WO2012116460A1 - Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal y martillo con dicho sistema - Google Patents

Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal y martillo con dicho sistema Download PDF

Info

Publication number
WO2012116460A1
WO2012116460A1 PCT/CL2012/000009 CL2012000009W WO2012116460A1 WO 2012116460 A1 WO2012116460 A1 WO 2012116460A1 CL 2012000009 W CL2012000009 W CL 2012000009W WO 2012116460 A1 WO2012116460 A1 WO 2012116460A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressurized fluid
piston
hammer
discharge
Prior art date
Application number
PCT/CL2012/000009
Other languages
English (en)
French (fr)
Other versions
WO2012116460A4 (es
Inventor
Jaime Andrés Aros
Original Assignee
Drillco Tools S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drillco Tools S.A. filed Critical Drillco Tools S.A.
Priority to MX2013009979A priority Critical patent/MX2013009979A/es
Priority to BR112013022428A priority patent/BR112013022428A2/pt
Priority to KR1020137023192A priority patent/KR101848117B1/ko
Priority to EA201300993A priority patent/EA201300993A1/ru
Priority to CN201280018529.5A priority patent/CN103534433B/zh
Priority to CA2828790A priority patent/CA2828790A1/en
Publication of WO2012116460A1 publication Critical patent/WO2012116460A1/es
Publication of WO2012116460A4 publication Critical patent/WO2012116460A4/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/06Down-hole impacting means, e.g. hammers
    • E21B4/14Fluid operated hammers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/36Percussion drill bits
    • E21B10/38Percussion drill bits characterised by conduits or nozzles for drilling fluids

Definitions

  • the present invention relates generally to pressurized fluid flow systems for percussive mechanisms operating with said fluid, particularly for bottom or DTH (Down The Hole) hammers, and more particularly for hammers bottom drilling of the normal circulation type, and for bottom hammers that use such systems.
  • DTH Down The Hole
  • the bottom hammer generally cylindrical, is used by mounting it on a drilling machine that is at surface level.
  • the drilling machine also comprises an arrangement of bars mounted together, the upper end of this arrangement being mounted on a rotating and pushing head and its lower end coupled to the bottom hammer. Through this arrangement of bars the drilling machine supplies the hammer with the pressurized fluid necessary for its operation.
  • the main moving part of the hammer is the piston.
  • This piece of the hammer has a general cylindrical shape and is arranged coaxially and slidably inside a cylindrical outer shell.
  • the piston performs an alternating movement due to the change in the pressure of the pressurized fluid contained within two main chambers, a front chamber and a rear chamber, formed inside the hammer and located at opposite ends of the piston.
  • the piston has a front end in contact with the front chamber and a rear end in contact with the rear chamber and has external sliding surfaces, or sliding sections of the outer surface of the piston (as opposed to sections with sunken areas, grooves and holes), and surfaces internal sliders, or sliding sections of the internal surface of the piston (again unlike sections with sunken areas, grooves and holes).
  • the external sliding surfaces are designed primarily to ensure the guidance and alignment of the piston inside the hammer. On the other hand, in most of the hammers these surfaces allow, together with the internal sliding surfaces of the piston, in cooperation with other elements as will be described later in this description, the control of the feed and alternate discharge of pressurized fluid to and from inside the front and rear cameras.
  • the front part of the hammer that fulfills the function of drilling is called a drill bit, and is slidably arranged at the front end of the hammer, specifically on a chuck that is mounted on the front end of the external housing, in contact with the camera frontal and adapted to receive the impact of the front end of the piston.
  • a part called a drill guide is normally used arranged inside the outer casing.
  • the rotational movement provided by the drilling machine is transmitted to the drill by means of grooved surfaces both in the back of the drill (or fist) and in the chuck.
  • the drill head larger in diameter than the outer casing, than the drill handle and the chuck, has the cutting elements that fulfill the drilling function and that extend forward from the front face of the drill bit
  • the sliding of the drill is restricted in its travel backwards by the chuck and in its forward travel by a retaining element arranged especially for said purpose.
  • a cylinder head which connects the hammer to the bar arrangement and at the end with the source of pressurized fluid.
  • the rear end of the hammer is understood as the end where the cylinder head is located and the front end of the hammer is understood as the end where the drill bit is located.
  • the process sequence for the front chamber and the rear chamber are [a -b (expansion) - c - b (compression) - a] and [c - b (compression) - a - b ( expansion) - c], respectively.
  • the transition from one state to another is independent for each chamber and is controlled by the position of the piston with respect to other parts of the hammer in such a way that the piston acts in itself as a valve, as well as an impacting element.
  • a first mode of operation when pressurized fluid is supplied to the hammer and the hammer is in an impact position, the piston immediately begins an alternating movement and in each cycle the drill is impacted by the piston, the front end of the drill thus fulfilling the function of drilling the rock at each impact.
  • the rock fragments produced are evacuated to the surface by the action of pressurized fluid discharged to the bottom of the hole from the front and rear chambers.
  • the magnitude of the pressurized fluid column with rock fragments also increases, thus generating greater resistance to the discharge of pressurized fluid from the chambers. This phenomenon negatively affects the drilling process. In some applications the filtration of water or other fluid into the hole further increases this resistance, and the operation of the hammer can stop.
  • this mode of operation of the hammer can be complemented by an assisted sweeping system which allows to discharge part of the available flow in the source of pressurized fluid directly to the bottom of the hole without going through the hammer cycle.
  • the assisted scanning system allows thorough cleaning of the hole while it is drilled.
  • a second mode of operation of the hammer or "sweeping mode" the arrangement of bars and the hammer are lifted by the drilling machine so that the drill loses contact with the rock and all pressurized fluid is discharged through the hammer directly to the bottom of the hole for cleaning purposes without going through the hammer cycle, thus ceasing the alternating movement of the piston.
  • the pressurized fluid from the assisted scanning system has an energy level substantially similar to that of the pressurized fluid discharged from the source of pressurized fluid, as opposed to what happens with the pressurized fluid discharged from the chambers, which is at a pressure substantially less product of the exchange of energy with the piston.
  • This passage can be divided into two or more ducts that terminate on the front face of the drill, so that the discharge of pressurized fluid is generated mainly from the center and through the front face of the drill towards the peripheral region of this and towards the wall of the hole, and then towards the surface by the annular space formed between the hammer and the wall of the hole and between the bars and the wall of the hole.
  • the rock fragments generated are evacuated by drag and are suspended in the pressurized fluid that is discharged to the bottom of the hole.
  • Normally circulating hammers are used in mining in underground and open pit fields.
  • the use of this type of hammers in the construction of oil, water and geothermal wells has also been extended, due to its ability to drill in rocks of medium to high hardness.
  • the soil or rock removed is not used because they are not of interest and suffer contamination in its ascent to the surface.
  • the drill bit or a cylindrical seal piece of the hammer that has a diameter substantially equal to that of the drill head and larger than the outer diameter of the outer shell, they fulfill the function of preventing the escape of pressurized fluid and rock fragments into the annular space formed between the hammer and the hole wall and between the bars and the hole wall (as in a normal hammer), forcing these fragments to move to the surface through of the sampling tube and arrangement of bars by the action of the pressurized fluid.
  • the drill performs the sealing function, it has a perimeter zone that insulates the front face of the drill from said annular space.
  • the parameters used to assess their usefulness and performance are the following: 1) penetration speed, given by the power generated in the cycle of the pressurized fluid in the hammer and whose value depends on two variables: the pressurized fluid consumption and the energy conversion efficiency of the cycle understood as power per mass unit of fluid pressurized consumed;
  • pressurized fluid consumption which strongly depends on the dead volume of the front chamber, the dead volume of the rear chamber and the design of the pressurized fluid cycle in the hammer;
  • Different pressurized fluid flow systems are used in the hammers for the process of filling the front chamber and the rear chamber with pressurized fluid and discharge of the pressurized fluid from them.
  • a feeding chamber formed ' inside the hammer from which, and depending on the position of the piston, the pressurized fluid is directed to the front chamber or to the rear chamber.
  • the piston acts as a valve, so that depending on the position in which it is located is the state in which the front chamber and the rear chamber are located, the possible states being those already indicated above: filling, expansion - compression and discharge.
  • Type A Flow System represented by US4084646, US5944117 and US6135216
  • the designs described in these patents have a jacket mounted inside the outer shell, which creates a flow passage between the outer surface of said jacket and the inner surface of the outer shell.
  • This flow passage extends along the rear half of the piston and flows into the feed chamber, which is partially defined by the external sliding surface of the piston, near its midpoint, and the internal surface of the external housing .
  • the presence of this shirt requires the use of a dual diameter piston, its diameter being larger at its front end and smaller at its rear end, where the shirt is located.
  • the area where the external diameter of the piston changes that is, where there is a projection on the external sliding surface of the piston, is subject to an average pressure equal to the feed pressure of the hammer. Therefore, the net work done by this area on the piston in each cycle is zero, that is, it does not contribute to the process of transferring energy to the piston, resulting in a reduced rear thrust area.
  • an air guide is available to control the discharge of the rear chamber, the air guide being a coaxial tubular part with the piston and the external housing and arranged on the rear face of the rear camera.
  • this foot valve is a hollow tubular part coaxial with the piston and the external housing that emerges from the rear face of the drill, known as impact face.
  • Type B Flow System represented by US5984021, US4312412 and US6454026
  • the feed tube interacts with perforations and turning inside the piston.
  • the control of the piston on the condition of the chambers is complemented by turning on the external sliding surface of the piston and turning on the internal surface of the external housing.
  • the discharge of the front chamber is controlled by a foot valve in the drill (US5984021 and US4312412) or alternatively by a frontal area in the smaller diameter piston that interacts with a piston guide (US6454026).
  • This latter solution can also be used as an alternative to the foot valve in the Type A flow system and in the other pressurized fluid flow systems described below.
  • the hammers with the Type A flow system have a more robust piston and a simpler manufacturing process than the hammers with the Type B flow system.
  • the generation of the feeding chamber inside of the feeding tube causes a delay in the establishment of the flow when the opening of the pressurized fluid feed to the chambers occurs, due to the distance between it and these.
  • the perforations also result in an increase in the dead volume of the chambers, the main consequence of this being an increase in the consumption of pressurized fluid and a reduction in the efficiency of energy conversion in the thermodynamic cycle.
  • the presence of the feeding tube forces the use of a piston that has a central perforation that extends along it, resulting in the power effects already mentioned for the Type A system.
  • the design described in this patent has three different sets of feed ducts built into the wall of the external housing.
  • the first set of ducts terminate on the inner surface of the outer shell and generate a feed chamber between the outer sliding surface of the piston and the inner surface of the outer shell.
  • the second and third set of ducts allow the flow of pressurized fluid from the feed chamber to the front chamber and the rear chamber, respectively.
  • the feeding chamber interacts with recesses in the external sliding surface of the piston and with the second and third set of ducts in the external housing to control the filling of the front chamber and the rear chamber, while the discharge of the front chamber and the rear chamber is controlled with the use of a foot valve and an air guide, respectively (refer to the Type A flow system applied to a normal circulation hammer).
  • Type D Flow System represented by US5113950 and US5279371
  • a feed chamber is generated at the rear end of the piston, these designs having similar characteristics to the Type A and Type B flow systems.
  • the power system Type D flow uses a central feeding tube, but unlike that the feeding chamber does not form inside but, similar to the Type A flow system, the feeding chamber is created and acts on a portion of the rear end of the piston.
  • the feeding tube fulfills the function of helping in the conduction of the pressurized fluid to the feeding chamber and does not participate in its formation. All of the above results in a reduction in the area of rear thrust of the piston.
  • the need to unload the rear chamber forces the use of a piston with a central perforation that emerges on the front face of the same, thus reducing even more the rear thrust area and the frontal thrust area of the piston, which generates as result in a cycle of even less power.
  • Type 1 Flow System represented by US5154244, RE36002 (US), US6702045 and US5685380 These patents describe a flow system where pressurized fluid is conducted from the rear end of the drill to the front end of the drill through cooperatively formed channels between machined grooves on the inner surface of the drill holder and machined grooves on the surface outside the drill handle, and with a ring or sleeve that acts as a seal element to generate closed passages in order to discharge the pressurized fluid to the peripheral area of the front end of the drill.
  • a flow system is shown where the pressurized fluid is conducted from the rear end of the drill, to an intermediate point outside it, by means of channels formed in the outside of the drill These channels work cooperatively with the grooves of the chuck to generate closed passages. From this intermediate point the flow of pressurized fluid is diverted through perforations in the chuck to a passage generated between the outer surface of the chuck and the inner surface of the seal ring or jacket such that the pressurized fluid is discharged into the area peripheral of the front end of the drill.
  • Type A and Type D From the point of view of the control of the status of the front camera and the rear camera, the commercial designs supported by these patents are Type A and Type D.
  • a frontal area in the smaller diameter piston that interacts with a piston guide.
  • the discharge of the rear chamber is controlled by means of an air guide which opens or obstructs the passage of air from the rear chamber to a coaxial central channel formed between the internal surface of the piston and the external surface of the sampling tube, this passage extending from the rear chamber to the rear end of the drill.
  • the disadvantages of this flow system are the same associated with the Type A and Type D flow systems, and in particular it negatively affects the design of the drill in two aspects.
  • the first is the need for multiple machining processes to generate the channels outside the drill which increases its manufacturing cost.
  • the second is that due to the presence of these channels, the drag surface of the stretch marks, which depends on the contact area of each groove individually and the total number of grooves, may be insufficient in certain applications.
  • This last problem can be compensated by lengthening the drill bit, but this implies increasing the cost of the hammer.
  • Type 2 flow system represented by US5407021 and US4819746
  • Patents US5407021 and US4819746 describe a flow system where pressurized fluid is conducted from the rear end of the drill, to an intermediate point on the outer surface of the drill, through channels formed cooperatively by machined grooves on the inner surface of the chuck and machined grooves on the outer surface of the drill handle. From this intermediate point the flow of pressurized fluid is diverted through mainly longitudinal perforations created in the drill head so as to discharge the pressurized fluid in the peripheral area of the front end of the drill.
