WO2012115275A1 - Vascular prosthesis - Google Patents

Vascular prosthesis Download PDF

Info

Publication number
WO2012115275A1
WO2012115275A1 PCT/JP2012/055151 JP2012055151W WO2012115275A1 WO 2012115275 A1 WO2012115275 A1 WO 2012115275A1 JP 2012055151 W JP2012055151 W JP 2012055151W WO 2012115275 A1 WO2012115275 A1 WO 2012115275A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
artificial blood
pau
aromatic polyester
urethane resin
Prior art date
Application number
PCT/JP2012/055151
Other languages
French (fr)
Japanese (ja)
Inventor
慎治 内田
Original Assignee
Uchida Shinji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchida Shinji filed Critical Uchida Shinji
Publication of WO2012115275A1 publication Critical patent/WO2012115275A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels

Definitions

  • the present invention relates to an artificial blood vessel, and particularly to an artificial blood vessel having excellent biocompatibility and safety.
  • a polyethylene terephthalate fiber (PET fiber) knitted fabric, a woven fabric tubular material, or a polytetrafluoroethylene stretched porous resin (e-PTFE) tubular material is used as the artificial blood vessel.
  • PET fiber polyethylene terephthalate fiber
  • e-PTFE polytetrafluoroethylene stretched porous resin
  • knitted PET fibers and tubular fabrics form a thrombus layer when blood flows, and endothelial cells are formed on the thrombus layer.
  • PET fibers are biocompatible, living cells invade from the outer wall of the blood vessel and reach new endothelial cells.
  • a fine blood vessel enters from the outer wall of the blood vessel and reaches a neovascular endothelial cell membrane generated in the blood vessel, and the thrombus is absorbed into the body with time.
  • the neointima in the blood vessels is metabolized by the blood flow of the small blood vessels, and is constantly maintained and managed as new.
  • the artificial intravascular neovascular membrane generated in this way has the same structure and function as a biological blood vessel, and is therefore an artificial blood vessel that is excellent in patency.
  • an artificial blood vessel using e-PTFE is PTFE (polytetrafluoroethylene), which is a typical non-biocompatible (biologically inert) substance
  • PTFE polytetrafluoroethylene
  • biological blood vessel biological blood vessel
  • the endothelial cell membrane enters from the living blood vessel toward the anastomosis part, but the invasion power of living cells from the outer wall of the blood vessel is very large even if the hole of e-PTFE is increased.
  • fine blood vessels do not invade, artificial blood vessels having a structure similar to biological blood vessels are not generated in artificial blood vessels like artificial blood vessels based on PET fibers.
  • the endothelial cell membrane that invades from the blood vessels toward the anastomosis part is difficult to adhere to e-PTFE, and even if it adheres, it peels off to form a hematoma, and this part becomes thickened over a long period of time. This causes stenosis in the part and causes obstruction.
  • e-PTFE is a biologically inert substance, so that blood coagulation does not occur as in the case of PET fibers, and the patency state remains for a certain period of time. Retain, but long-term patency cannot be expected.
  • an artificial blood vessel that is finally absorbed in the living body has been studied, but in the process where a biological blood vessel is formed in the artificial blood vessel and the artificial blood vessel is absorbed, It is said that it will gradually swell due to the internal pressure that is constantly applied to form an aneurysm and eventually rupture.
  • Patent Document 1 shows that PAU made a tube having an inner diameter of 1.0 mm and a length of 10 mm and transplanted into the abdominal aorta of a rat, and was bred for one week. Yes.
  • Example 4 of Patent Document 2 an anti-thrombotic material that can be used for a cell culture membrane, an inner diameter of 1.5 mm and a 7 mm e-PTFE human T-vessel coated with PAU, is transplanted into a rat abdominal aorta, and e -It has been shown that antithrombogenicity is improved compared to PTFE artificial blood vessels.
  • Non-Patent Document 1 when an e-PTFE artificial blood vessel having an inner diameter of 1.5 mm is coated with PAU and transplanted to the abdominal aorta of a rat, thrombus does not occur at all, and endothelial cells are well infused on the inner surface of the artificial blood vessel. This is explained by reactions with endothelial cell markers, electron micrographs, and optical micrographs.
  • the e-PTFE artificial blood vessel is inactive in the living body, the invasion property of the living cell from the outer wall of the blood vessel is poor, and it is difficult for the fine blood vessel to reach the blood vessel from the outer wall of the blood vessel.
  • Biological blood vessels that can be metabolized, such as fiber artificial blood vessels, are not generated.
  • Patent Document 3 proposes that a polyamino acid urethane resin (PAU) is used as a cell adhesion layer in a tube made of bioabsorbable aliphatic polyester fibers such as polyglycolic acid and polylactic acid.
  • PAU polyamino acid urethane resin
  • Patent Document 4 describes that PAU is bioabsorbable.
  • Patent Document 5 “at least the inner surface of a porous tubular structure is provided with (1) a polyamino acid urethane resin copolymer, (2) collagen or gelatin, and (3) an endothelial cell proliferation promoter having collagen binding activity. ”, An artificial blood vessel formed by sequentially laminating and fixing”.
  • the porous tubular structure used here it is described that polyethylene terephthalate, polybutylene terephthalate and the like can be used in addition to e-PTFE.
  • This artificial blood vessel is made by coating a porous tubular structure with polyamino acid urethane (PAU), coating with collagen or gelatin, and then laminating and coating an endothelial cell growth agent (endothelial cell growth factor).
  • PAU polyamino acid urethane
  • endothelial cell growth factor examples include other in vivo substances such as HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor).
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • the present invention is a method for producing an antithrombotic artificial blood vessel by producing an endothelial cell membrane by the endothelial cell proliferation action of PAU by flowing blood directly in contact with the PAU coating surface. Completely different.
  • Patent Document 5 uses PAU as an adhesive for immobilizing endothelial cell proliferating agents such as HGF and VEGF on the inner surface of an artificial blood vessel, whereas the present invention uses PAU itself as an endothelium. It is used as a cell proliferating agent.
  • An object of the present invention is to use an artificial polyester fiber made by a reaction of an aromatic dicarboxylic acid and an aliphatic diol, such as a PET fiber that is not easily decomposed or absorbed in vivo, or a polybutylene terephthalate fiber.
  • a thrombus is not generated when a blood vessel is connected to a living body blood vessel, and an artificial blood vessel that does not occlude for a long time is provided even in a small-diameter artificial blood vessel having an inner diameter of 6 mm or less.
  • a thrombus layer at a branched portion, a bent portion, or in some cases, an anastomosis portion is thick. Therefore, it is possible to provide a highly safe artificial blood vessel.
  • the uppermost layer on the inner surface of a tubular product obtained by coating or impregnating a polyamino acid urethane resin (PAU) on a tubular product based on a knitted fabric, a woven fabric, and a nonwoven fabric of an aromatic polyester fiber.
  • PAU polyamino acid urethane resin
  • the present invention can also be applied to an artificial blood vessel in which an aromatic polyester fiber base material is clogged with gelatin, collagen or the like.
  • FIG. 1 shows the process after transplantation of a conventional aromatic polyester fiber-based artificial blood vessel when an artificial blood vessel is transplanted (biological results are connected to both ends of the artificial blood vessel to cause blood flow).
  • FIG. 2 shows a course after transplantation of an artificial blood vessel in which a blood vessel is coated with PAU (a course after transplantation of a PAU-coated aromatic polyester fiber artificial blood vessel).
  • FIG. 3 shows a structure diagram of a biological blood vessel generated in an artificial blood vessel of an aromatic polyester fiber-based artificial blood vessel and a PAU-coated aromatic polyester fiber.
  • the blood vessel of the conventional aromatic polyester fiber shown in FIG. 1 when blood is passed through an artificial blood vessel having an inner diameter of 7 mm or more and clogged with only gelatin or collagen, the blood condenses on the tube wall. Since the thickness is about 2 mm or less, the blood vessel does not occlude, and the endothelial cell membrane covers the coagulated blood (thrombus layer) to form a surface structure similar to that of a biological blood vessel, and the fiber gap from the outer wall of the artificial blood vessel Incorporation of living cells and microvessels, smooth muscle cell layers under the endothelial cell layer, and formation of fibroblasts under them promotes integration with living tissue, creating artificial blood vessels that can withstand long-term use. It is formed. However, the thrombus layer may become thicker and occluded at the branched portion, the bent portion, and in some cases, at the anastomosis.
  • the blood vessel is blocked by the thickness of the thrombus layer generated by the patient's blood.
  • a thrombus does not occur, even in the case of an artificial blood vessel having an inner diameter of 7 mm or more, a thrombus may be generated in a branched portion, a bent portion, and in some cases, an anastomosis portion like a conventional artificial blood vessel of aromatic polyester fiber. It is a highly safe artificial blood vessel.
  • PAU is coated on an aromatic polyester fiber product (woven fabric, knitted fabric, non-woven fabric, etc.), a product with good touch and texture can be obtained.
  • the cause of this phenomenon is thought to be due to the eclectic action of the relatively antithrombogenic urethane segment in the PAU component and the peptide segment having an endothelial cell generating action.
  • the artificial blood vessel of the present invention has an effect that it does not occlude for a long time even if it has a small diameter of 6 mm or less.
  • a thick thrombosis layer is formed at the bent portion of an artificial blood vessel and, in some cases, the anastomosis portion, of a conventional aromatic polyester (PET) fiber that has been put to practical use.
  • PET aromatic polyester
  • the aromatic polyester fiber of the present invention is a polyethylene terephthalate (PET) fiber or a polybutylene terephthalate fiber obtained by fiberizing a reaction product of an aromatic dicarboxylic acid and an aliphatic diol. Mixtures of fibers or mixtures of these fibers with other fibers can be used.
  • PET polyethylene terephthalate
  • polybutylene terephthalate fiber obtained by fiberizing a reaction product of an aromatic dicarboxylic acid and an aliphatic diol. Mixtures of fibers or mixtures of these fibers with other fibers can be used.
  • the starting amino acid used in the PAU in the present invention may be any of an optically active substance, a racemate, or a mixture thereof.
  • a polyamino acid is a structure in which an average of 4 or more amino acid units are continuously bonded, and means a structure in which an average of 4 or more amino acids of the same or different types are continuously bonded. There are roughly two methods for synthesizing such a copolymer of polyamino acid and urethane.
  • the first method is a method in which polyamino acid and polyurethane are synthesized separately and then copolymerized.
  • This method is a method of reacting urethane with a polyamino acid obtained by polymerizing an active monomer as a polyamino acid synthesized by sequentially combining amino acids or a precursor of polyamino acid. In this method, it is difficult to increase the molecular weight of the polyamino acid or copolymer.
  • the second method is a method of copolymerizing an active monomer (polymerizable monomer) as a precursor of polyamino acid and urethane.
  • an active monomer polymerizable monomer
  • ⁇ -amino acid-N-carboxylic acid anhydride is used as a polyamino acid precursor in this method, it is easy to increase the molecular weight of both the polyamino acid chain in the copolymer to be produced and the copolymer. is there.
  • the polyamino acid urethane resin used in the present invention is obtained by this second method, that is, (a) an ⁇ -amino acid-N-carboxylic acid anhydride, (b) a urethane prepolymer having an isocyanate group at the terminal, and ( c) It is preferably formed of a polyamino acid urethane resin obtained by reacting at least one selected from water, hydrazine and organic amine.
  • amino acids used include neutral amino acids having 2 to 12 carbon atoms such as glycine, alanine, leucine, isoleucine, valine, ⁇ -aminoheptanoic acid, ⁇ -benzylaspartic acid, ⁇ -methyl-L- Monoesterified acidic amino acids such as glutamate, ⁇ -methyl-D-glutamate, and ⁇ -benzyl-L-glutamate, and ⁇ -amino groups such as ⁇ -acyllysine and ⁇ -acylortinin are protected with an appropriate masking group. Examples thereof include ⁇ -diaminocarboxylic acid derivatives and O-acetylleonine. In this case, the racemic or optically active form can be used as the ⁇ -amino acid.
  • N-carboxylic acid anhydride is abbreviated as NCA
  • NCA N-carboxylic acid anhydride
  • all of the above ⁇ -amino acids-NCA can be used. It is. Typical examples include glycine-NCA, alanine-NCA, leucine-NCA, and ⁇ -methyl-L-glutamate-NCA.
  • the urethane prepolymer having an isocyanate group at the terminal is obtained by reacting a polyisocyanate compound and a polyol under the condition of an equivalent ratio NCO / OH> 1.
  • a polyisocyanate component aromatic diisocyanate, aliphatic diisocyanate and alicyclic diisocyanate are used alone or as a mixture thereof.
  • polyether polyol examples include polyether polyol and polyester polyol alone or a mixture thereof.
  • polyether polyols include polypropylene ether glycol, polyethylene polypropylene ether glycol, polytetramethylene ether glycol, polypentamethylene ether glycol, polyethylene polytetramethylene ether random copolymer, polyethylene polytetramethylene ether block copolymer alone or Examples thereof include a glycol having an aromatic ring obtained by adding propylene oxide or ethylene oxide to bisphenol A and a mixture thereof.
  • polyester polyols include polycaprolactone polyols or those obtained by reaction of diols such as ethylene glycol and 1,4-butanediol with dibasic acids such as adipic acid and sebacic acid.
  • diols such as ethylene glycol and 1,4-butanediol
  • dibasic acids such as adipic acid and sebacic acid.
  • special polyols such as polyols obtained by adding caprolactone to polytetramethylene ether polyols or polypropylene ether polyols, and polysiloxane polyols can be used.
  • polycarbonate polyol obtained by deethanol reaction by adding excess molar ratio of 1,6-hexanediol or 3-methylpentanediol to diethylene carbonate is used.
  • polyether polyols preferably have a number average molecular weight of 200 or more.
  • the water used in the present invention means ordinary water and may be tap water, non-demineralized water, or demineralized water.
  • Hydrazine may be either anhydrous hydrazine or hydrous hydrazine, and hydrous hydrazine is industrially more advantageous in terms of safety.
  • organic amines include tertiary amines such as trimethylamine, triethylamine and tripropyldiamine, secondary diamines such as piperazine, primary diamines such as ethylenediamine, 1,3-propanediamine and 1,4-butanediamine, Suitable are primary and secondary amines such as 2-propanediamine and 1,3-butanediamine, and dihydrazides having a hydrantoin ring, such as 1,3-bis (hydrazidecarboethyl) -5-isopropylhydantoin.
  • hydrazine can be used.
  • the weight ratio of the ⁇ -amino acid NCA and the urethane prepolymer in obtaining the polyamino acid urethane resin is 5:95 to 95: 5, preferably 10:90 to 90:10, and more preferably 20:80. It is in the range of ⁇ 80: 20. This weight ratio is determined according to the desired antithrombogenicity, endothelial cell adhesion and mechanical properties.
  • the amount of hydrazine and the organic amine having primary or secondary active hydrogen is preferably at least 1/2 equivalent, more preferably at least 2/3 equivalent, based on the isocyanate group of the urethane prepolymer as an amino group.
  • the amount of tertiary amine used is preferably 1/1000 mol or more of ⁇ -amino acid NCA.
  • the polyamino acid urethane resin in the present method is obtained by reacting an ⁇ -amino acid-N-carboxylic acid anhydride, a urethane prepolymer having an isocyanate group at the terminal, and water, hydrazine or an organic amine in an organic solvent.
  • organic solvent used herein examples include chlorinated aliphatic hydrocarbons such as dichloromethane, 1,2-dichloroethane, 1,1,2-trichloroethane, chloroform, 1,1,2,2-tetrachloroethane, and benzene.
  • Aromatic hydrocarbons such as toluene and xylene
  • chlorinated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene
  • acetates such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Water-soluble organic solvents that do not contain active hydrogen such as ketones, dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene carbonate, dimethylsulfoxide, dioxane, tetrahydrofuran, hexamethylphosphoramide, or the like seed Including mixtures of the above.
  • the amount of the organic solvent used is such that the resin concentration in the polyamino acid urethane resin liquid of the final product is usually in the range of 3 to 50% by weight, preferably in the range of 10 to 30% by weight in terms of the produced resin solution. It is good to do. If the concentration is too high, the viscosity becomes remarkably high and a gel is formed. When the tube is coated or impregnated and processed, it may be diluted with a solvent, but it is difficult to handle. On the other hand, if the concentration is too low, it is difficult to obtain a product having a high viscosity (10,000 cps or more), and the versatility is poor.
  • the reaction temperature when producing a polyamino acid urethane resin liquid is preferably a temperature at which a single polymer having a high molecular weight can be synthesized from ⁇ -amino acid NCA.
  • a range of 60 ° C. is good.
  • the amino acid chain hardly takes an ⁇ -helix structure at the time of copolymerization, so that the degree of polymerization of the amino acid chain does not increase and a high molecular weight product may not be obtained.
  • the isocyanate group may undergo a burette reaction with the urea bond generated by the reaction between the isocyanate group and the amino group, thereby causing gelation.
  • the ⁇ -amino acid NCA and the urethane prepolymer have a weight ratio of, for example, 5:95 to 15: In the range of 85, the solution becomes relatively less turbid, and as the ratio of ⁇ -amino acid NCA increases, the turbidity increases, and a solution having an arbitrary viscosity within the range of 10 cps to 1 million cps / 25 ° C. is obtained. .
  • a method for obtaining a polyamino acid urethane resin (i) a method in which a urethane prepolymer and an ⁇ -amino acid NCA are mixed in the organic solvent and then a tertiary amine is added and reacted. (B) A method in which an ⁇ -amino acid NCA and a urethane prepolymer are mixed in the organic solvent, and then an organic amine having water, hydrazine or active hydrogen is added and reacted.
  • (C) A method in which a urethane prepolymer and an ⁇ -amino acid NCA are mixed in the organic solvent, an organic amine having water, hydrazine or active hydrogen is added and reacted, and then a tertiary amine is further added and reacted.
  • (D) A method in which a urethane prepolymer and water, hydrazine or an organic amine having active hydrogen are reacted in the organic solvent, and then ⁇ -amino acid NCA is added and reacted.
  • (E) A method of mixing an ⁇ -amino acid NCA and a urethane prepolymer in the organic solvent, then adding water, hydrazine, or an organic amine having active hydrogen to react, and further adding a urethane prepolymer.
  • (F) After reacting the urethane prepolymer with water, hydrazine, or an amine having active hydrogen in the organic solvent, ⁇ -amino acid-N-carboxylic acid anhydride is added and reacted, and then water is added. And a method of adding and reacting hydrazine or amines having active hydrogen.
  • PAU polyamino acid urethane resin
  • the type of the organic solvent is adapted to the use of PAU and the type of raw material ( ⁇ -amino acid NCA, urethane prepolymer).
  • a polyamino acid urethane resin obtained by the above method can be used by mixing a polyamino acid or a polyurethane resin.
  • the artificial blood vessel of the present invention can be obtained by coating or impregnating a polyamino acid urethane resin obtained by the above-mentioned method with a polyamino acid urethane resin on a knitted, woven or non-woven tubular article of an aromatic polyester fiber.
  • the concentration of the PAU solution is preferably 5% by weight or more when the tubular product of the aromatic polyester fiber that is not clogged with gelatin or collagen is immersed and impregnated in the PAU solution.
  • the concentration of the PAU solution when an artificial blood vessel is obtained by coating or impregnating a polyamino acid urethane resin with the above-mentioned tubular product of aromatic polyester fiber clogged with gelatin or collagen is preferably 1% or more, preferably 3 wt. % Or more.
  • an artificial blood vessel made of polyamino acid urethane resin PAU
  • PAU polyamino acid urethane resin
  • the amino acid content in the PAU is constant.
  • endothelial cells enter the artificial blood vessel, in addition to the invasion of living blood vessels, the uptake and growth of endothelial cells or endothelial cell-forming factors from blood by PAU resin, and the fine blood vessels from the artificial blood vessel outer wall to the artificial blood vessel
  • the endothelial cell membrane adheres and spreads throughout the artificial blood vessel when it enters the artificial blood vessel and opens in the artificial blood vessel. In this way, the formation of a biological blood vessel starts in the artificial blood vessel.
  • the artificial blood vessel is entirely covered with the endothelial cell membrane, there is no vascular occlusion due to the removal of the pannunu from the thrombus or the anastomosis, and there is a smooth muscle cell layer below the endothelial cell membrane, and below that Fibroblasts are created, and biological blood vessels are smoothly generated in the artificial blood vessel.
  • the PAU component, gelatin, collagen, etc. in the artificial blood vessel are gradually absorbed into the living body, and finally the living blood vessel is inserted into the gap between the knitted or woven fiber aggregates constituting the aromatic polyester fiber tube. Is formed. It is reported in the said patent document 4 that PAU is bioabsorbable.
  • the amino acid content in the PAU is 5 to 95%, preferably 10 to 90%, more preferably 15 to 85%.
  • amino acids other than ⁇ -amino acid NCA those according to this range are preferred.
  • polyamino acid urethane resin 980 g of polytetramethylene ether glycol (OH value 57.25) and tolylene diisocyanate (a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, 2,4 -Tolylene diisocyanate 80 wt%) 174 g was reacted at 70 ° C. for 5 hours to obtain a urethane prepolymer having an isocyanate group at the terminal (NCO equivalent, 1164).
  • the average degree of polymerization of amino acid chains in this solution is the reactivity of primary amines and isocyanates and the mechanism of NCA polymerization by primary amines (Murray Goodman and John Hutchison. J. Am. Chem. Soc., 88, 3627 (1966). )) To calculate approximately 62.
  • the metal rod was taken out, and the artificial blood vessel (sample 1) clogged with the polyamino acid urethane resin was obtained.
  • This artificial blood vessel had a dry touch and good tactile sensation.
  • an artificial blood vessel was obtained in which PAU was considered to have good fitting properties to a living body from a combination of an amino acid and urethane. This thing was made into the artificial blood vessel for biological experiment.
  • Comparative Example 1 B Preparation of urethane resin A solution in which 1.25 g of hydrazine hydrate was dissolved in 80.5 g of DMF, and 52.8 g of the same urethane prepolymer used in Example 1 was dissolved in 58.2 g of DMF under a nitrogen atmosphere. Were dropped and reacted to obtain a urethane resin solution (B) having a viscosity of 14,000 cps / 25 ° C. (concentration, 28 wt% DMF solution).
  • Example 2 Manufacture of artificial blood vessel
  • the urethane resin solution (B) was diluted with DMF to a concentration of 10 wt% as in Example 1, and immersed in this solution through a metal rod in the same tubular product (a) as in Example 1. After impregnating with the urethane resin solution, it was taken out and put into squeezed water with a roll to remove DMF. Next, this was air-dried, the metal rod was taken out, and an artificial blood vessel (sample 2) clogged with urethane resin was obtained. This artificial blood vessel had a rubber-like and sticky feel. This sample was used as a sample for a biological experiment for a comparative example.
  • the tubular product (a) used in Example 1 was clogged with collagen to produce a tubular product (b) from which leakage of blood was eliminated, and a metal rod was passed through the tube.
  • the polyamino acid urethane resin solution (A) (concentration 20 wt%) obtained in Example 1 was diluted with dichloroacetic acid to a concentration of 5 wt%, and a tubular material (b) passed through a metal rod was added thereto, and the concentration was 5 wt%. % Solution was impregnated.
  • Comparative Example 2 The tubular product (b) obtained by clogging the tubular product (a) used in Example 1 with collagen was used as an artificial blood vessel (sample 4). This was used as a comparative biological experiment sample.
  • the polyamino acid urethane resin (A) synthesized in Example 1 was diluted with DMF to obtain a concentration 10 wt% DMF solution.
  • a metal rod is passed through a tube of a tubular product (c) knitted from polyethylene terephthalate fiber having an inner diameter of 1.5 mm and a length of 10 mm, which is immersed in the polyamino acid urethane resin 10 wt% DMF solution, and the resin The solution was impregnated. Next, this was taken out from the solution and put into squeezed water with a roll to remove DMF.
  • Comparative Example 3 The urethane resin solution synthesized in Comparative Example 1 was diluted with DMF to a concentration of 10 wt%. Next, a metal rod is passed through a tube of a tubular product (c) formed by knitting polyethylene terephthalate fibers having an inner diameter of 1.5 mm and a length of 10 mm into a tube shape, and this is immersed in the urethane resin 10 wt% solution. The solution was impregnated. Next, this was taken out from the solution and put into squeezed water with a roll to remove DMF. Next, this was air-dried, the metal rod in the tube was taken out, and an artificial blood vessel (sample 6) clogged with urethane resin was obtained. This was a rubber-like texture and a sticky feel. This was used as a comparative biological experiment sample.
  • the tubular product (c) used in Example 3 was clogged with gelatin to prepare a tubular product (d) in which leakage of blood was eliminated.
  • the polyamino acid urethane resin solution (A) (concentration 20 wt%) obtained in Example 1 was diluted with dichloroacetic acid to a 5 wt% solution.
  • a metal rod was passed through the tube of the tubular article (d), and this was put into the 5 wt% solution and impregnated with the solution.
  • Comparative Example 4 A tubular product (sample 8) obtained by clogging the tubular product (c) used in Example 4 with gelatin was obtained. This was used as a comparative artificial blood vessel for biological experiments.
  • the polyamino acid urethane resin (A) synthesized in Example 1 (20% by weight DMF solution) was diluted with dichloroacetic acid to give a 3% concentration solution.
  • a polyethylene terephthalate fiber is passed through a tube made by clogging a tubular knitted fabric with an inner diameter of 2 mm and a length of 10 mm with collagen, and this is diluted with dichloroacetic acid and immersed in a polyamino acid urethane solution having a concentration of 3%. Then, the resin solution was impregnated.
  • Fig. 4 shows a tubular product in which an artificial blood vessel made of polyethylene terephthalate (PET) fiber branched into a T-shape is plugged with collagen (e) ⁇ main tube (thick portion): tubular product having an inner diameter of 12 mm and a length of 140 mm, side A metal rod was inserted into a main pipe and a side pipe of a pipe (branch pipe: tubular product having an inner diameter of 8 mm and a length of 150 mm connected to the central portion of the main pipe), and then the polyamino acid urethane resin solution (A) obtained in Example 1 After diluting (concentration 20 wt%) with dichloroacetic acid to a concentration of 3 wt% and immersing the artificial blood vessel into which the metal rod was inserted, it was lifted and desolvated in water, air-dried to extract the metal rod, and coated with PAU An artificial blood vessel (sample 10) of a woven fabric of PET fiber was obtained, which had good tactile sensation and
  • Comparative Example 6 As a comparative example, a tubular product (f) obtained by clogging an artificial blood vessel of a PET fiber fabric branched into a T shape in FIG. 4 with collagen was used as a sample for biological experiment (sample 11).
  • the present invention can be used as an artificial blood vessel.

