WO2012114816A1 - Signal identifying apparatus, signal identifying method, and radar apparatus - Google Patents

Signal identifying apparatus, signal identifying method, and radar apparatus Download PDF

Info

Publication number
WO2012114816A1
WO2012114816A1 PCT/JP2012/051569 JP2012051569W WO2012114816A1 WO 2012114816 A1 WO2012114816 A1 WO 2012114816A1 JP 2012051569 W JP2012051569 W JP 2012051569W WO 2012114816 A1 WO2012114816 A1 WO 2012114816A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
signal
phase change
target
identification device
Prior art date
Application number
PCT/JP2012/051569
Other languages
French (fr)
Japanese (ja)
Inventor
彩衣 竹元
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Publication of WO2012114816A1 publication Critical patent/WO2012114816A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/937Radar or analogous systems specially adapted for specific applications for anti-collision purposes of marine craft

Definitions

  • the present invention relates to a configuration of a signal identification device, a signal identification method, and a radar device that perform detection by transmitting and receiving electromagnetic waves.
  • the radar device receives not only the target but also the echo signal of the reflecting object including white noise and clutter.
  • the conventional radar apparatus sets a threshold value for the signal level of the echo signal and binarizes the echo signal. Then, adjacent echo signals having a signal level equal to or higher than a threshold value are connected and grouped, and when the area of the grouped echo signal area is equal to or larger than a certain value, the grouped echo signals are extracted from the target. It was identified as an echo signal.
  • Patent Document 1 relating to an ARPA (Automatic Radar / Plotting / Aids) function in a radar apparatus is based on the amount of phase change between echo signals of a plurality of points having substantially the same distance from the radar apparatus and different azimuths. Is a technique for estimating a target's risk based on the relative speed. Based on the amount of phase change between each sweep of the radar, real-time speed information of the target can be acquired, and a more accurate ARPA function is realized.
  • ARPA Automatic Radar / Plotting / Aids
  • the configuration / method of binarizing the above-described echo signal by providing a threshold value for the signal level has the following problems.
  • echo signals from multiple targets are connected, and the multiple targets are erroneously detected as one target.
  • echo signals from the sea surface reflections are connected and erroneously detected as one target.
  • a phenomenon in which the tracking target is transferred to another reflecting object (transfer) or a phenomenon in which the tracking target is lost (lost) may occur. there were.
  • the received signal was binarized by the signal level threshold, it was difficult to detect a target with a low signal level, such as a buoy or a small ship, depending on how the threshold was set. Furthermore, for a target whose signal level is around the threshold value, the detection status changes with each scan, so there are cases where the target is transferred or lost.
  • the target candidate information becomes unstable because the shape of the region to be connected changes every scan, and multiple targets are processed as one target was there.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a signal identification device that detects a target with higher accuracy than before.
  • a signal identification device is based on a transmission / reception unit that repeats transmission / reception of electromagnetic waves, and echo signals of a plurality of points that have substantially the same distance from the transmission / reception unit and different directions.
  • a phase change amount calculation unit that calculates a phase change amount between echo signals, and a connection processing unit that groups a plurality of adjacent points as the same reflector based on the phase change amount, To do.
  • connection processing unit groups the plurality of adjacent points having substantially the same phase change amount as a reflector.
  • connection processing unit groups the plurality of adjacent points whose phase change amount continuously changes with respect to the direction as the same reflector. It is characterized by.
  • a relatively large target changes its phase change amount substantially continuously on the azimuth axis of the target.
  • the signal identification device of the present invention is based on the amount of phase change between the transmitter / receiver that repeats the transmission / reception of electromagnetic waves, and the echo signals of a plurality of points that have substantially the same distance from the transmitter / receiver and different directions.
  • a relative speed calculation unit that calculates a relative speed of a reflecting object around the device itself, and a connection processing unit that groups a plurality of adjacent points as the same reflecting object based on the relative speed.
  • the relative speeds can be connected as separate reflectors.
  • no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave.
  • connection processing unit groups the plurality of adjacent points having substantially the same relative speed as the same reflector.
  • connection processing unit groups the plurality of adjacent points where the relative speed changes substantially continuously with respect to an azimuth as a same reflector. It is characterized by.
  • the distance direction component of the relative velocity changes substantially continuously on the azimuth direction axis of the target.
  • the absolute velocity of the reflector around the device is calculated based on the relative velocity calculated by the relative velocity calculation unit and the absolute velocity of the device.
  • An absolute velocity calculation unit is provided, and the connection processing unit groups a plurality of adjacent points as the same reflector based on the absolute velocity.
