WO2012119374A1 - 一种基于物理层抽象算法的异构网动态系统级仿真方法 - Google Patents

一种基于物理层抽象算法的异构网动态系统级仿真方法 Download PDF

Info

Publication number
WO2012119374A1
WO2012119374A1 PCT/CN2011/078105 CN2011078105W WO2012119374A1 WO 2012119374 A1 WO2012119374 A1 WO 2012119374A1 CN 2011078105 W CN2011078105 W CN 2011078105W WO 2012119374 A1 WO2012119374 A1 WO 2012119374A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
lte
rbir
bler
level simulation
Prior art date
Application number
PCT/CN2011/078105
Other languages
English (en)
French (fr)
Inventor
衡伟
印芷漪
张金宝
王婉苓
张威
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2012119374A1 publication Critical patent/WO2012119374A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models

Definitions

  • the present invention belongs to the field of wireless communication technologies, and relates to an LTE (Long Term Evolution) and 802.1 In heterogeneous network convergence, and a RBIR (received block mean mutual information rate) physical layer abstraction algorithm.
  • LTE Long Term Evolution
  • RBIR received block mean mutual information rate
  • LTE Long Term Evolution
  • Wi-Fi wireless fidelity, wireless fidelity/wireless compatibility authentication
  • 802.11 ⁇ has become the next-generation mainstream high-speed wireless LAN technology.
  • the problem to be solved by the present invention is: In the current wireless communication, on the one hand, the heterogeneous network formed by the convergence of 802.11n and LTE is extremely complicated; on the other hand, the common static or quasi-static method is used. System-level simulation, the amount of computational data is huge, and the complexity is extremely high. Therefore, it is difficult to perform system-level simulation on the heterogeneous network of 802.11 ⁇ and LTE.
  • the technical solution of the present invention is: a dynamic system level simulation method based on a physical layer abstraction algorithm for heterogeneous network, and performing dynamic system level simulation on a heterogeneous network composed of 802.11n and LTE, including the following steps: , determining that the access network is 802.11n or LTE;
  • the selected modulation and coding mode MCS is determined, and the modulation and coding mode MCS includes a modulation and coding mode of an LTE cellular mobile communication network or a modulation and coding mode of an 802.11n wireless local area network; and a third step, using an RBIR physical layer abstraction algorithm to establish A unified air interface abstract model of LTE and 802.11 ⁇ heterogeneous networks, and a block average mutual information rate RBIR is obtained from real-time channel information;
  • the fourth step using the above unified air interface abstract model, through link-level simulation, in the single-input single-output SISO of LTE and 802.11 ⁇ communication networks and different MCS conditions in the multi-input multiple-output system,
  • the information rate RBIR obtains the block error BLER, and the function clusters of BLER and RBIR are:
  • the corresponding function parameter, a 2 can be determined, thereby determining a function for determining BLER and RBIR;
  • the actual code modulation and detection process of each transmission is modeled as a Bernoulli experiment.
  • the state of the wireless link is given at each moment, the statistical block error BLER value transmitted by each user is passed.
  • the sixth step is to judge whether the experiment ends or not: No, go back to the first step; Yes, statistical simulation results.
  • the present invention proposes a dynamic system level simulation method for heterogeneous networks based on physical layer abstraction algorithm for 802.11n and LTE heterogeneous network fusion, realizing dynamic system level simulation, and
  • the earth reduces the computational complexity.
  • the physical layer abstraction can reflect the instantaneous state of the wireless channel to the high-level module of the system through one or several simple quantities, thereby realizing the interaction of the cross-layer information and optimizing the overall performance of the system.
  • the RBIR physical layer abstraction algorithm as a physical layer abstraction algorithm based on the principle of information theory, does not need to adjust parameters and is general.
  • the invention utilizes a physical layer abstraction algorithm to simplify and abstract the link simulation of the complex physical layer into a simple one-element parameter function, shielding the details of the physical layer protocol, and abstracting the different physical layers of 802.11n and LTE into a unified The air interface model, as a cross-layer module.
  • the RBIR physical layer abstraction algorithm is used to simplify the physical layer link simulation of the LTE and 802.11n heterogeneous networks, and the unified air interface abstract model is established as a cross-layer module;
  • DRAWINGS 1 is a flow chart of a dynamic system level simulation method for a heterogeneous network according to the present invention.
  • FIG. 2 is a structural diagram of a cross-layer design system of a heterogeneous network using a physical layer abstraction algorithm according to the present invention.
  • FIG. 3 is a structural diagram of a general 802.11n and LTE heterogeneous network layered system in the prior art.
  • FIG. 4 is a simulation result of the RBIR physical layer abstraction algorithm of the 802.11n network in the SISO case of the present invention.
  • FIG. 5 is a simulation result of the RBIR physical layer abstraction algorithm of the 802.11n network in the case of the present invention.
  • FIG. 6 is a simulation result of the RBIR physical layer abstraction algorithm of the LTE network in the SISO case of the present invention.
  • FIG. 7 is a simulation result of an RBIR physical layer abstraction algorithm for an LTE network in the MIMO case according to the present invention. detailed description
  • the present invention performs dynamic system-level simulation on a heterogeneous network in which 802.11n and LTE are fused, including the following steps:
  • Dynamic system-level simulation of a heterogeneous network of 802.11 ⁇ and LTE including the following steps: First, determine that the accessed network is 802.11n or LTE;
  • the selected modulation and coding mode MCS is determined, and the modulation and coding mode MCS includes a modulation and coding mode of an LTE cellular mobile communication network or a modulation and coding mode of an 802.11n wireless local area network; and a third step, using an RBIR physical layer abstraction algorithm to establish A unified air interface abstract model of LTE and 802.11 ⁇ heterogeneous networks, and a block average mutual information rate RBIR is obtained from real-time channel information;
  • the fourth step using the above unified air interface abstract model, through link-level simulation, in the single-input single-output SISO of LTE and 802.11 ⁇ communication networks and different MCS conditions in MIMO systems,
  • the corresponding function parameter, a 2 can be determined, thereby determining a function for determining BLER and RBIR;
  • the actual code modulation and detection process of each transmission is modeled as a Bernoulli experiment.
  • the state of the wireless link is given at each moment, the statistical block error BLER value transmitted by each user is passed.
  • the sixth step is to judge whether the experiment ends or not: No, go back to the first step; Yes, statistical simulation results.
  • FIG. 3 is a structural diagram of a general 802.11n and LTE heterogeneous network layered system in the prior art, 802.11n and After the LTE is merged, it is directly connected to the data link layer, and the data link layer is connected to the network layer, the transport layer, and the application layer in turn.
  • Each layer module is independently designed and operated, and the interfaces between the layers are static, and the system The state of the application is independent of the application requirements.
  • the layered structure-based communication protocol stack can only communicate in a fixed manner between adjacent layers.
  • the traditional layered design The inability to flexibly adapt to changes in the wireless transmission environment has resulted in systems that are unable to effectively utilize limited wireless spectrum resources.
  • a heterogeneous network cross-layer design system structure diagram using a physical layer abstraction algorithm is shown in FIG. 2, and a unified air interface abstract model of LTE and 802.11n heterogeneous networks is established by using an RBIR physical layer abstraction algorithm, 802.11 ⁇ and LTE fusion.
  • the data link layer, the network layer, the transport layer, and the application layer are connected through a unified air interface abstract model, so that each layer in the system can interact with other layers.
  • the physical layer can The change information is transmitted to other layers at the first time, so that the entire wireless communication system is adjusted in time, which greatly facilitates system resource management and performance optimization in a heterogeneous network coexistence environment.
  • BLERu can be calculated according to R£/R, and BLER and BLER U RBIR have a one-to-one correspondence with the legs. Therefore, LER can be expressed as a determining function of R£/R, which is complicated.
  • the present invention is constructed by using an RBIR physical layer abstraction algorithm, and through the link level simulation, different MCS (Modulate in LTE and 802.11 ⁇ communication network SISO (Single-Input Single-Output) and MIMO (Multiple-Input Multiple-Output) systems & Coding Scheme, modulation coding method), obtain the function cluster of BLER and RBIR
  • MCS Modulate in LTE and 802.11 ⁇ communication network SISO (Single-Input Single-Output) and MIMO (Multiple-Input Multiple-Output) systems & Coding Scheme, modulation coding method
  • a unified air interface abstract model obtained through an improved RBIR physical layer abstraction algorithm.
  • the link-level simulation results show the functional relationship between BLER and RBIR, and derive the " 2 specific parameter values, as shown in Table 1 and Table 2, the selected communication network.
  • the type and code modulation mode MCS the function of BLER and RBIR can be determined.
  • the coding modulation mode is BPSK 1/2, QPSK 1/2, QPSK 3/4, 16QAM 1/2, 16QAM 3/4, 64QAM 2/3 from left to right.
  • MCS n 0, 2, 6, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27
  • optional modulation coding for LTE cellular mobile communication networks The method has specific detailed provisions in the 3GPP2 LTE physical layer protocol.
  • the coding method has specific details in the IEEE 802.11 ⁇ physical layer protocol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于物理层抽象算法的异构网动态系统级仿真方法,针对LTE蜂窝移动通信网络与基于Wi-Fi无线传输标准协议802.11n的下一代高速无线局域网的异构网融合,利用物理层抽象算法,将复杂物理层的链路仿真简化、抽象为一个简单的一元带参数函数,屏蔽了物理层协议的细节,将802.11n和LTE不同的物理层,抽象为统一的空中接口模型,作为跨层模块。本发明提出了一种基于物理层抽象算法的异构网动态系统级仿真方法,实现了动态的系统级仿真,并且极大地降低了计算复杂度。

Description

一种基于物理层抽象算法的异构网动态系统级仿真方法 技术领域
本发明属于无线通信技术领域,涉及 LTE (Long Term Evolution, 长期演进) 和 802.1 In的异构网融合、 RBIR (received block mean mutual information rate, 块平均 互信息率) 物理层抽象算法,提出了一种基于物理层抽象算法的异构网动态系统级 仿真方法。 背景技术
目前随着无线通信技术发展迅速, 各种标准在不断被更新, 新的无线网络架 构和技术也不断被提出。 人们也对无线通信系统提出了更高的要求, 如更高的传 输速率、 更高的服务质量以及更为广泛的接入等, 这样的需求使得跨层设计受到 了极大的关注另外, 无线局域网与蜂窝移动通信网络的融合必将是大势所趋。 LTE (Long Term Evolution, 长期演进)作为对现有 3G技术的增强和演进,是最新一代蜂 窝移动通信网络技术; 目前, Wi-Fi (wireless fidelity, 无线保真 /无线相容性认证), 即 IEEE 802.11系列作为高速无线局域网的主要标准得到了广泛的应用, 802.11η 已经成为下一代主流高速无线局域网技术。 而 LTE和 802.11η异构网融合后系统 将极其复杂, 使用常见的静态的或者准静态的方式, 进行系统级仿真, 计算数据 量庞大, 复杂度极高, 因此对无线通信系统分析与设计变得更加困难。 发明内容
本发明要解决的问题是: 目前的无线通信中, 一方面, 针对 802.11η和 LTE融 合而成的异构网, 系统极其复杂; 另一方面, 使用常见的静态的或者准静态的方 式, 进行系统级仿真, 计算数据量庞大, 复杂度极高, 故欲对 802.11η和 LTE融 合而成的异构网进行系统级仿真, 可谓是难上加难。
本发明的技术方案为: 一种基于物理层抽象算法的异构网动态系统级仿真方 法, 对 802.11η和 LTE融合而成的异构网进行动态的系统级仿真, 包括如下步骤: 第一步, 确定接入的网络为 802.11η或 LTE;
第二步, 确定选择的调制编码方式 MCS, 所述调制编码方式 MCS包括 LTE 蜂窝移动通信网络的调制编码方式或 802.11η无线局域网络的调制编码方式; 第三步,利用 RBIR物理层抽象算法建立 LTE和 802.11η异构网的统一空中接 口抽象模型, 由实时信道信息得到块平均互信息率 RBIR; 第四步, 利用上述统一的空中接口抽象模型, 通过链路级仿真, 在 LTE 和 802.11η通信网络的单输入单输出 SISO 以及多输入多输出 ΜΙΜΟ系统中不同的 MCS条件下, 由块平均互信息率 RBIR得到块误码 BLER, BLER与 RBIR的函 数簇为:
BLER = f (RBIR, α,,
Figure imgf000004_0001
对于确定的网络 NEr和调制编码方式 MSC,即可确定相应的函数参数 、 a2, 从而确定确定 BLER与 RBIR的函数;
第五步, 将每一次传输实际的编码调制与检测过程建模为一次伯努利实验, 当每一时刻无线链路的状态给定后, 每一个用户传输的统计块误码 BLER值是通 过 RBIR物理层抽象算法计算得到的, 伯努利实验产生 [0,1]均匀分布的随机数 a: a>=BLER,传输无误; a< BLER,传输错误, 得到该传输包传输的正误;
第六步, 判断实验结束与否: 否, 回到第一步; 是, 统计仿真结果。
为了解决现有技术存在的问题, 本发明针对 802.11η和 LTE异构网融合, 提 出了一种基于物理层抽象算法的异构网动态系统级仿真方法, 实现了动态的系统 级仿真, 并且极大地降低了计算复杂度。 物理层抽象可以将无线信道即时的状态 通过一个或几个简单的量反映给系统的高层模块, 从而实现跨层信息的交互, 达 到系统整体性能的优化。 RBIR物理层抽象算法, 作为一种以信息论原理为基础的 物理层抽象算法, 不需要调整参数, 具有一般性。 本发明利用物理层抽象算法, 将复杂物理层的链路仿真简化、 抽象为一个简单的一元带参数函数, 屏蔽了物理 层协议的细节, 将 802.11η和 LTE不同的物理层, 抽象为统一的空中接口模型, 作为跨层模块。
本发明的有益效果主要体现两个方面在:
第一, 针对 802.11η和 LTE异构网融合, 采用 RBIR物理层抽象算法, 简化 LTE和 802.11η异构网的物理层链路仿真,建立统一空中接口抽象模型作为跨层模 块;
第二, 由于复杂的物理层的链路仿真被简化、 抽象为一个简单的一元带参数 函数, 相较一般的系统级仿真, 这种简化的异构网动态系统级仿真方法极大地降 低了系统分析与仿真的计算复杂度。 附图说明 图 1为本发明异构网动态系统级仿真方法流程图。
图 2为本发明利用物理层抽象算法的异构网跨层设计系统结构图。
图 3为现有技术中一般的 802.11η和 LTE异构网分层系统结构图。
图 4为本发明在 SISO情况下 802.11η网络 RBIR物理层抽象算法仿真结果。
图 5为本发明在 ΜΙΜΟ情况下 802.11η网络 RBIR物理层抽象算法仿真结果。 图 6为本发明在 SISO情况下 LTE网络 RBIR物理层抽象算法仿真结果。
图 7为本发明在 MIMO情况下 LTE网络 RBIR物理层抽象算法仿真结果。 具体实施方式
如图 1, 本发明对 802.11η和 LTE融合而成的异构网进行动态的系统级仿真, 包括如下步骤:
对 802.11η和 LTE融合而成的异构网进行动态的系统级仿真, 包括如下步骤: 第一步, 确定接入的网络为 802.11η或 LTE;
第二步, 确定选择的调制编码方式 MCS, 所述调制编码方式 MCS包括 LTE 蜂窝移动通信网络的调制编码方式或 802.11η无线局域网络的调制编码方式; 第三步,利用 RBIR物理层抽象算法建立 LTE和 802.11η异构网的统一空中接 口抽象模型, 由实时信道信息得到块平均互信息率 RBIR;
第四步, 利用上述统一的空中接口抽象模型, 通过链路级仿真, 在 LTE 和 802.11η通信网络的单输入单输出 SISO 以及多输入多输出 MIMO系统中不同的 MCS条件下, 由块平均互信息率 RBIR得到块误码 BLER, BLER与 RBIR的函 数簇为: BLER = fNET MSC (RBIR,
Figure imgf000005_0001
对于确定的网络 NEr和调制编码方式 MSC,即可确定相应的函数参数 、 a2, 从而确定确定 BLER与 RBIR的函数;
第五步, 将每一次传输实际的编码调制与检测过程建模为一次伯努利实验, 当每一时刻无线链路的状态给定后, 每一个用户传输的统计块误码 BLER值是通 过 RBIR物理层抽象算法计算得到的, 伯努利实验产生 [0,1]均匀分布的随机数 a: a>=BLER,传输无误; a< BLER,传输错误, 得到该传输包传输的正误;
第六步, 判断实验结束与否: 否, 回到第一步; 是, 统计仿真结果。
图 3是现有技术中一般的 802.11η和 LTE异构网分层系统结构图, 802.11η和 LTE 融合后直接与数据链路层连接, 数据链路层再依次连接网络层、 传输层和应 用层, 每层模块独立地进行设计和操作, 各层之间的接口是静态的, 且与系统的 状态和应用需求无关, 由于无线通信环境具有快速变化的特性, 而基于分层结构 的通信协议栈只能在相邻的层之间以固定的方式进行通信, 这样, 传统的分层设 计就无法灵活地适应无线传输环境的变化, 导致了系统无法有效地利用有限的无 线频谱资源。 本发明方法下, 利用物理层抽象算法的异构网跨层设计系统结构图 如图 2, 利用 RBIR物理层抽象算法建立 LTE和 802.11η异构网的统一空中接口抽 象模型, 802.11η和 LTE融合后, 通过统一空中接口抽象模型连接数据链路层、 网 络层、 传输层和应用层, 使得系统内的每一层都能够与其他层进行信息交互, 当 无线信道发生变化时, 物理层能够在第一时间将变化信息传给其他各层, 从而使 得整个无线通信系统都做出及时地调整, 极大的方便了异构网络共存环境下的系 统资源管理及性能优化。
一般 RBIR算法的表达为:
BLER = 1— Ε {2 其中, 用 1^¾„表示未解码的块差错概率, R /R„表示解码前的块平均互信息 率, N表示编码数据块的比特数目, (^表示编码码率, Z表示迭代译码的比特软 输出值。
也就是说, BLERu可以根据 R£/R„计算得到, 而且 BLER与 BLERU RBIR与 腿 具有一一对应的关系, 所以, LER可以表述为 R£/R的确定函数, 这个函 数很复杂。
本发明,利用 RBIR物理层抽象算法建立,通过链路级仿真,在 LTE和 802.11η 通信网 络 SISO (Single-Input Single-Output) 以及 MIMO (Multiple-Input Multiple-Output) 系统中不同的 MCS (Modulate & Coding Scheme, 调制编码方式) 条件下, 获得 BLER与 RBIR的函数簇
BLER = f (RBIR,
Figure imgf000006_0001
艮卩, 通过改进的 RBIR物理层抽象算法, 得到的统一的空中接口抽象模型。链 路级仿真结果, 如附图 4一 7所示, 表明了 BLER与 RBIR之间的函数关系, 并从 中得到了 和《2具体参数值, 如表 1和表 2所示, 选定通信网络类型和编码调制 方式 MCS后, 即可确定 BLER与 RBIR的函数。 图 4和图 5中, 编码调制方式由 左向右依次为 BPSK 1/2,QPSK 1/2,QPSK 3/4,16QAM 1/2,16QAM 3/4,64QAM 2/3 64QAM 3/4,64QAM 5/6 ; 图 6 禾卩 图 Ί 中 , 由 左 向 右 依 次 为 MCS0,MCS3,MCS6,MCS9,MCS10, MCS12, MCS14, MCS16, MCS 17, MCS19, MCS21 , MCS23 , MCS25, MCS27。
表 1. LTE蜂窝移动通信网络
Figure imgf000007_0001
表 1中的 MCS n (n=0,2,6,9,10,12,14,16,17,19,21,23,25,27), ί旨 LTE蜂窝移动通 信网络可选的调制编码方式, 在 3GPP2 LTE物理层协议中有具体详细的规定。
表 2. 802.11η无线局域网络
Figure imgf000007_0002
Figure imgf000008_0001
制编码方式, 在 IEEE 802.11η物理层协议中有具体详细的规定。

Claims

权利要求书
1.一种基于物理层抽象算法的异构网动态系统级仿真方法, 其特征是对 802.11η 和 LTE融合而成的异构网进行动态的系统级仿真, 包括如下步骤:
第一步, 确定接入的网络为 802.11η或 LTE;
第二步, 确定选择的调制编码方式 MCS, 所述调制编码方式 MCS包括 LTE蜂 窝移动通信网络的调制编码方式或 802.11η无线局域网络的调制编码方式;
第三步,利用 RBIR物理层抽象算法建立 LTE和 802.11η异构网的统一空中接口 抽象模型, 由实时信道信息得到块平均互信息率 RBIR;
第四步,利用上述统一的空中接口抽象模型,通过链路级仿真,在 LTE和 802.11η 通信网络的单输入单输出 SISO以及多输入多输出 MIMO系统中不同的 MCS条件下, 由块平均互信息率 RBIR得到块误码 BLER, 数簇为:
BLER = fNET MSC (RBIR, a1 , a2 ) =
Figure imgf000009_0001
.
对于确定的网络 Λ¾Γ和调制编码方式 MSC, 即可确定相应的函数参数 、 a2 , 从而确定确定 BLER与 RBIR的函数;
第五步, 将每一次传输实际的编码调制与检测过程建模为一次伯努利实验, 当 每一时刻无线链路的状态给定后, 每一个用户传输的统计块误码 BLER 值是通过 RBIR 物理层抽象算法计算得到的, 伯努利实验产生 [0,1]均匀分布的随机数 a: a>=BLER,传输无误; a< BLER,传输错误, 得到该传输包传输的正误;
第六步, 判断实验结束与否: 否, 回到第一步; 是, 统计仿真结果。
PCT/CN2011/078105 2011-03-08 2011-08-08 一种基于物理层抽象算法的异构网动态系统级仿真方法 WO2012119374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110054996.0 2011-03-08
CN201110054996.0A CN102137407B (zh) 2011-03-08 2011-03-08 一种基于物理层抽象算法的异构网动态系统级仿真方法

Publications (1)

Publication Number Publication Date
WO2012119374A1 true WO2012119374A1 (zh) 2012-09-13

Family

ID=44297042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078105 WO2012119374A1 (zh) 2011-03-08 2011-08-08 一种基于物理层抽象算法的异构网动态系统级仿真方法

Country Status (2)

Country Link
CN (1) CN102137407B (zh)
WO (1) WO2012119374A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137407B (zh) * 2011-03-08 2014-02-05 东南大学 一种基于物理层抽象算法的异构网动态系统级仿真方法
CN116738909B (zh) * 2023-06-25 2024-05-24 成都电科星拓科技有限公司 一种集成电路的Memory集成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079957A (ko) * 2005-06-21 2005-08-11 (주)영텔레콤테크놀로지 3세대 이동통신에서 이기종 복수의 무선망 컨트롤러와의동적 정합이 가능한 핵심망 시뮬레이션 장치 및 방법
US20070036088A1 (en) * 2005-08-11 2007-02-15 Opnet Technologies, Inc. Wireless MAC and link-layer simulation modeling
CN101437244A (zh) * 2007-11-16 2009-05-20 大唐移动通信设备有限公司 一种链路仿真与系统仿真接口的实现方法与装置
CN101764682A (zh) * 2008-12-25 2010-06-30 普天信息技术研究院有限公司 一种调制编码配置的选择方法和装置
CN102137407A (zh) * 2011-03-08 2011-07-27 东南大学 一种基于物理层抽象算法的异构网动态系统级仿真方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050079957A (ko) * 2005-06-21 2005-08-11 (주)영텔레콤테크놀로지 3세대 이동통신에서 이기종 복수의 무선망 컨트롤러와의동적 정합이 가능한 핵심망 시뮬레이션 장치 및 방법
US20070036088A1 (en) * 2005-08-11 2007-02-15 Opnet Technologies, Inc. Wireless MAC and link-layer simulation modeling
CN101437244A (zh) * 2007-11-16 2009-05-20 大唐移动通信设备有限公司 一种链路仿真与系统仿真接口的实现方法与装置
CN101764682A (zh) * 2008-12-25 2010-06-30 普天信息技术研究院有限公司 一种调制编码配置的选择方法和装置
CN102137407A (zh) * 2011-03-08 2011-07-27 东南大学 一种基于物理层抽象算法的异构网动态系统级仿真方法

Also Published As

Publication number Publication date
CN102137407A (zh) 2011-07-27
CN102137407B (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
Dohler et al. Is the PHY layer dead?
CN103686218A (zh) 一种MIMO-OFDM系统下基于QoE的跨层优化视频传输方法及系统
CN102347820B (zh) 一种多小区协作无线通信系统联合编解码方法
CN103338412A (zh) 结合无线自适应调制与编码的自适应视频编码系统
Hoefel et al. On application of PHY layer abstraction techniques for system level simulation and adaptive modulation in IEEE 802.11 ac/ax systems
CN106059642B (zh) 一种基于不完全估计信息的分布式天线系统跨层设计方法
Chen et al. Resource allocation for OFDM-based status update systems: a timeliness perspective
CN103078716B (zh) 基于分布式3-D Turbo码的中继传输方法
CN102098132B (zh) 基于无线协作中继网络的分级随机网络编码方法
US20240113915A1 (en) Selecting a joint equalization and decoding model
WO2012119374A1 (zh) 一种基于物理层抽象算法的异构网动态系统级仿真方法
Jiang et al. LTE multimedia broadcast multicast service provisioning based on robust header compression
He et al. Link adaptation with combined optimal frame size and rate selection in error-prone 802.11 n networks
WO2020210845A2 (en) Methods and apparatus for power allocation
CN102611522B (zh) 数据重构方法及装置
WO2012119373A1 (zh) 一种基于wlan和lte异构网融合的链路性能感知方法
Galinina et al. Energy-efficient operation of a mobile user in a multi-tier cellular network
CN111343722B (zh) 边缘计算中基于认知无线电的能效优化方法
CN108234090A (zh) 一种大规模mimo系统中跨层优化设计方法
CN102638876A (zh) 一种基于用户体验的节能型无线视频业务资源调度方法
Dohl et al. Energy aware evaluation of LTE Hybrid-ARQ and modulation/coding schemes
Zhao et al. BSS: A Burst Error‐Correction Scheme of Multipath Transmission for Mobile Fog Computing
CN102394731A (zh) 多天线系统的跨层联合方法
CN104244432B (zh) 一种用户调度方法
Ge et al. A Low‐Complexity and High‐Decoding Performance Scheme for the MIMO‐SCMA System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860572

Country of ref document: EP

Kind code of ref document: A1