WO2012114984A1 - Electrical-power control device - Google Patents

Electrical-power control device Download PDF

Info

Publication number
WO2012114984A1
WO2012114984A1 PCT/JP2012/053749 JP2012053749W WO2012114984A1 WO 2012114984 A1 WO2012114984 A1 WO 2012114984A1 JP 2012053749 W JP2012053749 W JP 2012053749W WO 2012114984 A1 WO2012114984 A1 WO 2012114984A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
turned
fet
mos
Prior art date
Application number
PCT/JP2012/053749
Other languages
French (fr)
Japanese (ja)
Inventor
堀口睦弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012114984A1 publication Critical patent/WO2012114984A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods

Definitions

  • the present invention relates to a power control apparatus that controls supply of power from a power supply to a load.
  • Patent Document 1 discloses a power generator that reduces power consumption of a main power source by supplying power charged in a secondary battery to a load.
  • FIG. 1 is an explanatory diagram showing an outline of the power generation device described in Patent Document 1.
  • FIG. 1 In the power generation device described in Patent Document 1, when an electric signal is generated in the piezoelectric element 101 in the cushion 100 due to the pressure applied to the cushion 100, the switch 104 is turned on, and the electric signal is connected to the piezoelectric element 101 by the conducting wire 102. The power storage unit 103 is charged.
  • Patent Document 2 discloses a power generation device that enables power supply to a load even in a place where power cannot be obtained.
  • the power generation device described in Patent Literature 2 generates power by converting kinetic energy such as vibration motion into electric energy, and charges the generated power to a secondary battery. Also in Patent Document 2, power can be saved by supplying power from the secondary battery to the load in combination with the main power source.
  • Patent Documents 1 and 2 since the amount of charge of the secondary battery is limited, as in Patent Documents 1 and 2, even if the power charged in the secondary battery is supplied to the load, the power supply time is short, and the load is not sufficient with the secondary battery alone. Cannot supply enough power. For this reason, in Patent Documents 1 and 2, the power supply time from the main power source to the load cannot be greatly shortened, and the power consumption of the main power source cannot be sufficiently suppressed.
  • an object of the present invention is to provide a power control device capable of effectively suppressing power consumption of a power source.
  • the present invention relates to a power control apparatus that controls the supply of power from a power source to a load, a power generation unit that generates power using external energy, and operates with the power generated by the power generation unit. Switching means for turning on and off the supply of electric power.
  • the power from the power source is supplied to the load, and the power for operating the switching means for turning on / off the power supply to the load is supplied by the power generation means.
  • the power consumption of the power source can be suppressed by turning off the power supply from the power source to the load.
  • the switching means for turning off the supply of power from the power source to the load is operated not by the power of the power source but by the power generated by the power generation means, the contradiction that the power of the power source is consumed for power saving of the power source. Therefore, it is possible to effectively realize power saving of the power source without causing the above.
  • the switching unit is switched on when the power generation unit generates power, and is switched off when the power generation unit does not generate power.
  • the switching means may be switched on when the voltage generated by the power generation means is a predetermined value or more.
  • the switching means may be switched off after a predetermined time elapses after switching on.
  • the switching unit since the switching unit is turned on only for a predetermined time, even if the power generation unit continues to generate power, the power supply can be prevented from being turned on more than necessary.
  • the power control device may further include power storage means for storing power from a power source, and the switching means may be turned on by the power stored by the power storage means.
  • the power control apparatus further includes a detection unit that detects a storage amount of the power storage unit, and the switching unit includes a first switching element that connects or blocks power supply from the power source to the power storage unit, and the power storage unit.
  • a second switching element for connecting or cutting off the supply of power from the load to the load, and when the power generation means generates power, the first switching element is turned on, the second switching element is turned off, and the detection means is a predetermined value
  • the first switching element may be switched off and the second switching element may be switched on.
  • the first and second switching elements can be turned on and off to supply power from the power source to the power storage means. Thereby, necessary electric power can be repeatedly stored in the storage means.
  • the switching means has two contact points connected to the load and the power source, respectively, and a voltage application terminal to which a voltage is applied.
  • a transistor that allows current to flow through the contact is preferable.
  • the switching means for turning on / off the supply of power from the power source to the load is operated not by the power of the power source but by the power generated by the power generation means. Therefore, the power of the power source is reduced for power saving of the power source.
  • the power consumption of the power supply can be effectively suppressed without causing a contradiction of consumption.
  • FIG. 1 is a schematic circuit diagram showing a power supply circuit including a power control apparatus according to Embodiment 1 of the present invention.
  • the typical circuit diagram which shows the electric power supply circuit containing the electric power control apparatus which concerns on Embodiment 2 of this invention.
  • the typical circuit diagram which shows the electric power supply circuit containing the electric power control apparatus which concerns on Embodiment 3 of this invention.
  • the power control apparatus is an apparatus for switching power supply from a power supply to a load or switching the power supply and controlling power supply to the load to suppress power consumption of the power supply.
  • the power control apparatus will be described as being mounted on an information communication device such as a mobile phone.
  • the load supplied from the power supply may be any load that does not need to be supplied constantly, such as an LED (Light Emitting Diode), sensor, or RF (Radio Frequency) tag.
  • FIG. 2 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the first embodiment of the present invention.
  • the power supply circuit 1 includes a power control device 10, a power supply 20 and a load 30.
  • the power source 20 is, for example, a lithium battery that is a main power source of a device on which the power supply circuit 1 is mounted, and serves as a main power source for the load 30.
  • the power supply 20 has a negative electrode connected to the ground and a positive electrode connected to the load 30.
  • the load 30 is an LED, a sensor, an RF tag, or the like as described above, and operates when power is supplied from the power supply 20.
  • the load 30 includes an input terminal (not shown) to which power from the power supply 20 is input, and a ground terminal (not shown).
  • the input terminal is connected to the positive electrode of the power supply 20.
  • the ground terminal is connected to the ground via a MOS-FET 12 described later included in the power control device 10.
  • the power control device 10 is provided on the ground side wiring connecting the power source 20 and the load 30. As will be described in detail later, the power control apparatus 10 has a switching function, and performs on / off control of power feeding from the power supply 20 to the load 30. By enabling the power control device 10 to turn on and off the power supply to the load 30, the power consumption of the power supply 20 can be suppressed by preventing the power supply to the load 30 when the operation of the load 30 is unnecessary.
  • the capacitor Ca is provided.
  • the capacitor Ca is a bypass capacitor for removing noise components and the like.
  • the power control device 10 includes a piezoelectric element 11 as a power generation means and an n-channel MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) 12 as a switching element.
  • MOS-FET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the piezoelectric element 11 has a configuration in which a piezoelectric body such as a piezoelectric ceramic that converts mechanical energy into electrical energy is sandwiched between two electrodes.
  • Mechanical energy is vibration, pressure or heat.
  • an electromotive force is generated when pressure is applied to the piezoelectric body.
  • the generated electromotive force can be taken out from the electrode.
  • One electrode of the piezoelectric element 11 is connected to the ground via a resistor R2.
  • the other electrode of the piezoelectric element 11 is connected to the resistor R1 connected to the ground and the anode of the diode D1.
  • the cathode of the diode D1 is connected to each of the capacitor C1 connected to the ground and the gate (G) of the MOS-FET 12.