  • the drill head additionally performs the function of preventing the escape of pressurized fluid through the annular space formed between the hammer and the hole wall and between the bars and the hole wall.
  • the discharge of the rear chamber is controlled by means of an air guide (US4819746) which opens or obstructs the flow of pressurized fluid from the rear chamber to a coaxial central channel formed between the internal sliding surface of the piston and the external surface of the sampling tube, which extends to the rear end of the drill.
  • an air guide (US4819746) which opens or obstructs the flow of pressurized fluid from the rear chamber to a coaxial central channel formed between the internal sliding surface of the piston and the external surface of the sampling tube, which extends to the rear end of the drill.
  • This third aspect is given by the mechanical weakness induced in the drill product of perforations, mainly longitudinal, created in the head of the drill to channel the pressurized fluid and discharge it in the peripheral area of the front end of the drill, to from the periphery of This generates a flow of pressurized fluid through the front face of the drill into the coaxial central duct of the hammer and bars.
  • a further objective of the invention is to obtain a reverse circulation hammer with a greater drilling capacity in depth without a noticeable reduction in penetration speed or in the resilience of rock fragments.
  • pressurized fluid flow system of the invention incorporates an assisted scanning system. In this way the depth drilling capacity is achieved.
  • the drill has been designed such that the conventional central passage at the rear end of the drill and the two or more passages that converge to this central passage used in normal circulation hammers have been replaced by one or more passages of swept through the drill bit, extending from the cooperatively formed channels between the grooves in the chuck and in the drill's fist to the front face of the drill.
  • the pressurized fluid discharge configuration of the invention resembles the Type 1 and Type 2 flow systems in the section of the bit of the drill and henceforth follows a different path to the face of the bit.
  • the design provides only a single sliding surface for the piston, thus preventing the failure of this component due to thermal cracks induced by friction between the piston and misaligned parts (air guide, feed tube, foot valve, etc. ).
  • the pressurized fluid flow system of the invention is distinguished by having a jacket coaxially disposed between the outer shell and the piston; and two chambers, a feeding chamber and a discharge chamber, delimited by the outer surface of the jacket and the inner surface of the outer shell, and separated by a dividing wall.
  • the feed chamber is permanently filled with fluid from the source of pressurized fluid and communicated without interruption with the discharge of said source.
  • the discharge chamber that is permanently communicated with the bottom of the hole pierced by the hammer.
  • the feed chamber is arranged in series longitudinally with the discharge chamber and both chambers are defined by two recesses on the inner surface of the outer shell.
  • first and second means of fluid conduction in the piston and multiple through holes are provided. feed and discharge in the jacket, in which these through-feed and discharge holes face the feed and discharge chambers, respectively.
  • the state of the front camera and the rear camera are controlled by the interaction of a single pair of components, compared to the prior art where control is achieved with a larger number of components interacting together.
  • the preceding configuration allows optimal use of the cross-sectional area of the hammer purchased with known hammers.
  • the sectional area of the hammer is mainly shared by the piston, the outer shell, the sampling tube and fluid flow areas pressurized reserved for the filling of the front chamber and the rear chamber and pressurized fluid flow areas for the discharge of the front chamber and the rear chamber.
  • the feeding chamber in series longitudinally with the discharge chamber, it is possible to increase the front thrust area and the rear thrust area of the piston due to the fact that they share the sectional area only with the area occupied by the Discharge chamber and feed chamber, respectively.
  • the front thrust area and the rear thrust area of the piston are equal or almost equal in magnitude under the configuration of the invention. Additionally, the control of the discharge of the front chamber and the rear chamber by interaction between the piston and the sleeve, makes it possible to dispense with the use of the foot valve or of a frontal area in the piston of smaller diameter that interacts with a piston guide or an air guide for these purposes, thus avoiding additional losses in the thrust areas as with the prior art flow systems.
  • one or more scanning channels can be disposed in the dividing wall to allow part of the available pressurized fluid flow from the power source to be discharged directly to the bottom of the hole to thereby form an assisted scanning system and achieve the desired greater depth drilling capacity without a substantial reduction in penetration speed.
  • Said channels are preferably longitudinal channels, more preferably propellers and in a preferred embodiment of the invention the scanning channels are interlocked with slots for mounting them in removable fluid seals which, when mounted in the slots, deactivate the assisted scanning system. .
  • a discharge chamber contiguous to the inner surface of the outer shell allows the flow of pressurized fluid that exits the discharge chamber to the outside of the drill fist to be diverted.
  • the flow of pressurized fluid is then discharged from these channels to the front end of the drill through one or more sweeping passages pierced through the body of the drill, which extend from said channels to the front face of the drill. This allows you to configure a simpler and more robust drill design for a normal circulation hammer.
  • each sweeping passage can be divided into a plurality of secondary sweeping passages before reaching the front face of the drill.
  • the normal circulation hammer of the invention is characterized by having the pressurized fluid flow system and the pressurized fluid discharge configuration outside the drill bit described above.
  • Figure 1 represents a longitudinal sectional view of a normal circulation hammer according to the invention, specifically showing the piston arrangement with respect to the outer casing, sleeve and drill bit when the front chamber is being fed with pressurized fluid and the rear chamber is discharging pressurized fluid to the bottom of the hole.
  • Figure 2 represents a longitudinal sectional view of a normal circulation hammer according to the invention, specifically showing the piston arrangement with respect to the outer casing, sleeve and drill bit when the rear chamber is being fed with pressurized fluid and the front chamber is discharging pressurized fluid to the bottom of the hole.
  • Figure 3 represents a longitudinal sectional view of a normal circulation hammer according to the invention, specifically showing the arrangement of the piston and the drill with respect to the outer casing and the sleeve when the hammer is in sweeping mode.
  • the hammer flow system has also been shown in relation to the solution designed in the invention to bring the pressurized fluid from the front chamber and the rear chamber to the bottom of the hole, in all modes of operation and states; specifically to the front end of the drill, for the evacuation of rock fragments.
  • the direction and direction of the pressurized fluid flow has been indicated.
  • a normal circulating DTH hammer comprising the following main components:
  • an external cylindrical housing (1) with a rear end and a front end;
  • a piston (60) arranged in a sliding and coaxial manner inside said outer casing (1) and capable of moving alternately due to the change in the pressure of the pressurized fluid contained within a front chamber (240) and a rear chamber (230), located at opposite ends of the piston (60), the piston (60) having multiple external sliding surfaces (64); Y
  • a drill (90) arranged in a sliding manner in the chuck (110), where the sliding movement of the drill (90) is limited by the drill retainer (210) and the support face of the drill (111) of the drill ( 110); and where the drill (90) comprises a fist (95) at its rear end and a head (96) at its front end, the head of the drill (96) being larger in diameter than the fist (95) having a front face (99); the drill handle (95) having an outer surface (98) with grooves (93) machined thereon; channels (97) cooperatively formed between the grooves (112) on the inner surface (113) of the chuck (110) and the grooves (93) on the outer surface (98) of the drill handle (95).
  • the pressurized fluid flow system of the invention includes a jacket (40) arranged coaxially between the outer housing (1) and the piston (60).
  • the rear chamber (230) of the hammer is defined by the cylinder head (20), the sleeve (40) and the rear thrust area (62) of the piston (60).
  • the volume of this chamber is variable and depends on the position of the piston (60).
  • the front chamber (240) of the hammer is defined by the drill bit (90), the sleeve (40), the drill guide (150) and the front thrust area (63) of the piston (60).
  • the volume of this last chamber is variable and also depends on the position of the piston (60).
  • the external housing (1) has two chambers defined by respective recesses on its internal surface, a feed chamber (2) for supplying pressurized fluid to the front chamber (240) and the rear chamber (230), and a discharge chamber ( 3) to discharge pressurized fluid from the front chamber (240) and the rear chamber (230); both chambers are internally delimited by the shirt (40) and separated by a dividing wall (5).
  • a feed chamber (2) for supplying pressurized fluid to the front chamber (240) and the rear chamber (230)
  • a discharge chamber ( 3) to discharge pressurized fluid from the front chamber (240) and the rear chamber (230); both chambers are internally delimited by the shirt (40) and separated by a dividing wall (5).
  • One or more scanning channels (6) are provided in said dividing wall (5), to allow a direct flow of pressurized fluid from the feed chamber (2) to the discharge chamber (3) such that part of the flow Pressurized fluid available from the source of pressurized fluid can be discharged directly to the bottom of the hole, thereby generating an assisted scanning system.
  • the partition wall (5) has annular holder slots (7) with removable fluid seals (170) mounted thereon. These annular grooves (7) are interlocked with said scanning channels (6) and the seals of fluid (170) block the direct flow of pressurized fluid from the feed chamber (2) to the discharge chamber (3), thereby disabling the assisted scanning system. The removal of such fluid seals (170) enables the assisted scanning system.
  • the jacket (40) has multiple through feed openings (41, 42) and multiple through discharge openings (43) in front of the feed and discharge chambers (2, 3), respectively.
  • the piston (60) has fluid conduction means (66, 67, 80, 81) that allow the flow of pressurized fluid from the cylinder head (20) to the feed chamber (2), from the feed chamber (2) towards the front camera (240) or the rear camera (230) and from the front camera (240) or the rear camera (230) towards the discharge chamber (3).
  • the impact face (61) of the piston (60) When in the hammer cycle, the impact face (61) of the piston (60) is in contact with the impact face (91) of the drill bit (90) and the drill bit (90) is at the rearmost point of its path, that is, when the hammer is in an impact position (see Figure 1), the front chamber (240) is in direct fluid communication with the feed chamber (2) through the front set of through-opening openings. feed (42) of the jacket (40); the rear set of radial feed passages (67) of the piston (60) and through one or more central axial feed passages (80) formed in the piston (60). As illustrated, the one or more central axial feed passages (80) are fluidly connected to the set of feed conduits (67). In this way, the pressurized fluid can flow freely from the feed chamber (2) to the front chamber (240) and initiate the recoil movement of the piston (60).
  • the front chamber (240) of the hammer will be fluidly communicated with the discharge chamber (3) through the frontal reduction (81) of the piston (60) and through the assembly of through discharge openings (43) of the jacket (40) (see Figure 2).
  • the pressurized fluid contained in the front chamber (240) will be discharged into the discharge chamber (3) and from this chamber can flow freely out of the hammer through the channels (97) formed cooperatively between the grooves (93) of the drill handle (95) and the grooves (112) of the chuck (110) and through the sweeping passages (92) of the drill (90) to the front face (99) of the drill (90).
  • the drill bit (90) is aligned with the external casing (1) of the hammer by a drill guide (150) having discharge slots (151) as shown in the figures.
  • the discharge slots connect the discharge chamber (3) with the channels (97), such that the discharge of pressurized fluid flows through these discharge slots (151) and then reaches the channels (97 ) and subsequently flows through the sweeping passages (92) of the drill (90).
  • the invention is not limited to the use of a drill guide and it is possible to use alternative alignment solutions with corresponding pressurized fluid discharge means.
  • the impact face (61) of the piston (60) When in the hammer cycle, the impact face (61) of the piston (60) is in contact with the impact face (91) of the drill bit (90) and the drill bit (90) is at the rearmost point of its path, that is, when the hammer is in an impact position (see Figure 1), the rear chamber (230) is in direct fluid communication with the discharge chamber (3) through bifunctional longitudinal passages (66 ) extending through the piston body (60), from the rear thrust area (62) to the external sliding surfaces (64) of the piston (60), and through the set of through discharge openings (43) of the jacket (40).
  • the pressurized fluid contained inside the rear chamber (230) can be discharged into the discharge chamber (3), and from the discharge chamber (3) can flow out of the hammer to the front face ( 99) of the drill bit (90) in a similar manner as the pressurized fluid is discharged from the front chamber (240).
  • the rear chamber (230) of the hammer By continuing the movement of the piston (60), the rear chamber (230) of the hammer will be fluidly communicated with the feed chamber (2) through the front set of through feed openings (42) of the jacket (40) and through of the bifunctional longitudinal passages (66) of the piston (60). In this way the rear chamber (230) will be supplied with pressurized fluid from the feed chamber (2). Scan mode operation
  • the drill bit (90) will reach the front end of its travel then passing the hammer to operate in its scanning mode.
  • the pressurized fluid is conducted directly to the front end of the drill bit (90) through the following route: into the feed chamber (2) through the cylinder head (20) and the rear set of through feed openings (41) of the jacket (40); and from the feed chamber (2) to the discharge chamber (3) through the front set of feed through openings (42) of the sleeve (40), through the bifunctional longitudinal passages (66) of the piston ( 60), and through the set of through discharge openings (43) of the jacket (40). From the discharge chamber (3) the pressurized fluid can flow freely out of the hammer to the front face (99) of the drill bit (90) in a similar way as the pressurized fluid is discharged from the rear and front chambers (230, 240).

Abstract

Un sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal comprende una camisa dispuesta coaxialmente entre una carcasa externa y un pistón que se mueve en forma alternante dados los cambios en la presión del fluido presurizado contenido en una cámara frontal y una cámara trasera ubicadas a lados opuestos del pistón, donde el flujo hacia adentro y hacia afuera de estas cámaras es únicamente controlado por el traslape o posición relativa del pistón con la camisa mientras que una cámara de alimentación y una cámara de descarga definidas por rebajes en la superficie interna de la carcasa externa y separadas por una pared divisoria respectivamente alimentan y descargan el fluido presurizado de la cámara frontal y la cámara trasera. Un martillo de fondo de circulación normal con este sistema comprende una broca con uno o más pasajes de barrido que se extienden desde canales formados cooperativamente entre estrias en la superficie interna del portabroca y estrías en la superficie externa del puño de la broca, hacia la cara frontal de la broca, para descargar el fluido presurizado hacia afuera del martillo.

Description

SISTEMA DE FLUJO DE FLUIDO PRESURIZADO PARA UN MARTILLO DE FONDO DE CIRCULACIÓN NORMAL Y MARTILLO CON DICHO SISTEMA.
CAMPO DE APLICACIÓN DE LA INVENCIÓN
La presente invención se refiere en forma general a sistemas de flujo de fluido presurizado para mecanismos percusivos que operan con dicho fluido, particularmente para martillos de perforación de fondo o DTH (Down The Hole, por sus siglas en inglés), y más particularmente para martillos de perforación de fondo del tipo circulación normal, y para martillos de fondo que utilizan dichos sistemas.
ESTADO DEL ARTE Y PROBLEMAS QUE PRESENTA
Antecedentes
Existe una gran variedad de mecanismos de perforación percusivos que utilizan un fluido presurizado como medio de transmisión de potencia. Entre estos se encuentran los martillos DTH que son utilizados ampliamente en la industria de la perforación, tanto en la minería, como en obras civiles y la construcción de pozos de agua, de petróleo y geotérmicos. El martillo de fondo, de forma general cilindrica, es utilizado montándolo en una máquina perforadora que se encuentra a nivel de la superficie. La máquina perforadora también comprende un arreglo de barras montadas juntas, el extremo superior de este arreglo estando montado en un cabezal de rotación y empuje y su extremo inferior acoplado al martillo de fondo. A través de este arreglo de barras la máquina perforadora suministra al martillo el fluido presurizado necesario para su operación.
Construcción del Martillo
La principal pieza móvil del martillo es el pistón. Esta pieza del martillo tiene forma general cilindrica y está dispuesta en forma coaxial y deslizante al interior de una carcasa externa cilindrica. Cuando el martillo opera en el modo conocido como "modo de perforación", el pistón realiza un movimiento alternante debido al cambio de la presión del fluido presurizado contenido al interior de dos cámaras principales, una cámara frontal y una cámara trasera, formadas dentro del martillo y localizadas en extremos opuestos del pistón. El pistón tiene un extremo frontal en contacto con la cámara frontal y un extremo trasero en contacto con la cámara trasera y tiene superficies deslizantes externas, o secciones deslizantes de la superficie externa del pistón (a diferencia de secciones con áreas hundidas, ranuras y agujeros), y superficies deslizantes internas, o secciones deslizantes de la superficie interna del pistón (nuevamente a diferencia de secciones con áreas hundidas, ranuras y agujeros). Las superficies deslizantes externas son diseñadas principalmente para asegurar el guiado y el alineamiento del pistón dentro del martillo. Por otro lado, en la mayoría de los martillos estas superficies permiten, junto con las superficies deslizantes internas del pistón, en cooperación con otros elementos como se describirán más adelante en esta descripción, el control de la alimentación y descarga alternada de fluido presurizado hacia y desde el interior de las cámaras frontal y trasera.
La pieza frontal del martillo que cumple la función de perforación se denomina broca, y va dispuesta en forma deslizante en el extremo frontal del martillo, específicamente en un portabroca que se encuentra montado en el extremo frontal de la carcasa externa, en contacto con la cámara frontal y adaptada para recibir el impacto del extremo frontal del pistón.
Para asegurar la correcta alineación entre la carcasa externa y la broca, normalmente se utiliza una pieza denominada guía de broca dispuesta al interior de la carcasa externa. El movimiento rotacional provisto por la maquina perforadora es transmitido a la broca por medio de superficies estriadas tanto en la parte trasera de la broca(o puño) como en el portabroca. En tanto, la cabeza de la broca, de mayor diámetro que la carcasa externa, que el puño de la broca y que el portabroca, tiene montados los elementos cortantes que cumplen la función de perforación y que se extienden hacia adelante desde la cara frontal de la broca. El deslizamiento de la broca está restringido en su recorrido hacia atrás por el portabroca y en su recorrido hacía adelante por un elemento de retención dispuesto especialmente para dicho fin. En la parte trasera del martillo se encuentra una culata la cual que conecta el martillo al arreglo de barras y al final con la fuente de fluido presurizado.
En la descripción precedente y la que sigue se entiende por extremo trasero del martillo el extremo donde se ubica la culata y se entiende por extremo frontal del martillo, el extremo donde se ubica la broca.
Operación del Martillo
Cuando el martillo opera en el modo de perforación, la cámara frontal y la cámara trasera pasan por los siguientes estados:
a- alimentación con fluido presurizado, en que el fluido proveniente desde la fuente de fluido presurizado es libre de fluir hacia el interior de la cámara;
b- expansión o compresión, dependiendo del sentido del movimiento del pistón, en que la cámara está herméticamente sellada y el volumen que encierra se incrementa o se reduce; y
c- descarga del fluido presurizado, en que fluido proveniente desde la cámara es libre de fluir hacia el fondo del agujero; este flujo de descarga permite el barrido por arrastre de los fragmentos de roca generados por la acción de la broca, fragmentos que son arrastrados en suspensión en el flujo de fluido presurizado hacia la superficie (proceso denominado barrido del agujero).
De acuerdo con el movimiento alternante del pistón, partiendo desde la posición en que el pistón está en contacto con la broca y ésta se encuentra en el límite trasero de su recorrido (posición conocida como posición de impacto) y finalizando en la misma posición (con el pistón impactando la broca), la secuencia de procesos para la cámara frontal y la cámara trasera son [ a -b(expansión) - c - b(compresión) - a ] y [ c - b(compresión) - a - b(expansión) - c ], respectivamente. La transición de un estado a otro es independiente para cada cámara y es controlada por la posición del pistón respecto a otras piezas del martillo de tal forma que el pistón actúa en sí mismo como una válvula, además de elemento i m pactante. En un primer modo de operación, o modo de perforación, al suministrársele fluido presurizado al martillo y estando el martillo en posición de impacto, el pistón inmediatamente comienza un movimiento alternante y en cada ciclo la broca es impactada por el pistón, el extremo frontal de la broca cumpliendo así la función de perforar la roca en cada impacto. Los fragmentos de roca producidos son evacuados a la superficie por la acción del fluido presurizado descargado al fondo del agujero desde las cámaras frontal y trasera. A medida que la profundidad del agujero aumenta, la magnitud de la columna de fluido presurizado con fragmentos de roca también aumenta, generándose así una mayor resistencia a la descarga de fluido presurizado desde las cámaras. Este fenómeno afecta negativamente el proceso de perforación. En algunas aplicaciones la filtración de agua u otro fluido hacia el interior del agujero incrementa aún más esta resistencia, y la operación del martillo puede llegar a detenerse.
En algunos tipos de martillo, este modo de operación del martillo puede ser complementado con un sistema de barrido asistido el cual permite descargar parte del flujo disponible en la fuente de fluido presurizado directamente al fondo del agujero sin pasar por el ciclo del martillo. El sistema de barrido asistido permite la limpieza a fondo del agujero mientras es perforado.
En un segundo modo de operación del martillo, o "modo de barrido", el arreglo de barras y el martillo son levantados por la máquina perforadora de tal forma que la broca pierde contacto con la roca y todo el fluido presurizado es descargado a través del martillo directamente al fondo del agujero para efectos de limpieza sin pasar por el ciclo del martillo, cesando así el movimiento alternante del pistón.
El fluido presurizado proveniente del sistema de barrido asistido posee un nivel de energía sustancialmente similar al del fluido presurizado descargado desde la fuente de fluido presurizado, en contraposición a lo que ocurre con el fluido presurizado descargado desde las cámaras, el cual se encuentra a una presión sustancialmente menor producto del intercambio de energía con el pistón. Aplicaciones
El uso de estas herramientas de percusión se da en dos tipos de aplicaciones industriales:
1) Producción, donde se utiliza un tipo de martillo llamado "de circulación normal", en que los fragmentos de roca producidos durante la operación de perforación son barridos a la superficie a través del espacio anular definido por la pared del agujero y la superficie externa del martillo y del arreglo de barras, lo que produce desgaste de las superficies exteriores del martillo y de las barras por la acción de dichos fragmentos removidos. El fluido presurizado proveniente de las cámaras y del sistema de barrido asistido es descargado a través de un pasaje central al interior de la broca que se extiende desde su extremo trasero hasta su extremo frontal. Este pasaje puede dividirse en dos o mas conductos que terminan en la cara frontal de la broca, de tal forma que la descarga del fluido presurizado es generada principalmente desde el centro y a través de la cara frontal de la broca hacia la región periférica de esta y hacia la pared del agujero, y luego hacia la superficie por el espacio anular formado entre el martillo y la pared del agujero y entre las barras y la pared del agujero. Los fragmentos de roca generados son evacuados por arrastre y se encuentran en suspensión en el fluido presurizado que es descargado al fondo del agujero.
Los martillos de circulación normal se usan en minería en yacimientos subterráneos y de rajo abierto. También se ha extendido el uso de este tipo de martillos en la construcción de pozos de petróleo, de agua y geotérmicos, debido a su capacidad de perforar en rocas de dureza media a alta. En general el suelo o roca removidos no son utilizados debido a que no son de interés y sufren contaminación en su ascenso a la superficie.
2) Exploración, donde se utiliza un tipo de martillo llamado "de circulación reversa", el cual permite que los fragmentos de roca removidos del fondo del agujero sean recuperados en la superficie por medio de la acción del fluido presurizado descargado al fondo del agujero. El fluido presurizado proveniente de las cámaras es descargado en la zona periférica del extremo frontal de la broca, generando de este modo un flujo de fluido presurizado a través de la cara frontal de la broca hacia el interior de un pasaje central continuo formado a lo largo del martillo, típicamente a través de un tubo al interior de éste conocido como tubo de muestreo que se extiende desde la broca hasta la culata, y a lo largo de las barras de doble pared que conforman el arreglo de barras. Este pasaje central nace al interior de la broca en un punto en el cual convergen dos o más pasajes de barrido que se originan en la cara frontal de la broca. Los fragmentos de roca son arrastrados por la acción del fluido presurizado hacia el pasaje central, siendo dichos fragmentos recuperados en la superficie. El flujo de fluido presurizado con los fragmentos de roca en suspensión produce el desgaste de las superficies interiores de todos los elementos que conforman dicho pasaje central.
Mientras se perfora el agujero, ya sea la broca o una pieza de sello cilindrica del martillo que tiene un diámetro sustancialmente igual al de la cabeza de la broca y mayor al del diámetro externo de la carcasa externa, cumplen la función de evitar el escape de fluido presurizado y fragmentos de roca hacia el espacio anular formado entre el martillo y la pared del agujero y entre las barras y la pared del agujero(como ocurre en un martillo de circulación normal), forzando a estos fragmentos a desplazarse a la superficie a través del tubo de muestro y arreglo de barras por la acción del fluido presurizado. En el caso que la broca realice la función de sellado, ésta posee una zona perimetral que aisla la cara frontal de la broca de dicho espacio anular.
El uso de este tipo de herramientas permite la recuperación de más del 90% de los fragmentos de roca, que no sufren contaminación en su viaje a la superficie, y son resguardados para su posterior análisis.
Parámetros de Desempeño
Desde el punto de vista de los usuarios de martillos, los parámetros que se utilizan para evaluar su utilidad y desempeño son los siguientes: 1) velocidad de penetración, dada por la potencia generada en el ciclo del fluido presurizado en el martillo y cuyo valor depende de dos variables: el consumo de fluido presurizado y la eficiencia de conversión de energía del ciclo entendida como potencia por unidad másica de fluido presurizado consumido;
2) durabilidad del martillo ante el desgaste inducido por el flujo de fluido presurizado arrastrando fragmentos de roca en suspensión hacia la superficie, siendo la durabilidad fuertemente dependiente de las características de los fragmentos de roca y del espesor de las piezas en contacto con el flujo de fluido presurizado;
3) consumo de fluido presurizado, que depende fuertemente del volumen muerto de la cámara frontal, del volumen muerto de la cámara trasera y del diseño del ciclo de fluido presurizado en el martillo;
4) capacidad de perforar en profundidad, que depende de la capacidad del martillo de entregar fluido presurizado con un alto nivel de energía al fondo del agujero;
5) costo de fabricación, el cual depende de la complejidad en el mecanizado de las piezas que conforman el martillo y su cantidad, además de la materia prima utilizada por cada una de ellas; y
6) confiabilidad del martillo, la cual depende de la calidad de su proceso de fabricación y de la robustez del diseño de la herramienta; y
7) la eficiencia en la recuperación de los fragmentos de roca (sólo para martillos de circulación reversa), la cual está vinculada principalmente a la capacidad del martillo para sellar el agujero y evitar la filtración de fluido presurizado y fragmentos de roca al espacio anular formado entre el martillo y la pared del agujero y entre el arreglo de barras y la pared del agujero.
Cabe señalar que la velocidad de penetración, durabilidad del martillo, consumo de fluido presurizado, confiabilidad del martillo y capacidad de perforación en profundidad son factores que inciden directamente en el costo de operación para el usuario. En general, un martillo más confiable y más rápido que mantenga una vida útil dentro de límites aceptables será siempre preferido para cualquier aplicación.
Sistemas de Flujo de Fluido Presurizado
Distintos sistemas de flujo de fluido presurizado son usados en los martillos para el proceso de llenado de la cámara frontal y la cámara trasera con fluido presurizado y de descarga del fluido presurizado desde ellas. En todos ellos existe una cámara de alimentación formada'al interior del martillo desde la cual, y dependiendo de la posición del pistón, el fluido presurizado es dirigido a la cámara frontal o a la cámara trasera. En general, el pistón actúa como una válvula, de tal forma que dependiendo de la posición en que se encuentre éste es el estado en que se encuentran la cámara frontal y la cámara trasera, siendo los estados posibles los ya señalados con anterioridad: llenado, expansión- compresión y descarga.
En todo momento la fuerza neta ejercida sobre el pistón es el resultado de la presión existente en la cámara frontal, del área del pistón en contacto con dicha cámara(área de empuje frontal del pistón), de la presión existente en la cámara trasera, del área del pistón en contacto con dicha cámara (área de empuje trasera del pistón), del peso de éste y de las fuerzas disipativas que pudieran existir. Mientras mayor sean las áreas de empuje del pistón, mayores serán las fuerzas generadas sobre el pistón debido a la presión del fluido presurizado y mayores los niveles de potencia y eficiencia de conversión de energía que se podrán lograr.
A continuación se describen los diferentes sistemas de flujo de fluido presurizado conocidos respecto a las soluciones para controlar el estado de la cámara frontal y la cámara trasera de un martillo DTH. Los ejemplos corresponden a martillos de circulación normal pero son igualmente aplicables a martillos de circulación reversa.
Sistema de Flujo Tipo A, representado por las patentes US4084646, US5944117 y US6135216 Los diseños descritos en estas patentes poseen una camisa montada dentro de la carcasa externa, la cual crea un pasaje de flujo entre la superficie externa de dicha camisa y la superficie interna de la carcasa externa. Este pasaje de flujo se extiende a lo largo de la mitad trasera del pistón y desemboca en la cámara de alimentación, la que está definida parcialmente por la superficie deslizante externa del pistón, cerca de su punto medio, y la superficie interna de la carcasa externa. La presencia de esta camisa exige el uso de un pistón de diámetro dual, siendo mayor el diámetro de éste en su extremo frontal y menor en su extremo trasero, donde se ubica la camisa.
La zona donde cambia el diámetro externo del pistón, esto es, donde existe un resalto en la superficie deslizante externa del pistón, se encuentra sometida a una presión en promedio igual a la presión de alimentación del martillo. Por lo tanto, el trabajo neto realizado por esta zona sobre el pistón en cada ciclo es nulo, es decir, no aporta al proceso de transferencia energía al pistón, teniendo como consecuencia un área de empuje trasera reducida.
Más aún, en los martillos de circulación normal o circulación reversa con este tipo de flujo, se dispone de una guía de aire para controlar la descarga de la cámara trasera, siendo la guía de aire una pieza tubular coaxial con el pistón y la carcasa externa y dispuesta en la cara trasera de la cámara trasera. Asimismo, se dispone de una válvula de pie (footvalve) para controlar la descarga de la cámara frontal, siendo esta válvula de pie una pieza tubular hueca coaxial con el pistón y la carcasa externa que emerge de la cara trasera de la broca, conocida como cara de impacto.
Lo anterior obliga a usar un pistón con una perforación central, la cual se extiende a todo su largo e interactúa con la guía de aire y la válvula de pie. Esta perforación central reduce aún más el área de empuje trasera y el área de empuje frontal del pistón, lo que genera como resultado un ciclo de aún menor potencia. Adicionalmente, la alineación de la camisa es un problema frecuente en este tipo de diseño, la que de no lograrse, se traduce en fuerzas disipativas que restan potencia al ciclo del martillo.
Sistema de Flujo Tipo B, representado por las patentes US5984021 , US4312412 y US6454026
Los diseños descritos en estas patentes poseen un tubo de alimentación de fluido presurizado (dentro del cual se genera la cámara de alimentación), el cual se extiende desde la cara trasera de la cámara trasera y es recibido dentro de una perforación central en el pistón. Esta perforación se extiende a todo el largo del pistón.
Para controlar la alimentación de la cámara frontal y la cámara trasera con fluido presurizado y controlar la descarga de la cámara trasera, el tubo de alimentación interactúa con perforaciones y torneados dentro del pistón.
El control del pistón sobre el estado de las cámaras es complementado con torneados en la superficie deslizante externa del pistón y torneados en la superficie interna de la carcasa externa. Más aún, la descarga de la cámara frontal es controlada por una válvula de pie en la broca (US5984021 y US4312412) o alternativamente por una zona frontal en el pistón de menor diámetro que interactúa con una guía de pistón (US6454026). Esta última solución se puede utilizar también como alternativa a la válvula de pie en el sistema de flujo Tipo A y en los demás sistemas de flujo de fluido presurizado que a continuación se describen.
La presencia de perforaciones a través del pistón debilita la resistencia al impacto de esta pieza e implica un proceso de fabricación más complejo. Desde este punto de vista, los martillos con el sistema de flujo Tipo A poseen un pistón más robusto y un proceso de manufactura más simple que los martillos con el sistema de flujo Tipo B. Adicionalmente, la generación de la cámara de alimentación en el interior del tubo de alimentación produce un retardo en el establecimiento del flujo cuando se produce la apertura de la alimentación de fluido presurizado hacia las cámaras, debido a la distancia entre aquélla y éstas. Las perforaciones también producen como consecuencia un incremento del volumen muerto de las cámaras, siendo la principal consecuencia de esto un aumento en el consumo de fluido presurizado y una reducción en la eficiencia de la conversión de energía en el ciclo termodinámico.
En el caso particular de los martillos que poseen un pistón con una zona frontal de menor diámetro que interactúa con una guía de pistón, el área de empuje frontal del pistón se ve seriamente reducida debido a que aún se debe mantener un área de impacto suficientemente grande como para resistir el esfuerzo generado por el impacto, restando superficie al área de empuje frontal.
Más aún, la presencia del tubo de alimentación obliga al uso de un pistón que posee una perforación central que se extiende a todo lo largo de éste, teniendo como resultado los efectos sobre la potencia ya mencionados para el sistema Tipo A.
Sistema de Flujo Tipo C, representado por la patente US4923018
El diseño descrito en esta patente posee tres diferentes conjuntos de conductos de alimentación construidos en la pared de la carcasa externa. El primer conjunto de conductos terminan en la superficie interna de la carcasa externa y generan una cámara de alimentación entre la superficie deslizante externa del pistón y la superficie interna de la carcasa externa. El segundo y tercer conjunto de conductos permiten el flujo de fluido presurizado desde la cámara de alimentación hacia la cámara frontal y la cámara trasera, respectivamente. La cámara de alimentación interactúa con rebajes en la superficie deslizante externa del pistón y con el segundo y tercer conjunto de conductos en la carcasa externa para controlar el llenado de la cámara frontal y la cámara trasera, en tanto que la descarga de la cámara frontal y la cámara trasera es controlada con el uso de una válvula de pie y una guía de aire, respectívamente(referirse al sistema de flujo Tipo A aplicado a un martillo de circulación normal).
Las principales desventajas de este diseño son la adición de volumen muerto debido a la presencia del segundo y tercer conjunto de conductos y a que éstos reducen en forma importante la vida útil de la carcasa externa, la cual depende en gran medida del espesor de la pared de esta. También la presencia de la guía de aire y la válvula de pie obligan a que el pistón posea una perforación central a todo su largo, teniendo como resultado los efectos sobre la potencia ya mencionados para el sistema Tipo A.
Sistema de Flujo Tipo D, representado por las patentes US5113950 y US5279371
En los diseños descritos en estas patentes se genera una cámara de alimentación en el extremo trasero del pistón, poseyendo estos diseños características similares a los sistemas de flujo Tipo A y Tipo B. Al igual que en el sistema de flujo Tipo B, el sistema de flujo Tipo D utiliza un tubo de alimentación central, pero a diferencia de aquél la cámara de alimentación no se forma en su interior sino que, similarmente al sistema de flujo Tipo A, la cámara de alimentación se crea y actúa sobre una porción del extremo trasero del pistón. De esta forma el tubo de alimentación cumple la función de ayudar en la conducción del fluido presurizado hasta la cámara de alimentación y no participa en su formación. Todo lo anterior genera como consecuencia una reducción en el área de empuje trasera del pistón. Más aún, la necesidad de descargar la cámara trasera obliga a usar un pistón con una perforación central que emerge en la cara frontal del mismo, reduciendo así aún más el área de empuje trasera y el área de empuje frontal del pistón, lo que genera como resultado un ciclo de aún menor potencia.
Además, en la patente US5113950 la presencia de rebajes y perforaciones a través del pistón debilita la resistencia al impacto de esta pieza.
A continuación se describen, para el caso de martillos de circulación reversa, los diferentes sistemas de flujo de fluido presurizado conocidos respecto a las soluciones para llevar el fluido presurizado descargado desde las cámaras frontal y trasera al fondo del agujero, específicamente a la periferia de la cara frontal de la broca, para la evacuación de fragmentos de roca.
Sistema de Flujo Tipo 1, representado por las patentes US5154244, RE36002(US),US6702045 y US5685380 Estas patentes describen un sistema de flujo donde el fluido presurizado es conducido desde el extremo trasero de la broca hasta el extremo frontal de ésta por medio de canales formados en forma cooperativa entre estrías mecanizadas en la superficie interna del porta broca y estrías mecanizadas en la superficie exterior del puño de la broca, y con un anillo o camisa que actúa como un elemento de sello para generar pasajes cerrados de tal forma de descargar el fluido presurizado a la zona periférica del extremo frontal de la broca.
En una variante de la solución anterior, descrita en la patente US6702045, se muestra un sistema de flujo donde el fluido presurizado es conducido desde el extremo trasero de la broca, hasta un punto intermedio en el exterior de ésta, por medio de canales formados en el exterior de la broca. Estos canales trabajan en forma cooperativa con las estrías del portabroca para generar pasajes cerrados. Desde este punto intermedio el flujo de fluido presurizado es desviado a través de perforaciones en el portabroca a un pasaje generado entre la superficie exterior del portabroca y la superficie interna del anillo o camisa de sello de tal forma que el fluido presurizado es descargado en la zona periférica del extremo frontal de la broca.
Desde el punto de vista del control del estado de la cámara frontal y la cámara trasera los diseños comerciales respaldados por estas patentes son del Tipo A y Tipo D. Tal como se describe en el sistema de flujo Tipo B, para controlar la descarga de la cámara frontal se utiliza como solución alternativa a la válvula de pie una zona frontal en el pistón de menor diámetro que interactúa con una guía de pistón. La descarga de la cámara trasera es controlada por medio de una guía de aire la cual abre u obstruye el paso de aire desde la cámara trasera a un canal central coaxial formado entre la superficie interna del pistón y la superficie externa del tubo de muestreo, este pasaje extendiéndose desde la cámara trasera hasta el extremo trasero de la broca.
Las desventajas de este sistema de flujo son las mismas asociadas a los sistema de flujo Tipo A y Tipo D, yen particular afecta negativamente el diseño de la broca en dos aspectos. El primero es la necesidad de múltiples procesos de mecanizado para generar los canales en el exterior de la broca lo que eleva su costo de manufactura. El segundo es que debido a la presencia de estos canales, la superficie de arrastre de las estrías, la cual depende del área de contacto de cada estría en forma individual y del número total de estrías, puede ser en ciertas aplicaciones insuficiente. Este último problema se puede compensar alargando la broca, pero esto implica aumentar el costo del martillo.
Sistema de flujo Tipo 2, representado por las patentes US5407021 y US4819746
Las patentes US5407021 y US4819746 describen un sistema de flujo donde el fluido presurizado es conducido desde el extremo trasero de la broca, hasta un punto intermedio de la superficie exterior de ésta, por medio de canales formados en forma cooperativa por estrías mecanizadas en la superficie interna del portabroca y estrías mecanizadas en la superficie exterior del puño de la broca. Desde este punto intermedio el flujo de fluido presurizad es desviado a través de perforaciones principalmente longitudinales creadas en la cabeza de la broca de tal forma de descargar el fluido presurizado en la zona periférica del extremo frontal de la broca.
La cabeza de la broca cumple adicionalmente la función de evitar el escape de fluido presurizado a través del espacio anular formado entre el martillo y la pared del agujero y entre las barras y la pared del agujero.
Desde el punto de vista del control del estado de la cámara frontal y la cámara trasera el diseño del sistema de flujo de fluido presurizado en la patente US4819746 es del Tipo A.
En ambas patentes se utiliza, como solución alternativa a la válvula de piepara controlar la descarga de la cámara frontal, una zona frontal en el pistón de menor diámetro que ¡nteractúa con una guía de pistón, como se describe en el sistema de flujo Tipo B.
La descarga de la cámara trasera es controlada por medio de una guía de aire(US4819746) la cual abre u obstruye el flujo de fluido presurizado desde la cámara trasera a un canal central coaxial formado entre la superficie deslizante interna del pistón y la superficie extema del tubo de muestreo, el cual se extiende hasta el extremo trasero de la broca. Las desventajas en este caso (patente US4819746) son las mismas que el sistema de flujo Tipo A y el diseño de la broca es también afectada negativamente en los mismos dos aspectos ya mencionados para el sistema de flujo Tipo 1 , más un tercer aspecto. Este tercer aspecto viene dado por la debilidad mecánica inducida en la broca producto de perforaciones, principalmente longitudinales, creadas en la cabeza de la broca para canalizar el fluido presurizado y descargarlo en la zona periférica del extremo frontal de la broca, para desde la periferia de esta generar un flujo de fluido presurizado a través de la cara frontal de la broca hacia el interior del conducto central coaxial del martillo y de las barras.
OBJETIVOS DE LA INVENCION
Conforme a los problemas y antecedentes técnicos señalados, es un objetivo de la presente invención presentar un sistema de flujo de fluido presurizado el cual, aplicado a un martillo de circulación normal, le confiera un mejor desempeño que los martillos de circulación normal hasta ahora conocidos y que combinado con medios de canalización de fluido en la broca adaptados a dicho sistema, provea un martillo de fondo de circulación normal mejorado. Específicamente y sin sacrificar vida útil, sería deseable un martillo de circulación normal mejorado en los siguientes aspectos:
• una alta potencia y alta eficiencia en el proceso de conversión de energía, lo que se traduce en una mayor velocidad de penetración.
• un diseño estructuralmente más simple y de menor costo de fabricación.
• Una alta contabilidad y robustez
Un objetivo adicional de la invención es obtener un martillo de circulación reversa con una mayor capacidad de perforación en profundidad sin una reducción notoria en la velocidad de penetración ni en la capacidad de recuperación de los fragmentos de roca. RESUMEN DE LA INVENCION Con la finalidad de obtener un sistema de flujo de fluido presurizado para un martillo DTH de circulación normal de acuerdo con los deseos definidos anteriormente, se ha adoptado como solución un diseño que hace uso eficiente del área transversal del martillo y emplea un menor número de piezas y es más simple de fabricar.
Más aún, el sistema de flujo de fluido presurizado de la invención incorpora un sistema de barrido asistido. De esta manera se logra la capacidad de perforación en profundidad.
Más aún, la broca se ha diseñado de manera tal que el pasaje central convencional en el extremo posterior de la broca y los dos o más pasajes que convergen a este pasaje central usado en martillos de circulación normal han sido remplazados por uno o más pasajes de barrido horadados a través de la broca, extendiéndose desde los canales formados cooperativamente entre las estrías en el portabroca y en el puño de la broca a la cara frontal de la broca. De esta manera la configuración de descarga de fluido presurizado de la invención se parece a los sistemas de flujo Tipo 1 y Tipo 2 en la sección del puño de la broca y en adelante sigue un trayecto distinto hasta la cara de la broca.
Más aún, el diseño proporciona solamente una sola superficie deslizante para el pistón, evitando así la falla de este componente debido a fisuras térmicas inducidas por fricción entre el pistón y partes desalineadas (guía de aire, tubo de alimentación, válvula de pié, etc.).
Estas dos últimas características mejoran fuertemente la confiabilidad y robustez del martillo.
El sistema de flujo de fluido presurizado de la invención se distingue por tener una camisa coaxialmente dispuesta entre la carcasa exterior y el pistón; y dos cámaras, una cámara de alimentación y una cámara de descarga, delimitadas por la superficie externa de la camisa y la superficie interna de la carcasa exterior, y separadas por una pared divisoria. La cámara de alimentación está permanentemente llena con fluido proveniente de la fuente de fluido presurizado y comunicada sin interrupción con la descarga de dicha fuente. La cámara de descarga que está permanentemente comunicada con el fondo del agujero horadado por el martillo. Preferentemente, la cámara de alimentación está dispuesta en serie longitudinalmente con la cámara de descarga y ambas cámaras están definidas por dos rebajes en la superficie interna de la carcasa externa.
El flujo de fluido presurizado alimentado hacia el interior y descargado desde las cámaras frontal y trasera es controlado únicamente por el traslape o posición relativa de las superficies deslizantes externas del pistón con la superficie interna de la camisa. Para canalizar el flujo de fluido presurizado desde la cámara de alimentación a las cámaras, frontal y trasera del martillo y desde estas últimas cámaras a la cámara de descarga, se proveen primeros y segundos medios de conducción de fluido en el pistón y múltiples orificios pasantes de alimentación y descarga en la camisa, en que estos orificios pasantes de alimentación y descarga enfrentan a las cámaras de alimentación y descarga, respectivamente.
Por tanto, en la invención el estado de la cámara frontal y la cámara trasera son controlados por la interacción de un único par de componentes, comparado con el arte previo donde el control se logra con un número mayor de componentes interactuando en conjunto.
La configuración precedente permite un uso óptimo del área transversal del martillo comprado con los martillos conocidos. Al observar el área de empuje frontal y el área de empuje trasera de los pistones del arte previo, se puede verificar que el área seccional del martillo es compartida principalmente por el pistón, la carcasa externa, el tubo de muestreo y áreas de flujo de fluido presurizado reservadas para el llenado de la cámara frontal y la cámara trasera y áreas de flujo de fluido presurizado para la descarga de la cámara frontal y la cámara trasera. Al disponer en la invención la cámara de alimentación en serie longitudinalmente con la cámara de descarga, es posible incrementar el área de empuje frontal y el área de empuje trasera del pistón debido al hecho que éstas comparten el área seccional únicamente con el área ocupada por la cámara de descarga y la cámara de alimentación, respectivamente. El área de empuje frontal y el área de empuje trasera del pistón son iguales o prácticamente ¡guales en magnitud bajo la configuración de la invención. Adicionalmente, el control de la descarga de la cámara frontal y de la cámara trasera por interacción entre el pistón y la camisa, permite prescindir del uso de la válvula de pie o de una zona frontal en el pistón de menor diámetro que ¡nteractúa con una guía de pistón o una guía de aire para estos propósitos, evitando así perdidas adicionales en las áreas de empuje como ocurre con los sistemas de flujo del arte previo.
Además, pueden disponerse de uno o más canales de barrido en la pared divisoria para permitir que parte del flujo de fluido presurizado disponible de la fuente de alimentación pueda ser descargado directamente al fondo del agujero para conformar de este modo un sistema de barrido asistido y lograr la deseada mayor capacidad de perforación en profundidad sin una reducción sustancial en la velocidad de penetración. Dichos canales son preferentemente canales longitudinales, más preferentemente hélices y en una realización preferida de la invención los canales de barrido están entrecruzados con ranuras portasello para el montaje en ellas de sellos de fluido removibles que cuando se montan en las ranuras desactivan el sistema de barrido asistido.
Más aún, al disponer el sistema de flujo de fluido presurizado de la invención una cámara de descarga contigua a la superficie interna de la carcasa externa permite desviar el flujo de fluido presurizado que sale de la cámara de descarga hacia el exterior del puño de la broca de manera similar que lo hacen los martillos de circulación reversa con los sistemas de flujo Tipo 1 y Tipo 2, por medio de conducir el flujo de fluido presurizado hacia los canales formados cooperativamente entre las estrías en la superficie interna del portabroca y las estrías en la superficie exterior del puño de la broca. Sin embargo, según la invención, el flujo de fluido presurizado es seguidamente descargado desde estos canales al extremo frontal de la broca a través de uno o más pasajes de barrido horadados a través del cuerpo de la broca, que se extienden desde dichos canales hasta la cara frontal de la broca. Esto permite configurar un diseño de broca más simple y robusta para un martillo de circulación normal.
Opcionalmente, para una mejora en la acción de barrido, cada pasaje de barrido puede ser dividido en una pluralidad de pasajes de barrido secundarios antes de alcanzar la cara frontal de la broca.
El martillo de circulación normal de la invención se caracteriza por tener el sistema de flujo de fluido presurizado y la configuración de descarga de fluido presurizado al exterior de la broca que se han descrito precedentemente.
Para facilitar la comprensión de las ¡deas precedentes, se describe seguidamente el objeto de la invención haciendo referencia a los dibujos ilustrativos que se acompañan.
BREVE DESCRIPCION DE LOS DIBUJOS
En los dibujos:
La Figura 1 , representa una vista en corte longitudinal de un martillo de circulación normal según la invención, mostrando específicamente la disposición del pistón respecto a la carcasa externa, camisa y broca cuando se está alimentando la cámara frontal con fluido presurizado y la cámara trasera está descargando fluido presurizado al fondo del agujero.
La Figura 2, representa una vista en corte longitudinal de un martillo de circulación normal según la invención, mostrando específicamente la disposición del pistón respecto a la carcasa externa, camisa y broca cuando se está alimentando la cámara trasera con fluido presurizado y la cámara frontal está descargando fluido presurizado al fondo del agujero.
La Figura 3, representa una vista en corte longitudinal de un martillo de circulación normal según la invención, mostrando específicamente la disposición del pistón y la broca respecto a la carcasa externa y la camisa cuando el martillo se encuentra en modo de barrido.
En todas las figuras anteriores también se ha representado el sistema de flujo del martillorespecto a la solución diseñada en la invención para llevar el fluido presurizado desde la cámara frontal y la cámara trasera al fondo del agujero, en todos los modos de operación y estados; específicamente al extremo frontal de la broca, para la evacuación de los fragmentos de roca. Mediante el uso de flechas se ha señalado la dirección y sentido del flujo de fluido presurizado.
DESCRIPCIÓN DETALLADA DE LA REALIZACIÓN PREFERIDA DE LA INVENCIÓN
(Figuras 1 a 3)
Haciendo referencia a las figuras 1 a 3, es ilustrado un martillo DTH de circulación normal que comprende los siguientes componentes principales:
una carcasa externa cilindrica (1)con un extremo trasero y un extremo frontal;
un portabroca (110) con una superficie interna (113) y estrías (112) mecanizadas en ella, donde el portabroca (1 0) se encuentra montado en el extremo frontal de la carcasa extema (1)
una culata (20) fijada al extremo trasero de dicha carcasa externa (1) para conectar el martillo a la fuente de fluido presurizado;
un pistón (60) dispuesto en forma deslizante y coaxial al interior de dicha carcasa externa (1)y capaz de moverse en forma alternante debido al cambio de la presión del fluido presurizado contenido al interior de una cámara frontal (240) y una cámara trasera (230), ubicadas en extremos opuestos del pistón (60), teniendo el pistón (60) múltiples superficies deslizantes externas (64); y
una broca (90)dispuesta en forma deslizante en el portabroca (110), donde el movimiento deslizante de la broca (90) está limitado por el retenedor de broca (210) y la cara de apoyo de la broca (111) del portabroca (110);y donde la broca (90) comprende un puño (95) en su extremo trasero y una cabeza (96) en su extremo frontal, siendo la cabeza de la broca (96) de mayor diámetro que el puño (95) teniendo una cara frontal (99);el puño de la broca (95) teniendo una superficie exterior (98) con estrías (93) mecanizadas sobre ella; canales (97) formados en forma cooperativa entre las estrías (112) en la superficie interna (113) del portabroca (110) y las estrías (93) en la superficie exterior (98) del puño de la broca (95).
el sistema de flujo de fluido presurizado de la invención incluye una camisa (40) dispuesta coaxialmente entre la carcasa externa (1) y el pistón (60).
La cámara trasera (230) del martillo está definida por la culata (20), la camisa (40) y el área de empuje trasera (62) del pistón (60). El volumen de esta cámara es variable y depende de la posición del pistón (60). La cámara frontal (240) del martillo está definida por la broca (90), la camisa (40), la guía de broca (150) y el área de empuje frontal (63) del pistón (60). El volumen de esta última cámara es variable y depende también de la posición del pistón (60).
La carcasa externa (1) posee dos cámaras definidas por respectivos rebajes en su superficie interna, una cámara de alimentación (2) para suministrar fluido presurizado a la cámara frontal (240) ya la cámara trasera (230), y una cámara de descarga (3) para descargar fluido presurizado desde la cámara frontal (240) y la cámara trasera (230); ambas cámaras están delimitadas internamente por la camisa (40) y separadas por una pared divisoria (5). Cuando el martillo se encuentra en operación la primera de estas cámaras se encuentra en comunicación fluida permanente con la fuente de fluido presurizado y llena con dicho fluido mientras que la segunda cámara está comunicada con el fondo del agujero.
Uno o más canales de barrido (6) se proveen en dicha pared divisoria (5), para permitir un flujo directo de fluido presurizado desde la cámara de alimentación (2) a la cámara de descarga (3) de tal manera que parte del flujo de fluido presurizado disponible desde la fuente de fluido presurizado pueda ser descargado directamente al fondo del agujero, generando de esta manera un sistema de barrido asistido.
En la realización de las Figuras 1 a 3, la pared divisoria (5) tiene ranuras portasello (7) anulares con sellos de fluido removibles (170) montados en las mismas. Estas ranuras anulares portasello (7) están entrecruzadas con dichos canales de barrido (6) y los sellos de fluido (170) bloquean el flujo directo de fluido presurizado desde la cámara de alimentación (2) a la cámara de descarga (3), deshabilitando de esta manera el sistema de barrido asistido. La remoción de tales sellos de fluido (170) habilita el sistema de barrido asistido.
La camisa (40)posee múltiples aberturas pasantes de alimentación (41 , 42) y múltiples aberturas pasantes de descarga (43) frente a las cámaras de alimentación y descarga (2, 3), respectivamente. El pistón (60) tiene medios de conducción de fluido (66, 67, 80, 81) que permiten el flujo de fluido presurizado desde la culata (20) hacia la cámara de alimentación (2), desde la cámara de alimentación (2) hacia la cámara frontal (240)o la cámara trasera (230) y desde la cámara frontal (240)o la cámara trasera (230)hacia la cámara de descarga (3).
Control del estado de la cámara frontal (240)
Cuando en el ciclo del martillo, la cara de impacto (61) del pistón (60) está en contacto con la cara de impacto (91)de la broca (90)y la broca (90)se encuentra en el punto de más atrás de su recorrido, es decir, cuando el martillo se encuentra en posición de impacto (ver Figura 1), la cámara frontal (240) está en comunicación fluida directa con la cámara de alimentación (2) a través del conjunto frontal de aberturas pasantes de alimentación (42)de la camisa (40);el conjunto trasero de pasajes radiales de alimentación (67) del pistón (60) y a través de uno o más pasajes axiales centrales de alimentación (80) formados en el pistón (60). Tal como se ilustra, los uno o más pasajes axiales centrales de alimentación (80) están fluidamente conectados al conjunto de conductos de alimentación (67). De esta forma, el fluido presurizado puede fluir libremente desde la cámara de alimentación (2) a la cámara frontal (240)e iniciar el movimiento de retroceso del pistón (60).
Este flujo de fluido presurizado a la cámara frontal (240) cesará cuando el pistón (60)se haya desplazado, en el sentido extremo frontal- extremo trasero de su recorrido, hasta el punto donde la arista externa de alimentación frontal (65)del pistón (60)alcance el límite trasero del conjunto frontal de aberturas pasantes de alimentación (42)de la camisa (40). Al continuar el desplazamiento del pistón (60) en el sentido extremo frontal- extremo trasero de su recorrido, se alcanzará el punto en donde la arista extema de descarga frontal (72)del pistón (60)coincida con el límite frontal del conjunto de aberturas pasantes de descarga (43)de la camisa (40). Al continuar aún más el movimiento del pistón (60), la cámara frontal (240) del martillo quedará fluidamente comunicada con la cámara de descarga (3)a través de la reducción frontal (81) del pistón (60) ya través del conjunto de aberturas pasantes de descarga (43)de la camisa (40) (ver Figura 2). De esta forma, el fluido presurizado contenido en la cámara frontal (240)se descargará hacia adentro de la cámara de descarga (3)y desde esta cámara puede fluir libremente fuera del martillo a través de los canales (97) formados en forma cooperativa entre las estrías (93) del puño de la broca (95) y las estrías (112) del portabroca (110) y a través de los pasajes de barrido (92) de la broca (90) a la cara frontal (99) de la broca (90).
Normalmente, la broca (90) está alineada con la carcasa externa (1) del martillo por una guía de broca (150)que posee ranuras de descarga (151) como se muestra en las figuras. En la invención, las ranuras de descarga conectan la cámara de descarga (3) con los canales (97), de tal modo que la descarga de fluido presurizado fluye a través de estas ranuras de descarga (151) para luego alcanzar los canales (97) y posteriormente fluye a través de los pasajes de barrido (92) de la broca (90). No obstante, la invención no está limitada al uso de una guía de broca y es posible usar soluciones alternativas de alineamiento con correspondientes medios de descarga de fluido presurizado.
Control del estado de la cámara trasera (230)
Cuando en el ciclo del martillo, la cara de impacto (61) del pistón (60) está en contacto con la cara de impacto (91)de la broca (90)y la broca (90)se encuentra en el punto de más atrás de su recorrido, es decir, cuando el martillo se encuentra en posición de impacto (ver Figura 1), la cámara trasera (230)se encuentra en comunicación fluida directa con la cámara de descarga (3)a través de pasajes longitudinales bifuncionales (66)que se extienden a través del cuerpo del pistón (60), desde el área de empuje trasera (62) hasta las superficies deslizantes externas (64) del pistón (60), y a través del conjunto de aberturas pasantes de descarga (43)de la camisa (40). De esta forma, el fluido presurizado contenido al interior de la cámara trasera (230)puede ser descargado al interior de la cámara de descarga (3),y de la cámara de descarga (3)puede fluir fuera del martillo a la cara frontal (99) de la broca (90) de un modo similar como el fluido presurizado es descargado desde la cámara frontal (240).
Este flujo de fluido presurizado cesará cuando el pistón (60)se haya desplazado en el sentido extremo frontal- extremo trasero de su recorrido, hasta el punto donde la arista externa de descarga inferior (70)del pistón (60)alcance el límite posterior del conjunto de aberturas pasantes de descarga (43) de la camisa (40). Al continuar el desplazamiento del pistón (60) en el sentido extremo frontal- extremo trasero de su recorrido se alcanzará un punto en donde la arista externa de descarga superior (71) del pistón (60)coincida con el límite frontal del conjunto frontal de aberturas pasantes de alimentación (42) de la camisa (40) (ver Figura 2). Al continuar el movimiento del pistón (60), la cámara trasera (230) del martillo quedará fluidamente comunicada con la cámara de alimentación (2) a través del conjunto frontal de aberturas pasantes de alimentación (42) de la camisa (40)y a través de los pasajes longitudinales bifuncionales (66) del pistón (60). De esta forma la cámara trasera (230)será suministrada con fluido presurizado proveniente de la cámara de alimentación (2). Operación en modo de barrido
Si el martillo es levantado de tal forma que la broca (90) deja de estar en contacto con la roca que está siendo perforada y el hombro de apoyo del retenedor (94) de la broca (90) se apoya sobre el retenedor de broca (210), la broca (90)alcanzará el extremo frontal de su recorrido pasando entonces el martillo a operar en su modo de barrido. En esta posición el martillo deja de percutir, quedando así la cara de impacto (61)del pistón (60)apoyada sobre la cara de impacto (91)de la broca (90) (ver Figura 3 para ilustración del modo barrido, mientras que en la Figura 2 se muestran los elementos (61) y (91)), y el fluido presurizado es conducido directamente hasta el extremo frontal del broca (90)a través de la siguiente ruta: hacia adentro de la cámara de alimentación (2) a través de la culata (20) y del conjunto trasero de aberturas pasantes de alimentación (41)de la camisa (40); y desde la cámara de alimentación (2) a la cámara de descarga (3) a través del conjunto frontal de aberturas pasantes de alimentación (42)de la camisa (40), a través de los pasajes longitudinales bifuncionales (66) del pistón (60), y a través del conjunto de aberturas pasantes de descarga (43) de la camisa (40). Desde la cámara de descarga (3)el fluido presurizado puede fluir libremente hacia el exterior del martilloa la cara frontal (99) de la broca (90) de un modo similar como el fluido presurizado es descargado desde las cámaras traseras y frontal (230, 240).

Claims

REIVINDICACIONES
1 Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal, en que el martillo comprende:
unacarcasa externa cilindrica (1) teniendo un extremo trasero y un extremo frontal; un portabroca (110) montado en el extremo frontal de dicha carcasa externa (1), que posee una superficie interna (113) con estrías (112) mecanizadas en ella;
una culata (20) fijada al extremo trasero de dichacarcasa externa (1) para conectar el martillo a la fuente de fluido presurizado;
un pistón (60) dispuesto en forma deslizante y coaxial al interior de dichacarcasa externa (1)y capaz de moverse en forma alternante debido al cambio de la presión del fluido presurizado contenido al interior de una cámara frontal (240) y una cámara trasera (230), ubicadas en extremos opuestos del pistón (60), teniendo el pistón (60) múltiples superficies deslizantes externas (64);
una broca (90)dispuesta en forma deslizante en el portabroca (110), la broca (90) estando compuesta de un puño (95) ubicado en su extremo trasero y una cabeza (96) ubicada en su extremo frontal, la cabeza (96) siendo de mayor diámetro que el puño (95) y teniendo una cara frontal (99), el puño de la broca (95) teniendo una superficie exterior (98) con estrías (93) mecanizadas en ella;
canales (97) formados en forma cooperativa entre las estrías (112) de la superficie interna (113) del portabroca (110) y las estrías (93) de la superficie exterior (98) del puño de la broca (95);
una camisa (40) dispuesta coaxialmente entre la carcasa externa (1) y el pistón (60); una cámara de alimentación (2) para suministrar fluido presurizado a la cámara frontal (240) ya la cámara trasera (230), y una cámara de descarga (3) para descargar fluido presurizado desde la cámara frontal (240) y la cámara trasera (230), las cámaras de alimentación y descarga (2,3) definidas por respectivos rebajes en la superficie interna de la carcasa externa (1); en que ambas cámaras (2, 3) están delimitadas internamente por la camisa (40) y separadas por una pared divisoria (5);
en que la cámara de alimentación (2) se encuentra en comunicación fluida permanente con la fuente de fluido presurizado;
en que la cámara de descarga (3) se encuentra en comunicación fluida permanente con el fondo del agujero perforado por el martillo;
múltiples aberturas pasantes de alimentación (42) y múltiples aberturas pasantes de descarga (43) dispuestas en dicha camisa (40) frente a las cámaras de alimentación y descarga (2, 3), respectivamente;
un primer conjunto de medios de conducción de fluido (67, 80, 81) provistos en dicho pistón (60) para conectar las superficies deslizantes externas (64) del pistón (60) con la cámara frontal (240) y canalizar el flujo de fluido presurizadoa) desde la cámara de alimentación (2) hacia adentro de la cámara frontal (240) a través de múltiples aberturas pasantes de alimentación (42) de la camisa (40) y b)fuera de la cámara frontal (240) hacia adentro de la cámara de descarga (3)a través de múltiples aberturas pasantes de descarga (43) de la camisa (40); y
un segundo conjunto de medios de conducción de fluido (66) provistos en dicho pistón (60) para conectar las superficies deslizantes externas (64) del pistón (60) con la cámara trasera (230) y canalizar el flujo de fluido presurizadoa) desde la cámara de alimentación (2) hacia adentro de la cámara trasera (230) a través de múltiples aberturas pasantes de alimentación (42) de la camisa (40) y b)fuera la cámara trasera (230) hacia adentro de la cámara de descarga (3)a través de múltiples aberturas pasantes de descarga (43) de la camisa (40);
en que el flujo de fluido presurizado hacia adentro y fuera de las cámaras frontal y trasera (240, 230) es controlado únicamente por medio del traslape o posición relativa de dichas múltiples superficies deslizantes externas (64) del pistón (60) y la superficie interna de la camisa (40) durante el movimiento alternante del pistón (60).
2. El sistema de flujo de fluido presurizado de la reivindicación 1 , caracterizado porque los medios de conducción de fluido del pistón (60) comprenden:
un conjunto trasero de pasajes de alimentación (67) y uno o más pasajes axiales centrales de alimentación (80) para conducir fluido presurizado desde la cámara de alimentación (2) hacia adentro de la cámara frontal (240) a través de las múltiples aberturas pasantes de alimentación (42) de la camisa (40), en que los uno o más pasajes axiales centrales de alimentación (80) están fluidamente conectados a los conductos de alimentación (67) y definidos por medio de correspondientes pasajes construidos a partir de la cara de impacto (61) del pistón (60); y
pasajes longitudinales bifuncionales (66) que se extienden a través del cuerpo del pistón (60) para conducir fluido presurizado desde la cámara de alimentación (2) a la cámara trasera (230) a través del conjunto frontal de aberturas pasantes de alimentación (42) y para conducir fluido presurizado desde la cámara trasera (230) a la cámara de descarga (3) a través de las aberturas pasantes de descarga (43); y
un rebaje frontal (81) para conducir fluido presurizado desde la cámara frontal (240) a la cámara de descarga (3) a través de las aberturas pasantes de descarga (43).
3. El sistema de flujo de fluido presurizado de la reivindicación 1 , caracterizado porque la camisa (40) tiene un conjunto trasero de aberturas pasantes de alimentación (41) para permitir flujo de fluido presurizado desde la culata (20) a la cámara de alimentación (2).
4. El sistema de flujo de fluido presurizado de la reivindicación 1 , caracterizado porque la cámara de alimentación (2) está preferentemente dispuesta longitudinalmente en serie con la cámara de descarga (3).
5. El sistema de flujo de fluido presurizado de la reivindicación 1 , caracterizado porque el sistema de flujo de fluido presurizado comprende uno ó más canales de barrido (6) construidos en la pared divisoria (5) para permitir comunicación fluida entre la cámara de alimentación (2) y la cámara de descarga (3) y conducción de parte del flujo de fluido presurizado disponible desde la fuente de fluido presurizado al fondo del agujero perforado por el martillo.
6. El sistema de flujo de fluido presurizado de la reivindicación 5, caracterizado porque los canales de barrido (6) en la pared divisoria (5) están entrecruzadas con ranuras anulares portasello (7) para montar en las mismas sellos de fluido removibles (170) que cuando se montan en las ranuras (7) deshabilitan el sistema de barrido asistido.
7. El sistema de flujo de fluido presurizado de las reivindicaciones 5, caracterizado porque los canales de barrido (6) en la pared divisoria (5) son canales longitudinales.
8. El sistema de flujo de fluido presurizado de las reivindicaciones 5, caracterizado porque los canales de barrido (6) son preferentemente hélices.
9. Un martillo de fondo de circulación normal, en que el martillo comprende:
el sistema de flujo de fluido presurizado de la reivindicación 1 ; y donde
la broca (90) posee uno o más pasajes de barrido (92) horadados a través de la broca (90), y donde estos pasajes de barrido (92) se extienden desde los canales (97) hasta la cara frontal (99) de la broca (90) para descargar el fluido presurizado fuera del martillo.
10. El martillo de fondo de circulación normal de la reivindicación 9 que incluye una guía de broca (150) dispuesta al interior de la carcasa externa (1) para la alineación de la broca (90) respecto a la carcasa externa (1) del martillo, donde la guía de broca (150) posee ranuras de descarga (151) que comunican la cámara de descarga (3) con los canales (97).
11. El martillo de fondo de circulación normal de la reivindicación 9, donde cada pasaje de barrido (92) se ramifica en un conjunto secundario de pasajes de barrido antes de alcanzar la cara frontal de la broca para así lograr una acción de barrido mejorada.
PCT/CL2012/000009 2011-03-03 2012-03-02 Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal y martillo con dicho sistema WO2012116460A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2013009979A MX2013009979A (es) 2011-03-03 2012-03-02 Sistema de flujode fluido presurizado para martillo de fondo de circulacion normal y martillo que comprende el sistema.
BR112013022428A BR112013022428A2 (pt) 2011-03-03 2012-03-02 sistema de fluxo de fluido pressurizado para um martelo de fundo de circulação normal e martelo que compreende o dito sistema
KR1020137023192A KR101848117B1 (ko) 2011-03-03 2012-03-02 정상순환 천공 해머를 위한 가압된 유체 유동 시스템 및 이러한 시스템을 포함하는 해머
EA201300993A EA201300993A1 (ru) 2011-03-03 2012-03-02 Проточная система нагнетаемой текучей среды для скважинного ударника с прямой промывкой и ударник, содержащий такую систему
CN201280018529.5A CN103534433B (zh) 2011-03-03 2012-03-02 用于正常循环井下锤的加压流体流动系统及包括该系统的锤
CA2828790A CA2828790A1 (en) 2011-03-03 2012-03-02 Pressurised fluid flow system for a normal-circulation down-the-hole hammer and hammer comprising said system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/039,543 2011-03-03
US13/039,543 US8640794B2 (en) 2008-01-28 2011-03-03 Pressurized fluid flow system for a normal circulation hammer and hammer thereof

Publications (2)

Publication Number Publication Date
WO2012116460A1 true WO2012116460A1 (es) 2012-09-07
WO2012116460A4 WO2012116460A4 (es) 2012-11-15

Family

ID=46757333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000009 WO2012116460A1 (es) 2011-03-03 2012-03-02 Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal y martillo con dicho sistema

Country Status (8)

Country Link
US (1) US8640794B2 (es)
KR (1) KR101848117B1 (es)
CN (1) CN103534433B (es)
BR (1) BR112013022428A2 (es)
CA (1) CA2828790A1 (es)
EA (1) EA201300993A1 (es)
MX (1) MX2013009979A (es)
WO (1) WO2012116460A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174679B2 (en) * 2017-06-02 2021-11-16 Sandvik Intellectual Property Ab Down the hole drilling machine and method for drilling rock

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8640794B2 (en) 2008-01-28 2014-02-04 Drillco Tools S.A. Pressurized fluid flow system for a normal circulation hammer and hammer thereof
US9016403B2 (en) * 2012-09-14 2015-04-28 Drillco Tools S.A. Pressurized fluid flow system having multiple work chambers for a down-the-hole drill hammer and normal and reverse circulation hammers thereof
WO2014185855A2 (en) 2013-05-17 2014-11-20 Atlas Copco Secoroc Ab Device and system for percussion rock drilling
US9404350B2 (en) * 2013-09-16 2016-08-02 Baker Hughes Incorporated Flow-activated flow control device and method of using same in wellbores
US9708888B2 (en) 2014-10-31 2017-07-18 Baker Hughes Incorporated Flow-activated flow control device and method of using same in wellbore completion assemblies
US9745827B2 (en) 2015-01-06 2017-08-29 Baker Hughes Incorporated Completion assembly with bypass for reversing valve
US11149495B2 (en) * 2015-03-27 2021-10-19 Charles Abernethy Anderson Apparatus and method for modifying axial force
EP3314059A4 (en) * 2015-06-29 2019-03-27 Terminator IP Limited IMPACT ABSORBING TOOL FITTING
ES2716614T3 (es) * 2016-03-04 2019-06-13 Sandvik Intellectual Property Conjunto de retención de broca de martillo perforador en fondo
CA3084682A1 (en) * 2016-12-12 2018-06-21 Jaime Andres Aros Pressurised fluid flow system for a dth hammer and normal circulation hammer based on same
US10316586B1 (en) * 2016-12-14 2019-06-11 Jaime Andres AROS Pressurized fluid flow system for a DTH hammer and normal circulation hammer thereof
WO2018107305A1 (es) * 2016-12-14 2018-06-21 Jaime Andres Aros Sistema de flujo de fluido presurizado con multiples camaras de trabajo para un martillo de fondo y un martillo de fondo de circulacion normal con dicho sistema
FI128986B (en) * 2017-03-01 2021-04-30 Robit Oyj DRILLING FOR SLOW DRILLING, DRILLING COMPOSITION, AND PROCEDURES FOR PRODUCING SUCH DRILLING BET
CN106917582B (zh) * 2017-05-09 2023-06-23 长江大学 一种轴向双作用液力冲击器
CN107116405B (zh) * 2017-06-21 2023-07-14 苏州速科德电机科技有限公司 夹持装置、内研磨电机及陶瓷插芯加工设备
IES86935B2 (en) * 2017-07-20 2018-11-14 Mincon Int Ltd Drill bit with detachable bit head
FI127993B (en) * 2017-08-31 2019-07-15 Pirkan Laatupalvelu Oy Fluid driven drilling rig
CN107829689B (zh) * 2017-11-21 2023-10-31 中南大学 多向喷射气动潜孔锤钻头
FI20185061A1 (fi) * 2018-01-23 2019-07-24 Mincon Nordic Oy Järjestely ja menetelmä maaputken asentamiseksi
FI3803032T3 (fi) * 2018-05-30 2023-04-27 Numa Tool Co Pneumaattinen poraus poratankoa pitkin liukuvalla tiivistysholkilla
CN109296311A (zh) * 2018-12-03 2019-02-01 长沙超金刚机械制造有限公司 一种高压气体潜孔冲击器
EP3670823A1 (en) * 2018-12-17 2020-06-24 Sandvik Mining and Construction Oy Down-the-hole hammer drill bit assembly
CN110905419B (zh) * 2019-12-23 2021-06-11 中国石油大学(华东) 一种石油钻井工具
CN113389491B (zh) * 2021-07-08 2023-07-07 长江大学 一种用于连续油管作业的辅助破岩钻具
US11686157B1 (en) * 2022-02-17 2023-06-27 Jaime Andres AROS Pressure reversing valve for a fluid-actuated, percussive drilling tool
US11933143B1 (en) * 2022-11-22 2024-03-19 Jaime Andres AROS Pressurized fluid flow system for percussive mechanisms

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407021A (en) * 1993-04-08 1995-04-18 Sandvik Rock Tools, Inc. Down-the-hole hammer drill having reverse circulation
US6435288B1 (en) * 2000-09-18 2002-08-20 Cubex Limited Rock drill bit
US20090188723A1 (en) * 2008-01-28 2009-07-30 Aros Jaime Andres Pressurized fluid flow system for a reverse circulation hammer
US20110209919A1 (en) * 2008-01-28 2011-09-01 Drillco Tools S.A. Pressurized fluid flow system for a normal circulation hammer and hammer thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084646A (en) * 1976-02-19 1978-04-18 Ingersoll-Rand Company Fluid actuated impact tool
US4312412A (en) * 1979-08-06 1982-01-26 Dresser Industries, Inc. Fluid operated rock drill hammer
US4694911A (en) * 1984-07-13 1987-09-22 Kennedy James D Drilling assembly for percussion drilling of deep wells
US4819746A (en) * 1987-01-13 1989-04-11 Minroc Technical Promotions Ltd. Reverse circulation down-the-hole hammer drill and bit therefor
US5396965A (en) * 1989-01-23 1995-03-14 Novatek Down-hole mud actuated hammer
US4923018A (en) * 1989-03-02 1990-05-08 Sandvik Rock Tools, Inc. Percussion drill
GB2243387B (en) * 1990-04-26 1994-07-20 D T A Pty Ltd Drill bit arrangement
USRE36002E (en) * 1990-04-26 1998-12-22 Sds Digger Tools Pty, Ltd. Transmission sleeve for a down hole hammer
US5113950A (en) * 1991-03-18 1992-05-19 Krasnoff Eugene L For percussive tools, a housing, a pneumatic distributor, and a hammer piston means therefor
SE9200995L (sv) * 1992-03-31 1993-05-24 Uniroc Ab Slagkolv foer saenkborrmaskin
US5685380A (en) * 1995-01-06 1997-11-11 Minroc Technical Promotions Limited Reverse circulation down-the-hole drill
US5944117A (en) * 1997-05-07 1999-08-31 Eastern Driller's Manufacturing Co., Inc. Fluid actuated impact tool
US5984021A (en) * 1998-01-27 1999-11-16 Numa Tool Company Porting system for back chamber of pneumatic hammer
US6135216A (en) * 1999-04-15 2000-10-24 Ingersoll-Rand Company Venting and sealing system for down-hole drills
AUPQ302599A0 (en) * 1999-09-22 1999-10-21 Azuko Pty Ltd Drilling apparatus
US6454026B1 (en) * 2000-09-08 2002-09-24 Sandvik Ab Percussive down-the-hole hammer for rock drilling, a top sub used therein and a method for adjusting air pressure
US7353890B2 (en) * 2006-01-09 2008-04-08 Sandvik Intellectual Property Ab Down-the-hole hammer and components for a down-the-hole hammer, and a method of assembling a down-the-hole hammer
US7467675B2 (en) 2006-06-06 2008-12-23 Atlas Copco Secoroc Llc Device for channeling solids and fluids within a reverse circulation drill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407021A (en) * 1993-04-08 1995-04-18 Sandvik Rock Tools, Inc. Down-the-hole hammer drill having reverse circulation
US6435288B1 (en) * 2000-09-18 2002-08-20 Cubex Limited Rock drill bit
US20090188723A1 (en) * 2008-01-28 2009-07-30 Aros Jaime Andres Pressurized fluid flow system for a reverse circulation hammer
US20110209919A1 (en) * 2008-01-28 2011-09-01 Drillco Tools S.A. Pressurized fluid flow system for a normal circulation hammer and hammer thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174679B2 (en) * 2017-06-02 2021-11-16 Sandvik Intellectual Property Ab Down the hole drilling machine and method for drilling rock

Also Published As

Publication number Publication date
US20110209919A1 (en) 2011-09-01
CA2828790A1 (en) 2012-09-07
US8640794B2 (en) 2014-02-04
MX2013009979A (es) 2014-02-27
KR101848117B1 (ko) 2018-05-28
BR112013022428A2 (pt) 2019-09-24
WO2012116460A4 (es) 2012-11-15
EA201300993A1 (ru) 2014-01-30
CN103534433B (zh) 2016-05-04
CN103534433A (zh) 2014-01-22
KR20140056152A (ko) 2014-05-09

Similar Documents

Publication Publication Date Title
WO2012116460A1 (es) Sistema de flujo de fluido presurizado para un martillo de fondo de circulación normal y martillo con dicho sistema
US7921941B2 (en) Pressurized fluid flow system for a reverse circulation hammer
WO2018107304A1 (es) Sistema de flujo de fluido presurizado para un martillo dth y martillo de circulacion normal basado en el mismo
US9016403B2 (en) Pressurized fluid flow system having multiple work chambers for a down-the-hole drill hammer and normal and reverse circulation hammers thereof
US10316586B1 (en) Pressurized fluid flow system for a DTH hammer and normal circulation hammer thereof
US8973681B2 (en) Pressurized fluid flow system for a reverse circulation down-the-hole hammer and hammer thereof
EP3725997A1 (en) Pressurised fluid flow system including multiple working chambers for a down-the-hole hammer and normal-circulation down-the-hole hammer comprising said system
US6155361A (en) Hydraulic in-the-hole percussion rock drill
EP1458950B1 (en) Liquid driven downhole drilling machine
CA2972328A1 (en) Drill bit for improved transport of cuttings
JP5512608B2 (ja) さく岩機
BR102013016488A2 (pt) Sistema de fluxo de fluido pressurizado para um martelo furo abaixo de circulação reversa, e, martelo furo abaixo de circulação reversa
AU2013206483B2 (en) Pressurized fluid flow system for a reverse circulation down-the-hole hammer and hammer thereof
CA3123107A1 (en) Pressurised fluid flow system including multiple working chambers for a down-the-hole hammer and normal-circulation down-the-hole hammer comprising said system
CN104278949A (zh) 用于反循环潜孔锤的加压流体流动系统和反循环潜孔锤
MX2013008901A (es) Sistema de flujo de fluido presurizado para un martillo de fondo de circulacion reversa, y un martillo con este sistema.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280018529.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12751951

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009979

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2828790

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137023192

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201300993

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 12751951

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022428

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022428

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130902