  • the target that is actually stationary is identified as speeding up when processing at the relative speed.
  • the distance direction component of the relative speed differs depending on the azimuth, but the distance direction component of the absolute speed is zero regardless of the azimuth, and should be in one group. Is possible.
  • the relative velocity calculation unit calculates a distance direction component of a relative velocity between the own device and a reflector around the own device based on the phase change amount.
  • the connection processing unit groups a plurality of adjacent points as the same reflector based on a distance direction component of the relative speed.
  • connection processing unit groups a plurality of points close to the surroundings in which the signal level of the echo signal is equal to or higher than a predetermined threshold as the same reflector.
  • the connection processing unit determines the plurality of grouped points as one target. It is characterized by.
  • connection processing unit when the connection processing unit has a azimuth-direction width of the grouped point range equal to or longer than a predetermined length, the plurality of grouped points are combined into one signal. It is characterized by being judged as a target.
  • the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
  • connection processing unit when the connection processing unit has a width in a distance direction of the range of the grouped points that is equal to or longer than a predetermined length, the grouped points are combined into one signal. It is characterized by being judged as a target.
  • the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
  • the grouping unit when the level of the echo signal of the representative point among the grouped points is a predetermined level or more, the grouping unit It is characterized by judging a point as one target.
  • the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
  • a target information creation unit that creates information on at least a position, a size, or a speed of a representative point among a plurality of points determined by the connection processing unit as a target. It is characterized by providing.
  • the transmission / reception unit repeats transmission / reception of electromagnetic waves via an antenna rotating in the same plane.
  • the signal identification method of the present invention repeats the transmission and reception of electromagnetic waves, calculates the amount of phase change between the echo signals based on the echo signals of a plurality of points having substantially the same distance from the device and different directions, A plurality of adjacent points are grouped and connected as the same reflector based on the amount of phase change.
  • the signal identification method of the present invention repeats transmission / reception of electromagnetic waves, and based on the amount of phase change between the echo signals at a plurality of points having substantially the same distance from the own apparatus and different azimuths among the received echo signals, A relative speed between the own apparatus and a reflecting object around the own apparatus is calculated, and a plurality of adjacent points are grouped and connected as the same reflecting object based on the relative speed.
  • a radar apparatus equipped with the signal identification device of the present invention includes a transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna, and echoes of a plurality of points having substantially the same distance from the transmission / reception unit and different directions. Based on the signal, a phase change amount calculation unit that calculates a phase change amount between the echo signals, and a plurality of adjacent points as a same reflector based on the phase change amount calculated by the phase change amount calculation unit And a display for displaying a radar image indicating the position of the target around the device.
  • a radar apparatus equipped with the signal identification device of the present invention includes a transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna, and echoes of a plurality of points having substantially the same distance from the transmission / reception unit and different directions. Based on the amount of phase change between the signals, the relative speed calculation unit that calculates the relative speed between the own device and the reflector around the device, and the proximity based on the relative speed calculated by the relative speed calculation unit A connection processing unit that groups a plurality of points as the same reflection object, and a display that displays a radar image indicating the position of a target around the device itself are provided.
  • FIG. 1 is a block diagram showing a main configuration of a marine radar apparatus having an ARPA (automatic collision prevention assistance) function according to the present embodiment.
  • ARPA automatic collision prevention assistance
  • the signal identification device 10 of the present embodiment includes a radar antenna 1, a transmission / reception unit 2, an A / D conversion unit 3, a target candidate detection unit 4, a target selection unit 5, and a motion estimation unit 6. .
  • the transmission / reception unit 2 is configured to be able to transmit an electromagnetic wave signal having a sharp directivity via the radar antenna 1 and to receive an echo signal from a target around the device itself.
  • the radar antenna 1 rotates in the same plane with a predetermined rotation period, and the transmission / reception unit 2 is configured to repeatedly transmit and receive the signal.
  • the transmission / reception unit 2 is not limited to the one having a rotary antenna.
  • it may be configured by a system (phased array radar) that can shake a beam with the antenna fixed.
  • the time taken for the echo signal to return after the signal identification device 10 transmits the electromagnetic wave signal is proportional to the distance from the radar antenna 1 to the target. Therefore, the position of the target with the radar antenna 1 as the center is determined by the time from the transmission of the electromagnetic wave signal to the reception of the echo signal and the azimuth angle of the antenna when the electromagnetic wave signal is transmitted and received. Can be obtained in a table.