  • the MOS-FET 12 has a source (S) connected to the ground and a drain (D) connected to the ground terminal of the load 30.
  • the MOS-FET 12 controls the current flowing between the drain (D) and the source (S) by the voltage between the gate (G) and the source (S). More specifically, when a voltage higher than the threshold is applied so that the potential of the gate (G) becomes higher with respect to the source (S), current flows from the drain (D) to the source (S). become.
  • the MOS-FET 12 is turned on when a voltage higher than the threshold is applied to the gate (G) of the MOS-FET 12 so that a current flows between the drain (D) and the source (S). To do. Further, turning off the MOS-FET 12 is a state in which no current flows between the drain (D) and the source (S) of the MOS-FET 12.
  • the piezoelectric element 11 converts mechanical energy into electrical energy, and a potential difference is generated between both electrodes of the piezoelectric element 11.
  • the generated voltage is applied to the gate (G)
  • the MOS-FET 12 is turned on. That is, power supply from the power source 20 to the load 30 is turned on.
  • the MOS-FET 12 is a switching means for turning on / off the power supply.
  • the resistors R1 and R2 are filter elements for consuming electrical energy by the piezoelectric element 11 with respect to unnecessary frequencies so that the gate voltage of the MOS-FET 12 does not increase and prevents the MOS-FET 12 from malfunctioning.
  • the diode D1 is a rectifying element that allows current to pass only from the piezoelectric element 11 in the direction of the MOS-FET 12.
  • the capacitor C1 has a sufficiently long discharge time constant with respect to the leakage resistance of the MOS-FET 12, and prevents an excessive voltage from being applied to the gate (G). Note that a discharge resistor may be connected in parallel with the capacitor C1, and the time during which the MOS-FET 12 is turned on may be determined by the discharge time constant.
  • the power control device 10 controls the on / off of the power supply to the load 30, thereby realizing power saving of the power supply 20. Further, on / off control of power supply to the load 30 uses power generated by the piezoelectric element 11 of the power control device 10 instead of power from the power supply 20, and therefore requires extra power for power supply control. Therefore, the power saving and the extension of the life of the power source 20 are not hindered.
  • FIG. 3 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the second embodiment of the present invention.
  • the power control apparatus 10 further includes a MOS-FET 13 in addition to the configuration of the first embodiment.
  • the drain (D) of the MOS-FET 13 is connected to the cathode of the diode D1, and the source (S) is connected to the ground.
  • the gate (G) of the MOS-FET 13 is connected to the load 30.
  • the load 30 includes a timer, for example.
  • the load 30 outputs a Hi signal to the gate (G) of the MOS-FET 13 after a predetermined time has elapsed since the power is supplied from the power supply 20 to turn on the MOS-FET 13.
  • the piezoelectric element 11 when the piezoelectric element 11 generates power and a voltage is applied to the gate (G) of the MOS-FET 12, the MOS-FET 12 is turned on and the power supply from the power source 20 to the load 30 is also turned on. It becomes.
  • the piezoelectric element 11 stops generating power and no voltage is applied to the gate (G) of the MOS-FET 12 the MOS-FET 12 is turned off, and the power supply from the power source 20 to the load 30 is also turned off.
  • the power control apparatus 10 after turning on the power supply from the power supply 20 to the load 30, even when the piezoelectric element 11 continues to generate power, if a certain time elapses.
  • the power supply to the load 30 can be turned off. Thereby, it is possible to realize power saving and long life of the power source 20 without supplying power to the load 30 more than necessary.
  • the circuit described in the second embodiment is provided with a power storage unit that stores the power of the power supply 20, and the load 30 is supplied with the power stored in the power storage unit.
  • the power source 20 can consume only the power necessary for the load 30, so that power saving and long life of the power source 20 can be realized.
  • FIG. 4 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the third embodiment of the present invention.
  • the power supply circuit 1 according to the third embodiment further includes a MOS-FET 14, a comparator 15, and a capacitor C2.
  • the capacitor C2 is a power storage unit that stores the power of the power supply 20, and has one end connected to the positive electrode of the power supply 20 and the other end connected to the drain (D) of the MOS-FET 12.
  • the comparator 15 is a detecting means for detecting the amount of electricity stored in the capacitor C2, and operates by the voltage of the power source 20.
  • the comparator 15 compares the potential between the input voltage and the reference voltage, and when the input voltage is higher than the reference voltage, outputs a Hi signal from the output terminal.
  • the output terminal of the comparator 15 is connected to the gate (G) of each of the MOS-FET 13 and the MOS-FET 14.
  • the output terminal of the comparator 15 is connected to the non-inverting input terminal of the comparator 15 through the feedback resistor R6.
  • the non-inverting input terminal of the comparator 15 is connected in parallel to the capacitor C2, and is connected between the voltage dividing resistors R3 and R4 connected in series.
  • the inverting input terminal of the comparator 15 is connected in parallel to the capacitor C2, and is connected between the resistor R5 and the Zener diode D2 connected in series.
  • the Zener diode D2 is an element for generating a stable reference voltage, and has a cathode connected to the inverting input terminal of the comparator 15 and an anode connected to the ground.
  • the source (S) is connected to the drain (D) of the MOS-FET 12, and the drain (D) is connected to the ground terminal of the load 30.
  • the piezoelectric element 11 when the piezoelectric element 11 generates power and a voltage is applied to the gate (G) of the MOS-FET 12, the MOS-FET 12 is turned on. At this time, the MOS-FET 13 and the MOS-FET 14 are turned off. Then, the electric power from the power source 20 is stored in the capacitor C2.
  • the comparator 15 becomes operable, and compares the stored voltage of the capacitor C2 with the reference voltage. By detecting the storage voltage of the capacitor C2, the storage amount that is the power of the capacitor C2 can be detected.
  • the comparator 15 outputs a Hi signal from the output terminal when the stored voltage of the capacitor C2 is higher than the reference voltage. As a result, a voltage is applied to the gate (G) of each of the MOS-FET 13 and the MOS-FET 14, and the MOS-FET 13 and the MOS-FET 14 are turned on.
  • the MOS-FET 13 When the MOS-FET 13 is turned on, the MOS-FET 12 is turned off as in the second embodiment. Thereby, thereafter, the power supply from the power source 20 is turned off to the capacitor C2.
  • the comparator 15 stops outputting the Hi signal, and the MOS-FET 13 and the MOS-FET 14 are turned off.
  • the piezoelectric element 11 is generating electric power
  • the MOS-FET 12 is turned on again, and the capacitor C2 stores electricity from the power source 20.
  • the third embodiment since only the power necessary for the load 30 needs to be stored in the capacitor C2, power saving of the power source 20 can be realized. Further, if the power storage capacity of the capacitor C2 is adjusted, the power supply time to the load 30 can be adjusted, so that an element such as a timer becomes unnecessary.
  • the specific configuration of the power control apparatus 10 can be changed as appropriate, and the actions and effects described in the above-described embodiment are merely a list of the most preferable actions and effects that arise from the present invention.
  • the operations and effects of the present invention are not limited to those described in the above embodiment.
  • the power generation means may be not only the piezoelectric element 11 but also a Peltier element.
  • the switching means for turning on / off the power supply is not limited to a MOS-FET, but may be a contactless transistor (for example, a bipolar transistor) or a contact switching element.
  • the piezoelectric element 11 when the piezoelectric element 11 is generating power, the power supply to the load 30 is turned on. However, when the piezoelectric element 11 generates power, the power supply to the load 30 may be turned off. .
  • the comparator 15 is used as detection means for detecting the charged amount of the capacitor C2, but this configuration is not necessary.
  • the storage amount may be calculated based on the current flowing through the capacitor C2.
  • the device on which the power control apparatus 10 is mounted has been described as an information communication device such as a mobile phone, it is not limited to this.
  • the fire alarm issues an alarm when it detects heat, for example.
  • the power control device 10 is configured to turn on the switch so that the heat is mechanical energy, and when the power is generated by the heat, the power is supplied to the alarm device.
  • 1-power supply circuit 10-power control device 11-piezoelectric element (power generation means) 12-MOS-FET (switching means, first switching element) 13-MOS-FET (switching means) 14-MOS-FET (switching means, second switching element) 15-Comparator (detection means) 20-Power supply 30-Load C1-Capacitor C2-Capacitor (power storage means)