Abstract

[Problem] To provide a small-caliber vascular prosthesis having an inner diameter of at most 6 mm when a vascular prosthesis that employs PET fibers, polybutylene terephthalate fibers, or other aromatic polyester fibers made by reacting an aromatic dicarboxylic acid and an aliphatic diol is connected to an in situ blood vessel, that does not produce thrombi or become occluded over the long-term. Also, to provide a very safe vascular prosthesis having an inner diameter of at most 7 mm in which PET fibers, which have been put to practical use in the past, serve as the base material, wherein thickening of a thrombus layer and occlusion are prevented at a branched site, bent site, or anastomosis site. [Solution] With this vascular prosthesis, in which a tubular article having a knitted fabric, woven fabric, or nonwoven fabric made of aromatic polyester fiber as the base material is coated with or impregnated and coated with polyamino acid urethane resin, an endothelial cell film is formed when the vascular prosthesis is connected to an in situ blood vessel and blood flows through; because no thrombus will occur thereon, the foregoing problem can be resolved.

Description

人工血管Artificial blood vessel
 本発明は、人工血管に関し、特に優れた生体適合性、安全性等を有する人工血管に関する。 The present invention relates to an artificial blood vessel, and particularly to an artificial blood vessel having excellent biocompatibility and safety.
 1950年頃から、血行再建を目的として人工血管が臨床で用いられるようになっている。 Since around 1950, artificial blood vessels have been used clinically for the purpose of blood circulation reconstruction.
 その後人工血管としては、ポリエチレンテレフタレート繊維(PET繊維)の編物や織物の管状物やポリテトラフルオロエチレンを延伸して多孔質化した樹脂(e−PTFE)の管状物が用いられている。これらの人工血管の管壁組織は空隙性に富んでいる。 Then, as the artificial blood vessel, a polyethylene terephthalate fiber (PET fiber) knitted fabric, a woven fabric tubular material, or a polytetrafluoroethylene stretched porous resin (e-PTFE) tubular material is used. The tube wall tissue of these artificial blood vessels is rich in porosity.
 この中でPET繊維の編物や織物の管状物(人工血管)は血液が流れた時に血栓層ができ、その上に内皮細胞が生成する。またPET繊維が生体親和性であるため、血管外壁から生体細胞が侵入し新生内皮細胞に到達する。更に細血管が血管外壁から侵入し血管内に生成した新生内皮細胞膜に到達し、血栓は時間とともに体内に吸収される。血管内の新生内膜は細血管の血流により、新陳代謝が行われ、常に新しいものへと維持管理されてい。 Among these, knitted PET fibers and tubular fabrics (artificial blood vessels) form a thrombus layer when blood flows, and endothelial cells are formed on the thrombus layer. In addition, since PET fibers are biocompatible, living cells invade from the outer wall of the blood vessel and reach new endothelial cells. Furthermore, a fine blood vessel enters from the outer wall of the blood vessel and reaches a neovascular endothelial cell membrane generated in the blood vessel, and the thrombus is absorbed into the body with time. The neointima in the blood vessels is metabolized by the blood flow of the small blood vessels, and is constantly maintained and managed as new.
 即ち、このようにして生成した人工血管内新生膜は生体血管と同じ構造と機能を有しているため、開存性においても優れた人工血管である。 That is, the artificial intravascular neovascular membrane generated in this way has the same structure and function as a biological blood vessel, and is therefore an artificial blood vessel that is excellent in patency.
 一方、e−PTFEを用いた人工血管はPTFE(ポリテトラフルオロエチレン)が代表的な生体非親和性(生体不活性な)物質であるため、e−PTFEを生体血管に繋いだ場合(生体血管の一部と置換した場合)、その吻合部に向かって生体血管から内皮細胞膜が侵入してくるが、e−PTFEの孔をおおきくしても、血管外壁からの生体細胞の侵入力が非常に劣り、また細血管が侵入しないのでPET繊維を基材とした人工血管のように人工血管内に生体血管と同じような構造のものは生成しない。また、その吻合部に向かって生体血管から侵入してくる内皮細胞膜はe−PTFEに付着しにくく、付着しても剥がれて血腫をつくり、長期間経過するうちにこの部分が肥厚して、吻合部に狭窄を生じさせ閉塞の原因となっている。 On the other hand, since an artificial blood vessel using e-PTFE is PTFE (polytetrafluoroethylene), which is a typical non-biocompatible (biologically inert) substance, when e-PTFE is connected to a biological blood vessel (biological blood vessel) The endothelial cell membrane enters from the living blood vessel toward the anastomosis part, but the invasion power of living cells from the outer wall of the blood vessel is very large even if the hole of e-PTFE is increased. Inferior, since fine blood vessels do not invade, artificial blood vessels having a structure similar to biological blood vessels are not generated in artificial blood vessels like artificial blood vessels based on PET fibers. In addition, the endothelial cell membrane that invades from the blood vessels toward the anastomosis part is difficult to adhere to e-PTFE, and even if it adheres, it peels off to form a hematoma, and this part becomes thickened over a long period of time. This causes stenosis in the part and causes obstruction.
 ただ、内径6mm以下の人工血管の場合、血液が流れた時、e−PTFEが生体不活性物質であるので、PET繊維の場合のような血液凝固は起こらず、ある程度の期間は開存状態を保持するが、長期間の開存性は望めない。 However, in the case of an artificial blood vessel having an inner diameter of 6 mm or less, when blood flows, e-PTFE is a biologically inert substance, so that blood coagulation does not occur as in the case of PET fibers, and the patency state remains for a certain period of time. Retain, but long-term patency cannot be expected.
 現在、実用化されている人工血管は大部分PET繊維の編物や織物で管状化した人工血管である。 Currently, most of the artificial blood vessels that have been put into practical use are artificial blood vessels that have been tubularized with a knitted or woven fabric of PET fibers.
 しかし、PET繊維の人工血管は血液が流れると管壁に血栓を生じ、小口径(内径6mm以下)の人工血管では血管が閉塞する。また、PET繊維の人工血管は血液が流れると、血球や血漿の漏出現象を引き起こす。 However, when blood flows in an artificial blood vessel of PET fiber, a blood clot is formed in the tube wall, and the blood vessel is blocked in an artificial blood vessel having a small diameter (inner diameter of 6 mm or less). In addition, when blood flows in an artificial blood vessel made of PET fiber, it causes a leakage phenomenon of blood cells and plasma.
 そこでこれを防ぐために、1.人工血管を予め患者の血液で処理するプレクロッティング法、2.フィブリン糊でシールする方法、3.アルブミンを熱処理する方法、等が使用されてきた。しかし近年、緊急手術にも対応できるようにあらかじめゼラチン、コラーゲン等で目詰まりさせた人工血管が多用されている。 Therefore, in order to prevent this, 1. 1. a pre-clotting method in which an artificial blood vessel is previously treated with a patient's blood; 2. a method of sealing with fibrin glue; A method of heat-treating albumin has been used. However, in recent years, artificial blood vessels that have been clogged with gelatin, collagen or the like in advance so as to cope with emergency surgery have been frequently used.
 これらの方法で目詰まりさせた人工血管においても血液が流れると小口径の人工血管では血液が凝固して血管が閉塞するため、中口径以上(内径7mm以上)の人工血管にしか実用できないという問題点を有している。 Even in an artificial blood vessel clogged by these methods, when blood flows, the blood is coagulated and the blood vessel is blocked in an artificial blood vessel having a small diameter, so that it is practical only for an artificial blood vessel having a medium diameter or larger (inner diameter 7 mm or larger). Has a point.
 現在までのところ、PET繊維を基材とした人工血管は内径6mm未満のものは使用されていない。また、PET繊維を基材とした内径7mm以上の実用化されている人工血管においても枝分かれした部分、屈曲した部分または場合によっては生体血管との吻合部に血栓層が厚く形成されて閉塞することがある。 To date, artificial blood vessels based on PET fibers with an inner diameter of less than 6 mm have not been used. Further, even in a practical artificial blood vessel having an inner diameter of 7 mm or more based on a PET fiber, a thickened thrombus layer is blocked at a branched portion, a bent portion or an anastomosis portion with a biological blood vessel in some cases. There is.
 また、理想的人工血管として、最終的には生体内で全て吸収される人工血管も研究されているが、人工血管内に生体血管が出来はじめ、人工血管が吸収される過程において、人工血管は常にかかっている内圧によって徐々に膨らみ動脈瘤を形成し、ついには破裂するとのことである。 In addition, as an ideal artificial blood vessel, an artificial blood vessel that is finally absorbed in the living body has been studied, but in the process where a biological blood vessel is formed in the artificial blood vessel and the artificial blood vessel is absorbed, It is said that it will gradually swell due to the internal pressure that is constantly applied to form an aneurysm and eventually rupture.
 すでに20年以上前から生体吸収性繊維の人工血管への応用が試みられているようであるが、上記動脈瘤を形成し、破裂する問題があるためか、全く実用化されていない。 It seems that the application of bioabsorbable fibers to artificial blood vessels has been attempted for more than 20 years, but it has not been put into practical use at all because of the problem of forming and rupturing the aneurysm.
 PAUについては、特許文献1においてPAUで内径1.0mm、長さ10mmのチューブをつくり、これをラットの腹部大動脈に移植し、一週間飼育後の結果、抗血栓性が良いことが示されている。特許文献2の実施例4には、細胞培養膜に利用できる抗血栓材料としての内径1.5mm、7mmのe−PTFE人T血管にPAUをコーティングしたものをラットの腹部大動脈に移植し、e−PTFE人工血管に比べて抗血栓性が向上したことが示されている。また、非特許文献1においては内径1.5mmのe−PTFE人工血管にPAUをコーティングしラットの腹部大動脈に移植すると血栓が全く生じなくなり、その人工血管内面には内皮細胞が良く内ばりされていることが内皮細胞マーカーとの反応、電子顕微鏡写真、光学顕微鏡写真で説明されている。しかしe−PTFE人工血管は生体不活性である性質から血管外壁からの生体細胞の侵入性に乏しく、細血管も血管外壁からは血管内まで到達しにくいため、e−PTFE人工血管内にはPET繊維の人工血管のように新陳代謝が可能な生体血管が生成されない。 As for PAU, Patent Document 1 shows that PAU made a tube having an inner diameter of 1.0 mm and a length of 10 mm and transplanted into the abdominal aorta of a rat, and was bred for one week. Yes. In Example 4 of Patent Document 2, an anti-thrombotic material that can be used for a cell culture membrane, an inner diameter of 1.5 mm and a 7 mm e-PTFE human T-vessel coated with PAU, is transplanted into a rat abdominal aorta, and e -It has been shown that antithrombogenicity is improved compared to PTFE artificial blood vessels. In Non-Patent Document 1, when an e-PTFE artificial blood vessel having an inner diameter of 1.5 mm is coated with PAU and transplanted to the abdominal aorta of a rat, thrombus does not occur at all, and endothelial cells are well infused on the inner surface of the artificial blood vessel. This is explained by reactions with endothelial cell markers, electron micrographs, and optical micrographs. However, since the e-PTFE artificial blood vessel is inactive in the living body, the invasion property of the living cell from the outer wall of the blood vessel is poor, and it is difficult for the fine blood vessel to reach the blood vessel from the outer wall of the blood vessel. Biological blood vessels that can be metabolized, such as fiber artificial blood vessels, are not generated.
 更にe−PTFE人工血管内において、e−PTFEは、他の材料に対する接着性が乏しいため、比較的長期のテストにおいては血流によりPAUコーティング成分とその上に生成した内皮細胞膜が剥離する可能性が大で、この剥離物が原因で血管(人工血管または生体血管)が閉塞してしまう危険性を否めず、長期に亘って使用できるものではない。
また、特許文献3にはポリグリコール酸、ポリ乳酸等の生体吸収性脂肪族系ポリエステル繊維から成るチューブ内に細胞接着層としてポリアミノ酸ウレタン樹脂(PAU)を用いることが提案されているが、このチューブを用いた人工血管は生体吸収性であるため、前記生体吸収性人工血管の問題点とその経緯から見て実用化は困難である。特許文献4にはPAUが生体吸収性であることが説明されている。特許文献5には、「多孔質管状構造体の少なくとも内表面に、(1)ポリアミノ酸ウレタン樹脂共重合体、(2)コラーゲンまたはゼラチン、(3)コラーゲン結合活性を有する内皮細胞増殖促進剤を、順次積層し固定化して成る人工血管」が公開されている。ここで用いる多孔質管状構造体としてはe−PTFE以外にポリエチレンテレフタレート、ポリブチレンテレフタレート等も使用可能と記載されている。この人工血管を造る方法としては多孔質管状構造体にポリアミノ酸ウレタン(PAU)をコートし、その上にコラーゲンまたはゼラチンをコートし、更に内皮細胞増殖剤(内皮細胞増殖因子)を積層・コートして固定化する。内皮細胞増殖因子としてはHGF(肝細胞増殖因子)、VEGF(血管内皮増殖因子)等、その他生体内物質が挙げられている。
 またここで「PAUを使うとコラーゲンをe−PTFEチューブ表面に長期間維持させる上で有効であることを発見した」と書かれている。またコラーゲンの上に内皮細胞増殖剤をコートし、移植して血液が流れた時、その増殖剤(HGF,VEGF等)により、血管内壁に内皮細胞を形成させて抗血栓性人工血管を造ろうとするものである。一方本発明はPAUコーティング面に血液が直接接触して流れることにより、PAUの内皮細胞増殖作用により、内皮細胞膜を生成させて抗血栓性人工血管を造る方法であり、特許文献5と本発明は全く異なる。
 即ち特許文献5は内皮細胞増殖剤であるHGF、VEGF等を人工血管の内表面に固定化するための接着剤の一つとしてPAUが使われているのに対し、本発明はPAU自体を内皮細胞増殖剤として使っているのである。
Furthermore, in e-PTFE artificial blood vessels, e-PTFE has poor adhesion to other materials, and therefore, in a relatively long-term test, the PAU coating component and the endothelial cell membrane formed thereon may be detached by blood flow. However, the risk of the blood vessel (artificial blood vessel or biological blood vessel) becoming blocked due to the peeled material cannot be denied, and it cannot be used for a long time.
Patent Document 3 proposes that a polyamino acid urethane resin (PAU) is used as a cell adhesion layer in a tube made of bioabsorbable aliphatic polyester fibers such as polyglycolic acid and polylactic acid. Since an artificial blood vessel using a tube is bioabsorbable, it is difficult to put it to practical use in view of the problems and background of the bioabsorbable artificial blood vessel. Patent Document 4 describes that PAU is bioabsorbable. In Patent Document 5, “at least the inner surface of a porous tubular structure is provided with (1) a polyamino acid urethane resin copolymer, (2) collagen or gelatin, and (3) an endothelial cell proliferation promoter having collagen binding activity. ”, An artificial blood vessel formed by sequentially laminating and fixing”. As the porous tubular structure used here, it is described that polyethylene terephthalate, polybutylene terephthalate and the like can be used in addition to e-PTFE. This artificial blood vessel is made by coating a porous tubular structure with polyamino acid urethane (PAU), coating with collagen or gelatin, and then laminating and coating an endothelial cell growth agent (endothelial cell growth factor). To fix. Examples of the endothelial cell growth factor include other in vivo substances such as HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor).
