WO2012120852A1 - Sensor chip - Google Patents

Sensor chip Download PDF

Info

Publication number
WO2012120852A1
WO2012120852A1 PCT/JP2012/001436 JP2012001436W WO2012120852A1 WO 2012120852 A1 WO2012120852 A1 WO 2012120852A1 JP 2012001436 W JP2012001436 W JP 2012001436W WO 2012120852 A1 WO2012120852 A1 WO 2012120852A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
diaphragm
sensor chip
holes
silicon
Prior art date
Application number
PCT/JP2012/001436
Other languages
French (fr)
Japanese (ja)
Inventor
健樹 山本
中谷 将也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012120852A1 publication Critical patent/WO2012120852A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp

Definitions

  • the present invention relates to a sensor chip used for a sensor device such as a chemical substance identification sensor or a cell electrophysiological sensor for measuring the electrophysiological activity of a cell.
  • Biosensors and biochips are used for biosensing proteins, genes, low molecular weight signal molecules, etc. based on the ecological molecular recognition mechanism. Specifically, biosensing can be performed by monitoring a selective specific reaction such as a receptor ligand and an antigen-antibody reaction and a selective catalytic reaction such as an enzyme using a predetermined device.
  • the patch clamp method is used as an example of a biosensing method.
  • the patch clamp method is one of methods for elucidating the function of ion channels existing in cell membranes or screening (inspecting) drugs using the electrical activity of cells as an index.
  • a minute portion (patch) of a cell membrane is gently sucked with a tip portion of a micropipette.
  • a current across the patch is measured at a fixed membrane potential by a microelectrode probe provided on the micropipette.
  • the patch clamp method is one of the few methods that can examine the physiological functions of cells in real time.
  • the patch clamp method requires special techniques and skills for the production and operation of micropipettes. Therefore, it takes a lot of time to measure one sample. Therefore, it is not suitable for use in screening a large amount of drug candidate compounds at high speed.
  • a flat-plate microelectrode probe using a microfabrication technique has been developed. Such microelectrode probes are suitable for automated systems that do not require the insertion of a micropipette for individual cells.
  • a cell electrophysiological sensor has been proposed as a method for electrophysiologically measuring an ion channel present in a cell membrane. This does not require the skill of inserting a micropipette into an individual cell like the patch clamp method. Therefore, it is suitable for a high-throughput automated system.
  • a method for measuring an averaged ion current from a cell population has been proposed.
  • a sensor device including a plate in which a plurality of through-holes are arranged in a lattice form in each well is used.
  • the ionic current from the cell population is measured. Therefore, the average current measured by this sensor device is uniform between the wells and has little variation. That is, the success rate of measurement with the sensor device is very high. As a result, measurement in a plurality of wells becomes unnecessary, and the throughput is improved.
  • the sensor chip includes a diaphragm including a first surface and a second surface facing the first surface, and a plurality of through holes penetrating the first surface and the second surface.
  • the diaphragm has a lower mechanical strength against stress from a specific direction than mechanical strength against stress from other directions.
  • the plurality of through holes have a first through hole and a second through hole closest to the first through hole. The direction along the first line segment connecting the center of the first through hole and the center of the second through hole is different from the specific direction.
  • FIG. 1 is a cross-sectional view of a sensor device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the sensor chip in the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention.
  • FIG. 7 is a top view of the sensor chip in the embodiment of the present invention.
  • FIG. 8A is a diagram showing a cleavage plane of a silicon (100) substrate.
  • FIG. 8B is a diagram showing a cleavage plane of the silicon (110) substrate.
  • FIG. 8C is a diagram showing a cleavage plane of the silicon (111) substrate.
  • a cell electrophysiological sensor is used as an example of the sensor device, but the use is not particularly limited as long as the same sensor chip is used.
  • FIG. 1 is a cross-sectional view of a cell electrophysiological sensor which is an example of a sensor device.
  • a cell electrophysiological sensor 100 as a sensor device has a sensor chip 13 and a mounting substrate 11.
  • the sensor chip 13 has a diaphragm 12 and is mounted on the mounting substrate 11.
  • the cell electrophysiological sensor 100 further includes a first electrode tank 14, a first electrode 15, a second electrode tank 16, and a second electrode 17.
  • the first electrode tank 14 is disposed above the diaphragm 12.
  • the first electrode 15 is disposed inside the first electrode tank 14 and on the upper surface side that is the first surface of the diaphragm 12.
  • the second electrode tank 16 is disposed below the diaphragm 12.
  • the second electrode 17 is disposed inside the second electrode tank 16 and on the lower surface side that is the second surface side of the diaphragm 12.
  • the diaphragm 12 is provided with a plurality of through holes 18 penetrating between the first surface and the second surface.
  • the first electrolyte and the second electrolyte flow in the direction of the arrow shown in FIG.
  • the diaphragm 12 becomes a boundary surface between the first electrolytic solution and the second electrolytic solution.
  • the subject 19 and the first electrolytic solution are drawn into the through hole 18 by applying pressure from the first surface side of the diaphragm 12 through the through hole 18 or reducing pressure from the second surface side of the diaphragm 12. Then, the subject 19 is sucked and held on the surface of the diaphragm 12 so as to block the through hole 18. As a result, the subject 19 can be sampled.
  • aqueous solution containing about 155 mM K + ions, about 12 mM Na + ions, and about 4.2 mM Cl ⁇ ions as the first electrolyte. Further, it is preferable to use an aqueous solution containing about 4 mM of K + ions, about 14 mM of Na + ions, and about 123 mM of Cl ⁇ ions as the second electrolytic solution. Note that the first electrolytic solution and the second electrolytic solution may be different as in the present embodiment, or those having similar components may be used.
  • chemical stimuli include chemical stimuli such as chemicals and poisons
  • physical stimuli include mechanical displacement, light, heat, electricity, and electromagnetic waves.
  • the subject 19 becomes active with respect to these stimuli, for example, the subject 19 releases or absorbs various ions through channels held by the cell membrane. As a result, the potential gradient inside and outside the cell that is the subject 19 changes. This electrical change is detected by the first electrode 15 and the second electrode 17, and the pharmacological reaction of the cells can be examined.
  • mammalian muscle cells are used as an example of the subject 19, but the subject 19 is not limited to cells, and may be any object such as particles.
  • a DNA sensor that detects a specific DNA sequence such as a virus or a food production area
  • a SNP sensor that detects a SNP (single nucleotide polymorphism) sequence
  • an antigen sensor that detects the presence of an allergen (allergic antigen)
  • It can be widely used in the medical field, the environmental field, and the like.
  • the first electrode 15 does not necessarily have to be formed in the sensor device, and may be provided so as to be in contact with the solution filled in the first electrode tank 14.
  • the second electrode 17 does not necessarily have to be formed in the sensor device, and may be provided so as to be in contact with the solution filled in the second electrode tank 16.
  • FIG. 2 is a cross-sectional view of the sensor chip 13.
  • the sensor chip 13 has a diaphragm 12 and a silicon layer 22.
  • Diaphragm 12 has a first surface and a second surface opposite to the first surface.
  • the silicon layer 22 is bonded to the outer peripheral surface of the first surface of the diaphragm 12.
  • the diaphragm 12 is formed by laminating a silicon layer 20 which is a first layer containing silicon as a main component and a silicon oxide layer 21 which is a second layer containing silicon oxide as a main component.
  • the silicon layer 20 of the diaphragm 12 has a cleavage property in which the mechanical strength with respect to stress from a specific direction is lower than the mechanical strength from other directions.
  • the specific direction is the direction of the cleavage plane of the silicon layer 20.
  • the first surface, the second surface, and the surface of the silicon layer 22 of the diaphragm 12 are layers made of a silicon oxide film 23 that does not have a cleavage property, a crystalline material that has a cleavage property such as a diamond, or the like. Is preferably formed.
  • a silicon oxide film 23 is formed on the second surface of the diaphragm 12 and the surface of the silicon layer 22.
  • a crystalline material having a cleavage property such as diamond
  • it is preferably coated in a direction not parallel to the first or second surface of the diaphragm 12 and the surface direction of the silicon layer 22. That is, it is preferable that the cleavage direction of the crystalline material having cleavage properties is different from the cleavage direction of the silicon layer 22.
  • the diaphragm 12 is formed with a through hole 18 which is a surface bonded to the silicon layer 22 and communicates from the first surface holding the subject 19 to the second surface which is the opposite surface.
  • the silicon layer 20 has a weak cleaving property against a force applied in the direction of a specific surface because the connection between atoms is weak.
  • the silicon oxide layer 21 does not have a cleavage property, there is no low mechanical strength against stress from a specific direction. Therefore, it is possible to prevent the diaphragm 12 from being cracked by laminating the silicon oxide layer 21 that has cleavage properties and is relatively easy to crack on the silicon layer 20 that does not have cleavage properties.
  • the material laminated with the silicon layer 20 may be a material that does not have cleavage property or a material that has a cleavage plane direction different from the cleavage plane direction of silicon.
  • an insulating material having electrical insulating properties because noise during measurement can be reduced.
  • An example of a material that does not have a cleavage property is not limited to silicon oxide, but includes amorphous materials such as silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide, tantalum oxide, and titanium oxide, and various organic materials. Any material may be mentioned.
  • crystalline materials such as a diamond and a mica, are mentioned.
  • the silicon layer 20 is made of silicon (100).
  • SOI substrate has a three-layer structure of silicon layer-silicon oxide layer-silicon layer. Unlike the silicon layer, the silicon oxide layer does not have a cleavage property. For this reason, it becomes harder to break than forming a substrate with only a silicon layer.
  • the same effect as in the present embodiment can be obtained even if a silicon single crystal plate is used as the substrate.
  • silicon (100) is used, whether it is an SOI substrate or a silicon single crystal plate, the through holes 18 are formed so that the arrangement thereof does not follow the silicon (110). Yes.
  • the entire surface of the sensor chip 13 is covered with the silicon oxide film 23.
  • silicon (100) includes silicon (010) and silicon (001) that are equivalent due to symmetry of the crystal structure.
  • silicon doped with elements such as boron and phosphorus is also included.
  • the SOI substrate By using the SOI substrate, a large number of high-precision sensor chips 13 can be manufactured collectively by fine processing by photolithography and etching techniques.
  • the silicon oxide layer serves as an etching stop layer during the etching process in the process of manufacturing the sensor chip 13. Therefore, a highly accurate sensor chip 13 can be manufactured.
  • the silicon oxide layer is rich in hydrophilicity, the generation of bubbles during measurement can be suppressed, and the bubbles can be easily removed. Therefore, highly accurate measurement can be realized. If bubbles remain in the vicinity of the through-hole 18 at the time of measurement, the giga-seal property is greatly lowered, and the measurement accuracy is greatly adversely affected.
  • the thickness of the silicon oxide layer in the SOI substrate is preferably 0.5 to 10 ⁇ m from the viewpoint of use as an etching stop layer and productivity.
  • the diaphragm 12 may be as thin as several ⁇ m depending on the case. Therefore, the silicon layer 22 is formed on the outer peripheral portion of the diaphragm 12 in consideration of handling properties and mounting properties in the manufacturing process. That is, the silicon layer 22 has a function as a holding part of the sensor chip 13, a function of increasing mechanical strength, and a function of storing liquid.
  • the silicon layer 22 is not an indispensable requirement, and it is preferable to appropriately select a predetermined dimension depending on the shape and structure of the sensor chip 13.
  • the silicon layer 22 as the holding portion may be formed by etching from the SOI substrate, or a separately formed silicon layer 22 may be bonded to the diaphragm 12. However, it is preferable to form the SOI substrate by etching from the viewpoint of process consistency.
  • the thickness of the diaphragm 12 is desirably about 5 to 50 ⁇ m.
  • the silicon oxide layer functioning as an etching stop layer is generally formed by thermal oxidation.
  • other methods such as a CVD method, a sputtering method, and a CSD method may be used.
  • a silicon oxide layer a so-called PSG layer in which silicon oxide is doped with phosphorus, a so-called BSG layer in which silicon oxide is doped with boron, or a BPSG layer in which phosphorus and boron are doped may be used.
  • the number and the hole diameter of the through holes 18 are not particularly limited, and may be arbitrarily specified according to the size and shape of the sensor chip 13.
  • an SOI substrate having a silicon layer made of silicon (100) is prepared as a substrate for manufacturing the sensor chip 13.
  • a first resist mask 24 is formed on the surface of the silicon layer 20 as shown in FIG. At this time, a plurality of mask holes 25 having substantially the same shape as the cross-sections of the desired plurality of through holes 18 are patterned in the first resist mask 24.
  • the silicon layer 20 is etched to form the through holes 18.
  • dry etching capable of high-precision fine processing is desirable.
  • SF 6 is used as an etching gas for promoting etching
  • C 4 F 8 is used as a gas for suppressing etching.
  • plasma is generated by an inductive coupling method of an external coil, and when SF 6 as an etching gas is introduced therein, F radicals are generated. The F radicals react with the silicon layer 20 and the silicon layer 20 is chemically etched.
  • this fluorocarbon film serves as a protective film to suppress etching.
  • the protective film is formed not only on the wall surface portion of the through-hole 18 formed by etching but also on the bottom surface.
  • the protective film formed on the bottom surface is easily removed by the impact of ion collision in etching, as compared with the protective film formed on the wall surface.
  • etching in the wall surface direction of the through-hole 18 is suppressed, and etching proceeds only in the vertical direction (depth direction).
  • the through hole 18 eventually reaches the surface of the silicon oxide layer 21.
  • the silicon oxide layer 21 has a property that it is difficult to be etched under the above etching conditions.
  • etching in the vertical direction stops at the exposed surface of the silicon oxide layer 21.
  • etching ions are accumulated on the surface of the exposed silicon oxide layer 21.
  • the etching ions that have entered the through hole 18 and the etching ions accumulated on the surface of the silicon oxide layer 21 are repelled, and the etching ions proceed in the lateral direction. Therefore, in the vicinity of the silicon oxide layer 21, a concave portion 26 that gradually widens in a tapered shape is formed. This is because the diaphragm 12 has a structure in which two kinds of materials of a silicon layer 20 as a conductor and a silicon oxide layer 21 as an insulator are laminated.
  • etching ions are likely to be accumulated on the surface of the insulating layer of the silicon oxide layer 21. Moreover, the etching ions accumulated on the surface of the silicon oxide layer 21 and the etching ions that have entered easily repel. As a result, after the through-hole 18 reaches the silicon oxide layer 21, the etching easily proceeds in the lateral direction (direction parallel to the surface of the silicon oxide layer 21), and the tapered recess 26 is formed. . The depth of the recess 26 is about 1 ⁇ m. This depth can be controlled by the etching time.
  • CF 4 can be used as the etching gas
  • CHF 3 can be used as the suppression gas.
  • a depression may be provided at the end of the through hole 18 on the first surface side or the second surface side.
  • the silicon oxide layer 21 is dry-etched.
  • an etching gas used at this time for example, a mixed gas of CHF 3 and Ar is used.
  • the plasma-excited Ar gas becomes an etching gas with high straightness.
  • an etching component such as Ar ions that proceeds by sputtering advances straight from the opening of the through hole 18 and enters the through hole 18 to etch only the silicon oxide layer 21 that is an insulator.
  • CHF 3 hardly forms a polymer film on the surface of the silicon oxide layer 21, but forms a polymer film made of fluorocarbon on the surface of the silicon layer 20.
  • the fluorocarbon film when the through hole 18 is formed also functions as a protective film. Therefore, only the silicon oxide layer 21 can be easily selectively etched.
  • a mixed gas such as CF 4 / H 2 or CHF 3 / SF 6 / He may be used.
  • the two types of materials of the laminate of the diaphragm 12 have different etching rates for the same gas. Therefore, the silicon oxide layer 21 is not etched when the silicon layer 20 is etched, and the silicon layer 20 is not etched when the silicon oxide layer 21 is etched. Etching utilizing such properties makes it possible to easily form a through hole 18 having a desired shape.
  • a second resist mask 27 is formed on the surface of the silicon layer 22 in the same manner as the first resist mask 24 described above. Thereafter, the cavity 28 is formed by etching the silicon layer 22 under the same conditions as the etching of the silicon layer 20. Also in this case, the progress of etching in the depth direction stops at the exposed surface of the silicon oxide layer 21. As a result, the silicon oxide layer 21 is projected at the peripheral edge of the through hole 18 of the silicon oxide layer 21 (overhang state).
  • the sensor chip 13 is heated in an atmosphere containing oxygen in a heat treatment furnace in the air. Then, the silicon surface is oxidized, and the silicon oxide film 23 is uniformly formed on the exposed silicon surface. Thereby, the sensor chip 13 as shown in FIG. 2 is completed.
  • the thickness of the silicon oxide film 23 is 200 to 230 nm. At this time, strictly speaking, the thickness of the silicon oxide layer 21 increases simultaneously. However, since oxidation proceeds by oxygen diffusion, the amount of increase differs depending on the thickness of the silicon oxide layer 21 before oxidation. For example, when the thickness of the silicon oxide layer 21 before oxidation is 500 nm, the increase amount is about 50 nm.
  • FIG. 7 is a top view of the diaphragm 12 of the sensor chip 13.
  • a plurality of through holes 18 are formed in the diaphragm 12.
  • the direction along the line segment L1 connecting the centers of one through hole 18A of the plurality of through holes 18 and the other through hole 18B closest to the through hole 18A is the cleavage plane of the silicon layer 20.
  • the direction along the line connecting the centers of the adjacent through holes 18 that are closest to each other is different from the direction of the cleavage plane of the silicon layer 20.
  • the diaphragm 12 is arranged such that the direction along the line segment L1 that connects the centers of the adjacent through holes 18A and 18B that are closest to each other as in this embodiment is different from the direction of the cleavage plane. Cracking can be effectively prevented.
  • the meaning of being closest and adjacent to each other means that when attention is paid to an arbitrary through hole 18A among the plurality of through holes 18, the center is located closest to the center of the arbitrary through hole 18A. This means a relationship with the through hole 18B. And the positional relationship in which a through-hole does not exist in the position near the other of the through-hole 18B is represented.
  • the plurality of through holes 18 may be arranged so that the direction along the line segment connecting the centers of the adjacent through holes 18 that are closest to each other in the plurality of through holes 18 is different from the direction of the cleavage plane of the silicon layer 20.
  • a plurality of through holes are formed so that the direction along the line connecting the centers of the arbitrary through hole 18 and the other through hole 18B closest to the arbitrary through hole 18A is different from the direction of the cleavage plane of the silicon layer 20. It is preferable to arrange the holes 18. Thereby, the crack of the diaphragm 12 can be prevented more effectively. However, in this case, there may be a case where only some of the through holes 18 do not satisfy the above-mentioned condition due to an error in the manufacturing process or the like.
  • the diaphragm 12 is preferably formed in a circular shape when viewed from the top. If the shape of the diaphragm 12 is circular, the stress applied to the diaphragm 12 when adsorbing the specimen can be uniformly supported on the outer periphery. On the other hand, if the diaphragm 12 has a non-circular shape such as a square, a corner is formed on the outer periphery of the diaphragm 12, so that the corner is distorted and the diaphragm 12 is cracked. For this reason, cracking of the diaphragm 12 can be prevented by making the shape of the diaphragm 12 circular when viewed from above.
  • the diaphragm 12 or the silicon layer 20 is preferably provided with a mark 30 indicating the direction of the cleavage plane of the silicon layer 20.
  • the direction along the line segment connecting the centers of one through hole 18A among the plurality of through holes 18 and the one through hole 18A and the other through hole 18B closest to the through hole 18A is the silicon layer 20. It becomes easy to form the diaphragm 12 so as to be different from the direction of the cleavage plane. Further, since the direction of the cleavage plane can be visually recognized, the direction of the cleavage plane can be recognized during the mounting operation of the sensor chip 13, and the diaphragm 12 can be effectively prevented from cracking during the mounting operation.
  • the shape of the mark 30 is not particularly limited. However, it is preferable that the shape of the mark 30 has a line segment parallel to the direction of the cleavage plane because the cleavage plane can be easily identified. Further, if the mark 30 has a shape that does not have a point-symmetrical center, the directionality within the wafer can be understood, so that the work can be easily performed. Furthermore, by using different marks 30 for all the sensor chips 13 in the wafer, the position of the sensor chip 13 in the wafer can be tracked, which is advantageous in production management. However, the same effect can be obtained by using several sensor chips 13 as one group without using different marks 30 for all sensor chips 13 and using different marks for each group.
  • the same effect as that of providing the mark 30 can be obtained by arranging the through hole 18 so that the direction of the cleavage plane can be understood.
  • the direction of the cleavage plane may be determined by making the arrangement of the through holes 18 not point-symmetric with respect to the center of the diaphragm 12.
  • an SOI substrate in which the silicon layer 20 is made of silicon (100) is used.
  • Silicon (100) is a substrate excellent in workability and versatility.
  • silicon (110) or silicon (111) can be selected for the silicon layer 20.
  • FIG. 8A shows a cleavage plane of a silicon (100) substrate.
  • FIG. 8B shows a cleavage plane of the silicon (110) substrate
  • FIG. 8C shows a cleavage plane of the silicon (111) substrate.
  • the distance between the centers of the through holes 18 that are closest and adjacent to each other is preferably 20 ⁇ m or more from the viewpoint of preventing cracking of the diaphragm 12 and the success rate of measurement.
  • the size of the cell used as the specimen is generally about 20 ⁇ m. For this reason, if the distance between the centers of the through holes 18 is smaller than the size of the cells used as the subject, interference between cells occurs, and the success rate of the measurement decreases. Furthermore, when the distance between the centers of the through holes 18 is short, an area that receives stress applied to the diaphragm 12 when the subject is sucked and adsorbed is reduced, and the diaphragm 12 is easily broken.
  • the distance between the centers of the through holes 18 is increased, the structurally weak parts are difficult to gather. Therefore, the reliability of the sensor chip 13 is improved.
  • region required for formation of the through-hole 18 becomes large. This makes it difficult to reduce the size and cost of the sensor.
  • the durability of the diaphragm 12 is improved and interference between subjects is prevented. Therefore, the center of one through-hole 18 of the plurality of through-holes 18 arranged closest to the center of the diaphragm 12 and the other through-hole 18 closest to the one through-hole 18 is connected.
  • the distance of the line segment is 60 ⁇ m.
  • the shape formed by line segments connecting the centers of three adjacent through holes 18 may be arranged in a regular triangle shape. That is, a line segment connecting the centers of one through-hole 18C among the plurality of through-holes 18 and another through-hole 18D that is closest to one through-hole C and another through-hole 18E that is also closest to each other is correct. Arrange them in a triangular shape. Thereby, the several through-hole 18 can be arrange
  • the direction along the line segment connecting the through holes 18 arranged in a regular triangle shape is different from the direction of the cleavage plane of the silicon layer 20 as described above. Thereby, the crack of the diaphragm 12 can be prevented. However, this is not necessarily the case.
  • the direction of the diaphragm 12 so that the direction along the line connecting the centers of the adjacent through holes 18 that are closest to each other is different from the direction of the cleavage plane of the silicon layer 20. Can be designed and formed easily. Thereby, the diaphragm 12 which is hard to break can be formed.
  • the plurality of through holes 18 are not arranged near the center P of the diaphragm 12. That is, it is preferable that the plurality of through holes 18 be arranged in a region excluding the vicinity of the center P of the diaphragm 12.
  • the center P of the diaphragm 12 indicates a position where the distance from the outer periphery is equal when the diaphragm 12 is circular as viewed from above, and when the diaphragm 12 is a polygon, the distance from the corner of the outer periphery of the diaphragm 12 is equal. Represents the position. When the subject is aspirated and adsorbed, a particularly large stress is applied to the center P of the diaphragm 12.
  • the through hole 18 is disposed in the vicinity of the center P of the diaphragm 12, a large stress is applied to the through hole 18. Then, a crack from the through hole 18 is likely to occur, and the sensor chip 13 is easily cracked. Thus, by disposing the through hole 18 while avoiding the center P of the diaphragm 12, the diaphragm 12 can be effectively prevented from cracking.
  • the vicinity of the center P of the diaphragm 12 refers to a range of about 50 ⁇ m from the center of the diaphragm 12 when the diameter of the diaphragm 12 is about 500 ⁇ m.
  • the diaphragm 12 is difficult to break and cracking can be effectively prevented.
  • the vicinity of the outer periphery represents a range that is not the center of the diaphragm 12, particularly a range of about 10 ⁇ m from the outer periphery.
  • the diaphragm 12 is subjected to a greater stress at a position closer to the center. For this reason, from the viewpoint of preventing the diaphragm 12 from cracking, it is preferable that the length of the line connecting the centers of the adjacent through holes 18 that are closest to each other is longer in the vicinity of the center of the diaphragm 12 than in the vicinity of the outer periphery. As the distance from the center of the diaphragm 12 toward the outer periphery decreases, the distance between the centers of the adjacent through holes 18 that are closest to each other is shortened, so that the diaphragm 12 can be prevented from cracking, and a plurality of through holes can be efficiently penetrated on the diaphragm 12.
  • Holes 18 can be arranged. That is, a line segment that connects the centers of an arbitrary through hole 18 and another through hole 18 that is closest to the arbitrary through hole 18 is another line segment that is closest to the other arbitrary through hole 18 and the other arbitrary through hole 18. It is preferable that it is located on the outer peripheral side of the diaphragm 12 and shorter than the line segment connecting the center with the through hole 18. Thereby, the above-described effects can be obtained. For example, as shown in FIG. 7, when the distance between the centers of the adjacent through holes 18 that are closest to each other is L1, L2, and L3 in order from the closest to the center of the diaphragm 12, the distance between the line segments is L1> L2>. L3 is preferable.
  • the through hole 18 is provided point-symmetrically with respect to the center P of the diaphragm 12.
  • the shape of the through hole 18 is not particularly limited, and an optimal shape may be selected depending on the type and shape of the subject to be measured. However, in the case of cells or spherical particles, the subject has a shape relatively close to a true sphere. Therefore, it is desirable that the shape of the through hole 18 is close to a perfect circle because the subject can be aspirated isotropically.
  • the sensor chip according to the present invention is not easily broken even when the subject is sucked and sucked into the through hole, and has excellent durability. Therefore, it is effective in the medical / biological field where a sensor device with excellent durability is required.

Abstract

This sensor chip has a diaphragm, which includes a first surface, and a second surface that faces the first surface, and which has formed therein a plurality of through holes that penetrate the first surface and the second surface. The diaphragm has lower mechanical strength with respect to stress applied from the specific direction, compared with mechanical strength with respect to stress applied from other directions. The through holes have a first through hole and a second through hole that is closest to the first through hole. The direction along a first line segment that connects the center of the first through hole and the center of the second through hole is different from the specific direction.

Description

センサチップSensor chip
 本発明は、化学物質同定センサや細胞の電気生理的活動を測定する細胞電気生理センサ等のセンサデバイスに用いるセンサチップに関する。 The present invention relates to a sensor chip used for a sensor device such as a chemical substance identification sensor or a cell electrophysiological sensor for measuring the electrophysiological activity of a cell.
 近年、バイオセンサーやバイオチップに注目が集まっている。バイオセンサーやバイオチップは、生態の分子認識機構に基づいてたんぱく質、遺伝子、低分子量のシグナル分子などをバイオセンシングするために用いられる。具体的には、所定のデバイスを用いて、レセプターリガンド、抗原-抗体反応などの選択特異的な結合や酵素などの選択触媒反応をモニターすることで、バイオセンシングを行うことができる。 In recent years, attention has been focused on biosensors and biochips. Biosensors and biochips are used for biosensing proteins, genes, low molecular weight signal molecules, etc. based on the ecological molecular recognition mechanism. Specifically, biosensing can be performed by monitoring a selective specific reaction such as a receptor ligand and an antigen-antibody reaction and a selective catalytic reaction such as an enzyme using a predetermined device.
 従来、バイオセンシングする方法の一例としてパッチクランプ法が用いられている。パッチクランプ法は、細胞の電気的活動を指標にして細胞膜に存在するイオンチャネルの機能を解明したり、薬品をスクリーニング(検査)したりする方法の一つである。パッチクランプ法においては、まず、マイクロピペットの先端部分で細胞膜の微小部分(パッチ)を軽く吸引する。そして、マイクロピペットに設けられた微小電極プローブにより、固定された膜電位においてパッチを横切る電流を測定する。これにより、パッチに存在する1個または少数個のイオンチャネルの開閉の様子を電気的に計測する。パッチクランプ法は、細胞の生理機能をリアルタイムで調べることのできる数少ない方法の一つである。 Conventionally, the patch clamp method is used as an example of a biosensing method. The patch clamp method is one of methods for elucidating the function of ion channels existing in cell membranes or screening (inspecting) drugs using the electrical activity of cells as an index. In the patch clamp method, first, a minute portion (patch) of a cell membrane is gently sucked with a tip portion of a micropipette. Then, a current across the patch is measured at a fixed membrane potential by a microelectrode probe provided on the micropipette. Thereby, the state of opening and closing of one or a small number of ion channels present in the patch is electrically measured. The patch clamp method is one of the few methods that can examine the physiological functions of cells in real time.
 しかしながら、パッチクランプ法はマイクロピペットの作製や操作に特殊な技術、技能を必要とする。よって、一つの試料の測定に多くの時間を要する。そのため、大量の薬品候補化合物を高速でスクリーニングする用途には適していない。これに対し近年、微細加工技術を利用した平板型の微小電極プローブが開発されている。このような微小電極プローブは個々の細胞についてマイクロピペットの挿入を必要としない自動化システムに適している。 However, the patch clamp method requires special techniques and skills for the production and operation of micropipettes. Therefore, it takes a lot of time to measure one sample. Therefore, it is not suitable for use in screening a large amount of drug candidate compounds at high speed. On the other hand, in recent years, a flat-plate microelectrode probe using a microfabrication technique has been developed. Such microelectrode probes are suitable for automated systems that do not require the insertion of a micropipette for individual cells.
 微細加工技術を利用したセンサチップの中でも、微小な貫通孔に被検体を保持し、被検体を電気生理学的な測定や蛍光分子を用いた測定によりバイオセンシングする手法が注目されている。 Among sensor chips using microfabrication technology, attention is focused on a technique of holding a specimen in a minute through-hole and biosensing the specimen by electrophysiological measurement or measurement using fluorescent molecules.
 例えば、細胞膜に存在するイオンチャネルを電気生理学的に測定する方法として、細胞電気生理センサが提案されている。これはパッチクランプ法のように、個々の細胞にマイクロピペットを挿入するという熟練作業を必要としない。よって、高スループットの自動化システムに適している。 For example, a cell electrophysiological sensor has been proposed as a method for electrophysiologically measuring an ion channel present in a cell membrane. This does not require the skill of inserting a micropipette into an individual cell like the patch clamp method. Therefore, it is suitable for a high-throughput automated system.
 生物学的可変性(すなわち、細胞の状態、サイズ、チャネルの発現レベル)は、プラナー(平面)パッチクランプシステムにおいて成功率の減少の主な要因となる。この成功率の低下を補うために、1種類の被検体を必ず数ウェルに分注して測定している。しかしながらこの手法はスループットが低い点が課題である。 Biological variability (ie, cell state, size, channel expression level) is a major factor in reducing the success rate in planar patch clamp systems. In order to compensate for this decrease in success rate, one type of specimen is always dispensed into several wells for measurement. However, this method has a problem of low throughput.
 低スループットを改善するために、細胞集団から平均化されたイオン電流を測定する手法が提案されている。この手法には、各ウェルに格子状に複数個の貫通孔が並べられたプレートを備えるセンサデバイスを用いる。このようなセンサデバイスを用いて測定することによって、細胞集団からのイオン電流が測定される。よって、このセンサデバイスで測定される平均電流は、ウェル間で均一でばらつきが少ない。すなわち、センサデバイスでの測定の成功率が非常に高くなる。その結果、複数のウェルでの測定が不要となり、スループットが改善される。 In order to improve the low throughput, a method for measuring an averaged ion current from a cell population has been proposed. In this method, a sensor device including a plate in which a plurality of through-holes are arranged in a lattice form in each well is used. By measuring using such a sensor device, the ionic current from the cell population is measured. Therefore, the average current measured by this sensor device is uniform between the wells and has little variation. That is, the success rate of measurement with the sensor device is very high. As a result, measurement in a plurality of wells becomes unnecessary, and the throughput is improved.
 なお、この出願の発明に関する先行技術文献としては、以下の特許文献が挙げられる。 The following patent documents are listed as prior art documents relating to the invention of this application.
国際公開第02/055653号International Publication No. 02/055653 国際公開第2007/132769号International Publication No. 2007/132769
 センサチップは、第一面と、第一面と対向する第二面とを含み、第一面と第二面とを貫通する複数の貫通孔とが形成されたダイアフラムを有する。ダイアフラムは、特定の方向からの応力に対する機械的強度がそれ以外の方向からの応力に対する機械的強度に比べて低い。複数の貫通孔は第一の貫通孔と前記第一の貫通孔と最近接する第二の貫通孔とを有する。第一の貫通孔の中心と第二の貫通孔の中心とを結ぶ第一の線分に沿った方向は、特定の方向とは異なる。 The sensor chip includes a diaphragm including a first surface and a second surface facing the first surface, and a plurality of through holes penetrating the first surface and the second surface. The diaphragm has a lower mechanical strength against stress from a specific direction than mechanical strength against stress from other directions. The plurality of through holes have a first through hole and a second through hole closest to the first through hole. The direction along the first line segment connecting the center of the first through hole and the center of the second through hole is different from the specific direction.
 これにより、各ウェルに複数個の孔が形成されたセンサチップの耐久性を向上させることができ、被検体の吸引時及び吸着時にダイアフラムに応力がかかってもセンサチップが割れ難くなる。 This makes it possible to improve the durability of the sensor chip in which a plurality of holes are formed in each well, and it is difficult for the sensor chip to break even when stress is applied to the diaphragm at the time of suction and adsorption of the subject.
図1は本発明の実施の形態におけるセンサデバイスの横断面図である。FIG. 1 is a cross-sectional view of a sensor device according to an embodiment of the present invention. 図2は本発明の実施の形態におけるセンサチップの横断面図である。FIG. 2 is a cross-sectional view of the sensor chip in the embodiment of the present invention. 図3は本発明の実施の形態におけるセンサチップの製造方法を説明するための横断面図である。FIG. 3 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention. 図4は本発明の実施の形態におけるセンサチップの製造方法を説明するための横断面図である。FIG. 4 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention. 図5は本発明の実施の形態におけるセンサチップの製造方法を説明するための横断面図である。FIG. 5 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention. 図6は本発明の実施の形態におけるセンサチップの製造方法を説明するための横断面図である。FIG. 6 is a cross-sectional view for explaining the method for manufacturing the sensor chip in the embodiment of the present invention. 図7は本発明の実施の形態におけるセンサチップの上面図である。FIG. 7 is a top view of the sensor chip in the embodiment of the present invention. 図8Aはシリコン(100)基板のへき開面を示す図である。FIG. 8A is a diagram showing a cleavage plane of a silicon (100) substrate. 図8Bはシリコン(110)基板のへき開面を示す図である。FIG. 8B is a diagram showing a cleavage plane of the silicon (110) substrate. 図8Cはシリコン(111)基板のへき開面を示す図である。FIG. 8C is a diagram showing a cleavage plane of the silicon (111) substrate.
 以下、図面を参照しながら本実施の形態におけるセンサチップ13及びそれを用いたセンサデバイスについて説明する。しかしながら、本発明は以下の各実施の形態に限定されるものではない。 Hereinafter, the sensor chip 13 and the sensor device using the sensor chip 13 according to the present embodiment will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.
 さらに、本実施の形態においては、センサデバイスとして細胞電気生理センサを例に用いるが、同様のセンサチップを用いたものであれば、特に用途は限定されるものではない。 Furthermore, in this embodiment, a cell electrophysiological sensor is used as an example of the sensor device, but the use is not particularly limited as long as the same sensor chip is used.
 図1はセンサデバイスの一例である細胞電気生理センサの横断面図である。センサデバイスである細胞電気生理センサ100は、センサチップ13と実装基板11とを有する。センサチップ13は、ダイアフラム12を有し、実装基板11に実装されている。細胞電気生理センサ100は、さらに第一電極槽14と第一電極15と第二電極槽16と第二電極17とを有する。第一電極槽14は、ダイアフラム12の上方に配置されている。第一電極15は、第一電極槽14の内部であって、ダイアフラム12の第一面である上面側に配置されている。第二電極槽16は、ダイアフラム12の下方に配置されている。第二電極17は、第二電極槽16の内部であってダイアフラム12の第二面側である下面側に配置されている。ダイアフラム12には第一面と第二面との間を貫通する複数個の貫通孔18が設けられている。 FIG. 1 is a cross-sectional view of a cell electrophysiological sensor which is an example of a sensor device. A cell electrophysiological sensor 100 as a sensor device has a sensor chip 13 and a mounting substrate 11. The sensor chip 13 has a diaphragm 12 and is mounted on the mounting substrate 11. The cell electrophysiological sensor 100 further includes a first electrode tank 14, a first electrode 15, a second electrode tank 16, and a second electrode 17. The first electrode tank 14 is disposed above the diaphragm 12. The first electrode 15 is disposed inside the first electrode tank 14 and on the upper surface side that is the first surface of the diaphragm 12. The second electrode tank 16 is disposed below the diaphragm 12. The second electrode 17 is disposed inside the second electrode tank 16 and on the lower surface side that is the second surface side of the diaphragm 12. The diaphragm 12 is provided with a plurality of through holes 18 penetrating between the first surface and the second surface.
 細胞電気生理センサ100を使用する際には、第一電解液及び第二電解液は、図1に示す矢印方向に向かって流れる。第一電極槽14及び第二電極槽16を電解液で満たすことにより、ダイアフラム12は、第一電解液と第二電解液の境界面となる。そして、貫通孔18を通してダイアフラム12の第一面側から加圧するか、又はダイアフラム12の第二面側から減圧することによって、被検体19と第一電解液とが貫通孔18へ引き込まれる。すると、被検体19は貫通孔18を塞ぐようにダイアフラム12の表面上に吸引、保持される。これにより、被検体19を検体することが可能となる。 When using the cell electrophysiological sensor 100, the first electrolyte and the second electrolyte flow in the direction of the arrow shown in FIG. By filling the first electrode tank 14 and the second electrode tank 16 with the electrolytic solution, the diaphragm 12 becomes a boundary surface between the first electrolytic solution and the second electrolytic solution. The subject 19 and the first electrolytic solution are drawn into the through hole 18 by applying pressure from the first surface side of the diaphragm 12 through the through hole 18 or reducing pressure from the second surface side of the diaphragm 12. Then, the subject 19 is sucked and held on the surface of the diaphragm 12 so as to block the through hole 18. As a result, the subject 19 can be sampled.