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

An electrical-power control device (10) for controlling a supply of electrical power from an electrical source (20) to a load (30) is provided with: a piezoelectric element (11) for generating electricity using vibration, pressure, or other means; and a MOS-FET (12) for turning the supply of electrical power from the electrical source (20) to the load (30) on or off. The piezoelectric element (11) is connected to a gate (G) of the MOS-FET (12). When the piezoelectric element (11) generates electricity, a voltage is applied to the gate (G) of the MOS-FET (12), and the supply of electrical power from the electrical source (20) to the load (30) is turned on. When no electricity is generated, no voltage will be applied to the gate (G) of the MOS-FET (12), and the supply of electrical power from the electrical source (20) to the load (30) will be turned off. An electrical-power control device capable of effectively minimizing electrical power consumption of the electric source is thereby provided.

Description

電力制御装置Power control device
 本発明は、電源から負荷への電力の供給を制御する電力制御装置に関する。 The present invention relates to a power control apparatus that controls supply of power from a power supply to a load.
 自装置で発電した電力を二次電池に充電する発電装置がある。特許文献1には、二次電池に充電した電力を負荷に給電することで、主電源の省電力化を図る発電装置が開示されている。図1は、特許文献1に記載の発電装置の概要を示す説明図である。特許文献1に記載の発電装置は、クッション100に加わった圧力によりクッション100内の圧電素子101に電気信号が発生すると、スイッチ104がオンとなり、その電気信号を導線102で圧電素子101に接続された蓄電部103に充電している。 There is a power generator that charges the secondary battery with the power generated by its own device. Patent Document 1 discloses a power generator that reduces power consumption of a main power source by supplying power charged in a secondary battery to a load. FIG. 1 is an explanatory diagram showing an outline of the power generation device described in Patent Document 1. FIG. In the power generation device described in Patent Document 1, when an electric signal is generated in the piezoelectric element 101 in the cushion 100 due to the pressure applied to the cushion 100, the switch 104 is turned on, and the electric signal is connected to the piezoelectric element 101 by the conducting wire 102. The power storage unit 103 is charged.
 また、特許文献2には、電力が得られない場所でも負荷への給電を可能にする発電装置が開示されている。特許文献2に記載の発電装置は、例えば振動運動等の運動エネルギーを電気エネルギーに変換することで発電し、発電した電力を二次電池に充電している。特許文献2においても、主電源と併用して二次電池から負荷に給電することで、省電力化が可能となる。 Further, Patent Document 2 discloses a power generation device that enables power supply to a load even in a place where power cannot be obtained. The power generation device described in Patent Literature 2 generates power by converting kinetic energy such as vibration motion into electric energy, and charges the generated power to a secondary battery. Also in Patent Document 2, power can be saved by supplying power from the secondary battery to the load in combination with the main power source.
特開平8-168272号公報JP-A-8-168272 特開平11-341690号公報JP 11-341690 A
 しかしながら、二次電池の充電量には制限があるため、特許文献1,2のように、二次電池に充電した電力を負荷に供給しても、給電時間が短く、二次電池だけでは負荷に十分な電力を供給できない。このため、特許文献1,2では、主電源から負荷への給電時間を大きく短縮させることはできず、主電源の消費電力を十分に抑制することができない。 However, since the amount of charge of the secondary battery is limited, as in Patent Documents 1 and 2, even if the power charged in the secondary battery is supplied to the load, the power supply time is short, and the load is not sufficient with the secondary battery alone. Cannot supply enough power. For this reason, in Patent Documents 1 and 2, the power supply time from the main power source to the load cannot be greatly shortened, and the power consumption of the main power source cannot be sufficiently suppressed.
 そこで、本発明の目的は、電源の消費電力を効果的に抑制することができる電力制御装置を提供することにある。 Therefore, an object of the present invention is to provide a power control device capable of effectively suppressing power consumption of a power source.
 本発明は、電源から負荷への電力の供給を制御する電力制御装置において、外部からのエネルギーを利用して発電する発電手段と、該発電手段が発電した電力により動作し、電源から負荷への電力の供給をオンオフする切替手段と、を備える。 The present invention relates to a power control apparatus that controls the supply of power from a power source to a load, a power generation unit that generates power using external energy, and operates with the power generated by the power generation unit. Switching means for turning on and off the supply of electric power.
 この構成では、負荷には電源からの電力を供給し、負荷への電力の供給をオンオフする切替手段を動作させるための電力を、発電手段により供給している。負荷の動作が不要な場合に、電源から負荷への電力の供給をオフすることで、電源の消費電力を抑制できる。さらに、電源から負荷への電力の供給をオフする切替手段は、電源の電力ではなく、発電手段が発電した電力により動作するため、電源の省電力化のために電源の電力を消費するといった矛盾が生じることなく、電源の省電力化を効果的に実現できる。 In this configuration, the power from the power source is supplied to the load, and the power for operating the switching means for turning on / off the power supply to the load is supplied by the power generation means. When the operation of the load is unnecessary, the power consumption of the power source can be suppressed by turning off the power supply from the power source to the load. Furthermore, since the switching means for turning off the supply of power from the power source to the load is operated not by the power of the power source but by the power generated by the power generation means, the contradiction that the power of the power source is consumed for power saving of the power source. Therefore, it is possible to effectively realize power saving of the power source without causing the above.
 本発明に係る電力制御装置において、切替手段は、発電手段が発電した場合にオンに切り替わり、発電手段が発電しない場合にオフに切り替わるようにしてあることが好ましい。 In the power control apparatus according to the present invention, it is preferable that the switching unit is switched on when the power generation unit generates power, and is switched off when the power generation unit does not generate power.
 この構成では、常時動作する必要のない負荷の場合、外部からエネルギーが加えられないために発電手段が発電しないときは電源から負荷への電力の供給をオフし、発電手段が発電したときのみ電力の供給をオンすることができ、電源の無駄な電力消費をさらに抑制することができる。 In this configuration, in the case of a load that does not need to operate constantly, if the power generation means does not generate power because no energy is applied from the outside, power supply from the power source to the load is turned off, and only when the power generation means generates power. Can be turned on, and wasteful power consumption of the power supply can be further suppressed.
 本発明に係る電力制御装置において、切替手段は、発電手段が発電した電圧が所定値以上であるときにオンに切り替わるようにしてあってもよい。 In the power control apparatus according to the present invention, the switching means may be switched on when the voltage generated by the power generation means is a predetermined value or more.
 この構成では、発電手段の発電量が小さ過ぎる場合には、電源から負荷への電力の供給がオンとならない。これにより、負荷の動作が不要であるにもかかわらず発電手段が僅かに発電したとき、電力の供給がオンとなるおそれを回避できる。 In this configuration, when the power generation amount of the power generation means is too small, the power supply from the power source to the load is not turned on. As a result, it is possible to avoid the possibility that the supply of power is turned on when the power generation means generates a small amount of power even though the operation of the load is unnecessary.
 本発明に係る電力制御装置において、切替手段は、オンに切り替わってから所定時間経過後にオフに切り替わるようにしてあってもよい。 In the power control apparatus according to the present invention, the switching means may be switched off after a predetermined time elapses after switching on.
 この構成では、切替手段が所定時間だけオンとなるため、発電手段が発電し続けている場合であっても、必要以上に電力の供給がオンとならないようにできる。 In this configuration, since the switching unit is turned on only for a predetermined time, even if the power generation unit continues to generate power, the power supply can be prevented from being turned on more than necessary.
 本発明に係る電力制御装置は、電源からの電力を蓄電する蓄電手段、をさらに備え、切替手段は蓄電手段が蓄電した電力によりオンに切り替わるようにしてあってもよい。 The power control device according to the present invention may further include power storage means for storing power from a power source, and the switching means may be turned on by the power stored by the power storage means.
 この構成では、電源からの電力を蓄電手段に蓄電し、切替手段は、蓄電された電力によりオンに切り替わる。換言すれば、蓄電手段に蓄電された電力が全て消費された場合には、切替手段は電力の供給をオフに切り替える。これにより、蓄電手段の蓄電量を調節することで、一定時間経過すれば自動的にオンにした電力の供給をオフに切り替えることができる。 In this configuration, power from the power source is stored in the power storage means, and the switching means is turned on by the stored power. In other words, when all the electric power stored in the electric storage means is consumed, the switching means switches off the supply of electric power. Thus, by adjusting the amount of electricity stored in the electricity storage means, it is possible to switch off the supply of power automatically turned on after a certain period of time has elapsed.