In addition, it is written here that “the use of PAU has been found to be effective in maintaining collagen on the surface of the e-PTFE tube for a long period of time”. In addition, when an endothelial cell proliferating agent is coated on collagen and transplanted and blood flows, an endothelial cell is formed on the inner wall of the blood vessel by the proliferating agent (HGF, VEGF, etc.) to create an antithrombotic artificial blood vessel. To do. On the other hand, the present invention is a method for producing an antithrombotic artificial blood vessel by producing an endothelial cell membrane by the endothelial cell proliferation action of PAU by flowing blood directly in contact with the PAU coating surface. Completely different.
That is, Patent Document 5 uses PAU as an adhesive for immobilizing endothelial cell proliferating agents such as HGF and VEGF on the inner surface of an artificial blood vessel, whereas the present invention uses PAU itself as an endothelium. It is used as a cell proliferating agent.
特開平11−239612号公報JP-A-11-239612 特開2001−136960号公報JP 2001-136960 A 特開2005−319165号公報JP 2005-319165 A 特開平1−124464号公報JP-A-1-124464 特開2006−68401号公報JP 2006-68401 A
 本発明の目的は生体内で容易に分解または吸収されないPET繊維、またはポリブチレンテレプタレート繊維等、芳香族ジカルボン酸と脂肪族ジオールとの反応で造られた芳香族系ポリエステル繊維を用いた人工血管を生体血管に繋いだ時に血栓を生じさせないことであり、内径6mm以下の小口径の人工血管においても、長期にわたり閉塞しない人工血管を提供することである。
 また、血栓を生じさせないことにより、実用化されている従来のPET繊維を基材とした内径7mm以上の人工血管においても、枝分かれした部分、屈曲した部分または場合によっては吻合部における血栓層が厚くなることよる閉塞を防止し、安全性の高い人工血管を提供することである。
An object of the present invention is to use an artificial polyester fiber made by a reaction of an aromatic dicarboxylic acid and an aliphatic diol, such as a PET fiber that is not easily decomposed or absorbed in vivo, or a polybutylene terephthalate fiber. A thrombus is not generated when a blood vessel is connected to a living body blood vessel, and an artificial blood vessel that does not occlude for a long time is provided even in a small-diameter artificial blood vessel having an inner diameter of 6 mm or less.
Further, by not causing thrombus, even in an artificial blood vessel having an inner diameter of 7 mm or more based on a conventional PET fiber that has been put to practical use, a thrombus layer at a branched portion, a bent portion, or in some cases, an anastomosis portion is thick. Therefore, it is possible to provide a highly safe artificial blood vessel.
 本発明は、芳香族系ポリエステル繊維の編み物、織物、および不織布を基材とした管状物にポリアミノ酸ウレタン樹脂(PAU)をコーティングまたは含浸被覆することによって得られる管状物の内表面の最上層がPAUで形成された人工血管である。 In the present invention, the uppermost layer on the inner surface of a tubular product obtained by coating or impregnating a polyamino acid urethane resin (PAU) on a tubular product based on a knitted fabric, a woven fabric, and a nonwoven fabric of an aromatic polyester fiber. An artificial blood vessel formed of PAU.
 本発明は、芳香族系ポリエステル繊維基材をゼラチン、コラーゲン等で目詰まりさせた人工血管にも適応可能である。 The present invention can also be applied to an artificial blood vessel in which an aromatic polyester fiber base material is clogged with gelatin, collagen or the like.
 即ち、PAUをコーティングした人工血管を生体血管に繋いだ場合(または生体血管と置換した場合)、PAUまたはゼラチン、コラーゲン等により、血球や血漿の漏れが防止され、かつ人工血管内の最上部にコーティングされているPAUの抗血栓性と内皮細胞接着性が機能して血栓が出来る前に人工血管の管内全体が内皮細胞膜で覆われるので血栓が生じない。 That is, when an artificial blood vessel coated with PAU is connected to a biological blood vessel (or replaced with a biological blood vessel), leakage of blood cells and plasma is prevented by PAU, gelatin, collagen, etc., and at the top of the artificial blood vessel. Since the entire inside of the artificial blood vessel is covered with the endothelial cell membrane before the anti-thrombogenicity and endothelial cell adhesion of the coated PAU function to form a thrombus, the thrombus does not occur.
 芳香族系ポリエステル繊維基材がゼラチン、コラーゲン等で目詰まりさせた人工血管に対しては血液の漏れ防止が行われているのでPAUのコーティング量を少なくても、抗血栓性と内皮細胞の接着性が優れた人工血管が得られる。この場合も、PAUをコーティングした人工血管に血液が流れると内皮細胞膜が優先して形成されるため、従来のポリエステル繊維の人工血管のように血栓が生じない。 Anti-thrombogenicity and endothelial cell adhesion even if the amount of PAU coating is small, since blood leakage is prevented for artificial blood vessels whose aromatic polyester fiber base is clogged with gelatin, collagen, etc. A superior artificial blood vessel can be obtained. Also in this case, when blood flows through an artificial blood vessel coated with PAU, an endothelial cell membrane is formed preferentially, so that a thrombus does not occur as in a conventional artificial blood vessel of polyester fiber.
 その後、生体細胞と細血管が従来の芳香族系ポリエステル繊維の人工血管と同じように血管外壁から血管内に侵入し、内皮細胞に到達し、新陳代謝機能を有する生体血管が人工血管内に生成する。
 これを図解すると次の図の通りである。
人工血管を移植(人工血管の両端に生体結果を繋ぎ血流させる)した時の従来の芳香族系ポリエステル繊維系人工血管の移植後の経過を図1に、従来の芳香族系ポリエステル繊維系人工血管にPAUをコーティングした人工血管の移植後の経過(PAUコーティング芳香族系ポリエステル繊維系人工血管の移植後の経過)を図2に示す。
 また、芳香族系ポリエステル繊維系人工血管およびPAUコーティング芳香族系ポリエステル繊維の人工血管内に生成する生体血管の構造図を図3に示す。
Thereafter, the living cells and the small blood vessels enter the blood vessel from the outer wall of the blood vessel in the same manner as the conventional artificial polyester fiber of aromatic polyester fiber, reach the endothelial cells, and a living blood vessel having a metabolic function is generated in the artificial blood vessel. .
This is illustrated in the following diagram.
Fig. 1 shows the process after transplantation of a conventional aromatic polyester fiber-based artificial blood vessel when an artificial blood vessel is transplanted (biological results are connected to both ends of the artificial blood vessel to cause blood flow). FIG. 2 shows a course after transplantation of an artificial blood vessel in which a blood vessel is coated with PAU (a course after transplantation of a PAU-coated aromatic polyester fiber artificial blood vessel).
FIG. 3 shows a structure diagram of a biological blood vessel generated in an artificial blood vessel of an aromatic polyester fiber-based artificial blood vessel and a PAU-coated aromatic polyester fiber.
 図1の従来の芳香族系ポリエステル繊維の人工血管においては、例えば内径7mm以上の人工血管だとゼラチンやコラーゲンのみで目詰まりさせたものに血液を流した場合、血液が管壁に凝結してもその厚みが2mm程度以下であるため血管が閉塞することなく、凝固血(血栓層)の上に内皮細胞膜が覆って生体血管と同様な表面構造を形成し、かつ人工血管の外壁から繊維間隙に生体細胞と細血管が侵入し、内皮細胞層の下には平滑筋細胞層、その下に繊維芽細胞が生成することにより生体組織との一体化が促進され、長期使用に耐える人工血管が形成される。しかし枝分かれした部分、屈曲した部分および場合によっては吻合部において血栓層が厚くなり閉塞する場合がある。 In the case of the artificial blood vessel of the conventional aromatic polyester fiber shown in FIG. 1, for example, when blood is passed through an artificial blood vessel having an inner diameter of 7 mm or more and clogged with only gelatin or collagen, the blood condenses on the tube wall. Since the thickness is about 2 mm or less, the blood vessel does not occlude, and the endothelial cell membrane covers the coagulated blood (thrombus layer) to form a surface structure similar to that of a biological blood vessel, and the fiber gap from the outer wall of the artificial blood vessel Incorporation of living cells and microvessels, smooth muscle cell layers under the endothelial cell layer, and formation of fibroblasts under them promotes integration with living tissue, creating artificial blood vessels that can withstand long-term use. It is formed. However, the thrombus layer may become thicker and occluded at the branched portion, the bent portion, and in some cases, at the anastomosis.
 また内径が4mm以下の小口径血管では、患者の血液によって生じる血栓層の厚みで血管が閉塞する。 Also, in a small-diameter blood vessel having an inner diameter of 4 mm or less, the blood vessel is blocked by the thickness of the thrombus layer generated by the patient's blood.
 一方、図2のように芳香族系ポリエステル繊維の人工血管にPAUをコーティングし、人工血管の内表面の最上層にPAUが存在する場合は抗血栓性と内皮細胞膜の生成性に優れているので、血液が流れた時、血液の凝結(血栓)が生じる前に内皮細胞膜が血管内壁全体を覆うので血栓が生じることがない。血栓を生じないため、現在実用化されていない内径6mm以下、さらには内径4mm以下の小口径人工血管にも使用可能となる。また最終的にはPAUは生体吸収され、新陳代謝可能な生体血管が芳香族系ポリエステル繊維の人工血管内に生成するので、長期にわたり閉塞しない人工血管となる。
 また血栓を生じないので、内径7mm以上の人工血管の場合においても、従来の芳香族系ポリエステル繊維の人工血管のように枝分かれした部分、屈曲した部分および場合によっては吻合部に血栓を生じることがなく、安全性の高い人工血管である。
 更にPAUは芳香族系ポリエステル繊維製品(織物、編み物、不織布等)にコーティングすると触感、風合いの良いものが得られ。この触感、風合いの特長により合成皮革、衣料用防水布に長年実用化されていた経緯があり、この触感、風合いは実用化されている人工血管においても大切な物性になっている。またPAUはアミノ酸鎖を有しているので生体細胞とのフィッティング性に優れたコーティング剤である。
On the other hand, when PAU is coated on an artificial blood vessel of aromatic polyester fiber as shown in FIG. 2 and PAU is present on the uppermost layer of the inner surface of the artificial blood vessel, it is excellent in antithrombogenicity and endothelial cell membrane formation. When blood flows, the endothelial cell membrane covers the entire inner wall of the blood vessel before blood clots (thrombus) are formed, so that no thrombus is formed. Since thrombus does not occur, it can be used for a small-diameter artificial blood vessel having an inner diameter of 6 mm or less and further having an inner diameter of 4 mm or less, which is not practically used. Eventually, PAU is absorbed into the living body, and a metabolizable living blood vessel is generated in the artificial blood vessel of the aromatic polyester fiber, so that it becomes an artificial blood vessel that does not occlude for a long time.
In addition, since a thrombus does not occur, even in the case of an artificial blood vessel having an inner diameter of 7 mm or more, a thrombus may be generated in a branched portion, a bent portion, and in some cases, an anastomosis portion like a conventional artificial blood vessel of aromatic polyester fiber. It is a highly safe artificial blood vessel.
Furthermore, when PAU is coated on an aromatic polyester fiber product (woven fabric, knitted fabric, non-woven fabric, etc.), a product with good touch and texture can be obtained. Due to the features of touch and texture, synthetic leather and waterproof cloth for clothing have been put into practical use for many years, and this touch and texture are important physical properties even in artificial blood vessels that have been put to practical use. Moreover, since PAU has an amino acid chain, it is a coating agent having excellent fitting properties with living cells.
 特にポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族系ポリエステル繊維の編物、織物、及び不織布を基材とした管状物またはそれをコラーゲン、ゼラチン等で目詰めしたものにPAUをコーティングまたは含浸被覆したのみで造った管状物の内表面の最上層にPAUを存在させた人工血管はこれまでの文献には全く存在しない。
この方法で造った人工血管は、人工血管内のPAUコーティング層は通常の芳香族系ポリエステル繊維の人工血管に血液が流れた時に生じる血栓層と同じようにPAUの表層は内皮細胞膜を生成する機能を有している。
In particular, it is only coated or impregnated with PAU on knitted fabrics, woven fabrics, and non-woven fabrics of aromatic polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, or those packed with collagen, gelatin, etc. An artificial blood vessel in which PAU is present in the uppermost layer on the inner surface of the manufactured tubular article has never existed in the literature so far.
The artificial blood vessel made by this method has the function that the PAU coating layer in the artificial blood vessel generates the endothelial cell membrane in the same way as the thrombus layer that occurs when blood flows into the artificial blood vessel of normal aromatic polyester fiber have.
 この現象を生じさせる原因は、PAU成分中の比較的抗血栓性の良いウレタンセグメントと内皮細胞生成作用を持つペプチドセグメントの折衷作用によるものと考えられる。 The cause of this phenomenon is thought to be due to the eclectic action of the relatively antithrombogenic urethane segment in the PAU component and the peptide segment having an endothelial cell generating action.
 本発明の人工血管は、内径6mm以下の小口径であっても、長期にわたり閉塞しないという効果を有する。
 また内径7mm以上の中口径および大口径のものにあっては、実用化されている従来の芳香族系ポリエステル(PET)繊維の人工血管の屈曲部および場合によっては吻合部に血栓層が厚く生成して閉塞することがあるが、本発明の人工血管においては血栓層が出来ないため、このように閉塞することはなくなり安全性の高い人工血管となる。
The artificial blood vessel of the present invention has an effect that it does not occlude for a long time even if it has a small diameter of 6 mm or less.