  • the transmission / reception unit 2 receives unnecessary echo signals from sea surface reflections, interference signals, and the like in addition to the echo signals from the target. Therefore, the echo signal from the target received by the transmission / reception unit 2, the unnecessary echo signal from the sea surface reflection, the interference signal, and the like are collectively referred to as “reception signal”.
  • the received signal includes white noise.
  • the transmission / reception unit 2 performs quadrature detection (IQ phase detection) in order to acquire information on the amplitude and phase of the received signal.
  • IQ phase detection quadrature detection
  • a complex signal composed of an I signal and a Q signal can be obtained. Details of this quadrature detection will be described later.
  • the A / D conversion unit 3 converts the analog I signal and Q signal output from the transmission / reception unit 2 into multi-bit digital data (IQ reception data) and outputs the digital data to the target candidate detection unit 4.
  • the received signal is sampled by the transmitter / receiver 2 so that the digital signal The I signal and the Q signal may be directly generated. In this case, the A / D conversion unit 3 can be omitted.
  • the target candidate detection unit 4 detects an echo signal from the target from the received signal, and generates information such as the position, size, or speed of the target.
  • the target candidate detection unit 4 includes a phase detection unit 41, a connection processing unit 42, and a target candidate information creation unit 43.
  • the phase detection unit 41 includes a sweep memory 411 and a phase change amount calculation unit 412.
  • the phase detection unit calculates the amount of phase change from a point where the distance from the radar antenna 1 is approximately the same and has a different azimuth at each sampling point of the received signal, and outputs the phase change amount information to the connection processing unit 42.
  • the sweep memory 411 is a so-called buffer, and stores IQ signal reception data of a necessary number of sweeps in real time.
  • “sweep” refers to a series of operations from transmission of a signal to transmission of the next signal.
  • the phase change amount calculation unit 412 calculates a phase change amount between echo signals at a plurality of points that are substantially the same distance from the radar antenna 1 and have different azimuths among the signals received by the transmission / reception unit 2. A specific calculation method will be described later.
  • connection processing unit 42 Based on the phase change amount calculated by the phase change calculation unit 412, the connection processing unit 42 connects (groups) the equiphase change amount regions and identifies the connected range as a target as shown in FIG. 3. To do.
  • FIG. 3 shows sampling points of received signals received for each sweep, centering on the own ship 910 equipped with the radar antenna 1.
  • the target 900, the target 901, and the reflector 902 are arranged as shown in FIG. 3, conventionally, the signal level of the echo signal of the target 900 is lower than the threshold value, or the target 901 and the reflector 902 There is a problem that the target cannot be detected when the areas are overlapped.
  • the phase change amount calculated by the phase change amount calculation unit is approximately equal, and adjacent points are grouped to identify the reflecting object in the case of the above-described problem. Is possible.
  • the signal identification device of the present invention can identify the ship by grouping in the equiphase change amount area. it can.
  • the target 900 when it is desired to identify whether the target 900 is a sea surface reflection or a target, it is possible to distinguish the area of the identified reflection object from the sea surface reflection and the target according to various predetermined conditions. For example, within the equiphase change amount area, when the size of the area is equal to or greater than the threshold, the equiphase area is connected as a single target so that the object can be detected from echo signals including clutter and white noise. It is possible to distinguish and identify only the mark. Specifically, as an example of a means for determining an equal phase change amount region, the phase change amount is divided into levels within a desired phase change amount range, and a phase change amount region of the same level is set as an equal phase change amount region.
  • the threshold value of the size of the equiphase change amount region is determined by the echo signal group belonging to the group, the group distance width, and the group azimuth width. Note that the threshold value varies depending on the antenna rotation speed, transmission repetition frequency, transmission pulse, beam width, and desired target conditions (such as whether to extract only large targets).
  • the echo signal concatenation process based on the phase change amount may not be the equiphase change region.
  • the phase change amount changes substantially continuously in the azimuth direction within the region even if the target is the same.
  • the target candidate information creation unit 43 creates information on the position, size, and current phase change amount of the target identified by the connection processing unit 42.
  • the created target candidate information is used in subsequent processing in the radar apparatus.
  • the target candidate information creation unit 43 creates information on the position, size, and current phase change amount of the target identified by the connection processing unit 42.
  • the created target candidate information is used by the target selection unit 5 and the motion estimation unit 6 in the subsequent stage.
  • Carrier of the electromagnetic wave signal transmitted from the radar antenna 1 is assumed to be a cosine wave of frequency f 0.
  • the reception signal S (t) is expressed by (Equation 1). Can do.