 本発明に係る電力制御装置は、蓄電手段の蓄電量を検知する検知手段、をさらに備え、切替手段は、電源から蓄電手段への電力の供給を接続または遮断する第1スイッチング素子と、蓄電手段から負荷への電力の供給を接続または遮断する第2スイッチング素子と、を有し、発電手段が発電した場合に第1スイッチング素子がオン、第2スイッチング素子がオフに切り替わり、検知手段が所定値以上の蓄電量を検知した場合、第1スイッチング素子がオフ、第2スイッチング素子がオンに切り替わるようにしてあってもよい。 The power control apparatus according to the present invention further includes a detection unit that detects a storage amount of the power storage unit, and the switching unit includes a first switching element that connects or blocks power supply from the power source to the power storage unit, and the power storage unit. A second switching element for connecting or cutting off the supply of power from the load to the load, and when the power generation means generates power, the first switching element is turned on, the second switching element is turned off, and the detection means is a predetermined value When the above charged amount is detected, the first switching element may be switched off and the second switching element may be switched on.
 この構成では、蓄電手段の蓄電量が少なくなった場合、第1および第2スイッチング素子をオンオフして、電源から蓄電手段へ給電できる。これにより、必要な電力を蓄電手段に繰り返し蓄電することができる。 In this configuration, when the amount of power stored in the power storage means decreases, the first and second switching elements can be turned on and off to supply power from the power source to the power storage means. Thereby, necessary electric power can be repeatedly stored in the storage means.
 本発明に係る電力制御装置において、切替手段は、負荷および電源にそれぞれ接続される二接点、並びに、電圧が印加される電圧印加端子を有し、該電圧印加端子に電圧が印加されると二接点に電流を流すトランジスタであることが好ましい。 In the power control apparatus according to the present invention, the switching means has two contact points connected to the load and the power source, respectively, and a voltage application terminal to which a voltage is applied. A transistor that allows current to flow through the contact is preferable.
 この構成では、スイッチング素子を機械的に無接点とすることで、接点における不具合が生じることがないため、電力の供給をオンオフする際の不具合が起こらないようにできる。 In this configuration, since the switching element is mechanically non-contacted, there is no problem in the contact, so that the problem in turning on / off the power supply can be prevented.
 本発明によれば、電源から負荷への電力の供給をオンオフする切替手段は、電源の電力ではなく、発電手段が発電した電力により動作するため、電源の省電力化のために電源の電力を消費するといった矛盾が生じることなく、電源の消費電力を効果的に抑制することができる。 According to the present invention, the switching means for turning on / off the supply of power from the power source to the load is operated not by the power of the power source but by the power generated by the power generation means. Therefore, the power of the power source is reduced for power saving of the power source. The power consumption of the power supply can be effectively suppressed without causing a contradiction of consumption.
特許文献1に記載の発電装置の概要を示す説明図。Explanatory drawing which shows the outline | summary of the electric power generating apparatus of patent document 1. FIG. 本発明の実施形態1に係る電力制御装置を含む電力供給回路を示す模式的回路図。1 is a schematic circuit diagram showing a power supply circuit including a power control apparatus according to Embodiment 1 of the present invention. 本発明の実施形態2に係る電力制御装置を含む電力供給回路を示す模式的回路図。The typical circuit diagram which shows the electric power supply circuit containing the electric power control apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る電力制御装置を含む電力供給回路を示す模式的回路図。The typical circuit diagram which shows the electric power supply circuit containing the electric power control apparatus which concerns on Embodiment 3 of this invention.
 本発明に係る電力制御装置は、電源から負荷への電力の供給または遮断を切り替えて、負荷への給電制御を行い、電源の消費電力の抑制を図るための装置である。以下に説明する実施形態では、本発明に係る電力制御装置が、例えば携帯電話機等の情報通信機器に搭載されているものとして説明する。また、電源から給電される負荷は、LED(Light Emitting Diode)、センサまたはRF(Radio Frequency)タグなど、常時給電しておく必要のないものであればよい。 The power control apparatus according to the present invention is an apparatus for switching power supply from a power supply to a load or switching the power supply and controlling power supply to the load to suppress power consumption of the power supply. In the embodiments described below, the power control apparatus according to the present invention will be described as being mounted on an information communication device such as a mobile phone. The load supplied from the power supply may be any load that does not need to be supplied constantly, such as an LED (Light Emitting Diode), sensor, or RF (Radio Frequency) tag.
(実施形態1)
 図2は、本発明の実施形態1に係る電力制御装置10を含む電力供給回路1を示す模式的回路図である。電力供給回路1は、電力制御装置10、電源20および負荷30を備えている。
(Embodiment 1)
FIG. 2 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the first embodiment of the present invention. The power supply circuit 1 includes a power control device 10, a power supply 20 and a load 30.
 電源20は、例えば、電力供給回路1が搭載される機器の主電源となるリチウム電池等であり、負荷30の主電源となる。電源20は、負極がグランドに接続されており、正極が負荷30に接続されている。 The power source 20 is, for example, a lithium battery that is a main power source of a device on which the power supply circuit 1 is mounted, and serves as a main power source for the load 30. The power supply 20 has a negative electrode connected to the ground and a positive electrode connected to the load 30.
 負荷30は、上述のようにLED、センサまたはRFタグ等であり、電源20から電力が供給されることで動作する。負荷30は、電源20からの電力が入力される入力端子(不図示)と、グランド端子(不図示)とを備えている。入力端子は、電源20の正極に接続されている。グランド端子は、電力制御装置10が有する後述のMOS-FET12を介してグランドに接続されている。 The load 30 is an LED, a sensor, an RF tag, or the like as described above, and operates when power is supplied from the power supply 20. The load 30 includes an input terminal (not shown) to which power from the power supply 20 is input, and a ground terminal (not shown). The input terminal is connected to the positive electrode of the power supply 20. The ground terminal is connected to the ground via a MOS-FET 12 described later included in the power control device 10.
 電力制御装置10は、電源20および負荷30を接続するグランド側の配線に設けられている。電力制御装置10は、後に詳述するが、スイッチング機能を有しており、電源20から負荷30への給電をオンオフ制御する。電力制御装置10により負荷30への給電をオンオフできるようにすることで、負荷30の動作が不要なときに負荷30に給電しないようにして、電源20の消費電力を抑制することができる。 The power control device 10 is provided on the ground side wiring connecting the power source 20 and the load 30. As will be described in detail later, the power control apparatus 10 has a switching function, and performs on / off control of power feeding from the power supply 20 to the load 30. By enabling the power control device 10 to turn on and off the power supply to the load 30, the power consumption of the power supply 20 can be suppressed by preventing the power supply to the load 30 when the operation of the load 30 is unnecessary.
 なお、図2に示す電力供給回路1は、一端が電源20の正極と負荷30との間に接続され、他端が電力制御装置10(具体的に、MOS-FET12)を介してグランドに接続された、キャパシタCaを備えている。キャパシタCaは、ノイズ成分の除去等を行うためのバイパスコンデンサである。 2, one end is connected between the positive electrode of the power supply 20 and the load 30, and the other end is connected to the ground via the power control device 10 (specifically, the MOS-FET 12). The capacitor Ca is provided. The capacitor Ca is a bypass capacitor for removing noise components and the like.
 電力制御装置10の構成についてさらに詳述する。電力制御装置10は、発電手段としての圧電素子11と、スイッチング素子としてのnチャンネル型のMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)12とを備えている。 The configuration of the power control apparatus 10 will be further described in detail. The power control device 10 includes a piezoelectric element 11 as a power generation means and an n-channel MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) 12 as a switching element.
 圧電素子11は、機械的エネルギーを電気的エネルギーに変換する圧電セラミック等の圧電体を二つの電極で挟み込む構成となっている。機械的エネルギーとは、振動、圧力または熱などである。この圧電体に、例えば圧力が加えられることにより起電力が生じる。この生じた起電力は電極から取り出すことができる。 The piezoelectric element 11 has a configuration in which a piezoelectric body such as a piezoelectric ceramic that converts mechanical energy into electrical energy is sandwiched between two electrodes. Mechanical energy is vibration, pressure or heat. For example, an electromotive force is generated when pressure is applied to the piezoelectric body. The generated electromotive force can be taken out from the electrode.
 圧電素子11の一方の電極は、抵抗R2を介してグランドに接続されている。圧電素子11の他方の電極は、グランドに接続された抵抗R1と、ダイオードD1のアノードとに接続されている。ダイオードD1のカソードは、グランドに接続されたキャパシタC1、およびMOS-FET12のゲート(G)のそれぞれに接続されている。MOS-FET12は、ソース(S)がグランドに接続され、ドレイン(D)が負荷30のグランド端子に接続されている。 One electrode of the piezoelectric element 11 is connected to the ground via a resistor R2. The other electrode of the piezoelectric element 11 is connected to the resistor R1 connected to the ground and the anode of the diode D1. The cathode of the diode D1 is connected to each of the capacitor C1 connected to the ground and the gate (G) of the MOS-FET 12. The MOS-FET 12 has a source (S) connected to the ground and a drain (D) connected to the ground terminal of the load 30.
