WO2012117999A1 - (s)-selective hyperactive mutant arylmalonate decarboxylase - Google Patents

(s)-selective hyperactive mutant arylmalonate decarboxylase Download PDF

Info

Publication number
WO2012117999A1
WO2012117999A1 PCT/JP2012/054731 JP2012054731W WO2012117999A1 WO 2012117999 A1 WO2012117999 A1 WO 2012117999A1 JP 2012054731 W JP2012054731 W JP 2012054731W WO 2012117999 A1 WO2012117999 A1 WO 2012117999A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
acid
cysteine
decarboxylase
activity
Prior art date
Application number
PCT/JP2012/054731
Other languages
French (fr)
Japanese (ja)
Inventor
憲二 宮本
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2013502304A priority Critical patent/JPWO2012117999A1/en
Publication of WO2012117999A1 publication Critical patent/WO2012117999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01076Arylmalonate decarboxylase (4.1.1.76)

Definitions

  • the present invention relates to a highly active mutant arylmalonate decarboxylase that is selective for S-form, which produces S-form ⁇ -arylpropionic acid from arylmalonate.
  • Arylmalonate decarboxylase (AMDase, EC 4.1.1.76) is an enzyme that catalyzes the decarboxylation of arylmalonic acid to produce R-carboxylic acid derivatives ( ⁇ -arylpropionic acid derivatives: profenes) It is a monomeric enzyme of 240 amino acids (estimated molecular weight 24,734 Da) isolated from Alcaligenes bronchisepticus KU1201 strain (Non-patent Document 1).
  • Wild type arylmalonic acid produces only R-form ⁇ -arylpropionic acid, but S-form ⁇ -arylpropionic acid and its derivatives are non-steroidal anti-inflammatory drugs, liquid crystal materials, insecticides, herbicides And an important group of compounds as intermediates thereof.
  • the triple mutant (S36N / G74C / C188S) obtained by random mutagenesis to the double mutant (G74C / C188S) has about 10 times higher activity than the double mutant. Had. However, it still has an activity of 1% or less as compared with the wild-type enzyme, and is still not practical (Non-Patent Document 4).
  • the present invention is a mutant arylmalonic acid decarboxylase, which produces an S-form ⁇ -arylpropionic acid having an optical purity of almost 100% ee from arylmalonic acid with high activity, and the enzyme. It is an object of the present invention to provide a method for producing S-form ⁇ -arylpropionic acid.
  • the present inventors have already succeeded in reversing enantioselectivity by introducing a mutation of G74C / C188S into wild-type arylmalonate decarboxylase (AMDase), and the S-form of the arylmalonate derivative, which is a substrate, has been successfully reversed. It has succeeded in producing ⁇ -arylpropionic acid. However, the activity is drastically reduced compared to the wild type, and the activity was not sufficient for industrial use.
  • AMDase wild-type arylmalonate decarboxylase
  • Directed evolution here refers to (1) creating a library in which mutations are introduced into the gene of the target protein, (2) selecting mutants having the desired properties from this library, and (3) selecting By repeating the cycle of sequencing the mutant gene and (4) creating the library again from the selected mutant gene, it is possible to repeat the mutation in the target protein as if it were an “evolution” of an organism. It is a protein engineering technique to finally obtain a protein with desirable properties.
  • the present inventors first analyzed the three-dimensional structure of wild-type arylmalonate decarboxylase and S-selective G74C / C188S mutant arylmalonate decarboxylase by X-ray crystal structure analysis, and participated in catalytic activity. The amino acid residues to be identified were identified. A library of mutant arylmalonate decarboxylase was constructed by substituting these amino acids with other amino acids, and Saturation Mutagenesis was performed to measure the activity of the mutant enzyme.
  • G74C / M159L / C188G mutant arylmalonate decarboxylase and Y48F / G74C / M159L / C188G mutant decarboxylase have an S-selective enantioselectivity, while G74C / C188S mutant arylcarbonate. It was found that the enzyme activity was improved as compared with malonate decarboxylase, and the mutant arylmalonate decarboxylase of the present invention was obtained.
  • the present invention is as follows.
  • a method for producing S-form ⁇ -arylpropionic acid which comprises contacting the mutant arylmalonic acid decarboxylase according to any one of [1] to [5] with an arylmalonic acid derivative.
  • a process for producing S-form ⁇ -arylpropionic acid which comprises contacting the mutant arylmalonic acid decarboxylase of [9] with an arylmalonic acid derivative.
  • the S-form selective highly active mutant arylmalonic acid decarboxylase of the present invention can obtain S-form ⁇ -arylpropionic acid with high optical purity of almost 100% ee by decarboxylation of arylmalonic acid derivatives. it can.
  • S-form ⁇ -arylpropionic acid S-type profen
  • NSAID non-steroidal anti-inflammatory agent
  • the S-form selective highly active mutant arylmalonate decarboxylase of the present invention has the following mutation (i) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2, ) And (ii) mutations, (i) and (iii) mutations, or (i), (ii) and (iii) mutations: (i) substitution of the 74th glycine with cysteine and the substitution of the 188th cysteine with glycine; (ii) substitution of the 48th tyrosine with another amino acid; (iii) Replacement of the 159th methionine with another amino acid.
  • amino acids are alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, lysine and valine. It is selected from 19 types of amino acids excluding amino acids.
  • the 48th tyrosine is preferably substituted with phenylalanine, and the 159th methionine is preferably substituted with leucine.
  • the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine, and the 159th methionine Is a mutant in which is substituted with leucine and the 188th cysteine is substituted with glycine.
  • the 48th tyrosine of the amino acid sequence of the wild-type arylmalonate shown in SEQ ID NO: 2 is substituted with phenylalanine, and the 74th glycine is substituted.
  • G74C 74th glycine to cysteine mutation
  • G74C mutant enzyme an enzyme mutant
  • G74C mutant enzyme an enzyme mutant
  • the above-mentioned mutant arylmalonate decarboxylase is referred to as G74C / M159L / C188G mutant enzyme and Y48F / G74C / M159L / C188G mutant enzyme, respectively.
  • the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is preferably replaced with cysteine, In which methionine is replaced with leucine, 188th cysteine is replaced with glycine, and 156th valine is replaced with isoleucine (G74C / M159L / C188G / V156I).
  • the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is preferably replaced with cysteine, In which methionine is substituted with leucine, 188th cysteine is substituted with glycine, and 156th valine is substituted with leucine (G74C / M159L / C188G / V156L).
  • the mutant arylmalonic acid decarboxylase of the present invention acts on arylmalonic acid to produce S-form ⁇ -arylpropionic acid (profen) having S configuration at the ⁇ -position. That is, it has a stereoselectivity opposite to that of the wild type arylmalonate decarboxylase, and the enantioselectivity is S-form.
  • a mutant arylmalonic acid decarboxylase that acts on arylmalonic acid to produce S-form ⁇ -arylpropionic acid (profen) the 74th glycine has been replaced with cysteine, and the 188th cysteine has been substituted.
  • the mutant arylmalonate decarboxylase of the present invention has an enzyme activity improved over that of the G74C / C188S mutant arylmalonate decarboxylase.
  • the mutant arylmalonate decarboxylase activity of the invention as measured by the enzyme activity measurement method described below is 5 times or more, preferably 10 times or more, more preferably that of G74C / C188S mutant arylmalonate decarboxylase. Is 50 times or more, more preferably 100 times or more, and particularly preferably 150 times or more.
  • the enzyme activity of the G74C / C188G mutant arylmalonate decarboxylase of the present invention is about 5 times higher than that of the G74C / C188G mutant arylmalonate decarboxylase, and the G74C / M159L / C188G mutant aryl of the present invention
  • the enzyme activity of malonate decarboxylase is about 200 times higher than that of G74C / C188G mutant arylmalonate decarboxylase
  • the enzyme activity of Y48F / G74C / M159L / C188G mutant arylmalonate decarboxylase of the present invention is G74C.
  • the enzyme activity is G74C / M159L / C188G mutant arylmalonic acid
  • the enzyme activity when using ⁇ -methyl- ⁇ -phenylmalonic acid as a substrate of the G74C / M159L / C188G / V156L mutant arylmalonate decarboxylase of the present invention is about 2 times higher than that of decarboxylase. About three times higher than M159L / C188G mutant arylmalonate decarboxylase.
  • the specific activity of arylmalonate decarboxylase can be measured, for example, by the following method. That is, 50 ⁇ L of an aqueous phenylmalonic acid derivative solution of pH 7 to 8, several tens to several hundreds of mM, 50 ⁇ L of 1 M Tris-HCl pH buffer, and 350 ⁇ L of ultrapure water are mixed and incubated at 30 ° C. for 10 minutes or more. To this, add 50 ⁇ L of arylmalonate decarboxylase solution and mix. The reaction time is adjusted so that the conversion rate of the substrate is within 10%. This is because the enzyme reaction rate varies depending on the concentration of the substrate. After the reaction is completed, reverse phase HPLC analysis is performed. Similarly, under the same conditions, reverse phase HPLC analysis was performed in a system where 10 mM Tris buffer was added instead of the enzyme solution, and the specific activity was calculated from the value subtracted from the enzyme solution data using this measurement result as a blank. Good.
  • K cat ⁇ K m of arylmalonate decarboxylase can be measured, for example, by the following method. That is, the specific activity is measured in a reaction system in which the final concentration of the substrate is 40, 20, 10, 5, 2.5, 1.25, 0.625 mM. Using the measurement result of specific activity as a plot, “ cat [ K] and K m can be determined by subtracting“ 1 / [S] -1 / v plot ”(Lineweaver-Burk plot).
  • the compound used as a substrate by the mutant enzyme of the present invention is an arylmalonic acid derivative, preferably an ⁇ -aryl- ⁇ -methyl-malonic acid derivative having a methyl group at the ⁇ -position.
  • arylmalonic acid derivatives preferably an ⁇ -aryl- ⁇ -methyl-malonic acid derivative having a methyl group at the ⁇ -position.
  • ⁇ -methyl- ⁇ -phenylmalonic acid can be mentioned.
  • the mutant enzyme acts on these arylmalonic acid derivatives to produce S-form ⁇ -arylpropionic acid.
  • the arylmalonic acid is represented by the following general formula (I), and ⁇ -arylpropionic acid represented by the following general formula (II) is produced by the mutant arylmalonic acid decarboxylase of the present invention.
  • R is selected from the group consisting of H, CH 3 , F, OH, and NH 2
  • Ar represents an aryl group that is unsubstituted or substituted with any substituent.
  • Substituents include C1-C6 alkyl groups, C1-C6 alkoxy groups, halogen atoms, nitro groups, cyano groups, amino groups, C1-C6 alkoxycarbonyl groups, phenyl groups, hydroxy groups, etc., aryl groups And phenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group and the like.
  • optical purity (enantiomeric excess) of S-form ⁇ -arylpropionic acid produced using the mutant arylmalonate decarboxylase of the present invention is 99% ee or higher, preferably 99.5% ee or higher, Preferably it is 99.7% ee or more.
  • the enantiomeric excess can be measured, for example, by the following method. That is, about 50 ⁇ mol of the substrate was transferred to a 1.5 mL tube, dissolved in 500 ⁇ L of ultrapure water, and adjusted to pH 8 using 2M NaOH ultrapure water and 2M HCl ultrapure water. This was made up to 1 mL and vortexed by adding 250 ⁇ L of 1 M Tris-HCl pH buffer. Dispense 125 ⁇ L each of this solution, add 0 to 100 ⁇ L of ultrapure water and 25 to 125 ⁇ L of enzyme solution, and react at 30 ° C. for about one week to react all of the substrate.
  • the reaction was stopped by adding 125 ⁇ L of 2M HCl to this reaction solution, and 300 ⁇ L of diethyl ether was added thereto, vortexed, centrifuged (13,000 rpm, 2 min), and the supernatant was collected.
  • the product is extracted by repeating this operation three times.
  • the enantiomeric excess may be measured from the peak area of the enantiomer of the product.
  • the mutant arylmalonate decarboxylase of the present invention has the mutation described above, and one or several more (for example, at positions other than the 48th, 74th, 159th and 188th amino acids) (1-10, preferably 1-5, more preferably 1-3, particularly preferably 1) amino acid sequence having a deleted, substituted or added amino acid, and decarboxylation of the arylmalonic acid derivative. It includes a mutant arylmalonate decarboxylase that catalyzes to produce S-form ⁇ -arylpropionic acid and has an enzyme activity that is higher than that of G74C / C188G mutant arylmalonate decarboxylase.
  • the amino acid substitutions at the 48th, 74th, 159th and 188th positions are maintained, 90% or more, more preferably 95% or more, particularly preferably 97% or more amino acid sequence having amino acid identity, catalyzing the decarboxylation of arylmalonic acid derivatives to produce S- ⁇ -arylpropionic acid, G74C / C188G mutant aryl It includes a mutant arylmalonate decarboxylase having an enzyme activity that is higher than that of malonate decarboxylase.
  • the enzyme consisting of the amino acid sequence shown in SEQ ID NO: 2 is an arylmalonate decarboxylase isolated from Alcaligenes® bronchisepticus® KU1201 strain (Mikukenken no. 11670).
  • SEQ ID NO: 1 shows the base sequence of the DNA encoding the enzyme.
  • DNA encoding arylmalonate decarboxylase of the present invention is isolated by isolating DNA encoding arylmalonate decarboxylase from the microorganism and introducing the above mutation by site-directed mutagenesis or the like Can be obtained.
  • a DNA encoding the mutant arylmalonate decarboxylase of the present invention is inserted into an appropriate expression vector, the vector is introduced into a host, a transformant containing the DNA is produced, and the transformant is cultured.
  • the mutant arylmalonate decarboxylase of the present invention may be purified from a culture such as a host cell or a culture solution by a known method.
  • examples of the vector include plasmids derived from E. coli (eg, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, etc.), yeast-derived plasmids (eg, YEp13, etc.) YEp system, YCp system such as YCp50), etc., and phage DNA such as ⁇ phage can also be used.
  • animal viruses such as retrovirus or vaccinia virus and insect virus vectors such as baculovirus can also be used.
  • bacteria such as Escherichia coli and Bacillus subtilis
  • fungi such as yeast
  • animal cells such as monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells)
  • insect cells such as Sf9 cells
  • Introduction of the vector into which the DNA has been inserted into the host cell can be carried out by electroporation, calcium phosphate, lipofection, spheroplast, lithium acetate, or the like.
  • Purification of the mutant arylmalonate decarboxylase of the present invention from a culture such as a host cell or a culture solution is performed by appropriately combining known protein purification methods such as gel filtration chromatography, ion exchange chromatography, affinity chromatography and the like. It can be carried out.
  • the present invention includes a method for producing S-form ⁇ -arylpropionic acid from arylmalonic acid using the above-mentioned mutant arylmalonic acid decarboxylase.
  • the starting arylmalonic acid is an ⁇ -aryl- ⁇ -methylmalonic acid derivative, which can be obtained from malonic acid by adding a methyl group and an aryl group by a known method. It can also be obtained by carbonating a racemic ⁇ -arylpropionic acid.
  • the S-form ⁇ -arylpropionic acid can be obtained by mixing the arylmalonic acid with the mutant arylmalonic acid decarboxylase of the present invention and bringing it into contact.
  • the reaction conditions in this case are pH 7 to 9, 4 to 50 ° C., and several minutes to several tens of hours depending on the amounts of arylmalonic acid and mutant arylmalonic acid decarboxylase as raw materials.
  • the amount of the enzyme to be mixed with the raw material arylmalonic acid is not limited. For example, 1 to 1000 U of the mutant arylmalonic acid decarboxylase may be mixed with 10 mM of arylmalonic acid.
  • the S-form ⁇ -arylpropionic acid obtained by the mutant arylmalonic acid decarboxylase of the present invention is useful as a pharmaceutical, a liquid crystal raw material, an agrochemical, etc., or an intermediate thereof. In particular, it is useful as a nonsteroidal anti-inflammatory drug (NSAID). These ⁇ -arylpropionic acids are called profenes.
  • the following ⁇ -arylpropionic acid is produced from the following arylmalonic acid.
  • (S) - ⁇ - (p-isobutylphenyl) propionic acid is formed from ⁇ - (p-isobutylphenyl) - ⁇ -methylmalonic acid, and ⁇ - (6-methoxy-2-naphthyl) - ⁇ (S) - ⁇ - (6-Methoxy-2-naphthyl) propionic acid (naproxen) is formed from -methylmalonic acid, and (S) - ⁇ - (6-fluorobiphenyl-4-yl) - ⁇ -methylmalonic acid produces (S ) - ⁇ - (2-Fluorobiphenyl-4-yl) propionic acid (flurbiprofen) is produced from ⁇ - (3-phenoxyphenyl) - ⁇ -methylmalonic acid to (S) - ⁇ - (3- Phenoxyphenyl) propionic acid (phenoprofen) is produced, and (S) - ⁇ - (3-benzoylphen
  • the mutated arylmalonate decarboxylase of the present invention allows oxaprofen, zaltoprofen, aluminoprofen, beoxaprofen, vermoprofen, carprofen, cycloprofen, flunoxaprofen, microprofen, and pyrprofen.
  • Pranoprofen, suprofen, ximoprofen and the like can be produced.
  • the produced S-form ⁇ -arylpropionic acid can be purified by a known method such as chromatography and used as a pharmaceutical, an agricultural chemical, a liquid crystal material, or a raw material thereof.
  • Example 1 Production of mutant arylmalonate decarboxylase and measurement of activity
  • direct evolution evolutionary molecular engineering technique
  • Ser188 and Cys74 side chains are positioned to face each other across the ⁇ -carbon of the product. From this structure, the enantioselectivity is expressed that the 188th and 74th residues are located so as to sandwich the prochiral plane of the product intermediate.
  • the pro-S carboxylate is stabilized by hydrogen bonding with the side chain hydroxyl group or main chain amide, while the pro-R carboxylate is destabilized in a hydrophobic environment. Is done. As a result, the carboxylate of pro-R is eliminated and an enolate intermediate is formed. Finally, the 188th or 74th cysteine with respect to the intermediate undergoes enantioselective protonation to produce a product.
  • Saturation mutagenesis refers to the construction of a mutant library in which all 19 kinds of natural amino acid residues are substituted for a certain amino acid residue.
  • mutation of G74C is indispensable for the expression of enantioselectivity, so that mutation cannot be introduced. Therefore, in 2nd screening, we tried to improve the activity by introducing mutations into other residues.
  • PDB-CODE Molecular modeling based on the four crystal structures of 3DG9 (wild type), 3IP8 (wild type), 3IXL (G74C / C188S mutant type), and 3IXM (G74C mutant type) to form a hydrophobic pocket
  • 3DG9 wild type
  • 3IP8 wild type
  • 3IXL wild type
  • 3IXM G74C mutant type
  • phenylmalonic acid was selected as a substrate. The reason is that it is a fast-reacting substrate and can detect weak AMDase activity, and in previous studies, the activity against phenylmalonic acid was correlated with the activity against other substrates.
  • NNK codon (N is A, G, C or T; K is G or T) or NHK codon (N is A, G, C or T; H is T, C or A: Mutagenesis primer using ⁇ ⁇ K G or T) was introduced, and mutation was introduced according to the protocol of QuickChange IIQuickSite-Directed Mutagenesis Kit (STRATAGENE) (hereinafter referred to as "QuickChange ⁇ protocol "). Escherichia coli was transformed with the prepared mutant plasmids and spread on plates. The resulting colonies were cultured in a 96-well microplate. This culture solution was inoculated into another microplate using Kenzan, and glycerol was added to preserve it as a master plate.
  • STRATAGENE QuickChange IIQuickSite-Directed Mutagenesis Kit
  • the inoculated plate was cultured at 37 ° C. for about 3 hours, and then L-(+)-arabinose was added to induce enzyme expression, followed by further incubation for about 14 hours.
  • the plate was centrifuged, the supernatant was removed, E. coli was dissolved in a solution containing Lysozyme / DNase / PMSF, frozen, and then disrupted by incubation at 37 ° C. for 3 hours.
  • the cell-free extract was added to a phenylmalonic acid solution containing BTB, and the activity was evaluated by confirming the change in pH due to decarboxylation of the substrate with BTB.
  • E. coli of wells judged to have high activity were picked up from the above master plate, and plasmid sequencing was performed to identify the mutant type.
  • the mutant enzyme is purified from the cell-free extract prepared by culturing the mutant expression host, collecting the cells, sonicating and centrifuging, and then purifying the mutant enzyme by affinity chromatography using a Ni column. Evaluated.
  • Table 1 shows the results of measuring G74C / C188S mutant type and wild type specific activity, k cat, and K m using the above QuickChange protocol.
  • the G74C / C188G mutant is purified from about 2 g of cultured cells (collected from 500 mL of liquid LB medium) by column chromatography using 50 mL of Ni Sepharose High Performance (GE Healthcare). did. The G74C mutant was purified from about 1 g of cultured cells by column chromatography using 2 mL of COSMOGEL His-Accept gel.
  • the G74C / C188G mutant improved the specific activity by 2.5 times and the relative activity by 5.6 times compared to the G74C / C188S mutant.
  • the product obtained by the G74C mutant is a racemate, it is not the target mutant. Therefore, the G74C / C188G mutant was used as a 2nd screening template.
  • Table 4 shows the results of purification and analysis of specific activity, k cat, and K m .
  • the G74C / M159L / C188G mutant improved the specific activity by 150 times and the relative activity by 210 times compared to the G74C / C188S mutant. (The specific activity is 60 times and the relative activity is 37 times that of the G74C / C188G mutant.)
  • (2) G74C / M159X / C188S mutant library Next, the G74C / C188S mutant and the G74C / C188G mutant were compared by actually performing directed evolution using the G74C / C188S mutant as a template.
  • a G74C / M159X / C188S mutant library was constructed using NNK codons, and 160 colonies were screened. As a result, one strain of M159S mutation, which was estimated to be more active than the G74C / C188S mutant, was obtained. In addition, 7 strains (with a breakdown of 2 strains of M159L, 1 strain of M159G, and 4 strains of [template]) were obtained that were estimated to have the same activity as the G74C / C188S mutant.
  • Table 5 shows the results obtained by purifying these mutants and analyzing the specific activity, k cat, and K m .
  • the Y48F / G74C / C188G mutant improved the specific activity by 20 times and the relative activity by 23 times compared to the G74C / C188S mutant. (Compared with G74C / C188G mutant, specific activity is 8 times and relative activity is 4 times.) Among the mutants obtained by 2nd screening, the G74C / M159L / C188G mutant had the highest activity. Therefore, we decided to perform 3rd screening using this mutant as a template.
  • Table 7 shows the specific activity, k cat, and K m of the mutants obtained by 3rd screening.
  • the activity of the obtained mutant type was equivalent to that of the G74C / M159L / C188G mutant type, but improved k cat and K m were obtained.
  • the Y48F / G74C / M159L / C188G mutant showed the highest activity, 920-fold relative activity compared to the G74C / C188S mutant.
  • Substrates include ⁇ -methyl- ⁇ -phenylmalonic acid ( ⁇ -methyl- ⁇ -phenylmalonic acid), ⁇ -methyl- ⁇ - (2-naphthyl) malonic acid ( ⁇ -methyl- ⁇ -naphthylmalonic acid) and ⁇ - (6-methoxy-2-naphthyl) - ⁇ -methylmalonic acid ( ⁇ -6- (methoxy-2-naphthyl) - ⁇ -methylmalonic acid) was selected.
  • the enzyme solution used in this experiment took about 1 to 6 months after purification, and there was concern about enzyme deactivation. Therefore, the specific activity was measured using phenylmalonic acid as a substrate, and the value obtained by dividing this measured value by the specific activity measured immediately after purification was defined as the residual activity. As a result, the residual activity was about 50 to 90%.
  • the optical purity of the product was measured as follows. First, the substrate was recrystallized to remove products and impurities that were slightly present in the substrate. Using this substrate, an enzyme reaction was carried out in a system for measuring the specific activity described later. The reaction was stopped by adding 2M HCl to the reaction, and the product was extracted with diethyl ether and methyl esterified with TMS diazomethane. The product was analyzed by normal phase HPLC using a column with a chiral support.
  • the G74C / M159L / C188G mutant not the G74C / Y48F / M159L / C188G mutant, was the most active against a substrate having a methyl group at the ⁇ -position.
  • This mutant type showed a good activity of about 10 to 13 times that of the wild type.
  • the product configuration was all (S) except for the wild type, and the enantiomeric excess was 99% e.e. or more except for the G74C / C188S mutant.
  • Mutant Activity Table 9 summarizes the activity of the mutant type obtained in the 1st to 3rd screenings on phenylmalonic acid.
  • the G74C / M159L / C188G mutant was 210 times more active than the G74C / C188S mutant.
  • the Y48F / G74C / M159L / C188G mutant improved activity 920 times that of the G74C / C188S mutant.
  • G74C / C188S mutant is more active than G74C / C188S mutant because “glycine is less sterically hindered” or “serine hydroxyl group” The hydrogen bond between the substrate and the substrate disappeared.
  • K m is the is improved to less than half, was speculated to be due to the substitution of a serine to a small glycine hindered.
  • Cys74 has larger steric hindrance than Gly and Ala” or “hydrogen bond between Cys74 and substrate”. Therefore, the influence of the 74th Cys was analyzed by molecular modeling.
  • PDB-CODE: 3IXM (G74C / C188S mutant) was docked with phenylmalonic acid as a substrate, and minimization was performed. As a result, a model was obtained in which the 74th cysteine hydrogen bonds with the carboxylate of pro-S.
  • the collected E. coli cells were suspended in pH 8.0, 0.5 mM EDTA, 100 mM Tris-HCl buffer (hereinafter referred to as 100 mM Tris buffer) (35 mL). In order to remove (wash) the medium components, the mixture was centrifuged again (12,000 g, 20 min), and the supernatant was removed. The obtained cultured cells (2 pieces of about 4.5 g) were stored frozen.
  • a cell-free extract was prepared from the cells. Suspend two cells in pH 8.0, 0.5 mM EDTA, 10 mM Tris-HCl buffer (hereinafter referred to as 10 mM Tris buffer) (30 mL), and ultrasonically disrupt while keeping the temperature low in an ice bath. (OUTPUT 8, DUTY 20, 5min, twice, 2 pieces, standard chip). The obtained crushed liquid was centrifuged (12,000 g, 20 min), and a cell-free extract was prepared by removing the precipitate.
  • ammonium sulfate fractionation was performed.
  • the amount of the cell-free extract was measured, ammonium sulfate (ammonium sulfate) was slowly added to 30% saturation, and the mixture was stirred for about 1 hour.
  • ammonium sulfate was slowly added so as to be 60% saturated, and stirred for 2 hours or more. This solution was further centrifuged (12,000 g, 50 min) to obtain a protein precipitate containing AMDase.
  • This precipitate was dissolved in 20 mL of 10 mM Tris buffer, placed in a cellulose tube, and dialyzed against 2 L of 10 mM Tris buffer (dialysis buffer) to remove ammonium sulfate and low molecular weight compounds.
  • the dialysis buffer was changed once after 2 hours, and dialysis was further performed for 6 hours or more.
  • anion exchange column chromatography was performed.
  • the column was filled with 100 mL of DEAE-Toyopearl gel stored in 20% ethanol, and equilibrated by flowing 300 mL of distilled water and 300 mL of 10 mM Tris buffer.
  • the crude enzyme solution after dialysis was poured into this at 1.0 mL / min, and AMDase was adsorbed on the gel.
  • 300 mL of 10 mM Tris buffer was flowed, and then eluted with 600 mL of a linear NaCl concentration gradient from 0 mM to 200 mM at an elution rate of 1.0 mL / min.
  • hydrophobic column chromatography was performed.
  • the active fraction was collected and ammonium sulfate was slowly added to 20%.
  • the column was filled with 60 mL of Butyl-Toyopearl gel stored in 20% ethanol, and equilibrated by flowing 180 mL of distilled water and 180 mL of 10 mM Tris buffer containing 20% ammonium sulfate.
  • an active fraction containing 20% ammonium sulfate was flowed at 1.0 mL / min to adsorb AMDase onto the gel.
  • Each active fraction was analyzed by SDS-PAGE. If there is a fraction in which only AMDase is dissolved (single band), collect the active fraction and dialyze with 2 L of dialysis buffer for 3 hours or more to remove ammonium sulfate and NaCl from the crude enzyme solution. Removed to complete purification. If there is no fraction with a single band, collect active fractions with a strong AMDase band, and then anion exchange column chromatography using SuperQ-Toyopearl gel and hydrophobic column using Phenyl-Toyopearl gel. Chromatography was performed and purification was performed by SDS-PAGE until a single band was obtained.
  • the SuperQ-Toyopearl gel used 60 mL and was eluted with 360 mL linear NaCl concentration gradient from 0 mM to 200 mM. Phenyl-Toyopearl gel was eluted with 300 mL of 25% to 0% linear ammonium sulfate gradient using 50 mL.
  • the reaction time was adjusted so that the substrate conversion rate in a 20 mM reaction system was about 5%. This is because, with this reaction time, the substrate conversion rate is often less than 20% at all substrate concentrations.
  • ⁇ -methyl- ⁇ - Enzymatic reaction was carried out using phenylmalonic acid as a substrate.
  • quenching was performed using 20 mM 2-phenylacetic acid acetonitrile solution, and reverse phase HPLC analysis was performed. Analysis of K cat ⁇ K m was performed in the same manner as in the case of using phenylmalonic acid as a substrate.
  • 2-Phenylpropionic acid was quantified using a calibration curve prepared with phenylacetic acid and 2-phenylpropionic acid.
  • the product was quantified using a calibration curve prepared with the product and 2-naphthylacetic acid.
  • L-(+)-arabinose induces enzyme expression. Therefore, it is necessary to select E. coli that can take in L-(+)-arabinose and does not undergo metabolic degradation as a host. Therefore, E. coli top10 having genotypes of araBADC- and araEFGH + and recommended as a pBAD vector host was used as the host.
  • the precipitated cells were frozen by adding 100 ⁇ L of 10 mM Tris, 300 mM NaCl, 1 ⁇ g / mL DNase, 10 mg / mL Lysozyme, 10 ⁇ g / mL PMSF, and left at -80 ° C. for 30 min or longer. This was incubated at 37 ° C. for 3 hours and then centrifuged (860 g, 2000 rpm, 45 min). This supernatant was used as a cell-free extract. Since PMSF was decomposed in an aqueous solution, it was stored as a methanol solution and adjusted immediately before adding it to the cells.
  • E. coli in wells that were judged to have a fast BTB discoloration compared to the template mutant were inoculated from the above master plate and cultured in 3.5 mL of liquid LB (amp) medium (Round Bottom tube). Of these, 0.5 mL of the culture broth was mixed with an equal amount of 80% glycerol and stored as a glycerol stock at ⁇ 80 ° C. Plasmid extraction was performed from the remaining 3 mL. Subsequently, plasmid sequencing was performed to identify the mutant type.
  • the mutant expression host was pre-cultured overnight from the above glycerol stock, and 1 mL was inoculated into 100 mL of liquid LB (amp) medium. When this is cultured at 30 ° C. for about 2 to 4 hours and when the absorbance at 660 nm (OD660) reaches 0.5, 250 ⁇ L of 10% L-(+)-arabinose is added (final concentration: 0.025%), and further 14 Incubate for hours. The resulting culture was collected by centrifugation (12,000 g, 10 min) and stored frozen. AMDase was purified from the cells by the method described above. In consideration of enzyme inactivation, the activity of the mutant was evaluated within 2 weeks at the longest after purification.
  • AMDase was eluted by flowing 2.5 mL of pH 8.0, 25 mM Tris-HCl, 0.5 M NaCl, 60 mM imidazole buffer (hereinafter referred to as 60 mM imidazole buffer) 4 times.
  • the enzyme solution was concentrated and desalted using Amicon® Ultra-15® Centrifugal® Filter® Units. This is because imidazole may catalyze the decarboxylation or racemization of arylmalonic acid (as pointed out by co-researcher Robert), and imidazole has an absorbance of 280 nm, which adversely affects the determination of enzyme concentration. It is.
  • the column was filled with 45 mL of Ni Sepharose (trademark) High Performance (GE Healthcare) gel stored in 20% ethanol, and equilibrated by flowing 150 mL of distilled water and 150 mL of 10 mM imidazole buffer. To this, 35 mL of cell-free extract was poured, and AMDase was adsorbed on the gel. Subsequently, 450 mL of 10 mM imidazole buffer was flowed, and then eluted with 900 mL of a linear imidazole concentration gradient from 10 mM to 250 mM at an elution rate of 1.0 mL / min.
  • Ni Sepharose trademark
  • GE Healthcare High Performance
  • AMDase activity was identified by BTB assay.
  • AMDase generally eluted in a fraction of 95 to 120 mM imidazole.
  • the active fractions were collected and the enzyme solution was concentrated and desalted using Amicon® Ultra-15® Centrifugal® Filter® Units.
  • mutant type A mutant expression plasmid was prepared by the above-mentioned QuickChange protocol, and recombinant E. coli top10 was transformed. In addition, the heat shock method was used for transformation.
  • the grown colonies were singulated by streaking to another LB (amp) medium plate with a toothpick. Colonies on the toothpick were inoculated into 3.5 mL of liquid LB (amp) medium (Round Bottom tube) and cultured. A glycerol stock was prepared from 0.5 mL of the culture solution, and plasmid extraction was performed from the remaining 3 mL. Subsequently, the plasmid was sequenced to confirm that it was the intended mutant.
  • Table 11 shows the primers used for introducing these mutations.
  • the overlapping primer is only the S36N pair.
  • the reaction was stopped by adding 125 ⁇ L of 2M HCl to the reaction solution. To this was added 300 ⁇ L of diethyl ether, vortexed, centrifuged (13,000 rpm, 2 min), and the supernatant was collected. By repeating this operation three times, the product was extracted.
  • Example 2 Activity measurement when ⁇ -methyl- ⁇ -phenylmalonic acid was used as a substrate for mutant arylmalonate decarboxylase As shown in Example 1, G74C was tested against a substrate having a methyl group at the ⁇ -position. The / M159L / C188G mutant had the highest activity, but an attempt was made to create a more active mutant.
  • the mutant arylmalonate decarboxylase having amino acid mutations G74C / M159L / C188G, G74C / M159L / C188G / V156I and G74C / M159L / C188G / V156L was prepared by the method described in Example 1. Using ⁇ -methyl- ⁇ -phenylmalonic acid as a substrate, the enzyme activity was measured by the same method as 4 in Example 1.
  • Table 12 shows the results of activity measurement.
  • Km values indicating affinity with the enzyme were improved in the order of G74C / M159L / C188G mutant, G74C / M159L / C188G / V156I mutant, and G74C / M159L / C188G / V156L mutant. Also, the activity was improved. As a result, a mutant was obtained in which the relative activity was improved 2- to 3-fold over the G74C / M159L / C188G mutant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The purpose of the present invention is to provide a mutant arylmalonate decarboxylase of (S)-selective hyperactive form which is capable of producing (S)-α-arylpropionic acid with an optical purity of almost 100%e.e. from arylmalonic acid. The mutant arylmalonate decarboxylase of (S)-selective hyperactive form, which is capable of producing (S)-α-arylpropionic acid from arylmalonic acid, has mutation (i), mutations (i) and (ii), mutations (i) and (iii), or mutations (i), (ii) and (iii) in the amino acid sequence of wild-type arylmalonate decarboxylase that is represented by SEQ ID NO:2: (i) substitution of glycine at 74 position by cysteine, and substitution of cysteine at 188 position by glycine; (ii) substitution of tyrosine at 48 position by another amino acid; and (iii) substitution of methionine at 159 position by another amino acid.