For medium and large diameters with an inner diameter of 7 mm or more, a thick thrombosis layer is formed at the bent portion of an artificial blood vessel and, in some cases, the anastomosis portion, of a conventional aromatic polyester (PET) fiber that has been put to practical use. However, in the artificial blood vessel of the present invention, since a thrombus layer is not formed, the blood vessel is not obstructed in this way and becomes a highly safe artificial blood vessel.
従来の芳香族系ポリエステル繊維の人工血管の移植後の経過Progress after transplantation of conventional artificial polyester fiber grafts 本発明のPAUコーティング芳香族系ポリエステル繊維の人工血管の移植後の経過Progress after grafting of artificial blood vessel of PAU coated aromatic polyester fiber of the present invention 従来の芳香族系ポリエステル繊維の人工血管および本発明のPAUコーティング芳香族系ポリエステル繊維の人工血管中に生成する生体血管Conventional artificial blood vessel of aromatic polyester fiber and biological blood vessel formed in artificial blood vessel of PAU coated aromatic polyester fiber of the present invention 支管つき芳香族系ポリエステル繊維の人工血管Aromatic polyester fiber artificial blood vessel with branch
 以下、本発明につき詳細に説明する。
 本発明の芳香族系ポリエステル繊維とは芳香族ジカルボン酸と脂肪族ジオールとの反応により得られたものを繊維化したポリエチレンテレフタレート(PET)繊維、ポリブチレンテレフタレート繊維等でこれらの繊維単独、これらの繊維の混合物、またはこれらの繊維と他の繊維の混合物を用いることが出来る。
Hereinafter, the present invention will be described in detail.
The aromatic polyester fiber of the present invention is a polyethylene terephthalate (PET) fiber or a polybutylene terephthalate fiber obtained by fiberizing a reaction product of an aromatic dicarboxylic acid and an aliphatic diol. Mixtures of fibers or mixtures of these fibers with other fibers can be used.
 本発明におけるPAUに使用する原料アミノ酸は光学活性体、ラセミ体あるいはこれらの混合物のいずれであっても良い。またポリアミノ酸はアミノ酸ユニット平均4以上が連続して結合されたもので、同種又は異種のアミノ酸が平均4個以上連続して結合した構造を意味する。この様なポリアミノ酸とウレタンとの共重合体の合成法は大別して二つの方法がある。 The starting amino acid used in the PAU in the present invention may be any of an optically active substance, a racemate, or a mixture thereof. A polyamino acid is a structure in which an average of 4 or more amino acid units are continuously bonded, and means a structure in which an average of 4 or more amino acids of the same or different types are continuously bonded. There are roughly two methods for synthesizing such a copolymer of polyamino acid and urethane.
 第一の方法はポリアミノ酸とポリウレタンとを別々に合成した後、共重合を行う方法である。この方法はアミノ酸を逐次結合させて合成したポリアミノ酸又はポリアミノ酸の前駆体として活性モノマーを重合して得たポリアミノ酸とウレタンを反応させる方法である。この方法ではポリアミノ酸又は共重合体の分子量を上げることが困難である。 The first method is a method in which polyamino acid and polyurethane are synthesized separately and then copolymerized. This method is a method of reacting urethane with a polyamino acid obtained by polymerizing an active monomer as a polyamino acid synthesized by sequentially combining amino acids or a precursor of polyamino acid. In this method, it is difficult to increase the molecular weight of the polyamino acid or copolymer.
 第二の方法はポリアミノ酸の前駆体としての活性モノマー(重合性モノマー)とウレタンとを共重合させる方法である。この方法においてポリアミノ酸の前駆体として、α−アミノ酸−N−カルボン酸無水物を用いると生成する共重合体中のポリアミノ酸鎖およびその共重合体の双方の分子量を大にすることが容易である。従って、本発明に使用するポリアミノ酸ウレタン樹脂は、この第二の方法、即ち、(a)α−アミノ酸−N−カルボン酸無水物、(b)末端にイソシアネート基を有するウレタンプレポリマー、および(c)水、ヒドラジン及び有機アミンから選ばれる少なくとも一種を反応させて得られるポリアミノ酸ウレタン樹脂で形成されることが好ましい。 The second method is a method of copolymerizing an active monomer (polymerizable monomer) as a precursor of polyamino acid and urethane. When α-amino acid-N-carboxylic acid anhydride is used as a polyamino acid precursor in this method, it is easy to increase the molecular weight of both the polyamino acid chain in the copolymer to be produced and the copolymer. is there. Therefore, the polyamino acid urethane resin used in the present invention is obtained by this second method, that is, (a) an α-amino acid-N-carboxylic acid anhydride, (b) a urethane prepolymer having an isocyanate group at the terminal, and ( c) It is preferably formed of a polyamino acid urethane resin obtained by reacting at least one selected from water, hydrazine and organic amine.
 使用されるアミノ酸の具体例としてはグリシン、アラニン、ロイシン、イソロイシン、バリン、α−アミノヘプタノイック酸などの炭素数2~12の中性アミノ酸、β−ベンジルアスパラギン酸、γ−メチル−L−グルタメート、γ−メチル−D−グルタメート、γ−ベンジル−L−グルタメートなどのモノエステル化酸性アミノ酸、ε−アシルリジン、δ−アシルオルチニンなどのω−アミノ基が適当なマスキンググループで保護されたα−ω−ジアミノカルボン酸誘導体、O−アセチルレオニンなどが挙げられる。この場合のα−アミノ酸は、ラセミ体、光学活体のいずれも使用できる。 Specific examples of amino acids used include neutral amino acids having 2 to 12 carbon atoms such as glycine, alanine, leucine, isoleucine, valine, α-aminoheptanoic acid, β-benzylaspartic acid, γ-methyl-L- Monoesterified acidic amino acids such as glutamate, γ-methyl-D-glutamate, and γ-benzyl-L-glutamate, and ω-amino groups such as ε-acyllysine and δ-acylortinin are protected with an appropriate masking group. Examples thereof include ω-diaminocarboxylic acid derivatives and O-acetylleonine. In this case, the racemic or optically active form can be used as the α-amino acid.
 またポリアミノ酸の前駆体として、α−アミノ酸−N−カルボン酸無水物(以下、N−カルボン酸無水物をNCAと略す)を用いる場合には前記全てのα−アミノ酸−NCAを用いることが可能である。その代表例として、グリシン−NCA、アラニン−NCA、ロイシン−NCA、γ−メチル−L−グルタメート−NCA等が挙げられる。 When α-amino acid-N-carboxylic acid anhydride (hereinafter, N-carboxylic acid anhydride is abbreviated as NCA) is used as a polyamino acid precursor, all of the above α-amino acids-NCA can be used. It is. Typical examples include glycine-NCA, alanine-NCA, leucine-NCA, and γ-methyl-L-glutamate-NCA.
 末端にイソシアネート基を有するウレタンプレポリマーは、ポリイソシアネート化合物とポリオールを当量比NCO/OH>1の条件で反応させて得られる。ポリイソシアネート成分としては通常、芳香族ジイソシアネート、脂肪族ジイソシアネートおよび脂環式ジイソシアネートの単独又はこれらの混合物が用いられる。例えばトルエン−2,4−ジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、メタフェニレンジイソシアネート、3,3′−ジメチル−4,4′−ビフェニルジイソシアネート、メタキシレンジイソシアネート、パラキシレンジイソシアネート、ヘキサンメチレンジイソシアネート、1,10−デカメチレンジイソシアネート、1,4−シクロヘキサンジイソシアネート、ジシクロヘキシルメタン−4,4′−ジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)等が挙げられる。 The urethane prepolymer having an isocyanate group at the terminal is obtained by reacting a polyisocyanate compound and a polyol under the condition of an equivalent ratio NCO / OH> 1. As the polyisocyanate component, aromatic diisocyanate, aliphatic diisocyanate and alicyclic diisocyanate are used alone or as a mixture thereof. For example, toluene-2,4-diisocyanate, 4,4'-diphenylmethane diisocyanate, metaphenylene diisocyanate, 3,3'-dimethyl-4,4'-biphenyl diisocyanate, metaxylene diisocyanate, paraxylene diisocyanate, hexanemethylene diisocyanate, 1, Examples thereof include 10-decamethylene diisocyanate, 1,4-cyclohexane diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate).
 ポリオール成分としてはポリエーテルポリオール、ポリエステルポリオールの単独又はこれらの混合物があげられる。ポリエーテルポリオールの例としてはポリプロピレンエーテルグリコール、ポリエチレンポリプロピレンエーテルグリコール、ポリテトラメチレンエーテルグリコール、ポリペンタメチレンエーテルグリコール、ポリエチレンポリテトラメチレンエーテルランダム共重合体、ポリエチレンポリテトラメチレンエーテルブロック共重合体の単独またはこれらの混合物、ビスフェノールAにプロピレンオキサイド又はエチレンオキサイドを付加して得られる芳香環を有するグリコール等があげられる。 Examples of the polyol component include polyether polyol and polyester polyol alone or a mixture thereof. Examples of polyether polyols include polypropylene ether glycol, polyethylene polypropylene ether glycol, polytetramethylene ether glycol, polypentamethylene ether glycol, polyethylene polytetramethylene ether random copolymer, polyethylene polytetramethylene ether block copolymer alone or Examples thereof include a glycol having an aromatic ring obtained by adding propylene oxide or ethylene oxide to bisphenol A and a mixture thereof.
 ポリエステルポリオールの代表例はポリカプロラクトンポリオール、又はエチレングリコール、1,4−ブタンジオール等のジオール類とアジピン酸、セバシン酸等の二塩基酸との反応で得られたものが用いられる。またポリテトラメチレンエーテルポリオール又はポリプロピレンエーテルポリオールにカプロラクトンを付加して得られるポリオール、ポリシロキサンポリオール等の特殊ポリオールも使用可能である。更にジエチレンカーボネートにモル比過剰の1,6−ヘキサンジオール又は3−メチルペンタンジオールを加え脱エタノール反応から得られるポリカーボネートポリオール等が用いられる。 Representative examples of polyester polyols include polycaprolactone polyols or those obtained by reaction of diols such as ethylene glycol and 1,4-butanediol with dibasic acids such as adipic acid and sebacic acid. Also, special polyols such as polyols obtained by adding caprolactone to polytetramethylene ether polyols or polypropylene ether polyols, and polysiloxane polyols can be used. Further, polycarbonate polyol obtained by deethanol reaction by adding excess molar ratio of 1,6-hexanediol or 3-methylpentanediol to diethylene carbonate is used.
 これらのポリエーテルポリオール、ポリエステルポリオールおよび特殊ポリオールの数平均分子量は200以上のものが好ましい。本発明に使用する水は通常の水を意味し水道水、非脱塩水、又は脱塩水のいずれでもよい。ヒドラジンは無水ヒドラジン、又は含水ヒドラジンのいずれでもよく、工業的には含水ヒドラジンの方が安全性の面において有利である。 These polyether polyols, polyester polyols and special polyols preferably have a number average molecular weight of 200 or more. The water used in the present invention means ordinary water and may be tap water, non-demineralized water, or demineralized water. Hydrazine may be either anhydrous hydrazine or hydrous hydrazine, and hydrous hydrazine is industrially more advantageous in terms of safety.
 有機アミンの代表例としてはトリメチルアミン、トリエチルアミン、トリプロピルジアミン等の3級アミン、ピペラジン等の2級ジアミン、エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン等の1級ジアミン、1,2−プロパンジアミン、1,3−ブタンジアミン等の1級、2級の両アミンおよびヒダントイン環を有するジヒドラジド、例えば1,3−ビス(ヒドラジドカルボエチル)−5−イソプロピルヒダントイン等が適当である。これら有機アミンの他にヒドラジンが使用可能である。 Representative examples of organic amines include tertiary amines such as trimethylamine, triethylamine and tripropyldiamine, secondary diamines such as piperazine, primary diamines such as ethylenediamine, 1,3-propanediamine and 1,4-butanediamine, Suitable are primary and secondary amines such as 2-propanediamine and 1,3-butanediamine, and dihydrazides having a hydrantoin ring, such as 1,3-bis (hydrazidecarboethyl) -5-isopropylhydantoin. In addition to these organic amines, hydrazine can be used.
 ポリアミノ酸ウレタン樹脂を得る際のα−アミノ酸NCAとウレタンプレポリマーとの重量比は、5:95~95:5であり、好ましくは10:90~90:10であり、更に好ましくは20:80~80:20の範囲である。この重量比は目的とする抗血栓性、内皮細胞接着性と機械特性に応じて決定される。またヒドラジンおよび1級または2級の活性水素を有する有機アミンの使用量はアミノ基としてウレタンプレポリマーのイソシアネート基に対して、1/2当量以上が好ましく更に好ましくは2/3当量以上である。3級アミンの使用量はα−アミノ酸NCAの1/1000モル以上が好ましい。 The weight ratio of the α-amino acid NCA and the urethane prepolymer in obtaining the polyamino acid urethane resin is 5:95 to 95: 5, preferably 10:90 to 90:10, and more preferably 20:80. It is in the range of ~ 80: 20. This weight ratio is determined according to the desired antithrombogenicity, endothelial cell adhesion and mechanical properties. The amount of hydrazine and the organic amine having primary or secondary active hydrogen is preferably at least 1/2 equivalent, more preferably at least 2/3 equivalent, based on the isocyanate group of the urethane prepolymer as an amino group. The amount of tertiary amine used is preferably 1/1000 mol or more of α-amino acid NCA.
 水は、イソシアネート基と反応してアミノ基を生成するのでアミンの代替として用いることが出来る。本方法におけるポリアミノ酸ウレタン樹脂は、有機溶媒中で、α−アミノ酸−N−カルボン酸無水物、末端にイソシアネート基を有するウレタンプレポリマー、および水、ヒドラジンまたは有機アミンを反応させて得られる。 Since water reacts with isocyanate groups to form amino groups, water can be used as an alternative to amines. The polyamino acid urethane resin in the present method is obtained by reacting an α-amino acid-N-carboxylic acid anhydride, a urethane prepolymer having an isocyanate group at the terminal, and water, hydrazine or an organic amine in an organic solvent.
 ここで使用する有機溶媒としては、ジクロルメタン、1,2−ジクロルエタン、1,1,2−トリクロルエタン、クロロホルム、1,1,2,2−テトラクロルエタン等の塩素化脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロルベンゼン、ジクロルベンゼン等の塩素化芳香族炭化水素類、酢酸エチル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレンカーボネート、ジメチルスルホキサイド、ジオキサン、テトラヒドロフラン、ヘキサメチルホスホルアミド等の活性水素を含まない水可溶性有機溶媒、またはこれらの二種以上の混合物などが挙げられる。 Examples of the organic solvent used herein include chlorinated aliphatic hydrocarbons such as dichloromethane, 1,2-dichloroethane, 1,1,2-trichloroethane, chloroform, 1,1,2,2-tetrachloroethane, and benzene. , Aromatic hydrocarbons such as toluene and xylene, chlorinated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, acetates such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc. Water-soluble organic solvents that do not contain active hydrogen such as ketones, dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene carbonate, dimethylsulfoxide, dioxane, tetrahydrofuran, hexamethylphosphoramide, or the like seed Including mixtures of the above.
 有機溶媒の使用量は、最終生成物のポリアミノ酸ウレタン樹脂液中の樹脂濃度が生成樹脂溶液換算で通常は3~50重量%の範囲とされるが、好ましくは10~30重量%の範囲とするのがよい。あまり濃度が高すぎると粘度が著しく高くゲル状となり、管状物にコーティングまたは含浸して加工する時は溶媒で希釈して使用すれば良いが、取扱いが困難である。又あまり濃度が低すぎると高粘度(10,000cps以上)のものが得られがたく、汎用性に乏しい。 The amount of the organic solvent used is such that the resin concentration in the polyamino acid urethane resin liquid of the final product is usually in the range of 3 to 50% by weight, preferably in the range of 10 to 30% by weight in terms of the produced resin solution. It is good to do. If the concentration is too high, the viscosity becomes remarkably high and a gel is formed. When the tube is coated or impregnated and processed, it may be diluted with a solvent, but it is difficult to handle. On the other hand, if the concentration is too low, it is difficult to obtain a product having a high viscosity (10,000 cps or more), and the versatility is poor.
 また本方法において光学活性、α−アミノ酸NCAを使用する場合においてポリアミノ酸ウレタン樹脂液を製造する際の反応温度はα−アミノ酸NCAから高分子量のポリアミノ酸単一ポリマーを合成出来る温度が好ましく10~60℃の範囲が良い。60℃より高くなると、共重合時にアミノ酸鎖がα−ヘリックス構造をとりにくくなるために、アミノ酸鎖の重合度が上らなくなり、高分子量のものが得られない場合がある。また、高温で反応させるとイソシアネート基とアミノ基との反応によって生じる尿素結合にイソシアネート基がビュレット反応をし、ゲル化を起こす場合がある。 Further, in the case where optical activity and α-amino acid NCA are used in this method, the reaction temperature when producing a polyamino acid urethane resin liquid is preferably a temperature at which a single polymer having a high molecular weight can be synthesized from α-amino acid NCA. A range of 60 ° C. is good. When the temperature is higher than 60 ° C., the amino acid chain hardly takes an α-helix structure at the time of copolymerization, so that the degree of polymerization of the amino acid chain does not increase and a high molecular weight product may not be obtained. In addition, when the reaction is performed at a high temperature, the isocyanate group may undergo a burette reaction with the urea bond generated by the reaction between the isocyanate group and the amino group, thereby causing gelation.
 以上のようにして得られるポリアミノ酸ウレタン樹脂液は、溶媒としてジメチルホルムアミドを用いると、α−アミノ酸NCAが少ない場合、例えばα−アミノ酸NCAとウレタンプレポリマーとの重量比が5:95~15:85の範囲内では濁りの比較的少ない溶液となり、α−アミノ酸NCAの比率が多くなるに従い、濁りが増大し、粘度10cps~100万cps/25℃の範囲内で任意の粘度のものが得られる。また構造的には、アミノ酸成分として光学活性α−アミノ酸NCAを使用した場合においては、アミノ酸含量が少ない場合は、α−ヘリックス含量が少く、β構造含量が多くなり、アミノ酸含量が多い場合には、α−ヘリックス含量が多くなりβ構造が少くなる傾向がある。 When the dimethylformamide is used as a solvent in the polyamino acid urethane resin liquid obtained as described above, the α-amino acid NCA and the urethane prepolymer have a weight ratio of, for example, 5:95 to 15: In the range of 85, the solution becomes relatively less turbid, and as the ratio of α-amino acid NCA increases, the turbidity increases, and a solution having an arbitrary viscosity within the range of 10 cps to 1 million cps / 25 ° C. is obtained. . Structurally, when optically active α-amino acid NCA is used as the amino acid component, when the amino acid content is low, the α-helix content is low, the β structure content is high, and the amino acid content is high. , The α-helix content tends to increase and the β structure tends to decrease.
 ポリアミノ酸ウレタン樹脂を得る好ましい方法としては、(イ)前記有機溶媒中でウレタンプレポリマーとα−アミノ酸NCAとを混合した後三級アミンを添加して反応させる方法。
(ロ)前記有機溶媒中で、α−アミノ酸NCAとウレタンプレポリマーを混合した後、水、ヒドラジン又は活性水素を有する有機アミンを添加して反応させる方法。
(ハ)前記有機溶媒中でウレタンプレポリマーとα−アミノ酸NCAとを混合した後、水、ヒドラジンまたは活性水素を有する有機アミンを添加反応させた後、さらに三級アミンを加えて反応させる方法。
(ニ)前記有機溶媒中で、ウレタンプレポリマーと、水、ヒドラジンまたは活性水素を有する有機アミンとを反応させたのち、α−アミノ酸NCAを添加して反応させる方法。
(ホ)前記有機溶媒中で、α−アミノ酸NCAとウレタンプレポリマーを混合した後、水、ヒドラジン又は活性水素を有する有機アミンを添加して反応させ、更に、ウレタンプレポリマーを添加する方法。
(ヘ)前記有機溶媒中でウレタンプレポリマーと水、ヒドラジン、又は活性水素を有するアミン類とを反応させた後、α−アミノ酸−N−カルボン酸無水物を添加、反応させてから更に、水、ヒドラジン又は活性水素を有するアミン類を添加反応させる方法等が挙げられる。
 以上のポリアミノ酸ウレタン樹脂(PAU)を得る方法において有機溶媒の種類はPAUの用途、原料(α—アミノ酸NCA、ウレタンプレポリマー)の種類に適合するものが用いられる。
As a preferred method for obtaining a polyamino acid urethane resin, (i) a method in which a urethane prepolymer and an α-amino acid NCA are mixed in the organic solvent and then a tertiary amine is added and reacted.
(B) A method in which an α-amino acid NCA and a urethane prepolymer are mixed in the organic solvent, and then an organic amine having water, hydrazine or active hydrogen is added and reacted.
(C) A method in which a urethane prepolymer and an α-amino acid NCA are mixed in the organic solvent, an organic amine having water, hydrazine or active hydrogen is added and reacted, and then a tertiary amine is further added and reacted.
(D) A method in which a urethane prepolymer and water, hydrazine or an organic amine having active hydrogen are reacted in the organic solvent, and then α-amino acid NCA is added and reacted.
(E) A method of mixing an α-amino acid NCA and a urethane prepolymer in the organic solvent, then adding water, hydrazine, or an organic amine having active hydrogen to react, and further adding a urethane prepolymer.
(F) After reacting the urethane prepolymer with water, hydrazine, or an amine having active hydrogen in the organic solvent, α-amino acid-N-carboxylic acid anhydride is added and reacted, and then water is added. And a method of adding and reacting hydrazine or amines having active hydrogen.
In the above method for obtaining a polyamino acid urethane resin (PAU), the type of the organic solvent is adapted to the use of PAU and the type of raw material (α-amino acid NCA, urethane prepolymer).
 また本発明は以上のような方法で得られるポリアミノ酸ウレタン樹脂にポリアミノ酸又はポリウレタン樹脂を混合して使用することも出来る。本発明の人工血管は前記の方法で得られるポリアミノ酸ウレタン樹脂を、芳香族系ポリエステル繊維の編物、織物、または不織布の管状物にポリアミノ酸ウレタン樹脂をコーティングまたは含浸して得ることが出来る。 In the present invention, a polyamino acid urethane resin obtained by the above method can be used by mixing a polyamino acid or a polyurethane resin. The artificial blood vessel of the present invention can be obtained by coating or impregnating a polyamino acid urethane resin obtained by the above-mentioned method with a polyamino acid urethane resin on a knitted, woven or non-woven tubular article of an aromatic polyester fiber.
 芳香族系ポリエステル繊維の上記管状物がゼラチンまたはコラーゲン等で目詰処理されていないものをPAU溶液に浸漬して含浸コーティングする時のPAU溶液の濃度は5wt%以上が好ましい。 The concentration of the PAU solution is preferably 5% by weight or more when the tubular product of the aromatic polyester fiber that is not clogged with gelatin or collagen is immersed and impregnated in the PAU solution.
 また芳香族系ポリエステル繊維の上記管状物をゼラチンまたはコラーゲン等で目詰処理したものにポリアミノ酸ウレタン樹脂をコーティングまたは含浸して人工血管を得る時のPAU溶液の濃度は1%以上、好ましくは3wt%以上である。 In addition, the concentration of the PAU solution when an artificial blood vessel is obtained by coating or impregnating a polyamino acid urethane resin with the above-mentioned tubular product of aromatic polyester fiber clogged with gelatin or collagen is preferably 1% or more, preferably 3 wt. % Or more.
 ポリアミノ酸ウレタン樹脂(PAU)を主体としたものを芳香族系ポリエステル繊維の編物、織物、または不織布を管状に加工してつくった人工血管に含浸コーティングする場合において、PAU中のアミノ酸含有量が一定量以上になると、人工血管内に内皮細胞が生体血管からの侵入以外に、PAU樹脂による血液からの内皮細胞または内皮細胞生成因子の取り込みとその育成、と細血管が人工血管外壁から人工血管内に侵入し、それが人工血管内で開くこと等により人工血管内全体に内皮細胞膜が接着伸展する。このようにして人工血管内に生体血管の形成が始まる。この場合、人工血管内は内皮細胞膜で全面覆われているので血栓とか吻合部からのパンヌヌの離脱による血管閉塞が生じることなく、内皮細胞膜の下には平滑筋細胞層が、ついでその下には繊維芽細胞がつくられ、人工血管内に生体血管が円滑に生成されて行く。 When an artificial blood vessel made of polyamino acid urethane resin (PAU) is processed into a tube made of aromatic polyester fiber knitted fabric, woven fabric, or nonwoven fabric is impregnated and coated, the amino acid content in the PAU is constant. When the amount exceeds the limit, endothelial cells enter the artificial blood vessel, in addition to the invasion of living blood vessels, the uptake and growth of endothelial cells or endothelial cell-forming factors from blood by PAU resin, and the fine blood vessels from the artificial blood vessel outer wall to the artificial blood vessel The endothelial cell membrane adheres and spreads throughout the artificial blood vessel when it enters the artificial blood vessel and opens in the artificial blood vessel. In this way, the formation of a biological blood vessel starts in the artificial blood vessel. In this case, since the artificial blood vessel is entirely covered with the endothelial cell membrane, there is no vascular occlusion due to the removal of the pannunu from the thrombus or the anastomosis, and there is a smooth muscle cell layer below the endothelial cell membrane, and below that Fibroblasts are created, and biological blood vessels are smoothly generated in the artificial blood vessel.
 この過程で人工血管内のPAU成分、ゼラチン、コラーゲン等は徐々に生体内に吸収されて行き、最終的に芳香族系ポリエステル繊維管を構成する編み物または織物の繊維集合体の間隙中に生体血管が形成される。PAUが生体吸収性であることは前記特許文献4に報告されている。 In this process, the PAU component, gelatin, collagen, etc. in the artificial blood vessel are gradually absorbed into the living body, and finally the living blood vessel is inserted into the gap between the knitted or woven fiber aggregates constituting the aromatic polyester fiber tube. Is formed. It is reported in the said patent document 4 that PAU is bioabsorbable.
 この場合PAU中のアミノ酸成分が少なすぎると内皮細胞膜の生成が乏しくなり、長期使用で血栓が生じやすくなる。またアミノ酸成分が多すぎると内皮細胞膜の生成は向上するがそれに先立って抗血栓性が低下し内口径が小さい(6mm以下)人工血管においては血栓が生じる。 In this case, if there are too few amino acid components in the PAU, the formation of the endothelial cell membrane is poor, and thrombosis is likely to occur during long-term use. If the amino acid component is too much, the production of the endothelial cell membrane is improved, but prior to that, the antithrombogenicity is reduced, and a thrombus is generated in an artificial blood vessel having a small inner diameter (6 mm or less).
 従ってPAU中のアミノ酸含有量は5~95%で好ましくは10~90%で、更に好ましくは15~85%である。アミノ酸としてα−アミノ酸NCA以外のアミノ酸を用いる場合もこの範囲に準じたものが好ましい。 Therefore, the amino acid content in the PAU is 5 to 95%, preferably 10 to 90%, more preferably 15 to 85%. When amino acids other than α-amino acid NCA are used as amino acids, those according to this range are preferred.
 以下、本発明を実施するに当たり使用する樹脂の製造法とそれを用いた人工血管の製造法を、実施例及び比較例により更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 Hereinafter, the method for producing a resin used in carrying out the present invention and the method for producing an artificial blood vessel using the same will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
 イ)ポリアミノ酸ウレタン樹脂の製造
ポリテトラメチレンエーテルグリコール(OH価57.25)980gと、トリレンジイソシアネート(2,4−トリレンジイソシアネートと、2,6−トリレンジイソシアネートとの混合物、2,4−トリレンジイソシアネート80重量%)174gを70℃で5時間反応させ、末端にイソシアネート基を有するウレタンプレポリマー(NCO当量、1164)を得た。該ウレタンプレポリマー58.2gとγ−メチル−L−グルタメートNCA58.2gとをジメチルホルムアミド(DMF)394.3gに溶解し、これにヒドラジンヒドラート1.375gをDMF20gに溶解した溶液を滴下、反応させ、粘度16000cps/25℃のポリアミノ酸ウレタン樹脂溶液(A)(濃度、20wt%DMF溶液)を得た。
B) Production of polyamino acid urethane resin 980 g of polytetramethylene ether glycol (OH value 57.25) and tolylene diisocyanate (a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, 2,4 -Tolylene diisocyanate 80 wt%) 174 g was reacted at 70 ° C. for 5 hours to obtain a urethane prepolymer having an isocyanate group at the terminal (NCO equivalent, 1164). 58.2 g of the urethane prepolymer and 58.2 g of γ-methyl-L-glutamate NCA were dissolved in 394.3 g of dimethylformamide (DMF), and a solution of 1.375 g of hydrazine hydrate in 20 g of DMF was added dropwise to the reaction. Thus, a polyamino acid urethane resin solution (A) (concentration, 20 wt% DMF solution) having a viscosity of 16000 cps / 25 ° C. was obtained.
 なお、本溶液におけるアミノ酸鎖の平均重合度について、1級アミンとイソシアネートの反応性および1級アミンによるNCAの重合機構(MurrayGoodman and John Hutchison.J.Am.Chem.Soc.,88,3627(1966))に基づいて算出すると約62であった。 The average degree of polymerization of amino acid chains in this solution is the reactivity of primary amines and isocyanates and the mechanism of NCA polymerization by primary amines (Murray Goodman and John Hutchison. J. Am. Chem. Soc., 88, 3627 (1966). )) To calculate approximately 62.
 また、本共重合体を皮膜化したもののα−ヘリックス構造と、β−構造との割合いは、IR−スペクトル1655cm−1(α−ヘリックスC=O伸縮)と1625cm−1(β−構造C=O伸縮)の吸光度比より求めると95/5であり、大部分がα−ヘリックス構造である。 In addition, the ratio of the α-helix structure to the β-structure of the copolymer of the present copolymer is as follows: IR-spectrum 1655 cm −1 (α-helix C═O stretching) and 1625 cm −1 (β-structure C = O stretch) is 95/5, most of which is an α-helix structure.
 ロ)人工血管の製造
 上記ポリアミノ酸ウレタン樹脂(A)(濃度20wt%DMF溶液)をDMFで希釈して濃度10wt%DMF溶液にした。次にポリエチレンテレフタレート繊維を内径3mm、長さ70mmのチューブ状の編み物にした管状物(a)内に金属棒を通し、これを前記ポリアミノ酸ウレタン樹脂10wt%DMF溶液に浸漬して、その樹脂溶液を含浸させた。次にこれを溶液から取り出し、ロールで絞り水中に入れて脱DMFを行った。ついでこれを風乾して金属棒を抜き取り、ポリアミノ酸ウレタン樹脂で目詰処理した人工血管(試料1)を得た。この人工血管はドライタッチ性で触感良好であった。またPAUがアミノ酸とウレタンとの組み合わせから生体へのフィッティング性も良好と考えられる人工血管を得た。この物を生体実験用人工血管にした。