 MOS-FET12は、ゲート(G)およびソース(S)間の電圧によってドレイン(D)およびソース(S)間に流れる電流を制御する。より具体的には、ソース(S)に対してゲート(G)の電位が高くなるように閾値以上の電圧が印加されると、ドレイン(D)からソース(S)に向かって電流が流れるようになる。 The MOS-FET 12 controls the current flowing between the drain (D) and the source (S) by the voltage between the gate (G) and the source (S). More specifically, when a voltage higher than the threshold is applied so that the potential of the gate (G) becomes higher with respect to the source (S), current flows from the drain (D) to the source (S). become.
 なお、以下では、MOS-FET12のゲート(G)に閾値以上の電圧が印加されて、ドレイン(D)およびソース(S)の間に電流が流れる状態にすることを、MOS-FET12をオンにするという。また、MOS-FET12のドレイン(D)およびソース(S)の間に電流が流れない状態にすることを、MOS-FET12をオフにするという。 In the following description, the MOS-FET 12 is turned on when a voltage higher than the threshold is applied to the gate (G) of the MOS-FET 12 so that a current flows between the drain (D) and the source (S). To do. Further, turning off the MOS-FET 12 is a state in which no current flows between the drain (D) and the source (S) of the MOS-FET 12.
 圧電素子11に機械的エネルギーが加えられていない場合、MOS-FET12のゲート(G)には電圧が印加されないため、MOS-FET12はオフとなる。すなわち、電源20から負荷30への給電がオフとなる。 When no mechanical energy is applied to the piezoelectric element 11, no voltage is applied to the gate (G) of the MOS-FET 12, so that the MOS-FET 12 is turned off. That is, the power supply from the power source 20 to the load 30 is turned off.
 圧電素子11に機械的エネルギーが加えられた場合、圧電素子11は機械的エネルギーを電気的エネルギーに変換し、圧電素子11の両電極に電位差が発生する。発生電圧がゲート(G)に印加された場合、ゲート電圧が上昇し、MOS-FET12の閾値電圧よりも高くなると、MOS-FET12はオンとなる。すなわち、電源20から負荷30への給電がオンとなる。このように、MOS-FET12は、給電をオンオフするための切替手段である。 When mechanical energy is applied to the piezoelectric element 11, the piezoelectric element 11 converts mechanical energy into electrical energy, and a potential difference is generated between both electrodes of the piezoelectric element 11. When the generated voltage is applied to the gate (G), when the gate voltage increases and becomes higher than the threshold voltage of the MOS-FET 12, the MOS-FET 12 is turned on. That is, power supply from the power source 20 to the load 30 is turned on. Thus, the MOS-FET 12 is a switching means for turning on / off the power supply.
 なお、抵抗R1,R2は、不要な周波数に対する圧電素子11による電気的エネルギーを消費して、MOS-FET12のゲート電圧が上がらないようにし、MOS-FET12の誤動作を防ぐためのフィルタ素子である。ダイオードD1は、圧電素子11からMOS-FET12方向にしか電流が通過しないようにする整流素子である。 The resistors R1 and R2 are filter elements for consuming electrical energy by the piezoelectric element 11 with respect to unnecessary frequencies so that the gate voltage of the MOS-FET 12 does not increase and prevents the MOS-FET 12 from malfunctioning. The diode D1 is a rectifying element that allows current to pass only from the piezoelectric element 11 in the direction of the MOS-FET 12.
 キャパシタC1は、MOS-FET12のリーク抵抗に対し十分長い放電時定数にするとともに、ゲート(G)に過剰な電圧が印加されるのを防ぐ。なお、このキャパシタC1と並列に放電抵抗を接続し、MOS-FET12がオンする時間を放電時定数で決定してもよい。 The capacitor C1 has a sufficiently long discharge time constant with respect to the leakage resistance of the MOS-FET 12, and prevents an excessive voltage from being applied to the gate (G). Note that a discharge resistor may be connected in parallel with the capacitor C1, and the time during which the MOS-FET 12 is turned on may be determined by the discharge time constant.
 このように、電力制御装置10により、負荷30への給電のオンオフを制御することで、電源20の省電力化を実現することができる。また、負荷30への給電のオンオフの制御は、電源20からの電力ではなく、電力制御装置10の圧電素子11が発電した電力を用いているため、給電の制御のための余計な電力を必要とせず、電源20の省電力化および寿命の延長化を妨げることがない。 As described above, the power control device 10 controls the on / off of the power supply to the load 30, thereby realizing power saving of the power supply 20. Further, on / off control of power supply to the load 30 uses power generated by the piezoelectric element 11 of the power control device 10 instead of power from the power supply 20, and therefore requires extra power for power supply control. Therefore, the power saving and the extension of the life of the power source 20 are not hindered.
(実施形態2)
 実施形態2では、電力制御装置10の構成が実施形態1と相違している。以下、その相違点についてのみ説明し、実施形態1と同様の部材については同じ符号を付し、説明は省略する。
(Embodiment 2)
In the second embodiment, the configuration of the power control apparatus 10 is different from that of the first embodiment. Hereinafter, only the difference will be described, the same reference numerals are given to the same members as those in Embodiment 1, and the description will be omitted.
 図3は、本発明の実施形態2に係る電力制御装置10を含む電力供給回路1を示す模式的回路図である。電力制御装置10は、実施形態1の構成に加え、MOS-FET13をさらに備えている。MOS-FET13のドレイン(D)はダイオードD1のカソードに接続されており、ソース(S)はグランドに接続されている。また、MOS-FET13のゲート(G)は、負荷30に接続されている。 FIG. 3 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the second embodiment of the present invention. The power control apparatus 10 further includes a MOS-FET 13 in addition to the configuration of the first embodiment. The drain (D) of the MOS-FET 13 is connected to the cathode of the diode D1, and the source (S) is connected to the ground. The gate (G) of the MOS-FET 13 is connected to the load 30.
 実施形態2に係る負荷30は、例えばタイマを備えている。負荷30は、電源20から給電されてから所定時間経過後にMOS-FET13のゲート(G)にHi信号を出力し、MOS-FET13をオンにする。 The load 30 according to the second embodiment includes a timer, for example. The load 30 outputs a Hi signal to the gate (G) of the MOS-FET 13 after a predetermined time has elapsed since the power is supplied from the power supply 20 to turn on the MOS-FET 13.
 この回路において、実施形態1と同様、圧電素子11が発電し、MOS-FET12のゲート(G)に電圧が印加されると、MOS-FET12がオンとなり、電源20から負荷30への給電もオンとなる。また、圧電素子11が発電しなくなり、MOS-FET12のゲート(G)に電圧が印加されなくなると、MOS-FET12がオフとなり、電源20から負荷30への給電もオフとなる。 In this circuit, as in the first embodiment, when the piezoelectric element 11 generates power and a voltage is applied to the gate (G) of the MOS-FET 12, the MOS-FET 12 is turned on and the power supply from the power source 20 to the load 30 is also turned on. It becomes. When the piezoelectric element 11 stops generating power and no voltage is applied to the gate (G) of the MOS-FET 12, the MOS-FET 12 is turned off, and the power supply from the power source 20 to the load 30 is also turned off.
 さらに、電源20から負荷30への給電がオンされた場合、所定時間経過すると負荷30からHi信号が出力され、MOS-FET13のゲート(G)に電圧が印加される。これにより、MOS-FET13はオンとなる。そうすると、圧電素子11からの電流は、ダイオードD1およびMOS-FET13を介してグランドに流れるため、MOS-FET12のゲート(G)には閾値電圧以上の電圧が印加されなくなる。この結果、MOS-FET12はオフとなり、電源20から負荷30への給電もオフとなる。 Furthermore, when power supply from the power source 20 to the load 30 is turned on, a Hi signal is output from the load 30 when a predetermined time elapses, and a voltage is applied to the gate (G) of the MOS-FET 13. Thereby, the MOS-FET 13 is turned on. Then, since the current from the piezoelectric element 11 flows to the ground via the diode D1 and the MOS-FET 13, a voltage higher than the threshold voltage is not applied to the gate (G) of the MOS-FET 12. As a result, the MOS-FET 12 is turned off, and the power supply from the power source 20 to the load 30 is also turned off.
 このように、実施形態2に係る電力制御装置10は、電源20から負荷30への給電をオンにした後、圧電素子11が発電し続けている場合であっても、一定時間が経過すれば、負荷30への給電をオフにすることができる。これにより、必要以上に負荷30に電力が供給されることなく、電源20の省電力化および高寿命化を実現できる。 As described above, the power control apparatus 10 according to the second embodiment, after turning on the power supply from the power supply 20 to the load 30, even when the piezoelectric element 11 continues to generate power, if a certain time elapses. The power supply to the load 30 can be turned off. Thereby, it is possible to realize power saving and long life of the power source 20 without supplying power to the load 30 more than necessary.
(実施形態3)
 実施形態3は、実施形態2で説明した回路に、電源20の電力を蓄電する蓄電部を備え、負荷30には蓄電部に蓄電された電力を供給する構成としている。蓄電部に電源20の電力を蓄電することで、電源20は負荷30に必要な電力のみ消費するようにできるため、電源20の省電力化および高寿命化を実現できる。以下、実施形態2との相違点についてのみ説明し、実施形態1,2と同様の部材については同じ符号を付し、説明は省略する。
(Embodiment 3)
In the third embodiment, the circuit described in the second embodiment is provided with a power storage unit that stores the power of the power supply 20, and the load 30 is supplied with the power stored in the power storage unit. By storing the power of the power source 20 in the power storage unit, the power source 20 can consume only the power necessary for the load 30, so that power saving and long life of the power source 20 can be realized. Hereinafter, only differences from the second embodiment will be described, the same members as those of the first and second embodiments will be denoted by the same reference numerals, and description thereof will be omitted.
