WO2012120940A1 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
WO2012120940A1
WO2012120940A1 PCT/JP2012/051850 JP2012051850W WO2012120940A1 WO 2012120940 A1 WO2012120940 A1 WO 2012120940A1 JP 2012051850 W JP2012051850 W JP 2012051850W WO 2012120940 A1 WO2012120940 A1 WO 2012120940A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
alloy film
layer
current sensor
magnetoresistive effect
Prior art date
Application number
PCT/JP2012/051850
Other languages
French (fr)
Japanese (ja)
Inventor
井出 洋介
斎藤 正路
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2013503419A priority Critical patent/JP5597305B2/en
Publication of WO2012120940A1 publication Critical patent/WO2012120940A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a current sensor using a magnetoresistive effect element.
  • a motor In an electric vehicle, a motor is driven using electricity generated by an engine or a regenerative brake.
  • the magnitude of the current used for driving the motor is detected by, for example, a non-contact current sensor.
  • a current sensor a sensor in which a magnetic core having a notch (core gap) is arranged around a conductor through which a current to be measured flows and a magnetic detection element is arranged in the core gap is known.
  • the magnetic sensor of the current sensor described above has a laminated structure of a fixed magnetic layer whose magnetization direction is fixed, a nonmagnetic layer, and a free magnetic layer (soft magnetic free layer) whose magnetization direction varies with respect to an external magnetic field.
  • a magnetoresistive element or the like is used.
  • the current sensor using a magnetoresistive effect element includes a bridge circuit including a magnetoresistive effect element and a fixed resistance element as a magnetic field detection circuit (see, for example, Patent Document 1).
  • various characteristics such as dynamic range (current measurement range) and linearity (output linearity) greatly depend on the characteristics of the magnetoresistive effect element constituting the current sensor.
  • GMR giant magnetoresistive effect
  • the dynamic range of the current sensor depends on the linearity of the magnetic field-resistance change rate curve of the GMR element. . That is, if the linear region of the magnetic field-resistance change rate curve of the GMR element becomes wider, the dynamic range of the current sensor becomes wider.
  • a thick free magnetic layer in the GMR element may be formed.
  • the slope of the magnetic field-resistance change rate curve is reduced, so that the resistance change rate can be made linear over a wide magnetic field range.
  • the method of canceling the AMR effect by setting the thickness of the free magnetic layer to 5 nm or less can obtain a GMR element suitable for the use of the magnetic head. Since the anisotropy is small, it is impossible to achieve both high linearity and low magnetic hysteresis. In particular, since the thickness of the free magnetic layer is as thin as 5 nm or less, it is difficult to keep the magnetic hysteresis low. For this reason, even if the GMR element is used as a current sensor, it is difficult to realize a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy.
  • the present invention has been made in view of such a point, and an object thereof is to provide a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy.
  • the current sensor of the present invention is a current sensor including a magnetoresistive effect element whose resistance value is changed by application of an induced magnetic field from a current to be measured, and the magnetoresistive effect element is inserted through an antiparallel coupling film.
  • a self-pinned ferromagnetic pinned layer formed by antiferromagnetically coupling the first ferromagnetic film and the second ferromagnetic film, a nonmagnetic intermediate layer on the ferromagnetic pinned layer, and the nonmagnetic intermediate layer
  • a soft magnetic free layer (free magnetic layer) on the layer, and the soft magnetic free layer includes a CoFe alloy film on the nonmagnetic intermediate layer, a NiFe alloy film on the CoFe alloy film, and the NiFe alloy.
  • NiFeM alloy film (M is an element selected from Ta, Cr, Nb, Rh, Zr, Mo, Al, Au, Pd, Pt, and Si), and the CoFe alloy film
  • the thickness is 0.5 nm to 1.5 nm
  • the thickness of the iFe alloy film is 0.5 nm ⁇ 2.0 nm
  • the thickness of NiFeM alloy film is 6 nm ⁇ 17 nm.
  • the soft magnetic free layer in the magnetoresistive effect element has a laminated structure of a relatively thin CoFe alloy film and NiFe alloy film and a relatively thick NiFeM alloy film, linearity is improved.
  • a magnetoresistive element with improved MR ratio and reduced coercive force is realized. This is because the MR ratio is increased by the NiFe alloy film having a predetermined thickness disposed on the CoFe alloy film, and the coercive force is maintained while maintaining the MR ratio by the NiFeM alloy film having the predetermined thickness disposed on the NiFe alloy film. This is because it can be suppressed.
  • the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect. Also, by setting the CoFe alloy film to the above thickness, while suppressing magnetostriction and magnetic hysteresis, the thermal diffusion of the film constituting the laminated structure of the magnetoresistive effect element is prevented, and the spin-dependent interface scattering effect is enhanced. This is because the ratio can be increased. As a result of realizing a magnetic sensor element suitable for the current sensor as described above, a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy is realized.
  • the CoFe alloy film may be made of a CoFe alloy containing 0 atomic% to 20 atomic% of Fe. That is, the CoFe alloy film may be a Co film. According to this configuration, since the CoFe alloy has a face-centered cubic structure (fcc) or a hexagonal close-packed structure (hcp), magnetic hysteresis can be further suppressed.
  • fcc face-centered cubic structure
  • hcp hexagonal close-packed structure
  • the NiFe alloy film may be composed of a NiFe alloy containing 16 atomic% to 22 atomic% of Fe. According to this configuration, since the linear magnetostriction constant of the NiFe alloy is close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
  • the NiFeM alloy film may be composed of a NiFeM alloy containing 10 atomic% to 15 atomic% Fe and 2 atomic% to 8 atomic% M. According to this configuration, since the linear magnetostriction constant of the NiFeM alloy is close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
  • a magnetic field detection bridge circuit including the magnetoresistive effect element and the fixed resistance element may be provided.
  • the magnetic field detection bridge circuit is configured using the magnetoresistive effect element and the fixed resistance element as described above, a current having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy.
  • the sensor is realized.
  • a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy can be provided.
  • FIGS. 1 and 2 are schematic views showing an example of a current sensor according to an embodiment of the present invention.
  • the current sensor shown in FIGS. 1 and 2 is a magnetic proportional current sensor and is disposed in the vicinity of the conductor 11 through which the current I to be measured flows.
  • a magnetic proportional current sensor will be described, but the current sensor is not limited thereto.
  • a magnetic balance equation that generates a canceling magnetic field that cancels the induced magnetic field by the feedback coil and calculates the magnitude of the current to be measured from the current flowing through the feedback coil may be applied.
  • the current sensor shown in FIG. 1 and FIG. 2 has a magnetic field detection bridge circuit 12 that detects an induced magnetic field due to the current I to be measured flowing through the conductor 11.
  • the magnetic field detection bridge circuit 12 includes two magnetoresistive effect elements 12a and 12b whose resistance values are changed by applying an induction magnetic field from the current I to be measured, and two fixed resistance elements 12c and 12d whose resistance values are not changed by the induction magnetic field.
  • the magnetic field detection bridge circuit 12 is not limited to a full bridge circuit composed of four elements. A half-bridge circuit composed of two elements may be used.
  • the magnetic field detection bridge circuit 12 includes two output terminals Out1 and Out2 that generate a voltage difference corresponding to the induced magnetic field caused by the current I to be measured.
  • a power source Vdd is connected to one end of the magnetoresistive effect element 12a and one end of the fixed resistance element 12d, and one end of the magnetoresistive effect element 12b and one end of the fixed resistance element 12c. Is connected to the ground GND.
  • the other end of the magnetoresistive effect element 12a and the other end of the fixed resistance element 12c are connected to form an output end Out1, and the other end of the magnetoresistive effect element 12b and the other end of the fixed resistance element 12d Are connected to form an output terminal Out2.
  • the current sensor Based on the voltage difference output from the output terminals Out1 and Out2, the current sensor calculates the current value of the current I to be measured.
  • FIG. 3 is a cross-sectional view showing the current sensor shown in FIG.
  • magnetoresistive elements 12 a and 12 b constituting the magnetic field detection bridge circuit 12 are formed on the substrate 21.
  • a magnetic shield that attenuates the induced magnetic field A caused by the current I to be measured may be disposed on the magnetoresistive effect elements 12a and 12b. By arranging the magnetic shield, the induced magnetic field A applied to the magnetoresistive effect elements 12a and 12b is weakened, so that the substantial current measurement range of the current sensor can be expanded.
  • the magnetic shield can be configured using a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron microcrystalline material.
  • a thermal silicon oxide film 22 that is an insulating layer is formed on a substrate 21.
  • An aluminum oxide film 23 is formed on the thermal silicon oxide film 22.
  • the aluminum oxide film 23 can be formed by a method such as sputtering. Further, a silicon substrate or the like is used as the substrate 21.
  • magnetoresistive effect elements 12a and 12b and fixed resistance elements 12c and 12d are formed, and the magnetic field detection bridge circuit 12 described above is formed.
  • the magnetoresistive effect elements 12a and 12b are formed by folding back a plurality of strip-like long patterns (stripes) arranged so that their longitudinal directions are parallel to each other (meander shape). It is preferable that the GMR element has The film configuration of the magnetoresistive effect elements 12a and 12b will be described later.
  • the sensitivity axis direction (Pin direction) of the magnetoresistive effect elements 12a and 12b is a direction (stripe width direction) orthogonal to the longitudinal direction (stripe longitudinal direction) of the long pattern in the meander shape described above. That is, from the viewpoint of improving linearity, it is preferable that the meandering shape is configured such that the induced magnetic field A faces in the direction perpendicular to the stripe longitudinal direction (stripe width direction).
  • the width in the meander-shaped pin direction is preferably 1 ⁇ m to 10 ⁇ m.
  • An electrode 24 is formed on the aluminum oxide film 23.
  • the electrode 24 can be formed by photolithography and etching after forming an electrode material.
  • a polyimide layer 25 is formed as an insulating layer on the aluminum oxide film 23 on which the magnetoresistive effect elements 12a and 12b, the fixed resistance elements 12c and 12d, and the electrode 24 are formed.
  • the polyimide layer 25 can be formed by applying and curing a polyimide material.
  • a silicon oxide film 31 is formed on the polyimide layer 25.
  • the silicon oxide film 31 can be formed by a method such as sputtering.
  • a contact hole is formed in a predetermined region of the polyimide layer 25 and the silicon oxide film 31 (region where the electrode 24 exists), and an electrode pad 26 is formed in the contact hole. Photolithography, etching, and the like are used for forming the contact holes.
  • the electrode pad 26 can be formed by photolithography and plating after the electrode material is deposited.
  • FIG. 4 is a schematic cross-sectional view showing the film configuration of the magnetoresistive effect element 12a. That is, the magnetoresistive effect element 12a has a laminated structure provided on the substrate 21, as shown in FIG. In FIG. 4, the configuration other than the substrate 21 and the magnetoresistive effect element 12a is omitted for the sake of simplicity. Further, since the film configuration of the magnetoresistive effect element 12b is the same as that of the magnetoresistive effect element 12a except for the Pin direction, the film configuration of the magnetoresistive effect element 12a will be described here.
  • the magnetoresistive effect element 12a includes a seed layer 42, a first ferromagnetic film 43, an antiparallel coupling film 44, a second ferromagnetic film 45, a nonmagnetic intermediate layer 46, a soft magnetic free layer (free magnetic layer) 47, And a protective layer 48.
  • the first ferromagnetic film 43 and the second ferromagnetic film 45 are antiferromagnetically coupled via the antiparallel coupling film 44, so-called self-pinning type ferromagnetic.
  • a fixed layer (SFP layer: Synthetic Ferri Pinned layer) is configured.
  • the magnetoresistive effect element 12 a is a spin valve type element using the ferromagnetic pinned layer, the nonmagnetic intermediate layer 46 and the soft magnetic free layer 47.
  • the seed layer 42 is made of NiFeCr or Cr.
  • a base layer made of a nonmagnetic material containing at least one element of Ta, Hf, Nb, Zr, Ti, Mo, and W is provided between the substrate 21 and the seed layer 42, for example. Also good.
  • the first ferromagnetic film 43 is preferably made of a CoFe alloy containing 40 atomic% to 80 atomic% of Fe. This is because a CoFe alloy having this composition range has a large coercive force and can stably maintain magnetization with respect to an external magnetic field.
  • the first ferromagnetic film 43 is provided with induced magnetic anisotropy by applying a magnetic field in the meander-shaped stripe width direction during the film formation. The direction of the applied magnetic field is the direction from the back side to the near side.
  • the antiparallel coupling film 44 is made of Ru or the like.
  • the antiparallel coupling film 44 is desirably formed with a thickness of 0.3 nm to 0.45 nm or 0.75 nm to 0.95 nm. This is because by setting the antiparallel coupling film 44 to such a thickness, strong antiferromagnetic coupling can be provided between the first ferromagnetic film 43 and the second ferromagnetic film 45.
  • the second ferromagnetic film 45 is preferably made of a CoFe alloy containing 0 atomic% to 40 atomic% of Fe. This is because a CoFe alloy having this composition range has a small coercive force, and is easily magnetized in a direction antiparallel to the direction in which the first ferromagnetic film 43 is preferentially magnetized (direction different by 180 °). is there.
  • the second ferromagnetic film 45 has a magnetic field similar to that during the film formation of the first ferromagnetic film 43 (a magnetic field in the meander stripe width direction, a direction from the back side to the front side of the drawing). Is applied), induced magnetic anisotropy is imparted.
  • the first ferromagnetic film 43 is preferentially magnetized in the direction of the applied magnetic field, and the second ferromagnetic film 45 is magnetized by the first ferromagnetic film 43.
  • the direction is magnetized in an antiparallel direction (a direction different by 180 °).
  • the nonmagnetic intermediate layer 46 is made of Cu or the like.
  • the soft magnetic free layer (free magnetic layer) 47 is composed of a laminated structure of films made of a magnetic material. Specifically, it has a three-layer structure of a CoFe alloy film 471, a NiFe alloy film 472, and a NiFeM alloy film 473.
  • M represents an element selected from Ta, Cr, Nb, Rh, Zr, Mo, Al, Au, Pd, Pt, and Si.
  • the thickness of the CoFe alloy film 471 is 0.5 nm to 1.5 nm, more preferably 0.8 nm to 1.2 nm, and the thickness of the NiFe alloy film 472 is 0.5 nm to 2.0 nm, more preferably The thickness of the NiFeM alloy film 473 is 6 nm to 17 nm, more preferably 9 nm to 14 nm.
  • the MR ratio is increased by the NiFe alloy film 472 disposed on the CoFe alloy film 471, and the coercive force can be suppressed while maintaining the MR ratio by the NiFeM alloy film 473 disposed on the NiFe alloy film 472. is there.
  • the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect.
  • it is desirable that the ratio t1 / t2 between the thickness t1 of the NiFe alloy film and the thickness t2 of the NiFeM alloy film is 3 to 30.
  • the CoFe alloy film 471 is preferably composed of a CoFe alloy containing 0 atomic% to 20 atomic% of Fe. That is, the CoFe alloy film may be a Co film. With such a composition, since the CoFe alloy has a face-centered cubic structure (fcc) or a hexagonal close-packed structure (hcp), magnetic hysteresis can be further suppressed. Further, the NiFe alloy film 472 is preferably composed of a NiFe alloy containing 16 atomic% to 22 atomic% of Fe, and the NiFeM alloy film 473 is composed of 10 atomic% to 15 atomic% Fe and 2 atomic% to 8 atomic%.
  • NiFeM alloy containing atomic% M It is desirable to be composed of a NiFeM alloy containing atomic% M. In such a composition, since the linear magnetostriction constants of the NiFe alloy and the NiFeM alloy are close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
  • the soft magnetic free layer 47 is preferably provided with induced magnetic anisotropy by applying a magnetic field in the longitudinal direction of the meander-shaped stripe during film formation. Thereby, a resistance change linearly with respect to the external magnetic field in the stripe width direction and a magnetoresistive effect element 12a having a small magnetic hysteresis can be realized.
  • the protective layer 48 is made of Ta or the like.
  • the linearity is improved, the MR ratio is improved, and the coercive force is suppressed.
  • the resistance effect element 12a is realized.
  • the improvement of the linearity of the magnetoresistive effect element 12a contributes to the expansion of the dynamic range and the current detection accuracy in the current sensor, and the improvement of the MR ratio of the magnetoresistive effect element 12a improves the current detection accuracy in the current sensor.
  • the suppression of the coercive force of the magnetoresistive effect element 12a contributes to the reduction of magnetic hysteresis in the current sensor. For this reason, the magnetoresistive effect element 12a is suitable for a current sensor.
  • the magnetization amount (Ms ⁇ t) of the first ferromagnetic film 43 and the magnetization amount (Ms ⁇ t) of the second ferromagnetic film 45 are substantially the same.
  • the difference in magnetization between the first ferromagnetic film 43 and the second ferromagnetic film 45 is substantially zero, the effective anisotropic magnetic field of the ferromagnetic fixed layer is increased. This is because the magnetization stability of the ferromagnetic pinned layer can be sufficiently secured without using an antiferromagnetic material.
  • the Curie temperature (Tc) of the first ferromagnetic film 43 and the Curie temperature (Tc) of the second ferromagnetic film 45 are substantially the same. Thereby, even in a high temperature environment, the difference in magnetization (Ms ⁇ t) between the first ferromagnetic film 43 and the second ferromagnetic film 45 becomes substantially zero, and high magnetization stability can be maintained. It is.
  • FIG. 5 is a graph showing an RH waveform (magnetic field-resistance change rate curve) of the magnetoresistive effect element.
  • the solid line shows the RH waveform of the magnetoresistive effect element (implementing element) in the present embodiment
  • the broken line shows the RH waveform of the conventional magnetoresistive effect element (comparative element).
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 1 nm) / Ni 82
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 7 nm) / Ta (protection)
  • a magnetoresistive element having a film configuration of (layer: 10 nm) was used. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element. Note that the RH waveform shown in FIG. 5 was obtained under conditions that are normally measured.
  • FIG. 5 confirms that the linearity of the graph of the implementation element in the present embodiment is higher than that of the comparison element, and the linearity is enhanced.
  • the improvement of the linearity brings about the effect of increasing the dynamic range and improving the current detection accuracy in the current sensor.
  • FIG. 6 is a graph showing the relationship between the film thickness of the NiFe alloy film 472 and the MR ratio ( ⁇ R / R) in the magnetoresistive effect element (implementing element).
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 second Ferromagnetic film: 2.4 nm) / Cu
  • Co 90 Fe 10 soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: X 1 nm) / Ni 82 Fe 13
  • a NiFe alloy film having a film thickness X 1 different between 0 nm and 3 nm can be used as a magnetoresistive effect element having a film configuration of Nb 5 (soft magnetic free layer: 9 nm) / Ta (protective layer: 10 nm).
  • FIG. 7 is a graph showing the relationship between the amount of magnetization (Ms ⁇ t) of the soft magnetic free layer and the coercive force (Hc) in the magnetoresistive effect element.
  • the solid line indicates the relationship in the magnetoresistive effect element (implementing element) of the present embodiment, and the broken line indicates the relationship in the conventional magnetoresistive effect element (comparative element).
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 2 nm) / Ni 82
  • a magnetoresistive element having a film structure of Fe 13 Nb 5 (soft magnetic free layer: X 2 nm) / Ta (protective layer: 10 nm) and changing the film thickness X 2 of the NiFeNb alloy film, the amount of magnetization is changed. And the relationship with the coercive force was obtained.
  • the film thickness X 2 values at the measurement points (unit n) the film thickness X 2 values at the measurement points (unit n
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: Y 2 nm) / Ta (protective layer: 10 nm) using a magnetoresistive element of a membrane structure that, similarly changing the magnetization by varying the thickness Y 2 of the NiFe alloy film, obtained relation between the coercive force. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element. In the characteristic shown by the broken line in FIG. 7, the thickness Y 2 of the values at the measurement points (unit nm) are also shown.
  • the coercive force hardly changes even when the value of the magnetization amount changes, but in the comparison element, the coercive force increases as the magnetization amount increases. I can confirm that.
  • a large coercive force means that the magnetic hysteresis is large. Therefore, the magnetoresistive effect element in which the coercive force is suppressed brings about an effect of reducing the magnetic hysteresis in the current sensor.
  • FIG. 8 is a graph showing the relationship between the magnetization amount (Ms ⁇ t) of the soft magnetic free layer and the MR ratio ( ⁇ R / R) in the magnetoresistive effect element.
  • the solid line indicates the relationship in the magnetoresistive effect element (implementing element) of the present embodiment
  • the broken line indicates the relationship in the conventional magnetoresistive effect element (comparative element)
  • the alternate long and short dash line is for reference. The relationship in the magnetoresistive element (reference element) is shown.
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 2 nm) / Ni 82
  • a magnetoresistive element having a film structure of Fe 13 Nb 5 (soft magnetic free layer: X 3 nm) / Ta (protective layer: 10 nm) and changing the film thickness X 3 of the NiFeNb alloy film, the amount of magnetization is changed.
  • the relationship with the MR ratio was obtained.
  • the thickness X 3 of NiFeNb alloy film was varied between 3 nm ⁇ 15 nm. In the characteristic shown by the solid line in FIG. 8, the film thickness X 3 value at the measurement point (in nm) shown together.
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: Y 3 nm) / Ta (protective layer: 10 nm) using a magnetoresistive element of a membrane structure that, similarly changing the magnetization by varying the thickness Y 3 of the NiFe alloy film, obtained relation between MR ratio.
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: Z 3 nm) / Ta (protective layer: 10 nm) using a magnetoresistive effect element, and similarly changing the film thickness Z 3 of the NiFeNb alloy film to change the amount of magnetization and obtaining the relationship with the MR ratio.
  • FIG. 8 confirms that the magnetoresistive effect element (implementing element) according to the present embodiment has a relatively large MR ratio even when the amount of magnetization increases.
  • the amount of magnetization in order to ensure the same MR ratio in the comparison element and the reference element, the amount of magnetization must be sufficiently reduced.
  • the shape anisotropy is reduced and the slope of the RH waveform is increased, so that the range in which linearity can be ensured is narrowed.
  • the thickness of the NiFeNb alloy film in the magnetoresistive effect element 12a is preferably 6 nm to 17 nm.
  • FIG. 9 is a graph showing the relationship between the thickness of the CoFe alloy film 471 and the magnetostriction constant ( ⁇ s) in the magnetoresistive effect element.
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 second Ferromagnetic film: 2.4 nm) / Cu
  • Co 90 Fe 10 soft magnetic free layer: X 4 nm) / Ni 81.5 Fe 18.5 (soft magnetic free layer: 2 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: 9 nm) / Ta (protective layer: 10 nm)
  • the magnetoresistive effect element has a film thickness X 4 of 0.4 nm to 2 nm.
  • the magnetoresistive effect element (implementing element) in the present embodiment
  • the magnetostriction constant ⁇ s becomes ⁇ s ⁇ ⁇ 1 ppm.
  • the absolute value of the magnetostriction constant ⁇ s is greater than 1, the magnetic anisotropy of the soft magnetic free layer is dispersed due to the magnetoelastic effect, and magnetic hysteresis is likely to occur. It is desirable to be 5 nm to 1.5 nm.
  • FIG. 10 is a graph showing an output waveform (magnetic field-output voltage) of a half bridge circuit composed of a magnetoresistive effect element and a fixed resistance element.
  • the solid line shows the output waveform of the half bridge circuit using the magnetoresistive effect element (implementing element) in the present embodiment, and the broken line shows the half bridge using the conventional magnetoresistive effect element (comparative element). The output waveform of the circuit is shown.
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 81.5 Fe 18.5 (soft magnetic free Layer: 1 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: 10 nm) / Ta (protective layer: 10 nm).
  • NiFeCr seed layer: 4.2 nm
  • Fe 60 Co 40 first ferromagnetic film: 1.8 nm
  • Ru anti-parallel coupling film: 0.36 nm
  • Co 90 Fe 10 Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 81.5 Fe 18.5 (soft magnetic free layer) : 7 nm) / Ta (protective layer: 10 nm) was used. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element.
  • the linear region of the output waveform of the half-bridge circuit using the comparison element is about ⁇ 20 Oe, whereas the linear region of the output waveform of the half-bridge circuit using the implementation element in the present embodiment is ⁇ It can be confirmed that it is about 70 Oe.
  • the output of the half bridge circuit corresponds to the output of the current sensor, and it can be seen that the linearity of the output of the current sensor can be enhanced by using the implementation element.
  • FIGS. 11A to 11C and FIGS. 12A to 12C are views for explaining a method of manufacturing the magnetoresistive effect elements 12a and 12b according to the present embodiment.
  • a seed layer 42a, a first ferromagnetic film 43a, an antiparallel coupling film 44a, a second ferromagnetic film 45a, a nonmagnetic intermediate layer 46a, a soft magnetic free layer are formed on a substrate 21.
  • a layer (free magnetic layer) 47a and a protective layer 48a are sequentially formed.
  • both the direction of the magnetic field applied during the formation of the first ferromagnetic film 43a and the direction of the magnetic field applied during the formation of the second ferromagnetic film 45a are from the front side of the drawing. It is a direction toward the side.
  • the first ferromagnetic film 43a is preferentially magnetized in the applied magnetic field direction
  • the second ferromagnetic film 45a is antiparallel to the magnetization direction of the first ferromagnetic film 43a (a direction different by 180 °). ) Is magnetized.
  • the soft magnetic free layer (free magnetic layer) 47a is formed with a three-layer structure of a CoFe alloy film 471a, a NiFe alloy film 472a, and a NiFeM alloy film 473a. Further, during the formation of the soft magnetic free layer (free magnetic layer) 47a, a magnetic field is applied in the longitudinal direction of the meander stripe.
  • a resist layer is formed on the protective layer 48a, and the resist layer 50a is left on the region where the magnetoresistive effect element 12a is formed by photolithography and etching.
  • the exposed laminated film is removed by ion milling or the like to expose the surface on which the magnetoresistive effect element 12b is formed.
  • a free layer (free magnetic layer) 47b and a protective layer 48b are sequentially formed.
  • a magnetic field is applied in the meander-shaped stripe width direction during the formation of the first ferromagnetic film 43b and the second ferromagnetic film 45b.
  • the direction of the applied magnetic field is the direction from the front side to the back side in FIG. Accordingly, the first ferromagnetic film 43a and the second ferromagnetic film 45a are magnetized in the antiparallel direction (direction different by 180 °).
  • the soft magnetic free layer (free magnetic layer) 47b is formed of a three-layered structure of a CoFe alloy film, a NiFe alloy film, and a NiFeM alloy film. During the formation of the soft magnetic free layer (free magnetic layer) 47b, a magnetic field is applied in the longitudinal direction of the meander stripe.
  • a resist is formed on the protective layers 48a and 48b, and the resist layers 51a and 51b are left on the formation regions of the magnetoresistive elements 12a and 12b by photolithography and etching.
  • the exposed laminated film is removed by ion milling or the like to obtain magnetoresistance effect elements 12a and 12b.
  • the soft magnetic free layer of the magnetoresistive effect element is composed of a laminated structure of a relatively thin CoFe alloy film and NiFe alloy film and a relatively thick NiFeM alloy film.
  • a magnetoresistive element with enhanced MR ratio and reduced coercive force is realized. This is because the MR ratio is increased by the NiFe alloy film having a predetermined thickness disposed on the CoFe alloy film, and the coercive force is maintained while maintaining the MR ratio by the NiFeM alloy film having the predetermined thickness disposed on the NiFe alloy film. This is because it can be suppressed.
  • the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect.
  • the thickness of the CoFe alloy film is set to the above-mentioned thickness, it is possible to prevent thermal diffusion of the film constituting the laminated structure of the magnetoresistive effect element (for example, Cu layer, NiFe layer, etc.) while suppressing magnetostriction and magnetic hysteresis. This is because the spin-dependent interface scattering effect can be enhanced and the MR ratio can be increased.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the materials, connection relations, thicknesses, sizes, manufacturing methods, and the like in the above embodiments can be changed as appropriate.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the present invention can be applied to, for example, a current sensor that detects the magnitude of a current for driving a motor of an electric vehicle.

Abstract

Provided is a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection precision. The current sensor is provided with magnetic-resistance effect elements (12a, 12b), and is characterized in that each of the magnetic-resistance effect elements (12a, 12b) comprises a self-pinning type ferromagnetic fixed layer, a nonmagnetic intermediate layer on top of the ferromagnetic fixed layer, and a soft magnetic free layer on top of the nonmagnetic intermediate layer, in that the soft magnetic free layer is composed of a laminated structure of a CoFe alloy film on top of the nonmagnetic intermediate layer, a NiFe alloy film on top of the CoFe alloy film, and a NiFeM alloy film (wherein M is an element selected from among Ta, Cr, Nb, Rh, Zr, Mo, Al, Au, Pd, Pt, and Si) on top of the NiFe alloy film, and in that the thickness of the CoFe alloy film is 0.5 nm to 1.5 nm, the thickness of the NiFe alloy film is 0.5 nm to 2.0 nm, and the thickness of the NiFeM alloy film is 6 nm to 17 nm.

Description

電流センサCurrent sensor
 本発明は、磁気抵抗効果素子を用いた電流センサに関する。 The present invention relates to a current sensor using a magnetoresistive effect element.
 電気自動車においては、エンジンや回生ブレーキなどで生じた電気を用いてモータを駆動する。モータ駆動に用いられる電流の大きさは、例えば、非接触の電流センサにより検出される。このような電流センサとして、切り欠き(コアギャップ)を有する磁気コアを被測定電流が通流する導体の周囲に配置し、コアギャップ内に磁気検出素子を配置したものが知られている。 In an electric vehicle, a motor is driven using electricity generated by an engine or a regenerative brake. The magnitude of the current used for driving the motor is detected by, for example, a non-contact current sensor. As such a current sensor, a sensor in which a magnetic core having a notch (core gap) is arranged around a conductor through which a current to be measured flows and a magnetic detection element is arranged in the core gap is known.
 上述した電流センサの磁気検出素子としては、磁化方向が固定された固定磁性層、非磁性層、および磁化方向が外部磁界に対して変動するフリー磁性層(軟磁性自由層)の積層構造を備える磁気抵抗効果素子などが用いられる。また、磁気抵抗効果素子を用いる電流センサは、磁界検出回路として、磁気抵抗効果素子と固定抵抗素子とで構成されるブリッジ回路を含む(例えば、特許文献1参照)。 The magnetic sensor of the current sensor described above has a laminated structure of a fixed magnetic layer whose magnetization direction is fixed, a nonmagnetic layer, and a free magnetic layer (soft magnetic free layer) whose magnetization direction varies with respect to an external magnetic field. A magnetoresistive element or the like is used. Moreover, the current sensor using a magnetoresistive effect element includes a bridge circuit including a magnetoresistive effect element and a fixed resistance element as a magnetic field detection circuit (see, for example, Patent Document 1).
 このような磁気抵抗効果素子を用いる電流センサにおいて、ダイナミックレンジ(電流測定範囲)やリニアリティ(出力線形性)などの諸特性は、電流センサを構成する磁気抵抗効果素子の特性に大きく依存する。例えば、磁気抵抗効果素子として巨大磁気抵抗効果(GMR:Giant Magneto Resistive effect)を利用したGMR素子を用いる場合、電流センサのダイナミックレンジは、GMR素子の磁界-抵抗変化率曲線の線形性に依存する。つまり、GMR素子の磁界-抵抗変化率曲線の線形領域が広くなれば、電流センサのダイナミックレンジも広くなる。 In a current sensor using such a magnetoresistive effect element, various characteristics such as dynamic range (current measurement range) and linearity (output linearity) greatly depend on the characteristics of the magnetoresistive effect element constituting the current sensor. For example, when a GMR element using a giant magnetoresistive effect (GMR: Giant Magneto Resistive effect) is used as the magnetoresistive element, the dynamic range of the current sensor depends on the linearity of the magnetic field-resistance change rate curve of the GMR element. . That is, if the linear region of the magnetic field-resistance change rate curve of the GMR element becomes wider, the dynamic range of the current sensor becomes wider.
 上述したような広い線形領域をもつGMR素子を実現し、広いダイナミックレンジを有する電流センサを実現するために、例えば、GMR素子におけるフリー磁性層を厚く形成することがある。フリー磁性層を厚く形成して形状異方性を高めることにより、磁界-抵抗変化率曲線の傾きが小さくなるため、広い磁界範囲において抵抗変化率を線形にすることができる。 In order to realize a GMR element having a wide linear region as described above and a current sensor having a wide dynamic range, for example, a thick free magnetic layer in the GMR element may be formed. By increasing the shape anisotropy by forming a thick free magnetic layer, the slope of the magnetic field-resistance change rate curve is reduced, so that the resistance change rate can be made linear over a wide magnetic field range.
 また、広い線形領域をもつGMR素子を実現するために、フリー磁性層の厚さを5nm以下としてAMR効果(異方性磁気抵抗効果)をキャンセルし、GMR素子の線形性劣化を抑制する技術が知られている(例えば、特許文献2参照)。 Further, in order to realize a GMR element having a wide linear region, there is a technique for canceling the AMR effect (anisotropic magnetoresistive effect) by setting the thickness of the free magnetic layer to 5 nm or less and suppressing the linearity deterioration of the GMR element. It is known (see, for example, Patent Document 2).
特開2007-248054号公報JP 2007-248054 A 特開平9-36455号公報JP-A-9-36455
 しかしながら、広い線形領域をもつGMR素子を実現するためにフリー磁性層を厚く形成すると、GMR素子のMR比(磁気抵抗比)が低下するという問題が生じる。GMR素子におけるMR比の低下は、電流センサにおいて、電流検出精度の低下を引き起こす。このため、上述したフリー磁性層を厚くする方法によって、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサを実現することは困難であった。 However, when the free magnetic layer is formed thick in order to realize a GMR element having a wide linear region, there arises a problem that the MR ratio (magnetoresistance ratio) of the GMR element is lowered. A decrease in MR ratio in the GMR element causes a decrease in current detection accuracy in the current sensor. For this reason, it has been difficult to realize a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy by the above-described method of thickening the free magnetic layer.
 また、特許文献2に開示されるようにフリー磁性層の厚さを5nm以下としてAMR効果をキャンセルする方法では、磁気ヘッドの用途に適したGMR素子を得ることはできるが、このGMR素子は形状異方性が小さいため、高い線形性と低い磁気ヒステリシスを両立させることができない。特に、フリー磁性層の厚さが5nm以下と薄いため、磁気ヒステリシスを低く抑えることは難しい。このため、当該GMR素子を電流センサに用いても、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサを実現することは困難である。 Further, as disclosed in Patent Document 2, the method of canceling the AMR effect by setting the thickness of the free magnetic layer to 5 nm or less can obtain a GMR element suitable for the use of the magnetic head. Since the anisotropy is small, it is impossible to achieve both high linearity and low magnetic hysteresis. In particular, since the thickness of the free magnetic layer is as thin as 5 nm or less, it is difficult to keep the magnetic hysteresis low. For this reason, even if the GMR element is used as a current sensor, it is difficult to realize a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy.
 本発明はかかる点に鑑みてなされたものであり、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサを提供することを目的とする。 The present invention has been made in view of such a point, and an object thereof is to provide a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy.
 本発明の電流センサは、被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子を具備する電流センサであって、前記磁気抵抗効果素子は、反平行結合膜を介して第1の強磁性膜と第2の強磁性膜とを反強磁性的に結合させてなるセルフピン止め型の強磁性固定層と、前記強磁性固定層上の非磁性中間層と、前記非磁性中間層上の軟磁性自由層(フリー磁性層)とを有し、前記軟磁性自由層は、前記非磁性中間層上のCoFe合金膜と、前記CoFe合金膜上のNiFe合金膜と、前記NiFe合金膜上のNiFeM合金膜(Mは、Ta、Cr、Nb、Rh、Zr、Mo、Al、Au、Pd、Pt、Siから選択される元素)との積層構造で構成され、前記CoFe合金膜の厚さは0.5nm~1.5nmであり、前記NiFe合金膜の厚さは0.5nm~2.0nmであり、NiFeM合金膜の厚さは6nm~17nmであることを特徴とする。 The current sensor of the present invention is a current sensor including a magnetoresistive effect element whose resistance value is changed by application of an induced magnetic field from a current to be measured, and the magnetoresistive effect element is inserted through an antiparallel coupling film. A self-pinned ferromagnetic pinned layer formed by antiferromagnetically coupling the first ferromagnetic film and the second ferromagnetic film, a nonmagnetic intermediate layer on the ferromagnetic pinned layer, and the nonmagnetic intermediate layer A soft magnetic free layer (free magnetic layer) on the layer, and the soft magnetic free layer includes a CoFe alloy film on the nonmagnetic intermediate layer, a NiFe alloy film on the CoFe alloy film, and the NiFe alloy. And a NiFeM alloy film (M is an element selected from Ta, Cr, Nb, Rh, Zr, Mo, Al, Au, Pd, Pt, and Si), and the CoFe alloy film The thickness is 0.5 nm to 1.5 nm, The thickness of the iFe alloy film is 0.5 nm ~ 2.0 nm, and the thickness of NiFeM alloy film is 6 nm ~ 17 nm.
 この構成によれば、磁気抵抗効果素子における軟磁性自由層が、比較的薄いCoFe合金膜およびNiFe合金膜と、比較的厚いNiFeM合金膜との積層構造で構成されるため、線形性が高められ、MR比が向上し、保磁力が抑制された磁気抵抗効果素子が実現する。これは、CoFe合金膜上に配置された所定厚さのNiFe合金膜によりMR比が高められ、NiFe合金膜上に配置された所定厚さのNiFeM合金膜によりMR比を維持しつつ保磁力を抑制できるためである。また、AMR効果の小さいNiFeM合金膜を厚く、AMR効果の大きいNiFe合金膜を薄くすることで、線形性を高めることができるためである。また、CoFe合金膜を上記の厚さとすることにより、磁歪や磁気ヒステリシスを抑制しつつ、磁気抵抗効果素子の積層構造を構成する膜の熱拡散を防止し、スピン依存界面散乱効果を高め、MR比を高めることができるためである。このように電流センサに適した磁気センサ素子が実現する結果、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサが実現する。 According to this configuration, since the soft magnetic free layer in the magnetoresistive effect element has a laminated structure of a relatively thin CoFe alloy film and NiFe alloy film and a relatively thick NiFeM alloy film, linearity is improved. Thus, a magnetoresistive element with improved MR ratio and reduced coercive force is realized. This is because the MR ratio is increased by the NiFe alloy film having a predetermined thickness disposed on the CoFe alloy film, and the coercive force is maintained while maintaining the MR ratio by the NiFeM alloy film having the predetermined thickness disposed on the NiFe alloy film. This is because it can be suppressed. Further, the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect. Also, by setting the CoFe alloy film to the above thickness, while suppressing magnetostriction and magnetic hysteresis, the thermal diffusion of the film constituting the laminated structure of the magnetoresistive effect element is prevented, and the spin-dependent interface scattering effect is enhanced. This is because the ratio can be increased. As a result of realizing a magnetic sensor element suitable for the current sensor as described above, a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy is realized.
 本発明の電流センサにおいて、前記CoFe合金膜が0原子%~20原子%のFeを含むCoFe合金で構成されても良い。すなわち、CoFe合金膜はCo膜であっても良い。この構成によれば、CoFe合金が面心立方構造(fcc)又は六方最密構造(hcp)となるため、磁気ヒステリシスをさらに抑制できる。 In the current sensor of the present invention, the CoFe alloy film may be made of a CoFe alloy containing 0 atomic% to 20 atomic% of Fe. That is, the CoFe alloy film may be a Co film. According to this configuration, since the CoFe alloy has a face-centered cubic structure (fcc) or a hexagonal close-packed structure (hcp), magnetic hysteresis can be further suppressed.
 本発明の電流センサにおいて、前記NiFe合金膜が16原子%~22原子%のFeを含むNiFe合金で構成されても良い。この構成によれば、NiFe合金の線磁歪定数がゼロ近傍となるため、磁気弾性効果による磁気異方性の分散を抑制できる。 In the current sensor of the present invention, the NiFe alloy film may be composed of a NiFe alloy containing 16 atomic% to 22 atomic% of Fe. According to this configuration, since the linear magnetostriction constant of the NiFe alloy is close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
 本発明の電流センサにおいて、前記NiFeM合金膜が10原子%~15原子%のFeおよび2原子%~8原子%のMを含むNiFeM合金で構成されても良い。この構成によれば、NiFeM合金の線磁歪定数がゼロ近傍となるため、磁気弾性効果による磁気異方性の分散を抑制できる。 In the current sensor of the present invention, the NiFeM alloy film may be composed of a NiFeM alloy containing 10 atomic% to 15 atomic% Fe and 2 atomic% to 8 atomic% M. According to this configuration, since the linear magnetostriction constant of the NiFeM alloy is close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
 本発明の電流センサにおいて、前記磁気抵抗効果素子と固定抵抗素子とを含む磁界検出ブリッジ回路を備えても良い。 In the current sensor of the present invention, a magnetic field detection bridge circuit including the magnetoresistive effect element and the fixed resistance element may be provided.
 この構成によれば、上述したような磁気抵抗効果素子と固定抵抗素子とを用いて磁界検出ブリッジ回路を構成しているため、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサが実現する。 According to this configuration, since the magnetic field detection bridge circuit is configured using the magnetoresistive effect element and the fixed resistance element as described above, a current having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy. The sensor is realized.
 本発明によれば、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサを提供することができる。 According to the present invention, a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy can be provided.
実施の形態に係る電流センサを示す模式図である。It is a schematic diagram which shows the current sensor which concerns on embodiment. 実施の形態に係る電流センサを示す模式図である。It is a schematic diagram which shows the current sensor which concerns on embodiment. 実施の形態に係る電流センサを示す断面図である。It is sectional drawing which shows the current sensor which concerns on embodiment. 実施の形態に係る電流センサにおける磁気抵抗効果素子の膜構成を示す断面図である。It is sectional drawing which shows the film | membrane structure of the magnetoresistive effect element in the current sensor which concerns on embodiment. 磁気抵抗効果素子のR-H波形(磁界-抵抗変化率曲線)を示すグラフである。It is a graph which shows the RH waveform (magnetic field-resistance change rate curve) of a magnetoresistive effect element. 磁気抵抗効果素子における、NiFe合金膜の膜厚とMR比(ΔR/R)との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a NiFe alloy film, and MR ratio ((DELTA) R / R) in a magnetoresistive effect element. 磁気抵抗効果素子における、軟磁性自由層の磁化量(Ms・t)と保磁力(Hc)との関係を示すグラフである。It is a graph which shows the relationship between the magnetization amount (Ms * t) of a soft-magnetic free layer, and a coercive force (Hc) in a magnetoresistive effect element. 磁気抵抗効果素子における、軟磁性自由層の磁化量(Ms・t)とMR比(ΔR/R)との関係を示すグラフである。It is a graph which shows the relationship between the magnetization amount (Ms * t) of a soft-magnetic free layer, and MR ratio ((DELTA) R / R) in a magnetoresistive effect element. 磁気抵抗効果素子における、CoFe合金膜の膜厚と磁歪定数(λs)との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a CoFe alloy film, and a magnetostriction constant ((lambda) s) in a magnetoresistive effect element. 磁気抵抗効果素子と固定抵抗素子で構成されたハーフブリッジ回路の出力波形(磁界-出力電圧)を示すグラフである。It is a graph which shows the output waveform (magnetic field-output voltage) of the half bridge circuit comprised with the magnetoresistive effect element and the fixed resistance element. 本実施の形態に係る磁気比例式電流センサにおける磁気抵抗効果素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the magnetoresistive effect element in the magnetic proportional type current sensor which concerns on this Embodiment. 本実施の形態に係る磁気比例式電流センサにおける磁気抵抗効果素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the magnetoresistive effect element in the magnetic proportional type current sensor which concerns on this Embodiment.
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1および図2は、本発明の実施の形態に係る電流センサの一例を示す模式図である。図1および図2に示す電流センサは磁気比例式の電流センサであり、被測定電流Iが流れる導体11の近傍に配設される。なお、以下では磁気比例式の電流センサについて説明するが、電流センサはこれに限定されない。例えば、フィードバックコイルによって誘導磁界を打ち消すキャンセル磁界を発生させ、フィードバックコイルを流れる電流から被測定電流の大きさを算出する磁気平衡式を適用しても良い。 1 and 2 are schematic views showing an example of a current sensor according to an embodiment of the present invention. The current sensor shown in FIGS. 1 and 2 is a magnetic proportional current sensor and is disposed in the vicinity of the conductor 11 through which the current I to be measured flows. Hereinafter, a magnetic proportional current sensor will be described, but the current sensor is not limited thereto. For example, a magnetic balance equation that generates a canceling magnetic field that cancels the induced magnetic field by the feedback coil and calculates the magnitude of the current to be measured from the current flowing through the feedback coil may be applied.
 図1および図2に示される電流センサは、導体11に流れる被測定電流Iによる誘導磁界を検出する磁界検出ブリッジ回路12を有する。磁界検出ブリッジ回路12は、被測定電流Iからの誘導磁界の印加により抵抗値が変化する2つの磁気抵抗効果素子12a、12b、および誘導磁界により抵抗値が変化しない2つの固定抵抗素子12c、12dを有する。このように磁気抵抗効果素子を有する磁界検出ブリッジ回路12を用いることにより、高感度の電流センサを実現することができる。なお、磁界検出ブリッジ回路12は、4個の素子でなるフルブリッジ回路に限られない。2個の素子でなるハーフブリッジ回路としても良い。 The current sensor shown in FIG. 1 and FIG. 2 has a magnetic field detection bridge circuit 12 that detects an induced magnetic field due to the current I to be measured flowing through the conductor 11. The magnetic field detection bridge circuit 12 includes two magnetoresistive effect elements 12a and 12b whose resistance values are changed by applying an induction magnetic field from the current I to be measured, and two fixed resistance elements 12c and 12d whose resistance values are not changed by the induction magnetic field. Have By using the magnetic field detection bridge circuit 12 having the magnetoresistive effect element as described above, a highly sensitive current sensor can be realized. The magnetic field detection bridge circuit 12 is not limited to a full bridge circuit composed of four elements. A half-bridge circuit composed of two elements may be used.
 磁界検出ブリッジ回路12は、被測定電流Iによる誘導磁界に対応する電圧差を生じる2つの出力端Out1、Out2を備える。図2に示される磁界検出ブリッジ回路12においては、磁気抵抗効果素子12aの一端および固定抵抗素子12dの一端に電源Vddが接続されており、磁気抵抗効果素子12bの一端および固定抵抗素子12cの一端にグランドGNDが接続されている。そして、磁気抵抗効果素子12aの他端と、固定抵抗素子12cの他端とが接続されて出力端Out1となっており、磁気抵抗効果素子12bの他端と、固定抵抗素子12dの他端とが接続されて出力端Out2となっている。出力端Out1、Out2から出力される電圧差を元に、電流センサは被測定電流Iの電流値を算出する。 The magnetic field detection bridge circuit 12 includes two output terminals Out1 and Out2 that generate a voltage difference corresponding to the induced magnetic field caused by the current I to be measured. In the magnetic field detection bridge circuit 12 shown in FIG. 2, a power source Vdd is connected to one end of the magnetoresistive effect element 12a and one end of the fixed resistance element 12d, and one end of the magnetoresistive effect element 12b and one end of the fixed resistance element 12c. Is connected to the ground GND. The other end of the magnetoresistive effect element 12a and the other end of the fixed resistance element 12c are connected to form an output end Out1, and the other end of the magnetoresistive effect element 12b and the other end of the fixed resistance element 12d Are connected to form an output terminal Out2. Based on the voltage difference output from the output terminals Out1 and Out2, the current sensor calculates the current value of the current I to be measured.
 図3は、図1に示される電流センサを示す断面図である。図3に示されるように、本実施の形態に係る電流センサにおいては、磁界検出ブリッジ回路12を構成する磁気抵抗効果素子12a、12bが基板21上に形成されている。なお、磁気抵抗効果素子12a、12b上には、被測定電流Iによる誘導磁界Aを減衰させる磁気シールドを配置しても良い。磁気シールドを配置することにより、磁気抵抗効果素子12a、12bに加わる誘導磁界Aが弱められるため、電流センサの実質的な電流測定範囲を広げることが可能である。磁気シールドは、アモルファス磁性材料、パーマロイ系磁性材料、鉄系微結晶材料等の高透磁率材料を用いて構成することができる。 FIG. 3 is a cross-sectional view showing the current sensor shown in FIG. As shown in FIG. 3, in the current sensor according to the present embodiment, magnetoresistive elements 12 a and 12 b constituting the magnetic field detection bridge circuit 12 are formed on the substrate 21. A magnetic shield that attenuates the induced magnetic field A caused by the current I to be measured may be disposed on the magnetoresistive effect elements 12a and 12b. By arranging the magnetic shield, the induced magnetic field A applied to the magnetoresistive effect elements 12a and 12b is weakened, so that the substantial current measurement range of the current sensor can be expanded. The magnetic shield can be configured using a high magnetic permeability material such as an amorphous magnetic material, a permalloy magnetic material, or an iron microcrystalline material.
 図3に示される層構成について詳細に説明する。図3では、基板21上に絶縁層である熱シリコン酸化膜22が形成されている。熱シリコン酸化膜22上には、アルミニウム酸化膜23が形成されている。アルミニウム酸化膜23は、例えば、スパッタリングなどの方法により成膜することができる。また、基板21としては、シリコン基板などが用いられる。 The layer structure shown in FIG. 3 will be described in detail. In FIG. 3, a thermal silicon oxide film 22 that is an insulating layer is formed on a substrate 21. An aluminum oxide film 23 is formed on the thermal silicon oxide film 22. The aluminum oxide film 23 can be formed by a method such as sputtering. Further, a silicon substrate or the like is used as the substrate 21.
 アルミニウム酸化膜23上には、磁気抵抗効果素子12a、12bおよび図示しない固定抵抗素子12c、12dが形成されており、前述の磁界検出ブリッジ回路12が作り込まれる。磁気抵抗効果素子12a、12bは、図2の拡大図に示すように、その長手方向が互いに平行になるように配置された複数の帯状の長尺パターン(ストライプ)が折り返してなる形状(ミアンダ形状)を有するGMR素子であることが好ましい。磁気抵抗効果素子12a、12bの膜構成については後述する。 On the aluminum oxide film 23, magnetoresistive effect elements 12a and 12b and fixed resistance elements 12c and 12d (not shown) are formed, and the magnetic field detection bridge circuit 12 described above is formed. As shown in the enlarged view of FIG. 2, the magnetoresistive effect elements 12a and 12b are formed by folding back a plurality of strip-like long patterns (stripes) arranged so that their longitudinal directions are parallel to each other (meander shape). It is preferable that the GMR element has The film configuration of the magnetoresistive effect elements 12a and 12b will be described later.
 磁気抵抗効果素子12a、12bの感度軸方向(Pin方向)は、上述したミアンダ形状において、長尺パターンの長手方向(ストライプ長手方向)に対して直交する方向(ストライプ幅方向)である。つまり、リニアリティを高めるという点からは、ミアンダ形状において、誘導磁界Aがストライプ長手方向に直交する方向(ストライプ幅方向)を向くように構成するのが好適である。また、リニアリティを考慮すると、ミアンダ形状のピン(Pin)方向の幅は1μm~10μmであることが好ましい。 The sensitivity axis direction (Pin direction) of the magnetoresistive effect elements 12a and 12b is a direction (stripe width direction) orthogonal to the longitudinal direction (stripe longitudinal direction) of the long pattern in the meander shape described above. That is, from the viewpoint of improving linearity, it is preferable that the meandering shape is configured such that the induced magnetic field A faces in the direction perpendicular to the stripe longitudinal direction (stripe width direction). In consideration of linearity, the width in the meander-shaped pin direction is preferably 1 μm to 10 μm.
 アルミニウム酸化膜23上には、電極24が形成されている。電極24は、電極材料を成膜した後に、フォトリソグラフィおよびエッチングにより形成することができる。 An electrode 24 is formed on the aluminum oxide film 23. The electrode 24 can be formed by photolithography and etching after forming an electrode material.
 磁気抵抗効果素子12a、12b、固定抵抗素子12c、12d、および電極24を形成したアルミニウム酸化膜23上には、絶縁層としてポリイミド層25が形成されている。ポリイミド層25は、ポリイミド材料を塗布し、硬化することにより形成することができる。 A polyimide layer 25 is formed as an insulating layer on the aluminum oxide film 23 on which the magnetoresistive effect elements 12a and 12b, the fixed resistance elements 12c and 12d, and the electrode 24 are formed. The polyimide layer 25 can be formed by applying and curing a polyimide material.
 ポリイミド層25上には、シリコン酸化膜31が形成されている。シリコン酸化膜31は、例えば、スパッタリングなどの方法により成膜することができる。また、ポリイミド層25およびシリコン酸化膜31の所定の領域(電極24が存在する領域)にはコンタクトホールが形成され、そのコンタクトホールに電極パッド26が形成されている。コンタクトホールの形成には、フォトリソグラフィおよびエッチングなどが用いられる。電極パッド26は、電極材料を成膜した後に、フォトリソグラフィおよびめっきにより形成することができる。 A silicon oxide film 31 is formed on the polyimide layer 25. The silicon oxide film 31 can be formed by a method such as sputtering. A contact hole is formed in a predetermined region of the polyimide layer 25 and the silicon oxide film 31 (region where the electrode 24 exists), and an electrode pad 26 is formed in the contact hole. Photolithography, etching, and the like are used for forming the contact holes. The electrode pad 26 can be formed by photolithography and plating after the electrode material is deposited.
 次に、磁気抵抗効果素子12a、12bの膜構成について説明する。図4は、磁気抵抗効果素子12aの膜構成を示す断面模式図である。すなわち、磁気抵抗効果素子12aは、図4に示されるように、基板21に設けられた積層構造を有する。なお、図4において、説明を簡単にするために、基板21と磁気抵抗効果素子12a以外の構成は省略している。また、磁気抵抗効果素子12bの膜構成は、Pin方向を除き磁気抵抗効果素子12aと同様であるから、ここでは磁気抵抗効果素子12aの膜構成について説明する。 Next, the film configuration of the magnetoresistive effect elements 12a and 12b will be described. FIG. 4 is a schematic cross-sectional view showing the film configuration of the magnetoresistive effect element 12a. That is, the magnetoresistive effect element 12a has a laminated structure provided on the substrate 21, as shown in FIG. In FIG. 4, the configuration other than the substrate 21 and the magnetoresistive effect element 12a is omitted for the sake of simplicity. Further, since the film configuration of the magnetoresistive effect element 12b is the same as that of the magnetoresistive effect element 12a except for the Pin direction, the film configuration of the magnetoresistive effect element 12a will be described here.
 磁気抵抗効果素子12aは、シード層42、第1の強磁性膜43、反平行結合膜44、第2の強磁性膜45、非磁性中間層46、軟磁性自由層(フリー磁性層)47、および保護層48を含む。この磁気抵抗効果素子においては、反平行結合膜44を介して第1の強磁性膜43と第2の強磁性膜45とが反強磁性的に結合されており、いわゆるセルフピン止め型の強磁性固定層(SFP層:Synthetic Ferri Pinned層)が構成されている。このように、磁気抵抗効果素子12aは、強磁性固定層、非磁性中間層46および軟磁性自由層47を用いたスピンバルブ型の素子である。 The magnetoresistive effect element 12a includes a seed layer 42, a first ferromagnetic film 43, an antiparallel coupling film 44, a second ferromagnetic film 45, a nonmagnetic intermediate layer 46, a soft magnetic free layer (free magnetic layer) 47, And a protective layer 48. In this magnetoresistive effect element, the first ferromagnetic film 43 and the second ferromagnetic film 45 are antiferromagnetically coupled via the antiparallel coupling film 44, so-called self-pinning type ferromagnetic. A fixed layer (SFP layer: Synthetic Ferri Pinned layer) is configured. Thus, the magnetoresistive effect element 12 a is a spin valve type element using the ferromagnetic pinned layer, the nonmagnetic intermediate layer 46 and the soft magnetic free layer 47.
 シード層42は、NiFeCrあるいはCrなどで構成される。なお、基板21とシード層42との間には、例えば、Ta、Hf、Nb、Zr、Ti、Mo、Wのうち少なくとも1つの元素を含む非磁性材料などで構成される下地層を設けても良い。 The seed layer 42 is made of NiFeCr or Cr. A base layer made of a nonmagnetic material containing at least one element of Ta, Hf, Nb, Zr, Ti, Mo, and W is provided between the substrate 21 and the seed layer 42, for example. Also good.
 第1の強磁性膜43は、40原子%~80原子%のFeを含むCoFe合金で構成されていることが好ましい。これは、この組成範囲のCoFe合金が、大きな保磁力を有し、外部磁場に対して磁化を安定に維持できるからである。なお、第1の強磁性膜43は、その成膜中にミアンダ形状のストライプ幅方向に磁場が印加されることにより、誘導磁気異方性が付与される。印加磁場の方向は、紙面奥側から手前側に向かう方向である。 The first ferromagnetic film 43 is preferably made of a CoFe alloy containing 40 atomic% to 80 atomic% of Fe. This is because a CoFe alloy having this composition range has a large coercive force and can stably maintain magnetization with respect to an external magnetic field. The first ferromagnetic film 43 is provided with induced magnetic anisotropy by applying a magnetic field in the meander-shaped stripe width direction during the film formation. The direction of the applied magnetic field is the direction from the back side to the near side.
 反平行結合膜44は、Ruなどにより構成される。なお、反平行結合膜44は、0.3nm~0.45nm、または、0.75nm~0.95nmの厚さで形成することが望ましい。反平行結合膜44をこのような厚さとすることにより、第1の強磁性膜43と第2の強磁性膜45との間に強い反強磁性結合をもたらすことができるためである。 The antiparallel coupling film 44 is made of Ru or the like. The antiparallel coupling film 44 is desirably formed with a thickness of 0.3 nm to 0.45 nm or 0.75 nm to 0.95 nm. This is because by setting the antiparallel coupling film 44 to such a thickness, strong antiferromagnetic coupling can be provided between the first ferromagnetic film 43 and the second ferromagnetic film 45.
 第2の強磁性膜45は、0原子%~40原子%のFeを含むCoFe合金で構成されていることが好ましい。これは、この組成範囲のCoFe合金が小さな保磁力を有し、第1の強磁性膜43が優先的に磁化する方向に対して反平行方向(180°異なる方向)に磁化し易くなるためである。なお、第2の強磁性膜45は、成膜中に、第1の強磁性膜43の成膜中と同様の磁場(ミアンダ形状のストライプ幅方向の磁場、紙面奥側から手前側に向かう方向の磁場)が印加されることにより、誘導磁気異方性が付与される。このような磁場を印加しながら成膜することで、第1の強磁性膜43が印加磁場の方向に優先的に磁化し、第2の強磁性膜45は第1の強磁性膜43の磁化方向とは反平行方向(180°異なる方向)に磁化するのである。 The second ferromagnetic film 45 is preferably made of a CoFe alloy containing 0 atomic% to 40 atomic% of Fe. This is because a CoFe alloy having this composition range has a small coercive force, and is easily magnetized in a direction antiparallel to the direction in which the first ferromagnetic film 43 is preferentially magnetized (direction different by 180 °). is there. The second ferromagnetic film 45 has a magnetic field similar to that during the film formation of the first ferromagnetic film 43 (a magnetic field in the meander stripe width direction, a direction from the back side to the front side of the drawing). Is applied), induced magnetic anisotropy is imparted. By forming the film while applying such a magnetic field, the first ferromagnetic film 43 is preferentially magnetized in the direction of the applied magnetic field, and the second ferromagnetic film 45 is magnetized by the first ferromagnetic film 43. The direction is magnetized in an antiparallel direction (a direction different by 180 °).
 非磁性中間層46は、Cuなどにより構成される。 The nonmagnetic intermediate layer 46 is made of Cu or the like.
 軟磁性自由層(フリー磁性層)47は、磁性材料でなる膜の積層構造で構成される。具体的には、CoFe合金膜471、NiFe合金膜472、NiFeM合金膜473の3層の積層構造で構成される。ここで、Mは、Ta、Cr、Nb、Rh、Zr、Mo、Al、Au、Pd、Pt、Siから選択される元素を表す。また、CoFe合金膜471の厚さは0.5nm~1.5nm、より好ましくは0.8nm~1.2nmであり、NiFe合金膜472の厚さは0.5nm~2.0nm、より好ましくは0.5nm~1.0nmであり、NiFeM合金膜473の厚さは6nm~17nm、より好ましくは9nm~14nmである。軟磁性自由層47をこのような構成とすることにより、線形性が高められ、MR比が向上し、保磁力が抑制された磁気抵抗効果素子12aが実現する。これは、CoFe合金膜471上に配置されたNiFe合金膜472によりMR比が高められ、NiFe合金膜472上に配置されたNiFeM合金膜473によりMR比を維持しつつ保磁力を抑制できるためである。また、AMR効果の小さいNiFeM合金膜を厚く、AMR効果の大きいNiFe合金膜を薄くすることで、線形性を高めることができるためである。なお、線形性を十分に高めるためには、NiFe合金膜の厚さt1とNiFeM合金膜の厚さt2との比t1/t2を3~30とすることが望ましい。 The soft magnetic free layer (free magnetic layer) 47 is composed of a laminated structure of films made of a magnetic material. Specifically, it has a three-layer structure of a CoFe alloy film 471, a NiFe alloy film 472, and a NiFeM alloy film 473. Here, M represents an element selected from Ta, Cr, Nb, Rh, Zr, Mo, Al, Au, Pd, Pt, and Si. Further, the thickness of the CoFe alloy film 471 is 0.5 nm to 1.5 nm, more preferably 0.8 nm to 1.2 nm, and the thickness of the NiFe alloy film 472 is 0.5 nm to 2.0 nm, more preferably The thickness of the NiFeM alloy film 473 is 6 nm to 17 nm, more preferably 9 nm to 14 nm. By configuring the soft magnetic free layer 47 with such a configuration, the magnetoresistive effect element 12a with improved linearity, improved MR ratio, and suppressed coercive force is realized. This is because the MR ratio is increased by the NiFe alloy film 472 disposed on the CoFe alloy film 471, and the coercive force can be suppressed while maintaining the MR ratio by the NiFeM alloy film 473 disposed on the NiFe alloy film 472. is there. Further, the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect. In order to sufficiently increase the linearity, it is desirable that the ratio t1 / t2 between the thickness t1 of the NiFe alloy film and the thickness t2 of the NiFeM alloy film is 3 to 30.
 また、CoFe合金膜471は、0原子%~20原子%のFeを含むCoFe合金で構成されることが望ましい。すなわち、CoFe合金膜はCo膜であっても良い。このような組成では、CoFe合金が面心立方構造(fcc)又は六方最密構造(hcp)をとるため、磁気ヒステリシスをさらに抑制できる。さらに、NiFe合金膜472は、16原子%~22原子%のFeを含むNiFe合金で構成されることが望ましく、NiFeM合金膜473は、10原子%~15原子%のFeおよび2原子%~8原子%のMを含むNiFeM合金で構成されることが望ましい。このような組成では、NiFe合金及びNiFeM合金の線磁歪定数がゼロ近傍となるため、磁気弾性効果による磁気異方性の分散を抑制できる。 The CoFe alloy film 471 is preferably composed of a CoFe alloy containing 0 atomic% to 20 atomic% of Fe. That is, the CoFe alloy film may be a Co film. With such a composition, since the CoFe alloy has a face-centered cubic structure (fcc) or a hexagonal close-packed structure (hcp), magnetic hysteresis can be further suppressed. Further, the NiFe alloy film 472 is preferably composed of a NiFe alloy containing 16 atomic% to 22 atomic% of Fe, and the NiFeM alloy film 473 is composed of 10 atomic% to 15 atomic% Fe and 2 atomic% to 8 atomic%. It is desirable to be composed of a NiFeM alloy containing atomic% M. In such a composition, since the linear magnetostriction constants of the NiFe alloy and the NiFeM alloy are close to zero, dispersion of magnetic anisotropy due to the magnetoelastic effect can be suppressed.
 なお、軟磁性自由層47は、成膜中にミアンダ形状のストライプ長手方向に磁場が印加されることで、誘導磁気異方性が付与されたものであることが望ましい。これにより、ストライプ幅方向の外部磁場に対して線形に抵抗変化し、磁気ヒステリシスの小さい磁気抵抗効果素子12aを実現できる。 The soft magnetic free layer 47 is preferably provided with induced magnetic anisotropy by applying a magnetic field in the longitudinal direction of the meander-shaped stripe during film formation. Thereby, a resistance change linearly with respect to the external magnetic field in the stripe width direction and a magnetoresistive effect element 12a having a small magnetic hysteresis can be realized.
 保護層48は、Taなどで構成される。 The protective layer 48 is made of Ta or the like.
 以上のように、軟磁性自由層47を、所定膜厚を有し磁性材料でなる層の積層構造とすることにより、線形性が高められ、MR比が向上し、保磁力が抑制された磁気抵抗効果素子12aが実現する。磁気抵抗効果素子12aの線形性の向上は、電流センサにおいて、ダイナミックレンジの拡大および電流検出精度の向上に寄与し、磁気抵抗効果素子12aのMR比の向上は、電流センサにおいて、電流検出精度の向上に寄与し、磁気抵抗効果素子12aの保磁力の抑制は、電流センサにおいて磁気ヒステリシスの低減に寄与する。このため、磁気抵抗効果素子12aは電流センサに好適である。磁気抵抗効果素子12aを用いることで、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサが実現する。 As described above, by making the soft magnetic free layer 47 a laminated structure of layers having a predetermined thickness and made of a magnetic material, the linearity is improved, the MR ratio is improved, and the coercive force is suppressed. The resistance effect element 12a is realized. The improvement of the linearity of the magnetoresistive effect element 12a contributes to the expansion of the dynamic range and the current detection accuracy in the current sensor, and the improvement of the MR ratio of the magnetoresistive effect element 12a improves the current detection accuracy in the current sensor. Contributing to the improvement, the suppression of the coercive force of the magnetoresistive effect element 12a contributes to the reduction of magnetic hysteresis in the current sensor. For this reason, the magnetoresistive effect element 12a is suitable for a current sensor. By using the magnetoresistive effect element 12a, a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy is realized.
 なお、磁気抵抗効果素子12aにおいて、第1の強磁性膜43の磁化量(Ms・t)と第2の強磁性膜45の磁化量(Ms・t)は実質的に同じであることが望ましい。第1の強磁性膜43と第2の強磁性膜45との間で磁化量の差が実質的にゼロとなることにより、強磁性固定層の実効的な異方性磁界が大きくなる。これにより、反強磁性材料を用いなくても、強磁性固定層の磁化安定性を十分に確保できるためである。また、第1の強磁性膜43のキュリー温度(Tc)と第2の強磁性膜45のキュリー温度(Tc)とは、実質的に同じであることが望ましい。これにより、高温環境においても第1の強磁性膜43、第2の強磁性膜45の磁化量(Ms・t)の差が実質的にゼロとなり、高い磁化安定性を維持することができるためである。 In the magnetoresistive element 12a, it is desirable that the magnetization amount (Ms · t) of the first ferromagnetic film 43 and the magnetization amount (Ms · t) of the second ferromagnetic film 45 are substantially the same. . When the difference in magnetization between the first ferromagnetic film 43 and the second ferromagnetic film 45 is substantially zero, the effective anisotropic magnetic field of the ferromagnetic fixed layer is increased. This is because the magnetization stability of the ferromagnetic pinned layer can be sufficiently secured without using an antiferromagnetic material. Further, it is desirable that the Curie temperature (Tc) of the first ferromagnetic film 43 and the Curie temperature (Tc) of the second ferromagnetic film 45 are substantially the same. Thereby, even in a high temperature environment, the difference in magnetization (Ms · t) between the first ferromagnetic film 43 and the second ferromagnetic film 45 becomes substantially zero, and high magnetization stability can be maintained. It is.
 図5は、磁気抵抗効果素子のR-H波形(磁界-抵抗変化率曲線)を示すグラフである。図5において、実線は本実施の形態における磁気抵抗効果素子(実施素子)のR-H波形を示しており、破線は従来の磁気抵抗効果素子(比較素子)のR-H波形を示している。ここでは、実施素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:1nm)/Ni82Fe13Nb(軟磁性自由層:10nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用いた。 FIG. 5 is a graph showing an RH waveform (magnetic field-resistance change rate curve) of the magnetoresistive effect element. In FIG. 5, the solid line shows the RH waveform of the magnetoresistive effect element (implementing element) in the present embodiment, and the broken line shows the RH waveform of the conventional magnetoresistive effect element (comparative element). . Here, as an implementation element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 1 nm) / Ni 82 A magnetoresistive element having a film configuration of Fe 13 Nb 5 (soft magnetic free layer: 10 nm) / Ta (protective layer: 10 nm) was used.
 また、比較素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:7nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用いた。つまり、実施素子と比較素子とにおいて、軟磁性自由層の構成のみが異なっている。なお、図5に示されるR-H波形については、通常測定される条件で求めた。 As a comparative element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 ( Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 7 nm) / Ta (protection) A magnetoresistive element having a film configuration of (layer: 10 nm) was used. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element. Note that the RH waveform shown in FIG. 5 was obtained under conditions that are normally measured.
 図5から、本実施の形態における実施素子は、比較素子よりグラフの直線性が高まっており、線形性が高められていることが確認できる。当該線形性の向上は、電流センサにおいて、ダイナミックレンジの拡大および電流検出精度の向上という効果をもたらす。 FIG. 5 confirms that the linearity of the graph of the implementation element in the present embodiment is higher than that of the comparison element, and the linearity is enhanced. The improvement of the linearity brings about the effect of increasing the dynamic range and improving the current detection accuracy in the current sensor.
 図6は、磁気抵抗効果素子(実施素子)における、NiFe合金膜472の膜厚とMR比(ΔR/R)との関係を示すグラフである。ここでは、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:Xnm)/Ni82Fe13Nb(軟磁性自由層:9nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子において、NiFe合金膜の膜厚Xを0nm~3nmの間で異ならせることによって、NiFe合金膜472の膜厚とMR比との関係を求めた。 FIG. 6 is a graph showing the relationship between the film thickness of the NiFe alloy film 472 and the MR ratio (ΔR / R) in the magnetoresistive effect element (implementing element). Here, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (second Ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: X 1 nm) / Ni 82 Fe 13 In a magnetoresistive effect element having a film configuration of Nb 5 (soft magnetic free layer: 9 nm) / Ta (protective layer: 10 nm), a NiFe alloy film having a film thickness X 1 different between 0 nm and 3 nm can be obtained. The relationship between the film thickness of the film 472 and the MR ratio was obtained.
 図6から、本実施の形態における磁気抵抗効果素子(実施素子)において、NiFe合金膜の膜厚が0.5nm~2.5nmと薄い場合には、比較的高いMR比が得られることが確認できる。十分に高いMR比を得るためには、NiFe合金膜の膜厚を0.5nm~2.0nmとすることが望ましい。磁気抵抗効果素子における高いMR比は、電流センサにおいて、電流検出精度の向上という効果をもたらす。 From FIG. 6, it is confirmed that in the magnetoresistive effect element (implementing element) in the present embodiment, a relatively high MR ratio can be obtained when the NiFe alloy film is as thin as 0.5 nm to 2.5 nm. it can. In order to obtain a sufficiently high MR ratio, it is desirable that the thickness of the NiFe alloy film be 0.5 nm to 2.0 nm. A high MR ratio in the magnetoresistive effect element brings about an effect of improving current detection accuracy in the current sensor.
 図7は、磁気抵抗効果素子における、軟磁性自由層の磁化量(Ms・t)と保磁力(Hc)との関係を示すグラフである。図7において、実線は本実施の形態の磁気抵抗効果素子(実施素子)における関係を示しており、破線は従来の磁気抵抗効果素子(比較素子)における関係を示している。ここでは、実施素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:2nm)/Ni82Fe13Nb(軟磁性自由層:Xnm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用い、NiFeNb合金膜の膜厚Xを異ならせることによって磁化量を変化させ、保磁力との関係を求めた。図7の実線で示される特性において、測定点での膜厚Xの値(単位はnm)を併せて示す。 FIG. 7 is a graph showing the relationship between the amount of magnetization (Ms · t) of the soft magnetic free layer and the coercive force (Hc) in the magnetoresistive effect element. In FIG. 7, the solid line indicates the relationship in the magnetoresistive effect element (implementing element) of the present embodiment, and the broken line indicates the relationship in the conventional magnetoresistive effect element (comparative element). Here, as an implementation element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 2 nm) / Ni 82 Using a magnetoresistive element having a film structure of Fe 13 Nb 5 (soft magnetic free layer: X 2 nm) / Ta (protective layer: 10 nm) and changing the film thickness X 2 of the NiFeNb alloy film, the amount of magnetization is changed. And the relationship with the coercive force was obtained. In the characteristic shown by the solid line in FIG. 7, the film thickness X 2 values at the measurement points (unit nm) are also shown.
 また、比較素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:Ynm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用い、同様にNiFe合金膜の膜厚Yを異ならせることによって磁化量を変化させ、保磁力との関係を求めた。つまり、実施素子と比較素子とにおいて、軟磁性自由層の構成のみが異なっている。図7の破線で示される特性において、測定点での膜厚Yの値(単位はnm)を併せて示す。 As a comparative element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 ( Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: Y 2 nm) / Ta (protective layer: 10 nm) using a magnetoresistive element of a membrane structure that, similarly changing the magnetization by varying the thickness Y 2 of the NiFe alloy film, obtained relation between the coercive force. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element. In the characteristic shown by the broken line in FIG. 7, the thickness Y 2 of the values at the measurement points (unit nm) are also shown.
 図7から、本実施の形態における磁気抵抗効果素子(実施素子)において、磁化量の値が変化しても保磁力はほとんど変化しないが、比較素子では、磁化量が大きくなると保磁力も大きくなることが確認できる。保磁力が大きいということは、磁気ヒステリシスが大きいということであるから、保磁力が抑制された磁気抵抗効果素子は、電流センサにおいて磁気ヒステリシスの低減という効果をもたらす。 From FIG. 7, in the magnetoresistive effect element (implementing element) in the present embodiment, the coercive force hardly changes even when the value of the magnetization amount changes, but in the comparison element, the coercive force increases as the magnetization amount increases. I can confirm that. A large coercive force means that the magnetic hysteresis is large. Therefore, the magnetoresistive effect element in which the coercive force is suppressed brings about an effect of reducing the magnetic hysteresis in the current sensor.
 図8は、磁気抵抗効果素子における、軟磁性自由層の磁化量(Ms・t)とMR比(ΔR/R)との関係を示すグラフである。図8において、実線は本実施の形態の磁気抵抗効果素子(実施素子)における関係を示しており、破線は従来の磁気抵抗効果素子(比較素子)における関係を示しており、一点鎖線は参考としての磁気抵抗素子(参考素子)における関係を示している。ここでは、実施素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:2nm)/Ni82Fe13Nb(軟磁性自由層:Xnm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用い、NiFeNb合金膜の膜厚Xを異ならせることによって磁化量を変化させ、MR比との関係を求めた。なお、NiFeNb合金膜の膜厚Xは、3nm~15nmの間で異ならせた。図8の実線で示される特性において、測定点での膜厚Xの値(単位はnm)を併せて示す。 FIG. 8 is a graph showing the relationship between the magnetization amount (Ms · t) of the soft magnetic free layer and the MR ratio (ΔR / R) in the magnetoresistive effect element. In FIG. 8, the solid line indicates the relationship in the magnetoresistive effect element (implementing element) of the present embodiment, the broken line indicates the relationship in the conventional magnetoresistive effect element (comparative element), and the alternate long and short dash line is for reference. The relationship in the magnetoresistive element (reference element) is shown. Here, as an implementation element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: 2 nm) / Ni 82 Using a magnetoresistive element having a film structure of Fe 13 Nb 5 (soft magnetic free layer: X 3 nm) / Ta (protective layer: 10 nm) and changing the film thickness X 3 of the NiFeNb alloy film, the amount of magnetization is changed. The relationship with the MR ratio was obtained. The thickness X 3 of NiFeNb alloy film was varied between 3 nm ~ 15 nm. In the characteristic shown by the solid line in FIG. 8, the film thickness X 3 value at the measurement point (in nm) shown together.
 また、比較素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/NiFe(軟磁性自由層:Ynm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用い、同様にNiFe合金膜の膜厚Yを異ならせることによって磁化量を変化させ、MR比との関係を求めた。また、参考素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/Ni82Fe13Nb(軟磁性自由層:Znm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用い、同様にNiFeNb合金膜の膜厚Zを異ならせることによって磁化量を変化させ、MR比との関係を求めた。つまり、実施素子と比較素子と参考素子において、軟磁性自由層の構成のみが異なっている。図8の破線および一点鎖線で示される特性において、測定点での膜厚Yの値および膜厚Zの値(単位はnm)を併せて示す。 As a comparative element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 ( Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / NiFe (soft magnetic free layer: Y 3 nm) / Ta (protective layer: 10 nm) using a magnetoresistive element of a membrane structure that, similarly changing the magnetization by varying the thickness Y 3 of the NiFe alloy film, obtained relation between MR ratio. As a reference element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 ( Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: Z 3 nm) / Ta (protective layer: 10 nm) using a magnetoresistive effect element, and similarly changing the film thickness Z 3 of the NiFeNb alloy film to change the amount of magnetization and obtaining the relationship with the MR ratio. It was. That is, only the configuration of the soft magnetic free layer is different between the implementation element, the comparison element, and the reference element. In the characteristics indicated by the broken line and the alternate long and short dash line in FIG. 8, the value of the film thickness Y 3 and the value of the film thickness Z 3 (unit: nm) at the measurement point are shown together.
 図8から、本実施の形態における磁気抵抗効果素子(実施素子)では、磁化量が大きくなっても比較的大きなMR比が得られていることが確認できる。一方で、比較素子および参考素子において同等のMR比を確保するためには、磁化量を十分に低減しなくてはならない。磁化量を低減すると、形状異方性が小さくなり、R-H波形の傾きが大きくなるため、線形性を確保できる範囲が狭くなる。このように、本実施の形態における磁気抵抗効果素子12aでは、磁化量が大きくなっても比較的大きなMR比が得られるため、高い線形性と高いMR比が実現する。なお、他の特性との関係から、磁気抵抗効果素子12aにおけるNiFeNb合金膜の膜厚は、6nm~17nmであることが望ましい。 FIG. 8 confirms that the magnetoresistive effect element (implementing element) according to the present embodiment has a relatively large MR ratio even when the amount of magnetization increases. On the other hand, in order to ensure the same MR ratio in the comparison element and the reference element, the amount of magnetization must be sufficiently reduced. When the amount of magnetization is reduced, the shape anisotropy is reduced and the slope of the RH waveform is increased, so that the range in which linearity can be ensured is narrowed. As described above, in the magnetoresistive effect element 12a in the present embodiment, a relatively large MR ratio can be obtained even when the amount of magnetization is large, so that high linearity and high MR ratio are realized. From the relationship with other characteristics, the thickness of the NiFeNb alloy film in the magnetoresistive effect element 12a is preferably 6 nm to 17 nm.
 図9は、磁気抵抗効果素子における、CoFe合金膜471の膜厚と磁歪定数(λs)との関係を示すグラフである。ここでは、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:Xnm)/Ni81.5Fe18.5(軟磁性自由層:2nm)/Ni82Fe13Nb(軟磁性自由層:9nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子において、CoFe合金膜の膜厚Xを0.4nm~2nmの間で異ならせることによって、CoFe合金膜471の膜厚とMR比との関係を求めた。 FIG. 9 is a graph showing the relationship between the thickness of the CoFe alloy film 471 and the magnetostriction constant (λs) in the magnetoresistive effect element. Here, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (second Ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: X 4 nm) / Ni 81.5 Fe 18.5 (soft magnetic free layer: 2 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: 9 nm) / Ta (protective layer: 10 nm), the magnetoresistive effect element has a film thickness X 4 of 0.4 nm to 2 nm. Thus, the relationship between the film thickness of the CoFe alloy film 471 and the MR ratio was determined.
 図9から、本実施の形態における磁気抵抗効果素子(実施素子)において、CoFe合金膜の膜厚が0.5nm~1.5nmの範囲にある場合、磁歪定数λsが、λs≦±1ppmとなっていることが分かる。磁歪定数λsの絶対値が1より大きくなると磁気弾性効果により軟磁性自由層の磁気異方性が分散し、磁気ヒステリシスが発生しやすくなるという問題を生じるため、CoFe合金膜の膜厚は0.5nm~1.5nmであることが望ましい。 From FIG. 9, in the magnetoresistive effect element (implementing element) in the present embodiment, when the thickness of the CoFe alloy film is in the range of 0.5 nm to 1.5 nm, the magnetostriction constant λs becomes λs ≦ ± 1 ppm. I understand that If the absolute value of the magnetostriction constant λs is greater than 1, the magnetic anisotropy of the soft magnetic free layer is dispersed due to the magnetoelastic effect, and magnetic hysteresis is likely to occur. It is desirable to be 5 nm to 1.5 nm.
 図10は、磁気抵抗効果素子と固定抵抗素子で構成されたハーフブリッジ回路の出力波形(磁界-出力電圧)を示すグラフである。図10において、実線は本実施の形態における磁気抵抗効果素子(実施素子)を用いたハーフブリッジ回路の出力波形を示しており、破線は従来の磁気抵抗効果素子(比較素子)を用いたハーフブリッジ回路の出力波形を示している。ここでは、実施素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/Ni81.5Fe18.5(軟磁性自由層:1nm)/Ni82Fe13Nb(軟磁性自由層:10nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用いた。 FIG. 10 is a graph showing an output waveform (magnetic field-output voltage) of a half bridge circuit composed of a magnetoresistive effect element and a fixed resistance element. In FIG. 10, the solid line shows the output waveform of the half bridge circuit using the magnetoresistive effect element (implementing element) in the present embodiment, and the broken line shows the half bridge using the conventional magnetoresistive effect element (comparative element). The output waveform of the circuit is shown. Here, as an implementation element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 (Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 81.5 Fe 18.5 (soft magnetic free Layer: 1 nm) / Ni 82 Fe 13 Nb 5 (soft magnetic free layer: 10 nm) / Ta (protective layer: 10 nm).
 また、比較素子として、NiFeCr(シード層:4.2nm)/Fe60Co40(第1の強磁性膜:1.8nm)/Ru(反平行結合膜:0.36nm)/Co90Fe10(第2の強磁性膜:2.4nm)/Cu(非磁性中間層:2.2nm)/Co90Fe10(軟磁性自由層:1nm)/Ni81.5Fe18.5(軟磁性自由層:7nm)/Ta(保護層:10nm)という膜構成の磁気抵抗効果素子を用いた。つまり、実施素子と比較素子とにおいて、軟磁性自由層の構成のみが異なっている。 As a comparative element, NiFeCr (seed layer: 4.2 nm) / Fe 60 Co 40 (first ferromagnetic film: 1.8 nm) / Ru (anti-parallel coupling film: 0.36 nm) / Co 90 Fe 10 ( Second ferromagnetic film: 2.4 nm) / Cu (nonmagnetic intermediate layer: 2.2 nm) / Co 90 Fe 10 (soft magnetic free layer: 1 nm) / Ni 81.5 Fe 18.5 (soft magnetic free layer) : 7 nm) / Ta (protective layer: 10 nm) was used. That is, only the configuration of the soft magnetic free layer is different between the implementation element and the comparison element.
 図10から、比較素子を用いたハーフブリッジ回路の出力波形の線形領域は±20Oe程度であるのに対して、本実施の形態における実施素子を用いたハーフブリッジ回路の出力波形の線形領域は±70Oe程度であることが確認できる。ハーフブリッジ回路の出力は電流センサの出力に対応するものであり、実施素子を用いることで電流センサの出力の線形性を高められることが分かる。 From FIG. 10, the linear region of the output waveform of the half-bridge circuit using the comparison element is about ± 20 Oe, whereas the linear region of the output waveform of the half-bridge circuit using the implementation element in the present embodiment is ± It can be confirmed that it is about 70 Oe. The output of the half bridge circuit corresponds to the output of the current sensor, and it can be seen that the linearity of the output of the current sensor can be enhanced by using the implementation element.
 図11A~Cおよび図12A~Cは、本実施の形態に係る磁気抵抗効果素子12a、12bの製造方法を説明するための図である。 FIGS. 11A to 11C and FIGS. 12A to 12C are views for explaining a method of manufacturing the magnetoresistive effect elements 12a and 12b according to the present embodiment.
 図11Aに示されるように、まず、基板21上に、シード層42a、第1の強磁性膜43a、反平行結合膜44a、第2の強磁性膜45a、非磁性中間層46a、軟磁性自由層(フリー磁性層)47a、および保護層48aを順次形成する。 As shown in FIG. 11A, first, a seed layer 42a, a first ferromagnetic film 43a, an antiparallel coupling film 44a, a second ferromagnetic film 45a, a nonmagnetic intermediate layer 46a, a soft magnetic free layer are formed on a substrate 21. A layer (free magnetic layer) 47a and a protective layer 48a are sequentially formed.
 第1の強磁性膜43aおよび第2の強磁性膜45aの成膜中には、ミアンダ形状のストライプ幅方向に磁場を印加する。図11において、第1の強磁性膜43aの成膜中に印加される磁場の方向、および第2の強磁性膜45aの成膜中に印加される磁場の方向は共に、紙面奥側から手前側に向かう方向である。これにより、第1の強磁性膜43aが印加磁場方向に優先的に磁化し、第2の強磁性膜45aは、第1の強磁性膜43aの磁化方向とは反平行方向(180°異なる方向)に磁化する。 During the formation of the first ferromagnetic film 43a and the second ferromagnetic film 45a, a magnetic field is applied in the meander-shaped stripe width direction. In FIG. 11, both the direction of the magnetic field applied during the formation of the first ferromagnetic film 43a and the direction of the magnetic field applied during the formation of the second ferromagnetic film 45a are from the front side of the drawing. It is a direction toward the side. Thereby, the first ferromagnetic film 43a is preferentially magnetized in the applied magnetic field direction, and the second ferromagnetic film 45a is antiparallel to the magnetization direction of the first ferromagnetic film 43a (a direction different by 180 °). ) Is magnetized.
 軟磁性自由層(フリー磁性層)47aは、CoFe合金膜471a、NiFe合金膜472a、NiFeM合金膜473aの3層の積層構造で形成される。また、軟磁性自由層(フリー磁性層)47aの成膜中には、ミアンダ形状のストライプ長手方向に磁場を印加する。 The soft magnetic free layer (free magnetic layer) 47a is formed with a three-layer structure of a CoFe alloy film 471a, a NiFe alloy film 472a, and a NiFeM alloy film 473a. Further, during the formation of the soft magnetic free layer (free magnetic layer) 47a, a magnetic field is applied in the longitudinal direction of the meander stripe.
 次に、図11Bに示されるように、保護層48a上にレジスト層を形成し、フォトリソグラフィおよびエッチングにより、磁気抵抗効果素子12aが形成される領域上にレジスト層50aを残存させる。そして、図11Cに示されるように、イオンミリングなどにより、露出した積層膜を除去して、磁気抵抗効果素子12bを形成する表面を露出させる。 Next, as shown in FIG. 11B, a resist layer is formed on the protective layer 48a, and the resist layer 50a is left on the region where the magnetoresistive effect element 12a is formed by photolithography and etching. Then, as shown in FIG. 11C, the exposed laminated film is removed by ion milling or the like to expose the surface on which the magnetoresistive effect element 12b is formed.
 次いで、図12Aに示されるように、露出した表面上に、シード層42b、第1の強磁性膜43b、反平行結合膜44b、第2の強磁性膜45b、非磁性中間層46b、軟磁性自由層(フリー磁性層)47b、および保護層48bを順次形成する。 Next, as shown in FIG. 12A, on the exposed surface, the seed layer 42b, the first ferromagnetic film 43b, the antiparallel coupling film 44b, the second ferromagnetic film 45b, the nonmagnetic intermediate layer 46b, the soft magnetic layer. A free layer (free magnetic layer) 47b and a protective layer 48b are sequentially formed.
 ここでも、第1の強磁性膜43bおよび第2の強磁性膜45bの成膜中には、ミアンダ形状のストライプ幅方向に磁場を印加する。ただし、印加磁場の方向は、図12において、紙面手前側から奥側に向かう方向である。これにより、第1の強磁性膜43aと第2の強磁性膜45aは反平行方向(180°異なる方向)に磁化する。 Again, a magnetic field is applied in the meander-shaped stripe width direction during the formation of the first ferromagnetic film 43b and the second ferromagnetic film 45b. However, the direction of the applied magnetic field is the direction from the front side to the back side in FIG. Accordingly, the first ferromagnetic film 43a and the second ferromagnetic film 45a are magnetized in the antiparallel direction (direction different by 180 °).
 また、軟磁性自由層(フリー磁性層)47bは、CoFe合金膜、NiFe合金膜、NiFeM合金膜の3層の積層構造で形成される。軟磁性自由層(フリー磁性層)47bの成膜中には、ミアンダ形状のストライプ長手方向に磁場を印加する。 Further, the soft magnetic free layer (free magnetic layer) 47b is formed of a three-layered structure of a CoFe alloy film, a NiFe alloy film, and a NiFeM alloy film. During the formation of the soft magnetic free layer (free magnetic layer) 47b, a magnetic field is applied in the longitudinal direction of the meander stripe.
 次に、図12Bに示されるように、保護層48a、48b上にレジストを形成し、フォトリソグラフィおよびエッチングにより、磁気抵抗効果素子12a、12bの形成領域上にレジスト層51a、51bを残存させる。そして、図12Cに示されるように、イオンミリングなどにより、露出した積層膜を除去して、磁気抵抗効果素子12a、12bを得る。 Next, as shown in FIG. 12B, a resist is formed on the protective layers 48a and 48b, and the resist layers 51a and 51b are left on the formation regions of the magnetoresistive elements 12a and 12b by photolithography and etching. Then, as shown in FIG. 12C, the exposed laminated film is removed by ion milling or the like to obtain magnetoresistance effect elements 12a and 12b.
 以上のように本発明では、磁気抵抗効果素子の軟磁性自由層が、比較的薄いCoFe合金膜およびNiFe合金膜と、比較的厚いNiFeM合金膜との積層構造で構成されるため、線形性が高められ、MR比が向上し、保磁力が抑制された磁気抵抗効果素子が実現する。これは、CoFe合金膜上に配置された所定厚さのNiFe合金膜によりMR比が高められ、NiFe合金膜上に配置された所定厚さのNiFeM合金膜によりMR比を維持しつつ保磁力を抑制できるためである。また、AMR効果の小さいNiFeM合金膜を厚く、AMR効果の大きいNiFe合金膜を薄くすることで、線形性を高めることができるためである。また、CoFe合金膜を上記の厚さとすることにより、磁歪や磁気ヒステリシスを抑制しつつ、磁気抵抗効果素子の積層構造(例えば、Cu層、NiFe層など)を構成する膜の熱拡散を防止し、スピン依存界面散乱効果を高め、MR比を高めることができるためである。このように電流センサに適した磁気センサ素子が実現する結果、広いダイナミックレンジ、低い磁気ヒステリシス、および高い電流検出精度を備えた電流センサが実現する。 As described above, in the present invention, the soft magnetic free layer of the magnetoresistive effect element is composed of a laminated structure of a relatively thin CoFe alloy film and NiFe alloy film and a relatively thick NiFeM alloy film. Thus, a magnetoresistive element with enhanced MR ratio and reduced coercive force is realized. This is because the MR ratio is increased by the NiFe alloy film having a predetermined thickness disposed on the CoFe alloy film, and the coercive force is maintained while maintaining the MR ratio by the NiFeM alloy film having the predetermined thickness disposed on the NiFe alloy film. This is because it can be suppressed. Further, the linearity can be improved by increasing the thickness of the NiFeM alloy film having a small AMR effect and reducing the thickness of the NiFe alloy film having a large AMR effect. Further, by setting the thickness of the CoFe alloy film to the above-mentioned thickness, it is possible to prevent thermal diffusion of the film constituting the laminated structure of the magnetoresistive effect element (for example, Cu layer, NiFe layer, etc.) while suppressing magnetostriction and magnetic hysteresis. This is because the spin-dependent interface scattering effect can be enhanced and the MR ratio can be increased. As a result of realizing a magnetic sensor element suitable for the current sensor as described above, a current sensor having a wide dynamic range, low magnetic hysteresis, and high current detection accuracy is realized.
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における材料、各素子の接続関係、厚さ、大きさ、製法などは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 Note that the present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the materials, connection relations, thicknesses, sizes, manufacturing methods, and the like in the above embodiments can be changed as appropriate. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本発明は、例えば、電気自動車のモータ駆動用の電流の大きさを検出する電流センサに適用することが可能である。 The present invention can be applied to, for example, a current sensor that detects the magnitude of a current for driving a motor of an electric vehicle.
 本出願は、2011年3月7日出願の特願2011-049163に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2011-049163 filed on March 7, 2011. All this content is included here.

Claims (5)

  1.  被測定電流からの誘導磁界の印加により抵抗値が変化する磁気抵抗効果素子を具備する電流センサであって、
     前記磁気抵抗効果素子は、反平行結合膜を介して第1の強磁性膜と第2の強磁性膜とを反強磁性的に結合させてなるセルフピン止め型の強磁性固定層と、前記強磁性固定層上の非磁性中間層と、前記非磁性中間層上の軟磁性自由層とを有し、
     前記軟磁性自由層は、前記非磁性中間層上のCoFe合金膜と、前記CoFe合金膜上のNiFe合金膜と、前記NiFe合金膜上のNiFeM合金膜(Mは、Ta、Cr、Nb、Rh、Zr、Mo、Al、Au、Pd、Pt、Siから選択される元素)との積層構造で構成され、
     前記CoFe合金膜の厚さは0.5nm~1.5nmであり、前記NiFe合金膜の厚さは0.5nm~2.0nmであり、NiFeM合金膜の厚さは6nm~17nmであることを特徴とする電流センサ。
    A current sensor comprising a magnetoresistive element whose resistance value changes by application of an induced magnetic field from a current to be measured,
    The magnetoresistive effect element includes a self-pinned ferromagnetic fixed layer formed by antiferromagnetically coupling a first ferromagnetic film and a second ferromagnetic film via an antiparallel coupling film, and the strong A nonmagnetic intermediate layer on the magnetic pinned layer, and a soft magnetic free layer on the nonmagnetic intermediate layer,
    The soft magnetic free layer includes a CoFe alloy film on the nonmagnetic intermediate layer, a NiFe alloy film on the CoFe alloy film, and a NiFeM alloy film on the NiFe alloy film (M is Ta, Cr, Nb, Rh) , Zr, Mo, Al, Au, Pd, Pt, Si))
    The CoFe alloy film has a thickness of 0.5 nm to 1.5 nm, the NiFe alloy film has a thickness of 0.5 nm to 2.0 nm, and the NiFeM alloy film has a thickness of 6 nm to 17 nm. Characteristic current sensor.
  2.  前記CoFe合金膜が10原子%~20原子%のFeを含むCoFe合金で構成されたことを特徴とする請求項1に記載の電流センサ。 2. The current sensor according to claim 1, wherein the CoFe alloy film is made of a CoFe alloy containing 10 atomic% to 20 atomic% of Fe.
  3.  前記NiFe合金膜が16原子%~22原子%のFeを含むNiFe合金で構成されたことを特徴とする請求項1または請求項2に記載の電流センサ。 3. The current sensor according to claim 1, wherein the NiFe alloy film is made of a NiFe alloy containing 16 atomic% to 22 atomic% of Fe.
  4.  前記NiFeM合金膜が10原子%~15原子%のFeおよび2原子%~8原子%のMを含むNiFeM合金で構成されたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。 4. The NiFeM alloy film according to claim 1, wherein the NiFeM alloy film is composed of a NiFeM alloy containing 10 atomic% to 15 atomic% of Fe and 2 atomic% to 8 atomic% of M. Current sensor.
  5.  前記磁気抵抗効果素子と固定抵抗素子とを含む磁界検出ブリッジ回路を備えたことを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。 The current sensor according to any one of claims 1 to 4, further comprising a magnetic field detection bridge circuit including the magnetoresistive effect element and a fixed resistance element.
PCT/JP2012/051850 2011-03-07 2012-01-27 Current sensor WO2012120940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013503419A JP5597305B2 (en) 2011-03-07 2012-01-27 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-049163 2011-03-07
JP2011049163 2011-03-07

Publications (1)

Publication Number Publication Date
WO2012120940A1 true WO2012120940A1 (en) 2012-09-13

Family

ID=46797911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051850 WO2012120940A1 (en) 2011-03-07 2012-01-27 Current sensor

Country Status (2)

Country Link
JP (1) JP5597305B2 (en)
WO (1) WO2012120940A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098511A1 (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Current sensor
JP2017502298A (en) * 2013-12-24 2017-01-19 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip reference bridge magnetic sensor for strong magnetic fields
WO2018037634A1 (en) * 2016-08-23 2018-03-01 アルプス電気株式会社 Magnetic sensor and current sensor
JP2020042038A (en) * 2019-11-26 2020-03-19 株式会社東芝 Magnetic sensor, living cell detector, and diagnostic device
US11350840B2 (en) 2017-03-21 2022-06-07 Kabushiki Kaisha Toshiba Magnetic sensor, biological cell sensing device, and diagnostic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103120A (en) * 2002-09-10 2004-04-02 Hitachi Ltd Discrete magnetic read/write head with differential bias magnetic domain control structure
JP2008227499A (en) * 2007-03-08 2008-09-25 Magic Technologies Inc Magnetic tunnel junction element, method for manufacturing same, and magnetic random access memory
WO2010143718A1 (en) * 2009-06-12 2010-12-16 アルプス・グリーンデバイス株式会社 Magnetic balance current sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103120A (en) * 2002-09-10 2004-04-02 Hitachi Ltd Discrete magnetic read/write head with differential bias magnetic domain control structure
JP2008227499A (en) * 2007-03-08 2008-09-25 Magic Technologies Inc Magnetic tunnel junction element, method for manufacturing same, and magnetic random access memory
WO2010143718A1 (en) * 2009-06-12 2010-12-16 アルプス・グリーンデバイス株式会社 Magnetic balance current sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502298A (en) * 2013-12-24 2017-01-19 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Single-chip reference bridge magnetic sensor for strong magnetic fields
US10161971B2 (en) 2014-12-15 2018-12-25 Murata Manufacturing Co., Ltd. Current sensor that detects a magnetic field produced by a current
JPWO2016098511A1 (en) * 2014-12-15 2017-04-27 株式会社村田製作所 Current sensor
WO2016098511A1 (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Current sensor
JPWO2018037634A1 (en) * 2016-08-23 2019-04-11 アルプスアルパイン株式会社 Magnetic sensor and current sensor
KR20180128050A (en) * 2016-08-23 2018-11-30 알프스 덴키 가부시키가이샤 Magnetic and current sensors
WO2018037634A1 (en) * 2016-08-23 2018-03-01 アルプス電気株式会社 Magnetic sensor and current sensor
CN109643755A (en) * 2016-08-23 2019-04-16 阿尔卑斯阿尔派株式会社 Magnetic Sensor and current sensor
KR102183263B1 (en) * 2016-08-23 2020-11-26 알프스 알파인 가부시키가이샤 Magnetic sensor and current sensor
CN109643755B (en) * 2016-08-23 2023-05-19 阿尔卑斯阿尔派株式会社 Magnetic sensor and current sensor
US11350840B2 (en) 2017-03-21 2022-06-07 Kabushiki Kaisha Toshiba Magnetic sensor, biological cell sensing device, and diagnostic device
JP2020042038A (en) * 2019-11-26 2020-03-19 株式会社東芝 Magnetic sensor, living cell detector, and diagnostic device
JP2022031282A (en) * 2019-11-26 2022-02-18 株式会社東芝 Magnetic sensor, living cell detector, and diagnostic device

Also Published As

Publication number Publication date
JP5597305B2 (en) 2014-10-01
JPWO2012120940A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP5572208B2 (en) Magnetic sensor and magnetic balance type current sensor using the same
US8760158B2 (en) Current sensor
US20130257422A1 (en) Magnetic sensor and method for manufacturing magnetic sensor
WO2012090631A1 (en) Electromagnetic proportional current sensor
US20120306491A1 (en) Magnetic balance type current sensor
JP5597305B2 (en) Current sensor
WO2012096211A1 (en) Current sensor
JP4546835B2 (en) Magnetoresistive multilayer devices and sensor elements
WO2011111537A1 (en) Current sensor
US20130057274A1 (en) Current sensor
JP5505817B2 (en) Magnetic balanced current sensor
WO2011111649A1 (en) Magnetic sensor and method for manufacturing the same
JP2012255796A (en) Magnetic sensor and method of manufacturing the same
JP6039697B2 (en) Giant magnetoresistive effect element and current sensor using the same
JP6755319B2 (en) Magnetic sensor and current sensor
JP5869405B2 (en) Magnetic detection element and magnetic sensor using the same
WO2011111457A1 (en) Magnetism sensor and magnetic-balance current sensor provided therewith
JP6282990B2 (en) Magnetic sensor and current sensor
WO2012117784A1 (en) Current sensor
JPH11195824A (en) Magnetoresistance effect element and magnetoresistance effect type head
JP5517315B2 (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755387

Country of ref document: EP

Kind code of ref document: A1