B) Manufacture of artificial blood vessel The polyamino acid urethane resin (A) (concentration 20 wt% DMF solution) was diluted with DMF to obtain a concentration 10 wt% DMF solution. Next, a metal rod is passed through a tubular knitted tube (a) made of polyethylene terephthalate fiber having an inner diameter of 3 mm and a length of 70 mm, and this is immersed in the polyamino acid urethane resin 10 wt% DMF solution to obtain the resin solution. Was impregnated. Next, this was taken out from the solution and put into squeezed water with a roll to remove DMF. Subsequently, this was air-dried, the metal rod was taken out, and the artificial blood vessel (sample 1) clogged with the polyamino acid urethane resin was obtained. This artificial blood vessel had a dry touch and good tactile sensation. In addition, an artificial blood vessel was obtained in which PAU was considered to have good fitting properties to a living body from a combination of an amino acid and urethane. This thing was made into the artificial blood vessel for biological experiment.
 比較例1
 イ)ウレタン樹脂の製造
ヒドラジンヒドラート1.25gをDMF80.5gに溶解し、これに実施例1で用いたのと同じウレタンプレポリマー52.8gを、窒素雰囲気下でDMF58.2gに溶解した溶液を滴下、反応させ、粘度14000cps/25℃のウレタン樹脂溶液(B)(濃度、28wt%DMF溶液)を得た。
Comparative Example 1
B) Preparation of urethane resin A solution in which 1.25 g of hydrazine hydrate was dissolved in 80.5 g of DMF, and 52.8 g of the same urethane prepolymer used in Example 1 was dissolved in 58.2 g of DMF under a nitrogen atmosphere. Were dropped and reacted to obtain a urethane resin solution (B) having a viscosity of 14,000 cps / 25 ° C. (concentration, 28 wt% DMF solution).
 ロ)人工血管の製造
 上記ウレタン樹脂溶液(B)を実施例1と同じように濃度10wt%までDMFで希釈し、この溶液に実施例1と同じ管状物(a)内に金属棒を通して浸漬してウレタン樹脂溶液を含浸させた後、取り出してロールで絞り水中に入れて脱DMFを行った。ついでこれを風乾して金属棒を抜き取り、ウレタン樹脂で目詰処理した人工血管(試料2)を得た。この人工血管はゴムライクでベトツキがある触感であった。この試料を比較例用生体実験用試料とした。
B) Manufacture of artificial blood vessel The urethane resin solution (B) was diluted with DMF to a concentration of 10 wt% as in Example 1, and immersed in this solution through a metal rod in the same tubular product (a) as in Example 1. After impregnating with the urethane resin solution, it was taken out and put into squeezed water with a roll to remove DMF. Next, this was air-dried, the metal rod was taken out, and an artificial blood vessel (sample 2) clogged with urethane resin was obtained. This artificial blood vessel had a rubber-like and sticky feel. This sample was used as a sample for a biological experiment for a comparative example.
 実施例1で用いた管状物(a)をコラーゲンで目詰処理し、血液の漏出をなくした管状物(b)を作り、その管内に金属棒を通した。次に実施例1で得たポリアミノ酸ウレタン樹脂溶液(A)(濃度20wt%)をジクロロ酢酸で濃度5wt%まで希釈し、これに金属棒を通した管状物(b)を投入し、濃度5wt%の溶液を含浸させた。ついでこれを取り出し、水中に入れて脱溶媒(溶媒、DMFとジクロロ酢酸)後、風乾して金属棒を抜き取り、ポリアミノ酸ウレタン樹脂を含浸コーティングした人工血管(試料3)を得た。この物はドライタッチな風合いで触感が良い人工血管であった。またアミノ酸とウレタンとの組み合わせからフィッティング性の良い人工血管であると考えられる。これを生体実験用試料とした。 The tubular product (a) used in Example 1 was clogged with collagen to produce a tubular product (b) from which leakage of blood was eliminated, and a metal rod was passed through the tube. Next, the polyamino acid urethane resin solution (A) (concentration 20 wt%) obtained in Example 1 was diluted with dichloroacetic acid to a concentration of 5 wt%, and a tubular material (b) passed through a metal rod was added thereto, and the concentration was 5 wt%. % Solution was impregnated. Subsequently, this was taken out, put into water and desolvated (solvent, DMF and dichloroacetic acid), then air-dried, a metal rod was taken out, and an artificial blood vessel (sample 3) coated with a polyamino acid urethane resin was obtained. This product was an artificial blood vessel with a dry touch and good tactile sensation. Moreover, it is thought that it is an artificial blood vessel with a good fitting property from the combination of an amino acid and urethane. This was used as a sample for biological experiments.
 比較例2
 実施例1で用いた管状物(a)をコラーゲンで目詰処理した管状物(b)を人工血管(試料4)とした。これを比較用生体実験用試料とした。
Comparative Example 2
The tubular product (b) obtained by clogging the tubular product (a) used in Example 1 with collagen was used as an artificial blood vessel (sample 4). This was used as a comparative biological experiment sample.
 実施例1で合成したポリアミノ酸ウレタン樹脂(A)(濃度20wt%DMF溶液)をDMFで希釈して濃度10wt%DMF溶液にした。次に、ポリエチレンテレフタレート繊維を内径1.5mm、長さ10mmの編み物にした管状物(c)の管内に金属棒を通し、これを前記ポリアミノ酸ウレタン樹脂10wt%DMF溶液に浸漬して、その樹脂溶液を含浸させた。次にこれを溶液から取り出し、ロールで絞り水中に入れて脱DMFを行った。ついでこれを風乾して金属棒を抜き取り、ポリアミノ酸ウレタ樹脂で目詰処理した人工血管(試料5)を得た。この物はドライタッチな風合いで触感良好であった。これを生体実験用試料とした。 The polyamino acid urethane resin (A) synthesized in Example 1 (concentration 20 wt% DMF solution) was diluted with DMF to obtain a concentration 10 wt% DMF solution. Next, a metal rod is passed through a tube of a tubular product (c) knitted from polyethylene terephthalate fiber having an inner diameter of 1.5 mm and a length of 10 mm, which is immersed in the polyamino acid urethane resin 10 wt% DMF solution, and the resin The solution was impregnated. Next, this was taken out from the solution and put into squeezed water with a roll to remove DMF. Next, this was air-dried, the metal rod was taken out, and an artificial blood vessel (sample 5) clogged with polyamino acid urea resin was obtained. This product had a dry touch and good touch. This was used as a sample for biological experiments.
 比較例3
 比較例1で合成したウレタン樹脂溶液をDMFで濃度10wt%となるよう希釈した。次に内径1.5mm、長さ10mmのポリエチレンテレフタレート繊維の編み物をチューブ状に成形した管状物(c)の管内に金属棒を通し、これを前記ウレタン樹脂10wt%溶液に浸漬して、その樹脂溶液を含浸させた。次にこれを溶液から取り出し、ロールで絞り水中に入れて脱DMFを行った。ついでこれを風乾しての管内の金属棒を抜き取り、ウレタン樹脂で目詰処理した人工血管(試料6)を得た。このものは風合いがゴムライクでベトツキのある触感であった。これを比較用生体実験用試料とした。
Comparative Example 3
The urethane resin solution synthesized in Comparative Example 1 was diluted with DMF to a concentration of 10 wt%. Next, a metal rod is passed through a tube of a tubular product (c) formed by knitting polyethylene terephthalate fibers having an inner diameter of 1.5 mm and a length of 10 mm into a tube shape, and this is immersed in the urethane resin 10 wt% solution. The solution was impregnated. Next, this was taken out from the solution and put into squeezed water with a roll to remove DMF. Next, this was air-dried, the metal rod in the tube was taken out, and an artificial blood vessel (sample 6) clogged with urethane resin was obtained. This was a rubber-like texture and a sticky feel. This was used as a comparative biological experiment sample.
 実施例3で用いた管状物(c)(内径1.5mm、長さ10mmのポリエチレンテレフタレート繊維の編み物)をゼラチンで目詰処理し、血液の漏出をなくした管状物(d)を作った。次に実施例1で得たポリアミノ酸ウレタン樹脂溶液(A)(濃度20wt%)をジクロロ酢酸で濃度5wt%溶液になるまで希釈した。ついで管状物(d)の管内に金属棒を通し、これを前記濃度5wt%溶液に投入し、その溶液を含浸させた。ついで、これを取り出し、ロールで絞った後水中に入れて脱溶媒(溶媒、DMFとジクロロ酢酸)した。水中からそれを取り出して風乾し、金属棒を抜き取り、ポリアミノ酸ウレタン樹脂を含浸コーティングした人工血管(試料7)を得た。この物は触感良好な人工血管であった。これを生体実験用試料とした。 The tubular product (c) used in Example 3 (knitting of polyethylene terephthalate fiber having an inner diameter of 1.5 mm and a length of 10 mm) was clogged with gelatin to prepare a tubular product (d) in which leakage of blood was eliminated. Next, the polyamino acid urethane resin solution (A) (concentration 20 wt%) obtained in Example 1 was diluted with dichloroacetic acid to a 5 wt% solution. Next, a metal rod was passed through the tube of the tubular article (d), and this was put into the 5 wt% solution and impregnated with the solution. Subsequently, this was taken out, squeezed with a roll, and then put into water to remove the solvent (solvent, DMF and dichloroacetic acid). It was taken out from the water and air-dried, the metal rod was taken out, and an artificial blood vessel (sample 7) coated with a polyamino acid urethane resin was obtained. This product was an artificial blood vessel with good tactile sensation. This was used as a sample for biological experiments.
 比較例4
 実施例4で用いた管状物(c)をゼラチンで目詰処理した管状物(試料8)を得た。これを比較用生体実験用人工血管とした。
Comparative Example 4
A tubular product (sample 8) obtained by clogging the tubular product (c) used in Example 4 with gelatin was obtained. This was used as a comparative artificial blood vessel for biological experiments.
 実施例1で合成したポリアミノ酸ウレタン樹脂(A)(濃度20wt%DMF溶液)をジクロロ酢酸で希釈して濃度3%溶液にした。次にポリエチレンテレフタレート繊維を内径2mm、長さ10mmのチューブ状の編み物をコラーゲンで目詰処理した管内に金属棒を通し、これを前記のジクロロ酢酸で希釈し濃度3%のポリアミノ酸ウレタン溶液に浸漬してその樹脂溶液を含浸させた。次にこれを溶液から取り出し水中に入れて、溶媒(DMFとジクロロ酢酸)の除去を行い、次いでこれを風乾して金属棒を抜き取り、ポリアミノ酸ウレタン樹脂を含浸コーティングした人工血管を得た(試料9)。これを生体実験用試料とした。
 本人工血管には少量のポリアミノ酸ウレタン樹脂(PAU)しか付着していないが、非特許文献1中でe−PTFEに濃度3%のPAUをコーティングした時と同様に抗血栓性に優れたものであると考えられる。
比較例5
 次にポリエチレンテレフタレート繊維の内径2mm、長さ10mmのチューブ状の編物をコラーゲンで目詰処理した管状物(e)を生体実験用試料(試料10)に用いた。
The polyamino acid urethane resin (A) synthesized in Example 1 (20% by weight DMF solution) was diluted with dichloroacetic acid to give a 3% concentration solution. Next, a polyethylene terephthalate fiber is passed through a tube made by clogging a tubular knitted fabric with an inner diameter of 2 mm and a length of 10 mm with collagen, and this is diluted with dichloroacetic acid and immersed in a polyamino acid urethane solution having a concentration of 3%. Then, the resin solution was impregnated. Next, this was taken out from the solution and placed in water to remove the solvent (DMF and dichloroacetic acid), and then air-dried to remove a metal rod to obtain an artificial blood vessel impregnated with a polyamino acid urethane resin (sample) 9). This was used as a sample for biological experiments.
Although only a small amount of polyamino acid urethane resin (PAU) is attached to this artificial blood vessel, it has excellent antithrombogenicity as in the case of non-patent document 1 when e-PTFE is coated with 3% concentration of PAU. It is thought that.
Comparative Example 5
Next, a tubular product (e) obtained by clogging a tubular knitted fabric of polyethylene terephthalate fiber having an inner diameter of 2 mm and a length of 10 mm with collagen was used as a sample for biological experiments (sample 10).
 図4にT字型に分岐したポリエチレンテレフタレート(PET)繊維の織物の人工血管をコラーゲンで目詰め処理した管状物(e){主管(太い部分):内径12mm、長さ140mmの管状物、側管(支管:主管の中央部に繋がっている内径8mm、長さ150mmの管状物}の主管と側管に金属棒を差しこんだ。次いで実施例1で得たポリアミノ酸ウレタン樹脂溶液(A)(濃度20wt%)をジクロロ酢酸で濃度3wt%まで希釈し、これに金属棒を差し込んだ人工血管を浸漬した後、引き上げて水中で脱溶媒し、風乾して金属棒を抜き取り、PAUをコーティングしたPET繊維の織物の人工血管(試料10)を得た。この人工血管は触感、風合いとも良好であった。これを生体実験用試料とした。 Fig. 4 shows a tubular product in which an artificial blood vessel made of polyethylene terephthalate (PET) fiber branched into a T-shape is plugged with collagen (e) {main tube (thick portion): tubular product having an inner diameter of 12 mm and a length of 140 mm, side A metal rod was inserted into a main pipe and a side pipe of a pipe (branch pipe: tubular product having an inner diameter of 8 mm and a length of 150 mm connected to the central portion of the main pipe), and then the polyamino acid urethane resin solution (A) obtained in Example 1 After diluting (concentration 20 wt%) with dichloroacetic acid to a concentration of 3 wt% and immersing the artificial blood vessel into which the metal rod was inserted, it was lifted and desolvated in water, air-dried to extract the metal rod, and coated with PAU An artificial blood vessel (sample 10) of a woven fabric of PET fiber was obtained, which had good tactile sensation and texture, and was used as a sample for biological experiments.
比較例6
 比較例として図4のT字型に分岐したPET繊維の織物の人工血管をコラーゲンで目詰め処理した管状物(f)を生体実験用試料(試料11)とした。
Comparative Example 6
As a comparative example, a tubular product (f) obtained by clogging an artificial blood vessel of a PET fiber fabric branched into a T shape in FIG. 4 with collagen was used as a sample for biological experiment (sample 11).
 本発明は、人工血管として使用することができる。 The present invention can be used as an artificial blood vessel.
1 従来の芳香族系ポリエステル繊維系人工血管
2 移植後に生成する血栓層
3 血栓層上に生成する内皮細胞膜
4 従来の芳香族系ポリエステル繊維の人工血管の繊維集合体に生成した生体血管
5 本発明のPAUコーティング芳香族系ポリエステル繊維の人工血管
6 本発明のPAUコーティング芳香族系ポリエステル繊維の人工血管の内壁に生成した内皮細胞膜
7 本発明のPAUコーティング芳香族系ポリエステル繊維の人工血管の繊維集合体に生成した生体血管(PAU成分は生体内に吸収される)
8 主管(太い方)の長さ:140mm
9 主管の中央部に繋がっている側管の長さ:150mm
DESCRIPTION OF SYMBOLS 1 Conventional aromatic polyester fiber type artificial blood vessel 2 Thrombus layer 3 generated after transplantation Endothelial cell membrane 4 formed on the thrombus layer Living body blood vessel 5 generated in the fiber assembly of the conventional aromatic polyester fiber artificial blood vessel PAU coated aromatic polyester fiber artificial blood vessel 6 Endothelial cell membrane 7 formed on the inner wall of the artificial blood vessel of the PAU coated aromatic polyester fiber of the present invention 7 PAU coated aromatic polyester fiber artificial blood vessel fiber assembly of the present invention Generated in the body (PAU component is absorbed into the body)
8 Length of main pipe (thick one): 140mm
9 Length of the side pipe connected to the center of the main pipe: 150mm