 図4は、本発明の実施形態3に係る電力制御装置10を含む電力供給回路1を示す模式的回路図である。実施形態3に係る電力供給回路1は、MOS-FET14、コンパレータ15およびキャパシタC2をさらに備えている。キャパシタC2は、電源20の電力を蓄電する蓄電手段であり、一端が電源20の正極に接続され、他端がMOS-FET12のドレイン(D)に接続されている。 FIG. 4 is a schematic circuit diagram showing the power supply circuit 1 including the power control apparatus 10 according to the third embodiment of the present invention. The power supply circuit 1 according to the third embodiment further includes a MOS-FET 14, a comparator 15, and a capacitor C2. The capacitor C2 is a power storage unit that stores the power of the power supply 20, and has one end connected to the positive electrode of the power supply 20 and the other end connected to the drain (D) of the MOS-FET 12.
 コンパレータ15は、キャパシタC2の蓄電量を検知するための検知手段であり、電源20の電圧により動作する。コンパレータ15は、入力電圧と基準電圧との電位を比較し、入力電圧が基準電圧より高い場合、出力端子からHi信号を出力する。コンパレータ15の出力端子は、MOS-FET13およびMOS-FET14それぞれのゲート(G)に接続されている。また、コンパレータ15の出力端子は、帰還抵抗R6を介してコンパレータ15の非反転入力端子に接続されている。 The comparator 15 is a detecting means for detecting the amount of electricity stored in the capacitor C2, and operates by the voltage of the power source 20. The comparator 15 compares the potential between the input voltage and the reference voltage, and when the input voltage is higher than the reference voltage, outputs a Hi signal from the output terminal. The output terminal of the comparator 15 is connected to the gate (G) of each of the MOS-FET 13 and the MOS-FET 14. The output terminal of the comparator 15 is connected to the non-inverting input terminal of the comparator 15 through the feedback resistor R6.
 コンパレータ15の非反転入力端子は、キャパシタC2に対して並列接続され、直列接続された分圧用抵抗R3,R4の間に接続されている。コンパレータ15の反転入力端子は、キャパシタC2に対して並列接続され、直列接続された抵抗R5およびツェナーダイオードD2の間に接続されている。なお、ツェナーダイオードD2は、安定した基準電圧を生成するための素子であり、カソードがコンパレータ15の反転入力端子に接続されており、アノードがグランドに接続されている。 The non-inverting input terminal of the comparator 15 is connected in parallel to the capacitor C2, and is connected between the voltage dividing resistors R3 and R4 connected in series. The inverting input terminal of the comparator 15 is connected in parallel to the capacitor C2, and is connected between the resistor R5 and the Zener diode D2 connected in series. The Zener diode D2 is an element for generating a stable reference voltage, and has a cathode connected to the inverting input terminal of the comparator 15 and an anode connected to the ground.
 MOS-FET14は、ソース(S)がMOS-FET12のドレイン(D)に接続されており、ドレイン(D)が負荷30のグランド端子に接続されている。 In the MOS-FET 14, the source (S) is connected to the drain (D) of the MOS-FET 12, and the drain (D) is connected to the ground terminal of the load 30.
 この回路において、実施形態1,2と同様、圧電素子11が発電し、MOS-FET12のゲート(G)に電圧が印加されると、MOS-FET12がオンとなる。このとき、MOS-FET13およびMOS-FET14はオフとする。そうすると、キャパシタC2には、電源20からの電力が蓄電される。 In this circuit, as in the first and second embodiments, when the piezoelectric element 11 generates power and a voltage is applied to the gate (G) of the MOS-FET 12, the MOS-FET 12 is turned on. At this time, the MOS-FET 13 and the MOS-FET 14 are turned off. Then, the electric power from the power source 20 is stored in the capacitor C2.
 また、MOS-FET12がオンとなると、コンパレータ15は動作可能となり、キャパシタC2の蓄電電圧を基準電圧と比較する。キャパシタC2の蓄電電圧を検知することにより、キャパシタC2の電力である蓄電量を検知できる。コンパレータ15は、キャパシタC2の蓄電電圧が基準電圧より高い場合、出力端子からHi信号を出力する。これにより、MOS-FET13およびMOS-FET14それぞれのゲート(G)には電圧が印加され、MOS-FET13およびMOS-FET14はオンとなる。 Further, when the MOS-FET 12 is turned on, the comparator 15 becomes operable, and compares the stored voltage of the capacitor C2 with the reference voltage. By detecting the storage voltage of the capacitor C2, the storage amount that is the power of the capacitor C2 can be detected. The comparator 15 outputs a Hi signal from the output terminal when the stored voltage of the capacitor C2 is higher than the reference voltage. As a result, a voltage is applied to the gate (G) of each of the MOS-FET 13 and the MOS-FET 14, and the MOS-FET 13 and the MOS-FET 14 are turned on.
 MOS-FET13がオンとなると、実施形態2と同様、MOS-FET12はオフとなる。これにより、以降、キャパシタC2には電源20からの電力供給がオフとなる。 When the MOS-FET 13 is turned on, the MOS-FET 12 is turned off as in the second embodiment. Thereby, thereafter, the power supply from the power source 20 is turned off to the capacitor C2.
 また、MOS-FET14がオンとなると、電力を蓄電したキャパシタC2から負荷30へ給電されるようになる。負荷30には、キャパシタC2の電力がなくなるまで給電されるようになる。すなわち、キャパシタC2の蓄電容量を調整することで、負荷30への給電時間の調整が可能となる。 In addition, when the MOS-FET 14 is turned on, power is supplied from the capacitor C2 storing electric power to the load 30. Power is supplied to the load 30 until the power of the capacitor C2 is exhausted. That is, it is possible to adjust the power supply time to the load 30 by adjusting the storage capacity of the capacitor C2.
 キャパシタC2の蓄電電圧が基準電圧より低くなると、コンパレータ15は、Hi信号を出力しなくなり、MOS-FET13およびMOS-FET14はオフとなる。その結果、圧電素子11が発電している場合、MOS-FET12が再びオンとなり、キャパシタC2には、電源20からのが蓄電される。 When the stored voltage of the capacitor C2 becomes lower than the reference voltage, the comparator 15 stops outputting the Hi signal, and the MOS-FET 13 and the MOS-FET 14 are turned off. As a result, when the piezoelectric element 11 is generating electric power, the MOS-FET 12 is turned on again, and the capacitor C2 stores electricity from the power source 20.
 このように、実施形態3では、負荷30に必要な電力だけをキャパシタC2に蓄電すればよいため、電源20の省電力化を実現できる。また、キャパシタC2の蓄電容量を調整すれば、負荷30への給電時間を調整できるため、タイマなどの素子が不要となる。 Thus, in the third embodiment, since only the power necessary for the load 30 needs to be stored in the capacitor C2, power saving of the power source 20 can be realized. Further, if the power storage capacity of the capacitor C2 is adjusted, the power supply time to the load 30 can be adjusted, so that an element such as a timer becomes unnecessary.
 なお、電力制御装置10の具体的構成などは、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。 The specific configuration of the power control apparatus 10 can be changed as appropriate, and the actions and effects described in the above-described embodiment are merely a list of the most preferable actions and effects that arise from the present invention. The operations and effects of the present invention are not limited to those described in the above embodiment.
 例えば、発電手段は、圧電素子11だけでなく、ペルチェ素子であってもよい。また、給電をオンオフするための切替手段は、MOS-FETだけでなく、無接点型のトランジスタ(例えば、バイポーラトランジスタ)でもよいし、接点型のスイッチング素子であってもよい。また、上述の実施形態では、圧電素子11が発電している場合に、負荷30への給電をオンにしているが、圧電素子11が発電すると、負荷30への給電がオフとなる構成でもよい。 For example, the power generation means may be not only the piezoelectric element 11 but also a Peltier element. The switching means for turning on / off the power supply is not limited to a MOS-FET, but may be a contactless transistor (for example, a bipolar transistor) or a contact switching element. In the above-described embodiment, when the piezoelectric element 11 is generating power, the power supply to the load 30 is turned on. However, when the piezoelectric element 11 generates power, the power supply to the load 30 may be turned off. .
 また、実施形態3において、キャパシタC2の蓄電量を検知する検知手段としてコンパレータ15を用いているが、この構成でなくてもよい。例えば、キャパシタC2に流れる電流に基づき蓄電量を算出するものであってもよい。 In the third embodiment, the comparator 15 is used as detection means for detecting the charged amount of the capacitor C2, but this configuration is not necessary. For example, the storage amount may be calculated based on the current flowing through the capacitor C2.
 また、電力制御装置10を搭載する機器は、携帯電話機等の情報通信機器として説明したが、これに限定されない。例えば、火災報知器に搭載するようにしてもよい。火災報知器は、例えば熱を感知すると警報を発する。電力制御装置10は、熱を機械的エネルギーとし、熱により発電すると、その電力が警報機に電力供給されるようスイッチをオンに切り替える構成とする。 In addition, although the device on which the power control apparatus 10 is mounted has been described as an information communication device such as a mobile phone, it is not limited to this. For example, you may make it mount in a fire alarm. The fire alarm issues an alarm when it detects heat, for example. The power control device 10 is configured to turn on the switch so that the heat is mechanical energy, and when the power is generated by the heat, the power is supplied to the alarm device.
 これにより、平常時には、警報機に電力が供給されず、火災等の熱により発電すると警報機が動作するようになる。その結果、平常時における電源の消費電力を抑制することができ、異常時(火災時)には警報機を動作可能とすることができる。 Therefore, during normal times, no power is supplied to the alarm device, and the alarm device is activated when power is generated by heat such as a fire. As a result, the power consumption of the power supply during normal times can be suppressed, and the alarm device can be operated during an abnormality (in the event of a fire).
1-電力供給回路
10-電力制御装置
11-圧電素子(発電手段)
12-MOS-FET(切替手段、第1スイッチング素子)
13-MOS-FET(切替手段)
14-MOS-FET(切替手段、第2スイッチング素子)
15-コンパレータ(検知手段)
20-電源
30-負荷
C1-キャパシタ
C2-キャパシタ(蓄電手段)
1-power supply circuit 10-power control device 11-piezoelectric element (power generation means)
12-MOS-FET (switching means, first switching element)
13-MOS-FET (switching means)
14-MOS-FET (switching means, second switching element)
15-Comparator (detection means)
20-Power supply 30-Load C1-Capacitor C2-Capacitor (power storage means)

Claims (7)

  1.  電源から負荷への電力の供給を制御する電力制御装置において、
     外部からのエネルギーを利用して発電する発電手段と、
     該発電手段が発電した電力により動作し、前記電源から負荷への電力の供給をオンオフする切替手段と、
     を備える電力制御装置。
    In the power control device that controls the supply of power from the power source to the load,
    Power generation means for generating power using external energy;
    Switching means that operates with the power generated by the power generation means, and that turns on and off the supply of power from the power source to the load;
    A power control apparatus comprising:
  2.  前記切替手段は、
     前記発電手段が発電した場合にオンに切り替わり、前記発電手段が発電しない場合にオフに切り替わるようにしてある、
     請求項1に記載の電力制御装置。
    The switching means is
    When the power generation means generates power, it is turned on, and when the power generation means does not generate power, it is turned off.
    The power control apparatus according to claim 1.
  3.  前記切替手段は、
     前記発電手段が発電した電圧が所定値以上であるときにオンに切り替わるようにしてある、
     請求項2に記載の電力制御装置。
    The switching means is
    When the voltage generated by the power generation means is greater than or equal to a predetermined value, it is turned on.
    The power control apparatus according to claim 2.
  4.  前記切替手段は、オンに切り替わってから所定時間経過後にオフに切り替わるようにしてある、
     請求項2又は3に記載の電力制御装置。
    The switching means is configured to switch off after a predetermined time has elapsed since switching to on.
    The power control apparatus according to claim 2 or 3.
  5.  前記電源からの電力を蓄電する蓄電手段、
     をさらに備え、
     前記切替手段は前記蓄電手段が蓄電した電力によりオンに切り替わるようにしてある、
     請求項4に記載の電力制御装置。
    Power storage means for storing power from the power source;
    Further comprising
    The switching means is adapted to be switched on by the power stored by the power storage means.
    The power control apparatus according to claim 4.
  6.  前記蓄電手段の蓄電量を検知する検知手段、
     をさらに備え、
     前記切替手段は、
     前記電源から前記蓄電手段への電力の供給を接続または遮断する第1スイッチング素子と、
     前記蓄電手段から前記負荷への電力の供給を接続または遮断する第2スイッチング素子と、
     を有し、
     前記発電手段が発電した場合に前記第1スイッチング素子がオン、前記第2スイッチング素子がオフに切り替わり、前記検知手段が所定値以上の蓄電量を検知した場合、前記第1スイッチング素子がオフ、前記第2スイッチング素子がオンに切り替わるようにしてある
     請求項5に記載の電力制御装置。
    Detection means for detecting the amount of electricity stored in the electricity storage means;
    Further comprising
    The switching means is
    A first switching element for connecting or blocking power supply from the power source to the power storage means;
    A second switching element for connecting or blocking power supply from the power storage means to the load;
    Have
    When the power generation means generates power, the first switching element is turned on, the second switching element is turned off, and when the detection means detects a storage amount of a predetermined value or more, the first switching element is turned off, The power control apparatus according to claim 5, wherein the second switching element is switched on.
  7.  前記切替手段は、
     前記負荷および前記電源にそれぞれ接続される二接点、並びに、電圧が印加される電圧印加端子を有し、該電圧印加端子に電圧が印加されると前記二接点に電流を流すトランジスタである、
     請求項2から6の何れか一つに記載の電力制御装置。
    The switching means is
    Two contacts connected to the load and the power supply, respectively, and a voltage application terminal to which a voltage is applied, and when a voltage is applied to the voltage application terminal, the transistor flows a current to the two contacts.
    The power control apparatus according to any one of claims 2 to 6.
PCT/JP2012/053749 2011-02-23 2012-02-17 Electrical-power control device WO2012114984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011036708 2011-02-23
JP2011-036708 2011-02-23

Publications (1)

Publication Number Publication Date
WO2012114984A1 true WO2012114984A1 (en) 2012-08-30

Family

ID=46720765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053749 WO2012114984A1 (en) 2011-02-23 2012-02-17 Electrical-power control device

Country Status (1)

Country Link
WO (1) WO2012114984A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288319A (en) * 1998-01-28 1999-10-19 Seiko Instruments Inc Electronic equipment
JPH11299093A (en) * 1998-04-10 1999-10-29 Sony Corp Power supply adapter, electronic unit and signal transmission system
JP2005287171A (en) * 2004-03-29 2005-10-13 Dt Circuit Technology Co Ltd Power unit for portable equipment, and method of power for portable equipment
JP2005312157A (en) * 2004-04-20 2005-11-04 Sharp Corp Dc stabilized power supply apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288319A (en) * 1998-01-28 1999-10-19 Seiko Instruments Inc Electronic equipment
JPH11299093A (en) * 1998-04-10 1999-10-29 Sony Corp Power supply adapter, electronic unit and signal transmission system
JP2005287171A (en) * 2004-03-29 2005-10-13 Dt Circuit Technology Co Ltd Power unit for portable equipment, and method of power for portable equipment
JP2005312157A (en) * 2004-04-20 2005-11-04 Sharp Corp Dc stabilized power supply apparatus

Similar Documents

Publication Publication Date Title
JP6203020B2 (en) Battery pack having charge / discharge switch circuit
JP2021503873A (en) NFC antenna power acquisition device
JP6410299B2 (en) Uninterruptible power system
TW201349697A (en) Switching circuit and electronic device using the same
KR101018896B1 (en) Circuit for Charging and Discharging of Smoothing Capacitor
US20160363952A1 (en) Control of a series pass circuit for reducing singing capacitor noise
WO2012114984A1 (en) Electrical-power control device
WO2014013854A1 (en) Sensor tag and power supply module for energy harvesting
CN108574318B (en) Charge-discharge control circuit and battery device
JP6248926B2 (en) Semiconductor device, power supply control method for semiconductor device, and sensor node
JP4646929B2 (en) Charger
JP6273643B2 (en) Charge control device and emergency lighting device using the same
JP6051927B2 (en) Power supply device and wireless sensor network device
US20230029478A1 (en) Battery switch-on circuit
JP6177662B2 (en) Mobile device
JP2019103305A (en) Power supply device and communication device
JP2006196296A (en) Power backup device
TWI451240B (en) Power supply circuit
JP2003087994A (en) Power supply backup circuit and reverse current consuming circuit
JP7205210B2 (en) Charge/discharge circuit and battery device
JP2018064307A (en) Environmental power generator and power supply method
WO2019123839A1 (en) Connecting apparatus
JP6020127B2 (en) Wireless communication device
JP3169331U (en) AC adapter
KR101738606B1 (en) Current input circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP