WO2012120735A1 - Blade drive device and optical device - Google Patents

Blade drive device and optical device Download PDF

Info

Publication number
WO2012120735A1
WO2012120735A1 PCT/JP2011/077144 JP2011077144W WO2012120735A1 WO 2012120735 A1 WO2012120735 A1 WO 2012120735A1 JP 2011077144 W JP2011077144 W JP 2011077144W WO 2012120735 A1 WO2012120735 A1 WO 2012120735A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
angle range
blade
opening
torque
Prior art date
Application number
PCT/JP2011/077144
Other languages
French (fr)
Japanese (ja)
Inventor
保田彬
伊藤彰浩
山本正美
Original Assignee
セイコープレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコープレシジョン株式会社 filed Critical セイコープレシジョン株式会社
Publication of WO2012120735A1 publication Critical patent/WO2012120735A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/36Sliding rigid plate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/10Blade or disc rotating or pivoting about axis normal to its plane
    • G03B9/18More than two members
    • G03B9/20More than two members each moving in a single direction first to open and then to reclose

Definitions

  • the present invention relates to a blade driving device and an optical apparatus.
  • Patent Document 1 describes a blade driving device including a substrate having an opening, a blade that opens and closes the opening, and a biasing member that biases the blade so that the blade closes the opening. Since the urging member urges the blade to close the opening, the speed at which the wing advances to the opening is improved. This improves the shutter speed.
  • an object of the present invention is to provide a blade driving device having a simple structure and an improved shutter speed, and an optical apparatus including the blade driving device.
  • An object of the present invention is to provide an actuator including an urging member, a substrate having an opening, a blade that can move forward and backward with respect to the opening, a stator, and a rotor that rotates when the stator is excited and drives the blade. And when the rotor rotates in the first direction, the blade advances to the opening, and when the rotor rotates in the second direction, the blade retracts from the opening,
  • the rotation angle range is limited to an operating angle range that is smaller than the entire rotation angle range of the rotor that can rotate when the stator is excited, and the rotor is positioned at a first end of the operating angle range.
  • the blade overlaps the opening, and when the rotor is positioned at the second end of the operating angle range, the blade is retracted from the opening and the operating angle is
  • the range includes a position that is the maximum value of the torque of the rotor in the entire rotation angle range when the rotor rotates in the first direction when the rotation angle range of the rotor is not limited.
  • the urging member can be achieved by a blade driving device that urges the rotor directly or indirectly in the second direction at least in a section from the middle position of the operating angle range to the first end.
  • the operating angle range of the rotor includes a point where the maximum value of the torque of the rotor in the entire rotation angle range when the rotor rotates in the first direction, so that the rotor rotates in the first direction. Torque can be secured. Thereby, the speed of the blade
  • the urging member urges the rotor directly or indirectly in the second direction in the section from the first end of the operating angle range of the rotor to the middle position, the urging member rotates the rotor in the second direction. Assist.
  • the above object can also be achieved by an optical device equipped with the blade driving device.
  • a blade driving device having a simple structure and an improved shutter speed, and an optical apparatus including the blade driving device.
  • FIG. 1 is an exploded perspective view of the blade driving device according to the first embodiment.
  • FIG. 2 is a perspective view of the blade driving device.
  • FIG. 3 is a perspective view of the blade driving device.
  • FIG. 4 is an explanatory diagram of the blade driving device in a fully opened state.
  • FIG. 5 is an explanatory diagram of the blade driving device in a state between the fully open state and the fully closed state.
  • FIG. 6 is an explanatory diagram of the blade driving device in the fully closed state.
  • 7A to 7D are explanatory diagrams of the rotation of the rotor.
  • FIG. 8 is a graph showing torque fluctuations according to the rotation angle of the rotor in the electromagnetic actuator of the first embodiment.
  • FIG. 9 is a graph showing torque fluctuations according to the rotation angle of the rotor in a conventional electromagnetic actuator.
  • FIG. 10 shows an example of changing the operating angle range.
  • FIG. 11 is an explanatory diagram of the blade driving device of the second embodiment.
  • FIG. 12 is a graph showing torque fluctuations according to the rotation angle of the rotor in the electromagnetic actuator of the second embodiment.
  • FIG. 13 is an explanatory diagram of a blade driving device according to the third embodiment.
  • FIG. 14 is an explanatory diagram of the blade driving device of the third embodiment.
  • FIG. 15 is an explanatory diagram of the blade driving device of the third embodiment.
  • FIG. 16 is an explanatory diagram of a blade driving device according to the fourth embodiment. 17A and 17B are explanatory diagrams of the blade driving device of the fourth embodiment.
  • FIG. 1 is an exploded perspective view of the blade driving device 1 according to the first embodiment
  • FIGS. 2 and 3 are perspective views of the blade driving device 1.
  • the blade driving device 1 is a blade driving device employed in an optical device such as a camera.
  • the blade driving device 1 is a so-called focal plane shutter.
  • the blade driving device 1 includes a substrate 10, a plurality of blades 20, arms 30a and 30b, urging members 40a and 40b, an electromagnetic actuator A, and driving members 90a and 90b.
  • the substrate 10 is provided with an opening OP.
  • the light on the subject side passes through the opening OP and is incident on an image sensor such as a CCD or CMOS sensor provided on the camera side. Thereby, an image is formed by the image sensor.
  • the substrate 10 has a first surface 11 and a second surface 12.
  • the electromagnetic actuator A is disposed on the first surface 11 side, and the blade 20 is disposed on the second surface 12 side.
  • the blades 20 constitute a so-called rear curtain.
  • the blade driving device 1 is a focal plane shutter for a camera having a function called an electronic front curtain that realizes the function of the front curtain by controlling the exposure timing of the image sensor.
  • the focal plane shutter having only the rear curtain will be described.
  • the present invention is not limited to this embodiment, and is applied to the focal plane shutter having the front curtain and the rear curtain. Also good. In that case, the front curtain may be operated by the same mechanism as the rear curtain.
  • the arms 30a and 30b can swing around the support shafts 13a and 13b formed on the second surface 12 side.
  • the rotation member 50b shown in FIG. 1 is fitted to the support shaft 13b, and the fitting hole 35b of the arm 30b is fitted to the rotation member 50b.
  • a similar rotating member is fitted to the support shaft 13a, and the fitting hole 35a of the arm 30a is fitted to this rotating member.
  • the arms 30a and 30b are connected to the plurality of blades 20, respectively.
  • the arms 30a and 30b function as parallel links.
  • the urging members 40a and 40b are torsion springs. The urging members 40a and 40b will be described later.
  • the electromagnetic actuator A includes a rotor 60 rotatably supported on the substrate 10, a stator 70 that rotates the rotor 60 when a magnetic force acts between the rotor 60, a coil 85 that excites the stator 70, and a coil 85.
  • a coil bobbin 82 that is wound and assembled to the stator 70 is included.
  • Magnetic pole portions 72a and 72b are formed at both ends of the stator 70 facing the rotor 60, respectively. When the coil 85 is energized, the magnetic pole portions 72a and 72b are excited to have different polarities.
  • the rotor 60 is magnetized with different polarities in the circumferential direction. The rotor 60 rotates within a predetermined range by a magnetic attractive force and a repulsive force acting between the magnetic pole portions 72 a and 72 b and the rotor 60.
  • the drive member 90 a has a fitting hole 94 a that fits into the end of the rotor 60, and rotates together with the rotor 60.
  • the drive member 90a is provided with a gear portion 95a.
  • the driving member 90b is rotatably supported on the first surface 11 side of the substrate 10.
  • the drive member 90b is formed with a shaft hole 94b slidably fitted to a shaft portion formed on the first surface 11 of the substrate 10.
  • the drive member 90b has a gear portion 95b that meshes with the gear portion 95a of the drive member 90a.
  • a drive pin 96b is formed on the drive member 90b.
  • the drive pin 96b passes through the escape hole 16 formed in the substrate 10 and is fitted into the fitting hole 36a of the arm 30a.
  • the drive members 90a and 90b rotate and the arm 30a swings.
  • the arm 30a swings, whereby the blade 20 moves forward and backward with respect to the opening OP.
  • the blade 20 retracts from the opening OP to open the opening OP, and shields the opening OP to fully close the opening OP.
  • FIG. 4 shows a fully open state
  • FIG. 5 shows a state halfway between the fully open state and the fully closed state
  • FIG. 6 shows a fully closed state. 4 to 6 are views of the blade driving device 1 as viewed from the second surface 12 side of the substrate 10.
  • the urging members 40a and 40b are wound around the support shafts 13a and 13b, respectively.
  • the one end 41a of the urging member 40a is in a free state without being in contact with other members.
  • the other end 42a of the urging member 40a is engaged with the engagement hole 32a of the arm 30a. That is, the other end 42a of the urging member 40a is connected to the arm 30a.
  • the one end 41b is not in contact with another member, and the other end 42b is engaged with the engagement hole 32b of the arm 30b.
  • substrate 10 is formed with the escape hole 17 for escaping the other end part 42b of the urging
  • each of the one end 41a of the biasing member 40a and the one end 41b of the biasing member 40b is on the first surface 11 side of the substrate 10. It abuts on the pins 14a and 14b formed on the surface.
  • the drive pin 96b further moves and the blade 20 completely closes the opening OP.
  • the angle between the one end 41a and the other end 42a of the urging member 40a is smaller than that in FIG. The same applies to the urging member 40b. Therefore, the urging forces of the urging members 40a and 40b increase from the state shown in FIG. 5 to the state shown in FIG. Therefore, the urging members 40a and 40b urge the blades 20 to retreat from the openings OP, in other words, the blades 20 open the openings OP.
  • the rotor 60 drives the blades 20 against the urging force of the urging members 40a and 40b to close the opening OP.
  • FIG. 7A to 7D are explanatory diagrams of the rotation of the rotor 60.
  • FIG. 7A-7D show the rotor 60 during the transition from the fully open state to the fully closed state.
  • FIG. 7A shows the stop position of the rotor 60 in the fully opened state. In this state, the rotor 60 is stopped while the drive pin 96b is in contact with one end of the escape hole 16. Therefore, the counterclockwise rotation of the rotor 60 is restricted. In this state, since the coil 85 is not energized, the magnetic pole portions 72a and 72b have no polarity. Therefore, the rotor 60 is stopped by the detent torque.
  • FIG. 7C shows a state when the rotor 60 is rotated by a predetermined angle from the state of FIG. 7B.
  • the magnetic pole center of the N pole of the rotor 60 generates an attractive force with the magnetic pole part 72a and generates a repulsive force with the magnetic pole part 72b.
  • the magnetic pole center of the S pole of the rotor 60 generates an attractive force with the magnetic pole part 72b and generates a repulsive force with the magnetic pole part 72a.
  • FIG. 7D shows a state where the rotor 60 is further rotated in the clockwise direction.
  • the drive pin 96b contacts the other end of the escape hole 16, and the rotation of the rotor 60 is stopped.
  • the opening OP is fully closed.
  • energization to the coil 85 is stopped, and the rotor 60 is maintained at this position by detent torque.
  • the rotor 60 rotates counterclockwise by exciting the magnetic pole portions 72a and 72b to the N pole and the S pole, respectively, from the state shown in FIG. 7D. . As a result, the blade 20 is retracted from the opening OP.
  • FIG. 8 is a graph showing a variation in torque according to the rotation angle of the rotor 60 of the electromagnetic actuator A of the first embodiment.
  • the horizontal axis represents the rotation angle of the rotor
  • the vertical axis represents the torque.
  • the center of the horizontal axis is a rotation angle of 90 °
  • the position of the rotor 60 at 90 ° corresponds to the position of the rotor 60 shown in FIG. 7A.
  • Torque T1 indicates the torque when the rotor 60 rotates in the first direction when the stator 70 is excited.
  • the blade 20 advances toward the opening OP.
  • the rotation of the rotor 60 in the first direction means that the rotor 60 shown in FIGS. 7A to 7D rotates in the clockwise direction.
  • Torque T2 indicates the torque when the rotor 60 rotates in the second direction when the stator 70 is excited.
  • the blade 20 retracts from the opening OP.
  • the fact that the rotor 60 rotates in the second direction means that the rotor 60 shown in FIGS. 7A to 7D rotates counterclockwise. When the rotor 60 rotates counterclockwise, the rotor 60 rotates from the position shown in FIG. 7D.
  • the operating angle range DR is an actual rotation range of the rotor 60.
  • the rotation range of the rotor 60 is regulated by the drive pin 96b coming into contact with the escape hole 16 as described above. Therefore, the torques T1 and T2 shown in FIG. 8 indicate torques in the entire rotation angle range of the rotor 60 when there is no such restriction. That is, the torques T1 and T2 are torques in the entire rotation angle range of the rotor 60 that can be rotated by exciting the stator 70 when the rotation range of the rotor 60 is not limited.
  • the detent torque DT indicates a torque necessary for rotating the rotor 60 in a state where the energization to the coil 85 is interrupted. In FIG.
  • the operating angle range DR includes a point of the maximum value M of the torque T1. Further, the center position PC of the operating angle range DR is located between the first end P1 and 90 °.
  • the first end P1 of the operating angle range DR is set around 135 °, and the second end P2 of the operating angle range DR is set around 90 °. Therefore, the operating angle range DR is set to about 45 °.
  • the rotor 60 rotates in the first direction
  • the rotor 60 rotates from the second end P2 toward the first end P1.
  • the rotor 60 rotates from the first end P1 toward the second end P2.
  • the absolute value of the detent torque DT at the first end P1 is larger than the absolute value of the detent torque DT at the second end P2.
  • the blade driving device 1 includes the urging members 40a and 40b.
  • the urging members 40a and 40b urge the arms 30a and 30b from the midway position of the operating angle range DR to the first end P1.
  • the urging members 40a and 40b urge the arms 30a and 30b so that the rotor 60 rotates in the second direction. That is, the urging members 40a and 40b indirectly urge the rotor 60 so that the rotor 60 rotates in the second direction.
  • the spring torque ST indicates the torque applied to the rotor 60 by the urging members 40a and 40b.
  • the spring torque ST increases as the rotor 60 approaches the first end P1.
  • the torque FT1 is a torque when the rotor 60 rotates in the first direction when the spring torque ST is applied.
  • the torque FT1 is an actual torque when the rotor 60 rotates in the first direction.
  • the torque FT1 is lower than the torque T1 in the section from the midway position of the operating angle range DR to the first end P1. This is because the spring torque ST of the urging members 40a and 40b acts as a minus with respect to the torque T1.
  • the torque FT2 is a torque when the rotor 60 rotates in the second direction when the spring torque ST is applied. That is, the torque FT2 is an actual torque when the rotor 60 rotates in the second direction. As shown in FIG. 8, the torque FT2 is a section from the first end P1 to the midway position of the operating angle range DR, and the torque in the second direction is greater than the torque T2. This is because the spring torque ST of the urging members 40a and 40b acts as a plus with respect to the torque T2.
  • the detent torque FDT indicates the detent torque when the spring torque ST is applied. That is, the detent torque FDT is an actual detent torque of the rotor 60.
  • FIG. 9 is a graph showing the variation of torque according to the rotation angle of the rotor in the conventional electromagnetic actuator.
  • the operating angle range DRx of the rotor of the conventional electromagnetic actuator is set so that 90 ° of the point where the detent torque DT becomes zero is approximately the center. The reason is that the torque T12x when the rotor 60 starts to rotate in the first direction from the second end P2x or the torque T21x when it starts to rotate in the second direction from the first end P1x is too weak, and the blade 20 This is to make the torque T12x and the torque T21x substantially equal so that the forward / backward movement cannot be performed.
  • the operating angle range DRx does not include the point of the maximum value M of the torque T1, and the torque when the rotor 60 starts to rotate in the first direction, that is, the first The torque T12x of the rotor 60 at the two ends P2x is small. For this reason, the speed at which the blades 20 advance to the opening OP decreases, and the shutter speed may decrease.
  • the operating angle range DR includes a point of the maximum value M of the torque T1. Further, the center position PC of the operating angle range DR is located between the first end P1 and 90 °. Thereby, the torque T12 at the second end P2 becomes larger than the torque T12x at the second end P2x. Thereby, the rotor 60 rotates with a strong torque from the beginning when the rotor 60 starts rotating in the first direction. For this reason, the speed at which the blade 20 advances to the opening OP is also improved. Thus, the shutter speed is improved with a simple structure.
  • the operating angle range DR is set to such a range
  • the torque when the rotor 60 starts to rotate in the second direction that is, the value of the torque T21 at the first end P1 is the first end P1x.
  • the value of the torque T21x is the first end P1x.
  • the torque when the rotor 60 starts to rotate in the second direction from the second end P2 is too weak and the blades 20 cannot be reliably retracted from the opening OP.
  • some conventional blade driving devices include an urging member that urges the blade in the direction in which the blade proceeds to the opening in order to improve the shutter speed.
  • an urging member that urges the blade in the direction in which the blade proceeds to the opening in order to improve the shutter speed.
  • an actuator having a large rotor detent torque.
  • Such an actuator is large.
  • the structure of the blade driving device becomes complicated, and the manufacturing cost may increase depending on the case.
  • the urging members 40a and 40b urge the arms 30a and 30b so that the blades 20 are retracted from the opening OP. Further, when the blade 20 is in the retracted position, the urging force of the urging members 40 a and 40 b does not act on the blade 20. For this reason, even if the detent torque of the rotor 60 when the blade 20 is in the retracted position is weak, the blade 20 can be maintained in the retracted position.
  • biasing members 40a and 40b are not biased over the entire operating angle range DR. For this reason, the torque when the rotor 60 starts to rotate in the first direction from the second end P2 is not affected. Therefore, a decrease in shutter speed is suppressed.
  • the urging members 40a and 40b urge the blades 20 to open the openings OP when the blades 20 close the openings OP. For this reason, the traveling speed of the blade 20 is reduced immediately before the blade 20 completely closes the opening OP by the biasing force of the biasing members 40a and 40b. Therefore, the urging members 40a and 40b also serve as a speed reduction member. This prevents the drive pin 96b or the like from bouncing against the escape hole 16 in a bouncing manner. Thereby, re-exposure is prevented.
  • the urging members 40a and 40b are arranged so that the blade 20 rotates in the second direction in a section where the rotor 60 does not rotate in the second direction from the first end P1 when at least the urging members 40a and 40b are not provided.
  • the arms 30a and 30b are biased.
  • the torque T2 in the section where the spring torque ST of the urging members 40a and 40b acts shows a negative value. For this reason, if no resistance acts on the rotation of the rotor 60, the rotor 60 can rotate in the second direction.
  • the driving member 90a is fixed to the rotor 60, and the driving member 90a is connected to the blades 20 via a plurality of members, so that there are not a few mechanical loads due to friction or the like. . For this reason, even if the torque T2 shows a negative value at the second end P2, the mechanical load cannot be overcome and the rotor 60 may not rotate in the second direction. In such a section, the urging members 40a and 40b assist the blade 20 to retreat from the opening OP.
  • FIG. 10 shows an example of changing the operating angle range.
  • the operating angle range DR ′ is set such that the first end P1 ′ is about 122.5 ° and the second end P2 ′ is about 80 °.
  • the operating angle range DR ′ includes a point of the maximum value M of the torque T1. Further, the center position PC ′ of the operating angle range DR ′ is located between the first end P1 ′ and 90 °. Even in such an operating angle range DR ′, the shutter speed is improved.
  • the spring torque ST is omitted.
  • urging members 40a and 40b may be provided. Further, such an urging member may urge any member that interlocks with the rotor 60 by rotation. For example, what is necessary is just to energize at least 1 of the blade
  • FIG. 11 is an explanatory diagram of the blade driving device 1a according to the second embodiment.
  • the description is abbreviate
  • the one end portions 41a and 41b of the urging members 40a 'and 40b' are always in contact with the pins 14a and 14b, respectively. That is, even when the blade 20 is in the retracted position, the biasing members 40a ′ and 40b ′ bias the arms 30a and 30b so that the blade 20 retracts from the opening OP.
  • the electromagnetic actuator employed in the blade driving device 1a according to the second embodiment is the same as the electromagnetic actuator employed in the blade driving device 1 according to the first embodiment.
  • FIG. 12 is a graph showing torque fluctuations according to the rotation angle of the rotor 60 in the electromagnetic actuator of the second embodiment.
  • FIG. 12 corresponds to FIG.
  • the urging members 40a ′ and 40b ′ urge the arms 30a and 30b over the entire operating angle range DR.
  • the spring torque STa indicates the torque applied to the rotor 60 by the biasing members 40a ′ and 40b ′.
  • the spring torque STa increases as the rotor 60 approaches the first end P1.
  • the torque FT1a is a torque when the rotor 60 rotates in the first direction when the spring torque STa is applied.
  • the torque FT2a is a torque when the rotor 60 rotates in the second direction when the spring torque STa is applied.
  • the spring torque ST acts on the rotor 60, but the value of the spring torque ST at the second end P2 is relatively small. Therefore, the speed at which the blade 20 advances to the opening OP is also maintained, and the shutter speed is improved with a simple structure.
  • the urging members 40a ′ and 40b ′ are urged in the direction in which the blades 20 are retracted from the opening OP. Therefore, even when the coil 85 is not energized, the blade 20 can be stably maintained at the retracted position.
  • FIGS. 13 to 15 are explanatory views of the blade driving device 1A of the third embodiment when shifting from the fully open state to the fully closed state.
  • the description is abbreviate
  • FIG. 13 shows a fully open state
  • FIG. 14 shows a state between the fully open state and the fully closed state
  • FIG. 15 shows a fully closed state.
  • the shape of the substrate 10A is omitted.
  • the rotation range of the rotor 60 of the electromagnetic actuator AA is the same as the rotation range shown in FIG.
  • a biasing member 40A is fixed to the first surface 11A side of the substrate 10A.
  • the urging member 40A is wound around a pin 14A formed on the first surface 11A side. That is, the pin 14A is fixed to the substrate 10A.
  • the urging member 40 ⁇ / b> A has one end 41 ⁇ / b> A that extends toward the rotor 60.
  • the one end 41A extends between the substrate 10A and the stator 70.
  • the drive member 90A is provided with a protrusion 98a. In the state shown in FIG. 13, the protrusion 98a of the drive member 90A is not in contact with the one end 41A of the urging member 40A.
  • Such a protrusion that can come into contact with the one end 41A of the urging member 40A may be provided on the drive member 90b side, or may be provided directly on the rotor 60. Further, such a protrusion may be integrally formed with the rotor 60. Further, the urging member 40A may be fixed to the rotor 60 so as to rotate together with the rotor 60, and a protrusion that can contact the urging member 40A may be provided on the substrate 10A.
  • FIG. 16 to 17B are explanatory diagrams of the blade driving device 1B of the fourth embodiment.
  • the description is abbreviate
  • FIG. 16 shows a fully opened state
  • FIG. 17A shows a state between the fully opened state and the fully closed state
  • FIG. 17B shows a fully closed state.
  • the substrate 10B has a substantially circular shape.
  • the substrate 10B has a substantially circular opening OPB.
  • a drive member 90B is fixed to the lower end of the rotor 60B. When the driving member 90B rotates together with the rotor 60B, the blade 20B swings to open and close the opening OPB.
  • the board 10B is formed with pins 14B that contact the stator 70B of the electromagnetic actuator AB and position the stator 70B.
  • a biasing member 40B is wound around the upper end of the rotor 60B of the electromagnetic actuator AB and fixed to the rotor 60B.
  • the urging member 40B has one end portion 41B extending outward in the radial direction of the urging member 40B and the other end portion 42B shorter than the one end portion 41B.
  • rotating the rotor 60B shown in FIGS. 16 to 17B in the clockwise direction means rotating in the second direction, and the rotor 60B rotates in the counterclockwise direction. It means to rotate in the first direction.
  • the one end 41B of the urging member 40B comes into contact with the pin 14B as shown in FIG. 17A. Further, when the rotor 60B rotates counterclockwise, the biasing member 40B is deformed so that the angle between the one end 41B and the other end 42B is reduced as shown in FIG. . Thereby, the urging member 40B indirectly urges the blade 20B so that the blade 20B opens the opening OPB. Even with such a configuration, the shutter speed can be improved with a simple structure. Further, retraction from the opening OPB of the blade 20B is ensured.
  • the urging member 40B may be fixed to the driving member 90B and rotated together with the driving member 90B. Further, the urging member 40B may be fixed to the substrate 10B, and the driving member 90B may abut against the urging member 40B.

Abstract

The rotational angle range of a rotor according to the present invention is limited to an operating angle range which is smaller than a total rotational angle range of the rotor, in which the rotor can be rotated with an excited stator. When the rotor is positioned at a first end of the operating angle range, a blade is overlapped with an opening and when the rotor is positioned at a second end of the operating angle range, the blade is away from the opening. The operating angle range includes a position in the total rotational angle range, at which the torque value of the rotor becomes the maximum value in the case that the rotor rotates in the first direction when the rotational angle range of the rotor is not limited. A biasing member biases the rotor in the second direction directly or indirectly in a section at least from a halfway position to the first end in the operating angle range.

Description

羽根駆動装置及び光学機器Blade driving device and optical apparatus
 本発明は、羽根駆動装置及び光学機器に関する。 The present invention relates to a blade driving device and an optical apparatus.
 特許文献1には、開口を有した基板と、開口を開閉する羽根と、羽根が開口を閉じるように羽根を付勢する付勢部材と、を備えた羽根駆動装置が記載されている。付勢部材は羽根が開口を閉じるように付勢をしているので、羽根が開口に進行するスピードが向上している。これによってシャッタスピードが向上している。 Patent Document 1 describes a blade driving device including a substrate having an opening, a blade that opens and closes the opening, and a biasing member that biases the blade so that the blade closes the opening. Since the urging member urges the blade to close the opening, the speed at which the wing advances to the opening is improved. This improves the shutter speed.
特開2000-347241号公報JP 2000-347241 A
 しかしなら、このような羽根駆動装置において羽根を開口から退避した退避位置で維持させる場合には、付勢部材の付勢力に抗して羽根を退避位置に維持させる必要がある。例えば、アクチュエータへ通電がされていない場合のロータのディテントトルクにより羽根を退避位置に維持させる場合には、ロータのディテントトルクが大きいアクチュエータを用いる必要がある。このようなアクチュエータは大型である。また、ストッパや別の機構を用いて羽根を退避位置に維持させる場合には、羽根駆動装置の構造が複雑化し、場合によっては製造コストも増大する。 However, in such a blade driving device, when the blade is maintained in the retracted position retracted from the opening, it is necessary to maintain the blade in the retracted position against the biasing force of the biasing member. For example, when the blade is maintained at the retracted position by the rotor detent torque when the actuator is not energized, it is necessary to use an actuator having a large rotor detent torque. Such an actuator is large. Further, when the blade is maintained at the retracted position using a stopper or another mechanism, the structure of the blade driving device becomes complicated, and the manufacturing cost may increase depending on the case.
 そこで本発明は、簡易な構造でシャッタスピードが向上した羽根駆動装置及びそれを備えた光学機器を提供することを目的とする。 Therefore, an object of the present invention is to provide a blade driving device having a simple structure and an improved shutter speed, and an optical apparatus including the blade driving device.
 上記目的は、付勢部材と、開口を有した基板と、前記開口に対して進退自在な羽根と、ステータ、前記ステータが励磁されることにより回転すると共に前記羽根を駆動するロータ、を含むアクチュエータと、を備え、前記ロータが第1方向に回転する場合は、前記羽根が前記開口に進行し、前記ロータが第2方向に回転する場合は、前記羽根が前記開口から退避し、前記ロータの回転角度範囲は、前記ステータが励磁されることによって回転し得る前記ロータの全回転角度範囲よりも小さい作動角度範囲に制限されており、前記ロータが前記作動角度範囲の第1端に位置している場合には、前記羽根は前記開口に重なり、前記ロータが前記作動角度範囲の第2端に位置している場合には、前記羽根は前記開口から退避しており、前記作動角度範囲は、前記ロータの回転角度範囲が制限されていない場合に前記ロータが前記第1方向に回転する場合での前記全回転角度範囲中での前記ロータのトルクの最大値となる位置を含んでおり、前記付勢部材は、少なくとも前記作動角度範囲の途中位置から前記第1端までの区間で前記ロータを前記第2方向に直接又は間接的に付勢する、羽根駆動装置によって達成できる。 An object of the present invention is to provide an actuator including an urging member, a substrate having an opening, a blade that can move forward and backward with respect to the opening, a stator, and a rotor that rotates when the stator is excited and drives the blade. And when the rotor rotates in the first direction, the blade advances to the opening, and when the rotor rotates in the second direction, the blade retracts from the opening, The rotation angle range is limited to an operating angle range that is smaller than the entire rotation angle range of the rotor that can rotate when the stator is excited, and the rotor is positioned at a first end of the operating angle range. The blade overlaps the opening, and when the rotor is positioned at the second end of the operating angle range, the blade is retracted from the opening and the operating angle is The range includes a position that is the maximum value of the torque of the rotor in the entire rotation angle range when the rotor rotates in the first direction when the rotation angle range of the rotor is not limited. The urging member can be achieved by a blade driving device that urges the rotor directly or indirectly in the second direction at least in a section from the middle position of the operating angle range to the first end.
 ロータの作動角度範囲は、ロータが第1方向に回転する場合での全回転角度範囲中での前記ロータのトルクの最大値となる地点を含むことにより、ロータが第1方向に回転している際のトルクを確保できる。これにより、羽根が開口に進行する際の羽根のスピードを確保でき、シャッタスピードが向上している。 The operating angle range of the rotor includes a point where the maximum value of the torque of the rotor in the entire rotation angle range when the rotor rotates in the first direction, so that the rotor rotates in the first direction. Torque can be secured. Thereby, the speed of the blade | wing at the time of a blade | wing progressing to opening can be ensured, and the shutter speed has improved.
 また、付勢部材は、ロータの作動角度範囲の第1端から途中位置までの区間でロータを第2方向に直接又は間接的に付勢しているため、ロータの第2方向への回転を補助する。 Further, since the urging member urges the rotor directly or indirectly in the second direction in the section from the first end of the operating angle range of the rotor to the middle position, the urging member rotates the rotor in the second direction. Assist.
 上記目的は、上記羽根駆動装置を備えた光学機器によっても達成できる。 The above object can also be achieved by an optical device equipped with the blade driving device.
 本発明によれば、簡易な構造でシャッタスピードが向上した羽根駆動装置及びそれを備えた光学機器を提供できる。 According to the present invention, it is possible to provide a blade driving device having a simple structure and an improved shutter speed, and an optical apparatus including the blade driving device.
図1は、実施例1の羽根駆動装置の分解斜視図である。FIG. 1 is an exploded perspective view of the blade driving device according to the first embodiment. 図2は、羽根駆動装置の斜視図である。FIG. 2 is a perspective view of the blade driving device. 図3は、羽根駆動装置の斜視図である。FIG. 3 is a perspective view of the blade driving device. 図4は、全開状態の羽根駆動装置の説明図である。FIG. 4 is an explanatory diagram of the blade driving device in a fully opened state. 図5は、全開状態と全閉状態との途中の状態の羽根駆動装置の説明図である。FIG. 5 is an explanatory diagram of the blade driving device in a state between the fully open state and the fully closed state. 図6は、全閉状態の羽根駆動装置の説明図である。FIG. 6 is an explanatory diagram of the blade driving device in the fully closed state. 図7A~7Dは、ロータの回転の説明図である。7A to 7D are explanatory diagrams of the rotation of the rotor. 図8は、実施例1の電磁アクチュエータでのロータの回転角度に応じたトルクの変動を示したグラフである。FIG. 8 is a graph showing torque fluctuations according to the rotation angle of the rotor in the electromagnetic actuator of the first embodiment. 図9は、従来の電磁アクチュエータでのロータの回転角度に応じたトルクの変動を示したグラフである。FIG. 9 is a graph showing torque fluctuations according to the rotation angle of the rotor in a conventional electromagnetic actuator. 図10は、作動角度範囲の変更例を示している。FIG. 10 shows an example of changing the operating angle range. 図11は、実施例2の羽根駆動装置の説明図である。FIG. 11 is an explanatory diagram of the blade driving device of the second embodiment. 図12は、実施例2の電磁アクチュエータでのロータの回転角度に応じたトルクの変動を示したグラフである。FIG. 12 is a graph showing torque fluctuations according to the rotation angle of the rotor in the electromagnetic actuator of the second embodiment. 図13は、実施例3の羽根駆動装置の説明図である。FIG. 13 is an explanatory diagram of a blade driving device according to the third embodiment. 図14は、実施例3の羽根駆動装置の説明図である。FIG. 14 is an explanatory diagram of the blade driving device of the third embodiment. 図15は、実施例3の羽根駆動装置の説明図である。FIG. 15 is an explanatory diagram of the blade driving device of the third embodiment. 図16は、実施例4の羽根駆動装置の説明図である。FIG. 16 is an explanatory diagram of a blade driving device according to the fourth embodiment. 図17A、17Bは、実施例4の羽根駆動装置の説明図である。17A and 17B are explanatory diagrams of the blade driving device of the fourth embodiment.
 以下に複数の実施例について説明する。 A plurality of embodiments will be described below.
 図1は、実施例1の羽根駆動装置1の分解斜視図、図2、3は、羽根駆動装置1の斜視図である。羽根駆動装置1は、カメラなどの光学機器に採用される羽根駆動装置である。羽根駆動装置1は、いわゆるフォーカルプレーンシャッタである。羽根駆動装置1は、基板10、複数の羽根20、アーム30a、30b、付勢部材40a、40b、電磁アクチュエータA、駆動部材90a、90bを備えている。基板10には、開口OPが設けられている。被写体側の光は開口OPを通過し、カメラ側に設けられたCCDやCMOSセンサ等の撮像素子へ入射する。これにより撮像素子で結像される。基板10は、第1面11、第2面12を有している。電磁アクチュエータAは、第1面11側に配置され、羽根20は、第2面12側に配置される。羽根20は、いわゆる後幕を構成する。羽根駆動装置1は、先幕の機能を撮像素子の露光タイミングを制御する事により実現する電子先幕と称される機能を備えたカメラ用フォーカルプレーンシャッタである。尚、本実施例では、上述したように後幕のみを有するフォーカルプレーンシャッタについて説明するが、本発明は、この形態に限るわけではなく、先幕および後幕を有するフォーカルプレーンシャッタに適用しても良い。その場合、後幕と同様の機構で、先幕を作動させるようにすれば良い。 FIG. 1 is an exploded perspective view of the blade driving device 1 according to the first embodiment, and FIGS. 2 and 3 are perspective views of the blade driving device 1. The blade driving device 1 is a blade driving device employed in an optical device such as a camera. The blade driving device 1 is a so-called focal plane shutter. The blade driving device 1 includes a substrate 10, a plurality of blades 20, arms 30a and 30b, urging members 40a and 40b, an electromagnetic actuator A, and driving members 90a and 90b. The substrate 10 is provided with an opening OP. The light on the subject side passes through the opening OP and is incident on an image sensor such as a CCD or CMOS sensor provided on the camera side. Thereby, an image is formed by the image sensor. The substrate 10 has a first surface 11 and a second surface 12. The electromagnetic actuator A is disposed on the first surface 11 side, and the blade 20 is disposed on the second surface 12 side. The blades 20 constitute a so-called rear curtain. The blade driving device 1 is a focal plane shutter for a camera having a function called an electronic front curtain that realizes the function of the front curtain by controlling the exposure timing of the image sensor. In this embodiment, as described above, the focal plane shutter having only the rear curtain will be described. However, the present invention is not limited to this embodiment, and is applied to the focal plane shutter having the front curtain and the rear curtain. Also good. In that case, the front curtain may be operated by the same mechanism as the rear curtain.
 アーム30a、30bは、第2面12側に形成された支軸13a、13bを支点として揺動可能である。尚、支軸13bには、図1に示す回転部材50bが回転可能が嵌合し、回転部材50bにはアーム30bの嵌合孔35bが嵌合する。尚、図示しないが、支軸13aにも同様の回転部材が嵌合し、この回転部材にアーム30aの嵌合孔35aが嵌合する。アーム30a、30bは、それぞれ複数の羽根20に連結されている。アーム30a、30bは、並行リンクとして機能する。付勢部材40a、40bは、トーションバネである。付勢部材40a、40bについては後述する。 The arms 30a and 30b can swing around the support shafts 13a and 13b formed on the second surface 12 side. In addition, the rotation member 50b shown in FIG. 1 is fitted to the support shaft 13b, and the fitting hole 35b of the arm 30b is fitted to the rotation member 50b. Although not shown, a similar rotating member is fitted to the support shaft 13a, and the fitting hole 35a of the arm 30a is fitted to this rotating member. The arms 30a and 30b are connected to the plurality of blades 20, respectively. The arms 30a and 30b function as parallel links. The urging members 40a and 40b are torsion springs. The urging members 40a and 40b will be described later.
 電磁アクチュエータAは、基板10に回転可能に支持されたロータ60、ロータ60との間で磁力が作用することによりロータ60を回転させるステータ70、ステータ70を励磁させるためのコイル85、コイル85が巻回されてステータ70に組み付けられたコイルボビン82、を含む。ロータ60と対向するステータ70の両端部には、それぞれ磁極部72a、72bが形成されている。コイル85が通電されることにより、磁極部72a、72bは、互いに異なる極性に励磁される。また、ロータ60は、周方向に異なる極性に着磁されている。磁極部72a、72bとロータ60との間に作用する磁気的吸引力、反発力により、ロータ60は所定の範囲を回転する。 The electromagnetic actuator A includes a rotor 60 rotatably supported on the substrate 10, a stator 70 that rotates the rotor 60 when a magnetic force acts between the rotor 60, a coil 85 that excites the stator 70, and a coil 85. A coil bobbin 82 that is wound and assembled to the stator 70 is included. Magnetic pole portions 72a and 72b are formed at both ends of the stator 70 facing the rotor 60, respectively. When the coil 85 is energized, the magnetic pole portions 72a and 72b are excited to have different polarities. The rotor 60 is magnetized with different polarities in the circumferential direction. The rotor 60 rotates within a predetermined range by a magnetic attractive force and a repulsive force acting between the magnetic pole portions 72 a and 72 b and the rotor 60.
 駆動部材90aは、ロータ60の端部に嵌合する嵌合孔94aを有しており、ロータ60と共に回転する。駆動部材90aには、ギア部95aが設けられている。駆動部材90bは、基板10の第1面11側で回転可能に支持されている。駆動部材90bには、基板10の第1面11に形成された軸部に摺動可能に嵌合した軸孔94bが形成されている。駆動部材90bは、駆動部材90aのギア部95aと噛合うギア部95bを有している。駆動部材90bには、駆動ピン96bが形成されている。駆動ピン96bは、基板10に形成された逃げ孔16を貫通して、アーム30aの嵌合孔36aに嵌合する。従って、ロータ60が回転することにより、駆動部材90a、90bが回転し、アーム30aが揺動する。アーム30aの揺動に伴って、アーム30bが揺動し、これにより羽根20が開口OPに対して進退移動する。羽根20は、開口OPから退避することにより開口OPを開状態にし、また、開口OPを遮蔽することにより開口OPを全閉状態にする。 The drive member 90 a has a fitting hole 94 a that fits into the end of the rotor 60, and rotates together with the rotor 60. The drive member 90a is provided with a gear portion 95a. The driving member 90b is rotatably supported on the first surface 11 side of the substrate 10. The drive member 90b is formed with a shaft hole 94b slidably fitted to a shaft portion formed on the first surface 11 of the substrate 10. The drive member 90b has a gear portion 95b that meshes with the gear portion 95a of the drive member 90a. A drive pin 96b is formed on the drive member 90b. The drive pin 96b passes through the escape hole 16 formed in the substrate 10 and is fitted into the fitting hole 36a of the arm 30a. Accordingly, when the rotor 60 rotates, the drive members 90a and 90b rotate and the arm 30a swings. As the arm 30a swings, the arm 30b swings, whereby the blade 20 moves forward and backward with respect to the opening OP. The blade 20 retracts from the opening OP to open the opening OP, and shields the opening OP to fully close the opening OP.
 図4は、全開状態を示し、図5は、全開状態と全閉状態との途中の状態を示し、図6は、全閉状態を示している。図4~6は、基板10の第2面12側から見た羽根駆動装置1の図である。 FIG. 4 shows a fully open state, FIG. 5 shows a state halfway between the fully open state and the fully closed state, and FIG. 6 shows a fully closed state. 4 to 6 are views of the blade driving device 1 as viewed from the second surface 12 side of the substrate 10.
 図4に示すように、付勢部材40a、40bは、それぞれ支軸13a、13bに巻きつけられている。全開状態では、付勢部材40aの一端部41aは、他の部材に当接しておらず自由な状態である。付勢部材40aの他端部42aは、アーム30aの係合孔32aに係合している。即ち、付勢部材40aの他端部42aは、アーム30aに連結されている。付勢部材40bも同様に、一端部41bは他の部材に当接しておらず、他端部42bはアーム30bの係合孔32bに係合している。尚、基板10には、付勢部材40bの他端部42bを逃がすための逃げ孔17が円弧状に形成されている。 As shown in FIG. 4, the urging members 40a and 40b are wound around the support shafts 13a and 13b, respectively. In the fully open state, the one end 41a of the urging member 40a is in a free state without being in contact with other members. The other end 42a of the urging member 40a is engaged with the engagement hole 32a of the arm 30a. That is, the other end 42a of the urging member 40a is connected to the arm 30a. Similarly, in the urging member 40b, the one end 41b is not in contact with another member, and the other end 42b is engaged with the engagement hole 32b of the arm 30b. In addition, the board | substrate 10 is formed with the escape hole 17 for escaping the other end part 42b of the urging | biasing member 40b in circular arc shape.
 ロータ60が所定方向に回転すると、図5に示すように、駆動ピン96bが移動してアーム30a、30b、羽根20が開口OPに向けて進行する。羽根20が開口OPから退避した位置から開口OPを閉じる位置まで移動する間に、付勢部材40aの一端部41a、付勢部材40bの一端部41bのそれぞれは、基板10の第1面11側に形成されたピン14a、14bに当接する。 When the rotor 60 rotates in a predetermined direction, as shown in FIG. 5, the drive pin 96b moves and the arms 30a and 30b and the blades 20 advance toward the opening OP. While the blade 20 moves from the position retracted from the opening OP to the position closing the opening OP, each of the one end 41a of the biasing member 40a and the one end 41b of the biasing member 40b is on the first surface 11 side of the substrate 10. It abuts on the pins 14a and 14b formed on the surface.
 更に、ロータ60が回転すると、図6に示すように、駆動ピン96bが更に移動して羽根20は開口OPを完全に閉じる。図6に示すように、付勢部材40aの一端部41aと他端部42aとの間の角度は、図5よりも更に小さくなっている。付勢部材40bについても同様である。従って、付勢部材40a、40bの付勢力は、図5に示した状態から図6に示した状態にかけて増大している。従って、付勢部材40a、40bは、羽根20が開口OPから退避する方向、換言すれば羽根20が開口OPを開くように付勢している。ロータ60は、付勢部材40a、40bの付勢力に抗して羽根20を駆動して開口OPが閉じられる。 Further, when the rotor 60 rotates, as shown in FIG. 6, the drive pin 96b further moves and the blade 20 completely closes the opening OP. As shown in FIG. 6, the angle between the one end 41a and the other end 42a of the urging member 40a is smaller than that in FIG. The same applies to the urging member 40b. Therefore, the urging forces of the urging members 40a and 40b increase from the state shown in FIG. 5 to the state shown in FIG. Therefore, the urging members 40a and 40b urge the blades 20 to retreat from the openings OP, in other words, the blades 20 open the openings OP. The rotor 60 drives the blades 20 against the urging force of the urging members 40a and 40b to close the opening OP.
 次に、ロータ60の回転について説明する。図7A~7Dは、ロータ60の回転の説明図である。図7A~7Dは、全開状態から全閉状態への移行の際のロータ60を示している。図7Aは、全開状態でのロータ60の停止位置を示している。この状態において駆動ピン96bが逃げ孔16の一端部に当接した状態でロータ60は停止している。従って、ロータ60の反時計方向の回動が規制されている。また、この状態においてコイル85への通電は行われないため、磁極部72a、72bには、極性は生じない。従って、ロータ60はディテントトルクによって停止されている。 Next, the rotation of the rotor 60 will be described. 7A to 7D are explanatory diagrams of the rotation of the rotor 60. FIG. 7A-7D show the rotor 60 during the transition from the fully open state to the fully closed state. FIG. 7A shows the stop position of the rotor 60 in the fully opened state. In this state, the rotor 60 is stopped while the drive pin 96b is in contact with one end of the escape hole 16. Therefore, the counterclockwise rotation of the rotor 60 is restricted. In this state, since the coil 85 is not energized, the magnetic pole portions 72a and 72b have no polarity. Therefore, the rotor 60 is stopped by the detent torque.
 この状態においてコイル85に所定の向きに通電が行われると、図7Bに示すように、磁極部72aにS極、磁極部72bにN極が発生する。S極に励磁された磁極部72aと、ロータ60のS極の磁極中心とが反発力を生じ、N極に励磁された磁極部72bと、ロータ60のN極の磁極中心とが反発力を生じる。この反発力によって、ロータ60は時計方向に回転し始める。 In this state, when the coil 85 is energized in a predetermined direction, as shown in FIG. 7B, an S pole is generated in the magnetic pole portion 72a and an N pole is generated in the magnetic pole portion 72b. The magnetic pole portion 72a excited to the S pole and the magnetic pole center of the S pole of the rotor 60 generate a repulsive force, and the magnetic pole portion 72b excited to the N pole and the magnetic pole center of the N pole of the rotor 60 generate a repulsive force. Arise. Due to this repulsive force, the rotor 60 starts to rotate clockwise.
 図7Cは、図7Bの状態からロータ60が所定角度回転したときの状態を示している。この状態において、ロータ60のN極の磁極中心は、磁極部72aとの間では吸引力を生じ、磁極部72bとの間では反発力を生じる。また、ロータ60のS極の磁極中心は、磁極部72bとの間では吸引力を生じ、磁極部72aとの間では反発力を生じる。 FIG. 7C shows a state when the rotor 60 is rotated by a predetermined angle from the state of FIG. 7B. In this state, the magnetic pole center of the N pole of the rotor 60 generates an attractive force with the magnetic pole part 72a and generates a repulsive force with the magnetic pole part 72b. Further, the magnetic pole center of the S pole of the rotor 60 generates an attractive force with the magnetic pole part 72b and generates a repulsive force with the magnetic pole part 72a.
 図7Dは、ロータ60が更に時計方向に回転した場合の状態を示している。この状態においては、駆動ピン96bは、逃げ孔16の他端に当接してロータ60の回動が停止される。この状態において、開口OPは全閉状態となる。尚、この状態での所定期間経過後、コイル85への通電が停止されて、ロータ60はディテントトルクによりこの位置で停止状態が維持される。 FIG. 7D shows a state where the rotor 60 is further rotated in the clockwise direction. In this state, the drive pin 96b contacts the other end of the escape hole 16, and the rotation of the rotor 60 is stopped. In this state, the opening OP is fully closed. In addition, after a predetermined period of time has elapsed in this state, energization to the coil 85 is stopped, and the rotor 60 is maintained at this position by detent torque.
 尚、羽根20が開口OPから退避する際には、図7Dに示した状態から、磁極部72a、72bがそれぞれN極、S極に励磁されることにより、ロータ60が反時計方向に回転する。これにより、羽根20は開口OPから退避する。 When the blade 20 is retracted from the opening OP, the rotor 60 rotates counterclockwise by exciting the magnetic pole portions 72a and 72b to the N pole and the S pole, respectively, from the state shown in FIG. 7D. . As a result, the blade 20 is retracted from the opening OP.
 図8は、実施例1の電磁アクチュエータAのロータ60の回転角度に応じたトルクの変動を示したグラフである。図8は、横軸はロータの回転角度、縦軸はトルクを示している。また、横軸の中心を回転角度90°としており、90°におけるロータ60の位置は図7Aに示したロータ60の位置に対応する。 FIG. 8 is a graph showing a variation in torque according to the rotation angle of the rotor 60 of the electromagnetic actuator A of the first embodiment. In FIG. 8, the horizontal axis represents the rotation angle of the rotor, and the vertical axis represents the torque. The center of the horizontal axis is a rotation angle of 90 °, and the position of the rotor 60 at 90 ° corresponds to the position of the rotor 60 shown in FIG. 7A.
 トルクT1は、ステータ70が励磁された際にロータ60が第1方向に回転する場合でのトルクを示している。ここで、ロータ60が第1方向に回転する場合には、羽根20は開口OPに向かって進行する。ロータ60が第1方向に回転するとは、図7A~7Dに示したロータ60が時計方向に回転することを意味する。トルクT2は、ステータ70が励磁された際にロータ60が第2方向に回転する場合でのトルクを示している。ここで、ロータ60が第2方向に回転する場合には、羽根20は開口OPから退避する。ロータ60が第2方向に回転するとは、図7A~7Dに示したロータ60が反時計方向に回転することを意味する。尚、ロータ60が反時計方向に回転する際には、ロータ60は図7Dに示した位置から回転する。 Torque T1 indicates the torque when the rotor 60 rotates in the first direction when the stator 70 is excited. Here, when the rotor 60 rotates in the first direction, the blade 20 advances toward the opening OP. The rotation of the rotor 60 in the first direction means that the rotor 60 shown in FIGS. 7A to 7D rotates in the clockwise direction. Torque T2 indicates the torque when the rotor 60 rotates in the second direction when the stator 70 is excited. Here, when the rotor 60 rotates in the second direction, the blade 20 retracts from the opening OP. The fact that the rotor 60 rotates in the second direction means that the rotor 60 shown in FIGS. 7A to 7D rotates counterclockwise. When the rotor 60 rotates counterclockwise, the rotor 60 rotates from the position shown in FIG. 7D.
 作動角度範囲DRは、実際のロータ60の回転範囲である。ロータ60の回転範囲は、上述したように逃げ孔16内に駆動ピン96bが当接することにより規制されている。従って、図8に示したトルクT1、T2は、このような規制が無かった場合でのロータ60の全回転角度範囲でのトルクを示している。即ち、トルクT1、T2は、ロータ60が回転範囲を制限されていなかった場合において、ステータ70が励磁されることによって回転し得るロータ60の全回転角度範囲でのトルクである。ディテントトルクDTは、コイル85への通電が遮断された状態でロータ60を回転させるのに必要なトルクを示している。図8では、ディテントトルクDTがゼロとなる地点を90°として設定している。作動角度範囲DRは、トルクT1の最大値Mの地点を含んでいる。また、作動角度範囲DRの中心位置PCは、第1端P1と90°との間に位置している。 The operating angle range DR is an actual rotation range of the rotor 60. The rotation range of the rotor 60 is regulated by the drive pin 96b coming into contact with the escape hole 16 as described above. Therefore, the torques T1 and T2 shown in FIG. 8 indicate torques in the entire rotation angle range of the rotor 60 when there is no such restriction. That is, the torques T1 and T2 are torques in the entire rotation angle range of the rotor 60 that can be rotated by exciting the stator 70 when the rotation range of the rotor 60 is not limited. The detent torque DT indicates a torque necessary for rotating the rotor 60 in a state where the energization to the coil 85 is interrupted. In FIG. 8, the point where the detent torque DT becomes zero is set as 90 °. The operating angle range DR includes a point of the maximum value M of the torque T1. Further, the center position PC of the operating angle range DR is located between the first end P1 and 90 °.
 作動角度範囲DRの第1端P1は、135°付近に設定され、作動角度範囲DRの第2端P2は90°付近に設定されている。従って、作動角度範囲DRは45°程度に設定されている。ロータ60が第1方向に回転する場合には、ロータ60は第2端P2から第1端P1に向けて回転する。ロータ60が第2方向に回転する場合には、ロータ60が第1端P1から第2端P2に向けて回転する。第1端P1でのディテントトルクDTの絶対値は、第2端P2でのディテントトルクDTの絶対値よりも大きい。 The first end P1 of the operating angle range DR is set around 135 °, and the second end P2 of the operating angle range DR is set around 90 °. Therefore, the operating angle range DR is set to about 45 °. When the rotor 60 rotates in the first direction, the rotor 60 rotates from the second end P2 toward the first end P1. When the rotor 60 rotates in the second direction, the rotor 60 rotates from the first end P1 toward the second end P2. The absolute value of the detent torque DT at the first end P1 is larger than the absolute value of the detent torque DT at the second end P2.
 上述したように、羽根駆動装置1は付勢部材40a、40bを備えている。付勢部材40a、40bは、作動角度範囲DRの途中位置から第1端P1までの間、アーム30a、30bを付勢している。付勢部材40a、40bは、ロータ60が第2方向に回転するようにアーム30a、30bを付勢している。即ち、付勢部材40a、40bは、ロータ60が第2方向に回転するように間接的にロータ60を付勢している。バネトルクSTは、付勢部材40a、40bがロータ60に与えるトルクを示している。バネトルクSTは、ロータ60が第1端P1に近づくほど増大する。トルクFT1は、バネトルクSTが作用した場合でのロータ60が第1方向に回転する際のトルクである。即ち、トルクFT1は、ロータ60が第1方向に回転する際の実際のトルクである。トルクFT1は、作動角度範囲DRの途中位置から第1端P1までの区間で、トルクT1よりも低下している。これは、付勢部材40a、40bのバネトルクSTがトルクT1に対してマイナスとして作用するからである。 As described above, the blade driving device 1 includes the urging members 40a and 40b. The urging members 40a and 40b urge the arms 30a and 30b from the midway position of the operating angle range DR to the first end P1. The urging members 40a and 40b urge the arms 30a and 30b so that the rotor 60 rotates in the second direction. That is, the urging members 40a and 40b indirectly urge the rotor 60 so that the rotor 60 rotates in the second direction. The spring torque ST indicates the torque applied to the rotor 60 by the urging members 40a and 40b. The spring torque ST increases as the rotor 60 approaches the first end P1. The torque FT1 is a torque when the rotor 60 rotates in the first direction when the spring torque ST is applied. That is, the torque FT1 is an actual torque when the rotor 60 rotates in the first direction. The torque FT1 is lower than the torque T1 in the section from the midway position of the operating angle range DR to the first end P1. This is because the spring torque ST of the urging members 40a and 40b acts as a minus with respect to the torque T1.
 トルクFT2は、バネトルクSTが作用した場合でのロータ60が第2方向に回転する際のトルクである。即ち、トルクFT2は、ロータ60が第2方向に回転する際の実際のトルクである。図8に示すように、トルクFT2は、第1端P1から作動角度範囲DRの途中位置までの区間で、トルクT2よりも第2方向でのトルクが増大している。これは、付勢部材40a、40bのバネトルクSTがトルクT2に対してプラスとして作用するからである。尚、ディテントトルクFDTは、バネトルクSTが作用する場合でのディテントトルクを示している。即ち、ディテントトルクFDTは、ロータ60の実際のディテントトルクである。 The torque FT2 is a torque when the rotor 60 rotates in the second direction when the spring torque ST is applied. That is, the torque FT2 is an actual torque when the rotor 60 rotates in the second direction. As shown in FIG. 8, the torque FT2 is a section from the first end P1 to the midway position of the operating angle range DR, and the torque in the second direction is greater than the torque T2. This is because the spring torque ST of the urging members 40a and 40b acts as a plus with respect to the torque T2. The detent torque FDT indicates the detent torque when the spring torque ST is applied. That is, the detent torque FDT is an actual detent torque of the rotor 60.
 図9は、従来の電磁アクチュエータでのロータの回転角度に応じたトルクの変動を示したグラフである。従来の電磁アクチュエータのロータの作動角度範囲DRxは、ディテントトルクDTがゼロとなる地点の90°が概ね中心となるように設定されている。その理由は、ロータ60が第2端P2xから第1方向に回転し始める際のトルクT12x、或いは、第1端P1xから第2方向に回転し始める際のトルクT21xが弱すぎて、羽根20が進退移動出来なくならないように、トルクT12xとトルクT21xをほぼ等しくするためである。このように作動角度範囲DRxを設定した場合、作動角度範囲DRxには、トルクT1の最大値Mの地点は含まれず、又、ロータ60が第1方向に回転を開始する際のトルク、即ち第2端P2xでのロータ60のトルクT12xは、小さいものとなる。このため、羽根20が開口OPに進行するスピードが低下し、シャッタスピードが低下するおそれがある。 FIG. 9 is a graph showing the variation of torque according to the rotation angle of the rotor in the conventional electromagnetic actuator. The operating angle range DRx of the rotor of the conventional electromagnetic actuator is set so that 90 ° of the point where the detent torque DT becomes zero is approximately the center. The reason is that the torque T12x when the rotor 60 starts to rotate in the first direction from the second end P2x or the torque T21x when it starts to rotate in the second direction from the first end P1x is too weak, and the blade 20 This is to make the torque T12x and the torque T21x substantially equal so that the forward / backward movement cannot be performed. When the operating angle range DRx is set in this way, the operating angle range DRx does not include the point of the maximum value M of the torque T1, and the torque when the rotor 60 starts to rotate in the first direction, that is, the first The torque T12x of the rotor 60 at the two ends P2x is small. For this reason, the speed at which the blades 20 advance to the opening OP decreases, and the shutter speed may decrease.
 これに対し、本実施例の羽根駆動装置1では、作動角度範囲DRは、トルクT1の最大値Mの地点を含んでいる。また、作動角度範囲DRの中心位置PCは、第1端P1と90°との間に位置している。これにより、第2端P2でのトルクT12は、第2端P2xのトルクT12xよりも大きくなる。これにより、ロータ60が第1方向に回転を開始した当初から強いトルクでロータ60が回転する。このため羽根20が開口OPに進行するスピードも向上する。このように簡易な構造でシャッタスピードが向上している。 On the other hand, in the blade drive device 1 of the present embodiment, the operating angle range DR includes a point of the maximum value M of the torque T1. Further, the center position PC of the operating angle range DR is located between the first end P1 and 90 °. Thereby, the torque T12 at the second end P2 becomes larger than the torque T12x at the second end P2x. Thereby, the rotor 60 rotates with a strong torque from the beginning when the rotor 60 starts rotating in the first direction. For this reason, the speed at which the blade 20 advances to the opening OP is also improved. Thus, the shutter speed is improved with a simple structure.
 しかしながら、作動角度範囲DRをこのような範囲に設定した場合には、ロータ60が第2方向に回転を開始する際のトルク、即ち第1端P1でのトルクT21の値は、第1端P1xのトルクT21xの値よりも低下する。このため、ロータ60が第2端P2から第2方向に回転し始める際のトルクが弱すぎて、羽根20を確実に開口OPから退避できないおそれがある。 However, when the operating angle range DR is set to such a range, the torque when the rotor 60 starts to rotate in the second direction, that is, the value of the torque T21 at the first end P1 is the first end P1x. Lower than the value of the torque T21x. For this reason, there is a possibility that the torque when the rotor 60 starts to rotate in the second direction from the second end P2 is too weak and the blades 20 cannot be reliably retracted from the opening OP.
 そこで、実施例1の羽根駆動装置1では、羽根20を開口OPに対して退避するようにアーム30a、30bをそれぞれ付勢する付勢部材40a、40bを設けることにより、羽根20の開口OPからの退避を確保している。 Therefore, in the blade driving device 1 according to the first embodiment, by providing the urging members 40a and 40b for urging the arms 30a and 30b so as to retract the blade 20 with respect to the opening OP, respectively, Evacuation is secured.
 ここで、従来の羽根駆動装置においては、シャッタスピードを向上させるために、羽根が開口に進行する方向に付勢する付勢部材を備えたものがある。このような付勢部材を設けると、付勢部材の付勢力に抗して羽根を退避位置に維持させる必要がある。例えば、アクチュエータへ通電がされていない場合のロータのディテントトルクにより羽根を退避位置に維持させる場合には、ロータのディテントトルクが大きいアクチュエータを用いる必要がある。このようなアクチュエータは大型である。また、ストッパや別の機構を用いて羽根を退避位置に維持させる場合には、羽根駆動装置の構造が複雑化し、場合によっては製造コストも増大する。 Here, some conventional blade driving devices include an urging member that urges the blade in the direction in which the blade proceeds to the opening in order to improve the shutter speed. When such an urging member is provided, it is necessary to keep the blade in the retracted position against the urging force of the urging member. For example, when the blade is maintained at the retracted position by the rotor detent torque when the actuator is not energized, it is necessary to use an actuator having a large rotor detent torque. Such an actuator is large. Further, when the blade is maintained at the retracted position using a stopper or another mechanism, the structure of the blade driving device becomes complicated, and the manufacturing cost may increase depending on the case.
 しかしながら本実施例では、付勢部材40a、40bは、羽根20が開口OPから退避するようにアーム30a、30bを付勢している。また、羽根20が退避位置にある場合には、付勢部材40a、40bの付勢力は羽根20には作用しない。このため、羽根20が退避位置にある場合でのロータ60のディテントトルクが弱くても、羽根20を退避位置に維持させることができる。 However, in this embodiment, the urging members 40a and 40b urge the arms 30a and 30b so that the blades 20 are retracted from the opening OP. Further, when the blade 20 is in the retracted position, the urging force of the urging members 40 a and 40 b does not act on the blade 20. For this reason, even if the detent torque of the rotor 60 when the blade 20 is in the retracted position is weak, the blade 20 can be maintained in the retracted position.
 また、付勢部材40a、40bは、作動角度範囲DRの全範囲にわたって付勢しているわけではない。このためロータ60が第2端P2から第1方向に回転し始める際のトルクには影響を与えない。従って、シャッタスピードの低下は抑制されている。 Further, the biasing members 40a and 40b are not biased over the entire operating angle range DR. For this reason, the torque when the rotor 60 starts to rotate in the first direction from the second end P2 is not affected. Therefore, a decrease in shutter speed is suppressed.
 また、付勢部材40a、40bは、羽根20が開口OPを閉じる際に羽根20が開口OPを開くように付勢している。このため、付勢部材40a、40bの付勢力によって、羽根20が開口OPを完全に閉じる直前で羽根20の走行速度は減速されることになる。従って、付勢部材40a、40bは、減速部材を兼ねている。これにより、駆動ピン96bなどが逃げ孔16に当接してバウンドすることが防止される。これにより、再露光が防止される。 Further, the urging members 40a and 40b urge the blades 20 to open the openings OP when the blades 20 close the openings OP. For this reason, the traveling speed of the blade 20 is reduced immediately before the blade 20 completely closes the opening OP by the biasing force of the biasing members 40a and 40b. Therefore, the urging members 40a and 40b also serve as a speed reduction member. This prevents the drive pin 96b or the like from bouncing against the escape hole 16 in a bouncing manner. Thereby, re-exposure is prevented.
 付勢部材40a、40bは、少なくとも付勢部材40a、40bが設けられていなかった場合にロータ60が第1端P1から第2方向に回転しない区間で羽根20が第2方向に回転するようにアーム30a、30bを付勢している。図8によれは、付勢部材40a、40bのバネトルクSTが作用する区間でのトルクT2は、マイナスの値を示している。このため、ロータ60の回転に対して抵抗が一切働かないのであれば、ロータ60は第2方向に回転できる。しかしながら、上述したように、ロータ60には駆動部材90aが固定されており、駆動部材90aは複数の部材を介して羽根20に連結されているために、摩擦等による機械的負荷が少なからずある。このため、第2端P2においてトルクT2がマイナスの値を示していたとしても、上記機械的負荷に打ち勝つことが出来ず、ロータ60が第2方向に回転しないおそれがある。このような区間で付勢部材40a、40bは、羽根20が開口OPから退避することを補助している。 The urging members 40a and 40b are arranged so that the blade 20 rotates in the second direction in a section where the rotor 60 does not rotate in the second direction from the first end P1 when at least the urging members 40a and 40b are not provided. The arms 30a and 30b are biased. According to FIG. 8, the torque T2 in the section where the spring torque ST of the urging members 40a and 40b acts shows a negative value. For this reason, if no resistance acts on the rotation of the rotor 60, the rotor 60 can rotate in the second direction. However, as described above, the driving member 90a is fixed to the rotor 60, and the driving member 90a is connected to the blades 20 via a plurality of members, so that there are not a few mechanical loads due to friction or the like. . For this reason, even if the torque T2 shows a negative value at the second end P2, the mechanical load cannot be overcome and the rotor 60 may not rotate in the second direction. In such a section, the urging members 40a and 40b assist the blade 20 to retreat from the opening OP.
 図10は、作動角度範囲の変更例を示している。作動角度範囲DR´は、第1端P1´が122.5°程度であり、第2端P2´が80°程度に設定されている。作動角度範囲DR´は、トルクT1の最大値Mの地点を含んでいる。また、作動角度範囲DR´の中心位置PC´は、第1端P1´と90°との間に位置している。このような作動角度範囲DR´であっても、シャッタスピードが向上する。尚、図10においては、バネトルクSTは省略してある。 FIG. 10 shows an example of changing the operating angle range. The operating angle range DR ′ is set such that the first end P1 ′ is about 122.5 ° and the second end P2 ′ is about 80 °. The operating angle range DR ′ includes a point of the maximum value M of the torque T1. Further, the center position PC ′ of the operating angle range DR ′ is located between the first end P1 ′ and 90 °. Even in such an operating angle range DR ′, the shutter speed is improved. In FIG. 10, the spring torque ST is omitted.
 付勢部材40a、40bは、一方のみ設けられていてもよい。また、このような付勢部材は、ロータ60に回転により連動する部材の何れかを付勢してもよい。例えば、ロータ60に連動する羽根20、駆動部材90a、90bの少なくとも一つを付勢するものであればよい。これにより、付勢部材はロータ60を第2方向に間接的に付勢することになるからである。また、付勢部材はロータ60を直接第2方向に付勢させてもよい。 Only one of the urging members 40a and 40b may be provided. Further, such an urging member may urge any member that interlocks with the rotor 60 by rotation. For example, what is necessary is just to energize at least 1 of the blade | wing 20 linked with the rotor 60, and drive member 90a, 90b. This is because the biasing member indirectly biases the rotor 60 in the second direction. Further, the biasing member may bias the rotor 60 directly in the second direction.
 図11は、実施例2の羽根駆動装置1aの説明図である。尚、実施例1と類似の構成については類似の符号を付することによりその説明を省略してある。付勢部材40a´、40b´のそれぞれの一端部41a、41bは、それぞれ常にピン14a、14bに当接している。即ち、羽根20が退避位置にある場合においても、付勢部材40a´、40b´は、羽根20が開口OPから退避するようにアーム30a、30bを付勢している。尚、実施例2の羽根駆動装置1aに採用されている電磁アクチュエータは、実施例1の羽根駆動装置1で採用されている電磁アクチュエータと同じである。 FIG. 11 is an explanatory diagram of the blade driving device 1a according to the second embodiment. In addition, about the structure similar to Example 1, the description is abbreviate | omitted by attaching | subjecting the same code | symbol. The one end portions 41a and 41b of the urging members 40a 'and 40b' are always in contact with the pins 14a and 14b, respectively. That is, even when the blade 20 is in the retracted position, the biasing members 40a ′ and 40b ′ bias the arms 30a and 30b so that the blade 20 retracts from the opening OP. The electromagnetic actuator employed in the blade driving device 1a according to the second embodiment is the same as the electromagnetic actuator employed in the blade driving device 1 according to the first embodiment.
 図12は、実施例2の電磁アクチュエータでのロータ60の回転角度に応じたトルクの変動を示したグラフである。図12は、図8に対応している。付勢部材40a´、40b´は、作動角度範囲DRの全範囲でアーム30a、30bを付勢している。バネトルクSTaは、付勢部材40a´、40b´がロータ60に与えるトルクを示している。バネトルクSTaは、ロータ60が第1端P1に近づくほど増大する。トルクFT1aは、バネトルクSTaが作用した場合でのロータ60が第1方向に回転する際のトルクである。トルクFT2aは、バネトルクSTaが作用した場合でのロータ60が第2方向に回転する際のトルクである。 FIG. 12 is a graph showing torque fluctuations according to the rotation angle of the rotor 60 in the electromagnetic actuator of the second embodiment. FIG. 12 corresponds to FIG. The urging members 40a ′ and 40b ′ urge the arms 30a and 30b over the entire operating angle range DR. The spring torque STa indicates the torque applied to the rotor 60 by the biasing members 40a ′ and 40b ′. The spring torque STa increases as the rotor 60 approaches the first end P1. The torque FT1a is a torque when the rotor 60 rotates in the first direction when the spring torque STa is applied. The torque FT2a is a torque when the rotor 60 rotates in the second direction when the spring torque STa is applied.
 第2端P2においてもロータ60にはバネトルクSTは作用しているが、第2端P2でのバネトルクSTの値は比較的小さい。このため羽根20が開口OPに進行するスピードも維持され、簡易な構造でシャッタスピードが向上している。 Even at the second end P2, the spring torque ST acts on the rotor 60, but the value of the spring torque ST at the second end P2 is relatively small. Therefore, the speed at which the blade 20 advances to the opening OP is also maintained, and the shutter speed is improved with a simple structure.
 また、ロータ60が第2端P2に位置する場合においても、付勢部材40a´、40b´は羽根20が開口OPから退避する方向に付勢している。このため、コイル85が無通電の状態でも羽根20を退避位置に安定して維持させることができる。 Further, even when the rotor 60 is positioned at the second end P2, the urging members 40a ′ and 40b ′ are urged in the direction in which the blades 20 are retracted from the opening OP. Therefore, even when the coil 85 is not energized, the blade 20 can be stably maintained at the retracted position.
 図13~15は、全開状態から全閉状態に移行する際の実施例3の羽根駆動装置1Aの説明図である。尚、実施例1と類似の構成については類似の符号を付することによりその説明を省略してある。図13は、全開状態を示しており、図14は、全開状態と全閉状態との間の状態を示しており、図15は、全閉状態を示している。尚、図13~15においては、基板10Aの形状については省略してある。電磁アクチュエータAAのロータ60の回転範囲は、図8に示した回転範囲と同じである。 FIGS. 13 to 15 are explanatory views of the blade driving device 1A of the third embodiment when shifting from the fully open state to the fully closed state. In addition, about the structure similar to Example 1, the description is abbreviate | omitted by attaching | subjecting the same code | symbol. FIG. 13 shows a fully open state, FIG. 14 shows a state between the fully open state and the fully closed state, and FIG. 15 shows a fully closed state. In FIGS. 13 to 15, the shape of the substrate 10A is omitted. The rotation range of the rotor 60 of the electromagnetic actuator AA is the same as the rotation range shown in FIG.
 図13に示すように、基板10Aの第1面11A側には付勢部材40Aが固定されている。付勢部材40Aは、第1面11A側に形成されたピン14Aに巻回されている。即ち、ピン14Aは、基板10Aに固定されている。付勢部材40Aは、ロータ60に向けて延びた一端部41Aを有している。一端部41Aは、基板10Aとステータ70との間に延在している。駆動部材90Aには、突起98aが設けられている。図13に示した状態では、駆動部材90Aの突起98aは、付勢部材40Aの一端部41Aに当接していない。 As shown in FIG. 13, a biasing member 40A is fixed to the first surface 11A side of the substrate 10A. The urging member 40A is wound around a pin 14A formed on the first surface 11A side. That is, the pin 14A is fixed to the substrate 10A. The urging member 40 </ b> A has one end 41 </ b> A that extends toward the rotor 60. The one end 41A extends between the substrate 10A and the stator 70. The drive member 90A is provided with a protrusion 98a. In the state shown in FIG. 13, the protrusion 98a of the drive member 90A is not in contact with the one end 41A of the urging member 40A.
 図14に示すように、ロータ60が回転すると駆動部材90Aが回転して突起98aが付勢部材40Aの一端部41Aに当接する。更にロータ60が回転すると、突起98aが付勢部材40Aの一端部41Aを押して付勢部材40Aを変形させる。これにより、ロータ60には、駆動部材90Aを介して第2方向への付勢力が作用する。このような付勢部材40Aを採用することによっても、簡易な構造でシャッタスピードを向上させることができる。また、羽根20の開口OPからの退避を確保している。 As shown in FIG. 14, when the rotor 60 rotates, the drive member 90A rotates and the protrusion 98a contacts the one end 41A of the biasing member 40A. When the rotor 60 further rotates, the protrusion 98a pushes the one end 41A of the urging member 40A to deform the urging member 40A. Thereby, a biasing force in the second direction acts on the rotor 60 via the drive member 90A. By adopting such an urging member 40A, the shutter speed can be improved with a simple structure. Further, retraction from the opening OP of the blade 20 is ensured.
 このような付勢部材40Aの一端部41Aに当接し得る突起を、駆動部材90b側に設けてもよいし、ロータ60に直接設けてもよい。また、このような突起はロータ60と一体成形してもよい。また、付勢部材40Aをロータ60に固定してロータ60と共に回転するようにし、この付勢部材40Aに当接し得る突起を基板10Aに設けてもよい。 Such a protrusion that can come into contact with the one end 41A of the urging member 40A may be provided on the drive member 90b side, or may be provided directly on the rotor 60. Further, such a protrusion may be integrally formed with the rotor 60. Further, the urging member 40A may be fixed to the rotor 60 so as to rotate together with the rotor 60, and a protrusion that can contact the urging member 40A may be provided on the substrate 10A.
 図16~17Bは、実施例4の羽根駆動装置1Bの説明図である。尚、実施例1と類似の構成については類似の符号を付することによりその説明を省略してある。図16は、全開状態を示しており、図17Aは、全開状態と全閉状態との間の状態を示しており、図17Bは、全閉状態を示している。 16 to 17B are explanatory diagrams of the blade driving device 1B of the fourth embodiment. In addition, about the structure similar to Example 1, the description is abbreviate | omitted by attaching | subjecting the same code | symbol. FIG. 16 shows a fully opened state, FIG. 17A shows a state between the fully opened state and the fully closed state, and FIG. 17B shows a fully closed state.
 基板10Bは、略円形状である。基板10Bは、略円形の開口OPBを有している。ロータ60Bの下端部には駆動部材90Bが固定されている。ロータ60Bと共に駆動部材90Bが回転することにより、羽根20Bが揺動して開口OPBを開閉する。基板10Bには、電磁アクチュエータABのステータ70Bと当接してステータ70Bを位置決めするピン14Bが形成されている。電磁アクチュエータABのロータ60Bの上端部には、付勢部材40Bが巻回されてロータ60Bに固定されている。付勢部材40Bは、付勢部材40Bの径方向外側に延びた一端部41B、一端部41Bよりも短い他端部42Bを有している。 The substrate 10B has a substantially circular shape. The substrate 10B has a substantially circular opening OPB. A drive member 90B is fixed to the lower end of the rotor 60B. When the driving member 90B rotates together with the rotor 60B, the blade 20B swings to open and close the opening OPB. The board 10B is formed with pins 14B that contact the stator 70B of the electromagnetic actuator AB and position the stator 70B. A biasing member 40B is wound around the upper end of the rotor 60B of the electromagnetic actuator AB and fixed to the rotor 60B. The urging member 40B has one end portion 41B extending outward in the radial direction of the urging member 40B and the other end portion 42B shorter than the one end portion 41B.
 また、実施例4は実施例1~3と異なり、図16~17Bに示したロータ60Bが時計方向に回転することが第2方向に回転することを意味し、ロータ60Bが反時計方向に回転することが第1方向に回転することを意味する。 In the fourth embodiment, unlike the first to third embodiments, rotating the rotor 60B shown in FIGS. 16 to 17B in the clockwise direction means rotating in the second direction, and the rotor 60B rotates in the counterclockwise direction. It means to rotate in the first direction.
 図16に示した状態からロータ60Bが反時計方向に回転し始めると、図17Aに示すように付勢部材40Bの一端部41Bがピン14Bに当接する。更に、ロータ60Bが反時計方向に回転すると、図17Bに示すように一端部41Bと他端部42Bとの間の角度が小さくなるようにして付勢部材40Bが変形して付勢力が増大する。これにより、付勢部材40Bは、羽根20Bが開口OPBを開くように羽根20Bを間接的に付勢する。このような構成によっても、簡易な構造でシャッタスピードを向上させることができる。また、羽根20Bの開口OPBからの退避を確保している。 When the rotor 60B starts to rotate counterclockwise from the state shown in FIG. 16, the one end 41B of the urging member 40B comes into contact with the pin 14B as shown in FIG. 17A. Further, when the rotor 60B rotates counterclockwise, the biasing member 40B is deformed so that the angle between the one end 41B and the other end 42B is reduced as shown in FIG. . Thereby, the urging member 40B indirectly urges the blade 20B so that the blade 20B opens the opening OPB. Even with such a configuration, the shutter speed can be improved with a simple structure. Further, retraction from the opening OPB of the blade 20B is ensured.
 付勢部材40Bを駆動部材90Bに固定して、駆動部材90Bと共に回転するようにしてもよい。また、付勢部材40Bを基板10Bに固定して、駆動部材90Bが付勢部材40Bに当接するようにしてもよい。 The urging member 40B may be fixed to the driving member 90B and rotated together with the driving member 90B. Further, the urging member 40B may be fixed to the substrate 10B, and the driving member 90B may abut against the urging member 40B.
 以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and modifications and changes can be made within the scope of the gist of the present invention described in the claims. Is possible.

Claims (8)

  1.  付勢部材と、
     開口を有した基板と、
     前記開口に対して進退自在な羽根と、
     ステータ、前記ステータが励磁されることにより回転すると共に前記羽根を駆動するロータ、を含むアクチュエータと、を備え、
     前記ロータが第1方向に回転する場合は、前記羽根が前記開口に進行し、
     前記ロータが第2方向に回転する場合は、前記羽根が前記開口から退避し、
     前記ロータの回転角度範囲は、前記ステータが励磁されることによって回転し得る前記ロータの全回転角度範囲よりも小さい作動角度範囲に制限されており、
     前記ロータが前記作動角度範囲の第1端に位置している場合には、前記羽根は前記開口に重なり、
     前記ロータが前記作動角度範囲の第2端に位置している場合には、前記羽根は前記開口から退避しており、
     前記作動角度範囲は、前記ロータの回転角度範囲が制限されていない場合に前記ロータが前記第1方向に回転する場合での前記全回転角度範囲中での前記ロータのトルクの最大値となる位置を含んでおり、
     前記付勢部材は、少なくとも前記作動角度範囲の途中位置から前記第1端までの区間で前記ロータを前記第2方向に直接又は間接的に付勢する、羽根駆動装置。
    A biasing member;
    A substrate having an opening;
    Blades that can be moved forward and backward with respect to the opening;
    An actuator including a stator and a rotor that rotates when the stator is excited and drives the blades;
    When the rotor rotates in the first direction, the blades advance to the opening,
    When the rotor rotates in the second direction, the blades retract from the opening,
    The rotation angle range of the rotor is limited to an operating angle range that is smaller than the entire rotation angle range of the rotor that can rotate when the stator is excited,
    When the rotor is located at the first end of the operating angle range, the blades overlap the opening;
    When the rotor is located at the second end of the operating angle range, the blade is retracted from the opening;
    The operating angle range is a position that is the maximum value of the torque of the rotor in the entire rotation angle range when the rotor rotates in the first direction when the rotation angle range of the rotor is not limited. Contains
    The urging member is a blade driving device that urges the rotor directly or indirectly in the second direction at least in a section from the middle position of the operating angle range to the first end.
  2.  前記ロータが前記第2端に位置するときより、前記ロータが前記第1端に位置するときの方が、前記ロータのディテントトルクが大きい、請求項1の羽根駆動装置。 The blade drive device according to claim 1, wherein the rotor has a larger detent torque when the rotor is positioned at the first end than when the rotor is positioned at the second end.
  3.  前記付勢部材は、前記第1端から前記第2端までの区間で前記ロータを前記第2方向に直接又は間接的に付勢する、請求項1又は2の羽根駆動装置。 The blade driving device according to claim 1 or 2, wherein the biasing member biases the rotor directly or indirectly in the second direction in a section from the first end to the second end.
  4.  前記付勢部材の付勢力は、前記ロータが前記第1端に接近するにつれて増大する、請求項1又は2の羽根駆動装置。 The blade driving device according to claim 1 or 2, wherein the urging force of the urging member increases as the rotor approaches the first end.
  5.  前記付勢部材は、前記付勢部材が設けられていない場合に前記ロータが前記第1端から前記第2方向に回転しない区間で前記ロータを前記第2方向に直接又は間接的に付勢する、請求項1又は2の羽根駆動装置。 The biasing member biases the rotor directly or indirectly in the second direction in a section where the rotor does not rotate in the second direction from the first end when the biasing member is not provided. The blade driving device according to claim 1 or 2.
  6.  前記付勢部材は、前記羽根が前記開口を完全に閉じる直前で、前記羽根の走行速度を減速する減速部材を兼ねる、請求項1又は2の羽根駆動装置。 The blade driving device according to claim 1 or 2, wherein the biasing member also serves as a speed reducing member that reduces the traveling speed of the blade immediately before the blade completely closes the opening.
  7.  前記付勢部材は、トーションバネである、請求項1又は2の羽根駆動装置。 The blade driving device according to claim 1 or 2, wherein the biasing member is a torsion spring.
  8.  請求項1又は2の羽根駆動装置を備えた光学機器。 An optical apparatus comprising the blade driving device according to claim 1.
PCT/JP2011/077144 2011-03-08 2011-11-25 Blade drive device and optical device WO2012120735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-050821 2011-03-08
JP2011050821A JP2012189641A (en) 2011-03-08 2011-03-08 Blade driving device and optical instrument

Publications (1)

Publication Number Publication Date
WO2012120735A1 true WO2012120735A1 (en) 2012-09-13

Family

ID=46797716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077144 WO2012120735A1 (en) 2011-03-08 2011-11-25 Blade drive device and optical device

Country Status (2)

Country Link
JP (1) JP2012189641A (en)
WO (1) WO2012120735A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045794A1 (en) * 2012-09-24 2014-03-27 セイコープレシジョン株式会社 Blade drive device and optical instrument
JP2014067001A (en) * 2013-05-27 2014-04-17 Seiko Precision Inc Blade driving device and optical device
WO2022014211A1 (en) * 2020-07-13 2022-01-20 ソニーグループ株式会社 Blade opening/closing device and imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174867A (en) * 1999-12-20 2001-06-29 Nidec Copal Corp Shutter for camera
JP2002116478A (en) * 2000-10-11 2002-04-19 Nidec Copal Corp Electromagnetic actuator and camera shutter device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174867A (en) * 1999-12-20 2001-06-29 Nidec Copal Corp Shutter for camera
JP2002116478A (en) * 2000-10-11 2002-04-19 Nidec Copal Corp Electromagnetic actuator and camera shutter device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045794A1 (en) * 2012-09-24 2014-03-27 セイコープレシジョン株式会社 Blade drive device and optical instrument
US9429815B2 (en) 2012-09-24 2016-08-30 Seiko Precision Inc. Blade drive device and optical instrument
JP2014067001A (en) * 2013-05-27 2014-04-17 Seiko Precision Inc Blade driving device and optical device
WO2022014211A1 (en) * 2020-07-13 2022-01-20 ソニーグループ株式会社 Blade opening/closing device and imaging device

Also Published As

Publication number Publication date
JP2012189641A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
KR101302925B1 (en) Focal-plane shutter and optical equipment
CN102667609B (en) Focal plane shutter and optical apparatus
JP2009122206A (en) Focal plane shutter
WO2012120735A1 (en) Blade drive device and optical device
US8419298B2 (en) Drive mechanism, blade drive mechanism and optical device
US9304374B2 (en) Focal-plane shutter, optical device, and method for adjusting current for focal-plane shutter
JP6059482B2 (en) Blade driving device and optical apparatus
JP6579330B2 (en) Blade driving device and optical apparatus
US20140376904A1 (en) Focal plane shutter and optical apparatus
JP2014059331A5 (en)
JP6623458B2 (en) Blade drive device and optical equipment
US9606421B2 (en) Focal-plane shutter and optical device
JP5991780B2 (en) Focal plane shutter, imaging device, and digital camera
US8602663B2 (en) Light amount adjustment device for image pickup apparatus
US9274401B2 (en) Focal-plane shutter and optical device
JP6063324B2 (en) Imaging device and focal plane shutter
US8553309B2 (en) Blade speed adjustable mechanism and focal plane shutter having the same
JP4614675B2 (en) Sector drive device and optical apparatus using the same
JP6051104B2 (en) Blade driving device and optical apparatus
WO2014045794A1 (en) Blade drive device and optical instrument
JP2018004806A (en) Blade drive device and optical equipment
JP2008111959A (en) Device for adjusting light quantity, and optical imaging equipment
JP2007004009A (en) Lens barrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860292

Country of ref document: EP

Kind code of ref document: A1