Claims (4)

  1.  芳香族系ポリエステル繊維の編物、織物、または不織布を基材とした管状物にポリアミノ酸ウレタン樹脂をコーティングまたは含浸被覆することによって得られる管状物の内表面の最上層がポリアミノ酸ウレタン樹脂で形成された人工血管。 The uppermost layer of the inner surface of a tubular product obtained by coating or impregnating a polyamino acid urethane resin on a tubular material based on a knitted, woven or nonwoven fabric of an aromatic polyester fiber is formed of a polyamino acid urethane resin. Artificial blood vessels.
  2.  芳香族系ポリエステル繊維が、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維またはこの二つの混合物である、請求項1に記載の人工血管。 The artificial blood vessel according to claim 1, wherein the aromatic polyester fiber is polyethylene terephthalate fiber, polybutylene terephthalate fiber, or a mixture of the two.
  3.  小口径人工血管に使用することができる、請求項1又は2に記載の人工血管。 The artificial blood vessel according to claim 1 or 2, which can be used for a small-diameter artificial blood vessel.
  4.  内径が、6mm以下である、請求項1又は2に記載の人工血管。 The artificial blood vessel according to claim 1 or 2, wherein the inner diameter is 6 mm or less.
PCT/JP2012/055151 2011-02-25 2012-02-23 Vascular prosthesis WO2012115275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-039694 2011-02-25
JP2011039694 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115275A1 true WO2012115275A1 (en) 2012-08-30

Family

ID=46721041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055151 WO2012115275A1 (en) 2011-02-25 2012-02-23 Vascular prosthesis

Country Status (2)

Country Link
JP (1) JP2012187398A (en)
WO (1) WO2012115275A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372049B2 (en) * 2013-03-25 2018-08-15 株式会社マルイ Artificial blood vessel and method for forming artificial blood vessel
KR101587802B1 (en) * 2013-11-08 2016-02-12 한국과학기술연구원 Artificial blood scaffold and the method for manufacturing the same
CN107213512B (en) * 2017-06-16 2022-07-08 南京医科大学第一附属医院 Multifunctional small-caliber artificial blood vessel with staggered-time release double slow-release coatings and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109569A (en) * 1984-11-05 1986-05-28 宇部興産株式会社 Blood prosthetic article
JP2005319165A (en) * 2004-05-11 2005-11-17 Senko Medical Instr Mfg Co Ltd Bioabsorbable material with cell adhesion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109569A (en) * 1984-11-05 1986-05-28 宇部興産株式会社 Blood prosthetic article
JP2005319165A (en) * 2004-05-11 2005-11-17 Senko Medical Instr Mfg Co Ltd Bioabsorbable material with cell adhesion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKOTO KODAMA: "Jinko Kekkan no Ayumi", FUKUOKA IGAKU ZASSHI, vol. 95, no. 9, 2004, pages 210 - 217 *

Also Published As

Publication number Publication date
JP2012187398A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
EP1365819B1 (en) Coated vascular grafts and methods of use
CA2483967C (en) Elastomerically recoverable eptfe for vascular grafts
EP1471952B1 (en) Coated vascular prosthesis and methods of manufacture and use.
EP1794248B1 (en) Elastomeric radiopaque adhesive composite and prosthesis
Burke et al. Polyurethanes in biomedical applications
JP4871734B2 (en) Pressure laminating method for forming ePTFE / textile and ePTFE / stent / textile composite prosthesis
JP4401165B2 (en) Composite ePTFE / fiber prosthesis
US4834747A (en) Method of producing a multilayered prosthesis material and the material obtained
US6743253B2 (en) Polyurethane-sealed biocompatible device and method for its preparation
EP2730297B1 (en) Graft fabric coating and methods
JP2017501810A (en) Artificial graft device and related systems and methods
JPH04226119A (en) Polyurethane stable in vivo and manufacture thereof
US6117535A (en) Biocompatible devices
WO2003103736A1 (en) COMPOSITE ePTFE/TEXTILE PROSTHESIS
WO1993007217A1 (en) Antithrombotic resin, tube, film and coating
WO2000048530A1 (en) Multilayer and multifunction vascular graft
WO2012115275A1 (en) Vascular prosthesis
Phaneuf et al. Chemical and physical characterization of a novel poly (carbonate urea) urethane surface with protein crosslinker sites
JP2005319165A (en) Bioabsorbable material with cell adhesion
JPH11239612A (en) Blood conduit
JP2003126240A (en) Patch for medical care

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP