Thereafter, the agent of the present invention may be administered, or the agent of the present invention may be administered first, followed by administration of the antitumor agent. When administered at a time difference, the time difference varies depending on the active ingredient to be administered, dosage form, and administration method. For example, when administering an antitumor agent first, after administration of a preparation containing the antitumor agent, Examples include a method of administering the agent of the present invention within 3 days, preferably within 10 minutes to 1 day, more preferably within 15 minutes to 1 hour. When the agent of the present invention is administered first, the antitumor agent is administered within 1 minute to 1 day, preferably within 10 minutes to 6 hours, more preferably within 15 minutes to 1 hour after the administration of the agent of the present invention. The method of administration is mentioned.
 本発明の併用剤においては、2種以上の抗腫瘍剤を用いてもよい。
 本発明の併用剤は、上記(1.本発明の剤)の項において「本発明の剤が適用できる腫瘍」として詳述されている腫瘍に適用することができる。本発明の併用剤は、具体的には、乳がんに適用するのが好ましい。
In the combination agent of the present invention, two or more kinds of antitumor agents may be used.
The concomitant drug of the present invention can be applied to tumors described in detail as “tumor to which the agent of the present invention can be applied” in the above section (1. Agent of the present invention). Specifically, the concomitant drug of the present invention is preferably applied to breast cancer.
3.がんの判定方法
 本発明は、被検試料におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルもしくは濃度を測定すること、および該分泌レベルまたは該濃度と悪性がんとの間の正の相関に基づき、悪性がんであるかどうかについて判定することを含む、悪性がんを判定する方法を提供するものである。本発明の方法は、特に悪性乳がんの判定に有用である。
 本明細書において「悪性がん」とは、良性がんと比較して、腫瘍形成能に富み、転移能力が高いがんをいい、患者の死亡率が高いがんのことを指す。
3. The present invention relates to miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886 in test samples. -3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280 , Based on measuring the secretion level or concentration of miR-210, miR-140-3p, miR-593 or miR-483-3p and a positive correlation between the secretion level or the concentration and malignant cancer Providing a method for determining malignant cancer, comprising determining whether the cancer is malignant. The method of the present invention is particularly useful for the determination of malignant breast cancer.
As used herein, “malignant cancer” refers to a cancer that has higher tumor forming ability, higher metastatic ability, and higher patient mortality than benign cancer.
 被検試料とは、測定対象者から採取された細胞、血液または組織である。被検試料は、公知の方法に従って測定対象者から採取することができる。
 被検試料は、特に限定されないが、乳腺が好ましく、乳腺細胞がさらに好ましい。
 本発明の判定方法においては、被検試料中のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルまたは濃度が測定される。
A test sample is a cell, blood or tissue collected from a measurement subject. The test sample can be collected from the measurement subject according to a known method.
The test sample is not particularly limited, but is preferably a mammary gland, and more preferably a mammary gland cell.
In the determination method of the present invention, miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886 in the test sample -3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280 , MiR-210, miR-140-3p, miR-593 or miR-483-3p secretion levels or concentrations are measured.
 本発明の判定方法において分泌レベルまたは濃度が測定されるmiRNAには、成熟型、pri-miRNAおよびpre-miRNAが含まれるが、好ましくは、これら全ての型の分泌レベルの合計または成熟型の分泌レベル、より好ましくは成熟型の分泌レベルが測定される。 The miRNA whose secretion level or concentration is measured in the determination method of the present invention includes mature type, pri-miRNA and pre-miRNA, but preferably the sum of all these types of secretion levels or mature type secretion. Level, more preferably mature secretion level, is measured.
 例えば、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルまたは濃度は、該miRNAを特異的に検出し得る核酸プローブを用いて、自体公知の方法により測定することが出来る。該測定方法としては、例えば、RT-PCR、ノザンブロッティング、in situ ハイブリダイゼーション、核酸アレイ等を挙げることができる。または、市販のキット(例えば、TaqMan(登録商標)MicroRNA Cells-to-CTTMKit)によっても測定できる。 For example, miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p, The secretion level or concentration of miR-593 or miR-483-3p can be measured by a method known per se using a nucleic acid probe capable of specifically detecting the miRNA. Examples of the measuring method include RT-PCR, Northern blotting, in situ hybridization, nucleic acid array and the like. Alternatively, it can be measured by a commercially available kit (for example, TaqMan (registered trademark) MicroRNA Cells-to-CT Kit).
 miR-29b-1*を特異的に検出し得る核酸プローブとしては、配列番号1で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-29b-1 * is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most contained in the nucleotide sequence represented by SEQ ID NO: 1. Preferably, the polynucleotide includes a full-length continuous nucleotide sequence or a complementary sequence thereof.
 miR-221*を特異的に検出し得る核酸プローブとしては、配列番号2で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-221 * is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 2. Mention may be made of polynucleotides comprising the full-length contiguous nucleotide sequence or its complementary sequence.
 miR-138を特異的に検出し得る核酸プローブとしては、配列番号3で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-138 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 3. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-584を特異的に検出し得る核酸プローブとしては、配列番号4で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-584 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 4. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-30aを特異的に検出し得る核酸プローブとしては、配列番号5で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-30a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 5. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-146aを特異的に検出し得る核酸プローブとしては、配列番号6で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-146a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 6. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-151-3pを特異的に検出し得る核酸プローブとしては、配列番号7で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-151-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 7. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
 miR-886-3pを特異的に検出し得る核酸プローブとしては、配列番号8で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-886-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 8. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
 miR-100を特異的に検出し得る核酸プローブとしては、配列番号13で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 As a nucleic acid probe capable of specifically detecting miR-100, 15 nucleotides or more, preferably 18 nucleotides or more, more preferably about 20 nucleotides or more, most preferably, included in the nucleotide sequence represented by SEQ ID NO: 13 Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-221を特異的に検出し得る核酸プローブとしては、配列番号14で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-221 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, and most preferably the nucleotide sequence represented by SEQ ID NO: 14. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-126を特異的に検出し得る核酸プローブとしては、配列番号15で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-126 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 15. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-130aを特異的に検出し得る核酸プローブとしては、配列番号16で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-130a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 16. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-222を特異的に検出し得る核酸プローブとしては、配列番号17で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-222 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence contained in the nucleotide sequence represented by SEQ ID NO: 17. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-125bを特異的に検出し得る核酸プローブとしては、配列番号18で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-125b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 18. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-29aを特異的に検出し得る核酸プローブとしては、配列番号19で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-29a is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 19. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-720を特異的に検出し得る核酸プローブとしては、配列番号20で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 As a nucleic acid probe capable of specifically detecting miR-720, it is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 20. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-224を特異的に検出し得る核酸プローブとしては、配列番号21で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-224 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence contained in the nucleotide sequence represented by SEQ ID NO: 21. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-29bを特異的に検出し得る核酸プローブとしては、配列番号22で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-29b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 22. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-1274bを特異的に検出し得る核酸プローブとしては、配列番号23で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-1274b is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 23. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-1280を特異的に検出し得る核酸プローブとしては、配列番号24で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-1280 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 24. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-210を特異的に検出し得る核酸プローブとしては、配列番号25で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-210 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 25. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-140-3pを特異的に検出し得る核酸プローブとしては、配列番号26で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-140-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 26. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
 miR-593を特異的に検出し得る核酸プローブとしては、配列番号27で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-593 is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably the nucleotide sequence represented by SEQ ID NO: 27. Mention may be made of polynucleotides comprising a full-length contiguous nucleotide sequence or its complementary sequence.
 miR-483-3pを特異的に検出し得る核酸プローブとしては、配列番号28で表されるヌクレオチド配列に含まれる、15塩基以上、好ましくは18塩基以上、より好ましくは約20塩基以上、最も好ましくはその全長の連続したヌクレオチド配列またはその相補配列を含むポリヌクレオチドを挙げることが出来る。 The nucleic acid probe capable of specifically detecting miR-483-3p is 15 bases or more, preferably 18 bases or more, more preferably about 20 bases or more, most preferably included in the nucleotide sequence represented by SEQ ID NO: 28. May include a polynucleotide comprising its full length contiguous nucleotide sequence or its complementary sequence.
 核酸プローブは、特異的検出に支障を生じない範囲で付加的配列(検出対象のポリヌクレオチドと相補的でないヌクレオチド配列)を含んでいてもよい。
 また、核酸プローブは、適当な標識剤、例えば、放射性同位元素(例:125I、131I、3H、14C、32P、33P、35S等)、酵素(例:β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素等)、蛍光物質(例:フルオレスカミン、フルオレッセンイソチオシアネート等)、発光物質(例:ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニン等)などで標識されていてもよい。あるいは、蛍光物質(例:FAM、VIC等)の近傍に該蛍光物質の発する蛍光エネルギーを吸収するクエンチャー(消光物質)がさらに結合されていてもよい。かかる実施態様においては、検出反応の際に蛍光物質とクエンチャーとが分離して蛍光が検出される。
The nucleic acid probe may contain an additional sequence (a nucleotide sequence that is not complementary to the polynucleotide to be detected) as long as specific detection is not hindered.
The nucleic acid probe may be an appropriate labeling agent such as a radioisotope (eg, 125 I, 131 I, 3 H, 14 C, 32 P, 33 P, 35 S, etc.), an enzyme (eg, β-galactosidase, β-glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase, etc.), fluorescent substances (eg, fluorescamine, fluorescein isothiocyanate, etc.), luminescent substances (eg, luminol, luminol derivatives, luciferin, lucigenin, etc.), etc. It may be labeled with. Alternatively, a quencher (quenching substance) that absorbs fluorescence energy emitted by the fluorescent substance may be further bound in the vicinity of the fluorescent substance (eg, FAM, VIC, etc.). In such an embodiment, the fluorescence is detected by separating the fluorescent substance and the quencher during the detection reaction.
 核酸プローブは、DNA、RNA、キメラ核酸のいずれであってもよく、また、一本鎖であっても二本鎖であってもよい。核酸プローブまたはプライマーは、例えば、配列番号1~8または13~28で表されるヌクレオチド配列の情報に基づいて、DNA/RNA自動合成機を用いて常法に従って合成することができる。 The nucleic acid probe may be any of DNA, RNA, and chimeric nucleic acid, and may be single-stranded or double-stranded. The nucleic acid probe or primer can be synthesized according to a conventional method using a DNA / RNA automatic synthesizer based on the information of the nucleotide sequence represented by SEQ ID NOs: 1 to 8 or 13 to 28, for example.
 次に、測定されたmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルまたは濃度に基づいて、被検試料が悪性がんであるかどうかについて判定される。
 後述の実施例に示すように、正常細胞や良性がんに比べ、悪性がん細胞はmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593およびmiR-483-3pの分泌レベルまたは濃度が高い。
 したがって、上記判定は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルまたは濃度と悪性がんとの間の正の相関に基づき行われる。
Then measured miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR- Based on the secretion level or concentration of 140-3p, miR-593 or miR-483-3p, it is determined whether the test sample is malignant cancer.
As shown in the examples below, malignant cancer cells are miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a compared to normal cells and benign cancers. , MiR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR -29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR-593 and miR-483-3p have high secretion levels or concentrations.
Therefore, the above judgment is miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR- Based on a positive correlation between the secretion level or concentration of 140-3p, miR-593 or miR-483-3p and malignant cancer.
 例えば、がんではないがん患者または良性がん患者(ネガティブコントロール)および、悪性がんである患者(ポジティブコントロール)から細胞または組織を採取し、対象患者のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルがポジティブコントロールおよびネガティブコントロールのそれと比較される。あるいは、特定の細胞または組織におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルと悪性がんとの相関図をあらかじめ作成しておき、対象患者から採取した被検試料における分泌レベルをその相関図と比較してもよい。分泌レベルの比較は、好ましくは、有意差の有無に基づいて行われる。
 そして、分泌レベルの比較結果より、測定対象のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルが相対的に高い場合には、被検試料が悪性がんである可能性が相対的に高いと判定することができる。逆に、測定対象のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルが相対的に低い場合には、被検試料が悪性がんである可能性が相対的に低いと判定することができる。
For example, cells or tissues collected from non-cancer or benign cancer patients (negative control) and malignant cancer patients (positive control), and miR-29b-1 *, miR-221 *, MiR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, Secretion levels of miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR-593 or miR-483-3p Is compared to that of the positive and negative controls. Alternatively, miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR- in specific cells or tissues 100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, A correlation diagram between the secretion level of miR-140-3p, miR-593 or miR-483-3p and malignant cancer is prepared in advance, and the secretion level in the test sample collected from the target patient is compared with the correlation diagram May be. The comparison of the secretion level is preferably performed based on the presence or absence of a significant difference.
From the comparison results of the secretion level, the measurement target miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886- 3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, If the secretion level of miR-210, miR-140-3p, miR-593 or miR-483-3p is relatively high, determine that the test sample is relatively likely to have malignant cancer Can do. Conversely, the measurement target miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR- When the secretion level of 140-3p, miR-593 or miR-483-3p is relatively low, it can be determined that the possibility that the test sample is malignant cancer is relatively low.
 本発明の剤の治療対象としては、被検試料中のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3pまたはmiR-886-3pの分泌レベルが相対的に高いがんの患者が望ましいため、本発明の方法は患者の選別に有用である。 The therapeutic target of the agent of the present invention includes miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p or miR in the test sample. Since cancer patients with a relatively high secretion level of -886-3p are desirable, the methods of the present invention are useful for patient screening.
 また、本発明は、上述のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pを特異的に検出し得る核酸プローブを含む、がんの罹患の有無または悪性度を判定するための剤(以下、「本発明の剤(II)」と呼ぶ。)を提供するものである。本発明の剤(II)は、被検試料の悪性がんの罹患の有無または悪性度を判定するためのキットであり得る。本発明の剤(II)を用いることにより、上述の判定方法により容易に被検試料が悪性がんであるかどうか判定することができる。 The present invention also includes miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR- 100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, An agent for determining the presence or malignancy of cancer (hereinafter referred to as “the agent of the present invention”) comprising a nucleic acid probe capable of specifically detecting miR-140-3p, miR-593 or miR-483-3p (II) ").). The agent (II) of the present invention can be a kit for determining the presence or absence of malignant cancer in a test sample or the degree of malignancy. By using the agent (II) of the present invention, it is possible to easily determine whether the test sample has malignant cancer by the above-described determination method.
 核酸プローブは、通常、水もしくは適当な緩衝液(例:TEバッファー、PBSなど)中に適当な濃度となるように溶解された水溶液の態様で、あるいは該核酸プローブが固相担体上に固定された核酸アレイの態様で、本発明の剤(II)に含まれる。 The nucleic acid probe is usually in the form of an aqueous solution dissolved at an appropriate concentration in water or an appropriate buffer (eg, TE buffer, PBS, etc.), or the nucleic acid probe is immobilized on a solid phase carrier. In the embodiment of the nucleic acid array, it is included in the agent (II) of the present invention.
 本発明の剤(II)は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの測定方法に応じて、当該方法の実施に必要な他の成分を構成としてさらに含んでいてもよい。例えば、ノザンブロッティングや核酸アレイを測定に用いる場合には、本発明の剤(II)は、ブロッティング緩衝液、標識化試薬、ブロッティング膜等をさらに含むことができる。in situ ハイブリダイゼーションを測定に用いる場合には、本発明の剤(II)は、標識化試薬、発色基質等をさらに含むことができる。 The agent (II) of the present invention is miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR -100, miR-221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210 Depending on the measurement method of miR-140-3p, miR-593 or miR-483-3p, the composition may further contain other components necessary for carrying out the method. For example, when Northern blotting or a nucleic acid array is used for measurement, the agent (II) of the present invention can further contain a blotting buffer, a labeling reagent, a blotting membrane, and the like. When in-situ hybridization is used for the measurement, the agent (II) of the present invention can further contain a labeling reagent, a chromogenic substrate, and the like.
4.腫瘍の血管形成を抑制し得る物質を探索する方法
 本発明は、被検物質がmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌もしくは発現を増強するか否かを評価することを含む、血管形成を抑制する物質を探索する方法、並びに当該方法により得られうる物質を提供する。
 本発明の探索方法においては、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌または発現を上方制御する物質が、血管形成を抑制する薬剤、すなわち腫瘍の転移を抑制しえる物質又は腫瘍治療剤として選択される。
4). The present invention relates to a method of searching for a substance capable of suppressing tumor angiogenesis.The present invention relates to the secretion of a test substance miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a. Alternatively, the present invention provides a method for searching for a substance that suppresses angiogenesis, including evaluating whether to enhance expression, and a substance that can be obtained by the method.
In the search method of the present invention, a substance that upregulates the secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a suppresses angiogenesis Drug, ie, a substance capable of suppressing tumor metastasis or a tumor therapeutic agent.
 本発明の探索方法は、以下の工程を含む:
(1)被検物質とmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌または発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を測定し、該分泌量または発現量を被検物質を接触させない対照細胞における分泌量または発現量と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を上方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
The search method of the present invention includes the following steps:
(1) contacting a test substance with a cell capable of measuring secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a;
(2) measuring the amount of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a secreted or expressed in cells contacted with the test substance, Comparing the amount of secretion or expression with the amount of secretion or expression in control cells not contacted with the test substance; and (3) based on the comparison result of (2) above, miR-29b-1 *, miR-221 * Select a test substance that up-regulates the secretion or expression level of miR-138, miR-584, miR-30a, or miR-146a as a substance that can suppress tumor angiogenesis.
 また、本発明は、被検物質がmiR-151-3p、miR-886-3pまたはSMPD3の分泌、発現量または機能を抑制するか否かを評価することを含む、血管形成を抑制する物質を探索する方法、並びに当該方法により得られうる物質を提供する。
 本発明の探索方法においては、miR-151-3p、miR-886-3pまたはSMPD3の分泌または機能を下方制御する物質が、血管形成を抑制する薬剤、すなわち腫瘍の転移を抑制しえる物質または腫瘍治療剤として選択される。
The present invention also provides a substance that suppresses angiogenesis, comprising evaluating whether a test substance suppresses the secretion, expression level or function of miR-151-3p, miR-886-3p or SMPD3. Provided are a method for searching and a substance obtainable by the method.
In the search method of the present invention, the substance that down-regulates the secretion or function of miR-151-3p, miR-886-3p or SMPD3 is an agent that suppresses angiogenesis, that is, a substance or tumor that can suppress tumor metastasis Selected as a therapeutic agent.
 本発明の探索方法は、以下の工程を含む: 
(1)被検物質とmiR-151-3p、miR-886-3pまたはSMPD3の分泌または発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を測定し、該分泌量、発現量または機能を被検物質を接触させない対照細胞における分泌量、発現量または機能と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を下方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
The search method of the present invention includes the following steps:
(1) contacting a test substance with a cell capable of measuring secretion or expression of miR-151-3p, miR-886-3p or SMPD3;
(2) Measure the secretion amount, expression level or function of miR-151-3p, miR-886-3p or SMPD3 in cells contacted with the test substance, and determine the secretion amount, expression level or function of the test substance Comparing with the secreted amount, expression level or function in the non-contacted control cells; and (3) secreted amount, expression of miR-151-3p, miR-886-3p or SMPD3 based on the comparison result of (2) above A test substance that down-regulates the amount or function is selected as a substance capable of suppressing tumor angiogenesis.
 また、本発明は、被検物質がmiR-151-3pの分泌、発現量または機能を抑制するか否かを評価することを含む、VEGFシグナルとそのフィードバックシグナルであるAkt3-DLL4経路とをデュアルに阻害することにより血管形成異常を抑制する物質を探索する方法、並びに当該方法により得られうる物質を提供する。
 本発明の探索方法においては、miR-151-3pの分泌または機能を下方制御する物質が、血管形成異常を抑制する薬剤、すなわち腫瘍の転移を抑制しうる物質または腫瘍治療剤として選択される。
 この場合、本発明の探索方法は、さらにAkt3および/またはDLL4の発現量を測定する工程を含んでもよい。Akt3および/またはDLL4の発現量は、例えば、Akt3および/またはDLL4を特異的に認識する抗体等を用いて自体公知の方法により測定することができる。
In addition, the present invention provides a dual VEGF signal and its feedback signal, the Akt3-DLL4 pathway, comprising evaluating whether a test substance suppresses the secretion, expression level or function of miR-151-3p. The present invention provides a method for searching for a substance that suppresses abnormal angiogenesis by inhibiting it as well as a substance that can be obtained by the method.
In the search method of the present invention, a substance that down-regulates the secretion or function of miR-151-3p is selected as an agent that suppresses angiogenesis abnormality, that is, a substance that can suppress tumor metastasis or a tumor therapeutic agent.
In this case, the search method of the present invention may further include a step of measuring the expression level of Akt3 and / or DLL4. The expression level of Akt3 and / or DLL4 can be measured by a method known per se using, for example, an antibody that specifically recognizes Akt3 and / or DLL4.
 本発明の探索方法は、以下の工程を含む:
(1)被検物質とmiR-151-3pの分泌または発現を測定可能な細胞とを接触させること;
(2)被検物質を接触させた細胞におけるmiR-151-3pの分泌量、発現量または機能を測定し、該分泌量、発現量または機能を被検物質を接触させない対照細胞における分泌量、発現量または機能と比較すること;並びに
(3)上記(2)の比較結果に基づいて、miR-151-3pの分泌量、発現量または機能を下方制御する被検物質を、腫瘍の血管形成異常を抑制し得る物質として選択すること。
The search method of the present invention includes the following steps:
(1) contacting a test substance with a cell capable of measuring secretion or expression of miR-151-3p;
(2) measuring the secretion amount, expression amount or function of miR-151-3p in a cell contacted with a test substance, and the secretion amount, expression amount or function in a control cell not contacting the test substance; Comparing with the expression level or function; and (3) based on the comparison result of (2) above, a test substance that down-regulates the secretion amount, expression level or function of miR-151-3p, Select as a substance that can suppress abnormalities.
 本発明の探索方法に供される被検物質は、いかなる公知化合物および新規化合物であってもよく、例えば、核酸、糖質、脂質、蛋白質、ペプチド、有機低分子化合物、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、ランダムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分等が挙げられる。 The test substance used in the search method of the present invention may be any known compound and novel compound, for example, using nucleic acids, carbohydrates, lipids, proteins, peptides, organic low molecular weight compounds, combinatorial chemistry techniques. The prepared compound library, random peptide library, natural components derived from microorganisms, animals and plants, marine organisms, and the like can be mentioned.
 本発明の探索方法において、分泌レベルまたは発現レベルが測定されるマイクロRNA(miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3pまたはmiR-886-3p)には、成熟型、pri-miRNAおよびpre-miRNAが含まれるが、好ましくは、これら全ての型の分泌レベルまたは発現レベルの合計または成熟型の分泌レベルまたは発現レベル、より好ましくは成熟型の分泌レベルまたは発現レベルが測定される。 In the search method of the present invention, microRNAs (miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151 whose secretion level or expression level is measured are measured. -3p or miR-886-3p) include mature, pri-miRNA and pre-miRNA, but preferably the sum of all these types of secretion levels or expression levels or mature secretion levels or expression The level, more preferably the mature secretion level or expression level, is measured.
 「分泌または発現を測定可能な細胞」とは、測定対象のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3の分泌レベルまたは発現レベルを評価可能な細胞をいう。該細胞としては、測定対象のmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3を天然で分泌または発現可能な細胞が挙げられる。 `` Cells capable of measuring secretion or expression '' are miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, A cell capable of evaluating the secretion level or expression level of miR-886-3p or SMPD3. The cells include miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 to be measured. Cells that can be secreted or expressed in nature are mentioned.
 測定対象、即ちmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3を天然で分泌または発現可能な細胞は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3を潜在的に分泌または発現するものである限り特に限定されず、当該細胞として、哺乳動物(例えばヒト、マウス等)の初代培養細胞、当該初代培養細胞から誘導された細胞株などを用いることができる。miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3を天然で分泌または発現可能な細胞としては、例えば上記(1.本発明の剤)の項において「本発明の剤が適用できる腫瘍」として詳述されている腫瘍の細胞を挙げることができる。好ましくは、乳がん細胞であり、より好ましくは、悪性乳がん細胞である。 Naturally secreted or measured, i.e. miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 Cells capable of expression are potentially miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 The cell is not particularly limited as long as it is secreted or expressed, and as the cell, a primary cultured cell of a mammal (eg, human, mouse, etc.), a cell line derived from the primary cultured cell, or the like can be used. Cells capable of naturally secreting or expressing miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 Examples thereof include tumor cells detailed in the above section (1. Agent of the present invention) as “Tumors to which the agent of the present invention can be applied”. Breast cancer cells are preferred, and malignant breast cancer cells are more preferred.
 被検物質とmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3の分泌または発現を測定可能な細胞との接触は、培養培地中で行われる。培養培地は、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3の分泌を測定可能な細胞に応じて適宜選択されるが、例えば、約5~20%のウシ胎仔血清を含む最少必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)などである。培養条件も同様に適宜決定されるが、例えば、培地のpHは約6~約8であり、培養温度は通常約30~約40℃であり、培養時間は約12~約72時間である。 Secretion or expression of the test substance and miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 Contact with measurable cells takes place in the culture medium. Culture medium can measure miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 secretion For example, a minimal essential medium (MEM) containing about 5 to 20% fetal calf serum, Dulbecco's modified Eagle medium (DMEM), or the like is selected. The culture conditions are appropriately determined in the same manner. For example, the pH of the medium is about 6 to about 8, the culture temperature is usually about 30 to about 40 ° C., and the culture time is about 12 to about 72 hours.
 miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p またはSMPD3の分泌量または発現量の測定は、(2.がんを判定する方法)の項で述べた方法などの公知方法に従い行うことができる。
 SMPD3の機能レベルの測定は、(1.本発明の剤)の項で述べた公知のSMPD3の機能を評価することにより測定することができる。
Measurement of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p or SMPD3 , (2. Method for determining cancer) can be performed according to a known method such as the method described in the section.
The function level of SMPD3 can be measured by evaluating the function of the known SMPD3 described in the section (1. Agent of the present invention).
 分泌量または発現量の比較は、好ましくは、有意差の有無に基づいて行なわれ得る。なお、被検物質を接触させない対照細胞におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3の分泌量または発現量は、被検物質を接触させた細胞におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3pまたはSMPD3の分泌量または発現量の測定に対し、事前に測定した分泌量または発現量であっても、同時に測定した分泌量または発現量であってもよいが、実験の精度、再現性の観点から同時に測定した分泌量または発現量であることが好ましい。 The comparison of the secretion amount or the expression amount can be preferably performed based on the presence or absence of a significant difference. MiR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p in control cells not contacted with the test substance Alternatively, the amount of SMPD3 secreted or expressed is miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151 in cells contacted with the test substance. -3p, miR-886-3p or SMPD3 secretion amount or expression level measurement may be a secretion amount or expression level measured in advance, or simultaneously measured secretion amount or expression level, From the viewpoint of the accuracy and reproducibility of the experiment, the amount of secretion or expression measured simultaneously is preferable.
 そして、比較の結果得られたmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を上方制御する物質、あるいはmiR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を下方制御する物質が、血管形成を抑制し得る物質、特に腫瘍の血管形成を阻害し得る物質、あるいは腫瘍の転移を抑制し得る物質として選択される。 Then, miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a obtained as a result of the comparison up-regulated, or miR- Substances that down-regulate the secretion, expression, or function of 151-3p, miR-886-3p or SMPD3 are substances that can suppress angiogenesis, especially those that can inhibit tumor angiogenesis, or tumor metastasis It is selected as a substance that can be suppressed.
 本発明の探索方法で得られる化合物は、新たな腫瘍の治療剤の開発のための候補物質として有用である。 The compound obtained by the search method of the present invention is useful as a candidate substance for the development of a new tumor therapeutic agent.
 尚、本願の配列表において、ヌクレオチド配列を便宜的にRNAの配列を用いて記載したが、これは、該配列番号により特定された核酸がRNAのみを示すことを意味するものではなく、適宜U(ウラシル)をT(チミン)と読み替えることにより、DNAやキメラ核酸のヌクレオチド配列をも示すものであることを理解するべきである。 In the sequence listing of the present application, the nucleotide sequence is described using the RNA sequence for the sake of convenience, but this does not mean that the nucleic acid identified by the SEQ ID NO represents only RNA, and U It should be understood that (uracil) is replaced with T (thymine) to indicate the nucleotide sequence of DNA or chimeric nucleic acid.
 以下に本発明の実施例を説明するが、本発明は、これらの実施例になんら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
参考例1 ホタルルシフェラーゼ安定発現4T1細胞(4T1-luc細胞)の作製
 ホタルルシフェラーゼ遺伝子を含むpNeoLuc 1μgを、LipofectamineLTXキット(Invitrogen社)を用いて、当該試薬キットに添付される手順書に従って、1×106個/ウェル(6穴プレート)の濃度で播種したマウス乳ガン細胞株である4T1細胞(ATCC社CRL-2539)に導入した。翌日、培地を0.5mg/mL Geneticin(Invitrogen社)を含む10%FBS/RPMI培地(Invitrogen社)に交換し、2週間培養を続けることで、安定発現細胞を選択した。複数の安定発現細胞のホタルルシフェラーゼ活性をBright Glo反応液(Promega社)、Envision 2101 MultiLabel Reader(Wallac社製)を用いて測定し、最も活性の強い細胞を選抜した。その結果、10,000個の細胞当たり、約3,000RLUの発光量を示す細胞を樹立することができた。これ以降、当該細胞株をホタルルシフェラーゼ安定発現4T1細胞(4T1-luc細胞)として使用した。
Reference Example 1 Preparation of firefly luciferase stable expression 4T1 cells (4T1-luc cells) Using 1 μg of pNeoLuc containing firefly luciferase gene, using LipofectamineLTX kit (Invitrogen) according to the procedure attached to the reagent kit. The cells were introduced into 4T1 cells (ATCC CRL-2539), a mouse breast cancer cell line seeded at a concentration of 6 cells / well (6-well plate). On the next day, the medium was changed to a 10% FBS / RPMI medium (Invitrogen) containing 0.5 mg / mL Geneticin (Invitrogen), and the cells were stably cultured for 2 weeks to select stably expressing cells. Firefly luciferase activities of a plurality of stably expressing cells were measured using Bright Glo reaction solution (Promega) and Envision 2101 MultiLabel Reader (Wallac), and the most active cells were selected. As a result, it was possible to establish cells exhibiting a luminescence amount of about 3,000 RLU per 10,000 cells. Thereafter, the cell line was used as firefly luciferase stably expressing 4T1 cells (4T1-luc cells).
参考例2 SMPD3ノックダウン4T1-luc細胞の作製
 マウスSMPD3遺伝子のsiRNA(GTACATCCTGTATGATGTT)を含むプラスミドpBAsi-mU6 Pur(宝バイオ TA0715-1-C) 1μgを、LipofectamineLTXキット(Invitrogen社)を用いて、当該試薬キットに添付される手順書に従って、1×106個/ウェル(6穴プレート)の濃度で播種した実施例1記載の方法で樹立した4T1-luc細胞に導入した。翌日、培地を2 μg/mL Puromycin(Invitrogen社)を含む10%FBS/RPMI培地(Invitrogen社)に交換し、2週間培養を続けることで、安定発現細胞を選択した。複数の安定発現細胞のマウスSMPD3遺伝子の発現量をマウスSMPD3 TaqMan Reagent(Applied Biosystems社)を用いて定量した。まず、安定発現細胞からtotal RNAをRNeasy mini kit(Qiagen社)を用いて調製した。次に、当該total RNAを基にHigh Capacity cDNA Reverse Transcription Kit (Applied Biosystems社)を用いてcDNA合成を行った。すなわち、0.5μgのtotal RNA、1.0μL 10×RTバッファー、0.4μL 25×dNTP、1.0μL 10×RT Primer、0.5μL Transcriptase、0.5μL RNase Inhibitorを混合し、蒸留水にて10μLにメスアップし、25℃ 10分間、37℃ 2時間、85℃ 5秒間の保温工程を行うことで、cDNA合成を行った。次に、当該cDNAを鋳型としてTaqMan RT-PCR反応を行った。すなわち、2.25μLの当該cDNA溶液、5μLの Platinum qPCR SuperMix-UDG with ROX (Invitrogen社)、0.5μLのmSMPD3 TaqMan reagent (Applied Biosystems社)若しくは、マウスβ-actin TaqMan reagent (Applied Biosystems社)を混合し、蒸留水にて10μLにメスアップした。当該反応液をABI7300(Applied Biosystems社)を用いて、95℃2分間保温した後、95℃ 15秒間、60℃ 30秒間の保温サイクルを45回繰り返すことで、マウスSMPD3とマウスβ-actinの定量を行った。そして、各安定発現細胞株のマウスSMPD3発現量÷マウスβ-actin発現量を計算し、当該計算値が最も高かった安定発現細胞株(4T1-luc mSMPD3 KD細胞)を以下の実験に使用した。
Reference Example 2 Preparation of SMPD3 Knockdown 4T1-luc Cells Using 1 μg of plasmid pBAsi-mU6 Pur (Takara Bio TA0715-1-C) containing the siRNA of mouse SMPD3 gene (GTACATCCTGTATGATGTT) using LipofectamineLTX kit (Invitrogen) According to the procedure attached to the reagent kit, the cells were introduced into 4T1-luc cells established by the method described in Example 1 seeded at a concentration of 1 × 10 6 cells / well (6-well plate). On the next day, the medium was replaced with 10% FBS / RPMI medium (Invitrogen) containing 2 μg / mL Puromycin (Invitrogen), and the cells were stably cultured for 2 weeks to select stably expressing cells. The expression level of mouse SMPD3 gene in a plurality of stably expressing cells was quantified using mouse SMPD3 TaqMan Reagent (Applied Biosystems). First, total RNA was prepared from stably expressing cells using RNeasy mini kit (Qiagen). Next, cDNA synthesis was performed based on the total RNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). That is, mix 0.5 μg total RNA, 1.0 μL 10 × RT buffer, 0.4 μL 25 × dNTP, 1.0 μL 10 × RT Primer, 0.5 μL Transcriptase, 0.5 μL RNase Inhibitor, make up to 10 μL with distilled water, CDNA synthesis was carried out by carrying out a heat retention step of 25 ° C. for 10 minutes, 37 ° C. for 2 hours, and 85 ° C. for 5 seconds. Next, TaqMan RT-PCR reaction was performed using the cDNA as a template. That is, 2.25 μL of the cDNA solution, 5 μL of Platinum qPCR SuperMix-UDG with ROX (Invitrogen), 0.5 μL of mSMPD3 TaqMan reagent (Applied Biosystems) or mouse β-actin TaqMan reagent (Applied Biosystems) are mixed. The volume was made up to 10 μL with distilled water. The reaction mixture was incubated at 95 ° C for 2 minutes using ABI7300 (Applied Biosystems), and then the incubation cycle of 95 ° C for 15 seconds and 60 ° C for 30 seconds was repeated 45 times to quantify mouse SMPD3 and mouse β-actin. Went. The mouse SMPD3 expression level / mouse β-actin expression level of each stable expression cell line was calculated, and the stable expression cell line (4T1-luc mSMPD3 KD cell) having the highest calculated value was used in the following experiment.
実施例1 SMPD3ノックダウンの皮下移植モデルにおける転移アッセイに対する効果
 5匹の7週齢のメスBalb/c athymic nude miceの両鼠径部皮下にPBSに懸濁した1×10個の4T1-luc mSMPD3 KD細胞を移植した。なお、コントロール群として1×10個の4T1-luc 細胞を移植したBalb/c athymic nude miceを用いた。移植14日後、生体イメージングを用いてマウスから摘出した肺のルシフェラーゼ活性を測定したところ、4T1-luc mSMPD3 KD細胞を移植したマウスの肺転移はコントロール群と比較して、著しく減少していることが分かった(図1)。
Example 1 Effect of SMPD3 Knockdown on Metastasis Assay in a Subcutaneous Transplant Model 1 × 10 6 4T1-luc mSMPD3 suspended in PBS subcutaneously in both inguinal regions of 5 7-week-old female Balb / c athymic nude mice KD cells were transplanted. As a control group, Balb / cathic nude mice transplanted with 1 × 10 6 4T1-luc cells were used. 14 days after transplantation, luciferase activity in lungs extracted from mice was measured using in vivo imaging, and it was found that lung metastasis in mice transplanted with 4T1-luc mSMPD3 KD cells was significantly reduced compared to the control group. I understand (Figure 1).
実施例2 SMPD3ノックダウンの尾静脈投与モデルにおける転移アッセイに対する効果
 5匹の7週齢のメスBalb/c athymic nude miceの尾静脈からPBSに懸濁した1×10個の4T1-luc mSMPD3 KD細胞を移植した。なお、コントロール群として1×10個の4T1-luc 細胞を移植したBalb/c athymic nude miceを用いた。移植26日後、生体イメージングを用いてマウスから摘出した肺のルシフェラーゼ活性を測定したところ、4T1-luc mSMPD3 KD細胞を移植したマウスの肺転移はコントロール群と同程度であることが分かった(図2)。このことから、SMPD3ノックダウン4T1-luc細胞は原発巣から血流への溢出の過程が抑制されていることが示唆された。
Example 2 Effect of SMPD3 Knockdown on Metastasis Assay in Tail Vein Administration Model 1 × 10 6 4T1-luc mSMPD3 KD suspended in PBS from the tail vein of five 7-week-old female Balb / c athymic nude mice Cells were transplanted. As a control group, Balb / cathic nude mice transplanted with 1 × 10 6 4T1-luc cells were used. Twenty-six days after transplantation, luciferase activity in lungs isolated from mice was measured using in vivo imaging, and it was found that lung metastasis in mice transplanted with 4T1-luc mSMPD3 KD cells was similar to that in the control group (FIG. 2). ). This suggests that SMPD3 knockdown 4T1-luc cells have suppressed the process of overflow from the primary lesion to the bloodstream.
実施例3 SMPD3ノックダウンの皮下移植モデルにおける腫瘍血管形成に対する効果
 4T1-luc mSMPD3 KD細胞移植後20日経過したBalb/c athymic nude miceの鼠径部の腫瘍塊を摘出し、ホルマリン固定した。その後、5μmのパラフィン包埋切片を以下の手順で血管内皮特異的タンパク質であるCD31に対する抗体(Rabbit polyclonal to CD31 ab28364(Abcam社))を用いて免疫染色を行うことで、腫瘍血管の形成能を評価した。なお、コントロール群として4T1-luc 細胞を移植したBalb/c athymic nude miceの鼠径部の腫瘍塊を用いた。まず、当該切片を5分間、3回キシレンで洗浄した後、99.5%エタノール、80%エタノール、70%エタノールの順に5分間洗浄を行った。更に、蒸留水で5分間、3回洗浄した後、流水中に10分間浸漬した。続いて、蒸留水にて5分間、3回洗浄した後、0.5 Mトリスバッファー(pH=10)中で121℃、5分間オートクレーブを行った。その後、30分間室温で放置することにより冷却した後、蒸留水で5分間、3回の洗浄、更に続けてTBS-T溶液(0.05Mトリス、0.3M NaCl、0.1% Tween20水溶液)で5分間、2回洗浄した。スーパーパップペンで組織を囲んだ後、Image-iT Ex Signal Enhancer (Molecular probe社)中に室温、30分間浸漬した。TBS-T溶液で洗浄した後、Dako Protein Block (Dako社)中に室温、20分間浸漬した。そして、Dako Real Antibody Diluent (Dako社)で50倍希釈したRabbit polyclonal to CD31(Abcam社)と室温、30分間反応させた。5分間、3回TBS-T溶液による洗浄を行った後、Dako Real Antibody Diluentで1000倍希釈したAlexa Flour 488 Goat Anti-rabbit IgG (Molecular probe社) と室温、30分間反応させた。5分間、3回TBS-T溶液による洗浄を行った後、Vector Shield Mounting Medium with DAPI (Hard Type)(VECTOR社)を用いて封入した。なお、ネガティブコントロールとしてRabbit polyclonal to CD31に変えて、Negative Control Rabbit Immunoglobulin fraction(Dako社)を用いて上記操作を行った切片を用いた。上述した方法で染色した切片をSuper high pressure mercury lamp power supplyを接続した蛍光顕微鏡(ニコン ECLIPSE TE300)を用いて励起波長505nm、蛍光波長520nmにより蛍光画像を取得した。得られた画像を基に、単位面積当たりの蛍光量をACT-1C for DXM1200Cにより計測したところ、4T1-luc mSMPD3 KD腫瘍塊の蛍光発光量はコントロールの58%であることが分かった。以上の結果から、腫瘍中のSMPD3の発現量を抑制することで、腫瘍血管の形成が阻害されることが分かった。
Example 3 Effect of SMPD3 Knockdown on Tumor Angiogenesis in a Subcutaneous Transplant Model 4T1-luc mSMPD3 Tumor masses in the inguinal region of Balb / cathic nude mice 20 days after transplantation of KD cells were extracted and fixed in formalin. After that, 5 μm paraffin-embedded sections were immunostained with the antibody against CD31, a vascular endothelium-specific protein (Rabbit polyclonal to CD31 ab28364 (Abcam)), according to the following procedure, and the ability to form tumor blood vessels was confirmed. evaluated. As a control group, a tumor mass at the groin part of Balb / cathic nude mice transplanted with 4T1-luc cells was used. First, the section was washed with xylene three times for 5 minutes, and then washed for 5 minutes in the order of 99.5% ethanol, 80% ethanol, and 70% ethanol. Further, after washing 3 times with distilled water for 5 minutes, it was immersed in running water for 10 minutes. Subsequently, after washing 3 times with distilled water for 5 minutes, autoclaving was performed at 121 ° C. for 5 minutes in 0.5 M Tris buffer (pH = 10). Then, after cooling by standing at room temperature for 30 minutes, washed with distilled water for 5 minutes, 3 times, followed by TBS-T solution (0.05M Tris, 0.3M NaCl, 0.1% Tween20 aqueous solution) for 5 minutes. Washed twice. After surrounding the tissue with a super pap pen, it was immersed in Image-iT Ex Signal Enhancer (Molecular probe) at room temperature for 30 minutes. After washing with TBS-T solution, it was immersed in Dako Protein Block (Dako) for 20 minutes at room temperature. Then, it was reacted with Rabbit polyclonal to CD31 (Abcam) diluted 50 times with Dako Real Antibody Diluent (Dako) at room temperature for 30 minutes. After washing with TBS-T solution three times for 5 minutes, the mixture was reacted with Alexa Fluor 488 Goat Anti-rabbit IgG (Molecular probe) diluted 1000 times with Dako Real Antibody Diluent for 30 minutes at room temperature. After washing with a TBS-T solution three times for 5 minutes, the cells were sealed using Vector Shield Mounting Medium with DAPI (Hard Type) (VECTOR). In addition, it replaced with Rabbit polyclonal to CD31 as negative control, and used the section | slice which performed said operation using Negative Control Rabbit Immunoglobulin fraction (Dako). Using the fluorescence microscope (Nikon ECLIPSE TE300) connected with the Super high pressure mercury lamp power supply, the fluorescence image was acquired by the excitation wavelength of 505 nm and the fluorescence wavelength of 520 nm. Based on the obtained image, the amount of fluorescence per unit area was measured by ACT-1C for DXM1200C, and it was found that the amount of fluorescence emitted from the 4T1-luc mSMPD3 KD tumor mass was 58% of the control. From the above results, it was found that tumor blood vessel formation was inhibited by suppressing the expression level of SMPD3 in the tumor.
実施例4 MDA-MB-231細胞、MCF-7細胞、MCF-10A細胞のマイクロRNA分泌量比較解析
 MDA-MB-231細胞はヒト乳がんより単離された細胞株であり、エストロゲン感受性を失った悪性度の高い乳がんのモデルとして利用され、リンパ節等へ転移することが知られている。一方、MCF-7細胞はエストロゲン感受性の乳がん細胞であり、悪性度は低く転移能も認められない。MCF-10A細胞は乳腺上皮由来細胞であり、腫瘍形成能を持たない正常細胞として知られている (Soule HD et al. Cancer Research 50: 6075-6086, 1990)。
 MDA-MB-231細胞、MCF7細胞およびMCF-10A細胞(全てATCC社より購入)をRPMI培地にウシ胎児血清(FBS)を10%添加した培地を用いて培養し、1×106個の細胞あたり1fmolの合成Cel-miR-39(miScript miRNA Mimic:QIAGEN社製)を添加した後、マイクロRNAをRNeasy mini kit(キアゲン社)を用いてキット添付のプロトコールに従って抽出した。次に、得られたマイクロRNA を鋳型としてTaqMan MicroRNA Reverse Transcription kit(Applied Biosystems社)及びmiR-100 TaqMan MicroRNA Assay、miR-29b-1*
TaqMan MicroRNA Assay、miR-221* TaqMan MicroRNA Assay、miR-221 TaqMan MicroRNA Assay、miR-146a TaqMan MicroRNA Assay、miR-126 TaqMan MicroRNA Assay、miR-130a TaqMan MicroRNA Assay、miR-222 TaqMan MicroRNA Assay、miR-125b TaqMan MicroRNA Assay、miR-29a TaqMan MicroRNA Assay、miR-720 TaqMan MicroRNA Assay、miR-224 TaqMan MicroRNA Assay、miR-29b TaqMan MicroRNA Assay、miR-1274b TaqMan MicroRNA Assay、miR-1280 TaqMan MicroRNA Assay、miR-210 TaqMan MicroRNA Assay、miR-138 TaqMan MicroRNA Assay、miR-584 TaqMan MicroRNA Assay、miR-140-3p TaqMan MicroRNA Assay、miR-30a TaqMan MicroRNA Assay、miR-151-3p TaqMan MicroRNA Assay、miR-886-3p TaqMan MicroRNA Assay、miR-593 TaqMan MicroRNA Assay、miR-483-3pTaqMan MicroRNA Assay、Cel-miR-39 TaqMan MicroRNA Assay(すべてApplied Biosystems社製)を用いて逆転写反応を行った。即ち、マイクロRNA溶液 3.3μL、100mM dNTPs (with dTTP) 0.05μL、MultiScribe Reverse Transcriptase (50U/μL) 0.33μL、10×Reverse Transcription Buffer 0.5μL、RNase Inhibitor (20U/μL) 0.063μL、Nuclease-free water 1.387μL、TaqMan MicroRNA Assay (5×) 1μLを混合し、16℃ 30分間、42℃ 30分間、85℃ 5分間の保温を行った。続いて、当該反応液の3倍希釈液 4.5μL、TaqMan MicroRNA Assay (20×) 0.5μL、TaqMan 2×Universal PCR Master Mix, No AmpErase UNGa(Applied Biosystems社) 5μLを混合し、95℃ 10分間の保温後、95℃ 15秒間、60℃ 1分間の保温サイクルを40回繰り返すPCR反応を7300 Real Time PCR System(Applied Biosystems社)を用いて行うことにより、各マイクロRNAのMDA-MB-231細胞、MCF-7細胞、MCF-10A細胞における分泌量を定量した。
 その結果、表1に示される通り、これら24種類のマイクロRNAの分泌量はMCF7細胞、MCF-10A細胞と比較してMDA-MB-231細胞において有意に増加していることが分かった。
Example 4 Comparative Analysis of MDA-MB-231 , MCF-7, and MCF-10A MicroRNA Secretion MDA-MB-231 is a cell line isolated from human breast cancer and has lost estrogen sensitivity. It is used as a model for breast cancer with high malignancy and is known to metastasize to lymph nodes. On the other hand, MCF-7 cells are estrogen-sensitive breast cancer cells, have low malignancy and no metastatic potential. MCF-10A cells are mammary epithelium-derived cells and are known as normal cells without tumorigenicity (Soule HD et al. Cancer Research 50: 6075-6086, 1990).
MDA-MB-231 cells, MCF7 cells, and MCF-10A cells (all purchased from ATCC) are cultured in a medium containing 10% fetal bovine serum (FBS) in RPMI medium, 1 x 10 6 cells After adding 1 fmol of synthetic Cel-miR-39 (miScript miRNA Mimic: manufactured by QIAGEN), microRNA was extracted using RNeasy mini kit (Qiagen) according to the protocol attached to the kit. Next, using the obtained microRNA as a template, TaqMan MicroRNA Reverse Transcription kit (Applied Biosystems) and miR-100 TaqMan MicroRNA Assay, miR-29b-1 *
TaqMan MicroRNA Assay, miR-221 * TaqMan MicroRNA Assay, miR-221 TaqMan MicroRNA Assay, miR-146a TaqMan MicroRNA Assay, miR-126 TaqMan MicroRNA Assay, miR-130a TaqMan MicroRNA Assay, miR-222 TaqMan MicroRNA Assay, miR-125b TaqMan MicroRNA Assay, miR-29a TaqMan MicroRNA Assay, miR-720 TaqMan MicroRNA Assay, miR-224 TaqMan MicroRNA Assay, miR-29b TaqMan MicroRNA Assay, miR-1274b TaqMan MicroRNA Assay, miR-1280 TaqMan MicroRNA Assay, miR-210 TaqMan MicroRNA Assay, miR-138 TaqMan MicroRNA Assay, miR-584 TaqMan MicroRNA Assay, miR-140-3p TaqMan MicroRNA Assay, miR-30a TaqMan MicroRNA Assay, miR-151-3p TaqMan MicroRNA Assay, miR-886-3p TaqMan MicroRNA Assay Reverse transcription reaction was performed using miR-593 TaqMan MicroRNA Assay, miR-483-3pTaqMan MicroRNA Assay, and Cel-miR-39 TaqMan MicroRNA Assay (all from Applied Biosystems). That is, microRNA solution 3.3 μL, 100 mM dNTPs (with dTTP) 0.05 μL, MultiScribe Reverse Transcriptase (50 U / μL) 0.33 μL, 10 × Reverse Transcription Buffer 0.5 μL, RNase Inhibitor (20 U / μL) 0.063 μL, Nuclease-free water 1.387 μL and TaqMan MicroRNA Assay (5 ×) 1 μL were mixed and incubated at 16 ° C. for 30 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes. Subsequently, 4.5 μL of the 3-fold dilution of the reaction solution, 0.5 μL of TaqMan MicroRNA Assay (20 ×), 5 μL of TaqMan 2 × Universal PCR Master Mix, No AmpErase UNGa (Applied Biosystems) were mixed, and 95 ° C. for 10 minutes. MDA-MB-231 cells of each microRNA, by carrying out PCR reaction using a 7300 Real Time PCR System (Applied Biosystems) by repeating the incubation reaction 40 times after incubation at 95 ° C for 15 seconds and 60 ° C for 1 minute. The amount of secretion in MCF-7 cells and MCF-10A cells was quantified.
As a result, as shown in Table 1, it was found that the secretion levels of these 24 types of microRNAs were significantly increased in MDA-MB-231 cells compared to MCF7 cells and MCF-10A cells.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例5 マイクロRNAの血管新生阻害活性の評価
 100μLの実施例4記載のpre-miR(Applied Biosystems社)と100μL OPTI-MEMの混合液と、4μL DharmaFECT1(Thermo Scientific社)と196μL OPTI-MEMの混合液を、室温で混ぜ合わせた後、30分間静置した。次いで、6穴プレートに当該混合液を加えた後、2mLの内皮細胞添加因子セット-2(Lonza社)を添加した内皮細胞基本培地-2(Lonza社)に懸濁した1×106個の正常ヒト臍帯静脈内皮細胞(HUVEC細胞) (Lonza社)を添加することでマイクロRNAのトランスフェクションを行った。翌日、24穴プレートに氷上にて融解したECM gel from Engelbreth-Holm-Swarm mouse sarcoma(シグマ社)を1穴当たり120μL分注し、CO2インキュベータ内で、30分間静置することで、ゲルを固化した。次に、前日にトランスフェクションした2×105個/mL のHUVEC細胞を各ウェル500μL分注した。なお、コントロール細胞として、NC1 control miRNA(Applied Biosystems社)をトランスフェクションした細胞を用いた。翌日、血管新生能を評価するために、各ウェルの血管新生の様子を顕微鏡(Nikon ECLIPSE TE200)にて50倍の倍率の写真を撮影した。更に、当該写真中の一定面積当たりの血
管長、分岐点数を画像解析ソフトImageJを用いて計測した。
 表2に、コントロール細胞に対する各マイクロRNAを導入した細胞が形成した血管長、分岐点数の相対値を%表示で、促進、抑制の評価結果を+(促進活性)、-(抑制活性)の数で示す。+、-の記号の数が多ければ活性が強いことを示す。なお、空欄は促進、阻害いずれの活性も示さなかったことを表す。
 その結果、血管新生を促進するマイクロRNAとしてmiR-151-3p、miR-886-3pを、抑制するマイクロRNAとしてmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146aを同定した。miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aおよびmiR-146aは血管新生を抑制するので、腫瘍治療剤として有用であることが判明した。一方で、miR-151-3pとmiR-886-3pは血管新生を促進するため、anti- miR-151-3p等のmiR-151-3p阻害剤やanti-miR-886-3p等のmiR-886-3p阻害剤は血管新生を抑制すると考えられ、腫瘍治療剤として有用であることが判明した。
Example 5 Evaluation of Angiogenesis Inhibitory Activity of MicroRNA 100 μL of pre-miR (Applied Biosystems) and 100 μL OPTI-MEM described in Example 4, mixed solution of 4 μL DharmaFECT1 (Thermo Scientific) and 196 μL OPTI-MEM The mixture was mixed at room temperature and allowed to stand for 30 minutes. Next, after adding the mixture to a 6-well plate, 1 × 10 6 cells suspended in endothelial cell basal medium-2 (Lonza) supplemented with 2 mL of endothelial cell addition factor set-2 (Lonza) MicroRNA transfection was performed by adding normal human umbilical vein endothelial cells (HUVEC cells) (Lonza). On the next day, dispense 120 μL of ECM gel from Engelbreth-Holm-Swarm mouse sarcoma (Sigma) per hole in a 24-well plate and leave it in a CO 2 incubator for 30 minutes. Solidified. Next, 2 × 10 5 cells / mL of HUVEC cells transfected the day before were dispensed in 500 μL per well. As control cells, cells transfected with NC1 control miRNA (Applied Biosystems) were used. On the next day, in order to evaluate the angiogenic ability, an angiogenesis state of each well was photographed with a microscope (Nikon ECLIPSE TE200) at a magnification of 50 times. Furthermore, the blood vessel length and the number of branch points per certain area in the photograph were measured using image analysis software ImageJ.
Table 2 shows the relative values of the length of blood vessels and the number of branch points formed by cells into which each microRNA has been introduced relative to control cells, and the evaluation results of promotion and suppression are the number of + (promoting activity) and-(suppressing activity). Indicated by A large number of + and-symbols indicates strong activity. The blank represents that neither activity nor inhibition was shown.
As a result, miR-151-3p and miR-886-3p are microRNAs that promote angiogenesis, and miR-29b-1 *, miR-221 *, miR-138, miR-584, and miR are microRNAs that suppress angiogenesis. -30a and miR-146a were identified. miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a and miR-146a have been found to be useful as tumor therapeutic agents because they inhibit angiogenesis. On the other hand, miR-151-3p and miR-886-3p promote angiogenesis, so miR-151-3p inhibitors such as anti-miR-151-3p and miR- such as anti-miR-886-3p 886-3p inhibitors are thought to suppress angiogenesis and have been found to be useful as tumor therapeutic agents.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例6 Anti- mmu-miR-151-3pの細胞内miR-151-3p活性抑制活性の評価
 miR-151-3pに対するAnti-miRオリゴヌクレオチドの効果を確認するために、配列番号53で表されるヌクレオチド配列からなるマウスmiR-151-3p(mmu-miR-151-3p)に対して完全に相補的で、化学修飾が異なる12種類のAnti- mmu-miR-151-3pオリゴヌクレオチドを、ジーンデザイン社にて合成した(表3)。表3の配列において、下線部はLNA修飾を施した核酸であり、非下線部は2’-OMe修飾を施した核酸であることを示している。
Example 6 Evaluation of Inhibitory Activity of Anti-mmu-miR-151-3p in Intracellular miR-151-3p In order to confirm the effect of Anti-miR oligonucleotide on miR-151-3p, it is represented by SEQ ID NO: 53 Twelve types of Anti-mmu-miR-151-3p oligonucleotides that are completely complementary to mouse miR-151-3p (mmu-miR-151-3p) and have different chemical modifications Synthesized by Design (Table 3). In the sequences of Table 3, the underlined portion indicates a nucleic acid subjected to LNA modification, and the non-underlined portion indicates a nucleic acid subjected to 2′-OMe modification.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 0.01μgのmiR-151-3p sensor vector (SwitchGear Genomics miRNA Synthetic Target)、0.01μgのmmu-miR-151-3p発現プラスミド(宝バイオ microRNA Archive Mouse ver.1)及び、所定の量の各種anti- mmu-miR-151-3pを0.25μgのLipofectamine2000を含む20μLのOPTI-MEM培地と混合し、96ウェルプレートに5×104個のHEK293細胞と共に加えた。microRNA sensor vectorとは、microRNAが標的mRNAと結合する際に重要な働きをするシード配列と相補的な配列を、海しいたけルシフェラーゼ遺伝子の3’UTR領域に繰り返して挿入したプラスミドベクターをいう。任意のマイクロRNAに対するsensor vectorを細胞に導入し、当該細胞のルシフェラーゼ活性を測定することで、細胞内のそのマイクロRNAの活性を評価することが出来る。翌日、ホタルルシフェラーゼ及び、海しいたけルシフェラーゼの活性測定(Dual-GloTM Luciferase Assay System:Promega)を行なった。海しいたけルシフェラーゼ活性をホタルルシフェラーゼ活性で除した値が小さいほど、マイクロRNA活性が高いことを表している。その結果、3mer以上のLNA修飾を施すことで細胞内miR-151-3p活性抑制効果が認められ、4mer以上のLNA修飾を施すことで細胞内miR-151-3p活性抑制効果がプラトーに達することが分かった(図3)。 0.01 μg of miR-151-3p sensor vector (SwitchGear Genomics miRNA Synthetic Target), 0.01 μg of mmu-miR-151-3p expression plasmid (treasure bio microRNA Archive Mouse ver.1), and various amounts of various anti-mmu -miR-151-3p was mixed with 20 μL of OPTI-MEM medium containing 0.25 μg of Lipofectamine 2000 and added to a 96-well plate with 5 × 10 4 HEK293 cells. The microRNA sensor vector refers to a plasmid vector in which a sequence complementary to a seed sequence that plays an important role when microRNA binds to a target mRNA is repeatedly inserted into the 3′UTR region of the Kaisei luciferase gene. By introducing a sensor vector for any microRNA into a cell and measuring the luciferase activity of the cell, the activity of the microRNA in the cell can be evaluated. On the next day, firefly luciferase and sea shiitake luciferase activities were measured (Dual-Glo Luciferase Assay System: Promega). The smaller the value obtained by dividing the sea shiitake luciferase activity by the firefly luciferase activity, the higher the microRNA activity. As a result, intracellular miR-151-3p activity inhibitory effect was observed by applying 3mer or more LNA modification, and intracellular miR-151-3p activity inhibitory effect reached a plateau by applying 4mer or more LNA modification (Figure 3).
実施例7 Anti- mmu-miR-151-3pの血清中の安定性評価
 100pmolの各種anti- mmu-miR-151-3pを25% FBS水溶液中で所定の期間、37℃で保温した後、以下の手法でアクリルアミドゲル電気泳動解析を行ない、安定性の評価を行なった。XCell SureLock Mini-Cell(invitrogen社)に15% TBE-Urea Gel 12well(invitrogen 社CatNo:EC68852BOX)をセットし、1×TBE Running Buffer(10×TBE Running Buffer(invitrogen社)を蒸留水で希釈)を注いだ。20μL(核酸100pmol量)のサンプルをロードした後、180V、90分間電気泳動した。次に、電気泳動したゲルを0.025% Stains-all液(sigma社) (4%ホルムアミド溶液の25%イソプロパノール水溶液希釈液)中で60分間振とうした。当該染色液を除き、水道水で1~2時間脱色してから、LAS2000(富士フィルム)で写真撮影した。その結果、3mer以上のLNA修飾を施すことで血清中安定性向上効果が認められ、4mer以上のLNA修飾を施すことで血清中安定性向上効果がプラトーに達することが分かった(図4)。また、同じく3merのLNA修飾を施したanti-miRオリゴヌクレオチド(mmu-3mer LNA-1(図4の3mer-1に該当)およびmmu-3mer LNA-2(図4の3mer-2に該当))でも、5’末端と3'末端の両方(5'末端の2mer、3'末端の1mer)にLNA修飾を施したmmu-3mer LNA-2の方が、片方の末端(5’末端の3mer)のみにLNA修飾を施したmmu-3mer LNA-1よりも血清中安定性向上効果が高かった。
Example 7 Stability Evaluation of Anti-mmu-miR-151-3p in Serum After keeping 100 pmol of various anti-mmu-miR-151-3p in a 25% FBS aqueous solution at 37 ° C. for a predetermined period, Analysis of acrylamide gel electrophoresis was performed using the method described above, and the stability was evaluated. Set 15% TBE-Urea Gel 12well (invitrogen CatNo: EC68852BOX) in XCell SureLock Mini-Cell (invitrogen), and 1 × TBE Running Buffer (10 × TBE Running Buffer (invitrogen) diluted with distilled water). Poured. After loading 20 μL (nucleic acid 100 pmol amount) of sample, electrophoresis was performed at 180 V for 90 minutes. Next, the electrophoresed gel was shaken in 0.025% Stains-all solution (sigma) (diluted solution of 25% isopropanol in 4% formamide solution) for 60 minutes. After removing the dye solution and decolorizing with tap water for 1-2 hours, a photograph was taken with LAS2000 (Fuji Film). As a result, it was found that the effect of improving serum stability was observed by applying LNA modification of 3mer or more, and that the effect of improving serum stability reached a plateau by applying LNA modification of 4mer or more (Fig. 4). In addition, anti-miR oligonucleotides (mmu-3mer LNA-1 (corresponding to 3mer-1 in Fig. 4) and mmu-3mer LNA-2 (corresponding to 3mer-2 in Fig. 4), also with 3mer LNA modification) However, mmu-3mer LNA-2 with LNA modification on both 5 'and 3' ends (2mer at 5 'end and 1mer at 3' end) is one end (3mer at 5 'end) The effect of improving serum stability was higher than that of mmu-3mer LNA-1 with LNA modification alone.
実施例8 Anti- mmu-miR-151-3pと成熟型miR-151-3pの2本鎖形成能の評価
 100pmolの各種anti- mmu-miR-151-3pと等量の成熟型miR-151-3pを混合した後、70℃で5分間保温した後、室温に戻すことで、anti- mmu-miR-151-3pとmiR-151-3pの2本鎖形成を行なった。次いで、実施例7記載の方法でアクリルアミドゲル電気泳動解析を行ない、2本鎖核酸と1本鎖核酸を分離し、2本鎖形成能を評価した。その結果、4mer以上のLNA修飾を施すことで2本鎖形成能向上効果が明確に認められた(図5)。
Example 8 Evaluation of duplex-forming ability of Anti-mmu-miR-151-3p and mature miR-151-3p 100 pmol of mature miR-151- in the same amount as various anti-mmu-miR-151-3p After mixing 3p, the mixture was incubated at 70 ° C. for 5 minutes, and then returned to room temperature to form anti-mmu-miR-151-3p and miR-151-3p duplexes. Subsequently, acrylamide gel electrophoresis analysis was performed by the method described in Example 7 to separate the double-stranded nucleic acid from the single-stranded nucleic acid, and the double-stranded forming ability was evaluated. As a result, the effect of improving the ability to form a double strand was clearly recognized by applying a 4mer or more LNA modification (FIG. 5).
実施例9 Anti- mmu-miR-151-3pの分泌型mmu-miR-151-3p活性抑制活性の評価
 5μgのmmu-miR-151-3p発現プラスミドを、前日に5×106個/ T-75フラスコの濃度で播種したHEK293細胞にLipofectamine2000を用いてトランスフェクションした。翌日、細胞をPBSで洗浄した後、15mLのAdvanced-RPMI培地を添加し、2日後培養上清を回収した。当上清を0.2μmフィルターでろ過することで、分泌型mmu-miR-151-3pを得た。
 0.01μgのmiR-151-3p sensor vectorを0.25μgのLipofectamine2000を含む20μLのOPTI-MEM培地と混合し、96ウェルプレートに5×104個のHEK293細胞と共に加えた。翌日、培地を除去した後、上述した方法で得られた分泌型mmu-miR-151-3pを100μL添加し、更に図6に記載の量の各種anti- mmu-miR-151-3pを加えた。翌日、実施例6記載の方法でルシフェラーゼ活性を測定し、各ウェルのマイクロRNA活性を評価したところ、3mer以上のLNA修飾を施すことで分泌型マイクロRNA活性抑制効果が認められ、4mer以上のLNA修飾を施すことで分泌型マイクロRNA活性抑制効果がプラトーに達することが分かった(図6)。
Example 9 Evaluation of Anti-mmu-miR-151-3p Secretory-type mmu-miR-151-3p Activity Inhibitory Activity 5 μg of mmu-miR-151-3p expression plasmid was transferred to 5 × 10 6 / T- HEK293 cells seeded at a concentration of 75 flasks were transfected using Lipofectamine2000. The next day, the cells were washed with PBS, 15 mL of Advanced-RPMI medium was added, and the culture supernatant was recovered after 2 days. The supernatant was filtered through a 0.2 μm filter to obtain secreted mmu-miR-151-3p.
0.01 μg of miR-151-3p sensor vector was mixed with 20 μL of OPTI-MEM medium containing 0.25 μg of Lipofectamine 2000 and added to a 96-well plate along with 5 × 10 4 HEK293 cells. The next day, after removing the medium, 100 μL of secreted mmu-miR-151-3p obtained by the above-described method was added, and various anti-mmu-miR-151-3p in the amounts shown in FIG. 6 were further added. . The next day, the luciferase activity was measured by the method described in Example 6, and the microRNA activity in each well was evaluated. By applying LNA modification of 3mer or more, a secretory microRNA activity inhibitory effect was observed, and LNA of 4mer or more was observed. It was found that the effect of suppressing the secretory microRNA activity reaches a plateau by applying the modification (FIG. 6).
実施例10 Anti- hsa-miR-151-3pの分泌型hsa-miR-151-3pによる血管形成の抑制活性の評価
 配列番号7で表されるヌクレオチド配列からなるヒトmiR-151-3p(hsa-miR-151-3p)に対して完全に相補的で、化学修飾が異なる12種類のAnti-hsa-miR-151-3pオリゴヌクレオチドを、ジーンデザイン社にて合成した(表4)。表4の配列において、下線部はLNA修飾を施した核酸であり、非下線部は2’-OMe修飾を施した核酸であることを示している。
Example 10 Evaluation of Anti-hsa-miR-151-3p Secretion Type hsa-miR-151-3p Inhibition of Angiogenesis Human miR-151-3p (hsa- comprising the nucleotide sequence represented by SEQ ID NO: 7 Twelve types of Anti-hsa-miR-151-3p oligonucleotides that were completely complementary to miR-151-3p) and differed in chemical modification were synthesized by Gene Design (Table 4). In the sequences of Table 4, the underlined portion indicates a nucleic acid subjected to LNA modification, and the non-underlined portion indicates a nucleic acid subjected to 2′-OMe modification.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1×106個の正常ヒト臍帯静脈内皮細胞(HUVEC細胞) (Lonza社)を、内皮細胞添加因子セット-2(Lonza社)を添加した内皮細胞基本培地-2(Lonza社)に懸濁し、6穴プレートで1日間培養した。翌日、培地を除去し、mmu-miR-151-3p発現プラスミドに変えて、hsa-miR-151-3p発現プラスミドを用いて、実施例9記載の方法で調製した分泌型miR-151-3pを1mL添加した後、100nmolの各種anti-hsa-miR-151-3pを加え、更に1日培養した。
 24穴プレートに氷上にて融解したECM gel from Engelbreth-Holm-Swarm mouse sarcoma(シグマ社)を1穴当たり120μL分注し、CO2インキュベータ内で、30分間静置することで、ゲルを固化した。次に、上記処理を施した2×105個/mL のHUVEC細胞を各ウェル500μL分注した。翌日、血管新生能を評価するために、各ウェルの血管新生の様子を顕微鏡(Nikon ECLIPSE TE200)にて50倍の倍率の写真を撮影した。更に、当該写真中の一定面積当たりの血管長、分岐点数を画像解析ソフトImageJを用いて計測した。
 表3に、コントロール細胞に対する各anti-hsa-miR-151-3pを導入した細胞が形成した血管長、分岐点数の相対値を%表示で示す。その結果、4merから12merのLNA修飾を施したanti-hsa-miR-151-3pが、分泌型hsa-miR-151-3pによる血管形成活性の抑制効果を有することが判明した(表5)。また、3merのLNA修飾を施した2個のanti-miR-151-3p(hsa-3mer LNA-1およびhsa-3mer LNA-2)の内、5’末端および3'末端の両末端にLNA修飾を施したhsa-3mer LNA-2においては、血管形成抑制効果が認められた。21mer全てにLNA修飾を施したものも含め、それ以外の修飾anti-miR-151-3pでは、本試験条件においては抑制効果は認められなかった。miR-151-3pはがん細胞由来分泌型マイクロRNAであることから、in vitroで血管形成に対する抑制効果を示した上記の修飾Anti-miR-151-3pは、がん細胞から分泌された細胞外miR-151-3pに対しても同様に結合し、in vivoにおいても血管形成に対する抑制効果を発揮することが可能であると考えられる。
1 × 10 6 normal human umbilical vein endothelial cells (HUVEC cells) (Lonza) were suspended in endothelial cell basic medium-2 (Lonza) supplemented with endothelial cell additive factor set-2 (Lonza), The cells were cultured for 1 day in 6-well plates. On the next day, the medium was removed, and instead of the mmu-miR-151-3p expression plasmid, the secreted miR-151-3p prepared by the method described in Example 9 was used using the hsa-miR-151-3p expression plasmid. After 1 mL was added, 100 nmol of various anti-hsa-miR-151-3p was added, and further cultured for 1 day.
120μL of ECM gel from Engelbreth-Holm-Swarm mouse sarcoma (Sigma) melted on ice in a 24-well plate was dispensed per well, and the gel was solidified by standing in a CO 2 incubator for 30 minutes. . Next, 2 × 10 5 cells / mL of HUVEC cells subjected to the above treatment were dispensed at 500 μL per well. On the next day, in order to evaluate the angiogenic ability, an angiogenesis state of each well was photographed with a microscope (Nikon ECLIPSE TE200) at a magnification of 50 times. Furthermore, the blood vessel length and the number of branch points per certain area in the photograph were measured using image analysis software ImageJ.
Table 3 shows the relative values of the blood vessel length and the number of branch points formed by the cells into which each anti-hsa-miR-151-3p was introduced relative to the control cells in%. As a result, it was found that anti-hsa-miR-151-3p modified with 4mer to 12mer LNA had an inhibitory effect on angiogenic activity by secreted hsa-miR-151-3p (Table 5). In addition, of two anti-miR-151-3p (hsa-3mer LNA-1 and hsa-3mer LNA-2) with 3mer LNA modification, LNA modification at both 5 'and 3' ends In hsa-3mer LNA-2 subjected to the treatment, an angiogenesis inhibitory effect was observed. Inhibition effect was not observed under these test conditions with the other modified anti-miR-151-3p, including all 21mer modified with LNA. Since miR-151-3p is a secreted microRNA derived from cancer cells, the modified Anti-miR-151-3p, which showed an inhibitory effect on angiogenesis in vitro, is a cell secreted from cancer cells. It is considered that it can bind to external miR-151-3p in the same manner and exert an inhibitory effect on angiogenesis even in vivo.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例11 miR-151-3p過剰分泌細胞の皮下移植モデルにおける転移アッセイに対する効果
 マウスmiR-151-3pを含むmmu-miR-151-3p発現プラスミド1μgを、LipofectamineLTXキット(Invitrogen社)を用いて、当該試薬キットに添付される手順書に従って、1×106個/ウェル(6穴プレート)の濃度で播種したMDA-MB-231-luc D3H1細胞(Xenogen社)に導入した。翌日、培地を2 μg/mL Puromycin(Invitrogen社)を含む10%FBS/RPMI培地(Invitrogen社)に交換し、2週間培養を続けることで、安定発現細胞を選択した。
 複数の安定発現細胞のマウスmiR-151-3pの分泌量を測定するために、100μLの培養上清に1fmolの合成Cel-miR-39(miScript miRNA Mimic:QIAGEN社製)を添加した後、マイクロRNAをRNeasy mini kit(キアゲン社)を用いてキット添付のプロトコールに従って抽出した。次に、得られたマイクロRNA を鋳型としてTaqMan MicroRNA Reverse Transcription kit(Applied Biosystems社)及びmiR-151-3p TaqMan MicroRNA Assay、Cel-miR-39 TaqMan MicroRNA Assay(Applied Biosystems社製)を用いて逆転写反応を行った。即ち、マイクロRNA溶液 3.3μL、100mM dNTPs (with dTTP) 0.05μL、MultiScribe Reverse Transcriptase (50U/μL) 0.33μL、10×Reverse Transcription Buffer 0.5μL、RNase Inhibitor (20U/μL) 0.063μL、Nuclease-free water 1.387μL、TaqMan MicroRNA Assay (5×) 1μLを混合し、16℃ 30分間、42℃ 30分間、85℃ 5分間の保温を行った。続いて、当該反応液の3倍希釈液 4.5μL、TaqMan MicroRNA Assay (20×) 0.5μL、TaqMan 2× Universal PCR Master Mix, No AmpErase UNGa(Applied Biosystems社) 5μLを混合し、95℃ 10分間の保温後、95℃ 15秒間、60℃ 1分間の保温サイクルを40回繰り返すPCR反応を7300 Real Time PCR System(Applied Biosystems社)を用いて行うことにより、安定発現細胞のマウスmiR-151-3pの分泌量を定量した。当該計算値が最も高かった安定発現細胞株(miR-151-3p過剰分泌細胞)を以下の実験に使用した。
 5匹の7週齢のオスBalb/c athymic nude miceの両鼠径部皮下にPBSに懸濁した1×106 個のmiR-151-3p過剰分泌細胞を移植した。なお、コントロール群として1×106 個のMDA-MB-231-luc D3H1細胞を移植したBalb/c athymic nude miceを用いた。移植14日後、生体イメージング法(IVIS Xenogen社)を用いてリンパ節付近のルシフェラーゼ活性を測定したところ、miR-151-3p過剰分泌細胞を移植したマウスのリンパ節転移はコントロール群と比較して、著しく増加していることが分かった(図7)。
Example 11 Effect on Metastasis Assay in Subcutaneous Transplantation Model of miR-151-3p Hypersecretory Cells Using 1 μg of mmu-miR-151-3p expression plasmid containing mouse miR-151-3p, using LipofectamineLTX kit (Invitrogen) According to the procedure attached to the reagent kit, it was introduced into MDA-MB-231-luc D3H1 cells (Xenogen) seeded at a concentration of 1 × 10 6 cells / well (6-well plate). On the next day, the medium was replaced with 10% FBS / RPMI medium (Invitrogen) containing 2 μg / mL Puromycin (Invitrogen), and the cells were stably cultured for 2 weeks to select stably expressing cells.
In order to measure the amount of mouse miR-151-3p secreted by a plurality of stably expressing cells, 1 fmol of synthetic Cel-miR-39 (miScript miRNA Mimic: manufactured by QIAGEN) was added to 100 μL of the culture supernatant, RNA was extracted using RNeasy mini kit (Qiagen) according to the protocol attached to the kit. Next, reverse transcription using the obtained microRNA as a template using TaqMan MicroRNA Reverse Transcription kit (Applied Biosystems), miR-151-3p TaqMan MicroRNA Assay, and Cel-miR-39 TaqMan MicroRNA Assay (Applied Biosystems) Reaction was performed. That is, microRNA solution 3.3 μL, 100 mM dNTPs (with dTTP) 0.05 μL, MultiScribe Reverse Transcriptase (50 U / μL) 0.33 μL, 10 × Reverse Transcription Buffer 0.5 μL, RNase Inhibitor (20 U / μL) 0.063 μL, Nuclease-free water 1.387 μL and TaqMan MicroRNA Assay (5 ×) 1 μL were mixed and incubated at 16 ° C. for 30 minutes, 42 ° C. for 30 minutes, and 85 ° C. for 5 minutes. Subsequently, 4.5 μL of the 3-fold dilution of the reaction solution, 0.5 μL of TaqMan MicroRNA Assay (20 ×), 5 μL of TaqMan 2 × Universal PCR Master Mix, No AmpErase UNGa (Applied Biosystems) were mixed, and 95 ° C. for 10 minutes. After incubation, repeat the incubation cycle of 95 ° C for 15 seconds and 60 ° C for 1 minute 40 times using the 7300 Real Time PCR System (Applied Biosystems). The amount of secretion was quantified. The stable expression cell line (miR-151-3p hypersecretory cell) having the highest calculated value was used in the following experiment.
Five 7-week-old male Balb / cathymic nude mice were transplanted with 1 × 10 6 miR-151-3p hypersecreting cells suspended in PBS subcutaneously in both inguinal regions. As a control group, Balb / cathic nude mice transplanted with 1 × 10 6 MDA-MB-231-luc D3H1 cells were used. 14 days after transplantation, when measuring luciferase activity in the vicinity of lymph nodes using in vivo imaging method (IVIS Xenogen), lymph node metastasis of mice transplanted with miR-151-3p hypersecretory cells was compared with the control group, It was found that there was a significant increase (FIG. 7).
実施例12 miR-151-3p過剰分泌細胞の皮下移植モデルにおける腫瘍血管形成に対する効果
 miR-151-3p過剰分泌細胞移植後20日経過したBalb/c athymic nude miceの鼠径部の腫瘍塊を摘出し、ホルマリン固定した。その後、5μmのパラフィン包埋切片を以下の手順で血管内皮特異的タンパク質であるCD31に対する抗体(Rabbit polyclonal to CD31 ab28364(Abcam社))を用いて免疫染色を行うことで、腫瘍血管の形成能を評価した。なお、コントロール群として4T1-luc 細胞を移植したBalb/c athymic nude miceの鼠径部の腫瘍塊を用いた。まず、当該切片を5分間、3回キシレンで洗浄した後、99.5%エタノール、80%エタノール、70%エタノールの順に5分間洗浄を行った。更に、蒸留水で5分間、3回洗浄した後、流水中に10分間浸漬した。続いて、蒸留水にて5分間、3回洗浄した後、0.5 Mトリスバッファー(pH=10)中で121℃、5分間オートクレーブを行った。その後、30分間室温で放置することにより冷却した後、蒸留水で5分間、3回の洗浄、更に続けてTBS-T溶液(0.05Mトリス、0.3M NaCl、0.1% Tween20水溶液)で5分間、2回洗浄した。スーパーパップペンで組織を囲んだ後、Image-iT Ex Signal Enhancer (Molecular probe社)中に室温、30分間浸漬した。TBS-T溶液で洗浄した後、Dako Protein Block (Dako社)中に室温、20分間浸漬した。そして、Dako Real Antibody Diluent (Dako社)で50倍希釈したRabbit polyclonal to CD31(Abcam社)と室温、30分間反応させた。5分間、3回TBS-T溶液による洗浄を行った後、Dako Real Antibody Diluentで1000倍希釈したAlexa Flour 488 Goat Anti-rabbit IgG (Molecular probe社) と室温、30分間反応させた。5分間、3回TBS-T溶液による洗浄を行った後、Vector Shield Mounting Medium with DAPI (Hard Type)(VECTOR社)を用いて封入した。なお、ネガティブコントロールとしてRabbit polyclonal to CD31に変えて、Negative Control Rabbit Immunoglobulin fraction(Dako社)を用いて上記操作を行った切片を用いた。上述した方法で染色した切片をSuper high pressure mercury lamp power supplyを接続した蛍光顕微鏡(ニコン ECLIPSE TE300)を用いて励起波長505nm、蛍光波長520nmにより蛍光画像を取得した。単位面積当たりの蛍光量をACT-1C for DXM1200Cにより計測したところ、miR-151-3p過剰分泌細胞腫瘍塊の蛍光発光量はコントロールの147%であることが分かった。以上の結果から、miR-151-3pの分泌量を増加することで、腫瘍血管の形成が促進されることが分かった(図8)。
Example 12 Effect of miR-151-3p oversecretory cells on tumor angiogenesis in a subcutaneous transplantation model A tumor mass in the inguinal region of Balb / cathic nude mice 20 days after miR-151-3p oversecretory cell transplantation was removed Formalin fixation. After that, 5 μm paraffin-embedded sections were immunostained with the antibody against CD31, a vascular endothelium-specific protein (Rabbit polyclonal to CD31 ab28364 (Abcam)), according to the following procedure, and the ability to form tumor blood vessels was confirmed. evaluated. As a control group, a tumor mass at the groin part of Balb / cathic nude mice transplanted with 4T1-luc cells was used. First, the section was washed with xylene three times for 5 minutes, and then washed for 5 minutes in the order of 99.5% ethanol, 80% ethanol, and 70% ethanol. Further, after washing 3 times with distilled water for 5 minutes, it was immersed in running water for 10 minutes. Subsequently, after washing 3 times with distilled water for 5 minutes, autoclaving was performed at 121 ° C. for 5 minutes in 0.5 M Tris buffer (pH = 10). Then, after cooling by standing at room temperature for 30 minutes, washed with distilled water for 5 minutes, 3 times, followed by TBS-T solution (0.05M Tris, 0.3M NaCl, 0.1% Tween20 aqueous solution) for 5 minutes. Washed twice. After surrounding the tissue with a super pap pen, it was immersed in Image-iT Ex Signal Enhancer (Molecular probe) at room temperature for 30 minutes. After washing with TBS-T solution, it was immersed in Dako Protein Block (Dako) for 20 minutes at room temperature. Then, it was reacted with Rabbit polyclonal to CD31 (Abcam) diluted 50 times with Dako Real Antibody Diluent (Dako) at room temperature for 30 minutes. After washing with TBS-T solution three times for 5 minutes, the mixture was reacted with Alexa Fluor 488 Goat Anti-rabbit IgG (Molecular probe) diluted 1000 times with Dako Real Antibody Diluent for 30 minutes at room temperature. After washing with a TBS-T solution three times for 5 minutes, the cells were sealed using Vector Shield Mounting Medium with DAPI (Hard Type) (VECTOR). In addition, it replaced with Rabbit polyclonal to CD31 as negative control, and used the section | slice which performed said operation using Negative Control Rabbit Immunoglobulin fraction (Dako). Using the fluorescence microscope (Nikon ECLIPSE TE300) connected with the Super high pressure mercury lamp power supply, the fluorescence image was acquired by the excitation wavelength of 505 nm and the fluorescence wavelength of 520 nm. When the amount of fluorescence per unit area was measured by ACT-1C for DXM1200C, it was found that the amount of fluorescence emitted from the miR-151-3p hypersecretory cell tumor mass was 147% of the control. From the above results, it was found that the formation of tumor blood vessels was promoted by increasing the amount of miR-151-3p secretion (FIG. 8).
実施例13 miR-151-3pの血管形成促進作用のメカニズム解析
 実施例5記載の方法で、hsa-miR-151-3pをトランスフェクションしin vitro血管形成アッセイを行なうときに、VEGF受容体2のリン酸化阻害剤であるKI 8751(Tocris Bioscience)を10nMの濃度で添加したところ、hsa-miR-151-3pによる血管形成促進効果が消失することが分かった(表6)。このことから、miR-151-3はVEGFシグナル経路を調節することで、血管形成促進作用を発揮していることが示唆された。
Example 13 Mechanism analysis of angiogenesis-promoting action of miR-151-3p When hsa-miR-151-3p was transfected and an in vitro angiogenesis assay was performed by the method described in Example 5, VEGF receptor 2 When KI 8751 (Tocris Bioscience), a phosphorylation inhibitor, was added at a concentration of 10 nM, it was found that the effect of promoting angiogenesis by hsa-miR-151-3p disappeared (Table 6). This suggests that miR-151-3 exerts an angiogenesis promoting action by regulating the VEGF signal pathway.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例14 miR-151-3pによるDLL4シグナルの抑制
 DLL4シグナル経路がhsa-miR-151-3pにより遮断されるか否かを以下に記載するウェスタン解析法で検討したところ、hsa-miR-151-3pトランスフェクションによりHUVEC細胞におけるDLL4の発現抑制が認められた(図9)。1ウェル当たり10μgのHUVEC細胞のlysateをポリアクリルアミドゲル(スーパーセップエース10%13well 和光純薬)を用いて、200V、1時間、電気泳動した。得られたアクリルアミドゲルからPVDF膜にセミドライブロッティングシステムを用いて20V、30分間、トランスファーした。次いで、PVDF膜を3%スキムミルク/T-TBS溶液で室温、1時間ブロッキングした後、適宜希釈した抗体(抗hDLL4抗体(DLL4 Antibody(C-term):ABGENT, AP9964a)の場合1/1,000希釈、抗hactin抗体(Anti-Actin, cloneC4:MILLIPORE, MAB1501)の場合1/10,000希釈)で室温、1時間処理した。T-TBS溶液で10分間の洗浄を3回行なった後、1/3,000希釈した2次抗体(HRP結合抗マウスIgG抗体又はHRP結合抗ウサギIgG抗体)とインキュベートした。更に、T-TBS溶液で10分間の洗浄を3回行なった後、HRP活性測定試薬(アプライドバイオシステム社)を用いて抗体と結合したタンパク質を検出した(LAS2000 富士フィルム社)。
Example 14 Suppression of DLL4 signal by miR-151-3p Whether or not the DLL4 signal pathway is blocked by hsa-miR-151-3p was examined by the Western analysis method described below, hsa-miR-151- Suppression of DLL4 expression in HUVEC cells was observed by 3p transfection (FIG. 9). A lysate of 10 μg of HUVEC cells per well was electrophoresed at 200 V for 1 hour using polyacrylamide gel (Supersep Ace 10% 13 well Wako Pure Chemical Industries). The obtained acrylamide gel was transferred to a PVDF membrane at 20 V for 30 minutes using a semi-driving system. Next, after blocking the PVDF membrane with a 3% skim milk / T-TBS solution at room temperature for 1 hour, the antibody diluted appropriately (anti-hDLL4 antibody (DLL4 Antibody (C-term): ABGENT, AP9964a) 1 / 1,000 dilution, Anti-hactin antibody (Anti-Actin, clone C4: MILLIPORE, MAB1501) was treated with 1 / 10,000 dilution for 1 hour at room temperature. After washing with T-TBS solution for 10 minutes three times, the mixture was incubated with a secondary antibody (HRP-conjugated anti-mouse IgG antibody or HRP-conjugated anti-rabbit IgG antibody) diluted 1 / 3,000. Furthermore, after washing with a T-TBS solution for 10 minutes three times, a protein bound to an antibody was detected using a reagent for measuring HRP activity (Applied Biosystems) (LAS2000 Fuji Film).
実施例15 miR-151-3pの標的遺伝子の同定
 マイクロRNAの標的遺伝子予測プログラムTargetscan (http://www.targetscan.org/)に基づき予測されたmiR-151-3pの標的遺伝子群の中から、血管新生に関連する遺伝子の抽出を試みた。その結果、VEGFシグナル伝達経路を構成するAkt3遺伝子の3’UTR上にmiR-151-3pのシード配列と相補的な配列が存在することが分かった。そこで、has-miR-151-3pがhAkt3の3’UTRに作用しうるか否かをhAkt3 3’UTRベクター(miTarget miRNA 3’UTR Target Sequence Expression Clone : GeneCopia社)を用いて、実施例6記載のルシフェラーゼアッセイを行なうことで、検討した。その結果、miR-151-3pは濃度依存的にhAkt3 3’UTRベクターを導入したHEK293細胞のルシフェラーゼ活性を抑制することが分かった(図10)。
 次に、HUVEC細胞にhsa-miR-151-3pを導入した時の内因性のhAkt3タンパク量を以下に記載するウェスタンブロッティング法で検討した。1ウェル当たり10μgのHUVEC細胞のlysateをポリアクリルアミドゲル(スーパーセップエース10%13well 和光純薬)を用いて、200V、1時間、電気泳動した。得られたアクリルアミドゲルからPVDF膜にセミドライブロッティングシステムを用いて20V、30分間、トランスファーした。次いで、PVDF膜を3%スキムミルク/T-TBS溶液で室温、1時間ブロッキングした後、適宜希釈した抗体(抗hAkt3抗体(Anti-Akt3/PKBγ, clone GMA104:MILLIPORE, 05-780)の場合1/1,000希釈、抗hactin抗体(Anti-Actin, cloneC4:MILLIPORE, MAB1501)の場合1/10,000希釈)で室温、1時間処理した。T-TBS溶液で10分間の洗浄を3回行なった後、1/3,000希釈した2次抗体(HRP結合抗マウスIgG抗体又はHRP結合抗ウサギIgG抗体)とインキュベートした。更に、T-TBS溶液で10分間の洗浄を3回行なった後、HRP活性測定試薬(アプライドバイオシステム社)を用いて抗体と結合したタンパク質を検出した(LAS2000 富士フィルム社)。その結果、図11に示された通り、10nMのmiR-151-3pにより半分程度hAkt3タンパクが減少することが分かった。以上の検討から、Akt3はmiR-151-3pの標的遺伝子の1つであることが分かった。
 VEGF存在下でAkt3遺伝子をsiRNA(AKT3 HSS115177 invitrogen)を用いてノックダウンしたところ、DLL4の発現上昇がキャンセルされることが分かった(図12)。更に、Akt3 siRNA、DLL4抗体(DLL4 antibody (C-term) ABGENT)を投与することで血管形成数が増加した(表7)ことから、VEGF→Akt3→DLL4のシグナルを遮断すると血管形成の異常が生ずることが確認できた。
 以上の結果から、miR-151-3pはAkt3、DLL4の発現を抑制することで、VEGFのフィードバックシグナルを遮断し、血管形成異常を導くことが示唆された。
Example 15 Identification of miR-151-3p Target Genes Among miR-151-3p target gene groups predicted based on a target gene prediction program for microRNAs Targetscan (http://www.targetscan.org/) We tried to extract genes related to angiogenesis. As a result, it was found that a sequence complementary to the seed sequence of miR-151-3p exists on the 3 ′ UTR of the Akt3 gene constituting the VEGF signaling pathway. Therefore, whether or not has-miR-151-3p can act on the 3′UTR of hAkt3 was determined using the hAkt3 3′UTR vector (miTarget miRNA 3′UTR Target Sequence Expression Clone: GeneCopia) as described in Example 6. A luciferase assay was performed to investigate. As a result, miR-151-3p was found to suppress the luciferase activity of HEK293 cells into which the hAkt3 3′UTR vector was introduced in a concentration-dependent manner (FIG. 10).
Next, the endogenous hAkt3 protein level when hsa-miR-151-3p was introduced into HUVEC cells was examined by the Western blotting method described below. A lysate of 10 μg of HUVEC cells per well was electrophoresed at 200 V for 1 hour using polyacrylamide gel (Supersep Ace 10% 13 well Wako Pure Chemical Industries). The obtained acrylamide gel was transferred to a PVDF membrane at 20 V for 30 minutes using a semi-driving system. Next, the PVDF membrane was blocked with a 3% skim milk / T-TBS solution at room temperature for 1 hour, and then diluted appropriately (anti-hAkt3 antibody (Anti-Akt3 / PKBγ, clone GMA104: MILLIPORE, 05-780) The solution was treated with an anti-hactin antibody (Anti-Actin, clone C4: MILLIPORE, MAB1501) at 1,000 dilution for 1 hour at room temperature. After washing with T-TBS solution for 10 minutes three times, the mixture was incubated with a secondary antibody (HRP-conjugated anti-mouse IgG antibody or HRP-conjugated anti-rabbit IgG antibody) diluted 1 / 3,000. Furthermore, after washing with a T-TBS solution for 10 minutes three times, a protein bound to an antibody was detected using a reagent for measuring HRP activity (Applied Biosystems) (LAS2000 Fuji Film). As a result, as shown in FIG. 11, it was found that 10 nM miR-151-3p decreased hAkt3 protein by about half. From the above study, it was found that Akt3 is one of the target genes of miR-151-3p.
When the Akt3 gene was knocked down using siRNA (AKT3 HSS115177 invitrogen) in the presence of VEGF, it was found that the increased expression of DLL4 was canceled (FIG. 12). Furthermore, administration of Akt3 siRNA and DLL4 antibody (DLL4 antibody (C-term) ABGENT) increased the number of blood vessels formed (Table 7). It was confirmed that it occurred.
These results suggest that miR-151-3p blocks the expression of Akt3 and DLL4, thereby blocking VEGF feedback signals and leading to abnormal angiogenesis.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の腫瘍の治療剤は、腫瘍の血管形成を抑制し、腫瘍の転移や予防、特に乳がんの治療や予防に有用である。また、本発明のがんの判定方法により、悪性がん、特に悪性の乳がんを判定することができる。さらに本発明は、悪性がんを判定するための剤、および腫瘍の血管形成を抑制する作用を有する物質のスクリーニング方法も提供することができる。 The tumor therapeutic agent of the present invention suppresses tumor angiogenesis and is useful for tumor metastasis and prevention, particularly for breast cancer treatment and prevention. Further, malignant cancer, particularly malignant breast cancer can be determined by the cancer determination method of the present invention. Furthermore, the present invention can also provide an agent for determining malignant cancer and a method for screening a substance having an action of suppressing tumor angiogenesis.
 本出願は日本で出願された特願2011-047647(出願日:2011年3月4日)を基礎としており,その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2011-047647 filed in Japan (filing date: March 4, 2011), the contents of which are incorporated in full herein.

Claims (44)

  1.  以下の(a)に記載の阻害剤、あるいは(b)に記載の核酸を含有する腫瘍治療剤:
    (a)miR-151-3p阻害剤、miR-886-3p阻害剤、またはSMPD3阻害剤、
    (b)(1)miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、または配列番号1~6のいずれかで表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり且つ標的遺伝子発現抑制活性を有するヌクレオチドを含む核酸、又は(2)上記(1)の核酸を発現し得るベクターである核酸。
    The following (a) inhibitor or tumor therapeutic agent containing the nucleic acid according to (b):
    (A) an miR-151-3p inhibitor, an miR-886-3p inhibitor, or an SMPD3 inhibitor,
    (B) (1) a nucleotide sequence represented by any of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, or SEQ ID NOs: 1-6 A nucleic acid comprising a nucleotide sequence having a nucleotide sequence having 70% or more identity and having a target gene expression suppressing activity, or (2) a nucleic acid that is a vector capable of expressing the nucleic acid of (1) above.
  2.  miR-151-3p阻害剤が、以下の(1)又は(2)に記載の核酸である、請求項1に記載の剤:
    (1)配列番号9で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-151-3pの機能を抑制する活性を有するヌクレオチドを含む核酸、
    (2)上記(1)の核酸を発現し得る発現ベクターである核酸。
    The agent according to claim 1, wherein the miR-151-3p inhibitor is the nucleic acid according to (1) or (2) below:
    (1) a nucleic acid comprising a nucleotide sequence comprising 70% or more of the nucleotide sequence represented by SEQ ID NO: 9, and comprising a nucleotide having an activity of suppressing the function of miR-151-3p,
    (2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
  3.  miR-886-3p阻害剤が、以下の(1)又は(2)に記載の核酸である、請求項1に記載の剤:
    (1)配列番号10で表されるヌクレオチド配列と70%以上の同一性を有するヌクレオチド配列からなり、且つmiR-886-3pの機能を抑制する活性を有するヌクレオチドを含む核酸、
    (2)上記(1)の核酸を発現し得る発現ベクターである核酸。
    The agent according to claim 1, wherein the miR-886-3p inhibitor is the nucleic acid according to the following (1) or (2):
    (1) a nucleic acid comprising a nucleotide sequence having 70% or more identity with the nucleotide sequence represented by SEQ ID NO: 10, and comprising a nucleotide having an activity of suppressing the function of miR-886-3p,
    (2) A nucleic acid that is an expression vector capable of expressing the nucleic acid of (1) above.
  4.  SMPD3阻害剤が、以下の(1)~(5)からなる群より選択される物質である、請求項1に記載の剤:
    (1)SMPD3をコードする遺伝子の転写産物に対するアンチセンス核酸、
    (2)SMPD3をコードする遺伝子の転写産物に対するリボザイム核酸、
    (3)SMPD3をコードする遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体、
    (4)SMPD3と結合する抗体、
    (5)SMPD3と結合する低分子化合物。
    The agent according to claim 1, wherein the SMPD3 inhibitor is a substance selected from the group consisting of the following (1) to (5):
    (1) an antisense nucleic acid against a transcription product of a gene encoding SMPD3,
    (2) a ribozyme nucleic acid for the transcription product of the gene encoding SMPD3,
    (3) a nucleic acid having RNAi activity for a transcription product of a gene encoding SMPD3 or a precursor thereof,
    (4) an antibody that binds to SMPD3,
    (5) A low molecular weight compound that binds to SMPD3.
  5.  核酸が一本鎖または二本鎖である、請求項1~4のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 4, wherein the nucleic acid is single-stranded or double-stranded.
  6.  核酸が配列番号1~6、9、10のいずれかで表されるヌクレオチド配列またはその部分配列からなるRNA、あるいはその修飾体である、請求項1~3のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 3, wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10, or RNA comprising a partial sequence thereof, or a modified form thereof.
  7.  核酸が配列番号1~6、9、10のいずれかで表されるヌクレオチド配列からなるRNAまたはその修飾体である、請求項1~3および6のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 3 and 6, wherein the nucleic acid is RNA consisting of a nucleotide sequence represented by any one of SEQ ID NOs: 1 to 6, 9, and 10, or a modified product thereof.
  8.  核酸が配列番号9または配列番号54で表されるヌクレオチド配列からなる一本鎖RNAまたはその修飾体である、請求項2記載の剤。 The agent according to claim 2, wherein the nucleic acid is a single-stranded RNA comprising the nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54 or a modified product thereof.
  9.  核酸が、少なくとも1以上の、2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドを含む一本鎖RNAである、請求項8記載の剤。 The agent according to claim 8, wherein the nucleic acid is at least one single-stranded RNA containing a modified nucleotide of either 2'-OMe modified nucleotide or LNA modified nucleotide.
  10.  一本鎖RNAが3個以上のLNA修飾ヌクレオチドを含む、請求項9記載の剤。 The agent according to claim 9, wherein the single-stranded RNA comprises 3 or more LNA-modified nucleotides.
  11.  一本鎖RNAが4個以上のLNA修飾ヌクレオチドを含む、請求項9記載の剤。 The agent according to claim 9, wherein the single-stranded RNA comprises 4 or more LNA-modified nucleotides.
  12.  一本鎖RNAが3から12個のLNA修飾ヌクレオチドを含む、請求項9記載の剤。 The agent according to claim 9, wherein the single-stranded RNA comprises 3 to 12 LNA-modified nucleotides.
  13.  一本鎖RNAが4から12個のLNA修飾ヌクレオチドを含む、請求項9記載の剤。 The agent according to claim 9, wherein the single-stranded RNA comprises 4 to 12 LNA-modified nucleotides.
  14.  一本鎖RNAがその5’末端と3’末端の両方に少なくとも1個のLNA修飾ヌクレオチドを含む、請求項8~13記載の剤。 The agent according to claims 8 to 13, wherein the single-stranded RNA comprises at least one LNA-modified nucleotide at both the 5 'end and the 3' end.
  15.  全てのヌクレオチドが2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドからなる一本鎖RNAである、請求項8~14記載の剤。 The agent according to any one of claims 8 to 14, wherein all nucleotides are single-stranded RNAs consisting of modified nucleotides of either 2'-OMe modified nucleotides or LNA modified nucleotides.
  16.  一本鎖RNAが配列番号:30~38、及び43~50から選択されるいずれかで表されるヌクレオチド配列からなる一本鎖RNAである、請求項10記載の剤。 The agent according to claim 10, wherein the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
  17.  一本鎖RNAが配列番号:43~48および50から選択されるいずれかで表されるヌクレオチド配列からなる一本鎖RNAである、請求項10記載の剤。 The agent according to claim 10, wherein the single-stranded RNA is a single-stranded RNA consisting of a nucleotide sequence represented by any one selected from SEQ ID NOs: 43 to 48 and 50.
  18.  血管形成を阻害するための、請求項1~17のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 17, which inhibits angiogenesis.
  19.  腫瘍血管新生を阻害するための、請求項1~17のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 17, which inhibits tumor angiogenesis.
  20.  腫瘍転移を抑制するための、請求項1~17のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 17, which suppresses tumor metastasis.
  21.  腫瘍が乳がんである、請求項1~20のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 20, wherein the tumor is breast cancer.
  22.  miR-151-3pの過剰発現による血管形成異常を抑制するための、請求項3および8~17のいずれか1項に記載の阻害剤または核酸。 The inhibitor or nucleic acid according to any one of claims 3 and 8 to 17, which suppresses angiogenesis abnormality caused by overexpression of miR-151-3p.
  23.  腫瘍を治療するための、請求項1~17のいずれか1項に記載の阻害剤または核酸。 The inhibitor or nucleic acid according to any one of claims 1 to 17, for treating a tumor.
  24.  血管形成を阻害するための、請求項1~17のいずれか1項に記載の阻害剤または核酸。 The inhibitor or nucleic acid according to any one of claims 1 to 17, which inhibits angiogenesis.
  25.  腫瘍血管新生を阻害するための、請求項1~17のいずれか1項に記載の阻害剤または核酸。 The inhibitor or nucleic acid according to any one of claims 1 to 17, which inhibits tumor angiogenesis.
  26.  腫瘍転移を抑制するための、請求項1~17のいずれか1項に記載の阻害剤または核酸。 The inhibitor or nucleic acid according to any one of claims 1 to 17, which suppresses tumor metastasis.
  27.  腫瘍治療剤を製造するための、請求項1~17のいずれか1項に記載の阻害剤または核酸の使用。 Use of the inhibitor or nucleic acid according to any one of claims 1 to 17 for producing a tumor therapeutic agent.
  28.  血管形成阻害剤を製造するための、請求項1~17のいずれか1項に記載の阻害剤または核酸の使用。 Use of the inhibitor or nucleic acid according to any one of claims 1 to 17 for producing an angiogenesis inhibitor.
  29.  腫瘍血管新生阻害剤を製造するための、請求項1~17のいずれか1項に記載の阻害剤または核酸の使用。 Use of the inhibitor or nucleic acid according to any one of claims 1 to 17 for producing a tumor angiogenesis inhibitor.
  30.  腫瘍転移抑制剤を製造するための、請求項1~17のいずれか1項に記載の阻害剤または核酸の使用。 Use of the inhibitor or nucleic acid according to any one of claims 1 to 17 for producing a tumor metastasis inhibitor.
  31.  請求項1~17のいずれか1項に記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍の治療方法。 A method for treating a tumor in a human, comprising administering the inhibitor or nucleic acid according to any one of claims 1 to 17 to the human.
  32.  請求項1~17のいずれか1項に記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける血管形成を阻害する方法。 A method for inhibiting angiogenesis in a human comprising administering the inhibitor or nucleic acid according to any one of claims 1 to 17 to the human.
  33.  請求項1~17のいずれか1項に記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍血管新生を阻害する方法。 A method for inhibiting tumor angiogenesis in a human comprising administering the inhibitor or nucleic acid according to any one of claims 1 to 17 to the human.
  34.  請求項1~17のいずれか1項に記載の阻害剤または核酸をヒトに投与することを含む該ヒトにおける腫瘍転移を抑制する方法。 A method for suppressing tumor metastasis in a human comprising administering the inhibitor or nucleic acid according to any one of claims 1 to 17 to the human.
  35.  被検試料におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pの分泌レベルもしくは濃度を測定すること、および該分泌レベルもしくは該濃度と悪性がんとの間の正の相関に基づき、悪性がんの罹患の有無を判定することを含む、がんの判定方法。 MiR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR- 221, miR-126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140- Based on measuring the secretion level or concentration of 3p, miR-593 or miR-483-3p and positive correlation between the secretion level or the concentration and malignant cancer, A method for determining cancer, comprising determining.
  36.  がんが、乳がんである請求項35記載の方法。 36. The method according to claim 35, wherein the cancer is breast cancer.
  37.  miR-29b-1*、miR-221*、miR-138、miR-584、miR-30a、miR-146a、miR-151-3p、miR-886-3p、miR-100、miR-221、miR-126、miR-130a、miR-222、miR-125b、miR-29a、miR-720、miR-224、miR-29b、miR-1274b、miR-1280、miR-210、miR-140-3p、miR-593またはmiR-483-3pを特異的に検出し得る核酸プローブを含む、悪性がんを判定するための剤。 miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a, miR-146a, miR-151-3p, miR-886-3p, miR-100, miR-221, miR- 126, miR-130a, miR-222, miR-125b, miR-29a, miR-720, miR-224, miR-29b, miR-1274b, miR-1280, miR-210, miR-140-3p, miR- An agent for determining malignant cancer, comprising a nucleic acid probe capable of specifically detecting 593 or miR-483-3p.
  38.  がんが、乳がんである請求項37記載の剤。 The agent according to claim 37, wherein the cancer is breast cancer.
  39.  以下の工程を含む、腫瘍の血管形成を抑制し得る物質を探索する方法:
    (1)被検物質とmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌または発現を測定可能な細胞とを接触させること;
    (2)被検物質を接触させた細胞におけるmiR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を測定し、該分泌量または発現量を被検物質を接触させない対照細胞における分泌量または発現量と比較すること;並びに
    (3)上記(2)の比較結果に基づいて、miR-29b-1*、miR-221*、miR-138、miR-584、miR-30aまたはmiR-146aの分泌量または発現量を上方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
    A method for searching for a substance capable of suppressing tumor angiogenesis, comprising the following steps:
    (1) contacting a test substance with a cell capable of measuring secretion or expression of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a;
    (2) measuring the amount of miR-29b-1 *, miR-221 *, miR-138, miR-584, miR-30a or miR-146a secreted or expressed in cells contacted with the test substance, Comparing the amount of secretion or expression with the amount of secretion or expression in control cells not contacted with the test substance; and (3) based on the comparison result of (2) above, miR-29b-1 *, miR-221 * Select a test substance that up-regulates the secretion or expression level of miR-138, miR-584, miR-30a, or miR-146a as a substance that can suppress tumor angiogenesis.
  40.  以下の工程を含む、腫瘍の血管形成を抑制し得る物質を探索する方法:
    (1)被検物質とmiR-151-3p、miR-886-3pまたはSMPD3の分泌、発現または機能を測定可能な細胞とを接触させること;
    (2)被検物質を接触させた細胞におけるmiR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を測定し、該分泌量、発現量または機能を被検物質を接触させない対照細胞における分泌量、発現量または機能と比較すること;並びに
    (3)上記(2)の比較結果に基づいて、miR-151-3p、miR-886-3pまたはSMPD3の分泌量、発現量または機能を下方制御する被検物質を、腫瘍の血管形成を抑制し得る物質として選択すること。
    A method for searching for a substance capable of suppressing tumor angiogenesis, comprising the following steps:
    (1) contacting a test substance with a cell capable of measuring the secretion, expression or function of miR-151-3p, miR-886-3p or SMPD3;
    (2) Measure the secretion amount, expression level or function of miR-151-3p, miR-886-3p or SMPD3 in cells contacted with the test substance, and determine the secretion amount, expression level or function of the test substance Comparing with the secreted amount, expression level or function in the non-contacted control cells; and (3) secreted amount, expression of miR-151-3p, miR-886-3p or SMPD3 based on the comparison result of (2) above A test substance that down-regulates the amount or function is selected as a substance capable of suppressing tumor angiogenesis.
  41.  配列番号9または配列番号54で表されるヌクレオチド配列からなり、全てのヌクレオチドが2’-OMe修飾ヌクレオチドまたはLNA修飾ヌクレオチドのいずれかの修飾ヌクレオチドからなり、且つ、3から12個のLNA修飾ヌクレオチドを含む、一本鎖RNA。 It consists of a nucleotide sequence represented by SEQ ID NO: 9 or SEQ ID NO: 54, all nucleotides are composed of either 2′-OMe modified nucleotides or LNA modified nucleotides, and 3 to 12 LNA modified nucleotides Including single-stranded RNA.
  42.  一本鎖RNAが4から12個のLNA修飾ヌクレオチドを含む、請求項41記載の一本鎖RNA。 42. The single stranded RNA of claim 41, wherein the single stranded RNA comprises 4 to 12 LNA modified nucleotides.
  43.  一本鎖RNAがその5’末端と3’末端の両方に少なくとも1個のLNA修飾ヌクレオチドを含む、請求項41又は42記載の一本鎖RNA。 43. The single-stranded RNA according to claim 41 or 42, wherein the single-stranded RNA comprises at least one LNA-modified nucleotide at both the 5 'end and the 3' end.
  44.  配列番号:30~38および43~50から選択されるいずれかで表されるヌクレオチド配列からなる請求項42記載の一本鎖RNA。 The single-stranded RNA comprising a nucleotide sequence represented by any one selected from SEQ ID NOs: 30 to 38 and 43 to 50.
PCT/JP2012/055476 2011-03-04 2012-03-02 Tumor angiogenesis inhibitor WO2012121178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503525A JPWO2012121178A1 (en) 2011-03-04 2012-03-02 Tumor angiogenesis inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011047647 2011-03-04
JP2011-047647 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012121178A1 true WO2012121178A1 (en) 2012-09-13

Family

ID=46798142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055476 WO2012121178A1 (en) 2011-03-04 2012-03-02 Tumor angiogenesis inhibitor

Country Status (2)

Country Link
JP (1) JPWO2012121178A1 (en)
WO (1) WO2012121178A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126233A1 (en) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 Method for assaying microrna, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
WO2014152932A1 (en) * 2013-03-14 2014-09-25 Board Of Regents, The University Of Texas System Mirna for treating cancer and for use with adoptive immunotherapies
WO2014191430A1 (en) * 2013-05-27 2014-12-04 National University Of Ireland, Galway A biomarker of breast cancer
CN106536736A (en) * 2014-07-31 2017-03-22 新加坡科技研究局 Modified antiMIR-138 oligonucleotides
WO2017131208A1 (en) * 2016-01-28 2017-08-03 東レ株式会社 Pharmaceutical composition for treating and/or preventing cancer
WO2019117257A1 (en) * 2017-12-13 2019-06-20 国立大学法人広島大学 Method for assisting in detection of breast cancer
CN114032238A (en) * 2021-10-22 2022-02-11 山东农业大学 Application of gga-miR-146a-5p inhibitor in preparation of medicine for resisting J subgroup avian leukosis virus infection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100687A (en) * 2007-10-24 2009-05-14 Chiba Univ METHOD FOR DETECTING BLADDER CANCER BASED ON microRNA EXPRESSION PROFILING
WO2009108860A2 (en) * 2008-02-28 2009-09-03 The Ohio University Rasearch Foundation Microrna-based methods and compositions for the diagnosis, pronosis and treatment of prostate related disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100687A (en) * 2007-10-24 2009-05-14 Chiba Univ METHOD FOR DETECTING BLADDER CANCER BASED ON microRNA EXPRESSION PROFILING
WO2009108860A2 (en) * 2008-02-28 2009-09-03 The Ohio University Rasearch Foundation Microrna-based methods and compositions for the diagnosis, pronosis and treatment of prostate related disorders

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DING G. ET AL.: "Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA", NATURE CELL BIOLOGY, vol. 12, no. 4, 2010, pages 390 - 399 *
HARUHISA IGUCHI ET AL.: "Application of microRNAs to Cancer Therapy", JAPANESE JOURNAL OF CANCER AND CHEMOTHERAPY, vol. 37, no. 3, 2010, pages 389 - 395 *
MA L. ET AL.: "Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model", NATURE BIOTECHNOLOGY, vol. 28, no. 4, 2010, pages 341 - 347 *
OCHIYA T. ET AL.: "Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes", MOLECULAR THERAPY, vol. 18, no. 1, 2010, pages 181 - 187 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994843B2 (en) 2013-02-15 2018-06-12 National University Corporation Tokyo Medical And Dental University Method for assaying microRNA, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
JP2018143248A (en) * 2013-02-15 2018-09-20 国立大学法人 東京医科歯科大学 Microrna measurement method, as well as cancer therapeutic agent, and pharmaceutical composition for cancer therapy containing the same
WO2014126233A1 (en) * 2013-02-15 2014-08-21 国立大学法人東京医科歯科大学 Method for assaying microrna, cancer therapeutic agent, and medicinal composition containing same for cancer therapy
JPWO2014126233A1 (en) * 2013-02-15 2017-02-02 国立大学法人 東京医科歯科大学 MicroRNA measurement method, cancer therapeutic agent and pharmaceutical composition for cancer treatment containing the same
US10876115B2 (en) 2013-02-15 2020-12-29 National University Corporation Tokyo Medical And Dental University Method for assaying MicroRNA, cancer therapeutic agent, and medical composition containing same for cancer therapy
WO2014152932A1 (en) * 2013-03-14 2014-09-25 Board Of Regents, The University Of Texas System Mirna for treating cancer and for use with adoptive immunotherapies
US9675633B2 (en) 2013-03-14 2017-06-13 Board Of Regents, The University Of Texas System miRNA for treating cancer and for use with adoptive immunotherapies
WO2014191430A1 (en) * 2013-05-27 2014-12-04 National University Of Ireland, Galway A biomarker of breast cancer
US20160194719A1 (en) * 2013-05-27 2016-07-07 National University Of Ireland, Galway A biomarker of breast cancer
CN106536736A (en) * 2014-07-31 2017-03-22 新加坡科技研究局 Modified antiMIR-138 oligonucleotides
WO2017131208A1 (en) * 2016-01-28 2017-08-03 東レ株式会社 Pharmaceutical composition for treating and/or preventing cancer
US11266672B2 (en) 2016-01-28 2022-03-08 Toray Industries, Inc. Pharmaceutical composition for treating and/or preventing cancer
JPWO2017131208A1 (en) * 2016-01-28 2018-11-22 東レ株式会社 Pharmaceutical composition for treatment and / or prevention of cancer
WO2019117257A1 (en) * 2017-12-13 2019-06-20 国立大学法人広島大学 Method for assisting in detection of breast cancer
JPWO2019117257A1 (en) * 2017-12-13 2020-12-24 国立大学法人広島大学 How to help detect breast cancer
JP7298913B2 (en) 2017-12-13 2023-06-27 国立大学法人広島大学 Methods to Aid in Breast Cancer Detection
CN114032238B (en) * 2021-10-22 2023-10-24 山东农业大学 Application of gga-miR-146a-5p inhibitor in preparation of anti-J subgroup avian leukosis virus infection medicines
CN114032238A (en) * 2021-10-22 2022-02-11 山东农业大学 Application of gga-miR-146a-5p inhibitor in preparation of medicine for resisting J subgroup avian leukosis virus infection

Also Published As

Publication number Publication date
JPWO2012121178A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
WO2012121178A1 (en) Tumor angiogenesis inhibitor
US9862948B2 (en) Microrna inhibition for the treatment of inflammation and myeloproliferative disorders
JP2019512489A (en) MicroRNA and method of using the same
US9322015B2 (en) Methods of using microRNA-26a to promote angiogenesis
WO2014096418A2 (en) Micrornas as therapeutics and biomarkers for epilepsy
US9789132B2 (en) Methods targeting miR-128 for regulating cholesterol/lipid metabolism
CA2879410C (en) Agent for treating cancer
US20170016001A1 (en) Asymmetric interfering rna compositions that silence k-ras and methods of uses thereof
US20190300884A1 (en) Modulators of human kai1 metastasis suppressor gene, methods and uses thereof
US11332789B2 (en) Compositions and methods for diagnosing and treating hyperlipidemia-related diseases
JP5812491B2 (en) Tumor treatment
JP7450268B2 (en) Cancer stem cell markers and cancer stem cell targeting drugs
US20120115928A1 (en) Mirna and its targets respectively the proteins made based on the targets as a prognostic, diagnostic biomarker and therapeutic agent for cancer
KR101514877B1 (en) Use of APE/Ref-1 and JAG1/Notch as a diagnostic marker of colon cancer
US9574240B2 (en) Gene amplification of coactivator CoAA and uses thereof
US20230374508A1 (en) Compositions and Methods Targeting circ2082 for the Treatment of Cancer
WO2011130464A1 (en) Translational regulation of sparc by the micrornas mir29a, b and c
US20230287427A1 (en) Inhibition of lncExACT1 to Treat Heart Disease
JP2012171894A (en) Tumor reducing agent
KR101667650B1 (en) Pharmaceutical composition for treating Autosomal dominant polycystic kidney disease containing miR-192, miR-215 or miR-194

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754866

Country of ref document: EP

Kind code of ref document: A1