WO2012118310A2 - Fluorescent substance, and method for preparing same - Google Patents

Fluorescent substance, and method for preparing same Download PDF

Info

Publication number
WO2012118310A2
WO2012118310A2 PCT/KR2012/001459 KR2012001459W WO2012118310A2 WO 2012118310 A2 WO2012118310 A2 WO 2012118310A2 KR 2012001459 W KR2012001459 W KR 2012001459W WO 2012118310 A2 WO2012118310 A2 WO 2012118310A2
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
compound
heat treatment
limited
nitride
Prior art date
Application number
PCT/KR2012/001459
Other languages
French (fr)
Korean (ko)
Other versions
WO2012118310A3 (en
Inventor
윤대호
조덕수
김봉성
송영현
타카키마사키
정은준
송석현
강봉균
김명오
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2012118310A2 publication Critical patent/WO2012118310A2/en
Publication of WO2012118310A3 publication Critical patent/WO2012118310A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals

Definitions

  • the present application relates to an oxyhalide-based phosphor, a nitride-based or oxynitride-based phosphor, and a method for producing each thereof.
  • nitride-based or oxynitride-based phosphors have been produced by firing metal or oxide-based phosphors under a nitrogen atmosphere, but the high cost of the metals and the stability of the oxide-based phosphors have been a problem.
  • a method of nitriding carbonization by mixing carbon into an oxide-based phosphor by using a carbon thermal splitting method (CRN method; Cabothermal Reaction-Nitridation method) has been attempted, but the method is limited to materials having similar carbon and ion radius. It is pointed out that the problem can be applied and adversely affects the light emission of the phosphor, and improvement is needed.
  • the phosphor containing the rare earth metal has a feature that its emission and intensity vary depending on the valence of the rare earth metal.
  • Eu 3+ exhibits sharp light emission in a narrow region through the internal potential difference of 7 D 0 ⁇ 7 F energy potential difference
  • Eu 2+ exhibits light emission in a wide region due to the difference of 5d ⁇ 4f energy potential.
  • the valence of the rare earth metal can be adjusted through oxidation or reduction.
  • the method of calcination in an atmosphere in which oxygen is excluded and hydrogen is used, but the method has a low degree of reduction and thus the emission intensity of the phosphor obtained as a result is high. There was a problem that it is not uniform.
  • the obtained phosphors may be light emitting diodes (LEDs), plasma display panels (PDPs), or electric fields. It can be used in various fields such as field emission display (FED), and cold cathode fluorescent lamp (CCFL).
  • LEDs light emitting diodes
  • PDPs plasma display panels
  • FED field emission display
  • CCFL cold cathode fluorescent lamp
  • Korean Patent No. 10-1053884 discloses that a phosphor may be usefully used in a PDP.
  • a composition for forming a phosphor layer, a plasma display panel, and a method of manufacturing the plasma display panel are disclosed.
  • the present inventors have completed the present application by discovering that when the phosphor is produced according to the method of the present application, a phosphor having stable luminescence and a uniform luminescence intensity can be produced by an easy and economical method.
  • the present application is to provide an oxyhalide-based phosphor, a nitride or oxynitride-based phosphor, and their respective production methods.
  • a first aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method for producing an oxyhalide-based phosphor, comprising the step of, and heat treatment after the addition of a reducing agent to the solution.
  • a second aspect of the present application is an oxyhalide-based phosphor prepared by the method according to the first aspect of the present application, wherein the oxyhalide-based phosphor has a composition of M 1 -M 2 -OX: M 3 , wherein M 1 is an alkali.
  • M 1 is an alkali.
  • M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof,
  • X is a halogen element
  • M 3 is a rare earth metal
  • a third aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method of producing a nitride-based or oxynitride-based phosphor, including the step, and the step of adding a reducing agent to the solution and heat treatment in a nitrogen-containing atmosphere.
  • a fourth aspect of the present application is a nitride-based or oxynitride-based phosphor prepared by the method according to the third aspect of the present application, wherein the nitride-based or oxynitride-based phosphor is M 1 -M 2 -NX: M 3 or M 1 -M 2 -ONX: has a composition of M 3 , wherein M 1 is an alkali metal, alkaline earth metal, or transition metal, and M 2 is 3 cycles selected from the group consisting of Al, Si, P, and combinations thereof Is an element, X is a halogen element, and M 3 is a rare earth metal, and provides a nitride or oxynitride-based phosphor.
  • a phosphor having stable luminescence and uniform luminescence intensity can be produced by an easy and economical method.
  • the oxyhalide-based phosphor when the oxyhalide-based phosphor is manufactured by using a liquid phase method rather than the conventional solid-phase method according to the present application, the oxyhalide-based phosphor is obtained in the form of a single phosphor uniformly distributed evenly without aggregation, and excellent light emission efficiency By having a round shape, it can be used for a variety of purposes such as white LED or CCFL.
  • the oxyhalide-based fluorescent substance is manufactured according to the present application, since it can be manufactured in a short time, there is an advantage that the productivity and economy are also excellent.
  • nitride or oxynitride-based fluorescent material when manufacturing a nitride or oxynitride-based fluorescent material according to the present application, by using a large ion size of the halogen atoms when firing the precursor in a nitrogen atmosphere, various metals such as alkali metal, alkaline earth metal, transition metal, rare earth metal Nitriding of ions can be easily implemented.
  • a reducing gas to remove residual oxygen and nitriding relatively difficult to form chloride-based phosphors such as SiO 2 (s) as a result, nitride-based or oxynitride-based phosphors can be easily and economically produced. .
  • the phosphor containing the rare earth metal is characterized in that the light emission and the intensity of the rare earth metal is different depending on the electron value, the treatment of the alkaline compound according to the present application by controlling the electron value of the rare earth metal, the light emission is It is possible to easily and economically produce a phosphor having stable and uniform luminous intensity.
  • FIG. 1 is a schematic diagram showing a process of forming an oxyhalide-based, or nitride-based or oxynitride-based phosphor according to the present application.
  • Example 2 is an SEM photograph of the phosphor powder prepared according to Example 1 of the present application.
  • Example 3 is an XRD analysis result of the phosphor powder prepared according to Example 1 of the present application.
  • Example 5 is a SEM-EDS analysis result of the phosphor powder prepared according to Example 1 of the present application.
  • 6A and 6B are PL analysis results of the phosphor powder prepared according to Example 1 of the present application.
  • Example 7 is a PL analysis result of the phosphor powder prepared according to Example 2 of the present application.
  • Example 8 is an X-ray pattern analysis result of the phosphor powder prepared according to Example 2 of the present application.
  • Example 10 is an X-ray pattern analysis result of the phosphor powder prepared according to Example 3 of the present application.
  • Example 11 is an X-ray pattern analysis of the phosphor powder prepared according to Example 4 of the present application.
  • 13A to 13D are FE-SEM photographs of phosphor powders prepared according to Example 4 of the present application.
  • Example 15 is a PL analysis result of the phosphor powder prepared according to Example 5 of the present application.
  • 16 is a schematic diagram of a nitriding process of the phosphor powder according to Example 6 of the present application.
  • 17 is a PL analysis result of the phosphor powder prepared according to Example 6 of the present application.
  • Example 19 is a PL analysis result of the phosphor powder prepared according to Example 8 of the present application.
  • Example 20 is an XRD analysis result of the phosphor powder prepared according to Example 8 of the present application.
  • 21A and 22B are SEM photographs of the phosphor powder prepared according to Example 9 of the present application.
  • Example 22 is a PL analysis result of the phosphor powder prepared according to Example 9 of the present application.
  • Example 23 is an XRD analysis result of the phosphor powder prepared according to Example 10 of the present application.
  • Example 24 is a PL analysis result of the phosphor powder prepared according to Example 10 of the present application.
  • Example 25 is an XRD analysis result of the phosphor powder prepared according to Example 11 of the present application.
  • 26 is a PL analysis result of the phosphor powder prepared according to Example 11 of the present application.
  • Example 30 is a PL analysis result of the phosphor powder prepared according to Example 13 of the present application.
  • the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • a first aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method for producing an oxyhalide-based phosphor, comprising the step of, and heat treatment after the addition of a reducing agent to the solution.
  • the oxyhalide-based phosphor is prepared by dissolving a first metal halide and a second metal halide in a solvent to form an aqueous solution, and adding a liquid silica precursor thereto to form a uniform mixed solution through liquid stirring. Obtained by impregnating the mixed solution into a polymeric material which is a reducing agent, to obtain an impregnated material, and heat treating the impregnated material to obtain an impurity-free phosphor powder, and pulverizing the phosphor powder to finally increase the surface area and uniformity. It may be prepared in the form of a phosphor having a composition, but is not limited thereto.
  • the oxyhalide-based fluorescent substance after adding SiO 2 sol as a liquid precursor to a solution containing a rare earth metal and metal chlorides to obtain a uniform mixed solution through liquid stirring, the mixed solution Impregnated to obtain an impregnated material by impregnating a polymer material such as cellulose, which is a reducing agent, and drying the impregnated product to obtain a form of xerogel or xerosol, and finally heat treating the xerogel or xerosol. It may be prepared in the form of a phosphor, but is not limited thereto.
  • the first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof.
  • the second metal halide may include, but is not limited to, a rare earth metal halide.
  • a metal chloride having an ion radius of about 0.92 GPa to about 1.4 GPa may be used as the first metal halide to facilitate replacement with a rare earth metal material, but is not limited thereto.
  • the first metal halide has an ion radius of from about 0.92 kPa to about 1.0 kPa, from about 0.92 kPa to about 1.2 kPa, from about 0.92 kPa to about 1.4 kPa, from about 1.0 kPa to about 1.2 kPa, about 1.0 kPa About 1.4 kPa, or about 1.2 kPa to about 1.4 kPa, but is not limited thereto.
  • the alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide is BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , and combinations thereof, may include chloride, but is not limited thereto.
  • the transition metal halide is ScCl 2 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5 , and chlorides selected from the group consisting of combinations thereof, but is not limited thereto.
  • the rare earth metal halide is a chloride selected from the group consisting of LaCl 3 , CeCl 3 , NdCl 3 , EuCl 3 , GdCl 3 , TbCl 3 , DyCl 3 , ErCl 3 , YbCl 3 , and combinations thereof It may be to include, but is not limited thereto.
  • the oxide precursor of the tricycle element may include SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a water-soluble silane, but is not limited thereto. It doesn't happen.
  • the oxide precursor of the tricycle element may include, but is not limited to, water soluble silicate (WSS) or SiO 2 sol having a particle size of about 5 nm to about 3000 nm. .
  • WSS water soluble silicate
  • SiO 2 sol having a particle size of about 5 nm to about 3000 nm.
  • the reducing agent is selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof It may be to include a high molecular material, but is not limited thereto. For example, it may be desirable to use a high purity pulp having a purity of about 99.8% or more and having a fine matrix form, but is not limited thereto.
  • the heat treatment includes: a first heat treatment performed at about 150 ° C. to about 400 ° C., a second heat treatment performed at about 500 ° C. to about 1000 ° C., and about 700 ° C. to about 1400 ° C.
  • Tertiary heat treatment performed in may be to include that is performed sequentially, but is not limited thereto.
  • the step of heat treatment may include, but is not limited to, primary heat treatment at about 150 ° C to about 400 ° C.
  • the first heat treatment may be about 150 ° C. to about 200 ° C., about 150 ° C. to about 250 ° C., about 150 ° C. to about 300 ° C., about 150 ° C. to about 350 ° C., about 150 ° C.
  • to about 400 ° C. about 200 ° C to about 250 ° C, about 200 ° C to about 300 ° C, about 200 ° C to about 350 ° C, about 200 ° C to about 400 ° C, about 250 ° C to about 300 ° C, about 250 ° C to about 350 ° C, about 250 ° C To about 400 ° C, about 300 ° C to about 350 ° C, about 300 ° C to about 400 ° C, or about 350 ° C to about 400 ° C, but is not limited thereto.
  • the first heat treatment may decompose the polymer material used as a reducing agent such as cellulose, but is not limited thereto.
  • decomposition of the polymer material formed through the first heat treatment may include decomposition of a polymer ring, -OH group or -CH 2 O group in the polymer, and in addition to NO 3 of a metal halide.
  • the first heat treatment may be performed to decompose and remove the impurity ligand of, but is not limited thereto.
  • the primary heat treatment temperature is less than about 150 ° C., it may be difficult to decompose a polymer material used as a reducing agent such as cellulose, but is not limited thereto.
  • the primary heat treatment temperature is greater than about 400 ° C
  • the precursor of the phosphor is decomposed and oxidized to form an oxide such as an oxide silicate, which may affect the final resulting phosphor, but is not limited thereto.
  • the primary heat treatment may be performed without a separate grinding process, and when the grinding process is performed in parallel, it may be easy to obtain a uniform oxyhalide-based phosphor at a lower temperature, but is not limited thereto.
  • the heat treatment may include, but is not limited to, secondary heat treatment at about 500 ° C. to about 1000 ° C. after the first heat treatment.
  • the secondary heat treatment may be about 500 ° C. to about 600 ° C., about 500 ° C. to about 700 ° C., about 500 ° C. to about 800 ° C., about 500 ° C. to about 900 ° C., about 500 ° C.
  • the secondary heat treatment may be performed under an oxygen atmosphere to remove residual organic materials from the phosphor precursor powder in the solid state obtained through the first heat treatment and to crystallize the phosphor precursor powder, but is not limited thereto.
  • the temperature at which the second heat treatment is performed it is possible to easily remove the residual organic material and crystallize the phosphor precursor powder, but is not limited thereto.
  • the secondary heat treatment is performed at a temperature of less than about 500 ° C.
  • it is difficult to crystallize the amorphous precursor precursor powder and a long time heat treatment may be required, but is not limited thereto.
  • the secondary heat treatment is performed at a temperature of more than about 1000 ° C., some of the oxides may be oxidized according to the crystal stability of the phosphor precursor to form an oxide such as an oxidized silicate phosphor, but the present invention is not limited thereto.
  • LiCl, MgCl 2 , ScCl 3 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl as the first metal halide
  • a large ion between the metal ion and Cl ion of the first metal halide Due to the difference in radius ratio, it may be preferable to perform the secondary heat treatment for a long time of about 10 hours or more at a low temperature of about 500 ° C., but is not limited thereto.
  • the secondary heat treatment may be performed at a temperature of about 600 ° C. to about 800 ° C. for about 5 hours. It may be preferred, but is not limited thereto.
  • the heat treatment may include, but is not limited to, a third heat treatment at about 700 ° C. to about 1400 ° C. after the second heat treatment.
  • the third heat treatment may be about 700 ° C. to about 800 ° C., about 700 ° C. to about 900 ° C., about 700 ° C. to about 1000 ° C., about 700 ° C. to about 1100 ° C., about 700 ° C.
  • crystals of the phosphor precursor formed through the second heat treatment may be grown while reducing an activator such as a rare earth metal, but the present invention is not limited thereto.
  • an activator such as a rare earth metal
  • the present invention is not limited thereto.
  • the tertiary heat treatment is performed at a temperature of less than about 700 ° C., it is difficult to form a sufficient reducing atmosphere, and as a result, a decrease in luminance and emission intensity of the phosphor may be caused, but is not limited thereto.
  • the third heat treatment is performed at a temperature of more than about 1400 °C, as the phosphor powder becomes a sintered body may lose the properties of the powder, but is not limited thereto.
  • a light substance that is easy to dissolve and evaporates such as B
  • the organic material is removed by performing a long time at a low temperature of about 500 ° C. for about 10 hours or more, and the crystallization of SiO 2 is induced by performing the tertiary heat treatment for about 2 hours or more at about 700 ° C. in a reducing atmosphere without oxygen, Thereafter, a method of inducing growth of the phosphor crystal at about 900 ° C. may be selected, but is not limited thereto.
  • the second heat treatment is performed at a temperature of about 700 ° C. or more through a rapid temperature increase rate to crystallize SiO 2 . It is possible to take a method of obtaining a parent while inducing, but is not limited thereto.
  • an additional salt may be used in the method for preparing an oxyhalide-based phosphor according to the first aspect of the present application to easily control the amount of halogen in the phosphor, but is not limited thereto.
  • an additional salt may be used in the method for preparing an oxyhalide-based phosphor according to the first aspect of the present application to easily control the amount of halogen in the phosphor, but is not limited thereto.
  • different salts containing the same metal as the calcium chloride and containing oxygen for example
  • the addition of calcium nitrate salt can easily control the amount of chlorine in the phosphor produced, but is not limited thereto. Representing this example as a reaction scheme is as follows:
  • the reactants used in the reaction scheme 1 are all present in the liquid phase in the solvent, and a brief amount of the lubricant is omitted in order to simplify the reaction.
  • the calcium nitrate salt contains oxygen and thus can be easily oxidized, whereas the calcium chloride does not contain oxygen, so that the oxyhalide-based phosphor can be easily controlled through the reaction scheme, and the halogen in the phosphor The amount can be easily controlled, but is not limited thereto.
  • the method for preparing the oxyhalide-based phosphor may further include treating an alkaline compound to the oxyhalide-based phosphor prepared after the heat treatment, but is not limited thereto. .
  • the method of manufacturing the oxyhalide-based phosphor may further include treating an alkaline compound to the oxyhalide-based phosphor prepared for improving luminance of the phosphor after the heat treatment, but is not limited thereto. It is not.
  • the alkaline compound may include, but is not limited to, a compound including an -OH group or a -NH 2 group.
  • the alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or propylamine (propylamine) ) -Based compound, butylamine-based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, metal amide compound, organic-based compound It may include, but is not limited to, a compound selected from the group consisting of alkaline compounds, and combinations thereof.
  • the metal amide compound may be a lithium amide compound, a sodium amide compound, a potassium amide compound, a cesium amide compound, and combinations thereof. It may be to include a compound selected from the group consisting of, but is not limited thereto.
  • the organic-based alkaline compound may include NH 4 OH, NH 2 NH 2 , C 6 H 5 NH 2 , or C 3 H 6 NH 2 , but is not limited thereto.
  • the alkaline compound may include a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, and combinations thereof, and a compound selected from the group consisting of combinations thereof.
  • the present invention is not limited thereto.
  • chlorine contained in the phosphor may be removed using a difference in reactivity through the ionic radius ratio between the chlorine contained in the phosphor and the alkaline compound, and the -OH group may be substituted in place of the place.
  • the electron value of the rare earth metal contained in the phosphor is increased, so that the function as an activator of the rare earth metal can be improved.
  • an alkaline compound containing Cs may be particularly preferable, because Cs is a soft metal and the chlorine and the ion radius ratio are similar, so that the reactivity with chlorine is good.
  • the reaction scheme of the oxidation reaction involving the alkaline compound is as follows:
  • the alkaline compound may be a propylamine compound, a butylamine compound, a pentylamine compound, a hexylamine compound, or a heptylamine compound.
  • Aminobenzene-based compound lithium amide-based compound, sodium amide-based compound, potassium amide-based compound, cesium amide-based compound, and combinations thereof It may be to include a compound selected from the group consisting of, but is not limited thereto.
  • the alkaline compound may be used in a strong reduction reaction to remove chlorine by reacting with a phosphor. As the carbon ring of the alkaline compound is more stable, the substitution reaction may occur more rapidly.
  • alkaline compounds an aminobenzene-based compound or a hydrazine-based compound may be preferable, but is not limited thereto.
  • alkaline compounds containing Li, Na, K, Rb, or Cs alkaline compounds containing Cs may be particularly preferred, since Cs is a soft metal and its chlorine and ion radius ratio are similar, which makes it highly reactive with chlorine.
  • the reaction schemes of the reduction reaction involving the alkaline compound are as follows:
  • the step of treating the alkaline compound may be performed at about -100 °C to about 1500 °C, but is not limited thereto.
  • the alkaline compound may be dissolved and reacted in a solvent, and the reaction may be performed at a melting point or higher of the alkaline compound itself, but is not limited thereto.
  • the treating of the alkaline compound may be performed at about -100 ° C to about 1500 ° C, but is not limited thereto.
  • treating the alkaline compound may comprise about -100 ° C to about 0 ° C, about -100 ° C to about 500 ° C, about -100 ° C to about 1000 ° C, about -100 ° C to about 1500 ° C, about 0 Is performed at from about 500 ° C. to about 500 ° C., from about 0 ° C. to about 1000 ° C., from about 0 ° C. to about 1500 ° C., from about 500 ° C. to about 1000 ° C., from about 500 ° C. to about 1500 ° C., or from about 1000 ° C. to about 1500 ° C. May be, but is not limited thereto.
  • the reaction may be difficult to perform due to its low reactivity, and at temperatures above about 1500 ° C., the alkaline compound may react with the matrix of the phosphor itself even after reacting with the chlorine of the phosphor.
  • the reaction may occur to synthesize a second phase, but is not limited thereto.
  • the phosphor obtained by treating the alkaline compound is washed with distilled water, alcohols, or nonpolar solvent to remove residual alkali metal chlorides, and then dried in a manner of drying at about 200 ° C. or lower. It may be, but is not limited thereto. For example, it may be preferable to remove the residual alkali metal chloride because it may react with the phosphor to affect the emission decrease, but is not limited thereto. Further, for example, the drying may be performed at a temperature of about 200 ° C. or less, about 180 ° C. or less, about 160 ° C. or less, about 140 ° C. or less, about 120 ° C. or less, or about 100 ° C.
  • the drying is performed at a temperature exceeding about 200 ° C.
  • the remaining alkali metal may react with the phosphor, causing a decrease in emission of the phosphor, but is not limited thereto.
  • the alkaline compound is used as a reducing agent, for drying the obtained phosphor, it may be preferable to use a vacuum oven or to dry using nitrogen or an inert gas, but is not limited thereto.
  • the amount of alkali metal chloride remaining may be adjusted or removed by adjusting the amount of the phosphor containing alkali metal and chloride, but is not limited thereto.
  • the phosphor as a precursor in the reduction schemes may be a material including an activator, but is not limited thereto.
  • all reactions in the reduction schemes may be performed under ultraviolet light, thereby improving reaction rate and reactivity, but are not limited thereto.
  • the reaction may be carried out in a very small amount on the surface of the phosphor particles, but may have a condition that can be reduced from Eu 3+ to Eu 2+ on the surface with respect to the amount of lubricant of the phosphor.
  • an alkaline solution material such as hydrazine may be synthesized by reducing the firing of the phosphor or reducing the phosphor, but the present invention is not limited thereto.
  • the side reaction product generated during the reaction may be removed or separated through centrifugation or gasification, but is not limited thereto.
  • the hydroxy group synthesis reaction may contribute to the improvement of the reaction, but is not limited thereto.
  • the time required for oxidation and reduction by further atomizing the phosphor powder and increasing the surface area It is possible to shorten or lower the synthesis temperature, but is not limited thereto.
  • a ball mill, a roller mill, a vibrating ball mill, an atorita mill, a planetary ball mill, a sand mill, a cutter mill Drying dispersers such as cutter mills, hammer mills, jet mills, ultrasonic dispersers, or grinding apparatuses such as high pressure homogenizers may be used, but are not limited thereto.
  • a second aspect of the present application is an oxyhalide-based phosphor prepared by the method according to the first aspect of the present application, wherein the oxyhalide-based phosphor has a composition of M 1 -M 2 -OX: M 3 , wherein M 1 is an alkali.
  • M 1 is an alkali.
  • M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof,
  • X is a halogen element
  • M 3 is a rare earth metal
  • the composition of the oxyhalide-based phosphor according to the second aspect of the present application may also be represented by M 4 v ⁇ u Si w A x O y Cl z : M 5 u , wherein M 4 is an alkali metal or Chlorides of alkaline earth metals (eg, LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2, etc.), or chlorides of transition metals (eg, ScCl 3 , TiCl 4 , VCl 4) , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5, etc .; A is B, Al, or P; M 5 is a chloride of a rare earth metal (eg
  • the basic composition of the oxyhalide-based phosphor according to the second aspect of the present application may also be represented as M-Si-AO-Cl (A: B, Al, or P), for example, M-Si-O -Cl, M-Si-BO-Cl, M-Si-Al-O-Cl, or M-Si-PO-Cl, wherein M may be a combination of at least two metals, but It is not limited.
  • M may be a combination of at least two metals selected from alkali metals, alkaline earth metals, transition metals, or rare earth metals, but is not limited thereto.
  • the oxyhalide-based phosphor may have ultra long afterglow phosphor characteristics, and may have a round particle shape and a particle size of about 50 nm to about 10 ⁇ m, but is not limited thereto.
  • the oxyhalide-based phosphor may be about 50 nm to about 100 nm, about 50 nm to about 500 nm, about 50 nm to about 1 ⁇ m, about 50 nm to about 10 ⁇ m, about 100 nm to about 500 nm , About 100 nm to about 1 ⁇ m, about 100 nm to about 10 ⁇ m, or about 1 ⁇ m to about 10 ⁇ m, but is not limited thereto.
  • the present application may include, for example, a display including the oxyhalide-based phosphor, but is not limited thereto.
  • the display may include a cathode ray tube, a light emitting diode (LED), a plasma display panel (PDP), or a field emission display (FED), but is not limited thereto. It doesn't happen.
  • LED light emitting diode
  • PDP plasma display panel
  • FED field emission display
  • the present application may include, for example, a lamp including the oxyhalide-based phosphor, but is not limited thereto.
  • a third aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method of producing a nitride-based or oxynitride-based phosphor, including the step, and the step of adding a reducing agent to the solution and heat treatment in a nitrogen-containing atmosphere.
  • the method for producing a nitride-based or oxynitride-based phosphor according to the third aspect of the present invention the step of heat treatment under a nitrogen-containing atmosphere in the middle of the method for producing an oxyhalide-based phosphor according to the first aspect of the present application, That is, by including the step of nitriding, by inducing a thermochemical reaction to replace the halogen element and nitrogen of the oxyhalide-based phosphor, the nitride-based or oxynitride-based phosphor may be easily and economically obtained, but is not limited thereto. no.
  • the nitride-based or oxynitride-based phosphor may be prepared by dissolving the first metal halide and the second metal halide in a solvent to form an aqueous solution, adding liquid silica precursor thereto, and then uniformly stirring the liquid.
  • a mixed solution is obtained, and the mixed solution is impregnated into a polymeric material which is a reducing agent to obtain an impregnation, and the impregnated phosphor powder is obtained by heat treatment of the impregnation, and finally the surface area increased by pulverizing the phosphor powder.
  • It may be prepared in the form of a phosphor having a uniform composition with, but is not limited thereto.
  • the nitride-based or oxynitride-based fluorescent material after adding SiO 2 sol as a liquid precursor to a solution containing a rare earth metal and metal chlorides to obtain a uniform mixed solution through liquid stirring,
  • the mixed solution is impregnated with a polymer material such as cellulose, which is a reducing agent, to obtain an impregnation.
  • the impregnation is dried to obtain a form of xerogel or xerosol, and finally, the heat treatment of the xerogel or xerosol is carried out.
  • It can be prepared in the form of a spherical phosphor, but is not limited thereto.
  • the first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof.
  • the second metal halide may include, but is not limited to, a rare earth metal halide.
  • the metals contained in the first metal halide and the second metal halide are diversified. It is possible to facilitate the search for a new composition of the nitride-based or oxynitride-based fluorescent material prepared by, but is not limited thereto.
  • a metal chloride having an ion radius of about 0.92 GPa to about 1.4 GPa may be used as the first metal halide to facilitate replacement with a rare earth metal material, but is not limited thereto.
  • the first metal halide has an ion radius of from about 0.92 kPa to about 1.0 kPa, from about 0.92 kPa to about 1.2 kPa, from about 0.92 kPa to about 1.4 kPa, from about 1.0 kPa to about 1.2 kPa, about 1.0 kPa About 1.4 kPa, or about 1.2 kPa to about 1.4 kPa, but is not limited thereto.
  • the alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide is BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , and combinations thereof, may include chloride, but is not limited thereto.
  • the transition metal halide is ScCl 2 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5 , and chlorides selected from the group consisting of combinations thereof, but is not limited thereto.
  • the rare earth metal halide is a chloride selected from the group consisting of LaCl 3 , CeCl 3 , NdCl 3 , EuCl 3 , GdCl 3 , TbCl 3 , DyCl 3 , ErCl 3 , YbCl 3 , and combinations thereof It may be to include, but is not limited thereto.
  • the oxide precursor of the tricycle element may include SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a water-soluble silane, but is not limited thereto. It doesn't happen.
  • the oxide precursor of the tricycle element may include, but is not limited to, water soluble silicate (WSS) or SiO 2 sol having a particle size of about 5 nm to about 3000 nm. .
  • WSS water soluble silicate
  • SiO 2 sol having a particle size of about 5 nm to about 3000 nm.
  • the reducing agent is selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof It may be to include a high molecular material, but is not limited thereto. For example, it may be desirable to use a high purity pulp having a purity of about 99.8% or more and having a fine matrix form, but is not limited thereto.
  • the heat treatment includes: a first heat treatment performed at about 150 ° C. to about 400 ° C., a second heat treatment performed at about 500 ° C. to about 1000 ° C., and about 700 ° C. to about 1400 ° C.
  • Tertiary heat treatment performed in may be to include that is performed sequentially, but is not limited thereto.
  • the drying process may be performed at a temperature of about 50 ° C. to about 80 ° C. in a general drying oven or at a temperature of about 50 ° C. to about 150 ° C. in a vacuum oven, but is not limited thereto.
  • the secondary heat treatment may be omitted, and only the first heat treatment and the third heat treatment may be continuously performed, but the present invention is not limited thereto.
  • each of the primary, secondary, and tertiary heat treatments may be performed under a nitrogen atmosphere in which oxygen is excluded or under an inert gas atmosphere, but is not limited thereto.
  • the step of heat treatment may include, but is not limited to, primary heat treatment at about 150 ° C to about 400 ° C.
  • the first heat treatment may be about 150 ° C. to about 200 ° C., about 150 ° C. to about 250 ° C., about 150 ° C. to about 300 ° C., about 150 ° C. to about 350 ° C., about 150 ° C.
  • to about 400 ° C. about 200 ° C to about 250 ° C, about 200 ° C to about 300 ° C, about 200 ° C to about 350 ° C, about 200 ° C to about 400 ° C, about 250 ° C to about 300 ° C, about 250 ° C to about 350 ° C, about 250 ° C To about 400 ° C, about 300 ° C to about 350 ° C, about 300 ° C to about 400 ° C, or about 350 ° C to about 400 ° C, but is not limited thereto.
  • the first heat treatment may decompose the polymer material used as a reducing agent such as cellulose, but is not limited thereto.
  • the decomposition of the polymer material formed through the first heat treatment may include decomposition of the ring of the polymer, -OH group or -CH 2 O group in the polymer, in addition to NO 3 and the like of the metal halide
  • the first heat treatment may be performed to decompose and remove the impurity ligand of, but is not limited thereto.
  • the primary heat treatment temperature is less than about 150 ° C., it may be difficult to decompose a polymer material used as a reducing agent such as cellulose, but is not limited thereto.
  • the primary heat treatment temperature is greater than about 400 ° C
  • the precursor of the phosphor is decomposed and oxidized to form an oxide such as an oxide silicate, which may affect the final resulting phosphor, but is not limited thereto.
  • the primary heat treatment may be performed without a separate grinding process, and when the grinding process is performed in parallel, the surface area may be increased, so that it may be easy to obtain a uniform phosphor at a lower temperature, but is not limited thereto.
  • the heat treatment may include, but is not limited to, secondary heat treatment at about 500 ° C. to about 1000 ° C. after the first heat treatment.
  • the secondary heat treatment may be about 500 ° C. to about 600 ° C., about 500 ° C. to about 700 ° C., about 500 ° C. to about 800 ° C., about 500 ° C. to about 900 ° C., about 500 ° C.
  • the secondary heat treatment may be performed under an oxygen atmosphere to remove residual organic materials from the phosphor precursor powder in the solid state obtained through the first heat treatment and to crystallize the phosphor precursor powder, but is not limited thereto.
  • the temperature at which the second heat treatment is performed it is possible to easily remove the residual organic material and crystallize the phosphor precursor powder, but is not limited thereto.
  • the secondary heat treatment is performed at a temperature of less than about 500 ° C.
  • it is difficult to crystallize the amorphous precursor precursor powder and a long time heat treatment may be required, but is not limited thereto.
  • the secondary heat treatment is performed at a temperature of more than about 1000 ° C., some of the oxides may be oxidized according to the crystal stability of the phosphor precursor to form an oxide such as an oxidized silicate phosphor, but the present invention is not limited thereto.
  • the first metal halide LiCl, MgCl 2 , ScCl 3 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl
  • 3 , CoCl 2 , NiCl 2 , CuCl 2 , or ZnCl 2 and using the SiO 2 or SiO 2 + Al salt as the oxide precursor of the bicycle element between the metal and Cl ions of the first metal halide Due to the large difference in the ion radius ratio of, it may be preferable to perform the secondary heat treatment at a low temperature of about 500 ° C.
  • the secondary heat treatment may be performed at a temperature of about 600 ° C. to about 800 ° C. for about 5 hours. It may be preferred, but is not limited thereto.
  • the heat treatment may include, but is not limited to, a third heat treatment at about 700 ° C. to about 1400 ° C. after the second heat treatment.
  • the third heat treatment may be about 700 ° C. to about 800 ° C., about 700 ° C. to about 900 ° C., about 700 ° C. to about 1000 ° C., about 700 ° C. to about 1100 ° C., about 700 ° C.
  • crystals of the phosphor precursor formed through the second heat treatment may be grown while reducing an activator such as a rare earth metal, but the present invention is not limited thereto.
  • an activator such as a rare earth metal
  • the present invention is not limited thereto.
  • the tertiary heat treatment is performed at a temperature of less than about 700 ° C., it is difficult to form a sufficient reducing atmosphere, and as a result, a decrease in luminance and emission intensity of the phosphor may be caused, but is not limited thereto.
  • the third heat treatment is performed at a temperature of more than about 1400 °C, as the phosphor powder becomes a sintered body may lose the properties of the powder, but is not limited thereto.
  • the tertiary heat treatment may be performed in an atmosphere in which a nitrogen-containing gas flows at a speed of about 0.1 cm / s to about 10 cm / s, but is not limited thereto.
  • the tertiary heat treatment may comprise a nitrogen-containing gas from about 0.1 cm / s to about 1 cm / s, from about 0.1 cm / s to about 3 cm / s, from about 0.1 cm / s to about 5 cm / s, About 0.1 cm / s to about 7 cm / s, about 0.1 cm / s to about 10 cm / s, about 1 cm / s to about 3 cm / s, about 1 cm / s to about 5 cm / s, about 1 cm / s to about 7 cm / s, about 1 cm / s to about 10 cm / s, about 3 cm / s to about 5 cm / s, about 3 cm / s to about 5 cm / s,
  • the nitrogen-containing atmosphere may be formed by N 2 , NH 3 , or a combination thereof, but is not limited thereto.
  • the nitrogen-containing atmosphere may include one formed by N 2 , NH 3 , or a combination thereof, and may further include H 2 , or CH 3 , but is not limited thereto.
  • a light substance that is easy to dissolve and evaporates such as B
  • the secondary heat treatment is performed at a low temperature of about 500 ° C. for at least about 10 hours to remove organics
  • the third heat treatment is performed at about 700 ° C. for at least about 2 hours at a reduced atmosphere in which oxygen is excluded to crystallize SiO 2 .
  • Induction and may be selected to induce the growth of the phosphor crystal at about 900 °C, but is not limited thereto.
  • a nitride-based or oxynitride-based phosphor in the case of using a matrix of SiO 2 in combination with P as a parent of the phosphor, P having a high ionic bondability and high magnetism is Since Si is more likely to form MPO-Cl before forming a matrix with other metal salts, once the amorphous phase is obtained through primary heat treatment, the secondary heat treatment is carried out at a temperature of about 700 ° C. or higher through a rapid temperature increase rate to form SiO.
  • a method of obtaining a matrix while inducing crystallization of 2 may be selected, but is not limited thereto.
  • the part which is different from the manufacturing of the oxyhalide-based fluorescent material according to the first aspect of the present application may be referred to as a part for nitriding metal ions.
  • a part for nitriding metal ions For example, when chloride is used as the first metal halide and SiO 2 is used as the oxide precursor of the tricycle element, the difference in the ion radius ratio between Cl ( ⁇ 1.81 kV) and N (1.46 kV)
  • the nitriding can be achieved by inducing covalent bonds by substituting N for Cl instead of Cl, but the present invention is not limited thereto.
  • chloride As the first metal halide, but is not limited thereto.
  • nitriding may be induced by a relatively low temperature reaction, but is not limited thereto.
  • the ion radius size of the rare earth-based metal is about 0.92 kPa to It is preferable that the metal ion of the phosphor matrix also has a similar ion radius in that it is about 1.4 GHz, but is not limited thereto.
  • the method for producing a nitride or oxynitride-based phosphor according to the third aspect of the present application, the general carbon thermal decomposition method (CRN method; Cabothermal Reaction-Nitridation method) or gas reduction method (GRN method; Gas-Reduction-Nitridation )
  • CRN method General carbon thermal decomposition method
  • GNN method Gas reduction-Nitridation
  • high purity nitride-based phosphors are formed by mixing carbon with oxide-based phosphors and nitriding them through carbonization using the CRN method.
  • such a conventional method is applicable only to materials having similar carbon and ionic radii, such as SiO 2.
  • the present invention was intended to solve the above limitation.
  • Nitrile is advantageous in that it is easy to nitride due to the strong ionic bonding of chlorine, but on the other hand, oxidation may proceed before nitriding due to instability, and it is difficult to maintain chloride state due to the strong hydroxyl action during solution formation. There may be. In addition, there may also be a problem that the uniformity of the composition is lowered by being lost to the gas at a low or medium temperature of about 400 °C or less.
  • the CRN method or the GRN method is preferably combined with the method of the present application, and by inducing self oxidation using a nitrate-based material as a liquid material of the Al compound. It may be desirable to induce the solution of the problem, but is not limited thereto.
  • the rare earth metal which is a substance added in a small amount, is not shown for convenience of description.
  • a gas containing carbon such as methane gas
  • the efficiency of the reaction may be improved, but is not limited thereto.
  • Nitride-based or nitride-based phosphors may be prepared, and reaction schemes related thereto may be represented, for example, as follows, but are not limited thereto.
  • the reaction rate is lowered if the precursor materials are already crystallized before reacting with a gas containing a nitrogen atom, and thus the temperature at which crystallization becomes active is about 700 ° C. or less. It may be preferable to perform the second heat treatment at a temperature of, but is not limited thereto. In addition, since it is preferable to reach the third heat treatment temperature, which is a temperature at which the precursor crystallizes to the gas containing the nitrogen atom in a state where the crystallization is minimal, it may be advantageous to rapidly increase the temperature to the third heat treatment temperature. It is not.
  • the third heat treatment temperature is preferably about 1400 ° C. to about 1700 ° C. when the method of the present invention is combined with the CRN method, and about 1200 ° C. to about 1400 when the method of the present invention is combined with the GRN method. °C may be preferred, but is not limited thereto.
  • the flux of the gas containing a nitrogen atom in the above methods is a factor that must be considered for an efficient and safe nitriding reaction, when the method of the present invention and the CRN method in parallel, about 1 cm / s to about 2 cm / It is preferable to inject a gas containing the nitrogen atom at a flux of s, and when the method of the present application and the GRN method are used in combination, the nitrogen atom is removed at a flux of about 0.3 cm / s or less in consideration of the safety of NH 3 . It may be desirable to inject a gas containing, but is not limited thereto.
  • the method of manufacturing the nitride-based or oxynitride-based phosphor may further include treating an alkaline compound to the nitride-based or oxynitride-based phosphor prepared after the heat treatment.
  • the present invention is not limited thereto.
  • the method of manufacturing the nitride-based or oxynitride-based phosphor may further include treating an alkaline compound to the nitride-based or oxynitride-based phosphor prepared for improving the brightness of the phosphor after the heat treatment step.
  • an alkaline compound to the nitride-based or oxynitride-based phosphor prepared for improving the brightness of the phosphor after the heat treatment step.
  • the alkaline compound may include, but is not limited to, a compound including an -OH group or a -NH 2 group.
  • the alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or propylamine (propylamine) ) -Based compound, butylamine-based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, metal amide compound, organic-based compound It may include, but is not limited to, a compound selected from the group consisting of alkaline compounds, and combinations thereof.
  • the metal amide compound may be a lithium amide compound, a sodium amide compound, a potassium amide compound, a cesium amide compound, and combinations thereof. It may be to include a compound selected from the group consisting of, but is not limited thereto.
  • the organic-based alkaline compound may include NH 4 OH, NH 2 NH 2 , C 6 H 5 NH 2 , or C 3 H 6 NH 2 , but is not limited thereto.
  • the alkaline compound may include a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, and combinations thereof, and a compound selected from the group consisting of combinations thereof.
  • the present invention is not limited thereto.
  • chlorine contained in the phosphor may be removed using a difference in reactivity through the ionic radius ratio between the chlorine contained in the phosphor and the alkaline compound, and the -OH group may be substituted in place of the place.
  • the electron value of the rare earth metal contained in the phosphor is increased, so that the function as an activator of the rare earth metal can be improved.
  • an alkaline compound containing Cs may be particularly preferable, because Cs is a soft metal and the chlorine and the ion radius ratio are similar, so that the reactivity with chlorine is good.
  • the alkaline compound may be a propylamine compound, a butylamine compound, a pentylamine compound, a hexylamine compound, or a heptylamine compound.
  • Aminobenzene-based compound lithium amide-based compound, sodium amide-based compound, potassium amide-based compound, cesium amide-based compound, and combinations thereof It may be to include a compound selected from the group consisting of, but is not limited thereto.
  • the alkaline compound may be used in a strong reduction reaction to remove chlorine by reacting with a phosphor. As the carbon ring of the alkaline compound is more stable, the substitution reaction may occur more rapidly.
  • alkaline compounds an aminobenzene-based compound or a hydrazine-based compound may be preferable, but is not limited thereto.
  • alkaline compounds containing Li, Na, K, Rb, or Cs alkaline compounds containing Cs may be particularly preferred, since Cs is a soft metal and its chlorine and ion radius ratio are similar, which makes it highly reactive with chlorine. .
  • the step of treating the alkaline compound may be performed at about -100 °C to about 1500 °C, but is not limited thereto.
  • the alkaline compound may be dissolved and reacted in a solvent, and the reaction may be performed at a melting point or higher of the alkaline compound itself, but is not limited thereto.
  • the treating of the alkaline compound may be performed at about -100 ° C to about 1500 ° C, but is not limited thereto.
  • treating the alkaline compound may comprise about -100 ° C to about 0 ° C, about -100 ° C to about 500 ° C, about -100 ° C to about 1000 ° C, about -100 ° C to about 1500 ° C, about 0 Is performed at from about 500 ° C. to about 500 ° C., from about 0 ° C. to about 1000 ° C., from about 0 ° C. to about 1500 ° C., from about 500 ° C. to about 1000 ° C., from about 500 ° C. to about 1500 ° C., or from about 1000 ° C. to about 1500 ° C. May be, but is not limited thereto.
  • the reaction may be difficult to perform due to its low reactivity, and at temperatures above about 1500 ° C., the alkaline compound may react with the matrix of the phosphor itself even after reacting with the chlorine of the phosphor.
  • the reaction may occur to synthesize a second phase, but is not limited thereto.
  • the phosphor obtained by treating the alkaline compound is washed with distilled water, alcohols, or nonpolar solvent to remove residual alkali metal chlorides, and then dried in a manner of drying at about 200 ° C. or lower. It may be, but is not limited thereto. For example, it may be preferable to remove the residual alkali metal chloride because it may react with the phosphor to affect the emission decrease, but is not limited thereto. Further, for example, the drying may be performed at a temperature of about 200 ° C. or less, about 180 ° C. or less, about 160 ° C. or less, about 140 ° C. or less, about 120 ° C. or less, or about 100 ° C.
  • the drying is performed at a temperature exceeding about 200 ° C.
  • the remaining alkali metal may react with the phosphor, causing a decrease in emission of the phosphor, but is not limited thereto.
  • the alkaline compound is used as a reducing agent, for drying the obtained phosphor, it may be preferable to use a vacuum oven or to dry using nitrogen or an inert gas, but is not limited thereto.
  • the amount of alkali metal chloride remaining may be adjusted or removed by adjusting the amount of the phosphor containing alkali metal and chloride, but is not limited thereto.
  • the phosphor as a precursor in the reduction schemes may be a material including an activator, but is not limited thereto.
  • all reactions in the reduction schemes may be performed under ultraviolet light, thereby improving reaction rate and reactivity, but are not limited thereto.
  • the reaction may be carried out in a very small amount on the surface of the phosphor particles, but may have a condition that can be reduced from Eu 3+ to Eu 2+ on the surface with respect to the amount of lubricant of the phosphor.
  • an alkaline solution material such as hydrazine may be synthesized by reducing the firing of the phosphor or reducing the phosphor, but the present invention is not limited thereto.
  • the side reaction product generated during the reaction may be removed or separated through centrifugation or gasification, but is not limited thereto.
  • the hydroxy group synthesis reaction may contribute to the improvement of the reaction, but is not limited thereto.
  • the phosphor powder is further atomized and the surface area is increased to oxidize It may shorten the time required for reduction or lower the synthesis temperature, but is not limited thereto.
  • a ball mill, a roller mill, a vibrating ball mill, an atorita mill, a planetary ball mill, a sand mill, a cutter mill Drying dispersers such as cutter mills, hammer mills, jet mills, ultrasonic dispersers, or grinding apparatuses such as high pressure homogenizers may be used, but are not limited thereto.
  • a fourth aspect of the present application is a nitride-based or oxynitride-based phosphor prepared by the method according to the third aspect of the present application, wherein the nitride-based or oxynitride-based phosphor is M 1 -M 2 -NX: M 3 or M 1 -M 2 -ONX: has a composition of M 3 , wherein M 1 is an alkali metal, alkaline earth metal, or transition metal, and M 2 is 3 cycles selected from the group consisting of Al, Si, P, and combinations thereof Is an element, X is a halogen element, and M 3 is a rare earth metal, and provides a nitride or oxynitride-based phosphor.
  • the nitride-based or oxynitride-based phosphor may have ultra long afterglow phosphor characteristics, and may have a round particle shape and a particle size of about 50 nm to about 10 ⁇ m, but is not limited thereto.
  • the nitride-based or oxynitride-based phosphor may be about 50 nm to about 100 nm, about 50 nm to about 500 nm, about 50 nm to about 1 ⁇ m, about 50 nm to about 10 ⁇ m, about 100 nm to It may have a size of about 500 nm, about 100 nm to about 1 ⁇ m, about 100 nm to about 10 ⁇ m, or about 1 ⁇ m to about 10 ⁇ m, but is not limited thereto.
  • the present application may include, for example, a display including the nitride-based or oxynitride-based phosphor, but is not limited thereto.
  • the display may include a cathode ray tube, a light emitting diode (LED), a plasma display panel (PDP), or a field emission display (FED), but is not limited thereto. It doesn't happen.
  • LED light emitting diode
  • PDP plasma display panel
  • FED field emission display
  • the present application may include, for example, a lamp including the nitride-based or oxynitride-based phosphor, but is not limited thereto.
  • Example 1 In Example 1, according to the method of the first aspect of the present application, 1.97 mol of CaCl 2 , 1 mol of Ca (NO 3 ) 2 , 1 mol of SiO 2 (Sol), and 0.03 mol of EuCl 3 , respectively, in deionized water After dissolution for about 10 to 20 minutes, a 20 wt% mixed solution was made through stirring. Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder was weighed out to 5 g in the mixed solution. Thereafter, the cellulose powder was impregnated into the mixed solution with a ratio of 2: 1 of the mixed solution and cellulose powder. At this time, the mixture was stirred for 10 minutes using an ultrasonic apparatus for uniform stirring and impregnation. Thereafter, the impregnated precursor was placed in an 80 ° C. dryer, dried for 10 hours, and then calcined at 225 ° C. for 6 hours.
  • the calcined powder was pulverized into fine particles of FIG. 2 through a hand mill to increase the surface area, and the powder thus obtained was calcined at 700 ° C. for 2 hours in an atmosphere containing oxygen. Finally, the white powder thus obtained was calcined under a reducing atmosphere of N 2 / H 2 (95/5) in a tube furnace at 700 ° C. for 2 hours to obtain Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder. It was.
  • the phosphor powders were analyzed by XRD, SEM, SEM-EDS, and PL, respectively, and are shown in FIGS. 3 to 6, respectively.
  • Example 2 according to the method of the first aspect of the present application, 1.97 mol of CaCl 2 , 1 mol of Ca (NO 3 ) 2 , 1 mol of WSS (Sol), and 0.03 mol of EuCl 3 , respectively, were dissolved in deionized water. After dissolving for 10 to 20 minutes, a 20 wt% mixed solution was made through stirring. Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder was weighed out to 5 g in the mixed solution. Thereafter, the mixed solution was stirred at a ratio of 1: 3 with Starch (potato powder), and then stirred and impregnated for 10 minutes using an ultrasonic apparatus for uniform stirring. Thereafter, the impregnated precursor was placed in an 80 ° C. drier and then dried for 10 hours and calcined at 225 ° C. for 6 hours.
  • the impregnated precursor became bulky as it became xerogel during drying and primary calcination.
  • the powder obtained by heat treatment at 500 ° C. for 2 hours was increased to be easily oxidized through grinding, and further calcined in air at 700 ° C. for 1 hour. Thereafter, firing was performed at 700 ° C., 900 ° C., and 1000 ° C. for 3 hours for phosphor powder reduction.
  • the mixed solution was mixed with Starch (potato starch), dried at 100 ° C., calcined at 225 ° C., and then phosphors were obtained through oxidation at 700 ° C. and reduction at 700 ° C.
  • Starch potato starch
  • phosphors were obtained through oxidation at 700 ° C. and reduction at 700 ° C.
  • X-ray powder pattern analysis, PL analysis, and FE-SEM analysis results according to the Cl content of the obtained phosphor are shown in Figs. 11 to 13, respectively.
  • Example 6 was carried out in the same manner as in Scheme 5 in the present specification. Specifically, Ca 3 SiO 4 Cl 2 : 0.03Eu 2+ phosphor and NH 2 NH 2 solution was mixed in a molar ratio of 1: 4 and put in an aluminum crucible with a lid to achieve the same effect as FIG. 16. Thereafter, under a N 2 / H 2 (95/5) reducing atmosphere, reduction reaction was performed at 700 ° C. for 3 hours to obtain a phosphor powder, and the PL characteristics of the phosphor powder were analyzed and shown in FIG. 17.
  • Example 7 was carried out in the same manner as in Scheme 4 in the present specification. Specifically, NaNH 2 powder was added at a molar ratio of 1: 2 to Ca 3 SiO 4 Cl 2 : 0.03Eu 3+ phosphor and NH 2 NH 2 solution at high temperature, and then mixed evenly through a stirrer for 2 hours, followed by N 2 / H 2 (95/5) was reacted at a temperature of 400 ° C. under a reducing atmosphere. Thereafter, the obtained phosphor and the side reaction product were washed with H 2 O and dried. The result of PL analysis of the phosphor powder obtained by the above method is shown in FIG. 18.
  • Example 8 was carried out in the same manner as in Scheme 5 of the present specification. Specifically, the Ca 3 SiO 4 Cl 2 : 0.03Eu 3+ phosphor and the NH 2 NH 2 solution at high temperature were mixed in a molar ratio of 1: 4, and then placed in a glass vial and maintained for 5 hours while stirring the magnetic bar under ultraviolet light at 254 nm. I was. Subsequently, the phosphor powder was reduced into a vacuum oven at 100 ° C., and the PL characteristics and the XRD change of the phosphor powder were shown in FIGS. 19 and 20, respectively.
  • Example 9 was carried out in the same manner as in Scheme 5 in the present specification. Specifically, a nano-sized Na 1.49 Al 1.55 Si 0.45 O 4 : 0.06Eu 3+ phosphor containing 0.06 mol% and NH 2 NH 2 solution were mixed at a molar ratio of 1: 4, and then placed in an alumina crucible at a high temperature of 700 ° C. It was kept for 5 hours while heating to. SEM photographs and PL characterization results of the obtained phosphor powders are shown in FIGS. 21 and 22, respectively.
  • Example 10 was carried out in the same manner as in Scheme 15 of the present specification. Specifically, a mixed solution was obtained by dissolving 2.94 mol of CaCl 2 and 0.06 mol of EuCl 3 in deionized water, respectively, and stirring with 1 mol of SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 ⁇ m cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C.
  • Example 11 was carried out in the same manner as in Scheme 14 in the present specification. Specifically, a mixed solution was obtained by dissolving 3 mol CaCl 2 and 0.06 mol EuCl 3 in deionized water, respectively, and stirring with 1 mol SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 ⁇ m cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C.
  • Example 12 was carried out in the same manner as in Scheme 14 in the present specification. Specifically, a mixed solution was obtained by dissolving 2 mol of SrCl 2 and 0.06 mol of EuCl 3 in deionized water, respectively, and stirring with 1 mol of SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 ⁇ m cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C.
  • Example 13 was carried out in the same manner as in Scheme 15 of the present specification. In particular, Example 13 was performed by preparing five kinds of mixed solutions having different compositions as follows: 1 0.92 mol CaCl 2 , 0.08 mol Eu (NO 3 ) 3 , and 1 mol Al (NO 3 ) 3 , respectively, in deionized water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a method for preparing an oxyhalide-based fluorescent substance, comprising the steps of: obtaining a solution containing a first metal halide, a second metal halide, and an oxide precursor of a period 3 element selected from the group consisting of Al, Si, P, and the combinations thereof; and performing heat treatment after adding a reducing agent to the solution.

Description

형광체, 및 이의 제조 방법Phosphor, and method for producing same
본원은, 옥시할로겐화물계 형광체, 질화물계 또는 산질화물계 형광체, 및 이들 각각의 제조 방법에 관한 것이다.The present application relates to an oxyhalide-based phosphor, a nitride-based or oxynitride-based phosphor, and a method for producing each thereof.
종래의 옥시할로겐화물계 형광체는, 고상(solid state) 물질과 함께 혼합된 고체 전구체가 산소가 차단된 환원 분위기에서 소성되는 것, 즉 "고상법"을 통해 제조되었다. 그러나, 상기 고상법에서 CaCl2(s) 등 제습성을 가지는 금속염이 사용될 경우에는 상기 금속염의 제습성 때문에 균일한 혼합이 어렵다는 문제점이 있었다. 상기 문제점은 글러브 박스를 사용하는 장치를 이용함으로써 일부 해결할 수 있으나, 이를 통해 불균일한 혼합의 문제가 완전히 해결되지는 않았다.Conventional oxyhalide-based phosphors have been prepared by the solid precursor mixed with a solid state material being fired in a reducing atmosphere in which oxygen is blocked, i.e., "solid phase method". However, when a metal salt having dehumidification such as CaCl 2 (s) is used in the solid phase method, there is a problem that uniform mixing is difficult due to the dehumidification of the metal salt. The problem can be partially solved by using a device using a glove box, but this problem of non-uniform mixing is not completely solved.
한편, 종래의 질화물계 또는 산질화물계 형광체는, 금속 또는 산화물계 형광체를 질소 분위기 하에서 소성함으로써 제조되었으나, 상기 금속의 고비용, 및 상기 산화물계 형광체의 안정성이 문제되었다. 보완책으로 탄소열분해질화법 (CRN 법; Cabothermal Reaction-Nitridation method)을 사용하여 산화물계 형광체에 탄소를 혼합하여 탄화 과정을 통해 질화시키는 방법이 시도되었으나, 상기 방법은 탄소와 이온 반경이 비슷한 물질에만 제한적으로 적용 가능하며 형광체의 발광에 악영향을 미칠 수 있다는 문제점이 지적되어 개선이 필요하였다.On the other hand, conventional nitride-based or oxynitride-based phosphors have been produced by firing metal or oxide-based phosphors under a nitrogen atmosphere, but the high cost of the metals and the stability of the oxide-based phosphors have been a problem. As a countermeasure, a method of nitriding carbonization by mixing carbon into an oxide-based phosphor by using a carbon thermal splitting method (CRN method; Cabothermal Reaction-Nitridation method) has been attempted, but the method is limited to materials having similar carbon and ion radius. It is pointed out that the problem can be applied and adversely affects the light emission of the phosphor, and improvement is needed.
한편, 희토류계 금속을 함유하는 형광체는 희토류계 금속의 전자가에 따라 그 발광과 강도가 달라진다는 특징이 있다. 예를 들어, Eu3+7D07F 에너지 전위 차이의 내부 전위차를 통해 좁은 영역의 날카로운 발광을 나타내지만, Eu2+는 5d→4f 에너지 전위 차이로 인해 넓은 영역의 발광을 나타낸다. 상기 희토류계 금속의 전자가는 산화 또는 환원을 통하여 조절할 수 있다. 종래에는 상기 희토류계 금속의 전자가 조절을 위한 환원을 위하여, 산소가 배제되고 수소가 포함된 분위기 하에서 소성하는 방법을 이용하였으나, 상기 방법은 환원 정도가 미흡하여 결과물로서 수득되는 형광체의 발광 강도가 균일하지 못하다는 문제점이 있었다.On the other hand, the phosphor containing the rare earth metal has a feature that its emission and intensity vary depending on the valence of the rare earth metal. For example, Eu 3+ exhibits sharp light emission in a narrow region through the internal potential difference of 7 D 07 F energy potential difference, while Eu 2+ exhibits light emission in a wide region due to the difference of 5d → 4f energy potential. The valence of the rare earth metal can be adjusted through oxidation or reduction. Conventionally, in order to reduce the electrons of the rare earth-based metal for controlling, the method of calcination in an atmosphere in which oxygen is excluded and hydrogen is used, but the method has a low degree of reduction and thus the emission intensity of the phosphor obtained as a result is high. There was a problem that it is not uniform.
발광이 안정하고 발광 강도가 균일한 형광체를 용이하고 경제적인 방법으로 제조하는 것이 가능해질 경우, 수득된 형광체는 발광 다이오드(light emitting diode, LED), 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 전계 방출 디스플레이(Field Emission Display, FED), 및 음극형광램프(cold cathode fluorescent lamp, CCFL) 등 다양한 분야에서 사용될 수 있다. 예를 들어, 형광체가 PDP에 유용하게 사용될 수 있다는 점에 대하여 대한민국등록특허 제10-1053884호 "형광체층 형성용 조성물, 플라즈마 디스플레이 패널 및 상기 플라즈마 디스플레이 패널의 제조 방법"에 개시되어 있다.When it becomes possible to manufacture phosphors with stable luminescence and uniform luminescence intensity in an easy and economical manner, the obtained phosphors may be light emitting diodes (LEDs), plasma display panels (PDPs), or electric fields. It can be used in various fields such as field emission display (FED), and cold cathode fluorescent lamp (CCFL). For example, Korean Patent No. 10-1053884 discloses that a phosphor may be usefully used in a PDP. A composition for forming a phosphor layer, a plasma display panel, and a method of manufacturing the plasma display panel are disclosed.
본 발명자들은, 본원의 방법에 따라 형광체를 제조하는 경우, 발광이 안정하고 발광 강도가 균일한 형광체를 용이하고 경제적인 방법으로 제조할 수 있음을 발견하여 본원을 완성하였다.The present inventors have completed the present application by discovering that when the phosphor is produced according to the method of the present application, a phosphor having stable luminescence and a uniform luminescence intensity can be produced by an easy and economical method.
이에, 본원은, 옥시할로겐화물계 형광체, 질화물계 또는 산질화물계 형광체, 및 이들 각각의 제조 방법을 제공하고자 한다.Accordingly, the present application is to provide an oxyhalide-based phosphor, a nitride or oxynitride-based phosphor, and their respective production methods.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계, 및 상기 용액에 환원제를 첨가한 후 열처리하는 단계를 포함하는, 옥시할로겐화물계 형광체의 제조 방법을 제공한다.A first aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method for producing an oxyhalide-based phosphor, comprising the step of, and heat treatment after the addition of a reducing agent to the solution.
본원의 제 2 측면은, 본원의 제 1 측면에 따른 방법에 의하여 제조되는 옥시할로겐화물계 형광체로서, 상기 옥시할로겐화물계 형광체는 M1-M2-OX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 옥시할로겐화물계 형광체를 제공한다.A second aspect of the present application is an oxyhalide-based phosphor prepared by the method according to the first aspect of the present application, wherein the oxyhalide-based phosphor has a composition of M 1 -M 2 -OX: M 3 , wherein M 1 is an alkali. A metal, an alkaline earth metal, or a transition metal, wherein M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof, X is a halogen element, and M 3 is a rare earth metal Provided are phosphorus and oxyhalide compounds.
본원의 제 3 측면은, 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계, 및 상기 용액에 환원제를 첨가한 후 질소-함유 분위기 하에서 열처리하는 단계를 포함하는, 질화물계 또는 산질화물계 형광체의 제조 방법을 제공한다.A third aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method of producing a nitride-based or oxynitride-based phosphor, including the step, and the step of adding a reducing agent to the solution and heat treatment in a nitrogen-containing atmosphere.
본원의 제 4 측면은, 본원의 제 3 측면에 따른 방법에 의하여 제조되는 질화물계 또는 산질화물계 형광체로서, 상기 질화물계 또는 산질화물계 형광체는 M1-M2-NX: M3 또는 M1-M2-ONX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 질화물계 또는 산질화물계 형광체를 제공한다.A fourth aspect of the present application is a nitride-based or oxynitride-based phosphor prepared by the method according to the third aspect of the present application, wherein the nitride-based or oxynitride-based phosphor is M 1 -M 2 -NX: M 3 or M 1 -M 2 -ONX: has a composition of M 3 , wherein M 1 is an alkali metal, alkaline earth metal, or transition metal, and M 2 is 3 cycles selected from the group consisting of Al, Si, P, and combinations thereof Is an element, X is a halogen element, and M 3 is a rare earth metal, and provides a nitride or oxynitride-based phosphor.
본원에 따르면, 발광이 안정하고 발광 강도가 균일한 형광체를 용이하고 경제적인 방법으로 제조할 수 있다.According to the present application, a phosphor having stable luminescence and uniform luminescence intensity can be produced by an easy and economical method.
구체적으로, 본원에 따라 종래의 고상법이 아닌 액상법을 이용하여 옥시할로겐화물계 형광체를 제조하는 경우, 상기 옥시할로겐화물계 형광체가 응집 없이 고르게 분포된 단결정의 균일한 형광체 형태로 수득되며, 우수한 발광 효율을 나타내게 되고, 둥근 형태를 가짐으로써, 백색 LED 또는 CCFL 등에 다용도로 이용될 수 있다. 또한, 본원에 따라 옥시할로겐화물계 형광체를 제조하는 경우, 단시간에 제조가 가능하기 때문에 생산성 및 경제성 또한 우수하다는 이점이 있다.Specifically, when the oxyhalide-based phosphor is manufactured by using a liquid phase method rather than the conventional solid-phase method according to the present application, the oxyhalide-based phosphor is obtained in the form of a single phosphor uniformly distributed evenly without aggregation, and excellent light emission efficiency By having a round shape, it can be used for a variety of purposes such as white LED or CCFL. In addition, when the oxyhalide-based fluorescent substance is manufactured according to the present application, since it can be manufactured in a short time, there is an advantage that the productivity and economy are also excellent.
한편, 본원에 따라 질화물계 또는 산질화물계 형광체를 제조하는 경우, 질소 분위기 하에서 전구체를 소성할 때 할로겐 원자의 큰 이온 사이즈를 이용함으로써, 알칼리금속, 알칼리토금속, 전이금속, 희토류계 금속 등 다양한 금속 이온들의 질화를 용이하게 구현할 수 있다. 또한, 환원성 가스를 이용하여 잔류 산소를 제거하고 SiO2(s) 등 염화물계 형광체 형성이 어려운 물질을 비교적 용이하게 질화시킴으로써, 결과적으로 질화물계 또는 산질화물계 형광체를 용이하고 경제적으로 제조할 수 있다.On the other hand, when manufacturing a nitride or oxynitride-based fluorescent material according to the present application, by using a large ion size of the halogen atoms when firing the precursor in a nitrogen atmosphere, various metals such as alkali metal, alkaline earth metal, transition metal, rare earth metal Nitriding of ions can be easily implemented. In addition, by using a reducing gas to remove residual oxygen and nitriding relatively difficult to form chloride-based phosphors such as SiO 2 (s), as a result, nitride-based or oxynitride-based phosphors can be easily and economically produced. .
한편, 희토류계 금속을 함유하는 형광체는 희토류계 금속의 전자가에 따라 그 발광과 강도가 달라진다는 특징이 있는바, 본원에 따라 알칼리성 화합물을 처리하여 희토류계 금속의 전자가를 조절함으로써, 발광이 안정하고 발광 강도가 균일한 형광체를 용이하고 경제적으로 제조할 수 있다.On the other hand, the phosphor containing the rare earth metal is characterized in that the light emission and the intensity of the rare earth metal is different depending on the electron value, the treatment of the alkaline compound according to the present application by controlling the electron value of the rare earth metal, the light emission is It is possible to easily and economically produce a phosphor having stable and uniform luminous intensity.
도 1은, 본원에 따라 옥시할로겐화물계, 또는 질화물계 또는 산질화물계 형광체를 형성하는 과정을 나타낸 모식도이다.1 is a schematic diagram showing a process of forming an oxyhalide-based, or nitride-based or oxynitride-based phosphor according to the present application.
도 2는, 본원의 실시예 1에 따라 제조된 형광체 분말의 SEM 사진이다.2 is an SEM photograph of the phosphor powder prepared according to Example 1 of the present application.
도 3은, 본원의 실시예 1에 따라 제조된 형광체 분말의 XRD 분석 결과이다.3 is an XRD analysis result of the phosphor powder prepared according to Example 1 of the present application.
도 4는, 본원의 실시예 1에 따라 제조된 형광체 분말의 SEM 사진이다.4 is an SEM photograph of the phosphor powder prepared according to Example 1 of the present application.
도 5는, 본원의 실시예 1에 따라 제조된 형광체 분말의 SEM-EDS 분석 결과이다.5 is a SEM-EDS analysis result of the phosphor powder prepared according to Example 1 of the present application.
도 6a 및 도 6b는, 본원의 실시예 1에 따라 제조된 형광체 분말의 PL 분석 결과이다.6A and 6B are PL analysis results of the phosphor powder prepared according to Example 1 of the present application.
도 7은, 본원의 실시예 2에 따라 제조된 형광체 분말의 PL 분석 결과이다.7 is a PL analysis result of the phosphor powder prepared according to Example 2 of the present application.
도 8은, 본원의 실시예 2에 따라 제조된 형광체 분말의 X선 패턴 분석 결과이다.8 is an X-ray pattern analysis result of the phosphor powder prepared according to Example 2 of the present application.
도 9는, 본원의 실시예 3에 따라 제조된 형광체 분말의 PL 분석 결과이다.9 is a PL analysis result of the phosphor powder prepared according to Example 3 of the present application.
도 10은, 본원의 실시예 3에 따라 제조된 형광체 분말의 X선 패턴 분석 결과이다.10 is an X-ray pattern analysis result of the phosphor powder prepared according to Example 3 of the present application.
도 11은, 본원의 실시예 4에 따라 제조된 형광체 분말의 X선 패턴 분석 결과이다.11 is an X-ray pattern analysis of the phosphor powder prepared according to Example 4 of the present application.
도 12는, 본원의 실시예 4에 따라 제조된 형광체 분말의 PL 분석 결과이다.12 is a PL analysis result of the phosphor powder prepared according to Example 4 of the present application.
도 13a 내지 도 13d는, 본원의 실시예 4에 따라 제조된 형광체 분말의 FE-SEM 사진이다.13A to 13D are FE-SEM photographs of phosphor powders prepared according to Example 4 of the present application.
도 14는, 본원의 실시예 5에 따라 제조된 형광체 분말의 XRD 분석 결과 이다.14 is an XRD analysis result of the phosphor powder prepared according to Example 5 of the present application.
도 15는, 본원의 실시예 5에 따라 제조된 형광체 분말의 PL 분석 결과이다.15 is a PL analysis result of the phosphor powder prepared according to Example 5 of the present application.
도 16은, 본원의 실시예 6에 따른 형광체 분말의 질화 과정의 모식도이다.16 is a schematic diagram of a nitriding process of the phosphor powder according to Example 6 of the present application.
도 17은, 본원의 실시예 6에 따라 제조된 형광체 분말의 PL 분석 결과이다.17 is a PL analysis result of the phosphor powder prepared according to Example 6 of the present application.
도 18은, 본원의 실시예 7에 따라 제조된 형광체 분말의 PL 분석 결과이다.18 is a PL analysis result of the phosphor powder prepared according to Example 7 of the present application.
도 19는, 본원의 실시예 8에 따라 제조된 형광체 분말의 PL 분석 결과이다.19 is a PL analysis result of the phosphor powder prepared according to Example 8 of the present application.
도 20은, 본원의 실시예 8에 따라 제조된 형광체 분말의 XRD 분석 결과이다20 is an XRD analysis result of the phosphor powder prepared according to Example 8 of the present application.
도 21a 및 도 22b는, 본원의 실시예 9에 따라 제조된 형광체 분말의 SEM 사진이다.21A and 22B are SEM photographs of the phosphor powder prepared according to Example 9 of the present application.
도 22는, 본원의 실시예 9에 따라 제조된 형광체 분말의 PL 분석 결과이다.22 is a PL analysis result of the phosphor powder prepared according to Example 9 of the present application.
도 23은, 본원의 실시예 10에 따라 제조된 형광체 분말의 XRD 분석 결과이다.23 is an XRD analysis result of the phosphor powder prepared according to Example 10 of the present application.
도 24는, 본원의 실시예 10에 따라 제조된 형광체 분말의 PL 분석 결과이다.24 is a PL analysis result of the phosphor powder prepared according to Example 10 of the present application.
도 25는, 본원의 실시예 11에 따라 제조된 형광체 분말의 XRD 분석 결과이다.25 is an XRD analysis result of the phosphor powder prepared according to Example 11 of the present application.
도 26은, 본원의 실시예 11에 따라 제조된 형광체 분말의 PL 분석 결과이다.26 is a PL analysis result of the phosphor powder prepared according to Example 11 of the present application.
도 27은, 본원의 실시예 12에 따라 제조된 형광체 분말의 XRD 분석 결과이다.27 is an XRD analysis result of the phosphor powder prepared according to Example 12 of the present application.
도 28은, 본원의 실시예 12에 따라 제조된 형광체 분말의 PL 분석 결과이다.28 is a PL analysis result of the phosphor powder prepared according to Example 12 of the present application.
도 29는, 본원의 실시예 13에 따라 제조된 형광체 분말의 XRD 분석 결과이다.29 is an XRD analysis result of the phosphor powder prepared according to Example 13 of the present application.
도 30은, 본원의 실시예 13에 따라 제조된 형광체 분말의 PL 분석 결과이다.30 is a PL analysis result of the phosphor powder prepared according to Example 13 of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described embodiments and embodiments of the present application;
본원의 제 1 측면은, 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계, 및 상기 용액에 환원제를 첨가한 후 열처리하는 단계를 포함하는, 옥시할로겐화물계 형광체의 제조 방법을 제공한다.A first aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method for producing an oxyhalide-based phosphor, comprising the step of, and heat treatment after the addition of a reducing agent to the solution.
예를 들어, 상기 옥시할로겐화물계 형광체는, 제 1 금속 할로겐화물 및 제 2 금속 할로겐화물을 용매에 용해시켜 수용액 상태로 제조하고 이에 액상의 실리카 전구체를 첨가한 뒤 액상 교반을 통해 균일한 혼합 용액을 수득하고, 상기 혼합 용액을 환원제인 고분자 물질에 함침하여 함침물을 수득하며, 상기 함침물을 열처리함으로써 불순물이 제거된 형광체 분말을 수득하고, 상기 형광체 분말을 분쇄함으로써 최종적으로 증가된 표면적과 균일한 조성을 가지는 형광체의 형태로 제조될 수 있는 것이나, 이에 제한되는 것은 아니다.For example, the oxyhalide-based phosphor is prepared by dissolving a first metal halide and a second metal halide in a solvent to form an aqueous solution, and adding a liquid silica precursor thereto to form a uniform mixed solution through liquid stirring. Obtained by impregnating the mixed solution into a polymeric material which is a reducing agent, to obtain an impregnated material, and heat treating the impregnated material to obtain an impurity-free phosphor powder, and pulverizing the phosphor powder to finally increase the surface area and uniformity. It may be prepared in the form of a phosphor having a composition, but is not limited thereto.
또한, 예를 들어, 상기 옥시할로겐화물계 형광체는, 희토류계 금속 및 금속 염화물이 포함된 용액에 액상 전구체로서 SiO2 졸을 첨가한 뒤 액상 교반을 통해 균일한 혼합 용액을 수득하고, 상기 혼합 용액을 환원제인 셀룰로오스 등의 고분자 물질에 함침하여 함침물을 수득하며, 상기 함침물을 건조하여 크세로겔 또는 크세로졸의 형태를 수득하고, 상기 크세로겔 또는 크세로졸을 열처리함으로써 최종적으로 구형의 형광체 형태로 제조될 수 있는 것이나, 이에 제한되는 것은 아니다.In addition, for example, the oxyhalide-based fluorescent substance, after adding SiO 2 sol as a liquid precursor to a solution containing a rare earth metal and metal chlorides to obtain a uniform mixed solution through liquid stirring, the mixed solution Impregnated to obtain an impregnated material by impregnating a polymer material such as cellulose, which is a reducing agent, and drying the impregnated product to obtain a form of xerogel or xerosol, and finally heat treating the xerogel or xerosol. It may be prepared in the form of a phosphor, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 제 1 금속 할로겐화물은, 알칼리금속 할로겐화물, 알칼리토금속 할로겐화물, 전이금속 할로겐화물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 할로겐화물을 포함하는 것이고, 상기 제 2 금속 할로겐화물은 희토류계 금속 할로겐화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 본원의 제 1 측면에 따라 액상법을 이용함으로써 고효율로 유리하게 옥시할로겐화물계 형광체를 합성함에 있어서, 상기 제 1 금속 할로겐화물 및 상기 제 2 금속 할로겐화물 각각에 포함되는 금속을 다양화하여 제조된 옥시할로겐화물계 형광체의 신규 조성의 탐색을 용이하게 할 수 있으나, 이에 제한되는 것은 아니다.According to an embodiment of the present disclosure, the first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof. The second metal halide may include, but is not limited to, a rare earth metal halide. For example, in synthesizing an oxyhalide-based fluorescent substance advantageously with high efficiency by using a liquid phase method according to the first aspect of the present application, by varying the metal contained in each of the first metal halide and the second metal halide The new composition of the prepared oxyhalide-based phosphor may be easily searched for, but is not limited thereto.
예를 들어, 상기 제 1 금속 할로겐화물로서 이온반경이 약 0.92 Å 내지 약 1.4 Å인 금속 염화물을 사용하여 희토류계 금속 물질과의 치환이 용이하게 일어나도록 할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 제 1 금속 할로겐화물은 이온반경이 약 0.92 Å 내지 약 1.0 Å, 약 0.92 Å 내지 약 1.2 Å, 약 0.92 Å 내지 약 1.4 Å, 약 1.0 Å 내지 약 1.2 Å, 약 1.0 Å 내지 약 1.4 Å, 또는 약 1.2 Å 내지 약 1.4 Å일 수 있으나, 이에 제한되는 것은 아니다.For example, a metal chloride having an ion radius of about 0.92 GPa to about 1.4 GPa may be used as the first metal halide to facilitate replacement with a rare earth metal material, but is not limited thereto. For example, the first metal halide has an ion radius of from about 0.92 kPa to about 1.0 kPa, from about 0.92 kPa to about 1.2 kPa, from about 0.92 kPa to about 1.4 kPa, from about 1.0 kPa to about 1.2 kPa, about 1.0 kPa About 1.4 kPa, or about 1.2 kPa to about 1.4 kPa, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 알칼리금속 할로겐화물은 LiCl, NaCl, KCl, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것이고, 상기 알칼리토금속 할로겐화물은 BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide is BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , and combinations thereof, may include chloride, but is not limited thereto.
예를 들어, 상기 전이금속 할로겐화물은 ScCl2, TiCl4, VCl4, CrCl3, MnCl3, FeCl3, CoCl2, NiCl2, CuCl2, ZnCl2, YCl3, ZrCl4, NbCl5, MoCl5, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the transition metal halide is ScCl 2 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5 , and chlorides selected from the group consisting of combinations thereof, but is not limited thereto.
예를 들어, 상기 희토류계 금속 할로겐화물은 LaCl3, CeCl3, NdCl3, EuCl3, GdCl3, TbCl3, DyCl3, ErCl3, YbCl3, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the rare earth metal halide is a chloride selected from the group consisting of LaCl 3 , CeCl 3 , NdCl 3 , EuCl 3 , GdCl 3 , TbCl 3 , DyCl 3 , ErCl 3 , YbCl 3 , and combinations thereof It may be to include, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3 주기 원소의 산화물 전구체는, SiO2, Si(OH)4, SiH4, Si(OC2H5)4, 또는 수용성 실란을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 주기 원소의 산화물 전구체는, WSS (water soluble silicate), 또는 입자 크기가 약 5 nm 내지 약 3000 nm인 SiO2 졸(sol)을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 주기 원소의 산화물 전구체로는 SiO2, Si(OH)4, 또는 수용성 실란을 사용하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the oxide precursor of the tricycle element may include SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a water-soluble silane, but is not limited thereto. It doesn't happen. For example, the oxide precursor of the tricycle element may include, but is not limited to, water soluble silicate (WSS) or SiO 2 sol having a particle size of about 5 nm to about 3000 nm. . For example, it may be preferable to use SiO 2 , Si (OH) 4 , or water-soluble silane as the oxide precursor of the tricycle element, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원제는, 옥수수 전분, 감자 전분, 셀룰로오스 분말, 셀룰로오스 시트, 구형 셀룰로오스, 수용성 셀룰로오스, 펄프, 결정화 셀룰로오스, 비결정질 셀룰로오스, 레이온, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 고분자 물질을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 환원제로는 약 99.8% 이상의 순도를 가지며 미세한 매트릭스 형태를 가지는 고순도 펄프를 사용하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the reducing agent is selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof It may be to include a high molecular material, but is not limited thereto. For example, it may be desirable to use a high purity pulp having a purity of about 99.8% or more and having a fine matrix form, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 열처리하는 단계는, 약 150℃ 내지 약 400℃에서 수행되는 1 차 열처리, 약 500℃ 내지 약 1000℃에서 수행되는 2 차 열처리, 및 약 700℃ 내지 약 1400℃에서 수행되는 3 차 열처리가 순차적으로 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present disclosure, the heat treatment includes: a first heat treatment performed at about 150 ° C. to about 400 ° C., a second heat treatment performed at about 500 ° C. to about 1000 ° C., and about 700 ° C. to about 1400 ° C. Tertiary heat treatment performed in may be to include that is performed sequentially, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 약 150℃ 내지 약 400℃에서 1 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 1 차 열처리는 약 150℃ 내지 약 200℃, 약 150℃ 내지 약 250℃, 약 150℃ 내지 약 300℃, 약 150℃ 내지 약 350℃, 약 150℃ 내지 약 400℃, 약 200℃ 내지 약 250℃, 약 200℃ 내지 약 300℃, 약 200℃ 내지 약 350℃, 약 200℃ 내지 약 400℃, 약 250℃ 내지 약 300℃, 약 250℃ 내지 약 350℃, 약 250℃ 내지 약 400℃, 약 300℃ 내지 약 350℃, 약 300℃ 내지 약 400℃, 또는 약 350℃ 내지 약 400℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. For example, the step of heat treatment may include, but is not limited to, primary heat treatment at about 150 ° C to about 400 ° C. For example, the first heat treatment may be about 150 ° C. to about 200 ° C., about 150 ° C. to about 250 ° C., about 150 ° C. to about 300 ° C., about 150 ° C. to about 350 ° C., about 150 ° C. to about 400 ° C., about 200 ° C to about 250 ° C, about 200 ° C to about 300 ° C, about 200 ° C to about 350 ° C, about 200 ° C to about 400 ° C, about 250 ° C to about 300 ° C, about 250 ° C to about 350 ° C, about 250 ° C To about 400 ° C, about 300 ° C to about 350 ° C, about 300 ° C to about 400 ° C, or about 350 ° C to about 400 ° C, but is not limited thereto.
상기 1 차 열처리를 통하여 셀룰로오스 등 환원제로서 사용되는 고분자 물질이 분해될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 1 차 열처리를 통하여 이루어지는 상기 고분자 물질의 분해는, 고분자의 고리, 고분자 내부의 -OH기 또는 -CH2O기 분해를 포함하는 것일 수 있으며, 이외에도 금속 할로겐화물의 NO3 등의 불순물 리간드의 분해 및 제거를 위하여 상기 1 차 열처리가 수행될 수도 있으나, 이에 제한되는 것은 아니다. 상기 1 차 열처리 온도가 약 150℃ 미만인 경우에는 셀룰로오스 등 환원제로서 사용되는 고분자 물질의 분해가 어려울 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 1 차 열처리 온도가 약 400℃ 초과인 경우에는 형광체의 전구체가 분해 및 산화됨으로써 산화물계 실리케이트 등 산화물이 형성되어 최종 결과물인 형광체에 영향을 미칠 수 있으나, 이에 제한되는 것은 아니다. 별도의 분쇄 과정 없이도 상기 1 차 열처리를 수행할 수 있으며, 분쇄 과정을 병행하는 경우 보다 낮은 온도에서 균일한 옥시할로겐화물계 형광체를 수득하기 용이할 수 있으나, 이에 제한되는 것은 아니다.The first heat treatment may decompose the polymer material used as a reducing agent such as cellulose, but is not limited thereto. For example, decomposition of the polymer material formed through the first heat treatment may include decomposition of a polymer ring, -OH group or -CH 2 O group in the polymer, and in addition to NO 3 of a metal halide. The first heat treatment may be performed to decompose and remove the impurity ligand of, but is not limited thereto. When the primary heat treatment temperature is less than about 150 ° C., it may be difficult to decompose a polymer material used as a reducing agent such as cellulose, but is not limited thereto. On the other hand, when the primary heat treatment temperature is greater than about 400 ° C, the precursor of the phosphor is decomposed and oxidized to form an oxide such as an oxide silicate, which may affect the final resulting phosphor, but is not limited thereto. The primary heat treatment may be performed without a separate grinding process, and when the grinding process is performed in parallel, it may be easy to obtain a uniform oxyhalide-based phosphor at a lower temperature, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 상기 1 차 열처리 이후 약 500℃ 내지 약 1000℃에서 2 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 2 차 열처리는 약 500℃ 내지 약 600℃, 약 500℃ 내지 약 700℃, 약 500℃ 내지 약 800℃, 약 500℃ 내지 약 900℃, 약 500℃ 내지 약 1000℃, 약 600℃ 내지 약 700℃, 약 600℃ 내지 약 800℃, 약 600℃ 내지 약 900℃, 약 600℃ 내지 약 1000℃, 약 700℃ 내지 약 800℃, 약 700℃ 내지 약 900℃, 약 700℃ 내지 약 1000℃, 약 800℃ 내지 약 900℃, 약 800℃ 내지 약 1000℃, 또는 약 900℃ 내지 약 1000℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 2 차 열처리는, 상기 1 차 열처리를 통하여 수득된 고체 상태의 형광체 전구체 분말로부터 잔여 유기물을 제거하는 한편, 상기 형광체 전구체 분말을 결정화하기 위하여 산소 분위기 하에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 이때, 상기 2 차 열처리가 수행되는 온도를 적절하게 조절함으로써 잔여 유기물의 제거 및 상기 형광체 전구체 분말의 결정화를 용이하게 수행할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 2 차 열처리를 약 500℃ 미만의 온도에서 수행하는 경우 비정질인 상기 형광체 전구체 분말을 결정화하기 어려우며 장시간의 열처리가 요구될 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 2 차 열처리를 약 1000℃ 초과의 온도에서 수행하는 경우 상기 형광체 전구체의 결정 안정성에 따라 일부가 산화됨으로써 산화 실리케이트 형광체 등 산화물이 형성되어 바람직하지 않을 수 있으나, 이에 제한되는 것은 아니다.For example, the heat treatment may include, but is not limited to, secondary heat treatment at about 500 ° C. to about 1000 ° C. after the first heat treatment. For example, the secondary heat treatment may be about 500 ° C. to about 600 ° C., about 500 ° C. to about 700 ° C., about 500 ° C. to about 800 ° C., about 500 ° C. to about 900 ° C., about 500 ° C. to about 1000 ° C., about 600 ° C to about 700 ° C, about 600 ° C to about 800 ° C, about 600 ° C to about 900 ° C, about 600 ° C to about 1000 ° C, about 700 ° C to about 800 ° C, about 700 ° C to about 900 ° C, about 700 ° C To about 1000 ° C, about 800 ° C to about 900 ° C, about 800 ° C to about 1000 ° C, or about 900 ° C to about 1000 ° C, but is not limited thereto. The secondary heat treatment may be performed under an oxygen atmosphere to remove residual organic materials from the phosphor precursor powder in the solid state obtained through the first heat treatment and to crystallize the phosphor precursor powder, but is not limited thereto. . At this time, by appropriately adjusting the temperature at which the second heat treatment is performed, it is possible to easily remove the residual organic material and crystallize the phosphor precursor powder, but is not limited thereto. For example, when the secondary heat treatment is performed at a temperature of less than about 500 ° C., it is difficult to crystallize the amorphous precursor precursor powder and a long time heat treatment may be required, but is not limited thereto. Meanwhile, when the secondary heat treatment is performed at a temperature of more than about 1000 ° C., some of the oxides may be oxidized according to the crystal stability of the phosphor precursor to form an oxide such as an oxidized silicate phosphor, but the present invention is not limited thereto.