 なお、被検体19として哺乳類筋細胞を用いる場合、第一電解液にはKイオンが155mM程度、Naイオンが12mM程度、Clイオンが4.2mM程度含まれる水溶液を用いるのが好ましい。また、第二電解液には、Kイオンが4mM程度、Naイオンが14mM程度、Clイオンが123mM程度含まれる水溶液を用いるのが好ましい。なお、第一電解液と第二電解液は本実施の形態のように異なるものでもよく、類似の成分のものを用いてもよい。 When mammalian muscle cells are used as the subject 19, it is preferable to use an aqueous solution containing about 155 mM K + ions, about 12 mM Na + ions, and about 4.2 mM Cl ions as the first electrolyte. Further, it is preferable to use an aqueous solution containing about 4 mM of K + ions, about 14 mM of Na + ions, and about 123 mM of Cl ions as the second electrolytic solution. Note that the first electrolytic solution and the second electrolytic solution may be different as in the present embodiment, or those having similar components may be used.
 次に、ダイアフラム12の第二面の下方からさらに減圧して吸引するか、あるいはナイスタチン等の薬剤を投入することで、被検体19に貫通孔18と連通する微細小孔を形成する。 Next, by further reducing the pressure from the lower side of the second surface of the diaphragm 12 and sucking, or by introducing a drug such as nystatin, a minute hole communicating with the through hole 18 is formed in the subject 19.
 その後、ダイアフラム12の第一面の上方から被検体19に化学的刺激、あるいは物理的刺激を与える。化学的刺激としては、例えば化学薬品、毒物などの化学的な刺激、物理的刺激としては、機械的変位、光、熱、電気、電磁波などが挙げられる。 Thereafter, a chemical stimulus or a physical stimulus is given to the subject 19 from above the first surface of the diaphragm 12. Examples of chemical stimuli include chemical stimuli such as chemicals and poisons, and physical stimuli include mechanical displacement, light, heat, electricity, and electromagnetic waves.
 そして、被検体19がこれらの刺激に対して活発になると、例えば被検体19は細胞膜が保有するチャネルを通じて各種イオンを放出あるいは吸収する。これにより、被検体19である細胞の内外の電位勾配が変化する。この電気的変化を第一電極15と第二電極17によって検出し、細胞の薬理反応などを検討できる。 Then, when the subject 19 becomes active with respect to these stimuli, for example, the subject 19 releases or absorbs various ions through channels held by the cell membrane. As a result, the potential gradient inside and outside the cell that is the subject 19 changes. This electrical change is detected by the first electrode 15 and the second electrode 17, and the pharmacological reaction of the cells can be examined.
 なお、この場合、被検体19の例としても哺乳類筋細胞を用いたが、被検体19は細胞に限られるものではなく、粒子など任意のものでもよい。例えば、ウイルスや食料品産地などの特定DNA配列の検出を行うDNAセンサ、SNP(一塩基多型)配列を検出するSNPセンサ、アレルゲン(アレルギー抗原)の存在を検出する抗原センサ等、農業分野、医療分野、環境分野などに広く用いることができる。 In this case, mammalian muscle cells are used as an example of the subject 19, but the subject 19 is not limited to cells, and may be any object such as particles. For example, a DNA sensor that detects a specific DNA sequence such as a virus or a food production area, a SNP sensor that detects a SNP (single nucleotide polymorphism) sequence, an antigen sensor that detects the presence of an allergen (allergic antigen), It can be widely used in the medical field, the environmental field, and the like.
 なお、第一電極15は、必ずしもセンサデバイスに形成されていなくても良く、第一電極槽14の内部に満たされた溶液に接するように備えられればよい。 Note that the first electrode 15 does not necessarily have to be formed in the sensor device, and may be provided so as to be in contact with the solution filled in the first electrode tank 14.
 なお、第二電極17は、必ずしもセンサデバイスに形成されていなくても良く、第二電極槽16の内部に満たされた溶液に接するように備えられればよい。 Note that the second electrode 17 does not necessarily have to be formed in the sensor device, and may be provided so as to be in contact with the solution filled in the second electrode tank 16.
 図2はセンサチップ13の横断面図である。センサチップ13はダイアフラム12とシリコン層22とを有する。ダイアフラム12は第一面と第一面と対向する第二面とを有する。シリコン層22はダイアフラム12の第一面の外周部表面に接合されている。ダイアフラム12はシリコンを主成分として含む第一の層であるシリコン層20と酸化シリコンを主成分として含む第二の層である酸化シリコン層21とが積層されて形成されている。ダイアフラム12のシリコン層20は、特定の方向からの応力に対する機械的強度がそれ以外の方向からの機械的強度に比べて低いへき開性を有している。すなわち、特定の方向とは、シリコン層20のへき開面の方向である。なお、ダイアフラム12の第一面、第二面及びシリコン層22の表面には、へき開性を有さない酸化シリコン膜23等や、ダイアモンド等のへき開性を有する結晶性材料等で構成される層が形成されているのが好ましい。本実施の形態においては、ダイアフラム12の第二面及びシリコン層22の表面に酸化シリコン膜23が形成されている。ここで、ダイアモンド等のへき開性を有する結晶性材料を用いる場合には、ダイアフラム12の第一面または第二面及びシリコン層22の面方向と平行でない方向に被覆されているのが好ましい。すなわち、へき開性を有する結晶性材料のへき開方向と、シリコン層22のへき開方向とが異なっていることが好ましい。 FIG. 2 is a cross-sectional view of the sensor chip 13. The sensor chip 13 has a diaphragm 12 and a silicon layer 22. Diaphragm 12 has a first surface and a second surface opposite to the first surface. The silicon layer 22 is bonded to the outer peripheral surface of the first surface of the diaphragm 12. The diaphragm 12 is formed by laminating a silicon layer 20 which is a first layer containing silicon as a main component and a silicon oxide layer 21 which is a second layer containing silicon oxide as a main component. The silicon layer 20 of the diaphragm 12 has a cleavage property in which the mechanical strength with respect to stress from a specific direction is lower than the mechanical strength from other directions. That is, the specific direction is the direction of the cleavage plane of the silicon layer 20. It should be noted that the first surface, the second surface, and the surface of the silicon layer 22 of the diaphragm 12 are layers made of a silicon oxide film 23 that does not have a cleavage property, a crystalline material that has a cleavage property such as a diamond, or the like. Is preferably formed. In the present embodiment, a silicon oxide film 23 is formed on the second surface of the diaphragm 12 and the surface of the silicon layer 22. Here, when a crystalline material having a cleavage property such as diamond is used, it is preferably coated in a direction not parallel to the first or second surface of the diaphragm 12 and the surface direction of the silicon layer 22. That is, it is preferable that the cleavage direction of the crystalline material having cleavage properties is different from the cleavage direction of the silicon layer 22.
 ダイアフラム12には、シリコン層22と接合されている面であり、被検体19を保持する第一面から、その反対面である第二面まで連通した貫通孔18が形成されている。 The diaphragm 12 is formed with a through hole 18 which is a surface bonded to the silicon layer 22 and communicates from the first surface holding the subject 19 to the second surface which is the opposite surface.
 なお、ここでは特定の方向からの応力に対する機械的強度が低いことの一例として、へき開性を示したが、擬へき開性、裂開性、断口性等を有する場合、特定の方向において密度が異なる面を有する場合、特定の方向においてダイアフラムの厚みが異なる場合、特定の方向において空孔や欠陥を多く含む場合等も含まれる。 In addition, here, as an example of low mechanical strength against stress from a specific direction, cleavage was shown, but when it has pseudo-cleavage, tearing, cut-off, etc., the density is different in a specific direction. In the case of having a surface, the case where the thickness of the diaphragm is different in a specific direction, the case where many holes and defects are included in the specific direction, and the like are included.
 上述したように、シリコン層20は原子間の結びつきが弱く特定の面の方向にかかる力に弱いへき開性を有している。一方、酸化シリコン層21はへき開性を有していないため特定の方向からの応力に対する機械的強度の低さはない。そのため、へき開性を有し、比較的割れやすいシリコン層20にへき開性を有していない酸化シリコン層21を積層させることによりダイアフラム12が割れることを防止できる。 As described above, the silicon layer 20 has a weak cleaving property against a force applied in the direction of a specific surface because the connection between atoms is weak. On the other hand, since the silicon oxide layer 21 does not have a cleavage property, there is no low mechanical strength against stress from a specific direction. Therefore, it is possible to prevent the diaphragm 12 from being cracked by laminating the silicon oxide layer 21 that has cleavage properties and is relatively easy to crack on the silicon layer 20 that does not have cleavage properties.
 なお、第二層として、シリコン層20と積層させる材料は、へき開性を有していない材料、もしくはシリコンのへき開面の方向と異なるへき開面の方向を有する材料ならばよい。また、電気的な絶縁性を有する絶縁材料を用いると測定時のノイズが低減できるのでより望ましい。へき開性を有していない材料の一例としては、酸化シリコンに限らず、窒化シリコン、酸窒化シリコン、酸化ハフニウム、酸化アルミニウム、酸化タンタル、酸化チタン等の非晶質材料や、種々の有機物材料など任意の材料が挙げられる。また、へき開性を有している材料の一例としては、ダイアモンド、マイカ等の結晶性材料が挙げられる。 Note that, as the second layer, the material laminated with the silicon layer 20 may be a material that does not have cleavage property or a material that has a cleavage plane direction different from the cleavage plane direction of silicon. In addition, it is more desirable to use an insulating material having electrical insulating properties because noise during measurement can be reduced. An example of a material that does not have a cleavage property is not limited to silicon oxide, but includes amorphous materials such as silicon nitride, silicon oxynitride, hafnium oxide, aluminum oxide, tantalum oxide, and titanium oxide, and various organic materials. Any material may be mentioned. Moreover, as an example of the material which has cleavage property, crystalline materials, such as a diamond and a mica, are mentioned.
 センサチップ13を作製するための材料基板としては、シリコン層20がシリコン(100)からなるSOI(Silicon on Insulator)基板を用いることが望ましい。SOI基板は、シリコン層-酸化シリコン層-シリコン層の3層構造からなる。酸化シリコン層はシリコン層と異なりへき開性を有していない。このため、シリコン層のみで基板を形成するよりも、より割れ難くなる。 As a material substrate for producing the sensor chip 13, it is desirable to use an SOI (Silicon on Insulator) substrate in which the silicon layer 20 is made of silicon (100). The SOI substrate has a three-layer structure of silicon layer-silicon oxide layer-silicon layer. Unlike the silicon layer, the silicon oxide layer does not have a cleavage property. For this reason, it becomes harder to break than forming a substrate with only a silicon layer.
 なお、本実施の形態においてはSOI基板を用いているが、シリコンの単結晶板を基板として用いても本実施の形態と同様の効果が得られる。SOI基板の場合であっても、シリコンの単結晶板の場合であってもシリコン(100)を用いた場合、貫通孔18は、その配列がシリコン(110)に沿っていないように形成されている。 Although an SOI substrate is used in the present embodiment, the same effect as in the present embodiment can be obtained even if a silicon single crystal plate is used as the substrate. When silicon (100) is used, whether it is an SOI substrate or a silicon single crystal plate, the through holes 18 are formed so that the arrangement thereof does not follow the silicon (110). Yes.
 いずれの場合も、センサチップ13はその表面全体が酸化シリコン膜23にて被覆されていることが好ましい。 In any case, it is preferable that the entire surface of the sensor chip 13 is covered with the silicon oxide film 23.
 なお、シリコン(100)には、結晶構造の対称性によって等価となるシリコン(010)およびシリコン(001)を含む。また、シリコンにホウ素やリン等の元素をドープしたものも含まれる。 Note that silicon (100) includes silicon (010) and silicon (001) that are equivalent due to symmetry of the crystal structure. In addition, silicon doped with elements such as boron and phosphorus is also included.
 SOI基板を用いることは以下に示すような理由でさらに好ましい。SOI基板を用いることで、フォトリソグラフィーおよびエッチング技術による微細加工で、一括して多数個の高精度なセンサチップ13を作製できる。また、SOI基板はセンサチップ13の作製過程におけるエッチングプロセスの際、酸化シリコン層がエッチングストップ層としての役割を果たす。そのため、高精度なセンサチップ13を作製できる。また、酸化シリコン層は親水性に富むので測定時における気泡の発生を抑制でき、気泡の除去を容易にできる。よって、高精度な測定を実現できる。測定時に気泡が貫通孔18の近傍に残留しているとギガシール性が大きく低下し、測定精度に大きな悪影響を及ぼす。SOI基板における酸化シリコン層の厚みはエッチングストップ層として利用することや生産性の観点から、0.5~10μmが好ましい。 It is more preferable to use an SOI substrate for the following reason. By using the SOI substrate, a large number of high-precision sensor chips 13 can be manufactured collectively by fine processing by photolithography and etching techniques. In the SOI substrate, the silicon oxide layer serves as an etching stop layer during the etching process in the process of manufacturing the sensor chip 13. Therefore, a highly accurate sensor chip 13 can be manufactured. In addition, since the silicon oxide layer is rich in hydrophilicity, the generation of bubbles during measurement can be suppressed, and the bubbles can be easily removed. Therefore, highly accurate measurement can be realized. If bubbles remain in the vicinity of the through-hole 18 at the time of measurement, the giga-seal property is greatly lowered, and the measurement accuracy is greatly adversely affected. The thickness of the silicon oxide layer in the SOI substrate is preferably 0.5 to 10 μm from the viewpoint of use as an etching stop layer and productivity.
 また、ダイアフラム12は場合によっては、数μmの薄さとなることがある。そのため、製造工程におけるハンドリング性と実装性を考慮して、ダイアフラム12の外周部にシリコン層22が形成されている。すなわち、シリコン層22はセンサチップ13の保持部としての機能や、機械的強度を高める機能及び液体を貯留しておくための機能を有する。ただし、シリコン層22は不可欠な要件ではなく、センサチップ13の形状と構造によって所定の寸法に適宜選択することが好ましい。この保持部としてのシリコン層22は、SOI基板からのエッチングにより形成してもよいし、別個に成形したシリコン層22をダイアフラム12に貼り合わせても良い。しかしながら、プロセスの一貫性の観点からSOI基板からエッチングにより形成するのが好ましい。 Moreover, the diaphragm 12 may be as thin as several μm depending on the case. Therefore, the silicon layer 22 is formed on the outer peripheral portion of the diaphragm 12 in consideration of handling properties and mounting properties in the manufacturing process. That is, the silicon layer 22 has a function as a holding part of the sensor chip 13, a function of increasing mechanical strength, and a function of storing liquid. However, the silicon layer 22 is not an indispensable requirement, and it is preferable to appropriately select a predetermined dimension depending on the shape and structure of the sensor chip 13. The silicon layer 22 as the holding portion may be formed by etching from the SOI substrate, or a separately formed silicon layer 22 may be bonded to the diaphragm 12. However, it is preferable to form the SOI substrate by etching from the viewpoint of process consistency.
 なお、ダイアフラム12は厚いほど割れにくくなるが、一方で加工に必要な時間が長くなる。スループットの観点からは薄いほうが望ましい。加えて、ダイアフラム12が厚くなると、貫通孔18の長さが長くなる。そのため、圧力で被検体19を吸着する際の流路抵抗が大きくなり、被検体19が吸引されにくくなり、測定の成功率が減少する。よって、ダイアフラム12の厚みは望ましくは5~50μm程度である。 In addition, although the diaphragm 12 becomes harder to break as it is thicker, on the other hand, the time required for processing becomes longer. Thin is desirable from the viewpoint of throughput. In addition, as the diaphragm 12 becomes thicker, the length of the through hole 18 becomes longer. Therefore, the channel resistance when adsorbing the subject 19 with pressure increases, the subject 19 becomes difficult to be sucked, and the success rate of measurement decreases. Therefore, the thickness of the diaphragm 12 is desirably about 5 to 50 μm.
 なお、エッチングストップ層として機能する酸化シリコン層は、熱酸化により形成するのが一般的である。しかし、CVD法、スパッタ法やCSD法などの他の方法により形成しても構わない。また、酸化シリコン層ではなく、酸化シリコンにリンをドープしたいわゆるPSG層、同じく酸化シリコンにボロンをドープしたいわゆるBSG層、あるいはリンとボロンをドープしたBPSG層などのドープドオキサイド層でもよい。 Note that the silicon oxide layer functioning as an etching stop layer is generally formed by thermal oxidation. However, other methods such as a CVD method, a sputtering method, and a CSD method may be used. Instead of a silicon oxide layer, a so-called PSG layer in which silicon oxide is doped with phosphorus, a so-called BSG layer in which silicon oxide is doped with boron, or a BPSG layer in which phosphorus and boron are doped may be used.
 なお、貫通孔18の個数や孔径は特に限定されず、センサチップ13の大きさ、形状に応じて任意に指定されてよい。 In addition, the number and the hole diameter of the through holes 18 are not particularly limited, and may be arbitrarily specified according to the size and shape of the sensor chip 13.
 次に、センサチップ13の製造方法について図3~図6を参照しながら説明する。 Next, a method for manufacturing the sensor chip 13 will be described with reference to FIGS.
 まず、センサチップ13を作製するための基板として、シリコン層がシリコン(100)からなるSOI基板を準備する。 First, an SOI substrate having a silicon layer made of silicon (100) is prepared as a substrate for manufacturing the sensor chip 13.
 その後、図3に示すようにシリコン層20の表面に第一のレジストマスク24を形成する。このとき、第一のレジストマスク24に、所望する複数個の貫通孔18の横断面と略同形状の複数個のマスクホール25をパターニングする。 Thereafter, a first resist mask 24 is formed on the surface of the silicon layer 20 as shown in FIG. At this time, a plurality of mask holes 25 having substantially the same shape as the cross-sections of the desired plurality of through holes 18 are patterned in the first resist mask 24.
 次に、図4に示すようにシリコン層20をエッチングして貫通孔18を形成する。エッチング方法としては、高精度な微細加工が可能なドライエッチングが望ましい。またその際には、アスペクト比の高い貫通孔18を形成するために、エッチングを促進するエッチングガスとエッチングを抑制する抑制ガスとを交互に用いるのが好ましい。本実施の形態では、エッチングを促進するエッチングガスとしてSF、エッチングを抑制するガスとしてCを用いる。具体的には、外部コイルの誘導結合法によりプラズマを生成し、ここへエッチングガスであるSFを導入するとFラジカルが生成する。このFラジカルがシリコン層20と反応し、シリコン層20が化学的にエッチングされる。 Next, as shown in FIG. 4, the silicon layer 20 is etched to form the through holes 18. As an etching method, dry etching capable of high-precision fine processing is desirable. In that case, in order to form the through hole 18 having a high aspect ratio, it is preferable to alternately use an etching gas for promoting etching and a suppressing gas for suppressing etching. In this embodiment mode, SF 6 is used as an etching gas for promoting etching, and C 4 F 8 is used as a gas for suppressing etching. Specifically, plasma is generated by an inductive coupling method of an external coil, and when SF 6 as an etching gas is introduced therein, F radicals are generated. The F radicals react with the silicon layer 20 and the silicon layer 20 is chemically etched.
 またこの時、シリコン層20に高周波を印加すると、シリコン層20にはマイナスのバイアス電圧が発生する。すると、エッチングガスに含まれるプラスイオン(SF )がシリコン層20に向かって垂直に衝突する。このイオンの衝突による衝撃でシリコン層20が物理的にエッチングされる。このようにして、ドライエッチングはシリコン層20の垂直方向(深さ方向)に進む。 At this time, if a high frequency is applied to the silicon layer 20, a negative bias voltage is generated in the silicon layer 20. Then, positive ions (SF 5 + ) contained in the etching gas collide vertically toward the silicon layer 20. The silicon layer 20 is physically etched by the impact caused by the collision of ions. In this way, dry etching proceeds in the vertical direction (depth direction) of the silicon layer 20.
 一方、抑制ガスCを用いる際には、シリコン層20に高周波を加えないようにする。これによって、シリコン層20にはバイアス電圧が全く発生しない。従って、抑制ガスCに含まれるCFは、特定の方向へのバイアスを受けずに、シリコン層20のドライエッチングにより形成された穴の壁面に付着する。その結果、穴の壁面に均一なフロロカーボン膜(図示せず)が形成される。 On the other hand, when the suppression gas C 4 F 8 is used, no high frequency is applied to the silicon layer 20. As a result, no bias voltage is generated in the silicon layer 20. Therefore, CF + contained in the suppression gas C 4 F 8 adheres to the wall surface of the hole formed by dry etching of the silicon layer 20 without receiving a bias in a specific direction. As a result, a uniform fluorocarbon film (not shown) is formed on the wall surface of the hole.
 そして、このフロロカーボン膜は、保護膜となってエッチングを抑制する。ここで、この保護膜はエッチングにより形成された貫通孔18の壁面部分だけでなく底面にも形成される。しかし、底面に形成された保護膜は、壁面に形成された保護膜と比較して、エッチングにおけるイオン衝突の衝撃により容易に除去される。結果として、貫通孔18の壁面方向へのエッチングのみ抑制され、エッチングは垂直方向(深さ方向)にのみ進んでいく。エッチングが進むと、貫通孔18はやがて酸化シリコン層21の表面に到達する。しかし、酸化シリコン層21は上記のエッチング条件ではエッチングされにくい性質を有している。そのため、垂直方向(深さ方向)へのエッチングは酸化シリコン層21の表出面でストップする。さらに続けてエッチングを行うと、表出した酸化シリコン層21の表面にエッチングイオンが蓄積されていく。すると、貫通孔18に進入してきたエッチングイオンと酸化シリコン層21の表面に蓄積したエッチングイオンとが反発し、エッチングイオンが横方向へと進行する。そのため酸化シリコン層21の近傍において、徐々にテーパ状に広がる凹部26が形成される。これはダイアフラム12を導電体であるシリコン層20と絶縁体である酸化シリコン層21との2種類の材料を積層した構造としたことによる。すなわち、エッチングイオンは酸化シリコン層21の絶縁層の表面に蓄積されやすい。また酸化シリコン層21の表面に蓄積したエッチングイオンと進入してきたエッチングイオンとは反発しやすい。その結果として貫通孔18が酸化シリコン層21まで到達した後には、エッチングが横方向(酸化シリコン層21の表面に平行な方向)へと進行しやすい状態となり、テーパ形状の凹部26が形成される。凹部26の深さは1μm程度である。この深さはエッチング時間によって制御できる。 And this fluorocarbon film serves as a protective film to suppress etching. Here, the protective film is formed not only on the wall surface portion of the through-hole 18 formed by etching but also on the bottom surface. However, the protective film formed on the bottom surface is easily removed by the impact of ion collision in etching, as compared with the protective film formed on the wall surface. As a result, only etching in the wall surface direction of the through-hole 18 is suppressed, and etching proceeds only in the vertical direction (depth direction). As the etching proceeds, the through hole 18 eventually reaches the surface of the silicon oxide layer 21. However, the silicon oxide layer 21 has a property that it is difficult to be etched under the above etching conditions. Therefore, etching in the vertical direction (depth direction) stops at the exposed surface of the silicon oxide layer 21. When etching is further continued, etching ions are accumulated on the surface of the exposed silicon oxide layer 21. Then, the etching ions that have entered the through hole 18 and the etching ions accumulated on the surface of the silicon oxide layer 21 are repelled, and the etching ions proceed in the lateral direction. Therefore, in the vicinity of the silicon oxide layer 21, a concave portion 26 that gradually widens in a tapered shape is formed. This is because the diaphragm 12 has a structure in which two kinds of materials of a silicon layer 20 as a conductor and a silicon oxide layer 21 as an insulator are laminated. That is, etching ions are likely to be accumulated on the surface of the insulating layer of the silicon oxide layer 21. Moreover, the etching ions accumulated on the surface of the silicon oxide layer 21 and the etching ions that have entered easily repel. As a result, after the through-hole 18 reaches the silicon oxide layer 21, the etching easily proceeds in the lateral direction (direction parallel to the surface of the silicon oxide layer 21), and the tapered recess 26 is formed. . The depth of the recess 26 is about 1 μm. This depth can be controlled by the etching time.
 なお、エッチングガスとしてはSFの他にCF、抑制ガスとしてはCHFを用いることもできる。 In addition to SF 6 , CF 4 can be used as the etching gas, and CHF 3 can be used as the suppression gas.
 貫通孔18の第一面側または第二面側の端部には、窪み(図示せず)を設けてもよい。被検体19を保持するダイアフラム12の第一面側に窪み形状を設けると、貫通孔18付近に被検体19を密集させやすくなるため、測定の成功率が向上する。 A depression (not shown) may be provided at the end of the through hole 18 on the first surface side or the second surface side. Providing a hollow shape on the first surface side of the diaphragm 12 that holds the subject 19 makes it easier to concentrate the subject 19 in the vicinity of the through hole 18, thereby improving the success rate of measurement.
 次に、図5及び図6に示すように、酸化シリコン層21をドライエッチングする。この際に用いるエッチングガスとしては、例えば、CHFとArの混合ガスを用いる。この混合ガスは、プラズマ励起されたArガスが直進性の高いエッチングガスとなる。そして、Arイオンのようなスパッタを行うエッチング成分が、貫通孔18の開口部より直進して貫通孔18内に進入し、絶縁体である酸化シリコン層21のみをエッチングする。また、CHFは酸化シリコン層21の表面では、重合膜が形成されにくいが、シリコン層20の表面ではフロロカーボンからなる重合膜を形成する。また、貫通孔18を形成したときのフロロカーボン膜も保護膜として機能する。そのため、容易に酸化シリコン層21のみを選択的にエッチングできる。 Next, as shown in FIGS. 5 and 6, the silicon oxide layer 21 is dry-etched. As an etching gas used at this time, for example, a mixed gas of CHF 3 and Ar is used. In this mixed gas, the plasma-excited Ar gas becomes an etching gas with high straightness. Then, an etching component such as Ar ions that proceeds by sputtering advances straight from the opening of the through hole 18 and enters the through hole 18 to etch only the silicon oxide layer 21 that is an insulator. Further, CHF 3 hardly forms a polymer film on the surface of the silicon oxide layer 21, but forms a polymer film made of fluorocarbon on the surface of the silicon layer 20. The fluorocarbon film when the through hole 18 is formed also functions as a protective film. Therefore, only the silicon oxide layer 21 can be easily selectively etched.
 この際に用いるガスとしては、他にもCF/HやCHF/SF/Heなどの混合ガスを用いてもよい。 As a gas used at this time, a mixed gas such as CF 4 / H 2 or CHF 3 / SF 6 / He may be used.
 以上説明してきたように、ダイアフラム12の積層体の二種類の材料が同一のガスに対してそれぞれ異なったエッチングレートを持っている。そのため、シリコン層20をエッチングする際には酸化シリコン層21がエッチングされず、酸化シリコン層21をエッチングする際にはシリコン層20がエッチングされない。このような性質を利用してエッチングすることによって、所望の形状の貫通孔18を容易に形成できる。 As described above, the two types of materials of the laminate of the diaphragm 12 have different etching rates for the same gas. Therefore, the silicon oxide layer 21 is not etched when the silicon layer 20 is etched, and the silicon layer 20 is not etched when the silicon oxide layer 21 is etched. Etching utilizing such properties makes it possible to easily form a through hole 18 having a desired shape.
 次に、図6に示すように、上述の第一のレジストマスク24と同様に第二のレジストマスク27をシリコン層22の表面に形成する。その後、シリコン層20をエッチングしたのと同条件にてシリコン層22をエッチングすることでキャビティ28を形成する。この場合も、深さ方向へのエッチングの進行は酸化シリコン層21の表出面でストップする。その結果、酸化シリコン層21の貫通孔18の周縁部では酸化シリコン層21が突き出たような形状となる(オーバーハング状態)。 Next, as shown in FIG. 6, a second resist mask 27 is formed on the surface of the silicon layer 22 in the same manner as the first resist mask 24 described above. Thereafter, the cavity 28 is formed by etching the silicon layer 22 under the same conditions as the etching of the silicon layer 20. Also in this case, the progress of etching in the depth direction stops at the exposed surface of the silicon oxide layer 21. As a result, the silicon oxide layer 21 is projected at the peripheral edge of the through hole 18 of the silicon oxide layer 21 (overhang state).
 その後、センサチップ13を大気中の熱処理炉の中で酸素を含む雰囲気で加熱する。すると、シリコンの表面が酸化していき、表出したシリコンの表面に均一に酸化シリコン膜23が形成される。これにより、図2に示すようなセンサチップ13が完成する。酸化シリコン膜23の厚みは200~230nmとする。この時、厳密には酸化シリコン層21の厚みも同時に増加する。しかし、酸化は酸素の拡散によって進行するので、酸化前の酸化シリコン層21の厚みによってその増加量は異なる。例えば、酸化前の酸化シリコン層21の厚みが500nmであるとき、その増加量は50nm程度である。 Thereafter, the sensor chip 13 is heated in an atmosphere containing oxygen in a heat treatment furnace in the air. Then, the silicon surface is oxidized, and the silicon oxide film 23 is uniformly formed on the exposed silicon surface. Thereby, the sensor chip 13 as shown in FIG. 2 is completed. The thickness of the silicon oxide film 23 is 200 to 230 nm. At this time, strictly speaking, the thickness of the silicon oxide layer 21 increases simultaneously. However, since oxidation proceeds by oxygen diffusion, the amount of increase differs depending on the thickness of the silicon oxide layer 21 before oxidation. For example, when the thickness of the silicon oxide layer 21 before oxidation is 500 nm, the increase amount is about 50 nm.
 図7はセンサチップ13のダイアフラム12の上面図である。ダイアフラム12には、複数の貫通孔18が形成されている。ここで、複数の貫通孔18のうちの一つの貫通孔18Aと、貫通孔18Aと最近接する他の貫通孔18Bとの中心を結ぶ線分L1に沿った方向は、シリコン層20のへき開面の方向(矢印X及び矢印Y)と異なる。すなわち、最近接して隣り合う貫通孔18の中心を結ぶ線分に沿った方向は、シリコン層20のへき開面の方向と異なる。被検体19を吸引および吸着する際に最近接して隣り合う貫通孔18Aと貫通孔18Bとの間に大きな応力がかかる。この応力が、ダイアフラム12が割れる要因となる。シリコン基板において、へき開面は原子間の結びつく力が弱く、へき開面の方向からの力により割れやすい。そこで、本実施の形態のように最近接して隣り合う貫通孔18Aと貫通孔18Bとの中心を結ぶ線分L1に沿った方向がへき開面の方向と異なるように配置することで、ダイアフラム12の割れを効果的に防止できる。 FIG. 7 is a top view of the diaphragm 12 of the sensor chip 13. A plurality of through holes 18 are formed in the diaphragm 12. Here, the direction along the line segment L1 connecting the centers of one through hole 18A of the plurality of through holes 18 and the other through hole 18B closest to the through hole 18A is the cleavage plane of the silicon layer 20. Different from the direction (arrow X and arrow Y). That is, the direction along the line connecting the centers of the adjacent through holes 18 that are closest to each other is different from the direction of the cleavage plane of the silicon layer 20. When the subject 19 is aspirated and adsorbed, a large stress is applied between the through hole 18A and the through hole 18B that are closest and adjacent to each other. This stress causes the diaphragm 12 to break. In a silicon substrate, the cleavage plane has a weak force for connecting atoms, and is easily broken by a force from the direction of the cleavage plane. Therefore, the diaphragm 12 is arranged such that the direction along the line segment L1 that connects the centers of the adjacent through holes 18A and 18B that are closest to each other as in this embodiment is different from the direction of the cleavage plane. Cracking can be effectively prevented.
 なお、ここで最近接し隣り合うという意味は、複数の貫通孔18のうちのある任意の貫通孔18Aに注目した場合に、その任意の貫通孔18Aの中心から最も近接した位置に中心を有する他の貫通孔18Bとの関係を意味する。そして、貫通孔18Bの他に近い位置に貫通孔が存在しない位置関係を表している。 Here, the meaning of being closest and adjacent to each other means that when attention is paid to an arbitrary through hole 18A among the plurality of through holes 18, the center is located closest to the center of the arbitrary through hole 18A. This means a relationship with the through hole 18B. And the positional relationship in which a through-hole does not exist in the position near the other of the through-hole 18B is represented.
 なお、複数の貫通孔18すべてにおいて最近接して隣り合う貫通孔18の中心を結ぶ線分に沿った方向がシリコン層20のへき開面の方向と異なるように複数の貫通孔18を配置することが好ましい。すなわち、任意の貫通孔18と、任意の貫通孔18Aと最近接する他の貫通孔18Bとの中心を結ぶ線分に沿った方向が、シリコン層20のへき開面の方向と異なるように複数の貫通孔18を配置することが好ましい。これにより、ダイアフラム12の割れをより効果的に防止できる。ただし、この場合には、作製過程の誤差等が原因でいくつかの貫通孔18のみ上述の条件を満たさない場合もありうるが、そのような場合でも本実施の形態の効果がある程度得られる。 The plurality of through holes 18 may be arranged so that the direction along the line segment connecting the centers of the adjacent through holes 18 that are closest to each other in the plurality of through holes 18 is different from the direction of the cleavage plane of the silicon layer 20. preferable. That is, a plurality of through holes are formed so that the direction along the line connecting the centers of the arbitrary through hole 18 and the other through hole 18B closest to the arbitrary through hole 18A is different from the direction of the cleavage plane of the silicon layer 20. It is preferable to arrange the holes 18. Thereby, the crack of the diaphragm 12 can be prevented more effectively. However, in this case, there may be a case where only some of the through holes 18 do not satisfy the above-mentioned condition due to an error in the manufacturing process or the like.
 また、ダイアフラム12は上面から見て円形状に形成するのが好ましい。ダイアフラム12の形状が円形状であると、検体を吸着する際にダイアフラム12にかかる応力を外周で均等に支えることができる。一方、ダイアフラム12が正方形等の非円形の形状であると、ダイアフラム12の外周に角ができるために、角に歪みが生じ、ダイアフラム12の割れの原因となる。このため、ダイアフラム12の形状を上面から見て円形とすることによりダイアフラム12の割れを防止できる。 The diaphragm 12 is preferably formed in a circular shape when viewed from the top. If the shape of the diaphragm 12 is circular, the stress applied to the diaphragm 12 when adsorbing the specimen can be uniformly supported on the outer periphery. On the other hand, if the diaphragm 12 has a non-circular shape such as a square, a corner is formed on the outer periphery of the diaphragm 12, so that the corner is distorted and the diaphragm 12 is cracked. For this reason, cracking of the diaphragm 12 can be prevented by making the shape of the diaphragm 12 circular when viewed from above.
 また、図7に示すように、ダイアフラム12またはシリコン層20にはシリコン層20のへき開面の方向を示すマーク30を設けるのが好ましい。これによりダイアフラム12の作製時に複数の貫通孔18のうちの一つの貫通孔18Aと一つの貫通孔18Aと最も近接する他の貫通孔18Bとの中心を結ぶ線分に沿った方向がシリコン層20のへき開面の方向と異なるようにダイアフラム12を形成しやすくなる。また、へき開面の方向が視認できるので、センサチップ13の取り付け操作時に、へき開面の方向を意識でき、取り付け操作時のダイアフラム12の割れを効果的に防止できる。 Further, as shown in FIG. 7, the diaphragm 12 or the silicon layer 20 is preferably provided with a mark 30 indicating the direction of the cleavage plane of the silicon layer 20. Thus, when the diaphragm 12 is manufactured, the direction along the line segment connecting the centers of one through hole 18A among the plurality of through holes 18 and the one through hole 18A and the other through hole 18B closest to the through hole 18A is the silicon layer 20. It becomes easy to form the diaphragm 12 so as to be different from the direction of the cleavage plane. Further, since the direction of the cleavage plane can be visually recognized, the direction of the cleavage plane can be recognized during the mounting operation of the sensor chip 13, and the diaphragm 12 can be effectively prevented from cracking during the mounting operation.
 なお、マーク30の形状は特に問わない。ただし、マーク30の形状がへき開面の方向に平行な線分を持つような形状であると容易にへき開面を判別でき好ましい。また、マーク30の形状が点対称中心を持たないような形状であると、ウエハ内での方向性が分かるため、容易に作業できる。さらに、ウエハ内のすべてのセンサチップ13に対して異なるマーク30を用いることで、センサチップ13のウエハ内のポジションを追跡することが可能となり、生産管理上有利となる。ただし、すべてのセンサチップ13に対して異なるマーク30を用いなくても数個のセンサチップ13を1グループとして、グループごとに異なるマークを用いても同様の効果が得られる。 The shape of the mark 30 is not particularly limited. However, it is preferable that the shape of the mark 30 has a line segment parallel to the direction of the cleavage plane because the cleavage plane can be easily identified. Further, if the mark 30 has a shape that does not have a point-symmetrical center, the directionality within the wafer can be understood, so that the work can be easily performed. Furthermore, by using different marks 30 for all the sensor chips 13 in the wafer, the position of the sensor chip 13 in the wafer can be tracked, which is advantageous in production management. However, the same effect can be obtained by using several sensor chips 13 as one group without using different marks 30 for all sensor chips 13 and using different marks for each group.
 また、貫通孔18をへき開面の方向がわかるように配置することによってもマーク30を設けることと同様の効果が得られる。例えば、貫通孔18の並べ方をダイアフラム12の中心に対して点対称にならないようにすることにより、へき開面の方向を判別できるようにしてもよい。 Also, the same effect as that of providing the mark 30 can be obtained by arranging the through hole 18 so that the direction of the cleavage plane can be understood. For example, the direction of the cleavage plane may be determined by making the arrangement of the through holes 18 not point-symmetric with respect to the center of the diaphragm 12.
 本実施の形態では、シリコン層20がシリコン(100)からなるSOI基板を用いている。シリコン(100)は加工性、汎用性に優れた基板である。シリコン層20にはシリコン(100)の他に、シリコン(110)またはシリコン(111)を選択することもできる。図8Aにシリコン(100)基板のへき開面を示す。同様に、図8Bにシリコン(110)基板のへき開面を、図8Cにシリコン(111)基板のへき開面をそれぞれ示す。 In the present embodiment, an SOI substrate in which the silicon layer 20 is made of silicon (100) is used. Silicon (100) is a substrate excellent in workability and versatility. In addition to silicon (100), silicon (110) or silicon (111) can be selected for the silicon layer 20. FIG. 8A shows a cleavage plane of a silicon (100) substrate. Similarly, FIG. 8B shows a cleavage plane of the silicon (110) substrate, and FIG. 8C shows a cleavage plane of the silicon (111) substrate.
 なお、シリコン(110)及びシリコン(111)を用いる場合においても、最近接して隣り合う一つの貫通孔18と他の貫通孔18との中心を結ぶ線分の方向がへき開面の方向と異なるように貫通孔18を配置することで上述の効果が得られる。しかしながら、シリコン(110)およびシリコン(111)は、図8A~図8Cに示すとおり、シリコン(100)に比べてへき開面が多く、その構造も複雑である。このため、シリコン(100)を選択することにより、シリコン(110)およびシリコン(111)を選択するよりも最近接して隣り合う貫通孔18の中心を結ぶ線分の方向をへき開面の方向と異なるようにしやすい。よって、シリコン(100)を利用するのが、割れを防止する観点において最も効果的である。 Even in the case of using silicon (110) and silicon (111), the direction of the line segment connecting the centers of one through hole 18 and the other through hole 18 that are closest and adjacent to each other is different from the direction of the cleavage plane. The above-mentioned effect is acquired by arrange | positioning the through-hole 18 in. However, as shown in FIGS. 8A to 8C, silicon (110) and silicon (111) have more cleaved surfaces and more complicated structures than silicon (100). For this reason, by selecting silicon (100), the direction of the line segment that connects the centers of the adjacent through holes 18 closest to each other is different from the direction of the cleavage plane, rather than selecting silicon (110) and silicon (111). Easy to do. Therefore, using silicon (100) is most effective in terms of preventing cracking.
 また、本実施の形態において最近接して隣り合う貫通孔18の中心間の距離は20μm以上とするのがダイアフラム12の割れの防止および測定の成功率の観点から望ましい。被検体の種類や培養条件等にもよるが、一般的に被検体として用いる細胞の大きさが約20μmである。そのため、被検体として用いる細胞の大きさより貫通孔18の中心間の間隔が小さいと細胞同士の干渉が生じ、測定の成功率が減少する。さらに、貫通孔18同士の中心間の距離が短いと、被検体を吸引および吸着する際にダイアフラム12にかかる応力を受ける面積が小さくなり、ダイアフラム12が割れやすくなる。 In the present embodiment, the distance between the centers of the through holes 18 that are closest and adjacent to each other is preferably 20 μm or more from the viewpoint of preventing cracking of the diaphragm 12 and the success rate of measurement. Although depending on the type of specimen and culture conditions, the size of the cell used as the specimen is generally about 20 μm. For this reason, if the distance between the centers of the through holes 18 is smaller than the size of the cells used as the subject, interference between cells occurs, and the success rate of the measurement decreases. Furthermore, when the distance between the centers of the through holes 18 is short, an area that receives stress applied to the diaphragm 12 when the subject is sucked and adsorbed is reduced, and the diaphragm 12 is easily broken.
 一方、貫通孔18の中心間の距離を大きくすることで、構造的に弱い部分が密集し難くなる。そのため、センサチップ13の信頼性が向上する。ただし、多くの貫通孔18が必要な場合には、貫通孔18の形成に必要な領域が大きくなる。そのため、センサの小型化や低コスト化が困難になる。本実施の形態では、貫通孔18の中心間に十分な距離を設けることでダイアフラム12の耐久性を向上させ、被検体同士の干渉を防いでいる。そのために、ダイアフラム12の中央に最も近い位置に配置された複数の貫通孔18のうちの一つの貫通孔18と、この一つの貫通孔18に最近接した他の貫通孔18との中心を結ぶ線分の距離を60μmとしている。 On the other hand, when the distance between the centers of the through holes 18 is increased, the structurally weak parts are difficult to gather. Therefore, the reliability of the sensor chip 13 is improved. However, when many through-holes 18 are required, the area | region required for formation of the through-hole 18 becomes large. This makes it difficult to reduce the size and cost of the sensor. In the present embodiment, by providing a sufficient distance between the centers of the through holes 18, the durability of the diaphragm 12 is improved and interference between subjects is prevented. Therefore, the center of one through-hole 18 of the plurality of through-holes 18 arranged closest to the center of the diaphragm 12 and the other through-hole 18 closest to the one through-hole 18 is connected. The distance of the line segment is 60 μm.
 また、図7に示すように、近接して隣り合う3つの貫通孔18の中心を結んだ線分がなす形状が正三角形状になるように配置しても良い。すなわち、複数の貫通孔18のうちの一つの貫通孔18Cと、一つの貫通孔Cと最近接する他の貫通孔18D及び同様に最近接する他の貫通孔18Eとの中心を結んだ線分が正三角形状になるように配置する。これにより、複数の貫通孔18をダイアフラム12上に無駄なく配置することができ、センサチップ13の小型化、低コスト化を実現できるという効果が得られる。この時、正三角形状に配置したそれぞれの貫通孔18同士を結ぶ線分に沿った方向は、上述したようにシリコン層20のへき開面の方向と異なるのが好ましい。これにより、ダイアフラム12の割れを防止できる。しかし、必ずしもそうでなくても構わない。加えて言えば、貫通孔18を正三角形状に並べることにより、最近接して隣り合う貫通孔18の中心を結ぶ線分に沿った方向がシリコン層20のへき開面の方向と異なるようにダイアフラム12を設計、形成することが容易になる。これにより、割れ難いダイアフラム12を形成できる。 Further, as shown in FIG. 7, the shape formed by line segments connecting the centers of three adjacent through holes 18 may be arranged in a regular triangle shape. That is, a line segment connecting the centers of one through-hole 18C among the plurality of through-holes 18 and another through-hole 18D that is closest to one through-hole C and another through-hole 18E that is also closest to each other is correct. Arrange them in a triangular shape. Thereby, the several through-hole 18 can be arrange | positioned without waste on the diaphragm 12, and the effect that size reduction and cost reduction of the sensor chip 13 are realizable is acquired. At this time, it is preferable that the direction along the line segment connecting the through holes 18 arranged in a regular triangle shape is different from the direction of the cleavage plane of the silicon layer 20 as described above. Thereby, the crack of the diaphragm 12 can be prevented. However, this is not necessarily the case. In addition, by arranging the through holes 18 in an equilateral triangle shape, the direction of the diaphragm 12 so that the direction along the line connecting the centers of the adjacent through holes 18 that are closest to each other is different from the direction of the cleavage plane of the silicon layer 20. Can be designed and formed easily. Thereby, the diaphragm 12 which is hard to break can be formed.
 また、複数の貫通孔18はダイアフラム12の中央P近傍には配置しないのが好ましい。すなわち、複数の貫通孔18はダイアフラム12の中央P近傍を除く領域に配置されるのが好ましい。ここで、ダイアフラム12の中央Pとは、上面から見て、ダイアフラム12が円形のとき、外周からの距離が等しい位置を表し、多角形であるとき、ダイアフラム12の外周の角からの距離が等しい位置を表す。被検体を吸引および吸着する際に、ダイアフラム12の中央Pには特に大きな応力がかかる。このため、貫通孔18をダイアフラム12の中央P近傍に配置すると、貫通孔18に大きな応力がかかる。すると、貫通孔18からの割れが生じやすくなり、センサチップ13が割れやすくなる。そこで、ダイアフラム12の中央Pを避けて貫通孔18を配置することにより、ダイアフラム12の割れを効果的に防止できる。ここでいうダイアフラム12の中央P近傍とは、ダイアフラム12の直径が500μm程度の際、ダイアフラム12の中央P近傍はダイアフラム12の中心から50μm程度の範囲のことである。 Further, it is preferable that the plurality of through holes 18 are not arranged near the center P of the diaphragm 12. That is, it is preferable that the plurality of through holes 18 be arranged in a region excluding the vicinity of the center P of the diaphragm 12. Here, the center P of the diaphragm 12 indicates a position where the distance from the outer periphery is equal when the diaphragm 12 is circular as viewed from above, and when the diaphragm 12 is a polygon, the distance from the corner of the outer periphery of the diaphragm 12 is equal. Represents the position. When the subject is aspirated and adsorbed, a particularly large stress is applied to the center P of the diaphragm 12. For this reason, if the through hole 18 is disposed in the vicinity of the center P of the diaphragm 12, a large stress is applied to the through hole 18. Then, a crack from the through hole 18 is likely to occur, and the sensor chip 13 is easily cracked. Thus, by disposing the through hole 18 while avoiding the center P of the diaphragm 12, the diaphragm 12 can be effectively prevented from cracking. Here, the vicinity of the center P of the diaphragm 12 refers to a range of about 50 μm from the center of the diaphragm 12 when the diameter of the diaphragm 12 is about 500 μm.
 また、図7に示すように、ダイアフラム12の外周の近くに貫通孔18を設けるのが好ましい。センサチップ13は外周部分で保持され、固定されるため、センサチップ13の外周近傍が外部からの応力に対して最も強い。このため、ダイアフラム12の外周近傍に貫通孔18を設けることで、ダイアフラム12が割れにくくなり割れを効果的に防止できる。ここで、外周近傍とはダイアフラム12の中央ではない範囲、特に、外周から10μm程度の範囲を表す。 Further, as shown in FIG. 7, it is preferable to provide a through hole 18 near the outer periphery of the diaphragm 12. Since the sensor chip 13 is held and fixed at the outer peripheral portion, the vicinity of the outer periphery of the sensor chip 13 is the strongest against external stress. For this reason, by providing the through-hole 18 in the vicinity of the outer periphery of the diaphragm 12, the diaphragm 12 is difficult to break and cracking can be effectively prevented. Here, the vicinity of the outer periphery represents a range that is not the center of the diaphragm 12, particularly a range of about 10 μm from the outer periphery.
 また、前述したとおりダイアフラム12には中央に近い位置ほど大きな応力がかかる。このため、ダイアフラム12の割れを防止する観点から、最近接して隣り合う貫通孔18の中心を結ぶ線分の長さは、外周近傍に比べてダイアフラム12の中央近傍のほうが長いことが好ましい。ダイアフラム12の中央から外周方向に向かうに従って、最近接して隣り合う貫通孔18の中心間の距離を短くしていくことにより、ダイアフラム12の割れを防止でき、ダイアフラム12上に効率的に複数の貫通孔18を配置できる。すなわち、任意の貫通孔18と任意の貫通孔18に最近接する他の貫通孔18との中心を結ぶ線分は、他の任意の貫通孔18と他の任意の貫通孔18に最近接する他の貫通孔18との中心を結ぶ線分よりもダイアフラム12の外周側に位置し、かつ短いことが好ましい。これにより、上述のような効果が得られる。例えば、図7に示すように、最近接して隣り合う貫通孔18の中心間の距離をダイアフラム12の中央に近いものから順にL1、L2、L3としたとき、線分の距離はL1>L2>L3とするのが好ましい。 Further, as described above, the diaphragm 12 is subjected to a greater stress at a position closer to the center. For this reason, from the viewpoint of preventing the diaphragm 12 from cracking, it is preferable that the length of the line connecting the centers of the adjacent through holes 18 that are closest to each other is longer in the vicinity of the center of the diaphragm 12 than in the vicinity of the outer periphery. As the distance from the center of the diaphragm 12 toward the outer periphery decreases, the distance between the centers of the adjacent through holes 18 that are closest to each other is shortened, so that the diaphragm 12 can be prevented from cracking, and a plurality of through holes can be efficiently penetrated on the diaphragm 12. Holes 18 can be arranged. That is, a line segment that connects the centers of an arbitrary through hole 18 and another through hole 18 that is closest to the arbitrary through hole 18 is another line segment that is closest to the other arbitrary through hole 18 and the other arbitrary through hole 18. It is preferable that it is located on the outer peripheral side of the diaphragm 12 and shorter than the line segment connecting the center with the through hole 18. Thereby, the above-described effects can be obtained. For example, as shown in FIG. 7, when the distance between the centers of the adjacent through holes 18 that are closest to each other is L1, L2, and L3 in order from the closest to the center of the diaphragm 12, the distance between the line segments is L1> L2>. L3 is preferable.
 また、貫通孔18はダイアフラム12の中心Pに対して点対称に設けられるのが望ましい。このように貫通孔18を設けることで、被検体19の吸着時にダイアフラム12全体でみると対称な位置に吸引力が働く。そのため、平均化されたデータを得やすい。また、ダイアフラム12上に平均的に応力がかかるので、ダイアフラム12の割れを防止できる。 Further, it is desirable that the through hole 18 is provided point-symmetrically with respect to the center P of the diaphragm 12. By providing the through hole 18 in this way, a suction force acts at a symmetrical position when the subject 19 is adsorbed when viewed from the entire diaphragm 12. Therefore, it is easy to obtain averaged data. In addition, since stress is applied on the diaphragm 12 on average, the diaphragm 12 can be prevented from cracking.
 なお、貫通孔18の形状は特に問わず、測定を行う被検体の種類、形状などによって、最適な形状を選択すればよい。ただし、細胞や球状の粒子の場合は被検体が真球に比較的近い形状を有している。そのため、貫通孔18の形状も真円の形状に近いほうが被検体を等方的に吸引でき望ましい。 The shape of the through hole 18 is not particularly limited, and an optimal shape may be selected depending on the type and shape of the subject to be measured. However, in the case of cells or spherical particles, the subject has a shape relatively close to a true sphere. Therefore, it is desirable that the shape of the through hole 18 is close to a perfect circle because the subject can be aspirated isotropically.
 なお、複数の貫通孔18のうちの一部が多少のずれによってへき開面と異なる位置、すなわちへき開面上でない位置に形成されていても本実施の形態の範囲内である。また、複数の貫通孔18のうちの多数がへき開面と異なる位置に形成されている場合であっても、本実施の形態の範囲内である。 It should be noted that even if a part of the plurality of through holes 18 is formed at a position different from the cleaved surface due to some deviation, that is, at a position not on the cleaved surface, it is within the scope of the present embodiment. Moreover, even if it is a case where many of the several through-holes 18 are formed in the position different from a cleaved surface, it is in the range of this Embodiment.
 本発明によるセンサチップは、被検体を貫通孔に吸引および吸着する際にも割れ難く、耐久性に優れている。したがって、耐久性に優れたセンサデバイスの求められる医療・バイオ分野において有効である。 The sensor chip according to the present invention is not easily broken even when the subject is sucked and sucked into the through hole, and has excellent durability. Therefore, it is effective in the medical / biological field where a sensor device with excellent durability is required.
 11  実装基板
 12  ダイアフラム
 13  センサチップ
 14  第一電極槽
 15  第一電極
 16  第二電極槽
 17  第二電極
 18  貫通孔
 19  被検体
 20  シリコン層
 21  酸化シリコン層
 22  シリコン層
 23  酸化シリコン膜
 24  第一のレジストマスク
 25  マスクホール
 26  凹部
 27  第二のレジストマスク
 28  キャビティ
 30  マーク
 L1,L2,L3  貫通孔の中心間の距離
DESCRIPTION OF SYMBOLS 11 Mounting board 12 Diaphragm 13 Sensor chip 14 1st electrode tank 15 1st electrode 16 2nd electrode tank 17 2nd electrode 18 Through-hole 19 Test object 20 Silicon layer 21 Silicon oxide layer 22 Silicon layer 23 Silicon oxide film 24 1st Resist mask 25 Mask hole 26 Recess 27 Second resist mask 28 Cavity 30 Mark L1, L2, L3 Distance between centers of through holes

Claims (13)

  1. 第一面と、前記第一面と対向する第二面とを有し、前記第一面と前記第二面とを貫通する複数の貫通孔とが形成され、特定の方向からの応力に対する機械的強度がそれ以外の方向からの応力に対する機械的強度に比べて低いダイアフラムを備え、
    前記複数の貫通孔は第一の貫通孔と前記第一の貫通孔と最近接する第二の貫通孔とを有し、前記第一の貫通孔の中心と前記第二の貫通孔の中心とを結ぶ第一の線分に沿った方向は、前記特定の方向とは異なるセンサチップ。
    A machine having a first surface and a second surface facing the first surface, wherein a plurality of through-holes penetrating the first surface and the second surface are formed. With a diaphragm whose mechanical strength is lower than the mechanical strength against stress from other directions,
    The plurality of through holes have a first through hole and a second through hole closest to the first through hole, and the center of the first through hole and the center of the second through hole are A direction along the first line segment to be connected is a sensor chip different from the specific direction.
  2. 前記ダイアフラムはへき開性を有する材料で構成された第一の層を含み、前記特定の方向が前記第一の層を形成する材料のへき開面の方向である請求項1に記載のセンサチップ。 2. The sensor chip according to claim 1, wherein the diaphragm includes a first layer made of a material having a cleavage property, and the specific direction is a direction of a cleavage surface of the material forming the first layer.
  3. 前記第一の層を構成する前記へき開性を有する材料はシリコン単結晶を含む請求項2に記載のセンサチップ。 The sensor chip according to claim 2, wherein the cleaving material constituting the first layer includes a silicon single crystal.
  4. 前記ダイアフラムの前記第一面と前記第二面との少なくとも一方の表面には、へき開性を有していない材料で構成された第二の層が設けられている請求項2に記載のセンサチップ。 The sensor chip according to claim 2, wherein a second layer made of a material having no cleavage property is provided on at least one surface of the first surface and the second surface of the diaphragm. .
  5. 前記ダイアフラムの前記第一面と前記第二面との少なくとも一方の表面には、へき開性を有した材料で構成された第二の層が設けられ、前記第二の層を構成する材料のへき開面の方向と前記第一の層を構成する材料のへき開面の方向とが異なる請求項2に記載のセンサチップ。 At least one surface of the first surface and the second surface of the diaphragm is provided with a second layer made of a material having a cleavage property, and the material constituting the second layer is cleaved. The sensor chip according to claim 2, wherein the direction of the surface is different from the direction of the cleaved surface of the material constituting the first layer.
  6. 前記ダイアフラムは、さらに第三の貫通孔と、前記第三の貫通孔と最近接する第四の貫通孔及び第五の貫通孔とを有し、前記第三の貫通孔と前記第四の貫通孔と前記第五の貫通孔とは、それぞれ正三角形の頂点上に配置されている請求項1に記載のセンサチップ。 The diaphragm further includes a third through hole, a fourth through hole and a fifth through hole that are closest to the third through hole, and the third through hole and the fourth through hole. The sensor chip according to claim 1, wherein the fifth through-hole and the fifth through-hole are respectively arranged on vertices of an equilateral triangle.
  7. 前記第三の貫通孔と前記第四の貫通孔とを結ぶ線分の方向、前記第四の貫通孔と前記第五の貫通孔とを結ぶ線分の方向、前記第五の貫通孔と前記第三の貫通孔とを結ぶ線分の方向のうちの少なくとも一つは前記特定の方向と異なる請求項6に記載のセンサチップ。 Direction of a line segment connecting the third through hole and the fourth through hole, direction of a line segment connecting the fourth through hole and the fifth through hole, the fifth through hole and the above The sensor chip according to claim 6, wherein at least one of the directions of line segments connecting to the third through hole is different from the specific direction.
  8. 前記第三の貫通孔と前記第四の貫通孔とを結ぶ前記線分の方向、前記第四の貫通孔と前記第五の貫通孔とを結ぶ前記線分の方向、前記第五の貫通孔と前記第三の貫通孔とを前記結ぶ線分の方向のすべてが前記特定の方向と異なる請求項7に記載のセンサチップ。 Direction of the line segment connecting the third through hole and the fourth through hole, direction of the line segment connecting the fourth through hole and the fifth through hole, the fifth through hole The sensor chip according to claim 7, wherein all of the direction of the line segment connecting the first through hole and the third through hole are different from the specific direction.
  9. 前記ダイアフラムの中央近傍を除く領域に、前記複数の貫通孔が設けられていることを特徴とする請求項1に記載のセンサチップ。 The sensor chip according to claim 1, wherein the plurality of through holes are provided in a region excluding the vicinity of the center of the diaphragm.
  10. 前記複数の貫通孔のうちの少なくとも一つは前記ダイアフラムの外周近傍に設けられている請求項1に記載のセンサチップ。 The sensor chip according to claim 1, wherein at least one of the plurality of through holes is provided in the vicinity of an outer periphery of the diaphragm.
  11. 前記複数の貫通孔のうちの任意の第六の貫通孔と前記任意の第六の貫通孔と最も近接する第七の貫通孔との中心を結ぶ線分は、前記複数の貫通孔のうちの任意の第八の貫通孔と前記任意の第八の貫通孔と最も近接する第九の貫通孔との中心を結ぶ線分よりも、前記ダイアフラムの外周側に位置し、かつ短い請求項1に記載のセンサチップ。 A line segment connecting the center of any sixth through-hole of the plurality of through-holes and the seventh through-hole closest to the arbitrary sixth through-hole is, of the plurality of through-holes, Claim 1 wherein the diaphragm is located on the outer peripheral side of the diaphragm and shorter than the line segment connecting the centers of the arbitrary eighth through hole and the ninth through hole closest to the optional eighth through hole. The sensor chip described.
  12. 前記ダイアフラムの外周形状が円形である請求項1に記載のセンサチップ。 The sensor chip according to claim 1, wherein an outer peripheral shape of the diaphragm is circular.
  13. 前記ダイアフラムの外周に設けられたシリコン層をさらに備え、前記ダイアフラムまたは前記シリコン層の少なくともいずれか一方に前記特定の方向を表すマークを設けた請求項1に記載のセンサチップ。 The sensor chip according to claim 1, further comprising a silicon layer provided on an outer periphery of the diaphragm, wherein a mark representing the specific direction is provided on at least one of the diaphragm and the silicon layer.
PCT/JP2012/001436 2011-03-04 2012-03-02 Sensor chip WO2012120852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-047340 2011-03-04
JP2011047340 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012120852A1 true WO2012120852A1 (en) 2012-09-13

Family

ID=46797825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001436 WO2012120852A1 (en) 2011-03-04 2012-03-02 Sensor chip

Country Status (1)

Country Link
WO (1) WO2012120852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535484A (en) * 2016-12-29 2017-03-22 奥士康科技股份有限公司 Printed gas-guiding board
WO2017187588A1 (en) * 2016-04-28 2017-11-02 株式会社日立製作所 Membrane device, measurement device, and method for producing membrane device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2007043903A (en) * 2005-08-05 2007-02-22 Fujitsu Ltd Automatic microinjection apparatus and cell catching plate
JP2007225425A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Cell electrophysiological sensor, measuring method using it, and its manufacturing method
JP2010213668A (en) * 2009-03-19 2010-09-30 Panasonic Corp Biochip, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
JP2007043903A (en) * 2005-08-05 2007-02-22 Fujitsu Ltd Automatic microinjection apparatus and cell catching plate
JP2007225425A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd Cell electrophysiological sensor, measuring method using it, and its manufacturing method
JP2010213668A (en) * 2009-03-19 2010-09-30 Panasonic Corp Biochip, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187588A1 (en) * 2016-04-28 2017-11-02 株式会社日立製作所 Membrane device, measurement device, and method for producing membrane device
JPWO2017187588A1 (en) * 2016-04-28 2018-10-25 株式会社日立製作所 Membrane device, measuring device, membrane device manufacturing method
US10908121B2 (en) 2016-04-28 2021-02-02 Hitachi, Ltd. Membrane device, measurement device, and method for producing membrane device
CN106535484A (en) * 2016-12-29 2017-03-22 奥士康科技股份有限公司 Printed gas-guiding board

Similar Documents

Publication Publication Date Title
JP6806787B2 (en) Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing
US8354271B2 (en) Biosensor
US7501278B2 (en) Extracellular potential measuring device and method for fabricating the same
WO2011121968A1 (en) Sensor device
US8816450B2 (en) Fibrous projections structure
JP4784696B2 (en) Cell potential measuring device, substrate used therefor, and method for manufacturing substrate for cell potential measuring device
JP2005265758A (en) Extracellular potential measuring device, and manufacturing method therefor
CN108368466B (en) Biomolecule measuring device
CN100506969C (en) Substrate and method for measuring the electrophysiological properties of cell membranes
JP5375609B2 (en) Biosensor
WO2007138902A1 (en) Electrophysiology sensor chip and electrophysiology sensor employing the same and method for fabricating electrophysiology sensor chip
WO2004079354A1 (en) Extracellular potential measuring device and its manufacturing method
WO2012120852A1 (en) Sensor chip
JP4868067B2 (en) Cell electrophysiological sensor chip, cell electrophysiological sensor using the same, and method for manufacturing cell electrophysiological sensor chip
JP4844161B2 (en) Cell electrophysiological sensor, measuring method using the same, and manufacturing method thereof
JP3925439B2 (en) Extracellular potential measuring device and manufacturing method thereof
JP4742882B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP4830545B2 (en) Method for manufacturing cell electrophysiological sensor
JP4747852B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP5011984B2 (en) Cell electrophysiological sensor
JP2013124861A (en) Sensor chip
JP2009002876A (en) Cell electrophysiology sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP