WO2012119404A1 - 终端能力的检测方法、装置、基站和终端 - Google Patents

终端能力的检测方法、装置、基站和终端 Download PDF

Info

Publication number
WO2012119404A1
WO2012119404A1 PCT/CN2011/078694 CN2011078694W WO2012119404A1 WO 2012119404 A1 WO2012119404 A1 WO 2012119404A1 CN 2011078694 W CN2011078694 W CN 2011078694W WO 2012119404 A1 WO2012119404 A1 WO 2012119404A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency offset
capability
uplink data
preset
Prior art date
Application number
PCT/CN2011/078694
Other languages
English (en)
French (fr)
Inventor
朱虹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/078694 priority Critical patent/WO2012119404A1/zh
Priority to CN201180001668.2A priority patent/CN102356584B/zh
Publication of WO2012119404A1 publication Critical patent/WO2012119404A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method, a device, a base station, and a terminal for detecting terminal capabilities. Background technique
  • GSM Global System of Mobile communication
  • DSP Digital Signal Processor
  • VAMOS Voice service over Adaptive Mul t i-user channel on One Slot
  • VAMOS is a technology that can accommodate two user calls simultaneously in a single time slot, which makes A half-rate channel can support four users to make calls, thereby doubling the user capacity.
  • VAM0S itself is frequency multiplexed, it is a great test for the demodulation performance of mobile phones.
  • SAIC Single Antenna Interference Cancellation
  • the embodiment of the invention provides a method, a device, a base station and a terminal for detecting a terminal capability, which can accurately detect the support capability of the terminal and avoid the phenomenon of dropped calls of the mobile phone.
  • an embodiment of the present invention provides a method for detecting a terminal capability, and a packet Includes:
  • the embodiment of the present invention provides a terminal capability detecting apparatus, including: a first sending module, configured to perform modulation processing on the interleaved data, and send the modulated data to a terminal, to trigger the terminal to generate an uplink.
  • a first sending module configured to perform modulation processing on the interleaved data, and send the modulated data to a terminal, to trigger the terminal to generate an uplink.
  • the detecting module is configured to perform frequency offset detection on the uplink data sent by the terminal, and detect the support capability of the terminal according to the frequency offset detection result.
  • Embodiments of the present invention provide a base station, including the foregoing terminal capability detecting apparatus.
  • the embodiment of the invention provides a terminal, including:
  • the receiving module is configured to receive the modulated data sent by the base station, and generate uplink data by triggering the modulated data, where the modulated data is performed by the base station to perform the encoded downlink data and the virtual pulse. Transmitting by bit, and performing modulation processing on the interleaved data; the second sending module is configured to send the uplink data to the base station, so that the base station performs frequency offset detection on the uplink data, according to frequency offset detection. As a result, the support capability of the terminal is detected.
  • a method, a device, a base station, and a terminal for detecting a terminal capability perform bit-by-bit interleaving processing on the encoded downlink data and a virtual pulse, and modulate the interleaved data, and send the data to the terminal, and then Performing frequency offset detection on the uplink data sent by the terminal to detect the support capability of the terminal.
  • This embodiment can accurately detect the support capability of the terminal, so that the support capability reported by the mobile phone is consistent with the actual performance, and does not affect the downlink demodulation performance. Avoid the phone dropped calls.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for detecting a terminal capability of the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for detecting a terminal capability of the present invention
  • Embodiment 3 is a signaling diagram of Embodiment 3 of a method for detecting a terminal capability of the present invention
  • Embodiment 4 is a structural diagram of Embodiment 1 of a device for detecting terminal capability according to the present invention.
  • FIG. 5 is a structural diagram of Embodiment 2 of a device for detecting terminal capability according to the present invention.
  • FIG. 6 is a structural diagram of an embodiment of a terminal of the present invention. detailed description
  • FIG. 1 is a flowchart of a method for detecting a terminal capability of the present invention. As shown in FIG. 1, the embodiment provides a method for detecting a terminal capability, which may specifically include the following steps:
  • Step 101 Perform bit-by-bit interleaving of the encoded downlink data and the virtual pulse.
  • the detection of the terminal is started, where the terminal may be specifically a mobile phone.
  • the SAIC mobile phone detects, that is, whether the mobile phone is sent by the SAIC base station to the terminal to be detected.
  • the downlink data is encoded according to a normal process, and the encoded downlink data is interleaved with the virtual pulse before the data is sent to the logic.
  • the virtual pulse here may be specifically a SAIC virtual pulse (Dummy Burs t ).
  • the encoded downlink data and the virtual pulse are bit-wise, wherein: the encoded downlink data is occupied by bits, and the virtual pulse is occupied by odd bits, and the format of the virtual pulse is as follows: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6
  • Step 102 Perform modulation processing on the interleaved data, and send the modulated data to the terminal, to trigger the terminal to generate uplink data.
  • the base station modulates the interleaved data.
  • the downlink data may be modulated by using an Alpha (Alpha) Phase Shift Keying (QPSK) modulation method, and the modulation processing is performed.
  • the subsequent data is sent to the terminal to trigger the terminal to generate uplink data.
  • the terminal sends the uplink data to the base station
  • the uplink data is affected by the downlink data after the modulation processing by the base station, and the trigger terminal may use the downlink data to be interleaved with the specific virtual pulse.
  • the uplink data that reflects the terminal's own problem is sent to the base station, and the base station can accurately detect the frequency offset of the terminal.
  • the uplink data sent by the terminal in the prior art may not truly reflect the problem of the terminal, and thus the frequency offset detection cannot be accurately implemented.
  • Step 103 Perform frequency offset detection on the uplink data sent by the terminal, and detect the support capability of the terminal according to the frequency offset detection result.
  • the base station After the base station completes the transmission of the downlink data to the terminal, in the uplink direction, the base station receives the uplink data sent by the terminal, performs frequency offset detection on the uplink data, and detects the support capability of the terminal according to the frequency offset detection result. That is, if the terminal generates a large frequency offset value after receiving the downlink data sent by the base station, the base station detects that the terminal is a SAIC problem terminal when the uplink data sent by the terminal detects that the frequency offset is severe, that is, the terminal does not support the terminal. SAIC. If the frequency offset is not generated, the base station detects that the frequency offset is light when the uplink data sent by the terminal is light, indicating that the terminal is a SAIC non-problem terminal, that is, the terminal supports SAIC.
  • the embodiment may specifically adopt automatic frequency control (Automatic Frequency
  • AFC Access Control
  • the step of performing frequency offset detection on the uplink data sent by the terminal in the foregoing embodiment, and detecting the support capability of the terminal according to the frequency offset detection result may specifically include the following steps: sending the terminal Performing frequency offset detection on the uplink data, and recording the frequency offset detection result; performing the above steps 101-103 repeatedly by using the preset detection times, and obtaining the support of the terminal according to the frequency offset detection result obtained in the preset detection times ability.
  • the obtaining the support capability of the terminal may include the following steps: when the first threshold of the preset detection is performed, determining that the terminal does not have the capability of supporting single antenna interference to cancel SAIC; When the frequency offset of the uplink data obtained within the preset detection times exceeds the preset frequency offset threshold is less than the preset second threshold, the terminal is determined to have the capability of supporting SAIC.
  • the second threshold may be specifically 1 and the first threshold may be equal to the second threshold or greater than the second threshold.
  • the embodiment provides a method for detecting a terminal capability.
  • the bit-interleaved data is modulated by performing bit-interleaving processing on the encoded downlink data and the virtual pulse, and is sent to the terminal, and then the uplink data sent by the terminal is performed.
  • the frequency offset detection is used to detect the support capability of the terminal.
  • This embodiment can accurately detect the support capability of the terminal, so that the support capability reported by the mobile phone is consistent with the actual performance, and does not affect the downlink demodulation performance, thereby avoiding the call drop phenomenon of the mobile phone.
  • 2 is a flowchart of a method for detecting a terminal capability of the present invention. As shown in FIG. 2, this embodiment provides a method for detecting a terminal capability, which may specifically include the following steps:
  • Step 201 After the terminal establishes a call, the base station performs bit-by-bit interleaving on the encoded downlink data and the virtual pulse.
  • the base station treats the downlink data sent to the terminal.
  • the downlink data may be specifically interleaved with the SAIC Dummy Burst, and the downlink data is occupied by bits, and the SAIC Dummy Burs t is occupied by the odd-numbered bits, that is, the downlink data occupies the I channel, and the SAIC Dummy Burs t occupies the Q channel.
  • the SAIC D in the above format is used to interleave my Burs t with the downlink data, and the accuracy of SAIC detection is higher in the subsequent SAIC detection process based on the uplink data sent by the terminal.
  • Step 202 The base station performs modulation processing on the interleaved data, and modulates the processed data.
  • the base station modulates the interleaved data, and specifically, the Alpha QPSK modulation method is used to modulate the downlink data, and the modulated data is sent to the terminal to trigger the terminal to generate the uplink data. .
  • Step 203 The base station uses the AFC algorithm to perform frequency offset detection on the uplink data sent by the terminal, and records the frequency offset detection result.
  • the base station After transmitting the modulated downlink data to the terminal, the base station decodes the downlink data and performs processing such as demodulation, and transmits the uplink data to the base station.
  • the base station performs frequency offset detection on the uplink data sent by the terminal, and specifically can use the AFC algorithm to detect the frequency offset, and record the frequency offset detection result.
  • the propagation between the base station and the mobile station is mostly a direct path or a strong reflection path, and the movement of the mobile station will cause the frequency of the received signal to be shifted, which is called Doppler frequency offset.
  • AFC technology is a base station frequency correction algorithm designed for the characteristics of fast moving.
  • the algorithm uses the uplink received signal to measure the upstream frequency deviation, and automatically corrects the frequency deviation between the two, so that the Doppler effect generated by the motion can be compensated efficiently.
  • the initial frequency offset in the SFC algorithm here is 0.
  • Step 204 The base station repeatedly performs the foregoing steps 201-203 with a preset number of detections.
  • the SAIC terminal detection process is repeatedly performed, that is, the steps are repeatedly executed. 201-203, to obtain a plurality of frequency offset detection results to more accurately detect the terminal.
  • the foregoing process is repeatedly performed by using a preset number of detections, that is, assuming that the preset number of detections is N, N SAIC Dummy Burs t are selected to perform interleaving processing with downlink data, and N frequency offset detection is performed on the terminal.
  • the N-time frequency offset detection result is used to finally determine the support capability of the terminal.
  • Step 205 When the frequency offset of the uplink data obtained within a preset number of detections exceeds a preset frequency offset threshold reaches a preset first threshold threshold, the base station determines that the terminal does not Has the ability to support single antenna interference to offset SAIC.
  • the base station determines that the terminal does not have the capability to support SAIC, that is, the terminal is a SAIC problem terminal.
  • the base station can directly determine that the terminal does not have the capability of supporting SAIC, and does not need to re-execute the subsequent detection process.
  • Step 206 When the frequency offset of the uplink data obtained within the preset number of detections exceeds the preset frequency offset threshold is less than the preset second threshold threshold, the base station determines that the terminal has the capability of supporting the SAIC.
  • the frequency offset of the uplink data obtained in the preset detection times is analyzed, when the threshold of the preset detection times is The base station determines that the terminal has the capability of supporting SAIC, that is, the terminal is a SAIC non-problem terminal.
  • the first time threshold value and the second time threshold value in the embodiment may be set to be equal, or the first time threshold value may be set to a value higher than the second time threshold.
  • the second threshold value may be specifically set to 1, and the frequency offset of the uplink data obtained within the preset detection times does not exceed the preset frequency offset threshold.
  • the embodiment provides a method for detecting a terminal capability, which performs bit-by-bit interleaving processing on the encoded downlink data and the virtual pulse, modulates the interleaved data, and transmits the data to the terminal, and then transmits the uplink data to the terminal.
  • the frequency offset detection is performed, and the multiple terminal detection process is repeatedly performed, and the support capability of the terminal is determined according to the multiple frequency offset detection results.
  • This embodiment can accurately detect the support capability of the terminal, so that the support capability reported by the mobile phone matches the actual performance. It will not affect the downlink demodulation performance and avoid the dropped call of the mobile phone.
  • FIG. 3 is a signaling diagram of Embodiment 3 of a method for detecting a terminal capability of the present invention. As shown in FIG. 3, this embodiment provides a method for detecting a capability of a terminal, which may specifically include the following steps:
  • Step 301 The terminal sends a call setup success message to the base station, indicating that the terminal has completed call setup.
  • the punch can be specifically formatted as follows: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6.
  • Step 304 The base station performs modulation processing on the interleaved downlink data.
  • Step 305 The base station sends the modulated downlink data to the terminal, to trigger the terminal to generate uplink data.
  • Step 306 The terminal sends uplink data to the base station.
  • Step 307 The base station uses the AFC algorithm to perform frequency offset detection on the uplink data sent by the terminal, and records the frequency offset detection result.
  • Step 308 The base station repeatedly performs the foregoing steps 302-307 with a preset number of detections.
  • Step 309 When the frequency offset of the uplink data obtained within the preset number of detections exceeds the preset frequency offset threshold reaches a preset first threshold threshold, the base station determines that the terminal does not have support.
  • Step 310 When the frequency offset of the uplink data obtained within the preset detection times exceeds the preset frequency offset threshold is less than the preset second threshold threshold, the base station determines that the terminal has support. The ability of SAIC.
  • Embodiment 1 is a structural diagram of Embodiment 1 of a device for detecting capability of a terminal according to the present invention. As shown in FIG. 4, this embodiment provides a device for detecting capability of a terminal. The device for detecting capability of the terminal may be specifically located at a base station, which may be The steps in the first embodiment of the foregoing method are specifically performed, and details are not described herein again.
  • the apparatus for detecting terminal capability may specifically include an interleave module 401, a first sending module 402, and a detecting module 403. Weaving. After the call setup of the terminal, the interleaving module 401 encodes the downlink data sent to the terminal, and then interleaves the encoded downlink data with the set virtual pulse, where the virtual pulse may be specifically SAIC Dummy Bur s t.
  • the downlink data may be interleaved with the SAIC Dummy Bur s t bit by bit, and the downlink data is occupied by bits, and the SAIC Dummy Bur s t is occupied by bits, that is, the downlink data occupies the I path, and the SAIC Dummy Bur s t occupies the Q path.
  • the SAIC Dummy Bur s t in the above format is interleaved with the downlink data, and the accuracy of the SAIC detection is higher in the subsequent SAIC detection process based on the uplink data sent by the terminal.
  • the first sending module 402 is configured to perform modulation processing on the interleaved data, and send the modulated data to the terminal to trigger the terminal to generate uplink data.
  • the first sending module 402 may specifically modulate the downlink data by using an Alpha QPSK modulation method, and send the modulated data to the terminal to trigger the terminal to generate uplink data.
  • the detecting module 403 is configured to perform frequency offset detection on the uplink data sent by the terminal, and detect the support capability of the terminal according to the frequency offset detection result.
  • the detecting module 403 performs frequency offset detection on the uplink data sent by the terminal, and specifically uses an AFC algorithm to detect the frequency offset, and records the frequency offset detection node. fruit.
  • the propagation between the base station and the mobile station is mostly a direct path or a strong reflection path, and the movement of the mobile station will cause the frequency of the received signal to be shifted, which is called Doppler frequency offset.
  • the initial frequency offset in the SFC algorithm is 0.
  • FIG. 5 is a structural diagram of Embodiment 2 of a device for detecting capability of a terminal according to the present invention. As shown in FIG. 5, this embodiment provides a device for detecting terminal capability, which may be specifically implemented in Embodiment 2 or Embodiment 3 of the foregoing method. The various steps are not described here.
  • the apparatus for detecting the capability of the terminal provided in this embodiment is based on the foregoing FIG.
  • the interleaving module 401 is specifically configured to bit-interleave the encoded downlink data and the virtual pulse, where: the encoded downlink The data is occupied by bits, the virtual pulse is occupied by odd bits, and the format of the virtual pulse is as follows: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6
  • the detecting module 403 in this embodiment may specifically include a detecting unit 41 3 and an obtaining unit 423.
  • the detecting unit 41 3 is configured to perform frequency offset detection on the uplink data sent by the terminal, and record the frequency offset detection result.
  • the obtaining unit 423 is configured to obtain the support capability of the terminal according to the frequency offset detection result obtained within the preset number of detections.
  • the foregoing process is repeatedly performed by using a preset number of detections, that is, a preset number of detection times is N, and N SAIC Dummy Bursts are selected to perform interleaving processing with downlink data respectively, and N times frequency offset detection is performed on the terminal.
  • the N-time frequency offset detection result is used to finally determine the support capability of the terminal.
  • the obtaining unit 423 in this embodiment may specifically include a first determining subunit 4231 and a second determining subunit 4232.
  • the first determining subunit 4231 is configured to determine that the terminal does not have the capability of supporting single antenna interference cancellation SAIC when the preset first time threshold value is preset.
  • the obtaining unit 423 analyzes the frequency offset of the uplink data obtained in the preset detection times, when the preset number is reached. When the threshold is a number of times, the obtaining unit 423 acquires that the terminal does not have the SAIC support. Capability, that is, the terminal is a SAIC problem terminal.
  • the second determining sub-unit 4232 is configured to determine that the terminal has the capability of supporting the SAIC when the preset preset second-time threshold value is that the terminal is a SAIC non-problem terminal.
  • the embodiment provides a terminal capability detecting apparatus, which performs bit-by-bit interleaving processing on the encoded downlink data and the virtual pulse, modulates the interleaved data, and transmits the data to the terminal, and then transmits the uplink data to the terminal.
  • the frequency offset detection is performed, and the multiple terminal detection process is repeatedly performed, and the support capability of the terminal is determined according to the multiple frequency offset detection results.
  • This embodiment can accurately detect the support capability of the terminal, so that the support capability reported by the mobile phone matches the actual performance. It will not affect the downlink demodulation performance and avoid the dropped call of the mobile phone.
  • the embodiment further provides a base station, which may specifically include the terminal capability detecting apparatus shown in FIG. 4 or FIG. 5 above.
  • FIG. 6 is a structural diagram of an embodiment of a terminal according to the present invention.
  • the embodiment provides a terminal, and the terminal may specifically include a receiving module 601 and a second sending module 602.
  • the receiving module 601 is configured to receive the modulated data sent by the base station, and generate uplink data by triggering the data after the modulation processing, where the data after the modulation processing is the downlink data and the virtual data after the base station is encoded.
  • the pulses are interleaved in bits and modulated by interleaving the data.
  • the second sending module 602 is configured to send the uplink data to the base station, so that the base station performs frequency offset detection on the uplink data, and detects the support capability of the terminal according to the frequency offset detection result.
  • the base station may include the detection device of the terminal capability shown in FIG. 4 or FIG. 5 above, and details are not described herein.

Description

终端能力的检测方法、 装置、 基站和终端 技术领域
本发明实施例涉及通信技术, 尤其涉及一种终端能力的检测方法、 装置、 基站和终端。 背景技术
为了在不增加频率开销的前提下进行基站扩容, 全球移动通讯系统 ( Global System of Mobile communication; 以下简称: GSM)基站基带的 数字信号处理器(Digital Signal Processor; 以下简称: DSP) 引入了单时 隙自适应多语音业务复用 ( Voice services over Adaptive Mul t i-user channel on One Slot; 以下简称: VAMOS ) 算法, VAMOS 是一种在单时隙可 同时容纳 2个用户通话的技术, 其使得一个半速率信道可以支持 4个用户进 行通话, 从而使得用户容量加倍。 但由于 VAM0S本身是频率复用的, 其对于 手机的解调性能是一个很大的考验。
在现有技术中, 当手机支持单天线干扰抵消 ( Single Antenna Interference Cancellation; 以下简称: SAIC)解调时, 可以得到较好的下 行性能, 则基站在打开 VAM0S时能够不影响用户感知。
但是, 现有技术中并没有提供获取手机支持能力的可靠方式, 导致当手 机上报的支持能力与实际不相符时, 其下行解调性能变差, 最终出现掉话现 象。 发明内容
本发明实施例在于提供一种终端能力的检测方法、 装置、 基站和终端, 准确地检测终端的支持能力, 避免手机掉话现象。
为了实现上述目的, 本发明实施例提供了一种终端能力的检测方法, 包 括:
将编码后的下行数据与虚拟脉冲进行按比特交织;
对交织后的数据进行调制处理, 并将调制处理后的数据发送到终端, 以 触发所述终端生成上行数据;
对所述终端发送的所述上行数据进行频偏检测, 根据频偏检测结果对所 述终端的支持能力进行检测。
本发明实施例提供了一种终端能力的检测装置, 包括: 第一发送模块, 用于对交织后的数据进行调制处理, 并将调制处理后的 数据发送到终端, 以触发所述终端生成上行数据;
检测模块, 用于对所述终端发送的所述上行数据进行频偏检测, 根据频 偏检测结果对所述终端的支持能力进行检测。
本发明实施例提供了一种基站, 包括上述终端能力的检测装置。
本发明实施例提供了一种终端, 包括:
接收模块, 用于接收基站发送的调制处理后的数据, 并在所述调制处理后 的数据的触发下生成上行数据,所述调制处理后的数据为基站将编码后的下行 数据与虚拟脉冲进行按比特交织, 并对交织后的数据进行调制处理得到的; 第二发送模块, 用于向基站发送所述上行数据, 以使所述基站对所述上 行数据进行频偏检测, 根据频偏检测结果对所述终端的支持能力进行检测。
本发明实施例提供的一种终端能力的检测方法、 装置、 基站和终端, 通 过将编码后的下行数据与虚拟脉冲进行按比特交织处理, 对交织后的数据进 行调制, 并发送到终端, 再对终端发送的上行数据进行频偏检测, 来检测终 端的支持能力; 本实施例可以准确地检测终端的支持能力, 使得手机上报的 支持能力与实际相符, 不会对下行解调性能产生影响, 避免了手机掉话现象。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明终端能力的检测方法实施例一的流程图;
图 2为本发明终端能力的检测方法实施例二的流程图;
图 3为本发明终端能力的检测方法实施例三的信令图;
图 4为本发明终端能力的检测装置实施例一的结构图;
图 5为本发明终端能力的检测装置实施例二的结构图;
图 6为本发明终端实施例的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明终端能力的检测方法实施例一的流程图, 如图 1所示, 本 实施例提供了一种终端能力的检测方法, 可以具体包括如下步骤:
步骤 101 , 将编码后的下行数据与虚拟脉冲进行按比特交织。
在本实施例中, 当终端的呼叫建立之后, 启动对终端的检测, 此处的终 端可以具体为手机,本实施例具体为 SAIC手机检测, 即检测手机是否为 SAIC 基站发往待检测终端的下行数据按照正常流程完成编码, 在将数据发送给逻 辑之前, 将编码后的下行数据与虚拟脉冲进行交织处理, 此处的虚拟脉冲可 以具体为 SAIC 虚拟脉冲 ( Dummy Burs t ) 。 具体地, 本实施例中的上述将编码后的下行数据与虚拟脉冲进行按比特 其中: 所述编码后的下行数据占偶比特, 所述虚拟脉冲占奇比特, 所述虚拟 脉冲的格式如下: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6„
步骤 102 , 对交织后的数据进行调制处理, 并将调制处理后的数据发送 到终端, 以触发所述终端生成上行数据。
基站对交织后的数据进行调制处理, 本实施例具体可以采用阿尔法 ( Alpha )四相相移键控 ( Quadrature Phase Shif t Keying; 以下简称: QPSK ) 调制方式对下行数据进行调制, 并将调制处理后的数据发送到终端, 以触发 所述终端生成上行数据。 在本实施例中, 终端在向基站发送上行数据时, 该 上行数据会受到基站下发的调制处理后的下行数据的影响, 由于该下行数据 经过与特定虚拟脉冲的交织处理, 触发终端可以将反映终端自身问题的上行 数据发送给基站, 基站便可以准确地检测终端的频偏, 而现有技术中终端发 送的上行数据可能无法真正反映终端的问题, 因此无法准确地实现频偏检测。
步骤 103 , 对所述终端发送的上行数据进行频偏检测, 根据频偏检测结 果对所述终端的支持能力进行检测。
当基站完成向终端的下行数据的发送后, 在上行方向, 基站接收终端发 送的上行数据, 对上行数据进行频偏检测, 并根据频偏检测结果来对终端的 支持能力进行检测。 即如果终端在接收到基站发送的下行数据后, 产生较大 的频偏值, 则基站通过终端发送的上行数据检测到频偏较严重时, 表明该终 端为 SAIC问题终端, 即该终端不支持 SAIC。 如果终端未产生频偏, 或产生 的频偏值较小, 则基站通过终端发送的上行数据检测到频偏较轻时, 表明该 终端为 SAIC非问题终端, 即该终端支持 SAIC。
具体地, 本实施例可以具体采用自动频率控制 ( Automatic Frequency
Control; 以下简称: AFC ) 算法来对终端发送的上行数据进行频偏检测。 由 于本实施例中的 SAIC检测过程是在终端的呼叫建立之后发起的, 则 AFC算 法的初始频偏可以设为 0。
更具体地,本实施例中的上述对所述终端发送的上行数据进行频偏检测, 根据频偏检测结果对所述终端的支持能力进行检测的步骤可以具体包括如下 步骤: 对所述终端发送的上行数据进行频偏检测, 并记录频偏检测结果; 以 预设的检测次数重复执行上述步骤 101-103 , 根据所述预设的检测次数内得 到的频偏检测结果获取所述终端的支持能力。 测结果获取所述终端的支持能力可以具体包括如下步骤: 当在所述预设的检 的第一次数门限值时, 判定所述终端不具有支持单天线干扰抵消 SAIC 的能 力; 当在所述预设的检测次数内得到的所述上行数据的频偏超出预设的频偏 门限值的次数小于预设的第二次数门限值时,判定所述终端具有支持 SAIC的 能力。 其中, 第二次数门限值可以具体为 1 , 第一次数门限值也可以与第二 次数门限值相等, 或者大于第二次数门限值。
本实施例提供了一种终端能力的检测方法, 通过将编码后的下行数据与 虚拟脉冲进行按比特交织处理, 对交织后的数据进行调制, 并发送到终端, 再对终端发送的上行数据进行频偏检测, 来检测终端的支持能力; 本实施例 可以准确地检测终端的支持能力, 使得手机上报的支持能力与实际相符, 不会对下行解调性能产生影响, 避免了手机掉话现象。 图 2为本发明终端能力的检测方法实施例二的流程图, 如图 2所示, 本 实施例提供了一种终端能力的检测方法, 可以具体包括如下步骤:
步骤 201 , 终端建立呼叫后, 基站将编码后的下行数据与虚拟脉冲进行 按比特交织。
在本步骤中, 在终端的呼叫建立之后, 基站对待发往终端的下行数据进 行编码, 然后将编码后的下行数据与设定的虚拟脉冲进行交织处理, 此处的 虚拟脉冲可以具体为 SAIC Dummy Bur s t , 优选地, 其可以具体采用如下格式: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6。 在进行交织时, 可以具体将下行数据与 SAIC Dummy Bur s t按比特交 织, 下行数据占偶比特, SAIC Dummy Burs t占奇比特, 即下行数据占 I路, SAIC Dummy Burs t占 Q路。 经过测试表明, 采用上述格式的 SAIC D讓 my Burs t 与下行数据进行交织后,在后续根据终端发送的上行数据进行 SAIC检测过程 中, S A I C检测的准确度较高。
步骤 202 , 基站对交织后的数据进行调制处理, 并将调制处理后的数据
Figure imgf000008_0001
在完成对下行数据的交织处理后, 基站对交织后的数据进行调制处理, 具体可以采用 Alpha QPSK调制方式对下行数据进行调制, 并将调制处理后的 数据发送到终端, 以触发终端生成上行数据。
步骤 203 , 基站采用 AFC算法对终端发送的上行数据进行频偏检测, 并 记录频偏检测结果。
基站在向终端发送调制处理后的下行数据后,终端对下行数据进行解码以 及解调等处理, 并向基站发送上行数据。基站对终端发送的上行数据进行频偏 检测, 具体可以采用 AFC算法来检测频偏, 并记录频偏检测结果。 在较开阔场 景中,基站和移动台之间的传播大多为直达径或较强的反射径, 移动台的运动 将导致其接收信号的频率发生搬移, 称为多普勒频偏。 AFC技术是一种针对快 速移动的特点设计的基站频率校正算法。该算法采用对上行接收信号进行测量 得到上行频率偏差, 并自动的校正两者之间的频率偏差, 从而可以高效地补偿 告诉移动下产生的多普勒效应。 在本实施例中, 由于 SAIC终端检测时在终端 呼叫建立起来之后发起的, 因此此处 SFC算法中的初始频偏为 0。
步骤 204 , 基站以预设的检测次数重复执行上述步骤 201-203。 本实施例通过重复执行多次 SAIC 终端检测过程, 即重复执行步骤 201-203 , 以得到多个频偏检测结果, 以更加准确地对终端进行检测。 本实施 例具体以预设的检测次数来重复执行上述过程, 即假设预设的检测次数为 N, 选择 N个 SAIC Dummy Burs t来分别与下行数据进行交织处理, 对终端进行 N 次频偏检测, 通过 N次频偏检测结果来最终对终端的支持能力进行判定。
步骤 205 , 当在预设的检测次数内得到的所述上行数据的频偏超出预设 的频偏门限值的次数达到预设的第一次数门限值时, 基站判定所述终端不具 有支持单天线干扰抵消 SAIC的能力。
在本实施例中, 在对终端的频偏检测次数达到预设的检测次数后, 对预 设的检测次数内得到的所述上行数据的频偏进行分析, 当在预设的检测次数 门限值时, 基站判定该终端不具有支持 SAIC的能力, 即该终端为 SAIC问题 终端。 当然, 在本实施例中, 在进行多次频偏检测后, 即使总的检测次数未 达到预设的检测次数, 如果连续超出频偏门限值的次数已经达到预设的第一 次数门限值, 此时基站可以直接判定所述终端不具有支持 SAIC的能力, 无需 再重新执行后续的检测过程。
步骤 206 , 当在预设的检测次数内得到的上行数据的频偏超出预设的频 偏门限值的次数小于预设的第二次数门限值时,基站判定终端具有支持 SAIC 的能力。
在本实施例中, 在对终端的频偏检测次数达到预设的检测次数后, 对预 设的检测次数内得到的所述上行数据的频偏进行分析, 当在预设的检测次数 门限值, 基站判定所述终端具有支持 SAIC的能力, 即该终端为 SAIC非问题 终端。 具体地, 本实施例中的第一次数门限值与第二次数门限值可以设置为 相等, 或者, 第一次数门限值可以设置为高于第二次数门限的值。 另外, 第 二次数门限值还可以具体设置为 1 , 此时相当于在预设的检测次数内得到的 上行数据的频偏均未超出预设的频偏门限值。 本实施例提供了一种终端能力的检测方法, 通过将编码后的下行数据与 虚拟脉冲进行按比特交织处理, 对交织后的数据进行调制, 并发送到终端, 再通过对终端发送的上行数据进行频偏检测, 并重复执行上述多次终端检测 过程, 根据多个频偏检测结果来判定终端的支持能力; 本实施例可以准确地 检测终端的支持能力, 使得手机上报的支持能力与实际相符, 不会对下行 解调性能产生影响, 避免了手机掉话现象。 图 3为本发明终端能力的检测方法实施例三的信令图, 如图 3所示, 本 实施例提供了一种终端能力的检测方法, 可以具体包括如下步骤:
步骤 301 ,终端向基站发送呼叫建立成功消息,表明终端已完成呼叫建立。 步骤 302, 基站对待发往终端的下行数据进行编码处理。 冲可以具体采用如下格式: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6。
步骤 304 , 基站对交织后的下行数据进行调制处理。
步骤 305 , 基站将调制处理后的下行数据发送到终端, 以触发终端生成 上行数据。
步骤 306 , 终端向基站发送上行数据。
步骤 307 , 基站采用 AFC算法对终端发送的上行数据进行频偏检测, 并 记录频偏检测结果。
步骤 308 , 基站以预设的检测次数重复执行上述步骤 302-307。
步骤 309 , 当在预设的检测次数内得到的上行数据的频偏超出预设的频 偏门限值的次数达到预设的第一次数门限值时, 基站判定终端不具有支持
SAIC的能力。
步骤 310 , 当在预设的检测次数内得到的上行数据的频偏均超出预设的 频偏门限值的次数小于预设的第二次数门限值时, 基站判定终端具有支持 SAIC的能力。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。 图 4为本发明终端能力的检测装置实施例一的结构图, 如图 4所示, 本 实施例提供了一种终端能力的检测装置, 该终端能力的检测装置可以具体位 于基站上, 其可以具体执行上述方法实施例一中的各个步骤, 此处不再赘述。
本实施例提供的终端能力的检测装置可以具体包括交织模块 401、 第一 发送模块 402和检测模块 403。 织。 在终端的呼叫建立之后, 交织模块 401对待发往终端的下行数据进行编 码, 然后将编码后的下行数据与设定的虚拟脉冲进行交织处理, 此处的虚拟 脉冲可以具体为 SAIC Dummy Bur s t。 在进行交织时, 可以具体将下行数据与 SAIC Dummy Bur s t按比特交织, 下行数据占偶比特, SAIC Dummy Bur s t占奇 比特, 即下行数据占 I路, SAIC Dummy Bur s t占 Q路。 经过测试表明, 采用 上述格式的 SAIC Dummy Bur s t与下行数据进行交织后, 在后续根据终端发送 的上行数据进行 SAIC检测过程中, SAIC检测的准确度较高。
第一发送模块 402用于对交织后的数据进行调制处理, 并将调制处理后 的数据发送到终端, 以触发所述终端生成上行数据。 第一发送模块 402具体 可以采用 Al pha QPSK调制方式对下行数据进行调制, 并将调制处理后的数据 发送到终端, 以触发终端生成上行数据。
检测模块 403用于对所述终端发送的上行数据进行频偏检测, 根据频偏 检测结果对所述终端的支持能力进行检测。 检测模块 403对终端发送的上行 数据进行频偏检测, 具体可以采用 AFC算法来检测频偏, 并记录频偏检测结 果。 在较开阔场景中, 基站和移动台之间的传播大多为直达径或较强的反射 径, 移动台的运动将导致其接收信号的频率发生搬移, 称为多普勒频偏。 在 本实施例中, 由于 SAIC终端检测时在终端呼叫建立起来之后发起的, 因此此 处 SFC算法中的初始频偏为 0。
图 5为本发明终端能力的检测装置实施例二的结构图, 如图 5所示, 本 实施例提供了一种终端能力的检测装置, 可以具体执行上述方法实施例二或 实施例三中的各个步骤, 此处不再赘述。 本实施例提供的终端能力的检测装 置在上述图 4所示的基础之上, 交织模块 401可以具体用于将编码后的下行 数据与虚拟脉冲进行按比特交织, 其中: 所述编码后的下行数据占偶比特, 所述虚拟脉冲占奇比特, 所述虚拟脉冲的格式如下: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6„
进一步地, 本实施例中的检测模块 403可以具体包括检测单元 41 3和获 取单元 423。 其中, 检测单元 41 3用于对所述终端发送的上行数据进行频偏 检测, 并记录频偏检测结果。 获取单元 423用于根据预设的检测次数内得到 的频偏检测结果获取所述终端的支持能力。 本实施例具体以预设的检测次数 来重复执行上述过程,即假设预设的检测次数为 N,选择 N个 SAIC Dummy Bur s t 来分别与下行数据进行交织处理, 对终端进行 N次频偏检测, 通过 N次频偏 检测结果来最终对终端的支持能力进行判定。
更进一步地, 本实施例中的获取单元 423可以具体包括第一判定子单元 4231和第二判定子单元 4232。 其中, 第一判定子单元 4231用于当在所述预 到预设的第一次数门限值时, 判定所述终端不具有支持单天线干扰抵消 SAIC 的能力。 在本实施例中, 在对终端的频偏检测次数达到预设的检测次数后, 获取单元 423对预设的检测次数内得到的所述上行数据的频偏进行分析, 当 到预设的第一次数门限值时,获取单元 423获取所述终端不具有支持 SAIC的 能力, 即该终端为 SAIC问题终端。 第二判定子单元 4232用于当在所述预设 预设的第二次数门限值时, 判定所述终端具有支持 SAIC的能力, 即该终端为 SAIC非问题终端。
本实施例提供了一种终端能力的检测装置, 通过将编码后的下行数据与 虚拟脉冲进行按比特交织处理, 对交织后的数据进行调制, 并发送到终端, 再通过对终端发送的上行数据进行频偏检测, 并重复执行上述多次终端检测 过程, 根据多个频偏检测结果来判定终端的支持能力; 本实施例可以准确地 检测终端的支持能力, 使得手机上报的支持能力与实际相符, 不会对下行 解调性能产生影响, 避免了手机掉话现象。
本实施例还提供了一种基站, 可以具体包括上述图 4或图 5所示的终端 能力的检测装置。
图 6为本发明终端实施例的结构图, 如图 6所示, 本实施例提供了一 种终端, 该终端可以具体包括接收模块 601和第二发送模块 602。 其中, 接收模块 601用于接收基站发送的调制处理后的数据, 并在所述调制处理 后的数据的触发下生成上行数据, 所述调制处理后的数据为基站将编码后 的下行数据与虚拟脉冲进行按比特交织, 并对交织后的数据进行调制处理 得到的。 第二发送模块 602用于向基站发送所述上行数据, 以使所述基站 对所述上行数据进行频偏检测, 根据频偏检测结果对所述终端的支持能力 进行检测。 其中, 基站可以包括上述图 4或图 5所示的终端能力的检测装 置, 具体执行过程此处不再赘述。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种终端能力的检测方法, 其特征在于, 包括:
将编码后的下行数据与虚拟脉冲进行按比特交织;
对交织后的数据进行调制处理, 并将调制处理后的数据发送到终端, 以 触发所述终端生成上行数据;
对所述终端发送的所述上行数据进行频偏检测, 根据频偏检测结果对所 述终端的支持能力进行检测。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将编码后的下行数据 与虚拟脉冲进行按比特交织包括:
将编码后的下行数据与虚拟脉冲进行按比特交织, 其中:
所述编码后的下行数据占偶比特, 所述虚拟脉冲占奇比特, 所述虚拟脉 冲的格式如下: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6„
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述对所述终端发送 的所述上行数据进行频偏检测, 根据频偏检测结果对所述终端的支持能力进 行检测包括:
对所述终端发送的所述上行数据进行频偏检测, 并记录频偏检测结果; 根据预设的检测次数内得到的频偏检测结果获取所述终端的支持能力。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据预设的检测次数 内得到的频偏检测结果获取所述终端的支持能力包括:
当在预设的检测次数内得到的所述上行数据的频偏超出预设的频偏门限 值的次数达到预设的第一次数门限值时, 判定所述终端不具有支持单天线干 扰抵消 SAIC的能力;
当在预设的检测次数内得到的所述上行数据的频偏超出预设的频偏门限 值的次数小于预设的第二次数门限值时, 判定所述终端具有支持 SAIC 的能 力。
5、 一种终端能力的检测装置, 其特征在于, 包括: 第一发送模块, 用于对交织后的数据进行调制处理, 并将调制处理后的 数据发送到终端, 以触发所述终端生成上行数据;
检测模块, 用于对所述终端发送的所述上行数据进行频偏检测, 根据频 偏检测结果对所述终端的支持能力进行检测。
6、 根据权利要求 5所述的装置, 其特征在于, 所述交织模块具体用于将 编码后的下行数据与虚拟脉冲进行按比特交织, 其中:
所述编码后的下行数据占偶比特, 所述虚拟脉冲占奇比特, 所述虚拟脉 冲的格式如下: 0x76f8, 0x9283, 0x4483, 0xc7c0, Oxdldl, 0x9751, 0xe662, 0x7cbc, 0xafa4, 0x00d6„
7、 根据权利要求 5或 6所述的装置, 其特征在于, 所述检测模块包括: 检测单元, 用于对所述终端发送的所述上行数据进行频偏检测, 并记录 频偏检测结果;
获取单元, 用于根据预设的检测次数内得到的频偏检测结果获取所述终 端的支持能力。
8、 根据权利要求 7所述的装置, 其特征在于, 所述获取单元包括: 第一判定子单元,用于当在预设的检测次数内得到的所述上行数据的频偏 超出预设的频偏门限值的次数达到预设的第一次数门限值时,判定所述终端不 具有支持单天线干扰抵消 SAIC的能力;
第二判定子单元,用于当在预设的检测次数内得到的所述上行数据的频偏 超出预设的频偏门限值小于预设的第二次数门限值时,判定所述终端具有支持 SAIC的能力。
9、 一种基站, 其特征在于, 包括权利要求 5-8任一项所述的终端能力的检 测装置。
10、 一种终端, 其特征在于, 包括: 接收模块, 用于接收基站发送的调制处理后的数据, 并在所述调制处理 后的数据的触发下生成上行数据, 所述调制处理后的数据为基站将编码后的 下行数据与虚拟脉冲进行按比特交织, 并对交织后的数据进行调制处理得到 的;
第二发送模块, 用于向基站发送所述上行数据, 以使所述基站对所述上 行数据进行频偏检测, 根据频偏检测结果对所述终端的支持能力进行检测。
PCT/CN2011/078694 2011-08-22 2011-08-22 终端能力的检测方法、装置、基站和终端 WO2012119404A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/078694 WO2012119404A1 (zh) 2011-08-22 2011-08-22 终端能力的检测方法、装置、基站和终端
CN201180001668.2A CN102356584B (zh) 2011-08-22 2011-08-22 终端能力的检测方法、装置、基站和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078694 WO2012119404A1 (zh) 2011-08-22 2011-08-22 终端能力的检测方法、装置、基站和终端

Publications (1)

Publication Number Publication Date
WO2012119404A1 true WO2012119404A1 (zh) 2012-09-13

Family

ID=45579283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078694 WO2012119404A1 (zh) 2011-08-22 2011-08-22 终端能力的检测方法、装置、基站和终端

Country Status (2)

Country Link
CN (1) CN102356584B (zh)
WO (1) WO2012119404A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11785541B2 (en) * 2018-11-01 2023-10-10 Beijing Xiaomi Mobile Software Co., Ltd. Method for executing BFR process, device, terminal, base station, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938437A (zh) * 2010-09-15 2011-01-05 华为技术有限公司 单天线干扰消除能力识别方法和装置
CN102158880A (zh) * 2011-04-01 2011-08-17 华为技术有限公司 一种终端的识别处理方法、系统及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298095B1 (en) * 1998-04-03 2001-10-02 Telefonaktiebolaget Lm Ericsson (Publ) Communicating signaling information in a cellular system that has a tight frequency reuse pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938437A (zh) * 2010-09-15 2011-01-05 华为技术有限公司 单天线干扰消除能力识别方法和装置
CN102158880A (zh) * 2011-04-01 2011-08-17 华为技术有限公司 一种终端的识别处理方法、系统及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Feasibility Study on Single Antenna Interference Cancellation (SAIC)for GSM networks", 3GPP TR 45.903 V 10.0.0, March 2011 (2011-03-01) *

Also Published As

Publication number Publication date
CN102356584A (zh) 2012-02-15
CN102356584B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN110913375B (zh) 一种无线通信系统及设备
US10454811B2 (en) Apparatus and method for de-jitter buffer delay adjustment
JP5145382B2 (ja) 無線チャンネルでヘッダを復号する方法とシステム
TWI430641B (zh) 用於數位無線通信網路上之資料通信之頻帶內數據機之系統及方法
US8441979B2 (en) Control apparatus to divide other communication apparatuses into multiple groups for slot allocated communication
JP5709887B2 (ja) 音声チャネル上で動作するデジタルインバンドモデム用適応データ送信
TWI439072B (zh) 頻帶內數據機中支援較高層級協定訊息傳遞之系統及方法
TWI405443B (zh) 用於數位無線通信網路上之資料通信之頻帶內數據機之系統及方法
US8817934B2 (en) System and method for synchronization tracking in an in-band modem
TWI431971B (zh) 頻帶內數據機中支援較高層級協定訊息傳遞之系統及方法
TW201012161A (en) System and method of an in-band modem for data communications over digital wireless communication networks
KR101150680B1 (ko) 호 핸드오프 동안 오디오 스위치를 제어하는 방법 및 장치
MX2010013329A (es) Sistema y metodo de un modem en-banda para comunicaciones de datos sobe redes de comunicacion inalambrica digitales.
US11271687B2 (en) Method and arrangement for enhanced soft buffer handling
WO2015010572A1 (en) Methods, devices, and systems for controlling audio and video transmission
JP2003188854A (ja) ブラインドトランスポートフォーマット検出の方法
WO2012119404A1 (zh) 终端能力的检测方法、装置、基站和终端
TWI423690B (zh) 用於無線網路中的非連續傳輸之通訊系統、方法與電腦程式產品
WO2018121231A1 (zh) 一种重连小区方法及装置
KR100850735B1 (ko) 데이터 무선통신 시스템에서 손실 패킷 보고와 재전송 요구방법 및 그 장치
JP2012015581A (ja) Ofdm通信システム
JP4418294B2 (ja) 通信装置及び変調方式決定方法
JP2014116655A (ja) デジタル無線通信システムおよび無線装置
WO2014040297A1 (zh) 语音帧的译码方法及装置
CN115549863A (zh) 重传音频数据包的方法、音频接收器、存储介质及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001668.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860126

Country of ref document: EP

Kind code of ref document: A1