Description

S体選択的高活性型変異型アリールマロン脱炭酸酵素S-selective highly active mutant arylmalon decarboxylase
 本発明は、S体選択的な高活性型変異型アリールマロン酸脱炭酸酵素に関し、該酵素はアリールマロン酸からS体のα-アリールプロピオン酸を生成する。 The present invention relates to a highly active mutant arylmalonate decarboxylase that is selective for S-form, which produces S-form α-arylpropionic acid from arylmalonate.
 アリールマロン酸脱炭酸酵素(AMDase、EC 4.1.1.76)は、アリールマロン酸の脱炭酸反応を触媒しR体のカルボン酸誘導体(α-アリールプロピオン酸誘導体:プロフェン類)を生成する酵素であり、Alcaligenes bronchisepticus KU1201株より単離された240アミノ酸(推定分子量24,734 Da)のモノマー酵素である(非特許文献1)。 Arylmalonate decarboxylase (AMDase, EC 4.1.1.76) is an enzyme that catalyzes the decarboxylation of arylmalonic acid to produce R-carboxylic acid derivatives (α-arylpropionic acid derivatives: profenes) It is a monomeric enzyme of 240 amino acids (estimated molecular weight 24,734 Da) isolated from Alcaligenes bronchisepticus KU1201 strain (Non-patent Document 1).
 野生型のアリールマロン酸が、R体のα-アリールプロピオン酸のみを生成するが、S体のα-アリールプロピオン酸及びその誘導体は、非ステロイド系抗炎症薬、液晶素材、殺虫剤、除草剤やその中間体として重要な化合物群である。 Wild type arylmalonic acid produces only R-form α-arylpropionic acid, but S-form α-arylpropionic acid and its derivatives are non-steroidal anti-inflammatory drugs, liquid crystal materials, insecticides, herbicides And an important group of compounds as intermediates thereof.
 アリールマロン酸脱炭酸酵素のアミノ酸配列において、74番目のグリシンをシステインに置換し、かつ188番目のシステインをセリンに置換した2重変異を導入した変異体(G74C/C188S)は、S体のα-アリールプロピオン酸を生成するようになることが報告されている。しかしながら、その変異体の活性は、野生型酵素の1万分の1程度と非常に低く、実用的ではなかった(非特許文献2及び3)。 In the amino acid sequence of arylmalonate decarboxylase, a mutant (G74C / C188S) introduced with a double mutation in which the 74th glycine is replaced with cysteine and the 188th cysteine is replaced with serine is an α-form α -It has been reported to become arylpropionic acid. However, the activity of the mutant was very low, about 1 / 10,000 of that of the wild-type enzyme, and was not practical (Non-patent Documents 2 and 3).
 さらに、上記2重変異体(G74C/C188S)に対してランダム変異導入を行い得られた3重変異体(S36N/G74C/C188S)は、上記2重変異体に対して約10倍高い活性を有していた。しかしながら、それでも野生型酵素に比較すると1%以下の活性を有しているに過ぎず、依然として実用的ではなかった(非特許文献4)。 Furthermore, the triple mutant (S36N / G74C / C188S) obtained by random mutagenesis to the double mutant (G74C / C188S) has about 10 times higher activity than the double mutant. Had. However, it still has an activity of 1% or less as compared with the wild-type enzyme, and is still not practical (Non-Patent Document 4).
 本発明は、変異型アリールマロン酸脱炭酸酵素であって、アリールマロン酸からほぼ100%e.e.の光学純度のS体のα-アリールプロピオン酸を高活性で生成する酵素、及び該酵素を用いたS体のα-アリールプロピオン酸を製造する方法の提供を目的とする。 The present invention is a mutant arylmalonic acid decarboxylase, which produces an S-form α-arylpropionic acid having an optical purity of almost 100% ee from arylmalonic acid with high activity, and the enzyme. It is an object of the present invention to provide a method for producing S-form α-arylpropionic acid.
 本発明者らはすでに、野生型のアリールマロン酸脱炭酸酵素(AMDase)にG74C/C188Sの変異を導入することにより、エナンチオ選択性の逆転に成功し基質であるアリールマロン酸誘導体よりS体のα-アリールプロピオン酸を生成させることに成功していた。しかしながら、その活性は野生型と比較して激減しており、工業利用するために充分な活性を有していなかった。 The present inventors have already succeeded in reversing enantioselectivity by introducing a mutation of G74C / C188S into wild-type arylmalonate decarboxylase (AMDase), and the S-form of the arylmalonate derivative, which is a substrate, has been successfully reversed. It has succeeded in producing α-arylpropionic acid. However, the activity is drastically reduced compared to the wild type, and the activity was not sufficient for industrial use.
 本発明者らは、Directed evolution(進化分子工学的手法)により、G74C/C188S変異型アリールマロン酸脱炭酸酵素の活性を向上させようと考えた。ここでいうDirected evolutionとは、(1)目的タンパク質の遺伝子に変異を導入したライブラリーを作成し、(2)このライブラリーから目的の性質を持つ変異体を選抜し、(3)選抜された変異体の遺伝子をシーケンシングし、さらに(4)選抜された変異体の遺伝子から再びライブラリーを作成する、というサイクルを繰り返すことで、あたかも生物の「進化」のように目的タンパク質に変異を繰り返し、最終的に望ましい性質を持ったタンパク質を得る、というタンパク質工学の手法のことである。 The present inventors thought to improve the activity of G74C / C188S mutant arylmalonate decarboxylase by directed evolution (evolutionary molecular engineering technique). Directed evolution here refers to (1) creating a library in which mutations are introduced into the gene of the target protein, (2) selecting mutants having the desired properties from this library, and (3) selecting By repeating the cycle of sequencing the mutant gene and (4) creating the library again from the selected mutant gene, it is possible to repeat the mutation in the target protein as if it were an “evolution” of an organism. It is a protein engineering technique to finally obtain a protein with desirable properties.
 本発明者らは、最初に野生型アリールマロン酸脱炭酸酵素及びS体選択的なG74C/C188S変異型アリールマロン酸脱炭酸酵素の立体構造をX線結晶構造解析により分析し、触媒活性に関与するアミノ酸残基を特定した。それらのアミノ酸を他のアミノ酸に置換した変異型アリールマロン酸脱炭酸酵素のライブラリーを構築し、Saturation Mutagenesisを行い、変異型酵素の活性を測定した。 The present inventors first analyzed the three-dimensional structure of wild-type arylmalonate decarboxylase and S-selective G74C / C188S mutant arylmalonate decarboxylase by X-ray crystal structure analysis, and participated in catalytic activity. The amino acid residues to be identified were identified. A library of mutant arylmalonate decarboxylase was constructed by substituting these amino acids with other amino acids, and Saturation Mutagenesis was performed to measure the activity of the mutant enzyme.
 その結果、G74C/M159L/C188G変異型アリールマロン酸脱炭酸酵素及びY48F/G74C/M159L/C188G変異型脱炭酸酵素が、S体選択的なエナンチオ選択性を有しつつ、G74C/C188S変異型アリールマロン酸脱炭酸酵素に比べ酵素活性が向上していることを見出し、本発明の変異型アリールマロン酸脱炭酸酵素を得た。 As a result, G74C / M159L / C188G mutant arylmalonate decarboxylase and Y48F / G74C / M159L / C188G mutant decarboxylase have an S-selective enantioselectivity, while G74C / C188S mutant arylcarbonate. It was found that the enzyme activity was improved as compared with malonate decarboxylase, and the mutant arylmalonate decarboxylase of the present invention was obtained.
 すなわち、本発明は以下の通りである。 That is, the present invention is as follows.
[1] アリールマロン酸からS体のα-アリールプロピオン酸を生成し得る、配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列において以下の(i)の変異、(i)及び(ii)の変異、(i)及び(iii)の変異、又は(i)、(ii)及び(iii)の変異を有する、S体選択的高活性型の変異型アリールマロン酸脱炭酸酵素:
(i) 第74番目のグリシンのシステインへの置換、及び第188番目のシステインのグリシンへの置換;
(ii) 第48番目のチロシンの他のアミノ酸への置換;
(iii) 第159番目のメチオニンの他のアミノ酸への置換。
[1] The following mutation (i) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 capable of generating S-form α-arylpropionic acid from arylmalonic acid, (i) And (ii) mutations, (i) and (iii) mutations, or (i), (ii) and (iii) mutations, and S-selective highly active mutant arylmalonate decarboxylase :
(i) substitution of the 74th glycine with cysteine and the substitution of the 188th cysteine with glycine;
(ii) substitution of the 48th tyrosine with another amino acid;
(iii) Replacement of the 159th methionine with another amino acid.
[2] 配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、かつ第188番目のシステインがグリシンに置換されているG74C/C188G変異型である、[1]の変異型アリールマロン酸脱炭酸酵素。 [2] G74C / C188G mutation in which the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine and the 188th cysteine is substituted with glycine The mutant arylmalonate decarboxylase of [1], which is a type.
[3] 配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されているG74C/M159L/C188G変異型である、[1]の変異型アリールマロン酸脱炭酸酵素。 [3] The 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is replaced with cysteine, the 159th methionine is replaced with leucine, and the 188th cysteine The mutant arylmalonate decarboxylase of [1], which is a G74C / M159L / C188G mutant in which is substituted with glycine.
[4] 配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第48番目のチロシンがフェニルアラニンに置換され、第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されているY48F/G74C/M159L/C188G変異型である、[1]の変異型アリールマロン酸脱炭酸酵素。 [4] The 48th tyrosine of the amino acid sequence of the wild type arylmalonate decarboxylase shown in SEQ ID NO: 2 is replaced with phenylalanine, the 74th glycine is replaced with cysteine, and the 159th methionine is replaced with The mutant arylmalonate decarboxylase according to [1], which is a Y48F / G74C / M159L / C188G mutant in which cysteine is substituted with leucine and 188th cysteine is substituted with glycine.
[5] 配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、かつ第188番目のシステインがセリンに置換されているG74C/C188S変異型酵素に比較して、酵素活性が向上している、[1]~[3]のいずれかの変異型アリールマロン酸脱炭酸酵素。 [5] G74C / C188S mutation in which the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine and the 188th cysteine is substituted with serine The mutant arylmalonate decarboxylase according to any one of [1] to [3], wherein the enzyme activity is improved as compared with the type enzyme.
[6] [1]~[5]のいずれかの変異型アリールマロン酸脱炭酸酵素をアリールマロン酸誘導体と接触させることを含む、S体のα-アリールプロピオン酸の製造方法。 [6] A method for producing S-form α-arylpropionic acid, which comprises contacting the mutant arylmalonic acid decarboxylase according to any one of [1] to [5] with an arylmalonic acid derivative.
[7] S体のα-アリールプロピオン酸がプロフェン類である、[6]の製造方法。 [7] The process according to [6], wherein the S-form α-arylpropionic acid is a prophene.
[8] S体のα-アリールプロピオン酸がイブプロフェン、ナプロキセン、フルルビプロフェン、フェノプロフェン、ケトプロフェン及びインドプロフェンからなる群から選択される、[7]の製造方法。 [8] The production method of [7], wherein the S-form α-arylpropionic acid is selected from the group consisting of ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen, and indoprofen.
[9] アリールマロン酸からS体のα-アリールプロピオン酸を生成し得る、配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列において以下の(i)及び(ii)の変異を有する、S体選択的高活性型の変異型アリールマロン酸脱炭酸酵素:
(i) 第74番目のグリシンのシステインへの置換、第159番目のメチオニンのシステインへの置換、及び第188番目のシステインのグリシンへの置換;
(iii) 第156番目のメチオニンのイソロイシン又はロイシンへの置換。
[9] The following mutations (i) and (ii) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 that can generate S-form α-arylpropionic acid from arylmalonic acid S-selective highly active mutant arylmalonate decarboxylase having:
(i) the replacement of the 74th glycine with cysteine, the replacement of the 159th methionine with cysteine, and the replacement of the 188th cysteine with glycine;
(iii) Replacement of the 156th methionine with isoleucine or leucine.
[10] [9]の変異型アリールマロン酸脱炭酸酵素をアリールマロン酸誘導体と接触させることを含む、S体のα-アリールプロピオン酸の製造方法。 [10] A process for producing S-form α-arylpropionic acid, which comprises contacting the mutant arylmalonic acid decarboxylase of [9] with an arylmalonic acid derivative.
[11] S体のα-アリールプロピオン酸がプロフェン類である、[10]の製造方法。 [11] The process according to [10], wherein the S-form α-arylpropionic acid is a prophene.
[12] S体のα-アリールプロピオン酸がイブプロフェン、ナプロキセン、フルルビプロフェン、フェノプロフェン、ケトプロフェン及びインドプロフェンからなる群から選択される、[11]の製造方法。 [12] The production method of [11], wherein the S-form α-arylpropionic acid is selected from the group consisting of ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen, and indoprofen.
 本明細書は本願の優先権の基礎である日本国特許出願2011-043085号の明細書及び/又は図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2011-043085 which is the basis of the priority of the present application.
 本発明のS体選択的高活性型の変異型アリールマロン酸脱炭酸酵素により、アリールマロン酸誘導体の脱炭酸によりS体のα-アリールプロピオン酸をほぼ100%e.e.の高い光学純度で得ることができる。S体のα-アリールプロピオン酸(S型プロフェン)は非ステロイド系抗炎症剤(NSAID)等として利用することができる。 The S-form selective highly active mutant arylmalonic acid decarboxylase of the present invention can obtain S-form α-arylpropionic acid with high optical purity of almost 100% ee by decarboxylation of arylmalonic acid derivatives. it can. S-form α-arylpropionic acid (S-type profen) can be used as a non-steroidal anti-inflammatory agent (NSAID) or the like.
イブプロフェン、ナプロキセン、フルルビプロフェン、フェノプロフェン、ケトプロフェン、インドプロフェンの構造式を示す図である。It is a figure which shows the structural formula of ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen, and indoprofen. 進化分子工学的手法(direct evolution)により、G74C/C188S変異型アリールマロン酸脱炭酸酵素の活性を向上させるためのスキームを示す図である。It is a figure which shows the scheme for improving the activity of G74C / C188S mutant type arylmalonate decarboxylase by the evolution molecular engineering method (direct evolution).
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のS体選択的高活性型の変異型アリールマロン酸脱炭酸酵素は、配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列において以下の(i)の変異、(i)及び(ii)の変異、(i)及び(iii)の変異、又は(i)、(ii)及び(iii)の変異を有する:
(i) 第74番目のグリシンのシステインへの置換、及び第188番目のシステインのグリシンへの置換;
(ii) 第48番目のチロシンの他のアミノ酸への置換;
(iii) 第159番目のメチオニンの他のアミノ酸への置換。
The S-form selective highly active mutant arylmalonate decarboxylase of the present invention has the following mutation (i) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2, ) And (ii) mutations, (i) and (iii) mutations, or (i), (ii) and (iii) mutations:
(i) substitution of the 74th glycine with cysteine and the substitution of the 188th cysteine with glycine;
(ii) substitution of the 48th tyrosine with another amino acid;
(iii) Replacement of the 159th methionine with another amino acid.
 (i)の変異により野生型のアリールマロン酸脱炭酸酵素の立体選択性が逆転し、アリールマロン酸誘導体から、S体のα-アリールプロピオン酸を生成するようになる。しかしながら、(i)の変異により、酵素活性は野生型酵素に比べて低下する。(ii)又は(iii)の変異により、低下した活性が向上する。 (1) Mutation of (i) reverses the stereoselectivity of wild-type arylmalonic acid decarboxylase, and produces S-form α-arylpropionic acid from arylmalonic acid derivatives. However, due to the mutation (i), the enzyme activity is reduced compared to the wild-type enzyme. The decreased activity is improved by the mutation of (ii) or (iii).
 他のアミノ酸は、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、リジン及びバリンから野生型酵素のアミノ酸を除いた19種類のアミノ酸から選択される。 Other amino acids are alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, lysine and valine. It is selected from 19 types of amino acids excluding amino acids.
 上記変異中、第48番目のチロシンは好ましくはフェニルアラニンに置換され、第159番目のメチオニンは好ましくはロイシンに置換されている。 In the above mutation, the 48th tyrosine is preferably substituted with phenylalanine, and the 159th methionine is preferably substituted with leucine.
 本発明の変異型アリールマロン酸脱炭酸酵素は、好ましくは配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されている変異体である。さらに、本発明の変異型アリールマロン酸脱炭酸酵素は、好ましくは配列番号2に示される野生型のアリールマロン酸のアミノ酸配列の第48番目のチロシンがフェニルアラニンに置換され、第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されている変異体である。本発明において、例えば、第74番目のグリシンのシステインへの変異をG74Cと表し、酵素の変異体を示すときは、G74C変異型酵素という。この表し方によると、上記の変異型アリールマロン酸脱炭酸酵素は、それぞれG74C/M159L/C188G変異型酵素、及びY48F/G74C/M159L/C188G変異型酵素という。 In the mutant arylmalonate decarboxylase of the present invention, preferably, the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine, and the 159th methionine Is a mutant in which is substituted with leucine and the 188th cysteine is substituted with glycine. Furthermore, in the mutant arylmalonate decarboxylase of the present invention, preferably, the 48th tyrosine of the amino acid sequence of the wild-type arylmalonate shown in SEQ ID NO: 2 is substituted with phenylalanine, and the 74th glycine is substituted. It is a mutant in which cysteine is substituted, 159th methionine is substituted with leucine, and 188th cysteine is substituted with glycine. In the present invention, for example, the 74th glycine to cysteine mutation is referred to as G74C, and an enzyme mutant is referred to as a G74C mutant enzyme. According to this expression, the above-mentioned mutant arylmalonate decarboxylase is referred to as G74C / M159L / C188G mutant enzyme and Y48F / G74C / M159L / C188G mutant enzyme, respectively.
 さらに、本発明の変異型アリールマロン酸脱炭酸酵素は、好ましくは配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、第188番目のシステインがグリシンに置換され、かつ第156番目のバリンがイソロイシンに置換されている変異体(G74C/M159L/C188G/V156I)である。さらに、本発明の変異型アリールマロン酸脱炭酸酵素は、好ましくは配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、第188番目のシステインがグリシンに置換され、かつ第156番目のバリンがロイシンに置換されている変異体(G74C/M159L/C188G/V156L)である。 Furthermore, in the mutant arylmalonate decarboxylase of the present invention, the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is preferably replaced with cysteine, In which methionine is replaced with leucine, 188th cysteine is replaced with glycine, and 156th valine is replaced with isoleucine (G74C / M159L / C188G / V156I). Furthermore, in the mutant arylmalonate decarboxylase of the present invention, the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is preferably replaced with cysteine, In which methionine is substituted with leucine, 188th cysteine is substituted with glycine, and 156th valine is substituted with leucine (G74C / M159L / C188G / V156L).
 本発明の変異型アリールマロン酸脱炭酸酵素は、アリールマロン酸に作用し、α位の立体配置がSであるS体のα-アリールプロピオン酸(プロフェン)を生成する。すなわち、野生型アリールマロン酸脱炭酸酵素の有する立体選択性とは逆の立体選択性を有し、エナンチオ選択性がS体である。アリールマロン酸に作用し、S体のα-アリールプロピオン酸(プロフェン)を生成する変異型アリールマロン酸脱炭酸酵素として、従来より、第74番目のグリシンがシステインに置換され、第188番目のシステインがセリンに置換されたG74C/C188S変異型アリールマロン酸脱炭酸酵素が知られていた(Terao et al., J Mol Catat B: Enzym, 2007, 15-20)。本発明の変異型アリールマロン酸脱炭酸酵素は、G74C/C188S変異型アリールマロン酸脱炭酸酵素よりも向上した酵素活性を有する。以下に記載の酵素活性測定法で測定したときの発明の変異型アリールマロン酸脱炭酸酵素活性は、G74C/C188S変異型アリールマロン酸脱炭酸酵素の5倍以上、好ましくは10倍以上、さらに好ましくは50倍以上、さらに好ましくは100倍以上、特に好ましくは150倍以上である。好ましくは、本発明のG74C/C188G変異型アリールマロン酸脱炭酸酵素の酵素活性はG74C/C188G変異型アリールマロン酸脱炭酸酵素の約5倍以上高く、本発明のG74C/M159L/C188G変異型アリールマロン酸脱炭酸酵素の酵素活性はG74C/C188G変異型アリールマロン酸脱炭酸酵素の約200倍以上高く、本発明のY48F/G74C/M159L/C188G変異型アリールマロン酸脱炭酸酵素の酵素活性はG74C/C188G変異型アリールマロン酸脱炭酸酵素の約920倍高い。 The mutant arylmalonic acid decarboxylase of the present invention acts on arylmalonic acid to produce S-form α-arylpropionic acid (profen) having S configuration at the α-position. That is, it has a stereoselectivity opposite to that of the wild type arylmalonate decarboxylase, and the enantioselectivity is S-form. As a mutant arylmalonic acid decarboxylase that acts on arylmalonic acid to produce S-form α-arylpropionic acid (profen), the 74th glycine has been replaced with cysteine, and the 188th cysteine has been substituted. G74C / C188S mutant arylmalonate decarboxylase in which is substituted with serine was known (Terao et al., J Mol Catat B: Enzym, 2007, 15-20). The mutant arylmalonate decarboxylase of the present invention has an enzyme activity improved over that of the G74C / C188S mutant arylmalonate decarboxylase. The mutant arylmalonate decarboxylase activity of the invention as measured by the enzyme activity measurement method described below is 5 times or more, preferably 10 times or more, more preferably that of G74C / C188S mutant arylmalonate decarboxylase. Is 50 times or more, more preferably 100 times or more, and particularly preferably 150 times or more. Preferably, the enzyme activity of the G74C / C188G mutant arylmalonate decarboxylase of the present invention is about 5 times higher than that of the G74C / C188G mutant arylmalonate decarboxylase, and the G74C / M159L / C188G mutant aryl of the present invention The enzyme activity of malonate decarboxylase is about 200 times higher than that of G74C / C188G mutant arylmalonate decarboxylase, and the enzyme activity of Y48F / G74C / M159L / C188G mutant arylmalonate decarboxylase of the present invention is G74C. About 920 times higher than / C188G mutant arylmalonate decarboxylase.
 また、本発明のG74C/M159L/C188G/V156I変異型アリールマロン酸脱炭酸酵素の基質としてα-メチル-α-フェニルマロン酸を用いた場合の酵素活性はG74C/M159L/C188G変異型アリールマロン酸脱炭酸酵素の約2倍以上高く、本発明のG74C/M159L/C188G/V156L変異型アリールマロン酸脱炭酸酵素の基質としてα-メチル-α-フェニルマロン酸を用いた場合の酵素活性はG74C/M159L/C188G変異型アリールマロン酸脱炭酸酵素の約3倍以上高い。 In addition, when α-methyl-α-phenylmalonic acid is used as a substrate of the G74C / M159L / C188G / V156I mutant arylmalonate decarboxylase of the present invention, the enzyme activity is G74C / M159L / C188G mutant arylmalonic acid The enzyme activity when using α-methyl-α-phenylmalonic acid as a substrate of the G74C / M159L / C188G / V156L mutant arylmalonate decarboxylase of the present invention is about 2 times higher than that of decarboxylase. About three times higher than M159L / C188G mutant arylmalonate decarboxylase.
 アリールマロン酸脱炭酸酵素の比活性は、例えば以下の方法で測定することができる。すなわち、pH7~8、数十から数百mMのフェニルマロン酸誘導体水溶液を50μL、1M Tris-HCl pH緩衝液を50μL、超純水350μLを混ぜ、30℃で10分以上インキュベートする。これにアリールマロン酸脱炭酸酵素溶液50μLを加え、混合する。反応時間は、基質の変換率が10%以内になるように調節する。これは、酵素反応速度は基質の濃度によって変化するからである。反応終了後逆相HPLC分析する。同様に同じ条件で、酵素溶液の代わりに10mM Tris緩衝液を添加した系において、逆相HPLC分析し、この測定結果をブランクとして、酵素溶液のデータから差し引いた値から、比活性を計算すればよい。 The specific activity of arylmalonate decarboxylase can be measured, for example, by the following method. That is, 50 μL of an aqueous phenylmalonic acid derivative solution of pH 7 to 8, several tens to several hundreds of mM, 50 μL of 1 M Tris-HCl pH buffer, and 350 μL of ultrapure water are mixed and incubated at 30 ° C. for 10 minutes or more. To this, add 50 μL of arylmalonate decarboxylase solution and mix. The reaction time is adjusted so that the conversion rate of the substrate is within 10%. This is because the enzyme reaction rate varies depending on the concentration of the substrate. After the reaction is completed, reverse phase HPLC analysis is performed. Similarly, under the same conditions, reverse phase HPLC analysis was performed in a system where 10 mM Tris buffer was added instead of the enzyme solution, and the specific activity was calculated from the value subtracted from the enzyme solution data using this measurement result as a blank. Good.
 また、アリールマロン酸脱炭酸酵素のKcat・Kmは、例えば以下の方法で測定することができる。すなわち、基質の終濃度を40、20、10、5、2.5、1.25、0.625mMとした反応系で比活性を測定する。比活性の測定結果をプロットとして、「1/[S]-1/v plot」(Lineweaver-Burk plot)を引き、kcatとKmを決定することができる。 In addition, K cat · K m of arylmalonate decarboxylase can be measured, for example, by the following method. That is, the specific activity is measured in a reaction system in which the final concentration of the substrate is 40, 20, 10, 5, 2.5, 1.25, 0.625 mM. Using the measurement result of specific activity as a plot, “ cat [ K] and K m can be determined by subtracting“ 1 / [S] -1 / v plot ”(Lineweaver-Burk plot).
 本発明の変異型酵素が基質とする化合物はアリールマロン酸誘導体であり、好ましくはα位にメチル基を有するα-アリール-α-メチル-マロン酸誘導体である。例えば、α-メチル-α-フェニルマロニン酸が挙げられる。変異型酵素はこれらのアリールマロン酸誘導体に作用してS体のα-アリールプロピオン酸を生成する。 The compound used as a substrate by the mutant enzyme of the present invention is an arylmalonic acid derivative, preferably an α-aryl-α-methyl-malonic acid derivative having a methyl group at the α-position. For example, α-methyl-α-phenylmalonic acid can be mentioned. The mutant enzyme acts on these arylmalonic acid derivatives to produce S-form α-arylpropionic acid.
 アリールマロン酸は下記の一般式(I)で表わされ、本発明の変異型アリールマロン酸脱炭酸酵素により下記の一般式(II)で表わされるα-アリールプロピオン酸が生成する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
The arylmalonic acid is represented by the following general formula (I), and α-arylpropionic acid represented by the following general formula (II) is produced by the mutant arylmalonic acid decarboxylase of the present invention.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、H、CH3、F、OH、NH2からなる群から選択され、Arは、無置換又は任意の置換基で置換されているアリール基を示す。置換基として、C1~C6のアルキル基、C1~C6のアルコキシ基、ハロゲン原子、ニトロ基、シアノ基、アミノ基、C1~C6のアルコキシカルボニル基、フェニル気、ヒドロキシ基等が挙げられ、アリール基として、フェニル基、α-ナフチル基、β-ナフチル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基等が挙げられる。 In the formula, R is selected from the group consisting of H, CH 3 , F, OH, and NH 2 , and Ar represents an aryl group that is unsubstituted or substituted with any substituent. Substituents include C1-C6 alkyl groups, C1-C6 alkoxy groups, halogen atoms, nitro groups, cyano groups, amino groups, C1-C6 alkoxycarbonyl groups, phenyl groups, hydroxy groups, etc., aryl groups And phenyl group, α-naphthyl group, β-naphthyl group, 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group and the like.
 本発明の変異型アリールマロン酸脱炭酸酵素を用いて製造されるS体のα-アリールプロピオン酸の光学純度は(鏡像体過剰率)は、99%e.e.以上、好ましくは99.5%e.e.以上、さらに好ましくは99.7%e.e.以上である。 The optical purity (enantiomeric excess) of S-form α-arylpropionic acid produced using the mutant arylmalonate decarboxylase of the present invention is 99% ee or higher, preferably 99.5% ee or higher, Preferably it is 99.7% ee or more.
 鏡像体過剰率は、例えば以下の方法で測定することができる。すなわち、約50μmolの基質を1.5mLチューブに移し、500μLの超純水に溶解し、2M NaOH超純水と2M HCl超純水を用いてpH8に合わせた。これを1mLにメスアップした後、1M Tris-HCl pH緩衝液を250μL加えてvortexした。この溶液を125μLずつ分注し、0~100μLの超純水と25~125μLの酵素液を加えて、30℃で1週間程度反応させることで、基質を全て反応させる。この反応液に2M HClを125μL加えて反応を停止し、これにジエチルエーテルを300μL加えてvortexし、遠心分離(13,000rpm, 2min)した後上清を採取した。この操作を3回繰り返すことで、生成物を抽出する。得られる生成物を、TMSジアゾメタンを少量加えることでメチル化し、ジエチルエーテルを揮発させて、500μLのジエチルエーテル:イソプロパノール=1:1溶液に溶解し、順層HPLC分析を行う。生成物の鏡像異性体のピーク面積から、鏡像体過剰率を測定すればよい。 The enantiomeric excess can be measured, for example, by the following method. That is, about 50 μmol of the substrate was transferred to a 1.5 mL tube, dissolved in 500 μL of ultrapure water, and adjusted to pH 8 using 2M NaOH ultrapure water and 2M HCl ultrapure water. This was made up to 1 mL and vortexed by adding 250 μL of 1 M Tris-HCl pH buffer. Dispense 125 μL each of this solution, add 0 to 100 μL of ultrapure water and 25 to 125 μL of enzyme solution, and react at 30 ° C. for about one week to react all of the substrate. The reaction was stopped by adding 125 μL of 2M HCl to this reaction solution, and 300 μL of diethyl ether was added thereto, vortexed, centrifuged (13,000 rpm, 2 min), and the supernatant was collected. The product is extracted by repeating this operation three times. The resulting product is methylated by adding a small amount of TMS diazomethane, the diethyl ether is volatilized, dissolved in 500 μL of diethyl ether: isopropanol = 1: 1 solution and subjected to normal layer HPLC analysis. The enantiomeric excess may be measured from the peak area of the enantiomer of the product.
 本発明の変異型アリールマロン酸脱炭酸酵素は、上記の変異を有し、上記第48番目、第74番目、第159番目及び第188番目のアミノ酸以外の位置で、さらに1又は数個(例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1個)のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、アリールマロン酸誘導体の脱炭酸を触媒し、S体のα-アリールプロピオン酸を生成し、G74C/C188G変異型アリールマロン酸脱炭酸酵素よりも上昇した酵素活性を有する変異型アリールマロン酸脱炭酸酵素を包含する。さらに、上記の変異型アリールマロン酸脱炭酸酵素のアミノ酸配列に対して、上記の第48番目、第74番目、第159番目及び第188番目のアミノ酸置換を維持し、90%以上、さらに好ましくは95%以上、特に好ましくは97%以上のアミノ酸同一性を有するアミノ酸配列からなり、アリールマロン酸誘導体の脱炭酸を触媒し、S体のα-アリールプロピオン酸を生成し、G74C/C188G変異型アリールマロン酸脱炭酸酵素よりも上昇した酵素活性を有する変異型アリールマロン酸脱炭酸酵素を包含する。 The mutant arylmalonate decarboxylase of the present invention has the mutation described above, and one or several more (for example, at positions other than the 48th, 74th, 159th and 188th amino acids) (1-10, preferably 1-5, more preferably 1-3, particularly preferably 1) amino acid sequence having a deleted, substituted or added amino acid, and decarboxylation of the arylmalonic acid derivative. It includes a mutant arylmalonate decarboxylase that catalyzes to produce S-form α-arylpropionic acid and has an enzyme activity that is higher than that of G74C / C188G mutant arylmalonate decarboxylase. Further, with respect to the amino acid sequence of the above-mentioned mutant arylmalonate decarboxylase, the amino acid substitutions at the 48th, 74th, 159th and 188th positions are maintained, 90% or more, more preferably 95% or more, particularly preferably 97% or more amino acid sequence having amino acid identity, catalyzing the decarboxylation of arylmalonic acid derivatives to produce S-α-arylpropionic acid, G74C / C188G mutant aryl It includes a mutant arylmalonate decarboxylase having an enzyme activity that is higher than that of malonate decarboxylase.
 配列番号2に示されるアミノ酸配列からなる酵素は、Alcaligenes bronchisepticus KU1201株(微工研菌寄第11670号)より単離されたアリールマロン酸脱炭酸酵素である。また、配列番号1に該酵素をコードするDNAの塩基配列を示す。上記微生物からアリールマロン酸脱炭酸酵素をコードするDNAを単離し、部位特異的突然変異誘発法等によって上記の変異を導入することによって、本発明の変異型アリールマロン酸脱炭酸酵素をコードするDNAを得ることができる。本発明の変異型アリールマロン酸脱炭酸酵素をコードするDNAを適当な発現ベクターに挿入し、該ベクターを宿主に導入し、該DNAを含む形質転換体を作製し、該形質転換体を培養することにより、宿主細胞や培養液等の培養物から本発明の変異型アリールマロン酸脱炭酸酵素を公知の手法で精製すればよい。 The enzyme consisting of the amino acid sequence shown in SEQ ID NO: 2 is an arylmalonate decarboxylase isolated from Alcaligenes® bronchisepticus® KU1201 strain (Mikukenken no. 11670). SEQ ID NO: 1 shows the base sequence of the DNA encoding the enzyme. DNA encoding arylmalonate decarboxylase of the present invention is isolated by isolating DNA encoding arylmalonate decarboxylase from the microorganism and introducing the above mutation by site-directed mutagenesis or the like Can be obtained. A DNA encoding the mutant arylmalonate decarboxylase of the present invention is inserted into an appropriate expression vector, the vector is introduced into a host, a transformant containing the DNA is produced, and the transformant is cultured. Thus, the mutant arylmalonate decarboxylase of the present invention may be purified from a culture such as a host cell or a culture solution by a known method.
 この際、ベクターとしては、大腸菌由来のプラスミド(例えばpBR322、pBR325、pUC118、pUC119、pUC18、pUC19、pBluescript等)、枯草菌由来のプラスミド(例えばpUB110、pTP5等)、酵母由来のプラスミド(例えばYEp13等のYEp系、YCp50等のYCp系等)等を用いることができ、またλファージ等のファージDNAを用いることもできる。さらに、レトロウイルス又はワクシニアウイルス等の動物ウイルスやバキュロウイルス等の昆虫ウイルスベクターを用いることもできる。 At this time, examples of the vector include plasmids derived from E. coli (eg, pBR322, pBR325, pUC118, pUC119, pUC18, pUC19, pBluescript, etc.), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, etc.), yeast-derived plasmids (eg, YEp13, etc.) YEp system, YCp system such as YCp50), etc., and phage DNA such as λ phage can also be used. Furthermore, animal viruses such as retrovirus or vaccinia virus and insect virus vectors such as baculovirus can also be used.
 宿主としては、大腸菌、枯草菌等の細菌、酵母等の真菌類、サル細胞COS-7、Vero、チャイニーズハムスター卵巣細胞(CHO細胞)等の動物細胞、Sf9細胞等の昆虫細胞を用いることができる。 As the host, bacteria such as Escherichia coli and Bacillus subtilis, fungi such as yeast, animal cells such as monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells), and insect cells such as Sf9 cells can be used. .
 DNAを挿入したベクターの宿主細胞への導入はエレクトロポレーション法、リン酸カルシウム法、リポフェクション法、スフェロプラスト法、酢酸リチウム法等により行うことができる。 Introduction of the vector into which the DNA has been inserted into the host cell can be carried out by electroporation, calcium phosphate, lipofection, spheroplast, lithium acetate, or the like.
 宿主細胞や培養液等の培養物からの本発明の変異型アリールマロン酸脱炭酸酵素の精製は、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等の公知のタンパク質精製法を適宜組み合わせて行うことができる。 Purification of the mutant arylmalonate decarboxylase of the present invention from a culture such as a host cell or a culture solution is performed by appropriately combining known protein purification methods such as gel filtration chromatography, ion exchange chromatography, affinity chromatography and the like. It can be carried out.
 本発明は、上記の変異型アリールマロン酸脱炭酸酵素を用いて、アリールマロン酸からS体のα-アリールプロピオン酸を製造する方法を包含する。原料となるアリールマロン酸はα-アリール-α-メチルマロン酸誘導体であり、マロン酸から公知の方法によりメチル基とアリール基を付加することにより得ることができる。また、ラセミ体のα-アリールプロピオン酸に炭酸付加することによっても得られる。 The present invention includes a method for producing S-form α-arylpropionic acid from arylmalonic acid using the above-mentioned mutant arylmalonic acid decarboxylase. The starting arylmalonic acid is an α-aryl-α-methylmalonic acid derivative, which can be obtained from malonic acid by adding a methyl group and an aryl group by a known method. It can also be obtained by carbonating a racemic α-arylpropionic acid.
 アリールマロン酸を本発明の変異型アリールマロン酸脱炭酸酵素と混合し接触させ酵素反応を行わせることにより、S体のα-アリールプロピオン酸を得ることができる。この際の反応条件は、pH7~9、4~50℃で、原料となるアリールマロン酸と変異型アリールマロン酸脱炭酸酵素の量によるが数分~数十時間である。原料となるアリールマロン酸と混合する酵素の量は限定されないが、例えば、アリールマロン酸10mMに対して変異型アリールマロン酸脱炭酸酵素を1~1000U混合すればよい。 The S-form α-arylpropionic acid can be obtained by mixing the arylmalonic acid with the mutant arylmalonic acid decarboxylase of the present invention and bringing it into contact. The reaction conditions in this case are pH 7 to 9, 4 to 50 ° C., and several minutes to several tens of hours depending on the amounts of arylmalonic acid and mutant arylmalonic acid decarboxylase as raw materials. The amount of the enzyme to be mixed with the raw material arylmalonic acid is not limited. For example, 1 to 1000 U of the mutant arylmalonic acid decarboxylase may be mixed with 10 mM of arylmalonic acid.
 本発明の変異型アリールマロン酸脱炭酸酵素により、得られるS体のα-アリールプロピオン酸は医薬、液晶原料、農薬等、あるいはその中間体として有用である。特に、非ステロイド性抗炎症薬(Nonsteroidal anti-inflammatory drug (NSAID))として有用である。これらのα-アリールプロピオン酸はプロフェン類と呼ばれる。 The S-form α-arylpropionic acid obtained by the mutant arylmalonic acid decarboxylase of the present invention is useful as a pharmaceutical, a liquid crystal raw material, an agrochemical, etc., or an intermediate thereof. In particular, it is useful as a nonsteroidal anti-inflammatory drug (NSAID). These α-arylpropionic acids are called profenes.
 例えば、以下のアリールマロン酸から以下のα-アリールプロピオン酸が生成する。 For example, the following α-arylpropionic acid is produced from the following arylmalonic acid.
 α-(p-イソブチルフェニル)-α-メチルマロン酸から、(S)-α-(p-イソブチルフェニル)プロピオン酸(イブプロフェン)が生成し、α-(6-メトキシ-2-ナフチル)-α-メチルマロン酸から(S)-α-(6-メトキシ-2-ナフチル)プロピオン酸(ナプロキセン)が生成し、α-(2-フルオロビフェニル-4-イル)-α-メチルマロン酸から(S)-α-(2-フルオロビフェニル-4-イル)プロピオン酸(フルルビプロフェン)が生成し、α-(3-フェノキシフェニル)-α-メチルマロン酸から(S)-α-(3-フェノキシフェニル)プロピオン酸(フェノプロフェン)が生成し、α-(3-ベンゾイルフェニル)-α-メチルマロン酸から(S)-α-(3-ベンゾイルフェニル)プロピオン酸(ケトプロフェン)が生成し、α-{4-[(2-オキソシクロペンチル)メチル]フェニル}-α-メチルマロン酸から(S)-α-{4-[(2-オキソシクロペンチル)メチル]フェニル}プロピオン酸(ロキソプロフェン)が生成し、α-[4-(1-オキソ-2-イソインドリニル)フェニル]-α-メチルマロン酸から((S)-α-[4-(1-オキソ-2-イソインドリニル)フェニル]プロピオン酸(インドプロフェン)が生成する。上記のイブプロフェンibuprofen)、ナプロキセン(naproxen)、フルルビプロフェン(flurbiprofen)、フェノプロフェン(fenoprofen)、ケトプロフェン(ketoprofen)、インドプロフェン(indoprofen)の構造式を図1に示す。 (S) -α- (p-isobutylphenyl) propionic acid (ibuprofen) is formed from α- (p-isobutylphenyl) -α-methylmalonic acid, and α- (6-methoxy-2-naphthyl) -α (S) -α- (6-Methoxy-2-naphthyl) propionic acid (naproxen) is formed from -methylmalonic acid, and (S) -α- (6-fluorobiphenyl-4-yl) -α-methylmalonic acid produces (S ) -α- (2-Fluorobiphenyl-4-yl) propionic acid (flurbiprofen) is produced from α- (3-phenoxyphenyl) -α-methylmalonic acid to (S) -α- (3- Phenoxyphenyl) propionic acid (phenoprofen) is produced, and (S) -α- (3-benzoylphenyl) propionic acid (ketoprofen) is produced from α- (3-benzoylphenyl) -α-methylmalonic acid, α- {4-[(2-oxocyclopentyl) methyl] phenyl} -α-methylmalonic acid to (S) -α- {4-[(2-oxocyclopentyl) methyl ] Phenyl} propionic acid (loxoprofen) is produced from α- [4- (1-oxo-2-isoindolinyl) phenyl] -α-methylmalonic acid ((S) -α- [4- (1-oxo- 2-isoindolinyl) phenyl] propionic acid (indoprofen) is produced, as described above for ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen, indopro The structural formula of fen (indoprofen) is shown in FIG.
 さらに、本発明の変異型アリールマロン酸脱炭酸酵素により、オキサプロフェン、ザルトプロフェン、アルミノプロフェン、ベノキサプロフェン、ベルモプロフェン、カルプロフェン、シクロプロフェン、フルノキサプロフェン、ミクロプロフェン、ピルプロフェン、プラノプロフェン、スプロフェン、キシモプロフェン等のS体のプロフェン類を製造することができる。 Furthermore, the mutated arylmalonate decarboxylase of the present invention allows oxaprofen, zaltoprofen, aluminoprofen, beoxaprofen, vermoprofen, carprofen, cycloprofen, flunoxaprofen, microprofen, and pyrprofen. , Pranoprofen, suprofen, ximoprofen and the like can be produced.
 生成したS体のα-アリールプロピオン酸は、公知のクロマトグラフィー等の手法により精製し、医薬品、農薬、液晶材料あるいはその原料として用いることができる。 The produced S-form α-arylpropionic acid can be purified by a known method such as chromatography and used as a pharmaceutical, an agricultural chemical, a liquid crystal material, or a raw material thereof.
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.
実施例1 変異型アリールマロン酸脱炭酸酵素の作製及び活性測定
 Directed evolution(進化分子工学的手法)により、既に報告されている、アリールマロン酸変異体(G74C/C188S)の活性を向上させることを試みた。
Example 1 Production of mutant arylmalonate decarboxylase and measurement of activity By direct evolution (evolutionary molecular engineering technique), the activity of an arylmalonate mutant (G74C / C188S) already reported has been improved. Tried.
 最初に、X線結晶構造解析から得られた構造情報等を用いて酵素の触媒反応について解析したところ、アリールマロン酸脱炭酸酵素の触媒反応について以下のことがわかった。 First, when the catalytic reaction of the enzyme was analyzed using the structural information obtained from the X-ray crystal structure analysis, the following was found about the catalytic reaction of the arylmalonate decarboxylase.
(1)Ser188とCys74側鎖が、生成物のα炭素を挟んで向かい合うように位置している。この構造より、生成物中間体のプロキラル面を挟むように、188番目と74番目の残基が位置している、というエナンチオ選択性が発現される。 (1) Ser188 and Cys74 side chains are positioned to face each other across the α-carbon of the product. From this structure, the enantioselectivity is expressed that the 188th and 74th residues are located so as to sandwich the prochiral plane of the product intermediate.
(2)Cys74とSer188が、直接基質と相互作用することによって、脱炭酸活性に不利な影響を及ぼす。 (2) Cys74 and Ser188 adversely affect decarboxylation activity by directly interacting with the substrate.
(3)基質が活性部位に結合すると、pro-Sのcarboxylateが側鎖の水酸基や主鎖のアミドとの水素結合によって安定化される一方、pro-Rのcarboxylateが疎水的環境で不安定化される。その結果、pro-Rのcarboxylateが脱離し、エノラート中間体が生成する。最後に中間体に対して188番目又は74番目のシステインがエナンチオ面選択的なプロトン付加を行い、生成物ができる。 (3) When the substrate binds to the active site, the pro-S carboxylate is stabilized by hydrogen bonding with the side chain hydroxyl group or main chain amide, while the pro-R carboxylate is destabilized in a hydrophobic environment. Is done. As a result, the carboxylate of pro-R is eliminated and an enolate intermediate is formed. Finally, the 188th or 74th cysteine with respect to the intermediate undergoes enantioselective protonation to produce a product.
(4)野生型もG74C/C188S変異型も、1段階目が律速になっている。 (4) Both the wild type and G74C / C188S mutants are rate-limiting at the first stage.
 上記の結果より、G74C/C188S変異が、1段階目のpro-R carboxylateの脱離反応に不利な影響を及ぼし、活性が低下したことが示唆された。 From the above results, it was suggested that the G74C / C188S mutation had an adverse effect on the first-stage pro-R carboxylate elimination reaction and the activity decreased.
 そこで、まず、1st screeningとして、188番目に対するsaturation mutagenesisを行うこととした。saturation mutagenesisとは、あるアミノ酸残基に対して19種類全ての天然アミノ酸残基に置換した変異型ライブラリーを構築することをいう。 Therefore, first, as the 1st screening, we decided to perform the saturation mutagenesis for the 188th. Saturation mutagenesis refers to the construction of a mutant library in which all 19 kinds of natural amino acid residues are substituted for a certain amino acid residue.
 一方、G74Cの変異はエナンチオ選択性の発現に必要不可欠であるため、変異導入はできない。そこで2nd screeningでは、他の残基に変異導入することにより、活性向上を試みることとした。 On the other hand, mutation of G74C is indispensable for the expression of enantioselectivity, so that mutation cannot be introduced. Therefore, in 2nd screening, we tried to improve the activity by introducing mutations into other residues.
 74番目・188番目以外の変異については、hydrophobic pocket(疎水性ポケット)を構成する残基やその近傍に変異を導入することで、「pro-R carboxylateの不安定化」を促進することを試みることとした。 For mutations other than the 74th and 188th mutations, we try to promote “destabilization of pro-R carboxylate” by introducing mutations in the residues constituting the hydrophobic pocket (hydrophobic pocket) and its vicinity. It was decided.
 PDB-CODE:3DG9(野生型)・3IP8(野生型)・3IXL(G74C/C188S変異型)・3IXM(G74C変異型)の4つの結晶構造を元に、分子モデリングを行い、疎水性ポケットを構成する残基を特定し、Pro14, Leu40, Val43, Tyr48, Leu77, Val156, Met159が、pro-R carboxylateの近傍に位置していることを確認した。 PDB-CODE: Molecular modeling based on the four crystal structures of 3DG9 (wild type), 3IP8 (wild type), 3IXL (G74C / C188S mutant type), and 3IXM (G74C mutant type) to form a hydrophobic pocket We confirmed that Pro14, 、 Leu40, Val43, Tyr48, Leu77, Val156, and Met159 are located near pro-R carboxylate.
 以上より、図2に示すDirected evolutionのスキームを計画した。すなわち、G74C/C188Sをテンプレートに、188番目の残基にsaturation mutagenesisを行い、活性の高い変異型を選抜する(1st screening)。ここで得られた変異型をテンプレートに、Leu40, Val43, Tyr48, Met73, Leu77, Val156, Met159の残基にそれぞれsaturation mutagenesisを行い選抜する(2nd screening)。さらに最も活性が高かった変異型をテンプレートに、他の6つの疎水性残基に対する選抜を行う(3rd screening)というスキームである。 From the above, we have planned the Directed Evolution scheme shown in Figure 2. That is, using G74C / C188S as a template, saturation mutagenesis is performed on the 188th residue, and a highly active mutant is selected (1st screening). Using the obtained mutant type as a template, selection is performed by performing saturation mutagenesis on the residues of Leu40, Val43, Tyr48, Met73, Leu77, Val156, and Met159 (2nd screening). Furthermore, it is a scheme in which a mutant type having the highest activity is used as a template to select other six hydrophobic residues (3rd screening).
 次に、saturation mutagenesisライブラリーから、脱炭酸活性が高い変異型をスクリーニングする系を確立した。分子進化を行う際は、迅速に酵素精製と活性評価を行う必要があり、そのためには酵素にHis-tagを付加することが有効である。そこで、酵素の発現には、ドイツのBioSpring社から提供された、KU1201株由来AMDaseのORF遺伝子をpBADベクターに組み込んだ発現ベクターを用いることにした(WO/2005/078111)。なお、このベクターで発現したAMDaseのN末端は「MGQ」の3残基伸長しており、C末端側は「GGSHHHHHH」の9残基伸長している。 Next, a system was established for screening mutants with high decarboxylation activity from the saturation mutagenesis library. When performing molecular evolution, it is necessary to rapidly carry out enzyme purification and activity evaluation. For this purpose, it is effective to add a His-tag to the enzyme. Therefore, for expression of the enzyme, an expression vector provided by BioSpring of Germany and incorporating the ORF gene of AMDase derived from KU1201 strain into a pBAD vector was used (WO / 2005/078111). The N-terminus of AMDase expressed by this vector is extended by 3 residues of “MGQ”, and the C-terminal side is extended by 9 residues of “GGSHHHHHH”.
 また、基質としてフェニルマロン酸を選択した。その理由は、反応が速い基質であり、微弱なAMDase活性も検出できるためであり、また先行研究で、フェニルマロン酸に対する活性と他の基質に対する活性が相関していたためである。 Also, phenylmalonic acid was selected as a substrate. The reason is that it is a fast-reacting substrate and can detect weak AMDase activity, and in previous studies, the activity against phenylmalonic acid was correlated with the activity against other substrates.
 テンプレートプラスミドの特定の残基に対して、NNKコドン(NはA, G, C又はT; KはG又はT)やNHKコドン(NはA, G, C又はT; HはT, C又はA; KはG又はT)を用いたmutagenesis primerを作成し、QuickChange II Site-Directed Mutagenesis Kit(STRATAGENE)のプロトコル(以下、「QuickChange protocol」と表記する)に従って変異導入を行った。作成した複数の変異型プラスミドで大腸菌を形質転換し、プレートにまいた。そして生じたコロニーを96穴マイクロプレートで培養した。この培養液を、剣山を用いて別のマイクロプレートに植菌した後、グリセロールを加えて、マスタープレートとして保存した。植菌後のプレートを37℃で3時間程度培養した後、L-(+)-arabinoseを加えて酵素発現を誘導し、さらに14時間程度培養した。このプレートを遠心し、上清を除き、大腸菌をLysozyme・DNase・PMSFを含む溶液に溶かして凍らせた後、3時間37℃でインキュベートすることにより破砕した。そしてこの無細胞抽出液を、BTBを含むフェニルマロン酸溶液に加え、基質の脱炭酸によるpHの変化をBTBで確認することにより、活性を評価した。 NNK codon (N is A, G, C or T; K is G or T) or NHK codon (N is A, G, C or T; H is T, C or A: Mutagenesis primer using 用 い K G or T) was introduced, and mutation was introduced according to the protocol of QuickChange IIQuickSite-Directed Mutagenesis Kit (STRATAGENE) (hereinafter referred to as "QuickChange「 protocol "). Escherichia coli was transformed with the prepared mutant plasmids and spread on plates. The resulting colonies were cultured in a 96-well microplate. This culture solution was inoculated into another microplate using Kenzan, and glycerol was added to preserve it as a master plate. The inoculated plate was cultured at 37 ° C. for about 3 hours, and then L-(+)-arabinose was added to induce enzyme expression, followed by further incubation for about 14 hours. The plate was centrifuged, the supernatant was removed, E. coli was dissolved in a solution containing Lysozyme / DNase / PMSF, frozen, and then disrupted by incubation at 37 ° C. for 3 hours. The cell-free extract was added to a phenylmalonic acid solution containing BTB, and the activity was evaluated by confirming the change in pH due to decarboxylation of the substrate with BTB.
 活性が高いと判断したウェルの大腸菌を、上記のマスタープレートからピックアップして、プラスミドのシーケンシングを行い、変異型を特定した。この変異型の発現宿主を培養し、菌体を回収して超音波破砕し遠心することによって調製した無細胞抽出液から、Niカラムを用いたアフィニティークロマトグラフィーにより、変異型酵素を精製し、活性を評価した。 E. coli of wells judged to have high activity were picked up from the above master plate, and plasmid sequencing was performed to identify the mutant type. The mutant enzyme is purified from the cell-free extract prepared by culturing the mutant expression host, collecting the cells, sonicating and centrifuging, and then purifying the mutant enzyme by affinity chromatography using a Ni column. Evaluated.
1.G74C/C188S変異型の活性評価
 上記のQuickChange protocolによって、G74C/C188S変異型を作成し、G74C/C188S変異型と野生型の比活性・kcat・Kmを測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
1. Evaluation of activity of G74C / C188S mutant type Table 1 shows the results of measuring G74C / C188S mutant type and wild type specific activity, k cat, and K m using the above QuickChange protocol.
Figure JPOXMLDOC01-appb-T000003
 G74C/C188S変異型の比活性は先行研究とほぼ一致した。 The specific activity of the G74C / C188S mutant was almost consistent with previous studies.
2.1st screening - 188番目に対するsaturation mutagenesis
(1)脱炭酸活性を指標としたスクリーニング
 まず、NNNコドンで変異型ライブラリーを作成し、その中から68コロニーについて脱炭酸活性を指標としたスクリーニングを行った。その結果、G74C変異型の活性が最も高く、次いでG74C/C188G変異型の活性が高いという結果が得られた。さらに、NHKコドンを用いて、G74C/C188X(X ≠ C,W,R,G)変異型ライブラリーを構築し、76コロニーをスクリーニングした。その結果、G74C/C188G変異型よりも活性の高い変異型を得ることはできなかった。よって、188番目の残基のスクリーニングにおいて、G74C変異型が最も活性が強く、次にG74C/C188G変異型の活性が強いと判断した。
2. 1st screening-saturation mutagenesis for 188th
(1) Screening using decarboxylation activity as an index First, a mutant library was prepared using the NNN codon, and 68 colonies were screened using decarboxylation activity as an index. As a result, the G74C mutant type had the highest activity, and then the G74C / C188G mutant type had the highest activity. Furthermore, a G74C / C188X (X ≠ C, W, R, G) mutant library was constructed using NHK codons, and 76 colonies were screened. As a result, a mutant having a higher activity than the G74C / C188G mutant could not be obtained. Therefore, in the screening of the 188th residue, it was judged that the G74C mutant type had the strongest activity, and then the G74C / C188G mutant type had the strongest activity.
(2)精製と活性測定
 G74C/C188G変異型は、約2 gの培養菌体(液体LB培地500 mLより回収)から、Ni Sepharose High Performance(GE Healthcare)を50 mL用いたカラムクロマトグラフィーにより精製した。また、G74C変異型は、約1 gの培養菌体から、COSMOGEL His-Acceptゲルを2mL用いたカラムクロマトグラフィーにより精製した。
(2) Purification and activity measurement The G74C / C188G mutant is purified from about 2 g of cultured cells (collected from 500 mL of liquid LB medium) by column chromatography using 50 mL of Ni Sepharose High Performance (GE Healthcare). did. The G74C mutant was purified from about 1 g of cultured cells by column chromatography using 2 mL of COSMOGEL His-Accept gel.
 比活性・kcat・Kmを解析した結果、スクリーニング段階での予測通り、変異型の活性は、G74C変異型 > G74C/C188G変異型 > G74C/C188S変異型の順に高いことが明らかになった(表2)。
Figure JPOXMLDOC01-appb-T000004
As a result of analysis of specific activity, k cat, and K m , it was found that the activity of the mutant was higher in the order of G74C mutant> G74C / C188G mutant> G74C / C188S mutant, as predicted at the screening stage. (Table 2).
Figure JPOXMLDOC01-appb-T000004
 G74C/C188G変異型は、G74C/C188S変異型に比べて、比活性が2.5倍、相対活性が5.6倍の活性向上となった。 The G74C / C188G mutant improved the specific activity by 2.5 times and the relative activity by 5.6 times compared to the G74C / C188S mutant.
 G74C変異型によって得られる生成物はラセミ体になるので、目的の変異型ではない。そこで、G74C/C188G変異型を2nd screeningのテンプレートとした。 Since the product obtained by the G74C mutant is a racemate, it is not the target mutant. Therefore, the G74C / C188G mutant was used as a 2nd screening template.
3.2nd & 3rd screening - 疎水性ポケットをターゲットとしたDirected evolution
(1)G74C/M159X/C188G変異型ライブラリー
 次に、G74C/M159X/C188G変異型ライブラリーをスクリーニングすることにした。159番目の残基は、イギリスのMicklefieldらのグループが、野生型に対してsaturation mutagenesisを試みている。その結果、Kmベースで相対活性を50倍向上させた実績のある残基である。NNKコドンを用いて、G74C/M159X/C188G変異型ライブラリーを構築し、138コロニーをスクリーニングした。その結果、G74C/C188G変異型よりも活性が強いと推定される11株と、G74C/C188G変異型と活性が同等と推定される6株を得た。なお、これらの株は活性が強い順に1~4群に分類した。
3. 2nd & 3rd screening-Directed evolution targeting hydrophobic pockets
(1) G74C / M159X / C188G mutant library Next, it was decided to screen the G74C / M159X / C188G mutant library. The 159th residue is a saturation mutagenesis by the group of Micklefield et al. As a result, a residue proven with improved 50-fold relative activity with K m basis. Using the NNK codon, a G74C / M159X / C188G mutant library was constructed and 138 colonies were screened. As a result, 11 strains estimated to be more active than the G74C / C188G mutant and 6 strains estimated to be equivalent in activity to the G74C / C188G mutant were obtained. These strains were classified into groups 1 to 4 in descending order of activity.
 シーケンシングをしたところ、G74C/C188G変異型よりも活性が高い株のほとんどはM159L変異であり、他にM159V変異が得られた(表3)。
Figure JPOXMLDOC01-appb-T000005
As a result of sequencing, most of the strains having higher activity than the G74C / C188G mutant were M159L mutations, and other M159V mutations were obtained (Table 3).
Figure JPOXMLDOC01-appb-T000005
 精製して比活性・kcat・Kmを解析した結果を表4に示す。 
Figure JPOXMLDOC01-appb-T000006
Table 4 shows the results of purification and analysis of specific activity, k cat, and K m .
Figure JPOXMLDOC01-appb-T000006
 G74C/M159L/C188G変異型はG74C/C188S変異型に比べて、比活性が150倍、相対活性が210倍の活性向上となった。(G74C/C188G変異型に比べると、比活性は60倍、相対活性は37倍である。)
(2)G74C/M159X/C188S変異型ライブラリー
 次いで、G74C/C188S変異型とG74C/C188G変異型を、実際にG74C/C188S変異型をテンプレートにDirected evolutionを行うことにより比較した。
The G74C / M159L / C188G mutant improved the specific activity by 150 times and the relative activity by 210 times compared to the G74C / C188S mutant. (The specific activity is 60 times and the relative activity is 37 times that of the G74C / C188G mutant.)
(2) G74C / M159X / C188S mutant library Next, the G74C / C188S mutant and the G74C / C188G mutant were compared by actually performing directed evolution using the G74C / C188S mutant as a template.
 NNKコドンを用いて、G74C/M159X/C188S変異型ライブラリーを構築し、160コロニーをスクリーニングした。その結果、G74C/C188S変異型よりも活性が強いと推定されるM159S変異を1株得た。また、G74C/C188S変異型と活性が同等と推定される7株(内訳は、M159L変異が2株、M159G変異が1株、[テンプレート]が4株)を得た。 A G74C / M159X / C188S mutant library was constructed using NNK codons, and 160 colonies were screened. As a result, one strain of M159S mutation, which was estimated to be more active than the G74C / C188S mutant, was obtained. In addition, 7 strains (with a breakdown of 2 strains of M159L, 1 strain of M159G, and 4 strains of [template]) were obtained that were estimated to have the same activity as the G74C / C188S mutant.
 これらの変異型を精製して、比活性・kcat・Kmを解析した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
Table 5 shows the results obtained by purifying these mutants and analyzing the specific activity, k cat, and K m .
Figure JPOXMLDOC01-appb-T000007
 さらに、G74C/C188G変異型をテンプレートに、疎水性ポケットのスクリーニングを継続することにした。 Furthermore, we decided to continue the screening of hydrophobic pockets using the G74C / C188G mutant as a template.
(3)2nd screeningのまとめ
 2nd screeningによって取得した変異型の比活性・kcat・Kmを表6に示す。
Figure JPOXMLDOC01-appb-T000008
(3) Summary of 2nd screening Table 6 shows the specific activities, k cat, and K m of the mutants obtained by 2nd screening.
Figure JPOXMLDOC01-appb-T000008
 Y48F/G74C/C188G変異型はG74C/C188S変異型に比べて、比活性が20倍、相対活性が23倍の活性向上となった。(G74C/C188G変異型に比べると、比活性は8倍、相対活性は4倍である。)
 2nd screeningにより得られた変異型の中で、最も活性が高かったのは、G74C/M159L/C188G変異型であった。そこで、この変異型をテンプレートに3rd screeningを行うこととした。
The Y48F / G74C / C188G mutant improved the specific activity by 20 times and the relative activity by 23 times compared to the G74C / C188S mutant. (Compared with G74C / C188G mutant, specific activity is 8 times and relative activity is 4 times.)
Among the mutants obtained by 2nd screening, the G74C / M159L / C188G mutant had the highest activity. Therefore, we decided to perform 3rd screening using this mutant as a template.
(4)3rd screeningのまとめ
 3rd screeningによって取得した変異型の比活性・kcat・Kmを表7に示す。
Figure JPOXMLDOC01-appb-T000009
(4) Summary of 3rd screening Table 7 shows the specific activity, k cat, and K m of the mutants obtained by 3rd screening.
Figure JPOXMLDOC01-appb-T000009
 得られた変異型の活性は、G74C/M159L/C188G変異型と同等ではあったが、kcatやKmが改善したものが得られた。また、Y48F/G74C/M159L/C188G変異型がG74C/C188S変異型に比べて相対活性が920倍と、最も高い活性を示した。 The activity of the obtained mutant type was equivalent to that of the G74C / M159L / C188G mutant type, but improved k cat and K m were obtained. The Y48F / G74C / M159L / C188G mutant showed the highest activity, 920-fold relative activity compared to the G74C / C188S mutant.
4.基質特異性と光学純度の解析
(1)方法
 次に、1st~3rdスクリーニングにおいて、特に活性が高かった、G74C/Y48F/M159L/C188G変異型・G74C/M159L/C188G変異型・Y48F/G74C/C188G変異型・G74C/C188G変異型・G74C/C188S変異型、および野生型の基質特異性と光学純度を解析することとした。
4). Analysis of Substrate Specificity and Optical Purity (1) Method Next, G74C / Y48F / M159L / C188G mutant, G74C / M159L / C188G mutant, Y48F / G74C / C188G were particularly active in the 1st to 3rd screening. We decided to analyze the substrate specificity and optical purity of the mutant type, G74C / C188G mutant type, G74C / C188S mutant type, and wild type.
 基質は、α-methyl-α-phenylmalonic acid(α-メチル-α-フェニルマロン酸)、α-methyl-α-(2-naphthyl)malonic acid(α-メチル-α-ナフチルマロン酸)及びα-(6-methoxy-2-naphthyl)-α-methylmalonic acid(α-6-(メトキシ-2-ナフチル)-α-メチルマロン酸)を選択した。フェニルマロン酸とα-メチル-α-フェニルマロン酸を比較することでα位のメチル基の影響を、またα-メチル-α-フェニルマロン酸とα-メチル-α-ナフチルマロン酸を比較することでアリール基の影響を解析できると考えた。また医薬品として重要なナプロキセンに対応するα-(6-メトキシ-2-ナフチル)-α-メチルマロン酸を選んだ。 Substrates include α-methyl-α-phenylmalonic acid (α-methyl-α-phenylmalonic acid), α-methyl-α- (2-naphthyl) malonic acid (α-methyl-α-naphthylmalonic acid) and α- (6-methoxy-2-naphthyl) -α-methylmalonic acid (α-6- (methoxy-2-naphthyl) -α-methylmalonic acid) was selected. By comparing phenylmalonic acid and α-methyl-α-phenylmalonic acid, the effect of the methyl group at the α-position, and also comparing α-methyl-α-phenylmalonic acid and α-methyl-α-naphthylmalonic acid Therefore, it was thought that the influence of the aryl group could be analyzed. In addition, α- (6-methoxy-2-naphthyl) -α-methylmalonic acid corresponding to naproxen, which is important as a pharmaceutical, was selected.
 活性の指標としては、比活性のみを測定した。フェニルマロン酸と同様、20mMの基質を変異型酵素で変換し、アセトニトリルを加えることで反応を停止した。この反応液を、Cosmosil 5C18-AR-II(ナカライテスク)カラムを用いて逆相HPLCにより分析し、反応生成物を定量した。 As the activity index, only specific activity was measured. Similar to phenylmalonic acid, 20 mM substrate was converted with a mutant enzyme and the reaction was stopped by adding acetonitrile. This reaction solution was analyzed by reverse phase HPLC using a Cosmosil 5C 18 -AR-II (Nacalai Tesque) column, and the reaction product was quantified.
 この実験を行う際に用いた酵素液は、精製してから1~6ヶ月程度時間がたっており、酵素の失活が懸念された。そこで、フェニルマロン酸を基質として比活性を測定することとし、この測定値を精製直後に測定した比活性で割った値を残存活性と定義した。その結果、残存活性は50~90%程度であった。 The enzyme solution used in this experiment took about 1 to 6 months after purification, and there was concern about enzyme deactivation. Therefore, the specific activity was measured using phenylmalonic acid as a substrate, and the value obtained by dividing this measured value by the specific activity measured immediately after purification was defined as the residual activity. As a result, the residual activity was about 50 to 90%.
 さらに、今回の基質に対する比活性の測定値を、残存活性で割る補正を行った。(以降の解析結果は、補正後の値である。)
 生成物の光学純度は以下のように測定した。まず、基質の再結晶を行い、基質にわずかに存在した生成物や不純物を除いた。この基質を用いて、後記の比活性を測定する系で酵素反応を行った。反応液に2M HClを加えることで反応を停止し、生成物をジエチルエーテルで抽出し、TMSジアゾメタンを用いてメチルエステル化した。この生成物を、キラルな担体を有するカラムを用いて、順相HPLCにより分析した。
In addition, a correction was made by dividing the measured value of the specific activity for this substrate by the residual activity. (The subsequent analysis results are the values after correction.)
The optical purity of the product was measured as follows. First, the substrate was recrystallized to remove products and impurities that were slightly present in the substrate. Using this substrate, an enzyme reaction was carried out in a system for measuring the specific activity described later. The reaction was stopped by adding 2M HCl to the reaction, and the product was extracted with diethyl ether and methyl esterified with TMS diazomethane. The product was analyzed by normal phase HPLC using a column with a chiral support.
(2)解析結果
 解析結果を表8に示す。
Figure JPOXMLDOC01-appb-T000010
(2) Analysis results Table 8 shows the analysis results.
Figure JPOXMLDOC01-appb-T000010
 まず、α位にメチル基を持つ基質に対して、最も活性が高かったのは、G74C/Y48F/M159L/C188G変異型ではなく、G74C/M159L/C188G変異型であった。この変異型は、野生型の約10~13分の1と良好な活性を示した。また、生成物の立体配置は野生型を除き全て(S)体であり、鏡像体過剰率は、G74C/C188S変異型を除き全て99% e.e.以上であった。 First, the G74C / M159L / C188G mutant, not the G74C / Y48F / M159L / C188G mutant, was the most active against a substrate having a methyl group at the α-position. This mutant type showed a good activity of about 10 to 13 times that of the wild type. The product configuration was all (S) except for the wild type, and the enantiomeric excess was 99% e.e. or more except for the G74C / C188S mutant.
 また、α-(6-メトキシ-2-ナフチル)-α-メチルマロン酸の活性は、変異型に関係なくα-メチル-α-ナフチルマロン酸の活性の約半分であった。この結果より、ナフチル基の6位のメトキシ基の電子的効果が活性に影響していると推定できる。 In addition, the activity of α- (6-methoxy-2-naphthyl) -α-methylmalonic acid was about half that of α-methyl-α-naphthylmalonic acid regardless of the mutant type. From this result, it can be presumed that the electronic effect of the methoxy group at the 6-position of the naphthyl group affects the activity.
5.変異型の活性のまとめ
(1)変異型の活性
 今回の1st~3rdスクリーニングで得られた変異型のフェニルマロン酸に対する活性をまとめたものを表9に示す。
Figure JPOXMLDOC01-appb-T000011
5. Summary of Mutant Activity (1) Mutant Activity Table 9 summarizes the activity of the mutant type obtained in the 1st to 3rd screenings on phenylmalonic acid.
Figure JPOXMLDOC01-appb-T000011
 G74C/M159L/C188G変異型は、G74C/C188S変異型の210倍の活性向上となった。 The G74C / M159L / C188G mutant was 210 times more active than the G74C / C188S mutant.
 Y48F/G74C/M159L/C188G変異型は、G74C/C188S変異型の920倍の活性向上となった。 The Y48F / G74C / M159L / C188G mutant improved activity 920 times that of the G74C / C188S mutant.
(2)G74C/C188S変異型とG74C/C188G変異型の比較
 G74C/C188G変異型の活性がG74C/C188S変異型に比べて大きい理由は、「グリシンがより立体障害が小さいため」もしくは「セリン水酸基と基質との水素結合が無くなったため」と推定した。
(2) Comparison between G74C / C188S mutant and G74C / C188G mutant G74C / C188G mutant is more active than G74C / C188S mutant because “glycine is less sterically hindered” or “serine hydroxyl group” The hydrogen bond between the substrate and the substrate disappeared.
 また、Kmは2分の1以下と改善しているのは、セリンを立体障害の小さいグリシンに置換したためと推測した。 Also, K m is the is improved to less than half, was speculated to be due to the substitution of a serine to a small glycine hindered.
 またスクリーニングの結果、G74C/C188AよりG74C/C188Gの活性が高かったので、188番目の立体障害も活性に影響することが分かった。 Also, as a result of screening, since the activity of G74C / C188G was higher than that of G74C / C188A, it was found that the 188th steric hindrance also affected the activity.
(3)G74C変異の考察
 野生型やG74A変異型に比べてG74C変異型の活性は低く、またC188S変異型に比べてG74C/C188S変異型の活性は低い。そしてG74C/C188S変異型の脱炭酸反応には、D2Oの速度論的同位体効果が観測されない。このことから、G74Cの変異が、1段階目のpro-R carbosylate脱離反応の活性を著しく下げたと結論づけることができる。
(3) Consideration of G74C mutation The activity of G74C mutant is lower than that of wild type or G74A mutant, and the activity of G74C / C188S mutant is lower than that of C188S mutant. In the G74C / C188S mutant decarboxylation reaction, no kinetic isotope effect of D 2 O is observed. From this, it can be concluded that the mutation of G74C significantly reduced the activity of the first-stage pro-R carbosylate elimination reaction.
 その理由は、「Cys74がGlyやAlaに比べて立体障害が大きいため」もしくは「Cys74と基質との水素結合」と推定できる。そこで、74番目のCysの影響を、分子モデリングにより解析した。PDB-CODE:3IXM(G74C/C188S変異型)に、基質のフェニルマロン酸をDockingさせ、Minimizationを行った。その結果、74番目のシステインがpro-Sのcarboxylateと水素結合するモデルを得た。 The reason can be presumed that “Cys74 has larger steric hindrance than Gly and Ala” or “hydrogen bond between Cys74 and substrate”. Therefore, the influence of the 74th Cys was analyzed by molecular modeling. PDB-CODE: 3IXM (G74C / C188S mutant) was docked with phenylmalonic acid as a substrate, and minimization was performed. As a result, a model was obtained in which the 74th cysteine hydrogen bonds with the carboxylate of pro-S.
 この結果より、Cys74がpro-S carboxylateと水素結合して、基質のbinding modeを乱すことで、pro-R carboxylateの不安定化が弱まり、脱炭酸活性が低下したと推測した。 From this result, it was speculated that Cys74 hydrogen-bonded with pro-S carboxylate and disturbed the binding mode of the substrate, thereby destabilizing pro-R carboxylate and decreasing decarboxylation activity.
 本実施例において、アリールマロン酸脱炭酸酵素の精製、酵素活性の測定、変異体を作成しての分子進化検討は以下の方法で行った。 In this example, purification of arylmalonate decarboxylase, measurement of enzyme activity, and molecular evolution studies by creating mutants were carried out by the following methods.
(1)アリールマロン酸脱炭酸酵素の精製
 変異型の発現プラスミドで形質転換した大腸菌XL1-Blueを、液体LB(amp)培地(10mL)を含む試験管2本にて30℃で一晩培養した。これを液体LB(amp)培地(1L)を含む5L三角フラスコ2本へ植菌し、30℃で2~5時間程度振盪培養した後、OD660を測定して0.3~0.4の範囲内であることを確認した。0.1M IPTGを終濃度0.1mMになるように1mLずつ加えることで酵素の発現を誘導し、さらに30℃で18時間振盪培養した。得られた培養液を遠心分離(12,000g, 10min)することにより集菌した。
(1) Purification of arylmalonate decarboxylase E. coli XL1-Blue transformed with a mutant expression plasmid was cultured overnight at 30 ° C in two test tubes containing liquid LB (amp) medium (10 mL). . This is inoculated into two 5L Erlenmeyer flasks containing liquid LB (amp) medium (1L), shaken at 30 ° C for about 2 to 5 hours, and then measured for OD660 to be within the range of 0.3 to 0.4. It was confirmed. The expression of the enzyme was induced by adding 1 mL of 0.1 M IPTG to a final concentration of 0.1 mM, and further cultured with shaking at 30 ° C. for 18 hours. The obtained culture broth was collected by centrifugation (12,000 g, 10 min).
 pH8.0, 0.5mM EDTA, 100mM Tris-HCl buffer(以下、100mM Tris緩衝液と表記する)(35mL)に集菌した大腸菌を懸濁した。培地成分の除去(洗浄)のため、再度遠心分離(12,000g, 20min)し、上清を除いた。得られた培養菌体(約4.5gを2本)を冷凍保存した。 The collected E. coli cells were suspended in pH 8.0, 0.5 mM EDTA, 100 mM Tris-HCl buffer (hereinafter referred to as 100 mM Tris buffer) (35 mL). In order to remove (wash) the medium components, the mixture was centrifuged again (12,000 g, 20 min), and the supernatant was removed. The obtained cultured cells (2 pieces of about 4.5 g) were stored frozen.
 次に、菌体から無細胞抽出液を調製した。2本の菌体をpH8.0, 0.5mM EDTA, 10mM Tris-HCl buffer(以下、10mM Tris緩衝液と表記する)(30mL)にそれぞれ懸濁し、氷浴中で温度を低く保ちながら超音波破砕(OUTPUT 8, DUTY 20, 5min, 2回, 2本, 標準チップ)により破砕した。得られた破砕液を遠心分離(12,000g, 20min)し、沈殿を除くことにより無細胞抽出液を調製した。 Next, a cell-free extract was prepared from the cells. Suspend two cells in pH 8.0, 0.5 mM EDTA, 10 mM Tris-HCl buffer (hereinafter referred to as 10 mM Tris buffer) (30 mL), and ultrasonically disrupt while keeping the temperature low in an ice bath. (OUTPUT 8, DUTY 20, 5min, twice, 2 pieces, standard chip). The obtained crushed liquid was centrifuged (12,000 g, 20 min), and a cell-free extract was prepared by removing the precipitate.
 これ以降の操作は、氷浴中もしくは4℃の冷蔵庫の中で行った。 The subsequent operations were performed in an ice bath or a refrigerator at 4 ° C.
 次に、硫安分画を行った。無細胞抽出液の液量を測り、硫酸アンモニウム(硫安)を30%飽和になるようにゆっくり添加し、1時間程度撹拌した。この溶液を遠心分離(12,000 , 25min)した上澄みに対し、60%飽和になるように硫酸アンモニウムをゆっくり添加し、2時間以上攪拌した。この溶液をさらに遠心分離(12,000g, 50min)し、AMDaseを含むタンパク質の沈殿を得た。この沈殿を10 mM Tris緩衝液20 mLに溶解し、セルロースチューブに入れ、10mM Tris緩衝液(透析バッファー)2Lに対して透析を行い、硫安や低分子化合物を除去した。透析バッファーは2時間後に一度交換し、さらに6時間以上透析を行った。 Next, ammonium sulfate fractionation was performed. The amount of the cell-free extract was measured, ammonium sulfate (ammonium sulfate) was slowly added to 30% saturation, and the mixture was stirred for about 1 hour. To the supernatant obtained by centrifuging this solution (12,000 mm, 25 min), ammonium sulfate was slowly added so as to be 60% saturated, and stirred for 2 hours or more. This solution was further centrifuged (12,000 g, 50 min) to obtain a protein precipitate containing AMDase. This precipitate was dissolved in 20 mL of 10 mM Tris buffer, placed in a cellulose tube, and dialyzed against 2 L of 10 mM Tris buffer (dialysis buffer) to remove ammonium sulfate and low molecular weight compounds. The dialysis buffer was changed once after 2 hours, and dialysis was further performed for 6 hours or more.
 次に、陰イオン交換カラムクロマトグラフィーを行った。20%エタノール中で保存していたDEAE-Toyopearlゲル100mLをカラムに充填し、蒸留水300mLと10mM Tris緩衝液300mLを流すことにより平衡化した。これに、透析後の粗酵素液を1.0mL/minで流し、AMDaseをゲルに吸着させた。続いて10mM Tris緩衝液を300mL流した後、溶出速度1.0mL/minで0mMから200mMの直線的なNaCl濃度勾配600mLで溶出した。1フラクションあたり20mLずつ30本を回収した後、後述のBTBアッセイ法でAMDase活性のある画分を特定した。 Next, anion exchange column chromatography was performed. The column was filled with 100 mL of DEAE-Toyopearl gel stored in 20% ethanol, and equilibrated by flowing 300 mL of distilled water and 300 mL of 10 mM Tris buffer. The crude enzyme solution after dialysis was poured into this at 1.0 mL / min, and AMDase was adsorbed on the gel. Subsequently, 300 mL of 10 mM Tris buffer was flowed, and then eluted with 600 mL of a linear NaCl concentration gradient from 0 mM to 200 mM at an elution rate of 1.0 mL / min. After collecting 30 bottles of 20 mL per fraction, a fraction having AMDase activity was identified by the BTB assay method described below.
 次に、疎水性カラムクロマトグラフィーを行った。活性画分を集め、硫安を20%になるようにゆっくり添加した。20%エタノール中で保存していたButyl-Toyopearlゲル60mLをカラムに充填し、蒸留水180mLと20%硫安を含む10mM Tris緩衝液180mLを流すことにより平衡化した。これに、20%硫安を含む活性画分を1.0mL/minで流し、AMDaseをゲルに吸着させた。続いて20%硫安を含む透析バッファー180mL流した後、溶出速度1.0mL/minで20%から0%の直線的な硫安濃度勾配360mLで溶出した。1フラクションあたり12mLずつ30本を回収した。BTBアッセイ法でAMDase活性のある画分を特定した。 Next, hydrophobic column chromatography was performed. The active fraction was collected and ammonium sulfate was slowly added to 20%. The column was filled with 60 mL of Butyl-Toyopearl gel stored in 20% ethanol, and equilibrated by flowing 180 mL of distilled water and 180 mL of 10 mM Tris buffer containing 20% ammonium sulfate. To this, an active fraction containing 20% ammonium sulfate was flowed at 1.0 mL / min to adsorb AMDase onto the gel. Subsequently, 180 mL of dialysis buffer containing 20% ammonium sulfate was flowed, and then eluted with a linear ammonium sulfate concentration gradient of 360 mL from 20% to 0% at an elution rate of 1.0 mL / min. 30 bottles of 12 mL were collected per fraction. A fraction having AMDase activity was identified by BTB assay.
 活性画分はそれぞれSDS-PAGEで分析した。AMDaseのみが溶解している(バンドが単一である)フラクションがある場合は、その活性画分を集め、透析バッファー2Lで3時間以上2回透析することで、粗酵素溶液から硫安とNaClを除去し、精製を完了した。バンドが単一であるフラクションが無い場合は、AMDaseのバンドが濃い活性画分を集めた後、SuperQ-Toyopearlゲルを用いた陰イオン交換カラムクロマトグラフィーと、Phenyl-Toyopearlゲルを用いた疎水性カラムクロマトグラフィーを行い、SDS-PAGEでバンドが単一になるまで精製を行った。SuperQ-Toyopearlゲルは60mLを用いて、0mMから200mMの直線的なNaCl濃度勾配360mLで溶出した。Phenyl-Toyopearlゲルは50mLを用いて、25%から0%の直線的な硫安濃度勾配300mLで溶出した。 Each active fraction was analyzed by SDS-PAGE. If there is a fraction in which only AMDase is dissolved (single band), collect the active fraction and dialyze with 2 L of dialysis buffer for 3 hours or more to remove ammonium sulfate and NaCl from the crude enzyme solution. Removed to complete purification. If there is no fraction with a single band, collect active fractions with a strong AMDase band, and then anion exchange column chromatography using SuperQ-Toyopearl gel and hydrophobic column using Phenyl-Toyopearl gel. Chromatography was performed and purification was performed by SDS-PAGE until a single band was obtained. The SuperQ-Toyopearl gel used 60 mL and was eluted with 360 mL linear NaCl concentration gradient from 0 mM to 200 mM. Phenyl-Toyopearl gel was eluted with 300 mL of 25% to 0% linear ammonium sulfate gradient using 50 mL.
(2)変異型アリールマロン酸脱炭酸酵素の活性測定
 野生型及び変異型アリールマロン酸脱炭酸酵素の比活性、Kcat及びKmは以下の方法で測定した。
(2) mutant activity measurement wild type arylmalonate decarboxylase and mutant arylmalonate decarboxylase specific activity, K cat and K m were measured by the following methods.
(A)基質としてフェニルマロン酸を用いた場合
(i) 比活性の測定
 pH7.0、200mMフェニルマロン酸水溶液を50μL、1M Tris-HCl pH緩衝液を50μL、超純水350μLを混ぜ、ヒートブロック上で30℃で10分以上保温した。これにAMDase溶液50μLを加え、3回程ピペッティングすることで混ぜた。反応時間は、基質の変換率が10%以内になるように調節した。なぜなら、酵素反応速度は基質の濃度によって変化するからである。反応終了後アセトニトリルを500μL加えてクエンチした。クエンチに用いたアセトニトリルには、あらかじめ内部標準物質として20mM 2-フェニルプロピオン酸を溶かした。この反応液をそのまま逆相HPLC分析した。
(A) When phenylmalonic acid is used as a substrate
(i) Measurement of specific activity 50 μL of a pH 7.0, 200 mM phenylmalonic acid aqueous solution, 50 μL of 1 M Tris-HCl pH buffer solution, and 350 μL of ultrapure water were mixed and incubated on a heat block at 30 ° C. for 10 minutes or more. To this, 50 μL of AMDase solution was added and mixed by pipetting about 3 times. The reaction time was adjusted so that the conversion rate of the substrate was within 10%. This is because the enzyme reaction rate varies depending on the concentration of the substrate. After completion of the reaction, 500 μL of acetonitrile was added to quench the reaction. In acetonitrile used for quenching, 20 mM 2-phenylpropionic acid was dissolved in advance as an internal standard substance. This reaction solution was directly subjected to reverse phase HPLC analysis.
 これと全く同じ条件で、AMDase溶液の代わりに10mM Tris緩衝液を添加し、同様にクエンチを行い、逆相HPLC分析した。この測定結果をブランクとして、AMDase溶液のデータから差し引いた値から、比活性を計算した。 Under exactly the same conditions, 10 mM Tris buffer was added instead of AMDase solution, quenching was performed in the same manner, and reverse phase HPLC analysis was performed. Using this measurement result as a blank, the specific activity was calculated from the value subtracted from the data of the AMDase solution.
(ii) Kcat・Kmの解析
 基質の終濃度を40、20、10、5、2.5、1.25、0.625mMとした反応系で比活性を測定した。基質溶液は、200mMのフェニルマロン酸溶液を段階希釈したものを50μL用いた。ブランクは、それぞれの基質濃度ごとに測定した。
(ii) Analysis of K cat · K m Specific activity was measured in a reaction system in which the final concentration of the substrate was 40, 20, 10, 5, 2.5, 1.25, 0.625 mM. As the substrate solution, 50 μL of a serially diluted 200 mM phenylmalonic acid solution was used. Blanks were measured for each substrate concentration.
 反応時間は、20mMの反応系での基質変換率が5%程度になるように調節した。この反応時間であれば、全ての基質濃度で、基質変換率が20%未満になることが多いからである。 The reaction time was adjusted so that the substrate conversion rate in a 20 mM reaction system was about 5%. This is because, with this reaction time, the substrate conversion rate is often less than 20% at all substrate concentrations.
 比活性の測定結果をプロットとして、「1/[S]-1/v plot」(Lineweaver-Burk plot)を引き、kcatとKmを決定した。 Using the measurement results of specific activity as a plot, “1 / [S] -1 / v plot” (Lineweaver-Burk plot) was drawn to determine k cat and K m .
(iii) 逆相HPLC分析
 反応液をアセトニトリルでクエンチした溶液をそのまま分析した。フェニル酢酸と2-フェニルプロピオン酸で作成した検量線を用いて、フェニル酢酸を定量した。
(iii) Reversed phase HPLC analysis The solution which quenched the reaction liquid with acetonitrile was analyzed as it was. Phenylacetic acid was quantified using a calibration curve prepared with phenylacetic acid and 2-phenylpropionic acid.
 分析条件は以下の通りであった。 The analysis conditions were as follows.
カラム Cosmosil 5C18-AR-II(ナカライテスク)
展開溶媒 メタノール/超純水/TFA=60:40:0.05
流速 0.8mL/min
検出 254nm
 各物質の保持時間は次の通りであった。
Column Cosmosil 5C 18 -AR-II (Nacalai Tesque)
Developing solvent Methanol / Ultra pure water / TFA = 60: 40: 0.05
Flow rate 0.8mL / min
Detection 254nm
The retention time of each substance was as follows.
フェニルマロン酸(基質) 約4.6-4.8min
フェニル酢酸(生成物) 約6.6-6.8min
2-フェニルプロピオン酸(内部標準物質) 約8.9-9.5min
(B) 基質としてα-メチル-α-フェニルマロン酸を用いた場合の比活性の測定
 基質としてフェニルマロン酸を用いて比活性を測定する系において、約pH8、20mMのα-メチル-α-フェニルマロン酸を基質として酵素反応を行った。そして20mM 2-フェニル酢酸アセトニトリル溶液を用いてクエンチを行い、逆相HPLC分析した。Kcat・Kmの解析は、基質としてフェニルマロン酸を用いた場合と同様の方法で行った。
Phenylmalonic acid (substrate) About 4.6-4.8min
Phenylacetic acid (product) Approx. 6.6-6.8min
2-Phenylpropionic acid (internal standard) Approx. 8.9-9.5min
(B) Measurement of specific activity when α-methyl-α-phenylmalonic acid is used as a substrate In a system in which specific activity is measured using phenylmalonic acid as a substrate, α-methyl-α- Enzymatic reaction was carried out using phenylmalonic acid as a substrate. Then, quenching was performed using 20 mM 2-phenylacetic acid acetonitrile solution, and reverse phase HPLC analysis was performed. Analysis of K cat · K m was performed in the same manner as in the case of using phenylmalonic acid as a substrate.
 用いたカラムはCosmosil 5C18-AR-II(ナカライテスク)、展開溶媒は、メタノール/超純水/TFA=60:40:0.05、流速は0.8mL/min、検出は254nmで行った。フェニル酢酸と2-フェニルプロピオン酸で作成した検量線を用いて、2-フェニルプロピオン酸を定量した。 The column used was Cosmosil 5C 18 -AR-II (Nacalai Tesque), the developing solvent was methanol / ultra pure water / TFA = 60: 40: 0.05, the flow rate was 0.8 mL / min, and the detection was performed at 254 nm. 2-Phenylpropionic acid was quantified using a calibration curve prepared with phenylacetic acid and 2-phenylpropionic acid.
(C) 基質としてα-メチル-α-ナフチルマロン酸又はα-(6-メトキシ-2-ナフチル)-α-メチルマロン酸を用いた場合の比活性の測定
 基質としてフェニルマロン酸を用いて比活性を測定する系において、約pH8、20mMのα-メチル-α-ナフチルマロン酸又はα-(6-メトキシ-2-ナフチル)-α-メチルマロン酸を基質として酵素反応を行った。そして20mM 2-ナフチル酢酸アセトニトリル溶液を用いてクエンチを行い、逆相HPLC分析した。Kcat・Kmの解析は、基質としてフェニルマロン酸を用いた場合と同様の方法で行った。
(C) Measurement of specific activity when α-methyl-α-naphthylmalonic acid or α- (6-methoxy-2-naphthyl) -α-methylmalonic acid is used as a substrate Ratio using phenylmalonic acid as a substrate In the system for measuring the activity, an enzyme reaction was carried out using α-methyl-α-naphthylmalonic acid or α- (6-methoxy-2-naphthyl) -α-methylmalonic acid at about pH 8 and 20 mM as a substrate. Then, quenching was performed using 20 mM 2-naphthyl acetate acetonitrile solution, and reverse phase HPLC analysis was performed. Analysis of K cat · K m was performed in the same manner as in the case of using phenylmalonic acid as a substrate.
 用いたカラムはCosmosil 5C18-AR-II(ナカライテスク)、展開溶媒は、メタノール/超純水/TFA=65:35:0.05、流速は0.8mL/min、検出は254nmで行った。生成物と2-ナフチル酢酸で作成した検量線を用いて、生成物を定量した。 The column used was Cosmosil 5C 18 -AR-II (Nacalai Tesque), the developing solvent was methanol / ultra pure water / TFA = 65: 35: 0.05, the flow rate was 0.8 mL / min, and the detection was performed at 254 nm. The product was quantified using a calibration curve prepared with the product and 2-naphthylacetic acid.
(3)アリールマロン酸脱炭酸酵素の分子進化
(i) Mutagenesis primerの設計
 変異導入のプライマー対は、表10に示すものを用いた。
Figure JPOXMLDOC01-appb-T000012
(3) Molecular evolution of arylmalonate decarboxylase
(i) Design of Mutagenesis primer The primer pairs used for mutagenesis were those shown in Table 10.
Figure JPOXMLDOC01-appb-T000012
(ii) 変異型ライブラリーの作成
 変異導入は、「QuickChange protocol」により行った。PCR酵素は、PfuUltraを用いた。PCR条件は、「QuickChange II Site-Directed Mutagenesis Kitのマニュアル」「PfuUltraTM HF DNA polymeraseのマニュアル」及びLei Zheng, Jean-Louis Reymond, Nucleic Acids Research, 2004, 32, No. 14を参考に決定した。
(ii) Creation of mutant library Mutation was introduced by the “QuickChange protocol”. PfuUltra was used as the PCR enzyme. PCR conditions were determined with reference to “Manual for QuickChange II Site-Directed Mutagenesis Kit”, “Manual for PfuUltra HF DNA polymerase” and Lei Zheng, Jean-Louis Reymond, Nucleic Acids Research, 2004, 32, No. 14.
 pBADベクターを用いる場合は、L-(+)-arabinoseで酵素の発現を誘導する。そのため、L-(+)-arabinoseを取り込むことができ、かつ代謝分解しない大腸菌を宿主として選ぶ必要がある。そこで、araBADC-とaraEFGH+の遺伝子型を持ち、pBADベクターの宿主として推奨されている大腸菌top10を宿主として用いた。 When using a pBAD vector, L-(+)-arabinose induces enzyme expression. Therefore, it is necessary to select E. coli that can take in L-(+)-arabinose and does not undergo metabolic degradation as a host. Therefore, E. coli top10 having genotypes of araBADC- and araEFGH + and recommended as a pBAD vector host was used as the host.
(iii) 脱炭酸活性のスクリーニング
 96穴マイクロプレートの全てのウェルに、液体LB(amp)培地を150μLずつ加えた。これらのウェルに変異型ライブラリーと、コントロールとしてテンプレートの変異型発現宿主をつまようじで植菌し、37℃で一晩培養した。この培養液を、酵素発現用の液体LB(amp)培地100μL(96穴マイクロプレート)に剣山で植菌した。元の培養菌体には、80%グリセロールを50μL加え、-80℃で保存した。これを、マスタープレートとした。
(iii) Screening of decarboxylation activity 150 μL of liquid LB (amp) medium was added to all wells of a 96-well microplate. These wells were inoculated with a mutant library and a template mutant expression host as a control with a toothpick and cultured overnight at 37 ° C. This culture solution was inoculated at Kenzan into 100 μL (96-well microplate) of a liquid LB (amp) medium for enzyme expression. To the original cultured cells, 50 μL of 80% glycerol was added and stored at −80 ° C. This was used as a master plate.
 酵素発現用の液体LB(amp)培地100μLを37℃で3時間程度培養した後、0.075% L-(+)-arabinoseを含む液体LB(amp)培地50μLを加えることで酵素の発現を誘導し(L-(+)-arabinoseの終濃度0.025%)、さらに37℃で14時間培養した。培養終了後、プレートリーダーで660nmの吸光度を測定し、各ウェルの大腸菌の生育具合を確認した。次いで遠心分離(860g, 2000rpm, 20min)を行った後、ピペットマンで上清を除いた。 Incubate 100 μL of liquid LB (amp) medium for enzyme expression at 37 ° C for about 3 hours, and then add 50 μL of liquid LB (amp) medium containing 0.075% L-(+)-arabinose to induce enzyme expression. (The final concentration of L-(+)-arabinose was 0.025%), and further cultured at 37 ° C. for 14 hours. After completion of the culture, the absorbance at 660 nm was measured with a plate reader to confirm the growth of E. coli in each well. Next, after centrifugation (860 g, 2000 rpm, 20 min), the supernatant was removed with a Pipetman.
 沈殿した菌体に、10mM Tris, 300mM NaCl, 1μg/mL DNase, 10mg/mL Lysozyme, 10μg/mL PMSFを100μL加え、-80℃で30min以上静置することにより凍らせた。これを37℃で3時間インキュベートした後、遠心分離(860g, 2000rpm, 45min)を行った。この上清を無細胞抽出液とした。なお、PMSFは水溶液中で分解するため、メタノール溶液として保存し、菌体に加える直前に調整した。 The precipitated cells were frozen by adding 100 μL of 10 mM Tris, 300 mM NaCl, 1 μg / mL DNase, 10 mg / mL Lysozyme, 10 μg / mL PMSF, and left at -80 ° C. for 30 min or longer. This was incubated at 37 ° C. for 3 hours and then centrifuged (860 g, 2000 rpm, 45 min). This supernatant was used as a cell-free extract. Since PMSF was decomposed in an aqueous solution, it was stored as a methanol solution and adjusted immediately before adding it to the cells.
 無細胞抽出液20μLを新しい96穴マイクロプレートに移した。これに、10mM MOPS, 25mM フェニルマロン酸, 11g/L BTBを180μL加えた(反応液)。直後から、プレートリーダーで660 nmの吸光度を測定し続け、また目視で反応液が緑から青に変色するのを確認した。沈殿させた破砕菌体が反応液に入ると、吸光度やBTB変色活性が見にくいので、入れないようにした。 20 μL of cell-free extract was transferred to a new 96-well microplate. To this was added 180 μL of 10 mM MOPS, 25 mM phenylmalonic acid, and 11 g / L BTB (reaction solution). Immediately after that, the absorbance at 660 nm was continuously measured with a plate reader, and it was visually confirmed that the reaction solution was changed from green to blue. When the crushed microbial cells that had precipitated entered the reaction solution, it was difficult to see the absorbance and BTB discoloration activity.
 テンプレートの変異型と比較してBTBの変色が速いと判断したウェルの大腸菌を、上記のマスタープレートから植菌して液体LB(amp)培地3.5mL(Round Bottom tube)で培養した。このうち培養液0.5mLを等量の80%グリセロールと混ぜ、グリセロールストックとして-80℃で保存した。残りの3mLから、プラスミド抽出を行った。続いてプラスミドのシーケンシングを行い、変異型を特定した。 E. coli in wells that were judged to have a fast BTB discoloration compared to the template mutant were inoculated from the above master plate and cultured in 3.5 mL of liquid LB (amp) medium (Round Bottom tube). Of these, 0.5 mL of the culture broth was mixed with an equal amount of 80% glycerol and stored as a glycerol stock at −80 ° C. Plasmid extraction was performed from the remaining 3 mL. Subsequently, plasmid sequencing was performed to identify the mutant type.
 変異型の発現宿主を上記のグリセロールストックから一晩前培養し、100mLの液体LB(amp)培地に1mL植菌した。これを30℃で2~4時間程度培養して、660nmの吸光度(OD660)が0.5になったときに、10% L-(+)-arabinoseを250μL加えて(終濃度0.025%)、さらに14時間培養した。得られた培養液を遠心分離(12,000g, 10min)することにより集菌し、冷凍保存した。この菌体から、上記の方法でAMDaseを精製した。酵素の失活を考慮して、精製してから長くても2週間以内に変異型の活性を評価した。 The mutant expression host was pre-cultured overnight from the above glycerol stock, and 1 mL was inoculated into 100 mL of liquid LB (amp) medium. When this is cultured at 30 ° C. for about 2 to 4 hours and when the absorbance at 660 nm (OD660) reaches 0.5, 250 μL of 10% L-(+)-arabinose is added (final concentration: 0.025%), and further 14 Incubate for hours. The resulting culture was collected by centrifugation (12,000 g, 10 min) and stored frozen. AMDase was purified from the cells by the method described above. In consideration of enzyme inactivation, the activity of the mutant was evaluated within 2 weeks at the longest after purification.
(4) His-tagを含むAMDaseの精製
(i) 少量系の精製
 pH8.0, 25mM Tris-HCl, 0.5M NaCl, 20mM imidazole buffer(以下、10mM imidazole緩衝液と表記する)10mLに培養菌体約0.5gを懸濁した。氷浴中で温度を低く保ちながら超音波破砕(OUTPUT 2~3, DUTY 20, 5min, 2回, 細長いチップ)により破砕した。以降の操作は、氷浴中もしくは4℃の冷蔵庫の中で行った。得られた破砕液を遠心分離(8000g, 40min)し、沈殿を除くことにより無細胞抽出液を調製した。
(4) Purification of AMDase containing His-tag
(i) Purification of small amount system About 0.5 g of cultured cells were suspended in 10 mL of pH 8.0, 25 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole buffer (hereinafter referred to as 10 mM imidazole buffer). While keeping the temperature low in an ice bath, it was crushed by ultrasonic crushing (OUTPUT 2-3, DUTY 20, 5min, 2 times, elongated chip). Subsequent operations were performed in an ice bath or a refrigerator at 4 ° C. The obtained crushed liquid was centrifuged (8000 g, 40 min), and a cell-free extract was prepared by removing the precipitate.
 20%エタノール中で保存していたCOSMOGEL His-Accept(ナカライテスク)ゲル2mLをスモールカラムに充填し、蒸留水10mLと10mM imidazole緩衝液10 mLを流すことにより平衡化した。これに、無細胞抽出液10mLを流し、AMDaseをゲルに吸着させた。続いて10mM imidazole緩衝液2.5mLを4回流すことで、余分なタンパク質を除去した。続いて、pH8.0, 25mM Tris-HCl, 0.5M NaCl, 60mM imidazole buffer(以下、60mM imidazole緩衝液と表記する)2.5mLを4回流すことで、AMDaseを溶出した。 2 mL of COSMOGEL His-Accept (Nacalai Tesque) gel stored in 20% ethanol was packed into a small column and equilibrated by flowing 10 mL of distilled water and 10 mL of 10 mM imidazole buffer. To this, 10 mL of cell-free extract was poured, and AMDase was adsorbed on the gel. Subsequently, excess protein was removed by flowing 2.5 mL of 10 mM imidazole buffer four times. Subsequently, AMDase was eluted by flowing 2.5 mL of pH 8.0, 25 mM Tris-HCl, 0.5 M NaCl, 60 mM imidazole buffer (hereinafter referred to as 60 mM imidazole buffer) 4 times.
 最後に、Amicon Ultra-15 Centrifugal Filter Unitsを用いて酵素液の濃縮と脱塩を行った。この操作は、imidazoleがアリールマロン酸の脱炭酸もしくはラセミ化を触媒する可能性がある(共同研究者のRobertによる指摘)ためと、imidazoleは280nmの吸光を持ち酵素濃度の定量に悪影響があるためである。 Finally, the enzyme solution was concentrated and desalted using Amicon® Ultra-15® Centrifugal® Filter® Units. This is because imidazole may catalyze the decarboxylation or racemization of arylmalonic acid (as pointed out by co-researcher Robert), and imidazole has an absorbance of 280 nm, which adversely affects the determination of enzyme concentration. It is.
(ii) 大量系の精製
 G74C/C188S変異型とG74C/C188G変異型はAMDase活性が微弱であったため、以下の方法により精製し、約1mg/mLの酵素液を得た。
(ii) Purification of large-scale system Since G74C / C188S mutant and G74C / C188G mutant had weak AMDase activity, they were purified by the following method to obtain an enzyme solution of about 1 mg / mL.
 10mM imidazole緩衝液35mLに培養菌体約2gを懸濁した。氷浴中で温度を低く保ちながら超音波破砕(OUTPUT 8, DUTY 20, 5 min, 2回, 標準チップ)により破砕した。以降の操作は、氷浴中もしくは4℃の冷蔵庫の中で行った。得られた破砕液を遠心分離(12,000g, 20min)し、沈殿を除くことにより無細胞抽出液を調製した。 Approximately 2 g of cultured cells were suspended in 35 mL of 10 mM imidazole buffer. While keeping the temperature low in an ice bath, it was crushed by ultrasonic crushing (OUTPUT 8, DUTY 20, 20, 5 min, 2 times, standard chip). Subsequent operations were performed in an ice bath or a refrigerator at 4 ° C. The obtained crushed liquid was centrifuged (12,000 g, 20 min), and a cell-free extract was prepared by removing the precipitate.
 20%エタノール中で保存していたNi Sepharose(商標)High Performance(GE Healthcare)ゲル45mLをカラムに充填し、蒸留水150mLと10mM imidazole緩衝液150 mLを流すことにより平衡化した。これに、無細胞抽出液35mLを流し、AMDaseをゲルに吸着させた。続いて10mM imidazole緩衝液を450mL流した後、溶出速度1.0mL/minで10mMから250mMの直線的なimidazole濃度勾配900mLで溶出した。1フラクションあたり22mLずつ41本を回収した後、BTBアッセイ法でAMDase活性のある画分を特定した。なお、AMDaseは概して95~120mM imidazoleのフラクションに溶出した。活性画分を集め、Amicon Ultra-15 Centrifugal Filter Unitsを用いて酵素液の濃縮と脱塩を行った。 The column was filled with 45 mL of Ni Sepharose (trademark) High Performance (GE Healthcare) gel stored in 20% ethanol, and equilibrated by flowing 150 mL of distilled water and 150 mL of 10 mM imidazole buffer. To this, 35 mL of cell-free extract was poured, and AMDase was adsorbed on the gel. Subsequently, 450 mL of 10 mM imidazole buffer was flowed, and then eluted with 900 mL of a linear imidazole concentration gradient from 10 mM to 250 mM at an elution rate of 1.0 mL / min. After collecting 41 bottles of 22 mL per fraction, a fraction having AMDase activity was identified by BTB assay. AMDase generally eluted in a fraction of 95 to 120 mM imidazole. The active fractions were collected and the enzyme solution was concentrated and desalted using Amicon® Ultra-15® Centrifugal® Filter® Units.
(5) 変異型アリールマロン酸脱炭酸酵素の作製
(i) 変異型の作製
 上記のQuickChange protocolにより、変異型発現プラスミドを作成し、組み換え大腸菌top10を形質転換した。なお、形質転換はヒートショック法を用いた。
(5) Production of mutant arylmalonate decarboxylase
(i) Preparation of mutant type A mutant expression plasmid was prepared by the above-mentioned QuickChange protocol, and recombinant E. coli top10 was transformed. In addition, the heat shock method was used for transformation.
 育成したコロニーを爪楊枝で、別のLB(amp)培地プレートへストリークすることにより単菌化した。この爪楊枝上のコロニーを液体LB(amp)培地3.5mL(Round Bottom tube)に植菌して培養した。培養液0.5mLからグリセロールストックを作成し、残りの3mLから、プラスミド抽出を行った。続いてプラスミドのシーケンシングを行い、目的とする変異型であることを確認した。 The grown colonies were singulated by streaking to another LB (amp) medium plate with a toothpick. Colonies on the toothpick were inoculated into 3.5 mL of liquid LB (amp) medium (Round Bottom tube) and cultured. A glycerol stock was prepared from 0.5 mL of the culture solution, and plasmid extraction was performed from the remaining 3 mL. Subsequently, the plasmid was sequenced to confirm that it was the intended mutant.
(ii) Mutagenesis primerの設計
 上記のQuickChange protocolにより、G74A変異型の発現プラスミドから、野生型・G74C変異型・C188S変異型・G74C/C188S変異型・S36N/G74C/C188S変異型・S36N/G74C/C188G変異型・S36N/G74C/M159L/C188G変異型の発現プラスミドを作成した。
(ii) Mutagenesis primer design By using the above-mentioned QuickChange protocol, from the G74A mutant expression plasmid, wild type, G74C mutant, C188S mutant, G74C / C188S mutant, S36N / G74C / C188S mutant, S36N / G74C / An expression plasmid of C188G mutant / S36N / G74C / M159L / C188G mutant was prepared.
 これらの変異導入に使用したプライマーを表11に示す。なお、overlapping primerになっているのはS36Nの対だけである。
Figure JPOXMLDOC01-appb-T000013
Table 11 shows the primers used for introducing these mutations. The overlapping primer is only the S36N pair.
Figure JPOXMLDOC01-appb-T000013
(6) 基質特異性の解析
(i) 基質の再結晶
 基質であるα-メチル-α-フェニルマロン酸, α-メチル-α-ナフチルマロン酸, α-(6-メトキシ-2-ナフチル)-α-メチルマロン酸をナスフラスコに移し、ジエチルエーテルに溶解して飽和させ、少量のヘキサンを加えて密閉し、常温放置した。生成した結晶を、桐山ろ紙でろ過して回収し、デシケーターに移して真空ポンプで引いて乾燥させた。
(6) Analysis of substrate specificity
(i) Recrystallization of substrate Substrates α-methyl-α-phenylmalonic acid, α-methyl-α-naphthylmalonic acid, α- (6-methoxy-2-naphthyl) -α-methylmalonic acid The sample was dissolved in diethyl ether and saturated, a small amount of hexane was added, and the mixture was sealed and allowed to stand at room temperature. The produced crystals were collected by filtration with Kiriyama filter paper, transferred to a desiccator, and dried by drawing with a vacuum pump.
(ii) 生成物の鏡像体過剰率の測定
 約50μmolの基質を1.5mLチューブに移し、500μLの超純水に溶解し、2M NaOH超純水と2M HCl超純水を用いてpH 8に合わせた。これを1mLにメスアップした後、1M Tris-HCl pH緩衝液を250μL加えてvortexした。この溶液を125μLずつ分注し、0~100μLの超純水と25~125μLの酵素液を加えて、30℃で1週間程度反応させることで、基質を全て反応させた。
(ii) Measurement of enantiomeric excess of product Transfer about 50 μmol of substrate to a 1.5 mL tube, dissolve in 500 μL of ultrapure water, and adjust to pH 8 using 2M NaOH ultrapure water and 2M HCl ultrapure water. It was. After making up this to 1 mL, 250 μL of 1 M Tris-HCl pH buffer solution was added and vortexed. 125 μL of this solution was dispensed, and 0 to 100 μL of ultrapure water and 25 to 125 μL of enzyme solution were added and reacted at 30 ° C. for about 1 week to react all of the substrate.
 反応液に2M HClを125μL加えて反応を停止した。これにジエチルエーテルを300μL加えてvortexし、遠心分離(13,000rpm, 2min)した後上清を採取した。この操作を3回繰り返すことで、生成物を抽出した。 The reaction was stopped by adding 125 μL of 2M HCl to the reaction solution. To this was added 300 μL of diethyl ether, vortexed, centrifuged (13,000 rpm, 2 min), and the supernatant was collected. By repeating this operation three times, the product was extracted.
 生成物を、TMSジアゾメタンを少量加えることでメチル化した。ジエチルエーテルを揮発させて、500 μLのジエチルエーテル:イソプロパノール=1:1溶液に溶解し、順層HPLC分析を行った。生成物の鏡像異性体のピーク面積から、鏡像体過剰率を測定した。 The product was methylated by adding a small amount of TMS diazomethane. Diethyl ether was volatilized and dissolved in 500 μL of diethyl ether: isopropanol = 1: 1 solution and subjected to normal layer HPLC analysis. The enantiomeric excess was determined from the peak area of the enantiomer of the product.
実施例2 変異型アリールマロン酸脱炭酸酵素の基質としてα-メチル-α-フェニルマロン酸を用いた場合の活性測定
 実施例1に示すようにα位にメチル基を持つ基質に対して、G74C/M159L/C188G変異型が最も活性が高かったが、さらに高活性の変異型の作製を試みた。
Example 2 Activity measurement when α-methyl-α-phenylmalonic acid was used as a substrate for mutant arylmalonate decarboxylase As shown in Example 1, G74C was tested against a substrate having a methyl group at the α-position. The / M159L / C188G mutant had the highest activity, but an attempt was made to create a more active mutant.
 実施例1に記載の方法で、G74C/M159L/C188G、G74C/M159L/C188G/V156I及びG74C/M159L/C188G/V156Lのアミノ酸変異を有する変異型アリールマロン酸脱炭酸酵素を作製した。基質としてα-メチル-α-フェニルマロン酸を用いて、実施例1の4と同様の方法で酵素活性を測定した。 The mutant arylmalonate decarboxylase having amino acid mutations G74C / M159L / C188G, G74C / M159L / C188G / V156I and G74C / M159L / C188G / V156L was prepared by the method described in Example 1. Using α-methyl-α-phenylmalonic acid as a substrate, the enzyme activity was measured by the same method as 4 in Example 1.
 表12に活性測定の結果を示す。
Figure JPOXMLDOC01-appb-T000014
Table 12 shows the results of activity measurement.
Figure JPOXMLDOC01-appb-T000014
 G74C/M159L/C188G変異型、G74C/M159L/C188G/V156I変異型、G74C/M159L/C188G/V156L変異型の順で、酵素との親和性を示すKm値が向上した。また、活性も向上した。その結果、G74C/M159L/C188G変異型に対して、相対活性が2~3倍向上した変異体が得られた。 Km values indicating affinity with the enzyme were improved in the order of G74C / M159L / C188G mutant, G74C / M159L / C188G / V156I mutant, and G74C / M159L / C188G / V156L mutant. Also, the activity was improved. As a result, a mutant was obtained in which the relative activity was improved 2- to 3-fold over the G74C / M159L / C188G mutant.
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into this specification as they are.
 本発明のS体選択的高活性型の変異型アリールマロン酸脱炭酸酵素を用いることにより、医農薬、液晶材料やそれらの中間体として工業的に有用なS体のα-アリールプロピオン酸を製造することができる。 Production of S-form α-arylpropionic acid, which is industrially useful as medical pesticides, liquid crystal materials and intermediates thereof, by using the S-form selective highly active mutant arylmalonate decarboxylase of the present invention can do.
配列番号3~32 プライマー SEQ ID NO: 3 to 32 primer

Claims (12)

  1.  アリールマロン酸からS体のα-アリールプロピオン酸を生成し得る、配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列において以下の(i)の変異、(i)及び(ii)の変異、(i)及び(iii)の変異、又は(i)、(ii)及び(iii)の変異を有する、S体選択的高活性型の変異型アリールマロン酸脱炭酸酵素:
    (i) 第74番目のグリシンのシステインへの置換、及び第188番目のシステインのグリシンへの置換;
    (ii) 第48番目のチロシンの他のアミノ酸への置換;
    (iii) 第159番目のメチオニンの他のアミノ酸への置換。
    The following mutations (i) and (ii) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 capable of generating S-form α-arylpropionic acid from arylmalonic acid ) Mutation, (i) and (iii) mutation, or (i), (ii) and (iii) mutations, S-isomer selective highly active mutant arylmalonate decarboxylase:
    (i) substitution of the 74th glycine with cysteine and the substitution of the 188th cysteine with glycine;
    (ii) substitution of the 48th tyrosine with another amino acid;
    (iii) Replacement of the 159th methionine with another amino acid.
  2.  配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、かつ第188番目のシステインがグリシンに置換されているG74C/C188G変異型である、請求項1記載の変異型アリールマロン酸脱炭酸酵素。 A G74C / C188G mutant in which the 74th glycine in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine and the 188th cysteine is substituted with glycine The mutant arylmalonate decarboxylase according to claim 1.
  3.  配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されているG74C/M159L/C188G変異型である、請求項1記載の変異型アリールマロン酸脱炭酸酵素。 The 74th glycine in the amino acid sequence of the wild type arylmalonate decarboxylase shown in SEQ ID NO: 2 is replaced with cysteine, the 159th methionine is replaced with leucine, and the 188th cysteine is replaced with glycine. The mutant arylmalonate decarboxylase according to claim 1, which is a substituted G74C / M159L / C188G mutant.
  4.  配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第48番目のチロシンがフェニルアラニンに置換され、第74番目のグリシンがシステインに置換され、第159番目のメチオニンがロイシンに置換され、かつ第188番目のシステインがグリシンに置換されているY48F/G74C/M159L/C188G変異型である、請求項1記載の変異型アリールマロン酸脱炭酸酵素。 The 48th tyrosine of the amino acid sequence of the wild type arylmalonate decarboxylase shown in SEQ ID NO: 2 is replaced with phenylalanine, the 74th glycine is replaced with cysteine, and the 159th methionine is replaced with leucine. The mutant arylmalonate decarboxylase according to claim 1, which is a mutant of Y48F / G74C / M159L / C188G in which the 188th cysteine is substituted with glycine.
  5.  配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列の第74番目のグリシンがシステインに置換され、かつ第188番目のシステインがセリンに置換されているG74C/C188S変異型酵素に比較して、酵素活性が向上している、請求項1~3のいずれか1項に記載の変異型アリールマロン酸脱炭酸酵素。 The G74C / C188S mutant enzyme in which the 74th glycine in the amino acid sequence of the wild type arylmalonate decarboxylase shown in SEQ ID NO: 2 is substituted with cysteine and the 188th cysteine is substituted with serine The mutant arylmalonate decarboxylase according to any one of claims 1 to 3, wherein the enzyme activity is improved as compared with that.
  6.  請求項1~5のいずれか1項に記載の変異型アリールマロン酸脱炭酸酵素をアリールマロン酸誘導体と接触させることを含む、S体のα-アリールプロピオン酸の製造方法。 A process for producing S-form α-arylpropionic acid, which comprises contacting the mutant arylmalonic acid decarboxylase according to any one of claims 1 to 5 with an arylmalonic acid derivative.
  7.  S体のα-アリールプロピオン酸がプロフェン類である、請求項6記載の製造方法。 The production method according to claim 6, wherein the S-form α-arylpropionic acid is a profene.
  8.  S体のα-アリールプロピオン酸がイブプロフェン、ナプロキセン、フルルビプロフェン、フェノプロフェン、ケトプロフェン及びインドプロフェンからなる群から選択される、請求項7記載の製造方法。 The production method according to claim 7, wherein the S-form α-arylpropionic acid is selected from the group consisting of ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen and indoprofen.
  9.  アリールマロン酸からS体のα-アリールプロピオン酸を生成し得る、配列番号2に示される野生型のアリールマロン酸脱炭酸酵素のアミノ酸配列において以下の(i)及び(ii)の変異を有する、S体選択的高活性型の変異型アリールマロン酸脱炭酸酵素:
    (i) 第74番目のグリシンのシステインへの置換、第159番目のメチオニンのシステインへの置換、及び第188番目のシステインのグリシンへの置換;
    (iii) 第156番目のメチオニンのイソロイシン又はロイシンへの置換。
    Having the following mutations (i) and (ii) in the amino acid sequence of the wild-type arylmalonate decarboxylase shown in SEQ ID NO: 2 capable of generating S-form α-arylpropionic acid from arylmalonic acid, S-selective highly active mutant arylmalonate decarboxylase:
    (i) the replacement of the 74th glycine with cysteine, the replacement of the 159th methionine with cysteine, and the replacement of the 188th cysteine with glycine;
    (iii) Replacement of the 156th methionine with isoleucine or leucine.
  10.  請求項9記載の変異型アリールマロン酸脱炭酸酵素をアリールマロン酸誘導体と接触させることを含む、S体のα-アリールプロピオン酸の製造方法。 A process for producing S-form α-arylpropionic acid, which comprises contacting the mutant arylmalonic acid decarboxylase according to claim 9 with an arylmalonic acid derivative.
  11.  S体のα-アリールプロピオン酸がプロフェン類である、請求項10記載の製造方法。 The production method according to claim 10, wherein the S-form α-arylpropionic acid is a profene.
  12.  S体のα-アリールプロピオン酸がイブプロフェン、ナプロキセン、フルルビプロフェン、フェノプロフェン、ケトプロフェン及びインドプロフェンからなる群から選択される、請求項11記載の製造方法。 The production method according to claim 11, wherein the S-form α-arylpropionic acid is selected from the group consisting of ibuprofen, naproxen, flurbiprofen, fenoprofen, ketoprofen and indoprofen.
PCT/JP2012/054731 2011-02-28 2012-02-27 (s)-selective hyperactive mutant arylmalonate decarboxylase WO2012117999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013502304A JPWO2012117999A1 (en) 2011-02-28 2012-02-27 S-selective highly active mutant arylmalon decarboxylase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043085 2011-02-28
JP2011043085 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117999A1 true WO2012117999A1 (en) 2012-09-07

Family

ID=46757933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054731 WO2012117999A1 (en) 2011-02-28 2012-02-27 (s)-selective hyperactive mutant arylmalonate decarboxylase

Country Status (2)

Country Link
JP (1) JPWO2012117999A1 (en)
WO (1) WO2012117999A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169685A (en) * 2001-12-10 2003-06-17 Tosoh Corp Transformed arylmalonic acid decarboxylase and a method of production by using the same
WO2009068308A2 (en) * 2007-11-28 2009-06-04 Basf Se New malonate decarboxylases for industrial applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169685A (en) * 2001-12-10 2003-06-17 Tosoh Corp Transformed arylmalonic acid decarboxylase and a method of production by using the same
WO2009068308A2 (en) * 2007-11-28 2009-06-04 Basf Se New malonate decarboxylases for industrial applications

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KENJI MIYAMOTO ET AL.: "Hen'i 1 ko de Kotonaru Kino o Fuyo, Hen'i 2 ko de Koso no Enantio Sentakusei Gyakuten", BIOSCIENCE & INDUSTRY, vol. 63, no. 9, 2005, pages 583 - 586 *
KENJI MIYAMOTO: "Arylmalon San Datsu Tansan Koso no Kino Kaihen", KOSO KOGAKU NEWS, vol. 10, no. 64, 2010, pages 5 - 10 *
MIYAUCHI, Y. ET AL.: "Dramatically improved catalytic activity of an artificial (S)- selective arylmalonate decarboxylase by structure-guided directed evolution", CHEMICAL COMMUNICATIONS, vol. 47, no. 26, 14 July 2011 (2011-07-14), pages 7503 - 7505 *
OBATA, R. ET AL.: "Structural Basis for Inverting the Enantioselectivity of Arylmalonate Decarboxylase Revealed by the Structural Analysis of the Gly74Cys/Cysl88Ser Mutant in the Liganded Form", BIOCHEMISTRY, vol. 49, 2010, pages 1963 - 1969 *
TERAO Y. ET AL.: "Improvement of the activity of arylmalonate decarboxylase by random mutagenesis", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 73, 2006, pages 647 - 653 *
YUSUKE MIYAUCHI ET AL.: "Arylmalon San Datsu Tansan Koso no Kino Kaihen", THE 14TH SYMPOSIUM ON BIOCATALYST CHEMISTRY JAPAN IN SHIZUOKA, KOEN YOSHISHU, 23 September 2010 (2010-09-23), pages 28 - 29 *

Also Published As

Publication number Publication date
JPWO2012117999A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
DK2327766T3 (en) nitrilases
US9315792B2 (en) Nitrilases, nucleic acids encoding them and methods for making and using them
Ma et al. Efficient fermentative production of L-theanine by Corynebacterium glutamicum
van Oosterwijk et al. Structural basis of the substrate range and enantioselectivity of two (S)-selective ω-transaminases
Goldberg et al. Preparation of β-hydroxy-α-amino acid using recombinant D-threonine aldolase
CN104388373A (en) Construction of escherichia coli system with coexpression of carbonyl reductase Sys1 and glucose dehydrogenase Sygdh
CA2486062C (en) Nitrilases, nucleic acids encoding them and methods for making and using them
Wu et al. Characterization of four new distinct ω-transaminases from Pseudomonas putida NBRC 14164 for kinetic resolution of racemic amines and amino alcohols
JP7401116B2 (en) Novel L-amino acid oxidase and method for producing D-amino acid or derivatives thereof
Bornemann et al. Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase
EP2115153B1 (en) Nitrilases, nucleic acids encoding them and methods for making and using them
Zhu et al. Characterization of Phenylalanine Ammonia Lyases from Lettuce (Lactuca sativa L.) as Robust Biocatalysts for the Production of d-and l-Amino Acids
WO2012117999A1 (en) (s)-selective hyperactive mutant arylmalonate decarboxylase
Matsumoto et al. Structural insights into the substrate stereospecificity of d-threo-3-hydroxyaspartate dehydratase from Delftia sp. HT23: a useful enzyme for the synthesis of optically pure l-threo-and d-erythro-3-hydroxyaspartate
AU2013200739B2 (en) Nitrilases
Jiang et al. Isolation, purification and characterization of a salt-active and organic-solvent-thermostable phenylalanine dehydrogenase from Bacillus nanhaiensis DSF-15A2
Ito et al. Reaction mechanism of Zn2+-dependent d-serine dehydratase: role of a conserved tyrosine residue interacting with pyridine ring nitrogen of pyridoxal 5′-phosphate
US20200277593A1 (en) Improved biotechnological production of l-tryptophan
Coward Chemoenzymatic synthesis of novel, structurally diverse compounds
KR20230137443A (en) Construction and application of flipped ω-transaminase mutants with enantioselectivity.
JP5825086B2 (en) α-Substituted β-amino acid ester derivative asymmetric hydrolase
Fisch Catalytic Plasticity of the Aspartate/Glutamate Racemase Superfamily
AU2002350008A1 (en) Nitrilases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752836

Country of ref document: EP

Kind code of ref document: A1