예를 들어, 본원의 제 1 측면에 따라 옥시할로겐화물계 형광체를 제조함에 있어서, 제 1 금속 할로겐화물로서 LiCl, MgCl2, ScCl3, TiCl4, VCl4, CrCl3, MnCl3, FeCl3, CoCl2, NiCl2, CuCl2, 또는 ZnCl2를 사용하고 2 주기 원소의 산화물 전구체로서 SiO2 또는 SiO2 + Al 염을 사용하는 경우, 상기 제 1 금속 할로겐화물의 금속 이온과 Cl 이온 사이의 큰 이온반경비 차이로 인하여, 상기 2차 열처리를 약 500℃ 정도의 저온에서 약 10 시간 이상의 장시간 동안 수행하는 것이 바람직할 수 있으나, 이에 제한되는 것이 아니다. 한편, 상기 제 1 금속 할로겐화물의 종류에 따라 금속 이온이 Cl 이온을 붙잡고 있는 이온 반경이 충분히 확보된 경우에는 약 600℃ 내지 약 800℃의 온도에서 약 5 시간 정도 상기 2차 열처리를 수행하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.For example, in preparing an oxyhalide-based phosphor according to the first aspect of the present application, LiCl, MgCl 2 , ScCl 3 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl as the first metal halide When using 2 , NiCl 2 , CuCl 2 , or ZnCl 2 and using a SiO 2 or SiO 2 + Al salt as the oxide precursor of the bicycle element, a large ion between the metal ion and Cl ion of the first metal halide Due to the difference in radius ratio, it may be preferable to perform the secondary heat treatment for a long time of about 10 hours or more at a low temperature of about 500 ° C., but is not limited thereto. On the other hand, when the ion radius where the metal ions hold Cl ions is sufficiently secured according to the type of the first metal halide, the secondary heat treatment may be performed at a temperature of about 600 ° C. to about 800 ° C. for about 5 hours. It may be preferred, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 상기 2 차 열처리 이후 약 700℃ 내지 약 1400℃에서 3 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 차 열처리는 약 700℃ 내지 약 800℃, 약 700℃ 내지 약 900℃, 약 700℃ 내지 약 1000℃, 약 700℃ 내지 약 1100℃, 약 700℃ 내지 약 1200℃, 약 700℃ 내지 약 1300℃, 약 700℃ 내지 약 1400℃, 약 800℃ 내지 약 900℃, 약 800℃ 내지 약 1000℃, 약 800℃ 내지 약 1100℃, 약 800℃ 내지 약 1200℃, 약 800℃ 내지 약 1300℃, 약 800℃ 내지 약 1400℃, 약 900℃ 내지 약 1000℃, 약 900℃ 내지 약 1100℃, 약 900℃ 내지 약 1200℃, 약 900℃ 내지 약 1300℃, 약 900℃ 내지 약 1400℃, 약 1000℃ 내지 약 1100℃, 약 1000℃ 내지 약 1200℃, 약 1000℃ 내지 약 1300℃, 약 1000℃ 내지 약 1400℃, 약 1100℃ 내지 약 1200℃, 약 1100℃ 내지 약 1300℃, 약 1100℃ 내지 약 1400℃, 약 1200℃ 내지 약 1300℃, 약 1200℃ 내지 약 1400℃, 또는 약 1300℃ 내지 약 1400℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 3 차 열처리를 환원 분위기 하에서 수행함으로써, 상기 2 차 열처리를 통해 형성된 형광체 전구체의 결정을 성장시키는 한편 희토류계 금속 등 부활제를 환원시킬 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 차 열처리가 약 700℃ 미만의 온도에서 수행될 경우, 충분한 환원 분위기가 형성되기 어려우며, 결과적으로 형광체의 휘도 및 발광 강도 저하가 야기될 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 3 차 열처리가 약 1400℃ 초과의 온도에서 수행될 겨우, 형광체 분말이 소결체로 되면서 분말의 특성을 잃을 수 있으나, 이에 제한되는 것은 아니다. For example, the heat treatment may include, but is not limited to, a third heat treatment at about 700 ° C. to about 1400 ° C. after the second heat treatment. For example, the third heat treatment may be about 700 ° C. to about 800 ° C., about 700 ° C. to about 900 ° C., about 700 ° C. to about 1000 ° C., about 700 ° C. to about 1100 ° C., about 700 ° C. to about 1200 ° C., about 700 ° C to about 1300 ° C, about 700 ° C to about 1400 ° C, about 800 ° C to about 900 ° C, about 800 ° C to about 1000 ° C, about 800 ° C to about 1100 ° C, about 800 ° C to about 1200 ° C, about 800 ° C To about 1300 ° C, about 800 ° C to about 1400 ° C, about 900 ° C to about 1000 ° C, about 900 ° C to about 1100 ° C, about 900 ° C to about 1200 ° C, about 900 ° C to about 1300 ° C, about 900 ° C to about 1400 ° C, about 1000 ° C to about 1100 ° C, about 1000 ° C to about 1200 ° C, about 1000 ° C to about 1300 ° C, about 1000 ° C to about 1400 ° C, about 1100 ° C to about 1200 ° C, about 1100 ° C to about 1300 ° C , About 1100 ° C. to about 1400 ° C., about 1200 ° C. to about 1300 ° C., about 1200 ° C. to about 1400 ° C., or about 1300 ° C. to about 1400 ° C., but is not limited thereto. By performing the third heat treatment in a reducing atmosphere, crystals of the phosphor precursor formed through the second heat treatment may be grown while reducing an activator such as a rare earth metal, but the present invention is not limited thereto. For example, when the tertiary heat treatment is performed at a temperature of less than about 700 ° C., it is difficult to form a sufficient reducing atmosphere, and as a result, a decrease in luminance and emission intensity of the phosphor may be caused, but is not limited thereto. On the other hand, if the third heat treatment is performed at a temperature of more than about 1400 ℃, as the phosphor powder becomes a sintered body may lose the properties of the powder, but is not limited thereto.
예를 들어, 상기 환원 분위기는 N2/H2 = (약 90 내지 약 95)/(약 10 내지 약 5) 또는 Ar/H2 = (약 90 내지 약 95)/(약 10 내지 약 5)에 의하여 조성되는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the reducing atmosphere may be N 2 / H 2 = (about 90 to about 95) / (about 10 to about 5) or Ar / H 2 = (about 90 to about 95) / (about 10 to about 5) It may be to be formed by, but is not limited thereto.
예를 들어, 본원의 제 1 측면에 따라 옥시할로겐화물계 형광체를 제조함에 있어서, 형광체의 모체로서 SiO2에 B와 같은 녹기 쉽고 증발하기 쉬운 가벼운 물질이 함께 쓰이는 모체를 이용하는 경우에는, 상기 2 차 열처리를 약 500℃의 저온에서 약 10 시간 이상의 장시간 수행함으로써 유기물을 제거하고, 상기 3 차 열처리를 산소가 배제된 환원 분위기에서 약 700℃에서 약 2 시간 이상의 장시간 수행함으로써 SiO2의 결정화를 유도하며, 이후 약 900℃에서 형광체 결정의 성장을 유도하는 방법을 택할 수 있으나, 이에 제한되는 것은 아니다.For example, in the preparation of the oxyhalide-based fluorescent substance according to the first aspect of the present application, in the case of using a matrix in which SiO 2 is used as a matrix of phosphors, a light substance that is easy to dissolve and evaporates, such as B, is used. The organic material is removed by performing a long time at a low temperature of about 500 ° C. for about 10 hours or more, and the crystallization of SiO 2 is induced by performing the tertiary heat treatment for about 2 hours or more at about 700 ° C. in a reducing atmosphere without oxygen, Thereafter, a method of inducing growth of the phosphor crystal at about 900 ° C. may be selected, but is not limited thereto.
예를 들어, 본원의 제 1 측면에 따라 옥시할로겐화물계 형광체를 제조함에 있어서, 형광체의 모체로서 SiO2에 P를 조합한 모체를 이용하는 경우에는, 이온결합성과 고전자가성이 강한 P는 Si가 다른 금속염과 모체를 형성하기 전에 M-P-O-Cl 형태를 형성할 확률이 높다는 점에서, 일단 1 차 열처리를 통해 비정질 상을 얻은 후 빠른 승온 속도를 통해 약 700℃ 이상의 온도에서 2 차 열처리하여 SiO2의 결정화를 유도하면서 모체를 얻는 방법을 택할 수 있으나, 이에 제한되는 것은 아니다.For example, in the preparation of the oxyhalide-based fluorescent substance according to the first aspect of the present application, in the case of using a matrix of SiO 2 and P as the parent of the phosphor, P having a high ion binding property and high magnetism is different from Si. Since the possibility of forming MPO-Cl forms before forming the metal salt and the matrix is high, once the amorphous phase is obtained through the first heat treatment, the second heat treatment is performed at a temperature of about 700 ° C. or more through a rapid temperature increase rate to crystallize SiO 2 . It is possible to take a method of obtaining a parent while inducing, but is not limited thereto.
예를 들어, 본원의 제 1 측면에 따른 옥시할로겐화물계 형광체의 제조 방법에는 추가적인 염이 사용됨으로써 상기 형광체 내의 할로겐 양을 용이하게 제어할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 본원의 제 1 측면에 따라 상기 옥시할로겐화물계 형광체를 제조하기 위하여 제 1 금속 할로겐화물로서 칼슘염화물을 사용한 경우, 상기 칼슘염화물과 동일한 금속을 포함하며 산소를 함유하는 상이한 염, 예를 들어 칼슘질산화염을 추가 사용함으로써, 제조되는 형광체 내의 염소 양을 용이하게 제어할 수 있으나, 이에 제한되는 것은 아니다. 상기 예를 반응식으로서 나타내면 하기와 같다:For example, an additional salt may be used in the method for preparing an oxyhalide-based phosphor according to the first aspect of the present application to easily control the amount of halogen in the phosphor, but is not limited thereto. For example, when calcium chloride is used as the first metal halide to produce the oxyhalide-based phosphor according to the first aspect of the present application, different salts containing the same metal as the calcium chloride and containing oxygen, for example For example, the addition of calcium nitrate salt can easily control the amount of chlorine in the phosphor produced, but is not limited thereto. Representing this example as a reaction scheme is as follows:
[반응식 1] Scheme 1
2CaCl2 + Ca(NO3)2 + SiO2 → Ca3SiO4Cl2 2CaCl 2 + Ca (NO 3 ) 2 + SiO 2 → Ca 3 SiO 4 Cl 2
상기 반응식 1에서 사용된 반응물들은 모두 용매 내에서 액상으로 존재하는 것이며, 반응을 간단하게 설명하기 위하여 미량의 첨가물인 활제는 생략하였다. 상기 반응식 1에서 칼슘질산화염에는 산소가 포함되어 있어 용이하게 산화될 수 있는 반면 칼슘염화물에는 산소가 포함되어 있지 않으므로, 상기 반응식을 통해 용이하게 옥시할로겐화물계 형광체를 제어할 수 있으며, 상기 형광체 내의 할로겐 양을 용이하게 제어할 수 있으나, 이에 제한되는 것은 아니다.The reactants used in the reaction scheme 1 are all present in the liquid phase in the solvent, and a brief amount of the lubricant is omitted in order to simplify the reaction. In the reaction scheme 1, the calcium nitrate salt contains oxygen and thus can be easily oxidized, whereas the calcium chloride does not contain oxygen, so that the oxyhalide-based phosphor can be easily controlled through the reaction scheme, and the halogen in the phosphor The amount can be easily controlled, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 옥시할로겐화물계 형광체의 제조 방법은, 상기 열처리하는 단계 후 제조된 상기 옥시할로겐화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the method for preparing the oxyhalide-based phosphor may further include treating an alkaline compound to the oxyhalide-based phosphor prepared after the heat treatment, but is not limited thereto. .
예를 들어, 상기 옥시할로겐화물계 형광체의 제조 방법은, 상기 열처리하는 단계 후 형광체의 휘도 향상을 위하여 제조된 상기 옥시할로겐화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the method of manufacturing the oxyhalide-based phosphor may further include treating an alkaline compound to the oxyhalide-based phosphor prepared for improving luminance of the phosphor after the heat treatment, but is not limited thereto. It is not.
예를 들어, 상기 알칼리성 화합물은 -OH 기 또는 -NH2 기를 포함하는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the alkaline compound may include, but is not limited to, a compound including an -OH group or a -NH 2 group.
본원의 일 구현예에 따르면, 상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, NH4OH, H2O2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 또는 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 금속계 아마이드 화합물, 유기물계 알칼리성 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 금속계 아마이드 화합물은 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 또한, 예를 들어, 상기 유기물계 알칼리성 화합물은 NH4OH, NH2NH2, C6H5NH2, 또는 C3H6NH2를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or propylamine (propylamine) ) -Based compound, butylamine-based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, metal amide compound, organic-based compound It may include, but is not limited to, a compound selected from the group consisting of alkaline compounds, and combinations thereof. For example, the metal amide compound may be a lithium amide compound, a sodium amide compound, a potassium amide compound, a cesium amide compound, and combinations thereof. It may be to include a compound selected from the group consisting of, but is not limited thereto. In addition, for example, the organic-based alkaline compound may include NH 4 OH, NH 2 NH 2 , C 6 H 5 NH 2 , or C 3 H 6 NH 2 , but is not limited thereto.
예를 들어, 상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물을 이용하는 경우, 형광체에 포함된 염소와 상기 알칼리성 화합물 간의 이온 반경비를 통한 반응성 차이를 이용하여 상기 형광체에 포함된 염소를 제거하고, 그 자리를 대신하여 -OH 기가 치환될 수 있다. 이로써, 형광체에 포함된 희토류계 금속의 전자가가 증가되어, 상기 희토류계 금속의 부활제로서의 기능이 향상되는 효과를 거둘 수 있다. Li, Na, K, Rb, 또는 Cs를 포함하는 알칼리성 화합물 중 Cs를 포함하는 알칼리성 화합물이 특히 바람직할 수 있는데, 이는 Cs이 연금속이고 염소와 이온반경비가 유사하여 염소와의 반응성이 좋기 때문이다. 상기 알칼리성 화합물이 관여하는 산화 반응의 반응식은 다음과 같다:For example, the alkaline compound may include a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, and combinations thereof, and a compound selected from the group consisting of combinations thereof. However, the present invention is not limited thereto. When the alkaline compound is used, chlorine contained in the phosphor may be removed using a difference in reactivity through the ionic radius ratio between the chlorine contained in the phosphor and the alkaline compound, and the -OH group may be substituted in place of the place. As a result, the electron value of the rare earth metal contained in the phosphor is increased, so that the function as an activator of the rare earth metal can be improved. Of the alkaline compounds containing Li, Na, K, Rb, or Cs, an alkaline compound containing Cs may be particularly preferable, because Cs is a soft metal and the chlorine and the ion radius ratio are similar, so that the reactivity with chlorine is good. The reaction scheme of the oxidation reaction involving the alkaline compound is as follows:
[반응식 2] Scheme 2
Ca2SiO3Cl2:Eu3+ + 2CsOH → Ca2SiO3(OH)2:Eu3+ + 2CsCl + H2O → Ca2SiO4:Eu3+ + H2OCa 2 SiO 3 Cl 2 : Eu 3+ + 2CsOH → Ca 2 SiO 3 (OH) 2 : Eu 3+ + 2CsCl + H 2 O → Ca 2 SiO 4 : Eu 3+ + H 2 O
또한, 예를 들어, 상기 알칼리성 화합물은, 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물은 형광체와 반응하여 염소를 제거하는 강력한 환원 반응에 이용될 수 있다. 상기 알칼리성 화합물의 탄소고리가 안정할수록 치환 반응이 신속하게 일어날 수 있으며, 상기 알칼리성 화합물 중 특히 아미노벤젠계 화합물, 또는 하이드라진계 화합물이 바람직할 수 있으나, 이에 제한되는 것은 아니다. Li, Na, K, Rb, 또는 Cs를 포함하는 알칼리성 화합물 중에서는 Cs를 포함하는 알칼리성 화합물이 특히 바람직할 수 있는데, 이는 Cs이 연금속이고 염소와 이온반경비가 유사하여 염소와의 반응성이 좋기 때문이다. 예를 들어, 상기 알칼리성 화합물이 관여하는 환원 반응의 반응식들은 하기와 같다:For example, the alkaline compound may be a propylamine compound, a butylamine compound, a pentylamine compound, a hexylamine compound, or a heptylamine compound. , Aminobenzene-based compound, lithium amide-based compound, sodium amide-based compound, potassium amide-based compound, cesium amide-based compound, and combinations thereof It may be to include a compound selected from the group consisting of, but is not limited thereto. The alkaline compound may be used in a strong reduction reaction to remove chlorine by reacting with a phosphor. As the carbon ring of the alkaline compound is more stable, the substitution reaction may occur more rapidly. Among the alkaline compounds, an aminobenzene-based compound or a hydrazine-based compound may be preferable, but is not limited thereto. Of the alkaline compounds containing Li, Na, K, Rb, or Cs, alkaline compounds containing Cs may be particularly preferred, since Cs is a soft metal and its chlorine and ion radius ratio are similar, which makes it highly reactive with chlorine. . For example, the reaction schemes of the reduction reaction involving the alkaline compound are as follows:
[반응식 3] Scheme 3
Ca3SiO4Cl2 + [2KOH(aq), 2NaOH(aq), 또는 NH4OH(aq)] → Ca3SiO4(OH)2 + [2KCl(aq), 2NaCl(aq), 또는 NH4Cl(aq); 생성된 후 제거함] + [2NaNH2, 2NH3 (gas 또는 aq), 또는 2NH2NH2 (aq)] (NH2NH2 용액 또는 아닐린 하에서 반응) → Ca3SiO4(NH2)2 + [2NaOH(aq), 2H2O (aq), 또는 NH4OH (aq)] (50℃ 이상의 온도, 및 N2 기체, 불활성 기체, H2 기체, 또는 진공 하에서 반응) → Ca3SiO4 + [NH2↑, 또는 NH3↑]Ca 3 SiO 4 Cl 2 + [2KOH (aq), 2NaOH (aq), or NH 4 OH (aq)] → Ca 3 SiO 4 (OH) 2 + [2KCl (aq), 2NaCl (aq), or NH 4 Cl (aq); Generated and then removed] + [2NaNH 2 , 2NH 3 (gas or aq), or 2NH 2 NH 2 (aq)] (reacts under NH 2 NH 2 solution or aniline) → Ca 3 SiO 4 (NH 2 ) 2 + [ 2NaOH (aq), 2H 2 O (aq), or NH 4 OH (aq)] (temperature above 50 ° C., and reaction under N 2 gas, inert gas, H 2 gas, or vacuum) → Ca 3 SiO 4 + [ NH 2 ↑, or NH 3 ↑]
[반응식 4] Scheme 4
Ca3SiO4Cl2 + 2NaNH2 (NH2NH2 용액 또는 아닐린 하에서 반응) → Ca3SiO4(NH2)2 + [2NaCl(aq); 생성된 후 제거함] (50℃ 이상의 온도, 및 N2 기체, 불활성 기체, H2 기체 또는 진공 하에서 반응) → Ca3SiO4 + [NH2↑, 또는 NH3↑]Ca 3 SiO 4 Cl 2 + 2NaNH 2 (reacted under NH 2 NH 2 solution or aniline) → Ca 3 SiO 4 (NH 2 ) 2 + [2NaCl (aq); Generated and then removed] (reaction under temperature above 50 ° C. and under N 2 gas, inert gas, H 2 gas or vacuum) → Ca 3 SiO 4 + [NH 2 ↑, or NH 3 ↑]
[반응식 5]Scheme 5
Ca3SiO4Cl2 + 2NH2NH2 (aq) (50℃ 온도, 및 H2 기체 또는 NH3 기체 하에서 반응) → Ca3SiO4(NH2)2 + 2NH4Cl → Ca3SiO4(NH2)2 + 2NH3 + 2HCl↑ → Ca3SiO4 + [NH2↑ 또는 NH3↑]Ca3SiO4Cl2 + 2 NH2NH2 (aq) (50 ° C. temperature, and H2 Gas or NH3 Reaction under gas) → Ca3SiO4(NH2)2 + 2 NH4Cl → Ca3SiO4(NH2)2+ 2NH3 + 2HCl ↑ → Ca3SiO4 + [NH2↑ or NH3↑]
[반응식 6]Scheme 6
Ca3SiO4Cl2 + 2NH3 (aq) (-30℃ 이하의 온도, 및 H2 기체, NH3 기체, N2 기체, 또는 불활성 기체 하에서 반응) → Ca3SiO4(NH2)2 + 2NH4Cl → Ca3SiO4(NH2)2 2NH3 + 2HCl↑ → Ca3SiO4 + [NH2↑ 또는 NH3↑]Ca3SiO4Cl2 + 2 NH3 (aq) (temperature below -30 ° C, and H2 Gas, NH3 Gas, N2 Gas or reaction under inert gas) Ca3SiO4(NH2)2 + 2 NH4Cl → Ca3SiO4(NH2)22NH3 + 2HCl ↑ → Ca3SiO4 + [NH2↑ or NH3↑]
[반응식 7]Scheme 7
Ca3SiO4(OH)2 + 2NH3 (aq) or NH2NH2 (aq) (-30℃ 이하 또는 50℃ 이상의 온도, 및 H2 기체, NH3 기체, N2 기체, 또는 불활성 기체 하에서 반응) → Ca3SiO4(NH2)2 + 2NH4OH → Ca3SiO4(NH2)2 2NH3 + 2H2O↑ → Ca3SiO4 + [NH2↑ 또는 NH3↑]Ca3SiO4(OH)2 + 2 NH3 (aq) or NH2NH2 (aq) (temperature below -30 ° C or above 50 ° C, and H2 Gas, NH3 Gas, N2 Gas or reaction under inert gas) Ca3SiO4(NH2)2 + 2 NH4OH → Ca3SiO4(NH2)22NH3 + 2H2O ↑ → Ca3SiO4 + [NH2↑ or NH3↑]
한편, 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물이 관여하는 반응의 효율을 높이기 위해서는, 상기 알칼리성 화합물을 용매에 용해하여 반응시킬 수 있으며, 상기 알칼리성 화합물 자체의 녹는점 이상에서 반응시킬 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 0℃, 약 -100℃ 내지 약 500℃, 약 -100℃ 내지 약 1000℃, 약 -100℃ 내지 약 1500℃, 약 0℃ 내지 약 500℃, 약 0℃ 내지 약 1000℃, 약 0℃ 내지 약 1500℃, 약 500℃ 내지 약 1000℃, 약 500℃ 내지 약 1500℃, 또는 약 1000℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 약 -100℃ 미만의 온도에서는 상기 알칼리성 화합물이 고체로 존재하기 때문에 반응성이 낮아서 반응 수행이 어려울 수 있으며, 약 1500℃ 초과의 온도에서는 상기 알칼리성 화합물이 형광체의 염소와 반응한 후에도 형광체 자체의 모체와 반응하여 이차상을 합성하는 문제가 발생할 수 있으나, 이에 제한되는 것은 아니다. On the other hand, for example, the step of treating the alkaline compound may be performed at about -100 ℃ to about 1500 ℃, but is not limited thereto. In order to increase the efficiency of the reaction involving the alkaline compound, the alkaline compound may be dissolved and reacted in a solvent, and the reaction may be performed at a melting point or higher of the alkaline compound itself, but is not limited thereto. For example, the treating of the alkaline compound may be performed at about -100 ° C to about 1500 ° C, but is not limited thereto. For example, treating the alkaline compound may comprise about -100 ° C to about 0 ° C, about -100 ° C to about 500 ° C, about -100 ° C to about 1000 ° C, about -100 ° C to about 1500 ° C, about 0 Is performed at from about 500 ° C. to about 500 ° C., from about 0 ° C. to about 1000 ° C., from about 0 ° C. to about 1500 ° C., from about 500 ° C. to about 1000 ° C., from about 500 ° C. to about 1500 ° C., or from about 1000 ° C. to about 1500 ° C. May be, but is not limited thereto. When the alkaline compound is present at a temperature below about -100 ° C., the reaction may be difficult to perform due to its low reactivity, and at temperatures above about 1500 ° C., the alkaline compound may react with the matrix of the phosphor itself even after reacting with the chlorine of the phosphor. The reaction may occur to synthesize a second phase, but is not limited thereto.
한편, 예를 들어, 상기 알칼리성 화합물을 처리함으로써 수득된 형광체는, 증류수, 알코올 류, 또는 무극성 용매를 이용하여 세정하여 잔류하는 알칼리금속 염화물을 제거하고, 약 200℃ 이하에서 건조하는 방식으로 후 처리할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 잔류하는 알칼리 금속 염화물을 형광체와 반응하여 발광 저하에 영향을 줄 수 있기 때문에 제거하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 또한, 예를 들어, 상기 건조는 약 200℃ 이하, 약 180℃ 이하, 약 160℃ 이하, 약 140℃ 이하, 약 120℃ 이하, 또는 약 100℃ 이하의 온도에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 건조를 약 200℃를 초과하는 온도에서 수행할 경우, 잔류하는 알칼리금속이 상기 형광체와 반응함으로써 상기 형광체의 발광 저하를 야기할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 환원제로서 사용한 경우, 수득된 형광체의 건조를 위해서는 진공오븐을 사용하거나, 또는 질소 또는 불활성 기체를 이용하여 건조하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 또한, 알칼리금속과 염화물이 포함된 형광체의 양을 조절함으로써 잔류하는 알칼리금속 염화물의 양을 조절하거나 제거할 수 있으나, 이에 제한되는 것은 아니다.On the other hand, for example, the phosphor obtained by treating the alkaline compound is washed with distilled water, alcohols, or nonpolar solvent to remove residual alkali metal chlorides, and then dried in a manner of drying at about 200 ° C. or lower. It may be, but is not limited thereto. For example, it may be preferable to remove the residual alkali metal chloride because it may react with the phosphor to affect the emission decrease, but is not limited thereto. Further, for example, the drying may be performed at a temperature of about 200 ° C. or less, about 180 ° C. or less, about 160 ° C. or less, about 140 ° C. or less, about 120 ° C. or less, or about 100 ° C. or less, but is not limited thereto. It is not. When the drying is performed at a temperature exceeding about 200 ° C., the remaining alkali metal may react with the phosphor, causing a decrease in emission of the phosphor, but is not limited thereto. For example, when the alkaline compound is used as a reducing agent, for drying the obtained phosphor, it may be preferable to use a vacuum oven or to dry using nitrogen or an inert gas, but is not limited thereto. In addition, the amount of alkali metal chloride remaining may be adjusted or removed by adjusting the amount of the phosphor containing alkali metal and chloride, but is not limited thereto.
한편, 예를 들어, 상기 환원 반응식들에서 전구체로서의 형광체는 활제(activator)를 포함한 물질일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 환원 반응식들에서의 모든 반응은 자외선 하에서 수행됨으로써 반응 속도 및 반응성을 향상시킬 수 있으나, 이에 제한되는 것은 아니다. 상기 반응들은 형광체 입자의 표면에서 극소량으로 진행되는 것일 수 있으나, 형광체의 활제의 양에 대하여 표면의 Eu3+에서 Eu2+로 환원될 수 있는 조건을 가질 수 있다. 또한, 형광체의 환원 소성 또는 형광체의 환원 처리시 하이드라진과 같은 알칼리성 용액 물질을 함께 소성하여 합성할 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 반응 도중에 발생되는 부반응 산물은 원심분리 또는 기체화 반응을 통하여 제거 또는 분리할 수 있으나, 이에 제한되는 것은 아니다. 또한, 히드록시기 합성 반응을 통하여 상기 반응의 반응성 향상에 기여할 수 있으나, 이에 제한되는 것은 아니다.Meanwhile, for example, the phosphor as a precursor in the reduction schemes may be a material including an activator, but is not limited thereto. In addition, all reactions in the reduction schemes may be performed under ultraviolet light, thereby improving reaction rate and reactivity, but are not limited thereto. The reaction may be carried out in a very small amount on the surface of the phosphor particles, but may have a condition that can be reduced from Eu 3+ to Eu 2+ on the surface with respect to the amount of lubricant of the phosphor. In addition, an alkaline solution material such as hydrazine may be synthesized by reducing the firing of the phosphor or reducing the phosphor, but the present invention is not limited thereto. In addition, the side reaction product generated during the reaction may be removed or separated through centrifugation or gasification, but is not limited thereto. In addition, the hydroxy group synthesis reaction may contribute to the improvement of the reaction, but is not limited thereto.
예를 들어, 본원의 제 1 측면에 따른 옥시할로겐화물계 형광체의 제조 과정 중에 상기 옥시할로겐화물계 형광체를 분쇄하는 단계를 추가함으로써, 상기 형광체 분말을 보다 미립화하고 표면적을 증가시켜 산화·환원에 소요되는 시간을 단축시키거나 합성 온도를 낮출 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 분쇄하는 단계에는, 볼밀(ball mill), 롤러 제분기(rollermill), 진동 볼밀(ball mill), 아토라이타밀, 유성 볼밀(ball mill), 샌드밀(sand mill), 커터밀(cutter mill), 해머밀(hammer mill), 제트밀(jet mill) 등의 건식형 분산기, 초음파 분산기, 또는 고압 호모지나이저(homogenizer) 등의 분쇄 장치를 사용할 수 있으나, 이에 제한되는 것은 아니다.For example, by adding the step of pulverizing the oxyhalide-based phosphor during the manufacturing process of the oxyhalide-based phosphor according to the first aspect of the present application, the time required for oxidation and reduction by further atomizing the phosphor powder and increasing the surface area It is possible to shorten or lower the synthesis temperature, but is not limited thereto. For example, in the grinding step, a ball mill, a roller mill, a vibrating ball mill, an atorita mill, a planetary ball mill, a sand mill, a cutter mill Drying dispersers such as cutter mills, hammer mills, jet mills, ultrasonic dispersers, or grinding apparatuses such as high pressure homogenizers may be used, but are not limited thereto.
본원의 제 2 측면은, 본원의 제 1 측면에 따른 방법에 의하여 제조되는 옥시할로겐화물계 형광체로서, 상기 옥시할로겐화물계 형광체는 M1-M2-OX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 옥시할로겐화물계 형광체를 제공한다.A second aspect of the present application is an oxyhalide-based phosphor prepared by the method according to the first aspect of the present application, wherein the oxyhalide-based phosphor has a composition of M 1 -M 2 -OX: M 3 , wherein M 1 is an alkali. A metal, an alkaline earth metal, or a transition metal, wherein M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof, X is a halogen element, and M 3 is a rare earth metal Provided are phosphorus and oxyhalide compounds.
예를 들어, 본원의 제 2 측면에 따른 옥시할로겐화물계 형광체의 조성은 M4 v-uSiwAxOyClz: M5 u로도 나타낼 수 있으며, 여기에서, 상기 M4는, 알칼리금속 또는 알칼리토금속의 염화물 (예를 들어, LiCl, NaCl, KCl, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2 등), 또는 전이금속의 염화물 (예를 들어, ScCl3, TiCl4, VCl4, CrCl3, MnCl3, FeCl3, CoCl2, NiCl2, CuCl2, ZnCl2, YCl3, ZrCl4, NbCl5, MoCl5 등)이고; 상기 A는 B, Al, 또는 P이며; 상기 M5는 희토류계 금속의 염화물 (예를 들어, LaCl3, CeCl3, NdCl3, EuCl3, GdCl3, TbCl3, DyCl3, ErCl3, YbCl3 등)이고; 상기 v는 약 1 내지 약 8 중 어느 하나의 값이며, 상기 w는 약 1 내지 약 7 중 어느 하나의 값이고, 상기 x는 약 1 내지 약 5 중 어느 하나의 값이며, 상기 y는 약 3 내지 약 40 중 어느 하나의 값이고, 상기 z는 약 0.5 내지 약 40 중 어느 하나의 값이며, 상기 u는 v의 약 0.5 mol% 내지 약 20 mol% 이내에 있는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the composition of the oxyhalide-based phosphor according to the second aspect of the present application may also be represented by M 4 v− u Si w A x O y Cl z : M 5 u , wherein M 4 is an alkali metal or Chlorides of alkaline earth metals (eg, LiCl, NaCl, KCl, BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2, etc.), or chlorides of transition metals (eg, ScCl 3 , TiCl 4 , VCl 4) , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5, etc .; A is B, Al, or P; M 5 is a chloride of a rare earth metal (eg, LaCl 3 , CeCl 3 , NdCl 3 , EuCl 3 , GdCl 3 , TbCl 3 , DyCl 3 , ErCl 3 , YbCl 3, etc.); V is any one of about 1 to about 8, w is any one of about 1 to about 7, x is any one of about 1 to about 5, and y is about 3 To any one of about 40 to about 40, and z is any value of about 0.5 to about 40, and u may be within about 0.5 mol% to about 20 mol% of v, but is not limited thereto. .
예를 들어, 본원의 제 2 측면에 따른 옥시할로겐화물계 형광체의 기본 조성은 M-Si-A-O-Cl (A: B, Al, 또는 P)로도 나타낼 수 있으며, 예를 들어, M-Si-O-Cl, M-Si-B-O-Cl, M-Si-Al-O-Cl, 또는 M-Si-P-O-Cl일 수 있고, 여기에서 상기 M은 적어도 2 가지 이상의 금속의 조합일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 M은 알칼리금속, 알칼리토금속, 전이금속, 또는 희토류계 금속으로부터 선택되는 적어도 2 가지 이상의 금속의 조합일 수 있으나, 이에 제한되는 것은 아니다.For example, the basic composition of the oxyhalide-based phosphor according to the second aspect of the present application may also be represented as M-Si-AO-Cl (A: B, Al, or P), for example, M-Si-O -Cl, M-Si-BO-Cl, M-Si-Al-O-Cl, or M-Si-PO-Cl, wherein M may be a combination of at least two metals, but It is not limited. For example, M may be a combination of at least two metals selected from alkali metals, alkaline earth metals, transition metals, or rare earth metals, but is not limited thereto.
예를 들어, 상기 옥시할로겐화물계 형광체는, 초장잔광 형광체 특성을 가지고, 둥근 입자 형태, 및 약 50 nm 내지 약 10 μm의 입자 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 옥시할로겐화물계 형광체는, 약 50 nm 내지 약 100 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 1 μm, 약 50 nm 내지 약 10 μm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 1 μm, 약 100 nm 내지 약 10 μm, 또는 약 1 μm 내지 약 10 μm의 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the oxyhalide-based phosphor may have ultra long afterglow phosphor characteristics, and may have a round particle shape and a particle size of about 50 nm to about 10 μm, but is not limited thereto. For example, the oxyhalide-based phosphor may be about 50 nm to about 100 nm, about 50 nm to about 500 nm, about 50 nm to about 1 μm, about 50 nm to about 10 μm, about 100 nm to about 500 nm , About 100 nm to about 1 μm, about 100 nm to about 10 μm, or about 1 μm to about 10 μm, but is not limited thereto.
본원은, 예를 들어, 상기 옥시할로겐화물계 형광체를 포함하는 디스플레이를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The present application may include, for example, a display including the oxyhalide-based phosphor, but is not limited thereto.
예를 들어, 상기 디스플레이는 브라운관, 발광 다이오드(Light Emitting Diode, LED), 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 또는 전계 방출 디스플레이(Field Emission Display, FED)를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the display may include a cathode ray tube, a light emitting diode (LED), a plasma display panel (PDP), or a field emission display (FED), but is not limited thereto. It doesn't happen.
본원은, 예를 들어, 상기 옥시할로겐화물계 형광체를 포함하는 램프를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The present application may include, for example, a lamp including the oxyhalide-based phosphor, but is not limited thereto.
본원의 제 3 측면은, 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계, 및 상기 용액에 환원제를 첨가한 후 질소-함유 분위기 하에서 열처리하는 단계를 포함하는, 질화물계 또는 산질화물계 형광체의 제조 방법을 제공한다.A third aspect of the present application provides a solution comprising a first metal halide, a second metal halide, and an oxide precursor of a tricycle element selected from the group consisting of Al, Si, P, and combinations thereof. It provides a method of producing a nitride-based or oxynitride-based phosphor, including the step, and the step of adding a reducing agent to the solution and heat treatment in a nitrogen-containing atmosphere.
예를 들어, 본원의 제 3 측면에 따른 질화물계 또는 산질화물계 형광체의 제조 방법은, 본원의 제 1 측면에 따른 옥시할로겐화물계 형광체의 제조 방법의 중간 과정에서 질소-함유 분위기 하에서 열처리하는 단계, 즉 질화시키는 단계를 포함시킴으로써, 열화학적인 반응을 유도하여 상기 옥시할로겐화물계 형광체의 할로겐 원소와 질소를 치환시켜 상기 질화물계 또는 산질화물계 형광체를 용이하고 경제적으로 수득하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the method for producing a nitride-based or oxynitride-based phosphor according to the third aspect of the present invention, the step of heat treatment under a nitrogen-containing atmosphere in the middle of the method for producing an oxyhalide-based phosphor according to the first aspect of the present application, That is, by including the step of nitriding, by inducing a thermochemical reaction to replace the halogen element and nitrogen of the oxyhalide-based phosphor, the nitride-based or oxynitride-based phosphor may be easily and economically obtained, but is not limited thereto. no.
예를 들어, 상기 질화물계 또는 산질화물계 형광체는, 제 1 금속 할로겐화물 및 제 2 금속 할로겐화물을 용매에 용해시켜 수용액 상태로 제조하고 이에 액상의 실리카 전구체를 첨가한 뒤 액상 교반을 통해 균일한 혼합 용액을 수득하고, 상기 혼합 용액을 환원제인 고분자 물질에 함침하여 함침물을 수득하며, 상기 함침물을 열처리함으로써 불순물이 제거된 형광체 분말을 수득하고, 상기 형광체 분말을 분쇄함으로써 최종적으로 증가된 표면적과 균일한 조성을 가지는 형광체의 형태로 제조될 수 있는 것이나, 이에 제한되는 것은 아니다.For example, the nitride-based or oxynitride-based phosphor may be prepared by dissolving the first metal halide and the second metal halide in a solvent to form an aqueous solution, adding liquid silica precursor thereto, and then uniformly stirring the liquid. A mixed solution is obtained, and the mixed solution is impregnated into a polymeric material which is a reducing agent to obtain an impregnation, and the impregnated phosphor powder is obtained by heat treatment of the impregnation, and finally the surface area increased by pulverizing the phosphor powder. It may be prepared in the form of a phosphor having a uniform composition with, but is not limited thereto.
또한, 예를 들어, 상기 질화물계 또는 산질화물계 형광체는, 희토류계 금속 및 금속 염화물이 포함된 용액에 액상 전구체로서 SiO2 졸을 첨가한 뒤 액상 교반을 통해 균일한 혼합 용액을 수득하고, 상기 혼합 용액을 환원제인 셀룰로오스 등의 고분자 물질에 함침하여 함침물을 수득하며, 상기 함침물을 건조하여 크세로겔 또는 크세로졸의 형태를 수득하고, 상기 크세로겔 또는 크세로졸을 열처리함으로써 최종적으로 구형의 형광체 형태로 제조될 수 있는 것이나, 이에 제한되는 것은 아니다.In addition, for example, the nitride-based or oxynitride-based fluorescent material, after adding SiO 2 sol as a liquid precursor to a solution containing a rare earth metal and metal chlorides to obtain a uniform mixed solution through liquid stirring, The mixed solution is impregnated with a polymer material such as cellulose, which is a reducing agent, to obtain an impregnation. The impregnation is dried to obtain a form of xerogel or xerosol, and finally, the heat treatment of the xerogel or xerosol is carried out. It can be prepared in the form of a spherical phosphor, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 제 1 금속 할로겐화물은, 알칼리금속 할로겐화물, 알칼리토금속 할로겐화물, 전이금속 할로겐화물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 할로겐화물을 포함하는 것이고, 상기 제 2 금속 할로겐화물은 희토류계 금속 할로겐화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 본원의 제 3 측면에 따라 액상법을 이용함으로써 고효율로 유리하게 질화물계 또는 산질화물계 형광체를 합성함에 있어서, 상기 제 1 금속 할로겐화물 및 제 2 금속 할로겐화물에 포함되는 금속을 다양화하여 제조된 질화물계 또는 산질화물계 형광체의 신규 조성의 탐색을 용이하게 할 수 있으나, 이에 제한되는 것은 아니다.According to an embodiment of the present disclosure, the first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof. The second metal halide may include, but is not limited to, a rare earth metal halide. For example, in synthesizing nitride-based or oxynitride-based phosphors with high efficiency by using the liquid phase method according to the third aspect of the present application, the metals contained in the first metal halide and the second metal halide are diversified. It is possible to facilitate the search for a new composition of the nitride-based or oxynitride-based fluorescent material prepared by, but is not limited thereto.
예를 들어, 상기 제 1 금속 할로겐화물로서 이온반경이 약 0.92 Å 내지 약 1.4 Å인 금속 염화물을 사용하여 희토류계 금속 물질과의 치환이 용이하게 일어나도록 할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 제 1 금속 할로겐화물은 이온반경이 약 0.92 Å 내지 약 1.0 Å, 약 0.92 Å 내지 약 1.2 Å, 약 0.92 Å 내지 약 1.4 Å, 약 1.0 Å 내지 약 1.2 Å, 약 1.0 Å 내지 약 1.4 Å, 또는 약 1.2 Å 내지 약 1.4 Å일 수 있으나, 이에 제한되는 것은 아니다.For example, a metal chloride having an ion radius of about 0.92 GPa to about 1.4 GPa may be used as the first metal halide to facilitate replacement with a rare earth metal material, but is not limited thereto. For example, the first metal halide has an ion radius of from about 0.92 kPa to about 1.0 kPa, from about 0.92 kPa to about 1.2 kPa, from about 0.92 kPa to about 1.4 kPa, from about 1.0 kPa to about 1.2 kPa, about 1.0 kPa About 1.4 kPa, or about 1.2 kPa to about 1.4 kPa, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 알칼리금속 할로겐화물은 LiCl, NaCl, KCl, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것이고, 상기 알칼리토금속 할로겐화물은 BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide is BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , and combinations thereof, may include chloride, but is not limited thereto.
예를 들어, 상기 전이금속 할로겐화물은 ScCl2, TiCl4, VCl4, CrCl3, MnCl3, FeCl3, CoCl2, NiCl2, CuCl2, ZnCl2, YCl3, ZrCl4, NbCl5, MoCl5, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the transition metal halide is ScCl 2 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl 3 , CoCl 2 , NiCl 2 , CuCl 2 , ZnCl 2 , YCl 3 , ZrCl 4 , NbCl 5 , MoCl 5 , and chlorides selected from the group consisting of combinations thereof, but is not limited thereto.
예를 들어, 상기 희토류계 금속 할로겐화물은 LaCl3, CeCl3, NdCl3, EuCl3, GdCl3, TbCl3, DyCl3, ErCl3, YbCl3, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the rare earth metal halide is a chloride selected from the group consisting of LaCl 3 , CeCl 3 , NdCl 3 , EuCl 3 , GdCl 3 , TbCl 3 , DyCl 3 , ErCl 3 , YbCl 3 , and combinations thereof It may be to include, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3 주기 원소의 산화물 전구체는, SiO2, Si(OH)4, SiH4, Si(OC2H5)4, 또는 수용성 실란을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 주기 원소의 산화물 전구체는, WSS (water soluble silicate), 또는 입자 크기가 약 5 nm 내지 약 3000 nm인 SiO2 졸(sol)을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 주기 원소의 산화물 전구체로는 SiO2, Si(OH)4, 또는 수용성 실란을 사용하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the oxide precursor of the tricycle element may include SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a water-soluble silane, but is not limited thereto. It doesn't happen. For example, the oxide precursor of the tricycle element may include, but is not limited to, water soluble silicate (WSS) or SiO 2 sol having a particle size of about 5 nm to about 3000 nm. . For example, it may be preferable to use SiO 2 , Si (OH) 4 , or water-soluble silane as the oxide precursor of the tricycle element, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 환원제는, 옥수수 전분, 감자 전분, 셀룰로오스 분말, 셀룰로오스 시트, 구형 셀룰로오스, 수용성 셀룰로오스, 펄프, 결정화 셀룰로오스, 비결정질 셀룰로오스, 레이온, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 고분자 물질을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 환원제로는 약 99.8% 이상의 순도를 가지며 미세한 매트릭스 형태를 가지는 고순도 펄프를 사용하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the reducing agent is selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof It may be to include a high molecular material, but is not limited thereto. For example, it may be desirable to use a high purity pulp having a purity of about 99.8% or more and having a fine matrix form, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 열처리하는 단계는, 약 150℃ 내지 약 400℃에서 수행되는 1 차 열처리, 약 500℃ 내지 약 1000℃에서 수행되는 2 차 열처리, 및 약 700℃ 내지 약 1400℃에서 수행되는 3 차 열처리가 순차적으로 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present disclosure, the heat treatment includes: a first heat treatment performed at about 150 ° C. to about 400 ° C., a second heat treatment performed at about 500 ° C. to about 1000 ° C., and about 700 ° C. to about 1400 ° C. Tertiary heat treatment performed in may be to include that is performed sequentially, but is not limited thereto.
예를 들어, 상기 1차 열처리를 수행하기 전에 건조 공정을 수행함으로써 수분을 완전히 제거함이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 상기 건조 공정은 일반 건조 오븐 내에서 약 50℃ 내지 약 80℃의 온도로 수행하거나, 또는 진공 오븐 내에서 약 50℃ 내지 약 150℃의 온도로 수행할 수 있으나, 이에 제한되는 것은 아니다.For example, it may be desirable to completely remove moisture by performing a drying process before performing the primary heat treatment, but is not limited thereto. The drying process may be performed at a temperature of about 50 ° C. to about 80 ° C. in a general drying oven or at a temperature of about 50 ° C. to about 150 ° C. in a vacuum oven, but is not limited thereto.
예를 들어, 상기 열처리하는 단계에서는, 상기 2 차 열처리를 생략하고 상기 1 차 열처리 및 상기 3 차 열처리만을 연속적으로 수행할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 1 차, 2 차, 및 3 차 열처리 각각은 산소가 배제된 질소 분위기 하, 또는 불활성 가스 분위기 하에서 수행될 수 있으나, 이에 제한되는 것은 아니다.For example, in the heat treatment step, the secondary heat treatment may be omitted, and only the first heat treatment and the third heat treatment may be continuously performed, but the present invention is not limited thereto. For example, each of the primary, secondary, and tertiary heat treatments may be performed under a nitrogen atmosphere in which oxygen is excluded or under an inert gas atmosphere, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 약 150℃ 내지 약 400℃에서 1 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 1 차 열처리는 약 150℃ 내지 약 200℃, 약 150℃ 내지 약 250℃, 약 150℃ 내지 약 300℃, 약 150℃ 내지 약 350℃, 약 150℃ 내지 약 400℃, 약 200℃ 내지 약 250℃, 약 200℃ 내지 약 300℃, 약 200℃ 내지 약 350℃, 약 200℃ 내지 약 400℃, 약 250℃ 내지 약 300℃, 약 250℃ 내지 약 350℃, 약 250℃ 내지 약 400℃, 약 300℃ 내지 약 350℃, 약 300℃ 내지 약 400℃, 또는 약 350℃ 내지 약 400℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. For example, the step of heat treatment may include, but is not limited to, primary heat treatment at about 150 ° C to about 400 ° C. For example, the first heat treatment may be about 150 ° C. to about 200 ° C., about 150 ° C. to about 250 ° C., about 150 ° C. to about 300 ° C., about 150 ° C. to about 350 ° C., about 150 ° C. to about 400 ° C., about 200 ° C to about 250 ° C, about 200 ° C to about 300 ° C, about 200 ° C to about 350 ° C, about 200 ° C to about 400 ° C, about 250 ° C to about 300 ° C, about 250 ° C to about 350 ° C, about 250 ° C To about 400 ° C, about 300 ° C to about 350 ° C, about 300 ° C to about 400 ° C, or about 350 ° C to about 400 ° C, but is not limited thereto.
상기 1 차 열처리를 통하여 셀룰로오스 등 환원제로서 사용되는 고분자 물질이 분해될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 1 차 열처리를 통하여 이루어지는 상기 고분자 물질의 분해는, 고분자의 고리, 고분자 내부의 -OH 기 또는 -CH2O 기 분해를 포함하는 것일 수 있으며, 이외에도 금속 할로겐화물의 NO3 등의 불순물 리간드의 분해 및 제거를 위하여 상기 1 차 열처리가 수행될 수도 있으나, 이에 제한되는 것은 아니다. 상기 1 차 열처리 온도가 약 150℃ 미만인 경우에는 셀룰로오스 등 환원제로서 사용되는 고분자 물질의 분해가 어려울 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 1 차 열처리 온도가 약 400℃ 초과인 경우에는 형광체의 전구체가 분해 및 산화됨으로써 산화물계 실리케이트 등 산화물이 형성되어 최종 결과물인 형광체에 영향을 미칠 수 있으나, 이에 제한되는 것은 아니다. 별도의 분쇄 과정 없이도 상기 1 차 열처리를 수행할 수 있으며, 분쇄 과정을 병행하는 경우 표면적이 증가되어 보다 낮은 온도에서 균일한 형광체를 수득하기 용이할 수 있으나, 이에 제한되는 것은 아니다.The first heat treatment may decompose the polymer material used as a reducing agent such as cellulose, but is not limited thereto. For example, the decomposition of the polymer material formed through the first heat treatment may include decomposition of the ring of the polymer, -OH group or -CH 2 O group in the polymer, in addition to NO 3 and the like of the metal halide The first heat treatment may be performed to decompose and remove the impurity ligand of, but is not limited thereto. When the primary heat treatment temperature is less than about 150 ° C., it may be difficult to decompose a polymer material used as a reducing agent such as cellulose, but is not limited thereto. On the other hand, when the primary heat treatment temperature is greater than about 400 ° C, the precursor of the phosphor is decomposed and oxidized to form an oxide such as an oxide silicate, which may affect the final resulting phosphor, but is not limited thereto. The primary heat treatment may be performed without a separate grinding process, and when the grinding process is performed in parallel, the surface area may be increased, so that it may be easy to obtain a uniform phosphor at a lower temperature, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 상기 1 차 열처리 이후 약 500℃ 내지 약 1000℃에서 2 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 2 차 열처리는 약 500℃ 내지 약 600℃, 약 500℃ 내지 약 700℃, 약 500℃ 내지 약 800℃, 약 500℃ 내지 약 900℃, 약 500℃ 내지 약 1000℃, 약 600℃ 내지 약 700℃, 약 600℃ 내지 약 800℃, 약 600℃ 내지 약 900℃, 약 600℃ 내지 약 1000℃, 약 700℃ 내지 약 800℃, 약 700℃ 내지 약 900℃, 약 700℃ 내지 약 1000℃, 약 800℃ 내지 약 900℃, 약 800℃ 내지 약 1000℃, 또는 약 900℃ 내지 약 1000℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 2 차 열처리는, 상기 1 차 열처리를 통하여 수득된 고체 상태의 형광체 전구체 분말로부터 잔여 유기물을 제거하는 한편, 상기 형광체 전구체 분말을 결정화하기 위하여 산소 분위기 하에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 이때, 상기 2 차 열처리가 수행되는 온도를 적절하게 조절함으로써 잔여 유기물의 제거 및 상기 형광체 전구체 분말의 결정화를 용이하게 수행할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 2 차 열처리를 약 500℃ 미만의 온도에서 수행하는 경우 비정질인 상기 형광체 전구체 분말을 결정화하기 어려우며 장시간의 열처리가 요구될 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 2 차 열처리를 약 1000℃ 초과의 온도에서 수행하는 경우 상기 형광체 전구체의 결정 안정성에 따라 일부가 산화됨으로써 산화 실리케이트 형광체 등 산화물이 형성되어 바람직하지 않을 수 있으나, 이에 제한되는 것은 아니다. For example, the heat treatment may include, but is not limited to, secondary heat treatment at about 500 ° C. to about 1000 ° C. after the first heat treatment. For example, the secondary heat treatment may be about 500 ° C. to about 600 ° C., about 500 ° C. to about 700 ° C., about 500 ° C. to about 800 ° C., about 500 ° C. to about 900 ° C., about 500 ° C. to about 1000 ° C., about 600 ° C to about 700 ° C, about 600 ° C to about 800 ° C, about 600 ° C to about 900 ° C, about 600 ° C to about 1000 ° C, about 700 ° C to about 800 ° C, about 700 ° C to about 900 ° C, about 700 ° C To about 1000 ° C, about 800 ° C to about 900 ° C, about 800 ° C to about 1000 ° C, or about 900 ° C to about 1000 ° C, but is not limited thereto. The secondary heat treatment may be performed under an oxygen atmosphere to remove residual organic materials from the phosphor precursor powder in the solid state obtained through the first heat treatment and to crystallize the phosphor precursor powder, but is not limited thereto. . At this time, by appropriately adjusting the temperature at which the second heat treatment is performed, it is possible to easily remove the residual organic material and crystallize the phosphor precursor powder, but is not limited thereto. For example, when the secondary heat treatment is performed at a temperature of less than about 500 ° C., it is difficult to crystallize the amorphous precursor precursor powder and a long time heat treatment may be required, but is not limited thereto. Meanwhile, when the secondary heat treatment is performed at a temperature of more than about 1000 ° C., some of the oxides may be oxidized according to the crystal stability of the phosphor precursor to form an oxide such as an oxidized silicate phosphor, but the present invention is not limited thereto.
예를 들어, 본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체를 제조함에 있어서, 제 1 금속 할로겐화물로서 LiCl, MgCl2, ScCl3, TiCl4, VCl4, CrCl3, MnCl3, FeCl3, CoCl2, NiCl2, CuCl2, 또는 ZnCl2를 사용하고 2 주기 원소의 산화물 전구체로서 SiO2 또는 SiO2 + Al 염을 사용하는 경우, 상기 제 1 금속 할로겐화물의 금속 이온과 Cl 이온 사이의 큰 이온반경비 차이로 인하여, 상기 2차 열처리를 약 500℃ 정도의 저온에서 약 10 시간 이상의 장시간 동안 수행하는 것이 바람직할 수 있으나, 이에 제한되는 것이 아니다. 한편, 상기 제 1 금속 할로겐화물의 종류에 따라 금속 이온이 Cl 이온을 붙잡고 있는 이온 반경이 충분히 확보된 경우에는 약 600℃ 내지 약 800℃의 온도에서 약 5 시간 정도 상기 2차 열처리를 수행하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.For example, in preparing a nitride-based or oxynitride-based phosphor according to the third aspect of the present application, as the first metal halide, LiCl, MgCl 2 , ScCl 3 , TiCl 4 , VCl 4 , CrCl 3 , MnCl 3 , FeCl When using 3 , CoCl 2 , NiCl 2 , CuCl 2 , or ZnCl 2 and using the SiO 2 or SiO 2 + Al salt as the oxide precursor of the bicycle element, between the metal and Cl ions of the first metal halide Due to the large difference in the ion radius ratio of, it may be preferable to perform the secondary heat treatment at a low temperature of about 500 ° C. for a long time of about 10 hours or more, but is not limited thereto. On the other hand, when the ion radius where the metal ions hold Cl ions is sufficiently secured according to the type of the first metal halide, the secondary heat treatment may be performed at a temperature of about 600 ° C. to about 800 ° C. for about 5 hours. It may be preferred, but is not limited thereto.
예를 들어, 상기 열처리하는 단계는, 상기 2 차 열처리 이후 약 700℃ 내지 약 1400℃에서 3 차 열처리하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 차 열처리는 약 700℃ 내지 약 800℃, 약 700℃ 내지 약 900℃, 약 700℃ 내지 약 1000℃, 약 700℃ 내지 약 1100℃, 약 700℃ 내지 약 1200℃, 약 700℃ 내지 약 1300℃, 약 700℃ 내지 약 1400℃, 약 800℃ 내지 약 900℃, 약 800℃ 내지 약 1000℃, 약 800℃ 내지 약 1100℃, 약 800℃ 내지 약 1200℃, 약 800℃ 내지 약 1300℃, 약 800℃ 내지 약 1400℃, 약 900℃ 내지 약 1000℃, 약 900℃ 내지 약 1100℃, 약 900℃ 내지 약 1200℃, 약 900℃ 내지 약 1300℃, 약 900℃ 내지 약 1400℃, 약 1000℃ 내지 약 1100℃, 약 1000℃ 내지 약 1200℃, 약 1000℃ 내지 약 1300℃, 약 1000℃ 내지 약 1400℃, 약 1100℃ 내지 약 1200℃, 약 1100℃ 내지 약 1300℃, 약 1100℃ 내지 약 1400℃, 약 1200℃ 내지 약 1300℃, 약 1200℃ 내지 약 1400℃, 또는 약 1300℃ 내지 약 1400℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 3 차 열처리를 환원 분위기 하에서 수행함으로써, 상기 2 차 열처리를 통해 형성된 형광체 전구체의 결정을 성장시키는 한편 희토류계 금속 등 부활제를 환원시킬 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 차 열처리가 약 700℃ 미만의 온도에서 수행될 경우, 충분한 환원 분위기가 형성되기 어려우며, 결과적으로 형광체의 휘도 및 발광 강도 저하가 야기될 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 3 차 열처리가 약 1400℃ 초과의 온도에서 수행될 겨우, 형광체 분말이 소결체로 되면서 분말의 특성을 잃을 수 있으나, 이에 제한되는 것은 아니다. For example, the heat treatment may include, but is not limited to, a third heat treatment at about 700 ° C. to about 1400 ° C. after the second heat treatment. For example, the third heat treatment may be about 700 ° C. to about 800 ° C., about 700 ° C. to about 900 ° C., about 700 ° C. to about 1000 ° C., about 700 ° C. to about 1100 ° C., about 700 ° C. to about 1200 ° C., about 700 ° C to about 1300 ° C, about 700 ° C to about 1400 ° C, about 800 ° C to about 900 ° C, about 800 ° C to about 1000 ° C, about 800 ° C to about 1100 ° C, about 800 ° C to about 1200 ° C, about 800 ° C To about 1300 ° C, about 800 ° C to about 1400 ° C, about 900 ° C to about 1000 ° C, about 900 ° C to about 1100 ° C, about 900 ° C to about 1200 ° C, about 900 ° C to about 1300 ° C, about 900 ° C to about 1400 ° C, about 1000 ° C to about 1100 ° C, about 1000 ° C to about 1200 ° C, about 1000 ° C to about 1300 ° C, about 1000 ° C to about 1400 ° C, about 1100 ° C to about 1200 ° C, about 1100 ° C to about 1300 ° C , About 1100 ° C. to about 1400 ° C., about 1200 ° C. to about 1300 ° C., about 1200 ° C. to about 1400 ° C., or about 1300 ° C. to about 1400 ° C., but is not limited thereto. By performing the third heat treatment in a reducing atmosphere, crystals of the phosphor precursor formed through the second heat treatment may be grown while reducing an activator such as a rare earth metal, but the present invention is not limited thereto. For example, when the tertiary heat treatment is performed at a temperature of less than about 700 ° C., it is difficult to form a sufficient reducing atmosphere, and as a result, a decrease in luminance and emission intensity of the phosphor may be caused, but is not limited thereto. On the other hand, if the third heat treatment is performed at a temperature of more than about 1400 ℃, as the phosphor powder becomes a sintered body may lose the properties of the powder, but is not limited thereto.
예를 들어, 상기 환원 분위기는 N2/H2 = (약 90 내지 약 95)/(약 10 내지 약 5) 또는 Ar/H2 = (약 90 내지 약 95)/(약 10 내지 약 5)에 의하여 조성되는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the reducing atmosphere may be N 2 / H 2 = (about 90 to about 95) / (about 10 to about 5) or Ar / H 2 = (about 90 to about 95) / (about 10 to about 5) It may be to be formed by, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 3 차 열처리는 질소-함유 기체가 약 0.1 cm/s 내지 약 10 cm/s 선속으로 흐르는 분위기에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 3 차 열처리는 질소-함유 기체가 약 0.1 cm/s 내지 약 1 cm/s, 약 0.1 cm/s 내지 약 3 cm/s, 약 0.1 cm/s 내지 약 5 cm/s, 약 0.1 cm/s 내지 약 7 cm/s, 약 0.1 cm/s 내지 약 10 cm/s, 약 1 cm/s 내지 약 3 cm/s, 약 1 cm/s 내지 약 5 cm/s, 약 1 cm/s 내지 약 7 cm/s, 약 1 cm/s 내지 약 10 cm/s, 약 3 cm/s 내지 약 5 cm/s, 약 3 cm/s 내지 약 7 cm/s, 약 3 cm/s 내지 약 10 cm/s, 약 5 cm/s 내지 약 7 cm/s, 약 5 cm/s 내지 약 10 cm/s, 또는 약 7 cm/s 내지 약 10 cm/s 선속으로 흐르는 분위기에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the tertiary heat treatment may be performed in an atmosphere in which a nitrogen-containing gas flows at a speed of about 0.1 cm / s to about 10 cm / s, but is not limited thereto. For example, the tertiary heat treatment may comprise a nitrogen-containing gas from about 0.1 cm / s to about 1 cm / s, from about 0.1 cm / s to about 3 cm / s, from about 0.1 cm / s to about 5 cm / s, About 0.1 cm / s to about 7 cm / s, about 0.1 cm / s to about 10 cm / s, about 1 cm / s to about 3 cm / s, about 1 cm / s to about 5 cm / s, about 1 cm / s to about 7 cm / s, about 1 cm / s to about 10 cm / s, about 3 cm / s to about 5 cm / s, about 3 cm / s to about 7 cm / s, about 3 cm / s performed in an atmosphere flowing at s to about 10 cm / s, about 5 cm / s to about 7 cm / s, about 5 cm / s to about 10 cm / s, or about 7 cm / s to about 10 cm / s flux It may be, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 질소-함유 분위기는 N2, NH3, 또는 이들의 조합에 의해 조성되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the nitrogen-containing atmosphere may be formed by N 2 , NH 3 , or a combination thereof, but is not limited thereto.
예를 들어, 상기 질소-함유 분위기는 N2, NH3, 또는 이들의 조합에 의해 조성되는 것을 포함하며, H2, 또는 CH3를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the nitrogen-containing atmosphere may include one formed by N 2 , NH 3 , or a combination thereof, and may further include H 2 , or CH 3 , but is not limited thereto.
예를 들어, 본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체를 제조함에 있어서, 형광체의 모체로서 SiO2에 B와 같은 녹기 쉽고 증발하기 쉬운 가벼운 물질이 함께 쓰이는 모체를 이용하는 경우에는, 상기 2 차 열처리를 약 500℃의 저온에서 약 10 시간 이상의 장시간 수행함으로써 유기물을 제거하고, 상기 3 차 열처리를 산소가 배제된 환원 분위기에서 약 700℃에서 약 2 시간 이상의 장시간 수행함으로써 SiO2의 결정화를 유도하며, 이후 약 900℃에서 형광체 결정의 성장을 유도하는 방법을 택할 수 있으나, 이에 제한되는 것은 아니다.For example, in the manufacture of a nitride-based or oxynitride-based fluorescent material according to the third aspect of the present application, in the case of using a matrix in which SiO 2 is used as a matrix of phosphors, a light substance that is easy to dissolve and evaporates, such as B, is used. The secondary heat treatment is performed at a low temperature of about 500 ° C. for at least about 10 hours to remove organics, and the third heat treatment is performed at about 700 ° C. for at least about 2 hours at a reduced atmosphere in which oxygen is excluded to crystallize SiO 2 . Induction, and may be selected to induce the growth of the phosphor crystal at about 900 ℃, but is not limited thereto.
예를 들어, 본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체를 제조함에 있어서, 형광체의 모체로서 SiO2에 P를 조합한 모체를 이용하는 경우에는, 이온결합성과 고전자가성이 강한 P는 Si가 다른 금속염과 모체를 형성하기 전에 M-P-O-Cl 형태를 형성할 확률이 높다는 점에서, 일단 1 차 열처리를 통해 비정질 상을 얻은 후 빠른 승온 속도를 통해 약 700℃ 이상의 온도에서 2 차 열처리하여 SiO2의 결정화를 유도하면서 모체를 얻는 방법을 택할 수 있으나, 이에 제한되는 것은 아니다.For example, in the manufacture of a nitride-based or oxynitride-based phosphor according to the third aspect of the present application, in the case of using a matrix of SiO 2 in combination with P as a parent of the phosphor, P having a high ionic bondability and high magnetism is Since Si is more likely to form MPO-Cl before forming a matrix with other metal salts, once the amorphous phase is obtained through primary heat treatment, the secondary heat treatment is carried out at a temperature of about 700 ° C. or higher through a rapid temperature increase rate to form SiO. A method of obtaining a matrix while inducing crystallization of 2 may be selected, but is not limited thereto.
본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체를 제조함에 있어서, 본원의 제 1 측면에 따라 옥시할로겐화물계 형광체를 제조하는 것과 차별화된 부분은 금속 이온을 질화시키는 부분이라 할 수 있다. 예를 들어, 제 1 금속 할로겐화물로서 염화물을 사용하고 3 주기 원소의 산화물 전구체로서 SiO2를 사용한 경우, Cl(~1.81 Å)과 N(1.46 Å)의 이온 반경비 차이를 이용하여 금속 물질과 비슷한 이온 반경비를 가지는 N을 Cl 대신 치환하면서 공유결합을 유도함으로써 상기 질화가 달성될 수 있으나, 이에 제한되는 것은 아니다. 이온 반경비의 측면에서, 상기 제 1 금속 할로겐화물로서 염화물을 사용하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 제 1 금속 할로겐화물로서 염화물을 사용할 경우 상대적으로 저온의 반응으로 질화를 유도할 수 있으나, 이에 제한되는 것은 아니다.In preparing the nitride-based or oxynitride-based fluorescent material according to the third aspect of the present application, the part which is different from the manufacturing of the oxyhalide-based fluorescent material according to the first aspect of the present application may be referred to as a part for nitriding metal ions. For example, when chloride is used as the first metal halide and SiO 2 is used as the oxide precursor of the tricycle element, the difference in the ion radius ratio between Cl (~ 1.81 kV) and N (1.46 kV) The nitriding can be achieved by inducing covalent bonds by substituting N for Cl instead of Cl, but the present invention is not limited thereto. In terms of ion radius ratio, it may be preferable to use chloride as the first metal halide, but is not limited thereto. For example, when the chloride is used as the first metal halide, nitriding may be induced by a relatively low temperature reaction, but is not limited thereto.
본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체가 제조되기 위해서는 희토류계 금속이 형광체 모체의 금속 이온과 효과적으로 치환될 필요가 있으므로, 이를 위해 상기 희토류계 금속의 이온반경 크기가 약 0.92 Å 내지 약 1.4 Å라는 점에서 상기 형광체 모체의 금속 이온 또한 이와 유사한 이온반경을 가지는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다.In order for the nitride-based or oxynitride-based fluorescent material to be manufactured according to the third aspect of the present application, since the rare earth-based metal needs to be effectively substituted with the metal ions of the phosphor matrix, the ion radius size of the rare earth-based metal is about 0.92 kPa to It is preferable that the metal ion of the phosphor matrix also has a similar ion radius in that it is about 1.4 GHz, but is not limited thereto.
한편, 본원의 제 3 측면에 따른 질화물계 또는 산질화물계 형광체의 제조 방법은, 일반적인 탄소열분해질화법(CRN 법; Cabothermal Reaction-Nitridation method) 또는 가스환원질화법(GRN 법; Gas-Reduction-Nitridation)과 병행하여 효율을 증진시킬 수 있으나, 이에 제한되는 것은 아니다. 종래에는 CRN 법을 이용하여 산화물계 형광체에 탄소를 혼합하여 탄화 과정을 통해 질화시킴으로써 고순도의 질화물계 형광체를 형성하였으나, 이와 같은 종래의 방법은 SiO2와 같이 탄소와 이온 반경이 비슷한 물질에만 적용된다는 한계가 있었으며, 본원에서는 상기 한계점을 해결하고자 하였다.On the other hand, the method for producing a nitride or oxynitride-based phosphor according to the third aspect of the present application, the general carbon thermal decomposition method (CRN method; Cabothermal Reaction-Nitridation method) or gas reduction method (GRN method; Gas-Reduction-Nitridation ) In parallel with, but is not limited to. Conventionally, high purity nitride-based phosphors are formed by mixing carbon with oxide-based phosphors and nitriding them through carbonization using the CRN method. However, such a conventional method is applicable only to materials having similar carbon and ionic radii, such as SiO 2. There was a limitation, and the present invention was intended to solve the above limitation.
예를 들어, 본원의 제 3 측면에 따라 질화물계 또는 산질화물계 형광체를 제조할 때, Al-O 또는 Si-O 계열의 비금속 물질들을 금속 염화물과 치환시켜 질화시킬 경우, 이온반경의 차이가 크고 염소의 이온결합성이 강하다는 점에서 질화가 용이하다는 장점이 있지만, 한편으로는 불안정성 또한 커서 질화되기 전에 산화가 진행될 수 있으며 용액 형성 과정에서 수산화기가 강력하게 작용하여 염화물 상태를 유지하기 어렵다는 단점도 있을 수 있다. 또한, 약 400℃ 이하의 중저온에서는 기체로 소실됨으로써 조성의 균일성이 저하되는 문제점도 발생할 수 있다. 이런 점에서, 상기 비금속 물질들을 질화시킬 경우에는, 상기 CRN 법 또는 GRN 법을 본원의 방법과 병행하는 것이 바람직하고, Al 화합물의 액상 물질로서 질산염(nitrate)계 물질을 이용하여 자기 산화를 유도함으로써 상기 문제점의 해소를 유도함이 바람직할 수 있으나, 이에 제한되는 것은 아니다.For example, when preparing a nitride-based or oxynitride-based phosphor according to the third aspect of the present application, when the Al-O or Si-O-based nonmetallic materials are nitrided by replacing metal chlorides, the difference in ion radius is large. Nitrile is advantageous in that it is easy to nitride due to the strong ionic bonding of chlorine, but on the other hand, oxidation may proceed before nitriding due to instability, and it is difficult to maintain chloride state due to the strong hydroxyl action during solution formation. There may be. In addition, there may also be a problem that the uniformity of the composition is lowered by being lost to the gas at a low or medium temperature of about 400 ℃ or less. In this regard, in the case of nitriding the non-metallic materials, the CRN method or the GRN method is preferably combined with the method of the present application, and by inducing self oxidation using a nitrate-based material as a liquid material of the Al compound. It may be desirable to induce the solution of the problem, but is not limited thereto.
한편, 본원의 방법과 상기 CRN 법 또는 GRN 법을 병행할 경우, 환원제로서 사용되며 탄소 공급원이기도 한 고분자 물질을 고려함이 바람직하다. 상기 CRN 법 및 GRN 법의 대표적인 반응식은 하기와 같이 표시될 수 있으나, 이에 제한되는 것은 아니다:On the other hand, when combining the method of the present application and the CRN method or the GRN method, it is preferable to consider a high molecular material which is used as a reducing agent and is also a carbon source. Representative schemes of the CRN method and the GRN method may be represented as follows, but are not limited thereto.
<CRN법의 경우><CRN Act>
[반응식 8] 2CaCl2 + 5SiO2 + 4N2 + 10C → Ca2Si5N8 + 10CO [Reaction Scheme 8] 2CaCl 2 + 5SiO 2 + 4N 2 + 10C → Ca 2 Si 5 N 8 + 10CO
[반응식 9] CaCl2 + SiO2 + 1/2Al2O3 + 3/2N2 + 3.5C → CaSiN3 +3.5CO [ Chemical Scheme 9] CaCl 2 + SiO 2 + 1 / 2Al 2 O 3 + 3 / 2N 2 + 3.5C → CaSiN 3 + 3.5CO
<GRN법의 경우><In case of GRN method>
[반응식 10] 2CaCl2 + 5SiO2 + 8NH3 → Ca2Si5N8 [Reaction Scheme 10] 2CaCl 2 + 5SiO 2 + 8NH 3 → Ca 2 Si 5 N 8
[반응식 11] CaCl2 + SiO2 + 1/2Al2O3 + 3NH3 → CaAlSiN3 [ Chemical Scheme 11] CaCl 2 + SiO 2 + 1 / 2Al 2 O 3 + 3NH 3 → CaAlSiN 3
상기 반응식들에서는 설명의 편의를 위하여 미량으로 첨가되는 물질인 희토류계 금속은 표시하지 않았다. 상기 GRN 법의 반응식에서, 전구체와 반응하는 가스로서 메탄 가스 등 탄소를 함유하는 가스를 추가적으로 포함시킬 경우 반응의 효율이 향상될 수 있으나, 이에 제한되는 것은 아니다.In the above schemes, the rare earth metal, which is a substance added in a small amount, is not shown for convenience of description. In the reaction scheme of the GRN method, when a gas containing carbon, such as methane gas, is added as a gas to react with the precursor, the efficiency of the reaction may be improved, but is not limited thereto.
예를 들어, Si3N4, Si2ON2, Si3O3N2, Si6O9N2, 또는 CRN 법을 이용하여 염화물계 형광체의 질화 반응을 유도하여 본원의 제 3 측면의 산질화물계 또는 질화물계 형광체를 제조할 수 있으며, 이와 관련된 반응식은 예를 들어 하기와 같이 표시될 수 있으나, 이에 제한되는 것은 아니다:For example, using the Si 3 N 4 , Si 2 ON 2 , Si 3 O 3 N 2 , Si 6 O 9 N 2 , or CRN method to induce the nitriding reaction of the chloride-based phosphor to the acid of the third aspect of the present application Nitride-based or nitride-based phosphors may be prepared, and reaction schemes related thereto may be represented, for example, as follows, but are not limited thereto.
<염화물계 형광체를 이용한 MSi2O2N2:Eu2+ 형광체 제조> < Preparation of MSi 2 O 2 N 2 : Eu 2+ Phosphor Using Chloride-based Phosphor >
[반응식 12] 2M2SiO3Cl2 + 3Si2ON2 + 2H2 → 4MSi2O2N2 + H2O + 2HCl [Reaction Scheme 12] 2M 2 SiO 3 Cl 2 + 3Si 2 ON 2 + 2H 2 → 4MSi 2 O 2 N 2 + H 2 O + 2HCl
[반응식 13] M2SiO4-(1x/2)Clx + Si3N4 + x/2H2 → 2MSi2O2-(1x/2)N2 + xHCl (x=0.001~2) [Reaction Scheme 13] M 2 SiO 4- (1x / 2) Cl x + Si 3 N 4 + x / 2H 2 → 2MSi 2 O 2- (1x / 2) N 2 + xHCl (x = 0.001 ~ 2)
<MCl2:Eu2+ 염화물계 형광체를 이용한 M2Si5N8Eu2+ 형광체 제조> < Preparation of M 2 Si 5 N 8 Eu 2+ Phosphor Using MCl 2 : Eu 2+ Chloride-Based Phosphor >
[반응식 14] MCl2 + 5/3Si3N4 + 2/3NH3 → M2Si5N8 + 2HCl [Reaction Scheme 14] MCl 2 + 5/3 Si 3 N 4 + 2 / 3NH 3 → M 2 Si 5 N 8 + 2HCl
[반응식 15] 2M3SiO4Cl2 + 13/3Si3N4 + 10H2 → 3M2Si5N8 + 4HCl +8H2O [Reaction Scheme 15] 2M 3 SiO 4 Cl 2 + 13 / 3Si 3 N 4 + 10H 2 → 3M 2 Si 5 N 8 + 4HCl + 8H 2 O
<CaAl2Si4O12(Cl2):Eu2+ 염화물계 형광체를 이용한 CaAl2Si4O12N2:Eu2+ 형광체 제조> < Preparation of CaAl 2 Si 4 O 12 N 2 : Eu 2+ Phosphor Using CaAl 2 Si 4 O 12 (Cl 2 ): Eu 2+ Chloride-Based Phosphor >
[반응식 16] MAl2Si4O12(Cl2)3 + (2x+y)NH3 → MAl2Si4O(12-3y/2)N(x2/3+y2/3)+ xNH4Cl + (x+y/2)H2 +(3y/2)H2O + yN2 [Reaction Scheme 16] MAl 2 Si 4 O 12 (Cl 2) 3 + (2x + y) NH 3 → MAl 2 Si 4 O (12-3y / 2) N (x2 / 3 + y2 / 3) + xNH 4 Cl + (x + y / 2) H 2 + (3y / 2) H 2 O + yN 2
본원의 방법과 상기 CRN 법 또는 GRN 법을 병행하는 경우, 전구체 물질들이 질소 원자를 포함하는 가스와 반응하기 전에 이미 결정화되면 반응 속도가 저하되는 문제점이 있으므로, 결정화가 활발해지는 온도인 약 700℃ 이하의 온도에서 2차 열처리를 수행하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 전구체의 결정화가 최소한으로 진행된 상태에서 질소 원자를 포함하는 가스와 반응하는 온도인 3차 열처리 온도에 도달하는 것이 바람직하므로, 3차 열처리 온도까지 빠르게 승온하는 것이 유리할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 본원의 방법과 상기 CRN 법을 병행하는 경우에는 약 30 분 내지 약 1 시간 30 분 정도 승온하는 것이 바람직하고, 본원의 방법과 상기 GRN 법을 병행하는 경우에는 약 2 시간 내지 약 3 시간 동안 승온하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 한편, 상기 3차 열처리 온도는, 본원의 방법과 상기 CRN 법을 병행하는 경우에는 약 1400℃ 내지 약 1700℃가 바람직하고, 본원의 방법과 상기 GRN 법을 병행하는 경우에는 약 1200℃ 내지 약 1400℃가 바람직할 수 있으나, 이에 제한되는 것은 아니다. When the present method is combined with the CRN method or the GRN method, there is a problem that the reaction rate is lowered if the precursor materials are already crystallized before reacting with a gas containing a nitrogen atom, and thus the temperature at which crystallization becomes active is about 700 ° C. or less. It may be preferable to perform the second heat treatment at a temperature of, but is not limited thereto. In addition, since it is preferable to reach the third heat treatment temperature, which is a temperature at which the precursor crystallizes to the gas containing the nitrogen atom in a state where the crystallization is minimal, it may be advantageous to rapidly increase the temperature to the third heat treatment temperature. It is not. For example, when using the method of the present invention and the CRN method in parallel, it is preferable to raise the temperature by about 30 minutes to about 1 hour 30 minutes, and when using the method of the present invention and the GRN method in parallel, about 2 hours to about 3 It may be desirable to increase the temperature for a time, but is not limited thereto. Meanwhile, the third heat treatment temperature is preferably about 1400 ° C. to about 1700 ° C. when the method of the present invention is combined with the CRN method, and about 1200 ° C. to about 1400 when the method of the present invention is combined with the GRN method. ℃ may be preferred, but is not limited thereto.
한편, 상기 방법들에서 질소 원자를 포함하는 가스의 선속은 효율적이고 안전한 질화 반응을 위하여 반드시 고려해야 할 요소인데, 본원의 방법과 상기 CRN 법을 병행하는 경우에는 약 1 cm/s 내지 약 2 cm/s의 선속으로 상기 질소 원자를 포함하는 가스를 주입함이 바람직하고, 본원의 방법과 상기 GRN 법을 병행하는 경우에는 NH3의 안전성을 고려하여 약 0.3 cm/s 이하의 선속으로 상기 질소 원자를 포함하는 가스를 주입함이 바람직할 수 있으나, 이에 제한되는 것은 아니다.On the other hand, the flux of the gas containing a nitrogen atom in the above methods is a factor that must be considered for an efficient and safe nitriding reaction, when the method of the present invention and the CRN method in parallel, about 1 cm / s to about 2 cm / It is preferable to inject a gas containing the nitrogen atom at a flux of s, and when the method of the present application and the GRN method are used in combination, the nitrogen atom is removed at a flux of about 0.3 cm / s or less in consideration of the safety of NH 3 . It may be desirable to inject a gas containing, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 질화물계 또는 산질화물계 형광체의 제조 방법은, 상기 열처리하는 단계 후 제조된 상기 질화물계 또는 산질화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the method of manufacturing the nitride-based or oxynitride-based phosphor may further include treating an alkaline compound to the nitride-based or oxynitride-based phosphor prepared after the heat treatment. However, the present invention is not limited thereto.
예를 들어, 상기 질화물계 또는 산질화물계 형광체의 제조 방법은, 상기 열처리 단계 후 형광체의 휘도 향상을 위하여 제조된 상기 질화물계 또는 산질화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the method of manufacturing the nitride-based or oxynitride-based phosphor may further include treating an alkaline compound to the nitride-based or oxynitride-based phosphor prepared for improving the brightness of the phosphor after the heat treatment step. However, it is not limited thereto.
예를 들어, 상기 알칼리성 화합물은 -OH 기 또는 -NH2 기를 포함하는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the alkaline compound may include, but is not limited to, a compound including an -OH group or a -NH 2 group.
본원의 일 구현예에 따르면, 상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, NH4OH, H2O2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 또는 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 금속계 아마이드 화합물, 유기물계 알칼리성 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 금속계 아마이드 화합물은 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 또한, 예를 들어, 상기 유기물계 알칼리성 화합물은 NH4OH, NH2NH2, C6H5NH2, 또는 C3H6NH2를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or propylamine (propylamine) ) -Based compound, butylamine-based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, metal amide compound, organic-based compound It may include, but is not limited to, a compound selected from the group consisting of alkaline compounds, and combinations thereof. For example, the metal amide compound may be a lithium amide compound, a sodium amide compound, a potassium amide compound, a cesium amide compound, and combinations thereof. It may be to include a compound selected from the group consisting of, but is not limited thereto. In addition, for example, the organic-based alkaline compound may include NH 4 OH, NH 2 NH 2 , C 6 H 5 NH 2 , or C 3 H 6 NH 2 , but is not limited thereto.
예를 들어, 상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물을 이용하는 경우, 형광체에 포함된 염소와 상기 알칼리성 화합물 간의 이온 반경비를 통한 반응성 차이를 이용하여 상기 형광체에 포함된 염소를 제거하고, 그 자리를 대신하여 -OH 기가 치환될 수 있다. 이로써, 형광체에 포함된 희토류계 금속의 전자가가 증가되어, 상기 희토류계 금속의 부활제로서의 기능이 향상되는 효과를 거둘 수 있다. Li, Na, K, Rb, 또는 Cs를 포함하는 알칼리성 화합물 중 Cs를 포함하는 알칼리성 화합물이 특히 바람직할 수 있는데, 이는 Cs이 연금속이고 염소와 이온반경비가 유사하여 염소와의 반응성이 좋기 때문이다.For example, the alkaline compound may include a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, and combinations thereof, and a compound selected from the group consisting of combinations thereof. However, the present invention is not limited thereto. When the alkaline compound is used, chlorine contained in the phosphor may be removed using a difference in reactivity through the ionic radius ratio between the chlorine contained in the phosphor and the alkaline compound, and the -OH group may be substituted in place of the place. As a result, the electron value of the rare earth metal contained in the phosphor is increased, so that the function as an activator of the rare earth metal can be improved. Of the alkaline compounds containing Li, Na, K, Rb, or Cs, an alkaline compound containing Cs may be particularly preferable, because Cs is a soft metal and the chlorine and the ion radius ratio are similar, so that the reactivity with chlorine is good.
또한, 예를 들어, 상기 알칼리성 화합물은, 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물은 형광체와 반응하여 염소를 제거하는 강력한 환원 반응에 이용될 수 있다. 상기 알칼리성 화합물의 탄소고리가 안정할수록 치환 반응이 신속하게 일어날 수 있으며, 상기 알칼리성 화합물 중 특히 아미노벤젠계 화합물, 또는 하이드라진계 화합물이 바람직할 수 있으나, 이에 제한되는 것은 아니다. Li, Na, K, Rb, 또는 Cs를 포함하는 알칼리성 화합물 중에서는 Cs를 포함하는 알칼리성 화합물이 특히 바람직할 수 있는데, 이는 Cs이 연금속이고 염소와 이온반경비가 유사하여 염소와의 반응성이 좋기 때문이다. For example, the alkaline compound may be a propylamine compound, a butylamine compound, a pentylamine compound, a hexylamine compound, or a heptylamine compound. , Aminobenzene-based compound, lithium amide-based compound, sodium amide-based compound, potassium amide-based compound, cesium amide-based compound, and combinations thereof It may be to include a compound selected from the group consisting of, but is not limited thereto. The alkaline compound may be used in a strong reduction reaction to remove chlorine by reacting with a phosphor. As the carbon ring of the alkaline compound is more stable, the substitution reaction may occur more rapidly. Among the alkaline compounds, an aminobenzene-based compound or a hydrazine-based compound may be preferable, but is not limited thereto. Of the alkaline compounds containing Li, Na, K, Rb, or Cs, alkaline compounds containing Cs may be particularly preferred, since Cs is a soft metal and its chlorine and ion radius ratio are similar, which makes it highly reactive with chlorine. .
한편, 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 알칼리성 화합물이 관여하는 반응의 효율을 높이기 위해서는, 상기 알칼리성 화합물을 용매에 용해하여 반응시킬 수 있으며, 상기 알칼리성 화합물 자체의 녹는점 이상에서 반응시킬 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 처리하는 단계는 약 -100℃ 내지 약 0℃, 약 -100℃ 내지 약 500℃, 약 -100℃ 내지 약 1000℃, 약 -100℃ 내지 약 1500℃, 약 0℃ 내지 약 500℃, 약 0℃ 내지 약 1000℃, 약 0℃ 내지 약 1500℃, 약 500℃ 내지 약 1000℃, 약 500℃ 내지 약 1500℃, 또는 약 1000℃ 내지 약 1500℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 약 -100℃ 미만의 온도에서는 상기 알칼리성 화합물이 고체로 존재하기 때문에 반응성이 낮아서 반응 수행이 어려울 수 있으며, 약 1500℃ 초과의 온도에서는 상기 알칼리성 화합물이 형광체의 염소와 반응한 후에도 형광체 자체의 모체와 반응하여 이차상을 합성하는 문제가 발생할 수 있으나, 이에 제한되는 것은 아니다. On the other hand, for example, the step of treating the alkaline compound may be performed at about -100 ℃ to about 1500 ℃, but is not limited thereto. In order to increase the efficiency of the reaction involving the alkaline compound, the alkaline compound may be dissolved and reacted in a solvent, and the reaction may be performed at a melting point or higher of the alkaline compound itself, but is not limited thereto. For example, the treating of the alkaline compound may be performed at about -100 ° C to about 1500 ° C, but is not limited thereto. For example, treating the alkaline compound may comprise about -100 ° C to about 0 ° C, about -100 ° C to about 500 ° C, about -100 ° C to about 1000 ° C, about -100 ° C to about 1500 ° C, about 0 Is performed at from about 500 ° C. to about 500 ° C., from about 0 ° C. to about 1000 ° C., from about 0 ° C. to about 1500 ° C., from about 500 ° C. to about 1000 ° C., from about 500 ° C. to about 1500 ° C., or from about 1000 ° C. to about 1500 ° C. May be, but is not limited thereto. When the alkaline compound is present at a temperature below about -100 ° C., the reaction may be difficult to perform due to its low reactivity, and at temperatures above about 1500 ° C., the alkaline compound may react with the matrix of the phosphor itself even after reacting with the chlorine of the phosphor. The reaction may occur to synthesize a second phase, but is not limited thereto.
한편, 예를 들어, 상기 알칼리성 화합물을 처리함으로써 수득된 형광체는, 증류수, 알코올 류, 또는 무극성 용매를 이용하여 세정하여 잔류하는 알칼리금속 염화물을 제거하고, 약 200℃ 이하에서 건조하는 방식으로 후 처리할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 잔류하는 알칼리 금속 염화물을 형광체와 반응하여 발광 저하에 영향을 줄 수 있기 때문에 제거하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 또한, 예를 들어, 상기 건조는 약 200℃ 이하, 약 180℃ 이하, 약 160℃ 이하, 약 140℃ 이하, 약 120℃ 이하, 또는 약 100℃ 이하의 온도에서 수행될 수 있으나, 이에 제한되는 것은 아니다. 상기 건조를 약 200℃를 초과하는 온도에서 수행할 경우, 잔류하는 알칼리금속이 상기 형광체와 반응함으로써 상기 형광체의 발광 저하를 야기할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 알칼리성 화합물을 환원제로서 사용한 경우, 수득된 형광체의 건조를 위해서는 진공오븐을 사용하거나, 또는 질소 또는 불활성 기체를 이용하여 건조하는 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 또한, 알칼리금속과 염화물이 포함된 형광체의 양을 조절함으로써 잔류하는 알칼리금속 염화물의 양을 조절하거나 제거할 수 있으나, 이에 제한되는 것은 아니다.On the other hand, for example, the phosphor obtained by treating the alkaline compound is washed with distilled water, alcohols, or nonpolar solvent to remove residual alkali metal chlorides, and then dried in a manner of drying at about 200 ° C. or lower. It may be, but is not limited thereto. For example, it may be preferable to remove the residual alkali metal chloride because it may react with the phosphor to affect the emission decrease, but is not limited thereto. Further, for example, the drying may be performed at a temperature of about 200 ° C. or less, about 180 ° C. or less, about 160 ° C. or less, about 140 ° C. or less, about 120 ° C. or less, or about 100 ° C. or less, but is not limited thereto. It is not. When the drying is performed at a temperature exceeding about 200 ° C., the remaining alkali metal may react with the phosphor, causing a decrease in emission of the phosphor, but is not limited thereto. For example, when the alkaline compound is used as a reducing agent, for drying the obtained phosphor, it may be preferable to use a vacuum oven or to dry using nitrogen or an inert gas, but is not limited thereto. In addition, the amount of alkali metal chloride remaining may be adjusted or removed by adjusting the amount of the phosphor containing alkali metal and chloride, but is not limited thereto.
한편, 예를 들어, 상기 환원 반응식들에서 전구체로서의 형광체는 활제(activator)를 포함한 물질일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 환원 반응식들에서의 모든 반응은 자외선 하에서 수행됨으로써 반응 속도 및 반응성을 향상시킬 수 있으나, 이에 제한되는 것은 아니다. 상기 반응들은 형광체 입자의 표면에서 극소량으로 진행되는 것일 수 있으나, 형광체의 활제의 양에 대하여 표면의 Eu3+에서 Eu2+로 환원될 수 있는 조건을 가질 수 있다. 또한, 형광체의 환원 소성 또는 형광체의 환원 처리시 하이드라진과 같은 알칼리성 용액 물질을 함께 소성하여 합성할 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 반응 도중에 발생되는 부반응 산물은 원심분리 또는 기체화 반응을 통하여 제거 또는 분리할 수 있으나, 이에 제한되는 것은 아니다. 또한, 히드록시기 합성 반응을 통하여 상기 반응의 반응성 향상에 기여할 수 있으나, 이에 제한되는 것은 아니다.Meanwhile, for example, the phosphor as a precursor in the reduction schemes may be a material including an activator, but is not limited thereto. In addition, all reactions in the reduction schemes may be performed under ultraviolet light, thereby improving reaction rate and reactivity, but are not limited thereto. The reaction may be carried out in a very small amount on the surface of the phosphor particles, but may have a condition that can be reduced from Eu 3+ to Eu 2+ on the surface with respect to the amount of lubricant of the phosphor. In addition, an alkaline solution material such as hydrazine may be synthesized by reducing the firing of the phosphor or reducing the phosphor, but the present invention is not limited thereto. In addition, the side reaction product generated during the reaction may be removed or separated through centrifugation or gasification, but is not limited thereto. In addition, the hydroxy group synthesis reaction may contribute to the improvement of the reaction, but is not limited thereto.
예를 들어, 본원의 제 3 측면에 따른 질화물계 또는 산질화물계 형광체의 제조 과정 중에 상기 질화물계 또는 산질화물계 형광체를 분쇄하는 단계를 추가함으로써, 상기 형광체 분말을 보다 미립화하고 표면적을 증가시켜 산화·환원에 소요되는 시간을 단축시키거나 합성 온도를 낮출 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 분쇄하는 단계에는, 볼밀(ball mill), 롤러 제분기(rollermill), 진동 볼밀(ball mill), 아토라이타밀, 유성 볼밀(ball mill), 샌드밀(sand mill), 커터밀(cutter mill), 해머밀(hammer mill), 제트밀(jet mill) 등의 건식형 분산기, 초음파 분산기, 또는 고압 호모지나이저(homogenizer) 등의 분쇄 장치를 사용할 수 있으나, 이에 제한되는 것은 아니다.For example, by pulverizing the nitride-based or oxynitride-based phosphor during the manufacturing process of the nitride-based or oxynitride-based phosphor according to the third aspect of the present application, the phosphor powder is further atomized and the surface area is increased to oxidize It may shorten the time required for reduction or lower the synthesis temperature, but is not limited thereto. For example, in the grinding step, a ball mill, a roller mill, a vibrating ball mill, an atorita mill, a planetary ball mill, a sand mill, a cutter mill Drying dispersers such as cutter mills, hammer mills, jet mills, ultrasonic dispersers, or grinding apparatuses such as high pressure homogenizers may be used, but are not limited thereto.
본원의 제 4 측면은, 본원의 제 3 측면에 따른 방법에 의하여 제조되는 질화물계 또는 산질화물계 형광체로서, 상기 질화물계 또는 산질화물계 형광체는 M1-M2-NX: M3 또는 M1-M2-ONX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 질화물계 또는 산질화물계 형광체를 제공한다.A fourth aspect of the present application is a nitride-based or oxynitride-based phosphor prepared by the method according to the third aspect of the present application, wherein the nitride-based or oxynitride-based phosphor is M 1 -M 2 -NX: M 3 or M 1 -M 2 -ONX: has a composition of M 3 , wherein M 1 is an alkali metal, alkaline earth metal, or transition metal, and M 2 is 3 cycles selected from the group consisting of Al, Si, P, and combinations thereof Is an element, X is a halogen element, and M 3 is a rare earth metal, and provides a nitride or oxynitride-based phosphor.
예를 들어, 상기 질화물계 또는 산질화물계 형광체는, 초장잔광 형광체 특성을 가지고, 둥근 입자 형태, 및 약 50 nm 내지 약 10 μm의 입자 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 질화물계 또는 산질화물계 형광체는, 약 50 nm 내지 약 100 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 1 μm, 약 50 nm 내지 약 10 μm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 1 μm, 약 100 nm 내지 약 10 μm, 또는 약 1 μm 내지 약 10 μm의 크기를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the nitride-based or oxynitride-based phosphor may have ultra long afterglow phosphor characteristics, and may have a round particle shape and a particle size of about 50 nm to about 10 μm, but is not limited thereto. For example, the nitride-based or oxynitride-based phosphor may be about 50 nm to about 100 nm, about 50 nm to about 500 nm, about 50 nm to about 1 μm, about 50 nm to about 10 μm, about 100 nm to It may have a size of about 500 nm, about 100 nm to about 1 μm, about 100 nm to about 10 μm, or about 1 μm to about 10 μm, but is not limited thereto.
본원은, 예를 들어, 상기 질화물계 또는 산질화물계 형광체를 포함하는 디스플레이를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The present application may include, for example, a display including the nitride-based or oxynitride-based phosphor, but is not limited thereto.
예를 들어, 상기 디스플레이는 브라운관, 발광 다이오드(Light Emitting Diode, LED), 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 또는 전계 방출 디스플레이(Field Emission Display, FED)를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.For example, the display may include a cathode ray tube, a light emitting diode (LED), a plasma display panel (PDP), or a field emission display (FED), but is not limited thereto. It doesn't happen.
본원은, 예를 들어, 상기 질화물계 또는 산질화물계 형광체를 포함하는 램프를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The present application may include, for example, a lamp including the nitride-based or oxynitride-based phosphor, but is not limited thereto.
이하, 본원에 대하여 실시예를 이용하여 보다 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present application is not limited thereto.
[실시예]EXAMPLE
1. 옥시할로겐화물계 형광체의 제조 및 분석 (알칼리성 화합물 미 처리)1. Preparation and analysis of oxyhalide-based phosphor (untreated alkaline compound)
<실시예 1> SiO2를 이용한 Ca3SiO4Cl2:Eu2+ 형광체의 제조 Example 1 Preparation of Ca 3 SiO 4 Cl 2 : Eu 2+ Phosphor Using SiO 2
실시예 1에서는 본원의 제 1 측면의 방법에 따라, 1.97 mol의 CaCl2, 1 mol의 Ca(NO3)2, 1 mol의 SiO2(Sol), 및 0.03 mol의 EuCl3를 탈이온수에 각각 약 10 내지 20 분간 용해시킨 후 교반을 통해 20 wt% 혼합 용액을 만들었다. 상기 혼합 용액에서 Ca3SiO4Cl2:Eu2+ 형광체 분말이 5 g이 되도록 칭량하였다. 그 후, 상기 혼합 용액과 셀룰로오스 분말을 2:1의 비율로 하여 상기 셀룰로오스 분말을 상기 혼합 용액에 함침하였다. 이때, 균일한 교반 및 함침을 위하여 초음파 장치를 이용하여 10 분간 교반하였다. 이후, 함침된 전구체는 80℃ 건조기에 넣고 10 시간 건조시킨 후 225℃에서 6 시간 동안 하소하였다.In Example 1, according to the method of the first aspect of the present application, 1.97 mol of CaCl 2 , 1 mol of Ca (NO 3 ) 2 , 1 mol of SiO 2 (Sol), and 0.03 mol of EuCl 3 , respectively, in deionized water After dissolution for about 10 to 20 minutes, a 20 wt% mixed solution was made through stirring. Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder was weighed out to 5 g in the mixed solution. Thereafter, the cellulose powder was impregnated into the mixed solution with a ratio of 2: 1 of the mixed solution and cellulose powder. At this time, the mixture was stirred for 10 minutes using an ultrasonic apparatus for uniform stirring and impregnation. Thereafter, the impregnated precursor was placed in an 80 ° C. dryer, dried for 10 hours, and then calcined at 225 ° C. for 6 hours.
상기 하소가 끝난 분말을 핸드밀을 통하여 도 2의 고운 입자형태로 분쇄하여 표면적을 증가시켰고, 이와 같이 수득한 분말을 700℃에서 2 시간 동안 산소가 포함된 분위기에서 소성하였다. 마지막으로 이와 같이 수득한 백색 분말을 700℃에서 2 시간 동안 튜브 가열로에서 N2/H2(95/5)의 환원 분위기 하에서 소성 환원시켜 Ca3SiO4Cl2:Eu2+ 형광체 분말을 수득하였다. 상기 형광체 분말을 XRD, SEM, SEM-EDS, PL 분석하여 각각 도 3 내지 6에 도시하였다.The calcined powder was pulverized into fine particles of FIG. 2 through a hand mill to increase the surface area, and the powder thus obtained was calcined at 700 ° C. for 2 hours in an atmosphere containing oxygen. Finally, the white powder thus obtained was calcined under a reducing atmosphere of N 2 / H 2 (95/5) in a tube furnace at 700 ° C. for 2 hours to obtain Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder. It was. The phosphor powders were analyzed by XRD, SEM, SEM-EDS, and PL, respectively, and are shown in FIGS. 3 to 6, respectively.
<실시예 2> 수용성 실리콘 화합물(Water soluble silicon compound; WSS) 를 이용한 Ca3SiO4Cl2:Eu2+ 형광체의 제조 Example 2 Preparation of Ca 3 SiO 4 Cl 2 : Eu 2+ Phosphor Using Water-Soluble Silicon Compound (WSS)
실시예 2에서는 본원의 제 1 측면의 방법에 따라, 1.97 mol의 CaCl2, 1 mol의 Ca(NO3)2, 1 mol의 WSS(Sol), 및 0.03 mol의 EuCl3를 탈이온수에 각각 약 10 내지 20 분간 용해시킨 후 교반을 통해 20 wt% 혼합 용액을 만들었다. 상기 혼합 용액에서 Ca3SiO4Cl2:Eu2+ 형광체 분말이 5 g이 되도록 칭량하였다. 그 후, 상기 혼합 용액을 Starch(감자분말)와 1:3 비율로 교반하였으며, 이때 균일한 교반을 위하여 초음파 장치를 이용하여 10 분간 교반 및 함침하였다. 이후, 함침된 전구체는 80℃ 건조기에 넣고 10 시간 건조 후 225℃에서 6 시간 동안 하소하였다. In Example 2, according to the method of the first aspect of the present application, 1.97 mol of CaCl 2 , 1 mol of Ca (NO 3 ) 2 , 1 mol of WSS (Sol), and 0.03 mol of EuCl 3 , respectively, were dissolved in deionized water. After dissolving for 10 to 20 minutes, a 20 wt% mixed solution was made through stirring. Ca 3 SiO 4 Cl 2 : Eu 2+ phosphor powder was weighed out to 5 g in the mixed solution. Thereafter, the mixed solution was stirred at a ratio of 1: 3 with Starch (potato powder), and then stirred and impregnated for 10 minutes using an ultrasonic apparatus for uniform stirring. Thereafter, the impregnated precursor was placed in an 80 ° C. drier and then dried for 10 hours and calcined at 225 ° C. for 6 hours.
상기 함침된 전구체는 건조 및 1차 하소되는 과정에서 크세로겔이 되면서 부피가 크게 증가하였다. 상기 1차 하소 후 500℃에서 2 시간 동안 열처리하여 수득한 분말을 분쇄를 통해 용이하게 산화될 수 있도록 표면적을 높였으며, 700℃ 에서 1 시간 동안 공기 중에서 추가 소성하였다. 이후, 형광체 분말 환원을 위해 700℃, 900℃, 및 1000℃에서 3 시간 동안 소성하였다.The impregnated precursor became bulky as it became xerogel during drying and primary calcination. After the first calcination, the powder obtained by heat treatment at 500 ° C. for 2 hours was increased to be easily oxidized through grinding, and further calcined in air at 700 ° C. for 1 hour. Thereafter, firing was performed at 700 ° C., 900 ° C., and 1000 ° C. for 3 hours for phosphor powder reduction.
이후, 제조된 형광체 분말에 대하여 PL 특성 분석 및 X선 분말 패턴 분석을 하였으며, 그 결과를 각각 도 7 및 도 8에 도시하였다. 결과적으로, 저온에서는 녹색, 녹색 및 황색, 황색의 순으로 발광의 중심이 이동하였음을 확인하였으며, X선 분말 패턴 분석을 통해 700℃에서 70-2447, Ca3SiO4Cl2와 유사한 패턴을 보임을 확인하였다. 또한, 합성 온도가 증가할수록 Ca3SiO4Cl2이 고온 상으로 변화하는 것을 확인하였다.Thereafter, PL characteristics analysis and X-ray powder pattern analysis were performed on the manufactured phosphor powder, and the results are shown in FIGS. 7 and 8, respectively. As a result, it was confirmed that the center of luminescence moved in the order of green, green, yellow, and yellow at low temperature, and the pattern similar to 70-2447 and Ca 3 SiO 4 Cl 2 at 700 ° C through X-ray powder pattern analysis. It was confirmed. In addition, it was confirmed that Ca 3 SiO 4 Cl 2 changes to a high temperature phase as the synthesis temperature increases.
<실시예 3> Ca3(Si,Al)O4Cl:Eu2+ 형광체, 및 (Ca,Mg)3(Si,Al)O4Cl:Eu2+ 형광체의 제조 Example 3 Preparation of Ca 3 (Si, Al) O 4 Cl: Eu 2+ Phosphor and (Ca, Mg) 3 (Si, Al) O 4 Cl: Eu 2+ Phosphor
상기 실시예 2와 동일한 방법으로 (Ca2.77Mg0.2)(Si0.8,Al0.27)O4Cl:0.03Eu2+ 형광체를 제조하기 위하여, 0.77 mol의 CaCl2, 0.2 mol의 Mg(NO3)2, 2 mol의 Ca(NO3)2, 0.27 mol의 Al(NO3)3, 0.8 mol의 WSS(Sol), 및 0.03 mol의 EuCl3를 탈이온수에 각각 약 10 내지 20 분 동안 용해시켜 20 wt% 혼합 용액을 제조하였다. 또한, Ca2.97(Si0.8,Al0.27)O4Cl:0.03Eu2+ 형광체를 제조하기 위하여, 0.77 mol의 CaCl2, 2.2 mol의 Ca(NO3)2, 0.27 mol의 Al(NO3)3, 0.8 mol의 WSS(sol), 및 0.03 mol의 EuCl3를 탈이온수에 각각 약 10 내지 20 분 동안 용해시켜 20 wt% 혼합 용액을 제조하였다. 이후, 상기 혼합 용액을 Starch(감자전분)에 섞어 100℃에서 건조하고 225℃에서 하소한 후 700℃에서의 산화처리 및 700℃에서의 환원처리를 통해 녹색 형광체 수득하였다. 수득한 형광체의 PL 분석 및 X선 분말 패턴 분석을 수행하여, 각각 도 9 및 도 10에 도시하였다.0.77 mol of CaCl 2 , 0.2 mol of Mg (NO 3 ) 2 to prepare (Ca 2.77 Mg 0.2 ) (Si 0.8 , Al 0.27 ) O 4 Cl: 0.03Eu 2+ phosphor in the same manner as in Example 2 , 20 mol of Ca (NO 3 ) 2 , 0.27 mol of Al (NO 3 ) 3 , 0.8 mol of WSS (Sol), and 0.03 mol of EuCl 3 were dissolved in deionized water for about 10 to 20 minutes respectively. A% mixed solution was prepared. In addition, to prepare Ca 2.97 (Si 0.8 , Al 0.27 ) O 4 Cl: 0.03Eu 2+ phosphor, 0.77 mol CaCl 2 , 2.2 mol Ca (NO 3 ) 2 , 0.27 mol Al (NO 3 ) 3 20 wt% of a mixed solution was prepared by dissolving 0.8 mol of WSS (sol) and 0.03 mol of EuCl 3 in deionized water for about 10 to 20 minutes, respectively. Thereafter, the mixed solution was mixed with Starch (potato starch), dried at 100 ° C., calcined at 225 ° C., and then obtained green phosphor through oxidation at 700 ° C. and reduction at 700 ° C. PL analysis and X-ray powder pattern analysis of the obtained phosphor were performed and shown in FIGS. 9 and 10, respectively.
<실시예 4> (Na1.49-xNax)Si0.45,Al1.55O4-1/2xClx:0.06Eu2+ 형광체의 제조 Example 4 Preparation of (Na 1.49-x Na x ) Si 0.45 , Al 1.55 O 4-1 / 2x Cl x : 0.06Eu 2+ Phosphor
상기 실시예들과 동일한 방법으로 (Na1.55-xNax)Si0.45,Al1.55O4-1/2xClx:Eu2+ (x=0.0, 0.2, 0.4, 0.6 mol%) 형광체를 제조하기 위하여, 1.49 내지 1.43 mol의 NaNO3 (1.49~1.43의 Na 포함), 0.0 내지 0.06 mol의 NaCl (0.0~0.06의 Cl 포함), 1.55 mol의 Al(NO3)3, 0.45 mol의 WSS(Sol), 및 0.06 mol의 EuCl3를 탈이온수에 각각 약 10 내지 20 분 간 녹인 후 20 wt%의 혼합 용액을 제조하였다. 이후, 상기 혼합 용액을 Starch(감자전분)에 섞어 100℃에서 건조하고 225℃에서 하소한 후 700℃에서의 산화처리 및 700℃에서의 환원처리를 통해 형광체를 수득하였다. 수득한 형광체의 Cl 함량에 따른 X선 분말 패턴 분석, PL 분석, 및 FE-SEM 분석 결과는, 각각 도 11 내지 도 13에 도시하였다.To prepare (Na 1.55-x Na x ) Si 0.45 , Al 1.55 O 4-1 / 2x Cl x : Eu 2+ (x = 0.0, 0.2, 0.4, 0.6 mol%) phosphors in the same manner as in the above examples 1.49 to 1.43 mol of NaNO 3 (containing 1.49 to 1.43 Na), 0.0 to 0.06 mol of NaCl (containing Cl of 0.0 to 0.06), 1.55 mol of Al (NO 3 ) 3 , 0.45 mol of WSS (Sol) , And 0.06 mol of EuCl 3 were dissolved in deionized water for about 10 to 20 minutes, respectively, to prepare a 20 wt% mixed solution. Thereafter, the mixed solution was mixed with Starch (potato starch), dried at 100 ° C., calcined at 225 ° C., and then phosphors were obtained through oxidation at 700 ° C. and reduction at 700 ° C. X-ray powder pattern analysis, PL analysis, and FE-SEM analysis results according to the Cl content of the obtained phosphor are shown in Figs. 11 to 13, respectively.
2. 옥시할로겐화물계 형광체의 제조 및 분석 (알칼리성 화합물 처리)2. Preparation and Analysis of Oxyhalide-Based Phosphors (Alkaline Compound Treatment)
<실시예 5> Example 5
본 실시예 5는 본원의 명세서 중 [반응식 3]과 같은 반응으로 수행되었다. 구체적으로, Ca3SiO4Cl2:0.03Eu2+ 형광체와 10wt% NaOH 용액을 1:2의 몰비 (Na:Cl=1:1 몰비)로서 혼합한 후 24 시간 동안 상온에서 반응시켰다. 이후, 반응을 통해 수득한 물질의 용액 층과 분말 층을 분리하여 상기 분말 층에 H2O를 처음 넣어준 분말의 70 wt% 중량비로 넣은 뒤, 두 차례 동일한 방법으로 세정하였다. 이후, 상기 분말 층을 80℃에서 6 시간 동안 건조하여 알칼리성 화합물로 처리된 형광체 분말을 수득하였다. 이후, 상기 알칼리성 화합물로 처리된 형광체 분말 1 g을 10 mL의 NH2NH2 용액과 함께 자외선 하에서 교반하면서 상온 반응시켜 형광체 분말을 환원처리 하였다. 이와 같은 방법으로 수득한 분말은 200℃ 하에서 N2/H2(95/5) 분위기 하에서 건조시켰으며, NH2NH2를 NH3로 반응시킴으로써 안전하게 제거하였다. 수득된 형광체 분말의 XRD 분석 및 PL 분석 결과는 도 14 및 도 15에 도시하였다. Example 5 was carried out in the same manner as in Scheme 3 in the present specification. Specifically, Ca 3 SiO 4 Cl 2 : 0.03Eu 2+ phosphor and a 10 wt% NaOH solution were mixed at a molar ratio of 1: 2 (Na: Cl = 1: 1 molar ratio) and reacted at room temperature for 24 hours. Thereafter, the solution layer and the powder layer of the material obtained through the reaction were separated and placed in a weight ratio of 70 wt% of the powder initially added with H 2 O in the powder layer, followed by washing in the same manner twice. Thereafter, the powder layer was dried at 80 ° C. for 6 hours to obtain a phosphor powder treated with an alkaline compound. Subsequently, 1 g of the phosphor powder treated with the alkaline compound was reacted at room temperature with stirring under ultraviolet light with 10 mL of NH 2 NH 2 solution to reduce the phosphor powder. The powder obtained in this way was dried under N 2 / H 2 (95/5) atmosphere under 200 ° C., and safely removed by reacting NH 2 NH 2 with NH 3 . XRD and PL analysis results of the obtained phosphor powder are shown in FIGS. 14 and 15.
<실시예 6><Example 6>
본 실시예 6은 본원의 명세서 중 [반응식 5]와 같은 반응으로 수행되었다. 구체적으로, Ca3SiO4Cl2:0.03Eu2+ 형광체와 NH2NH2 용액을 1:4의 몰비로 혼합한 후 뚜껑이 있는 알루미늄 도가니 안에 넣어 도 16과 같은 효과를 달성하였다. 이후, N2/H2(95/5) 환원 분위기 하에서 700℃ 에서 3 시간 동안 환원 반응시켜 형광체 분말을 수득하였으며, 상기 형광체 분말의 PL 특성을 분석하여 도 17에 도시하였다. Example 6 was carried out in the same manner as in Scheme 5 in the present specification. Specifically, Ca 3 SiO 4 Cl 2 : 0.03Eu 2+ phosphor and NH 2 NH 2 solution was mixed in a molar ratio of 1: 4 and put in an aluminum crucible with a lid to achieve the same effect as FIG. 16. Thereafter, under a N 2 / H 2 (95/5) reducing atmosphere, reduction reaction was performed at 700 ° C. for 3 hours to obtain a phosphor powder, and the PL characteristics of the phosphor powder were analyzed and shown in FIG. 17.
<실시예 7> <Example 7>
본 실시예 7은 본원의 명세서 중 [반응식 4]와 같은 반응으로 수행되었다. 구체적으로, 고온 상의 Ca3SiO4Cl2:0.03Eu3+ 형광체와 NH2NH2 용액에 NaNH2 분말을 1:2의 몰비로 넣은 뒤 교반기를 통해 2 시간 동안 고르게 혼합한 후 N2/H2(95/5) 환원 분위기 하에서 400℃ 온도에서 반응시켰다. 이후, 수득한 형광체 및 부반응물을 H2O로 세정한 후 건조하였다. 이와 같은 방법으로 수득한 형광체 분말의 PL 분석 결과는 도 18에 도시하였다.Example 7 was carried out in the same manner as in Scheme 4 in the present specification. Specifically, NaNH 2 powder was added at a molar ratio of 1: 2 to Ca 3 SiO 4 Cl 2 : 0.03Eu 3+ phosphor and NH 2 NH 2 solution at high temperature, and then mixed evenly through a stirrer for 2 hours, followed by N 2 / H 2 (95/5) was reacted at a temperature of 400 ° C. under a reducing atmosphere. Thereafter, the obtained phosphor and the side reaction product were washed with H 2 O and dried. The result of PL analysis of the phosphor powder obtained by the above method is shown in FIG. 18.
<실시예 8> <Example 8>
본 실시예 8은 본원의 명세서 중 [반응식 5]와 같은 반응으로 수행되었다. 구체적으로, 고온 상의 Ca3SiO4Cl2:0.03Eu3+ 형광체와 NH2NH2 용액을 1:4의 몰비로 혼합한 후 글래스 바이알에 넣어 254 nm의 자외선 하에서 마그네틱 바로 교반 해주면서 5 시간 동안 유지시켰다. 이후 100℃의 진공 오븐에 넣어 환원시킨 형광체 분말을 수득하였으며, 상기 형광체 분말의 PL 특성 및 XRD 변화는 도 19 및 도 20에 각각 도시하였다.Example 8 was carried out in the same manner as in Scheme 5 of the present specification. Specifically, the Ca 3 SiO 4 Cl 2 : 0.03Eu 3+ phosphor and the NH 2 NH 2 solution at high temperature were mixed in a molar ratio of 1: 4, and then placed in a glass vial and maintained for 5 hours while stirring the magnetic bar under ultraviolet light at 254 nm. I was. Subsequently, the phosphor powder was reduced into a vacuum oven at 100 ° C., and the PL characteristics and the XRD change of the phosphor powder were shown in FIGS. 19 and 20, respectively.
<실시예 9> Example 9
본 실시예 9는 본원의 명세서 중 [반응식 5]와 같은 반응으로 수행되었다. 구체적으로, Cl이 0.06 mol% 포함된 나노 크기의 Na1.49Al1.55Si0.45O4:0.06Eu3+ 형광체와 NH2NH2 용액을 1:4의 몰비로 혼합한 후 알루미나 도가니에 넣어 700℃ 고온으로 가열하면서 5 시간 동안 유지하였다. 수득된 형광체 분말의 SEM 사진 및 PL 특성 분석 결과는 각각 도 21 및 도 22에 도시하였다.Example 9 was carried out in the same manner as in Scheme 5 in the present specification. Specifically, a nano-sized Na 1.49 Al 1.55 Si 0.45 O 4 : 0.06Eu 3+ phosphor containing 0.06 mol% and NH 2 NH 2 solution were mixed at a molar ratio of 1: 4, and then placed in an alumina crucible at a high temperature of 700 ° C. It was kept for 5 hours while heating to. SEM photographs and PL characterization results of the obtained phosphor powders are shown in FIGS. 21 and 22, respectively.
3. 산질화물계 또는 질화물계 형광체의 제조 및 분석3. Preparation and analysis of oxynitride- or nitride-based phosphors
<실시예 10> Ca3SiO4Cl2:Eu2+ 전구체 형광체를 이용한 Ca2Si5N8:Eu2+ 형광체의 제조 <Example 10> Preparation of Ca 2 Si 5 N 8 : Eu 2+ phosphor using Ca 3 SiO 4 Cl 2 : Eu 2+ precursor phosphor
본 실시예 10은 본원의 명세서 중 [반응식 15]와 같은 반응으로 수행되었다. 구체적으로, 혼합 용액은 2.94 mol의 CaCl2, 0.06 mol의 EuCl3를 각각 탈이온수에 용해시켜 1 mol의 SiO2(sol, 20nm)와 교반함으로써 수득하였다. 이후, 상기 혼합 용액을 1 μm 크기의 셀룰로오스(C6H10O5)와 2:1의 비율로 함침한 후 건조하였다. 이후, 함침물을 225℃에서 열처리한 후 표면적 증가를 위하여 핸드밀하였다. 이후, 수득한 물질을 700℃ 산화 분위기에서 소성하여 탄소를 제거하였고, Ca3SiO4Cl2Eu3+의 중간물질을 수득하였으며, Ca3SiO4Cl2:Eu3+ 형광체와 Si3N4를 2:13/3 mol의 비율로 혼합하였다. 이후, 상기 혼합 물질을 0.5 cm/s의 속도로 N2/H2(95/5) 가스가 흐르는 튜브 형태의 전기로에 넣고 1300℃ 온도에서 5 시간 동안 열처리하여 Ca2Si5N8:Eu2+ 형광체를 수득하였다. 이와 같은 방법으로 수득한 질화물계 형광체의 XRD 분석 결과 및 PL 분석 결과는 도 23 및 도 24에 도시하였다.Example 10 was carried out in the same manner as in Scheme 15 of the present specification. Specifically, a mixed solution was obtained by dissolving 2.94 mol of CaCl 2 and 0.06 mol of EuCl 3 in deionized water, respectively, and stirring with 1 mol of SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 μm cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C. to remove carbon, to obtain an intermediate of Ca 3 SiO 4 Cl 2 Eu 3+ , and a Ca 3 SiO 4 Cl 2 : Eu 3+ phosphor and Si 3 N 4. Was mixed at a ratio of 2: 13/3 mol. Subsequently, the mixed material was placed in an electric furnace in the form of a tube flowing with N 2 / H 2 (95/5) gas at a rate of 0.5 cm / s, and thermally treated at 1300 ° C. for 5 hours to provide Ca 2 Si 5 N 8 : Eu 2 + Phosphor was obtained. XRD analysis results and PL analysis results of the nitride-based phosphors obtained by the above method are shown in FIGS. 23 and 24.
<실시예 11> Ca3SiO4Cl2:Eu2+ 전구체 형광체를 이용한 CaSi2O2N2:Eu2+ 형광체의 제조 Example 11 Preparation of CaSi 2 O 2 N 2 : Eu 2+ Phosphor Using Ca 3 SiO 4 Cl 2 : Eu 2+ Precursor
본 실시예 11은 본원의 명세서 중 [반응식 14]와 같은 반응으로 수행되었다. 구체적으로, 혼합 용액은 3 mol의 CaCl2, 0.06 mol의 EuCl3를 각각 탈이온수에 용해시켜 1 mol의 SiO2(sol, 20nm)와 교반함으로써 수득하였다. 이후, 상기 혼합 용액을 1 μm 크기의 셀룰로오스(C6H10O5)와 2:1의 비율로 함침한 후 건조하였다. 이후, 함침물을 225℃에서 열처리한 후 표면적 증가를 위하여 핸드밀하였다. 이후, 수득한 물질을 700℃ 산화 분위기에서 소성하여 탄소를 제거하였고, Ca3SiO4Cl2Eu3+의 중간물질을 수득하였으며, Ca3SiO4Cl2:Eu3+ 형광체와 Si2ON2를 1:1 mol의 비율로 혼합하였다. 이후, 상기 혼합 물질을 NH3가 300 ccm의 속도로 흐르는 직경 50 mm의 튜브형태 전기로에 넣고 1200℃ 온도에서 10 시간 동안 열처리하여 CaSi2O2N2:Eu2+ 형광체를 수득하였다. 이와 같은 방법으로 수득한 질화물계 형광체의 XRD 분석 결과 및 PL 분석 결과는 도 25 및 도 26에 도시하였다.Example 11 was carried out in the same manner as in Scheme 14 in the present specification. Specifically, a mixed solution was obtained by dissolving 3 mol CaCl 2 and 0.06 mol EuCl 3 in deionized water, respectively, and stirring with 1 mol SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 μm cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C. to remove carbon, to obtain an intermediate of Ca 3 SiO 4 Cl 2 Eu 3+ , and a Ca 3 SiO 4 Cl 2 : Eu 3+ phosphor and Si 2 ON 2. Was mixed at a ratio of 1: 1 mol. Then, the mixed materials into the NH 3 in the form of a tube diameter of 50 mm in the flowing speed of 300 ccm electric furnace and heat treated at 1200 ℃ temperature for 10 hours, CaSi 2 O 2 N 2: Eu 2+ phosphor was obtained. XRD analysis results and PL analysis results of the nitride-based phosphors obtained by the above method are shown in FIGS. 25 and 26.
<실시예 12> Sr2SiO3Cl2:Eu2+ 전구체 형광체를 이용한 SrSi2O2N2:Eu2+ 형광체의 제조 Example 12 Preparation of SrSi 2 O 2 N 2 : Eu 2+ Phosphor Using Sr 2 SiO 3 Cl 2 : Eu 2+ Precursor
본 실시예 12는 본원의 명세서 중 [반응식 14]와 같은 반응으로 수행되었다. 구체적으로, 혼합 용액은 2 mol의 SrCl2, 0.06 mol의 EuCl3를 각각 탈이온수에 용해시켜 1 mol의 SiO2(sol, 20nm)과 교반함으로써 수득하였다. 이후, 상기 혼합 용액을 1 μm 크기의 셀룰로오스(C6H10O5)와 2:1의 비율로 함침한 후 건조하였다. 이후, 함침물을 225℃에서 열처리한 후 표면적 증가를 위하여 핸드밀하였다. 이후, 수득한 물질을 700℃ 산화 분위기에서 소성하여 탄소를 제거하였고, Sr2SiO3Cl2Eu3+의 중간물질을 수득하였으며, Sr2SiO3Cl2:Eu3+ 형광체와 Si2ON2를 1:1.5 mol의 비율로 혼합하였다. 이후, 상기 혼합 물질을 NH3가 300 ccm의 속도로 흐르는 직경 50 mm의 튜브 형태 전기로에 넣고 1200℃ 온도에서 5 시간 동안 열처리하여 SrSi2O2N2:Eu2+ 형광체를 수득하였다. 이와 같은 방법으로 수득한 질화물계 형광체의 XRD 분석 결과 및 PL 분석 결과는 도 27 및 도 28에 도시하였다.Example 12 was carried out in the same manner as in Scheme 14 in the present specification. Specifically, a mixed solution was obtained by dissolving 2 mol of SrCl 2 and 0.06 mol of EuCl 3 in deionized water, respectively, and stirring with 1 mol of SiO 2 (sol, 20 nm). Thereafter, the mixed solution was impregnated with 1 μm cellulose (C 6 H 10 O 5 ) in a ratio of 2: 1 and dried. The impregnated material was then heat treated at 225 ° C. and hand milled to increase the surface area. Thereafter, the obtained material was calcined in an oxidizing atmosphere at 700 ° C. to remove carbon, to obtain an intermediate of Sr 2 SiO 3 Cl 2 Eu 3+ , and an Sr 2 SiO 3 Cl 2 : Eu 3+ phosphor and Si 2 ON 2. Was mixed at a ratio of 1: 1.5 mol. Thereafter, the mixed material was placed in a tube-type electric furnace having a diameter of 50 mm flowing with NH 3 at a rate of 300 ccm, and heat-treated at 1200 ° C. for 5 hours to obtain a SrSi 2 O 2 N 2 : Eu 2+ phosphor. XRD analysis results and PL analysis results of the nitride-based phosphors obtained by the above method are shown in FIGS. 27 and 28.
<실시예 13> CRN 법을 이용하는 Ca-alpha SiAlON:Eu2+ 형광체의 제조 Example 13 Preparation of Ca-alpha SiAlON: Eu 2+ Phosphor Using CRN Method
본 실시예 13은 본원의 명세서 중 [반응식 15]와 같은 반응으로 수행되었다. 특히, 실시예 13은 하기와 같이 조성이 상이한 혼합 용액 5 종류를 제조하여 수행하였다: ① 0.92 mol CaCl2, 0.08 mol Eu(NO3)3, 및 1 mol Al(NO3)3를 각각 탈이온수에 용해시켜 50 wt% 혼합 용액을 제조하였고, 1 mol SiO2(sol, 20nm)와 교반함; ② 0.92 mol CaCl2, 0.08 mol EuCl3, 및 1 mol Al(NO3)3를 각각 탈이온수에 용해시켜 50 wt% 혼합 용액을 제조하였고, 1 mol SiO2(sol, 20nm)와 교반함; ③ 0.92 mol CaCl2, 0.08 mol EuCl3, 및 1 mol AlCl3 를 각각 탈이온수에 용해시켜 50 wt% 혼합 용액을 제조하였고, 1 mol SiO2(sol, 20nm)와 교반함; ④ 0.92 mol Ca(NO3)2, 0.08 mol EuCl3, 및 1 mol AlCl3를 각각 탈이온수에 용해시켜 50 wt% 혼합 용액을 제조하였고, 1 mol SiO2(sol, 20nm)와 교반함; ⑤ 0.92 mol Ca(NO3)2, 0.08 mol EuCl3, 및 1 mol Al(NO3)3를 각각 탈이온수에 용해시켜 50 wt% 혼합 용액을 제조하였고, 1 mol SiO2(sol, 20nm)와 교반함. 상기 5 종류의 조성이 상이한 혼합 용액은, 각각 1 μm 크기의 셀룰로오스(C6H10O5) 3.58, 3.5, 2, 2.92, 및 4.42 mol과 반응시키고 함침한 후 건조하였다. 이후, 상기 혼합 물질 각각을 N2가 1 cm/min의 속도로 흐르는 직경이 50 mm의 튜브 형태 전기로에 넣고 1600℃ 온도에서 5 시간 동안 열처리하여 Ca-알파 SiAlON:Eu2+ 형광체를 수득하였다. 이와 같은 방법으로 수득한 질화물계 형광체의 XRD 분석 결과 및 PL 분석 결과는 도 29 및 도 30에 도시하였다. Example 13 was carried out in the same manner as in Scheme 15 of the present specification. In particular, Example 13 was performed by preparing five kinds of mixed solutions having different compositions as follows: ① 0.92 mol CaCl 2 , 0.08 mol Eu (NO 3 ) 3 , and 1 mol Al (NO 3 ) 3 , respectively, in deionized water. Was dissolved in to prepare a 50 wt% mixed solution and stirred with 1 mol SiO 2 (sol, 20 nm); ② 0.92 mol CaCl 2 , 0.08 mol EuCl 3 , and 1 mol Al (NO 3 ) 3 were dissolved in deionized water, respectively, to prepare a 50 wt% mixed solution, and stirred with 1 mol SiO 2 (sol, 20 nm); ③ 0.92 mol CaCl 2 , 0.08 mol EuCl 3 , and 1 mol AlCl 3 were dissolved in deionized water, respectively, to prepare a 50 wt% mixed solution, and stirred with 1 mol SiO 2 (sol, 20 nm); ④ 0.92 mol Ca (NO 3 ) 2 , 0.08 mol EuCl 3 , and 1 mol AlCl 3 were each dissolved in deionized water to prepare a 50 wt% mixed solution, and stirred with 1 mol SiO 2 (sol, 20 nm); ⑤ 50 wt% mixed solution was prepared by dissolving 0.92 mol Ca (NO 3 ) 2 , 0.08 mol EuCl 3 , and 1 mol Al (NO 3 ) 3 in deionized water, respectively, and using 1 mol SiO 2 (sol, 20nm) and Stirring. The mixed solutions of five different compositions were reacted with 3.58, 3.5, 2, 2.92, and 4.42 mol of cellulose (C 6 H 10 O 5 ) having a size of 1 μm, respectively, and impregnated and dried. Thereafter, each of the mixed materials was placed in a tube-type electric furnace having a diameter of 50 mm flowing N 2 at a rate of 1 cm / min, and heat-treated at 1600 ° C. for 5 hours to obtain a Ca-alpha SiAlON: Eu 2+ phosphor. XRD analysis results and PL analysis results of the nitride-based fluorescent material obtained by the above method are shown in FIGS. 29 and 30.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present application. .

Claims (20)

  1. 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계; 및,Obtaining a solution comprising an oxide precursor of a tricycle element selected from the group consisting of a first metal halide, a second metal halide, and Al, Si, P, and combinations thereof; And,
    상기 용액에 환원제를 첨가한 후 열처리하는 단계Heat treatment after addition of a reducing agent to the solution
    를 포함하는,Including,
    옥시할로겐화물계 형광체의 제조 방법.Method for producing an oxyhalide-based phosphor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 금속 할로겐화물은, 알칼리금속 할로겐화물, 알칼리토금속 할로겐화물, 전이금속 할로겐화물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 할로겐화물을 포함하는 것이고, 상기 제 2 금속 할로겐화물은 희토류계 금속 할로겐화물을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof, and the second metal halide is rare earth-based. A method for producing an oxyhalide-based fluorescent substance containing a metal halide.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 알칼리금속 할로겐화물은 LiCl, NaCl, KCl, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것이고, 상기 알칼리토금속 할로겐화물은 BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide includes BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , And chlorides selected from the group consisting of combinations thereof.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 3 주기 원소의 산화물 전구체는, SiO2, Si(OH)4, SiH4, Si(OC2H5)4, 또는 수용성 실란을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The oxide precursor of the tricycle element is SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a method for producing an oxyhalide-based fluorescent substance containing water-soluble silane.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 환원제는, 옥수수 전분, 감자 전분, 셀룰로오스 분말, 셀룰로오스 시트, 구형 셀룰로오스, 수용성 셀룰로오스, 펄프, 결정화 셀룰로오스, 비결정질 셀룰로오스, 레이온, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 고분자 물질을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The reducing agent comprises a polymeric material selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof. And oxyhalide-based phosphor production method.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 열처리하는 단계는, 150℃ 내지 400℃에서 수행되는 1 차 열처리, 500℃ 내지 1000℃에서 수행되는 2 차 열처리, 및 700℃ 내지 1400℃에서 수행되는 3 차 열처리가 순차적으로 수행되는 것을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The heat treatment may include a first heat treatment performed at 150 ° C. to 400 ° C., a second heat treatment performed at 500 ° C. to 1000 ° C., and a third heat treatment performed at 700 ° C. to 1400 ° C. sequentially. It is, a method for producing an oxyhalide-based phosphor.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 열처리하는 단계 후, 제조된 상기 옥시할로겐화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는, 옥시할로겐화물계 형광체의 제조 방법.After the heat treatment step, further comprising the step of treating the alkaline compound to the prepared oxyhalide-based phosphor, a method for producing an oxyhalide-based phosphor.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, NH4OH, H2O2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 또는 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 하이드라진(hydrazine)계, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것인, 옥시할로겐화물계 형광체의 제조 방법.The alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or a propylamine compound, butylamine (butylamine ) -Based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, lithium amide-based compound, sodium amide Oxyhalide-based fluorescent substance comprising a compound selected from the group consisting of) -based compounds, potassium amide-based compounds, cesium amide-based compounds, hydrazine-based compounds, and combinations thereof Method of preparation.
  9. 제 1 항에 따른 방법에 의하여 제조되는 옥시할로겐화물계 형광체로서, 상기 옥시할로겐화물계 형광체는 M1-M2-OX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 옥시할로겐화물계 형광체.An oxyhalide-based phosphor prepared by the method according to claim 1, wherein the oxyhalide-based phosphor has a composition of M 1 -M 2 -OX: M 3 , wherein M 1 is an alkali metal, an alkaline earth metal, or a transition metal. , M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof, X is a halogen element, and M 3 is a rare earth metal, oxyhalide-based phosphor.
  10. 제 1 금속 할로겐화물, 제 2 금속 할로겐화물, 및 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소의 산화물 전구체를 포함하는 용액을 수득하는 단계; 및,Obtaining a solution comprising an oxide precursor of a tricycle element selected from the group consisting of a first metal halide, a second metal halide, and Al, Si, P, and combinations thereof; And,
    상기 용액에 환원제를 첨가한 후 질소-함유 분위기 하에서 열처리하는 단계Adding a reducing agent to the solution and then heat-treating it under a nitrogen-containing atmosphere
    를 포함하는,Including,
    질화물계 또는 산질화물계 형광체의 제조 방법.Method for producing a nitride or oxynitride-based phosphor.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제 1 금속 할로겐화물은, 알칼리금속 할로겐화물, 알칼리토금속 할로겐화물, 전이금속 할로겐화물, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 할로겐화물을 포함하는 것이고, 상기 제 2 금속 할로겐화물은 희토류계 금속 할로겐화물을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The first metal halide includes a halide selected from the group consisting of alkali metal halides, alkaline earth metal halides, transition metal halides, and combinations thereof, and the second metal halide is rare earth-based. A method for producing a nitride-based or oxynitride-based phosphor containing a metal halide.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 알칼리금속 할로겐화물은 LiCl, NaCl, KCl, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것이고, 상기 알칼리토금속 할로겐화물은 BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 염화물을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The alkali metal halide includes a chloride selected from the group consisting of LiCl, NaCl, KCl, and combinations thereof, and the alkaline earth metal halide includes BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , And chlorides selected from the group consisting of combinations thereof.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 3 주기 원소의 산화물 전구체는, SiO2, Si(OH)4, SiH4, Si(OC2H5)4, 또는 수용성 실란을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The oxide precursor of the tricycle element is SiO 2 , Si (OH) 4 , SiH 4 , Si (OC 2 H 5 ) 4 , or a method for producing a nitride-based or oxynitride-based phosphor containing water-soluble silane.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 환원제는, 옥수수 전분, 감자 전분, 셀룰로오스 분말, 셀룰로오스 시트, 구형 셀룰로오스, 수용성 셀룰로오스, 펄프, 결정화 셀룰로오스, 비결정질 셀룰로오스, 레이온, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 고분자 물질을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The reducing agent comprises a polymeric material selected from the group consisting of corn starch, potato starch, cellulose powder, cellulose sheet, spherical cellulose, water soluble cellulose, pulp, crystallized cellulose, amorphous cellulose, rayon, and combinations thereof. And a method for producing a nitride or oxynitride-based phosphor.
  15. 제 10 항에 있어서,The method of claim 10,
    상기 열처리하는 단계는, 150℃ 내지 400℃에서 수행되는 1 차 열처리, 500℃ 내지 1000℃에서 수행되는 2 차 열처리, 및 700℃ 내지 1400℃에서 수행되는 3 차 열처리가 순차적으로 수행되는 것을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The heat treatment may include a first heat treatment performed at 150 ° C. to 400 ° C., a second heat treatment performed at 500 ° C. to 1000 ° C., and a third heat treatment performed at 700 ° C. to 1400 ° C. sequentially. The method for producing a nitride or oxynitride-based phosphor.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 3 차 열처리는 질소-함유 기체가 0.1 cm/s 내지 10 cm/s 선속으로 흐르는 분위기에서 수행되는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The tertiary heat treatment is a method of producing a nitride-based or oxynitride-based phosphor that is carried out in an atmosphere in which a nitrogen-containing gas flows at 0.1 cm / s to 10 cm / s flux.
  17. 제 10 항에 있어서,The method of claim 10,
    상기 질소-함유 분위기는 N2, NH3, 또는 이들의 조합에 의해 조성될 수 있는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The nitrogen-containing atmosphere may be formed by N 2 , NH 3 , or a combination thereof, a method for producing a nitride or oxynitride-based phosphor.
  18. 제 10 항에 있어서,The method of claim 10,
    상기 열처리하는 단계 후, 제조된 상기 질화물계 또는 산질화물계 형광체에 알칼리성 화합물을 처리하는 단계를 추가 포함하는, 질화물계 또는 산질화물계 형광체의 제조 방법.After the heat treatment step, further comprising the step of treating the alkaline compound to the nitride-based or oxynitride-based phosphor prepared, a method for producing a nitride or oxynitride-based phosphor.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 알칼리성 화합물은, LiOH, NaOH, KOH, RbOH, CsOH, NH4OH, H2O2, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물, 또는 프로필아민(propylamine)계 화합물, 부틸아민(butylamine)계 화합물, 펜틸아민(pentylamine)계 화합물, 헥실아민(hexylamine)계 화합물, 헵틸아민(heptylamine)계 화합물, 아미노벤젠(aminobenzene)계 화합물, 리튬아미드(lithium amide)계 화합물, 나트륨아미드(sodium amide)계 화합물, 칼륨아미드(potassium amide)계 화합물, 세슘아미드(cesium amide)계 화합물, 하이드라진(hydrazine)계, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 화합물을 포함하는 것인, 질화물계 또는 산질화물계 형광체의 제조 방법.The alkaline compound is a compound selected from the group consisting of LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, H 2 O 2 , and combinations thereof, or a propylamine compound, butylamine (butylamine ) -Based compound, pentylamine-based compound, hexylamine-based compound, heptylamine-based compound, aminobenzene-based compound, lithium amide-based compound, sodium amide ) -Based compound, potassium amide-based compound, cesium amide-based compound, hydrazine-based compound, and a compound selected from the group consisting of a combination thereof, nitride-based or acid Method for producing nitride phosphor.
  20. 제 10 항에 따른 방법에 의하여 제조되는 질화물계 또는 산질화물계 형광체로서, 상기 질화물계 또는 산질화물계 형광체는 M1-M2-NX: M3 또는 M1-M2-ONX: M3의 조성을 가지며, 상기 M1은 알칼리금속, 알칼리토금속, 또는 전이금속이고, 상기 M2는 Al, Si, P, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 3 주기 원소이며, 상기 X는 할로겐 원소이고, 상기 M3는 희토류계 금속인, 질화물계 또는 산질화물계 형광체.A nitride-based or oxynitride-based fluorescent material prepared by the method according to claim 10, wherein the nitride-based or oxynitride-based fluorescent material is M 1 -M 2 -NX: M 3 or M 1 -M 2 -ONX: M 3 Has a composition, wherein M 1 is an alkali metal, an alkaline earth metal, or a transition metal, and M 2 is a tricyclic element selected from the group consisting of Al, Si, P, and combinations thereof, wherein X is a halogen element , M 3 is a rare earth metal, nitride or oxynitride-based phosphor.
PCT/KR2012/001459 2011-02-28 2012-02-27 Fluorescent substance, and method for preparing same WO2012118310A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2011-0017679 2011-02-28
KR20110017719 2011-02-28
KR10-2011-0017719 2011-02-28
KR10-2011-0017729 2011-02-28
KR20110017679 2011-02-28
KR20110017729 2011-02-28

Publications (2)

Publication Number Publication Date
WO2012118310A2 true WO2012118310A2 (en) 2012-09-07
WO2012118310A3 WO2012118310A3 (en) 2012-11-08

Family

ID=46758365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001459 WO2012118310A2 (en) 2011-02-28 2012-02-27 Fluorescent substance, and method for preparing same

Country Status (1)

Country Link
WO (1) WO2012118310A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028656A1 (en) * 2007-08-30 2009-03-05 Nichia Corporation Light emitting device
KR20090036800A (en) * 2007-10-10 2009-04-15 강준길 Red phospher and white light emitting device comprising it
KR20090079213A (en) * 2006-10-03 2009-07-21 사르노프 코포레이션 Metal silicate halide phosphors and led lighting devices using the same
KR20110011586A (en) * 2009-07-28 2011-02-08 성균관대학교산학협력단 Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
KR20110035011A (en) * 2009-09-29 2011-04-06 한국화학연구원 The phosphor based on (halo-)silicate and manufacturing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090079213A (en) * 2006-10-03 2009-07-21 사르노프 코포레이션 Metal silicate halide phosphors and led lighting devices using the same
WO2009028656A1 (en) * 2007-08-30 2009-03-05 Nichia Corporation Light emitting device
KR20090036800A (en) * 2007-10-10 2009-04-15 강준길 Red phospher and white light emitting device comprising it
KR20110011586A (en) * 2009-07-28 2011-02-08 성균관대학교산학협력단 Oxynitride phosphor powders, nitride phosphor powders, and preparating method of the same
KR20110035011A (en) * 2009-09-29 2011-04-06 한국화학연구원 The phosphor based on (halo-)silicate and manufacturing method for the same

Also Published As

Publication number Publication date
WO2012118310A3 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2011014010A2 (en) Oxynitride phosphor powder, nitride phosphor powder and a production method therefor
KR100984273B1 (en) Nitride phosphor, reaction mixture and method production and light emitting device comprising such a phosphor
WO2009048150A1 (en) Β-sialon phosphor powder and process for production of the same
TW200538532A (en) Oxynitride powder and method for producing same
CN107406757B (en) Phosphor particles with a protective layer and method for producing phosphor particles with a protective layer
JP2012046625A (en) Method of manufacturing phosphor
CN102575158A (en) Process for producing beta-sialon fluorescent material
CN101374929A (en) Photoluminescent material
Bernardo et al. Gehlenite: Eu3+ phosphors from a silicone resin and nano-sized fillers
WO2023282565A1 (en) Method for partially reducing vanadium pentoxide using ammonia solution, and vanadium dioxide powder prepared thereby
TWI496873B (en) M-C-N-O system phosphor method
CN101374926B (en) Method for production of blue-light-emitting fluorescent material
CN101830448B (en) Method for preparing nano aluminum nitride powder at low temperature
WO2012118310A2 (en) Fluorescent substance, and method for preparing same
JP5502010B2 (en) Method for producing B—C—N—O phosphor
JP2008045080A (en) Method for producing inorganic compound
WO2012111929A2 (en) Fluorescent substance and a production method therefor
KR101052344B1 (en) Method for producing high purity magnesium oxide powder from magnesium chloride
TW201819287A (en) A method for producing aluminum nitride
KR101136744B1 (en) Flake type silicon-oxynitride phosphor and its manufacturing method
KR20130130169A (en) Phosphor powder formed via nitridation of chlorosilcate-based phosphor, and producing method of the same
KR101851879B1 (en) Manufacturing method of high purity silicon carbide using metal silicon and arc discharge
WO2017052234A1 (en) Metal fluoride red phosphor and light emitting element using same
WO2012022041A1 (en) Borate luminescent materials, preparation methods and uses thereof
WO2024136621A1 (en) Blue light-emitting material having perovskite-like structure and exhibiting excellent luminous efficiency, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752131

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752131

Country of ref document: EP

Kind code of ref document: A2