  • ⁇ (t) is the phase of the carrier wave of the received echo with respect to the carrier wave of the electromagnetic wave signal (hereinafter simply referred to as phase).
  • phase is the phase of the carrier wave of the received echo with respect to the carrier wave of the electromagnetic wave signal (hereinafter simply referred to as phase).
  • the received signal S (t) is branched into two systems after being received by the transmission / reception unit 2.
  • a signal expressed by (Equation 2) is obtained by integrating and synthesizing one received signal S (t) with a reference signal 2 cos (2 ⁇ f 0 t) having the same frequency and the same phase as the carrier wave of the electromagnetic wave signal. . Further, the reference signal ⁇ 2 sin (2 ⁇ f 0 t), whose phase is shifted by 90 ° at the same frequency as the carrier wave of the electromagnetic wave signal, is integrated and synthesized on the other side of the branch of the reception signal S (t). 5) is obtained. The first term (double frequency component) on the right side of (Expression 2) and (Expression 3) is removed by a low-pass filter (LPF). As a result, the I signal shown in (Expression 4) and the Q signal shown in (Expression 5) are output from the transmission / reception unit 2.
  • LPF low-pass filter
  • phase change amount calculation unit 412 Next, a method of calculating the phase change amount calculated by the phase change amount calculation unit 412 will be described.
  • the phase change amount is calculated by applying the autocorrelation method to the reception signal digitized by the A / D conversion unit 3 and the reception signal stored in the sweep memory. Assume that there is an echo whose phase change amount is ⁇ .
  • the distance number corresponding to the distance of this target is n 0
  • the azimuth number of the first direction in which an echo from this target is received is k 0 (see FIG. 3).
  • M pieces of adjacent received data received from points having substantially the same distance from the radar antenna 1 are respectively represented as S [k 0 , n 0 ], S [k 0 +1, n 0 ], S [k 0 +2].
  • the received data z [m] can be expressed by (Equation 6). Further, the following equation holds for the phase change amount ⁇ per sweep.
  • arg [•] indicates a complex argument.
  • a method of estimating the phase change amount ⁇ from the received data z [m] using (Equation 9) is called an autocorrelation method.
  • FIG. 5 is a block diagram showing a main configuration of a marine radar apparatus having an ARPA (automatic collision prevention assistance) function according to the present embodiment.
  • ARPA automatic collision prevention assistance
  • the overall configuration of the signal identification device 10 of the present embodiment is the same as the overall configuration of the radar device described in ⁇ Embodiment 1> except that the own ship speed and own ship direction are input to the target candidate detection unit. I will omit it.
  • “velocity” indicates a velocity vector of a distance direction component.
  • the target candidate detection unit 4 includes a speed calculation unit 44, a connection processing unit 42, and a target candidate information creation unit 43.
  • the speed calculation unit 44 includes a sweep memory 411, a relative speed calculation unit 441, and an absolute speed calculation unit 442.
  • the velocity calculation unit 44 calculates the absolute velocity of the reflector based on the amount of phase change from a point at which the distance from the radar antenna 1 is approximately the same and has a different azimuth at each sampling point of the received signal, and the absolute velocity of the reflector is calculated. Information is output to the connection processing unit 42.
  • the sweep memory 411 is a so-called buffer, and stores IQ signal reception data of a necessary number of sweeps in real time.
  • “sweep” refers to a series of operations from transmission of a signal to transmission of the next signal.
  • the relative velocity calculation unit 441 is based on the amount of phase change between the echo signals of a plurality of points having substantially the same distance from the radar antenna 1 and different directions from the signals received by the transmission / reception unit 2. The relative speed of is calculated. A specific calculation method will be described later.
  • the absolute speed calculation unit 442 uses the radar antenna 1 based on the relative speed calculated by the relative speed calculation unit 441, the ship speed of the ship acquired from a GPS receiver, and the heading obtained from an orientation sensor. The absolute velocity of the signal from the point where the distances are substantially equal is calculated.
  • connection processing unit 42 connects (groups) the equal velocity regions based on the absolute velocity of the reflection object calculated by the velocity calculation unit 44, and identifies the connected range as a target. .
  • FIG. 3 shows sampling points of received signals received for each sweep with the radar antenna 1 as the center.
  • the target 900, the target 901, and the reflective object 902 are arranged as shown in FIG. 3, conventionally, the signal level of the echo signal of the target 900 is smaller than the threshold value, or the target 901 There is a problem that the target cannot be detected when the areas are overlapped like the reflective object 902.
  • the adjacent points whose absolute velocities calculated by the velocity calculation unit 44 are substantially equal are grouped to identify even the reflecting object in the case of the aforementioned problem. Is possible.
  • the signal identification device of the present invention can be used to group and accurately detect in the uniform velocity region. Further, even in the case where the ship is in the sea surface reflection area, such as the target 901 and the reflection object 902, the signal identification device of the present invention can identify the ship by grouping in the uniform speed area.
  • the target 900 is a sea surface reflection or a target
  • the velocity is classified into levels within a desired velocity range, and a region having the same level of velocity is defined as the uniform velocity region.
  • the threshold value of the uniform velocity region size is determined by the echo signal group belonging to the group, the group distance width, and the group azimuth width. Note that the threshold value varies depending on the antenna rotation speed, transmission repetition frequency, transmission pulse, beam width, and desired target conditions (such as whether to extract only large targets).
  • the concatenation process of the echo signals based on the speed may not be in the constant speed region.
  • the speed of the distance direction component with respect to the ship changes substantially continuously in the azimuth direction within that region.
  • echoes within a certain speed range may be connected. At this time, in the case of a target whose speed is near the turn-back speed, an echo having a speed close to the turn-back is taken into consideration.
  • V t + V ⁇ > V max When selecting (V max return velocity) and a Vt couples The speed range is V t ⁇ V ⁇ ⁇ V ⁇ V max or ⁇ V max ⁇ V ⁇ ⁇ 2 V max + V t + V ⁇ .
  • the target candidate information creation unit 43 creates information regarding the position, size, and current speed of the target identified by the connection processing unit 42.
  • the created target candidate information is used in subsequent processing in the radar apparatus.
  • the target candidate information creation unit 43 creates information regarding the position, size, and current speed of the target identified by the connection processing unit 42.
  • the created target candidate information is used by the target selection unit 5 and the motion estimation unit 6 in the subsequent stage.
  • the relative velocity is calculated by applying the autocorrelation method to the reception signal digitized by the A / D conversion unit 3 and the reception signal stored in the sweep memory.
  • the distance number corresponding to the distance of this target is n 0
  • the azimuth number of the first direction in which an echo from this target is received is k 0 (see FIG. 3).
  • M pieces of adjacent received data received from points having substantially the same distance from the radar antenna 1 are respectively represented as S [k 0 , n 0 ], S [k 0 +1, n 0 ], S [k 0 +2].
  • the received data z [m] can be expressed by (Equation 6).
  • the round-trip propagation distance from the radar antenna 1 to the target is reduced by 2 vT during the transmission period T when the target approaches at a relative speed v. Therefore, assuming that the center frequency of the transmission signal is f 0 and the speed of light is c, the phase of the reception data z [m + 1] is a phase change per sweep represented by the following equation with respect to the phase of the reception data z [m]. Increases by the amount ⁇ .
  • this equation is solved for the relative velocity v, the following equation is obtained.
  • Equation 7 A method of estimating the relative velocity v from the received data z [m] using (Equation 12) is called an autocorrelation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

[Problem] For conventional radio apparatuses, when a plurality of targets are close to one another or in a situation of multiple sea clutters, the echo signals from the plurality of reflecting objects are unified, with the result that the plurality of reflecting objects may be erroneously detected as a single target. Especially, in an ARPA apparatus, if such an erroneous detection occurs, there may occur phenomenon of "transfer" in which a tracked object transfers to another reflecting object or phenomenon of "loss" in which the tracked object is lost. [Solution] A signal identifying apparatus (10) comprises: a transmitting/receiving unit (2) that repeats the transmission/reception of electromagnetic waves; a phase variation amount calculating unit (412) that calculates, on the basis of echo signals from a plurality of points having approximately equal distances and different azimuths from the transmitting/receiving unit (2), the phase variation amount between the echo signals; and a unifying unit (42) that groups, on the basis of the phase variation amount, a plurality of nearby points as the same single reflecting object. In this way, there is provided a signal identifying apparatus (10) that can solve the foregoing problem and that can detect targets with higher precisions than the conventional art.

Description

信号識別装置、信号識別方法、およびレーダ装置Signal identification device, signal identification method, and radar device
 本発明は、電磁波の送受信により探知を行う信号識別装置、信号識別方法、およびレーダ装置の構成に関する。 The present invention relates to a configuration of a signal identification device, a signal identification method, and a radar device that perform detection by transmitting and receiving electromagnetic waves.
 レーダ装置は、物標だけでなく、ホワイトノイズやクラッタを含んだ反射物のエコー信号を受信する。この受信したエコー信号から物標を識別するため、従来のレーダ装置は、エコー信号の信号レベルに閾値を設け、エコー信号を2値化する。そして、信号レベルが閾値以上のエコー信号のうち、近接するものを連結してグループ化し、グループ化されたエコー信号の領域の面積が一定以上の場合、このグループ化されたエコー信号は物標からのエコー信号と識別していた。 The radar device receives not only the target but also the echo signal of the reflecting object including white noise and clutter. In order to identify a target from the received echo signal, the conventional radar apparatus sets a threshold value for the signal level of the echo signal and binarizes the echo signal. Then, adjacent echo signals having a signal level equal to or higher than a threshold value are connected and grouped, and when the area of the grouped echo signal area is equal to or larger than a certain value, the grouped echo signals are extracted from the target. It was identified as an echo signal.
 また、レーダ装置におけるARPA(Automatic Radar Plotting Aids)機能に関する特許文献1は、レーダ装置からの距離が略等しく方位が異なる複数の点のエコー信号間の位相変化量に基づいて、自装置と物標との相対速度を推定し、前記相対速度に基づいて、物標の危険度を求める技術である。レーダのスイープ間毎の位相変化量に基づくことで、物標のリアルタイムな速度情報を取得することができ、より精度の高いARPA機能を実現する。 Patent Document 1 relating to an ARPA (Automatic Radar / Plotting / Aids) function in a radar apparatus is based on the amount of phase change between echo signals of a plurality of points having substantially the same distance from the radar apparatus and different azimuths. Is a technique for estimating a target's risk based on the relative speed. Based on the amount of phase change between each sweep of the radar, real-time speed information of the target can be acquired, and a more accurate ARPA function is realized.
特開2010-266292号公報JP 2010-266292 A
 しかしながら、前述のエコー信号を信号レベルに閾値を設けて2値化する構成・手法では、次のような問題がある。 However, the configuration / method of binarizing the above-described echo signal by providing a threshold value for the signal level has the following problems.
 複数の物標が近接している場合に、複数の物標からのエコー信号を連結し、その複数の物標を一つの物標として誤検出してしまう。また、海面反射が多いような状況では、海面反射からのエコー信号を連結し、一つの物標として誤検出してしまう。特に、ARPA装置において、このような誤検出が起こった際には、追尾対象が他の反射物に乗移ってしまう現象(乗移り)や追尾対象を見失ってしまう現象(ロスト)を生じることがあった。 When multiple targets are close together, echo signals from multiple targets are connected, and the multiple targets are erroneously detected as one target. In a situation where there are many sea surface reflections, echo signals from the sea surface reflections are connected and erroneously detected as one target. In particular, in the ARPA device, when such an erroneous detection occurs, a phenomenon in which the tracking target is transferred to another reflecting object (transfer) or a phenomenon in which the tracking target is lost (lost) may occur. there were.
 また、受信信号を信号レベルの閾値によって2値化していたため、閾値の設け方によっては、例えばブイや小さな船舶のような信号レベルの小さい物標を検出することが困難であった。さらに信号レベルが閾値前後の物標については、スキャン毎に検出状況が変化するため乗移りやロストしてしまうことがあった。 Also, since the received signal was binarized by the signal level threshold, it was difficult to detect a target with a low signal level, such as a buoy or a small ship, depending on how the threshold was set. Furthermore, for a target whose signal level is around the threshold value, the detection status changes with each scan, so there are cases where the target is transferred or lost.
 さらに、エコー信号を連結する処理において、連結処理対象の領域の形状がスキャン毎に変化するためターゲット候補情報が不安定になることや、複数の物標を一つのターゲットとして処理してしまう問題点があった。 Furthermore, in the process of connecting echo signals, the target candidate information becomes unstable because the shape of the region to be connected changes every scan, and multiple targets are processed as one target was there.
 本発明は、かかる問題点に鑑みてなされたものであり、従来よりも高い精度で物標を検出する信号識別装置を提供することを目的としている。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a signal identification device that detects a target with higher accuracy than before.
課題を解決するための手段及び効果Means and effects for solving the problems
 前記課題を解決するために、本発明に記載の信号識別装置は、電磁波の送受信を繰り返す送受信部と、前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、該エコー信号間の位相変化量を算出する位相変化量算出部と、前記位相変化量に基づいて、近接する複数の点を同一の反射物としてグループ化する連結処理部と、を備えることを特徴とする。 In order to solve the above problems, a signal identification device according to the present invention is based on a transmission / reception unit that repeats transmission / reception of electromagnetic waves, and echo signals of a plurality of points that have substantially the same distance from the transmission / reception unit and different directions. A phase change amount calculation unit that calculates a phase change amount between echo signals, and a connection processing unit that groups a plurality of adjacent points as the same reflector based on the phase change amount, To do.
 このような構成により、複数の反射物からのエコーが重なっていて、位相変化量が異なっている場合に、位相変化量に基づいて、別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 With such a configuration, when echoes from a plurality of reflectors overlap and the amount of phase change is different, they can be connected as separate reflectors based on the amount of phase change. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Furthermore, it is also possible to recognize even a weak signal reflector whose level of the echo signal could not be detected in the prior art.
 また、前述に記載の信号識別装置であって、前記連結処理部は、前記位相変化量が略等しい前記近接する複数の点を反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the connection processing unit groups the plurality of adjacent points having substantially the same phase change amount as a reflector.
 このような構成により、従来検出することができなかったエコー信号のレベルが閾値以下で弱い反射物でも等位相変化量領域を物標等の反射物とすることで識別することができる。 With such a configuration, it is possible to identify even a reflective object whose level of an echo signal that has not been detected in the past is weaker than a threshold value by making the equiphase change amount region a reflective object such as a target.
 また、前述に記載の信号識別装置であって、前記連結処理部は、位相変化量が方位に対して連続的に変化している前記近接する複数の点を同一の反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the connection processing unit groups the plurality of adjacent points whose phase change amount continuously changes with respect to the direction as the same reflector. It is characterized by.
 このような構成により、等位相領域だけでは、対応できない比較的大きな物標等の反射物のエコー信号でも同一物標としてグループ化することができる。比較的大きい物標は物標の方位方向軸で略連続的に位相変化量が変化する。 With such a configuration, it is possible to group echo signals of reflecting objects such as relatively large targets that cannot be handled only by the equiphase region as the same target. A relatively large target changes its phase change amount substantially continuously on the azimuth axis of the target.
 また、本発明の信号識別装置は、電磁波の送受信を繰り返す送受信部と、前記送受信部からの距離が略等しく方位の異なる複数の点のエコー信号間の位相変化量に基づいて、自装置と該自装置周辺に在る反射物の相対速度を算出する相対速度算出部と、前記相対速度に基づいて、近接する複数の点を同一の反射物としてグループ化する連結処理部と、を備えることを特徴とする。 Further, the signal identification device of the present invention is based on the amount of phase change between the transmitter / receiver that repeats the transmission / reception of electromagnetic waves, and the echo signals of a plurality of points that have substantially the same distance from the transmitter / receiver and different directions. A relative speed calculation unit that calculates a relative speed of a reflecting object around the device itself, and a connection processing unit that groups a plurality of adjacent points as the same reflecting object based on the relative speed. Features.
 このような構成により、複数の反射物のエコーが重なっていて相対速度が異なっている場合、相対速度に基づいて、別々の反射物のエコーが重なっていて相対速度が異なっている場合、相対速度に基づいて別々の反射物として、連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来、検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 With such a configuration, when the echoes of multiple reflectors overlap and the relative speeds are different, based on the relative speeds, when the echoes of different reflectors overlap and the relative speeds are different, the relative speeds Can be connected as separate reflectors. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Further, it is possible to recognize even a weak reflected signal whose level of an echo signal has not been detected in the past and whose threshold value is lower than a threshold value.
 また、前述に記載の信号識別装置であって、前記連結処理部は、前記相対速度が略等しい前記近接する複数の点を同一反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the connection processing unit groups the plurality of adjacent points having substantially the same relative speed as the same reflector.
 このような構成により、従来検出することができなかったエコー信号のレベルが閾値以下で弱い反射物でも等位相変化領域を物標などの反射物とすることで識別することができる。 With such a configuration, it is possible to identify even a reflective object whose level of an echo signal that has not been detected in the past is weaker than a threshold value by making the equiphase change region a reflective object such as a target.
 また、前述に記載の信号識別装置であって、前記連結処理部は、前記相対速度が方位に対して略連続的に変化している前記近接する複数の点を同一反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the connection processing unit groups the plurality of adjacent points where the relative speed changes substantially continuously with respect to an azimuth as a same reflector. It is characterized by.
 このような構成により、等速度領域の連結だけでは対応できない、比較的大きな物標等の反射物のエコー信号でも同一物標としてグループ化することができる。比較的大きい物標は物標の方位方向軸で略連続的に相対速度の距離方向成分が変化する。 With this configuration, it is possible to group even the echo signals of relatively large reflective objects such as targets, which cannot be dealt with only by connecting the constant velocity regions, as the same target. For a relatively large target, the distance direction component of the relative velocity changes substantially continuously on the azimuth direction axis of the target.
 また前述に記載の信号識別装置であって、前記相対速度算出部が算出した前記相対速度と、前記自装置の絶対速度に基づいて、該自装置周辺に在る反射物の絶対速度を算出する絶対速度算出部を備え、前記連結処理部は、前記絶対速度に基づいて、近接する複数の点を同一の反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the absolute velocity of the reflector around the device is calculated based on the relative velocity calculated by the relative velocity calculation unit and the absolute velocity of the device. An absolute velocity calculation unit is provided, and the connection processing unit groups a plurality of adjacent points as the same reflector based on the absolute velocity.
 このような構成により、自装置の自船速が時間毎に変化している場合、相対速度で処理を行う際に実際に静止している物標が速度を出しているように識別されてしまう現象を防ぐ。また、方位方向に広がりをもつ静止した物標、例えば陸地の場合、相対速度の距離方向成分は方位により異なるが、絶対速度の距離方向成分は方位に依らずゼロとなり、1つのグループとすることが可能である。 With this configuration, when the ship's own ship speed changes every hour, the target that is actually stationary is identified as speeding up when processing at the relative speed. Prevent the phenomenon. In the case of a stationary target having a spread in the azimuth direction, for example, land, the distance direction component of the relative speed differs depending on the azimuth, but the distance direction component of the absolute speed is zero regardless of the azimuth, and should be in one group. Is possible.
 また、前述に記載の信号識別装置であって、前記相対速度算出部は、前記位相変化量に基づいて、自装置と該自装置周辺に在る反射物の相対速度の距離方向成分を算出し、前記連結処理部は、前記相対速度の距離方向成分に基づいて、近接する複数の点を同一の反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the relative velocity calculation unit calculates a distance direction component of a relative velocity between the own device and a reflector around the own device based on the phase change amount. The connection processing unit groups a plurality of adjacent points as the same reflector based on a distance direction component of the relative speed.
 このような構成により、複数の反射物のエコーが重なっていて相対速度の距離方向成分が異なっている場合、相対速度の距離方向成分に基づいて別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来、検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 With such a configuration, when echoes of a plurality of reflectors overlap and the distance direction components of the relative speed are different, they can be connected as separate reflectors based on the distance direction component of the relative speed. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Further, it is possible to recognize even a weak reflected signal whose level of an echo signal has not been detected in the past and whose threshold value is lower than a threshold value.
 また、リアルタイムな物標の自船への接近速度に基づいて連結されるため、より高精度なARPA機能を実現する。 Also, since it is connected based on the approach speed of the target to the ship in real time, a more accurate ARPA function is realized.
 また、前述に記載の信号識別装置であって、前記連結処理部は、前記エコー信号の信号レベルが所定の閾値以上の前記周囲に近接する複数の点を同一反射物としてグループ化することを特徴とする。 Further, in the signal identification device described above, the connection processing unit groups a plurality of points close to the surroundings in which the signal level of the echo signal is equal to or higher than a predetermined threshold as the same reflector. And
 このような構成により、明らかに物標ではないホワイトノイズ等を除去した連結処理を行うことができる。 With such a configuration, it is possible to perform a connection process in which white noise that is clearly not a target is removed.
 また、前述に記載の信号識別装置であって、前記連結処理部が、グループ化した点の範囲が所定以上の大きさのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする。 Further, in the signal identification device described above, when the range of the grouped points is a predetermined size or more, the connection processing unit determines the plurality of grouped points as one target. It is characterized by.
 このような構成により、位相変化量、及び位相変化量より算出した速度に基づいて連結した反射物の中で、明らかに物標でない海面反射ノイズなどの微細な領域はキャンセルし、物標のみを識別することができる。 With such a configuration, among the reflectors connected based on the phase change amount and the speed calculated from the phase change amount, a minute area such as sea surface reflection noise that is clearly not a target is canceled, and only the target is Can be identified.
 また、前述に記載の信号識別装置であって、前記連結処理部が、前記グループ化した点の範囲の方位方向の幅が所定以上の長さのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする。 Further, in the signal identification device described above, when the connection processing unit has a azimuth-direction width of the grouped point range equal to or longer than a predetermined length, the plurality of grouped points are combined into one signal. It is characterized by being judged as a target.
 このような構成により、位相変化量及び位相変化量により算出した速度に基づいて連結した反射物の中で、明らかに物標でない海面反射ノイズなどの微細な領域はキャンセルし、物標のみを識別することができる。 With such a configuration, among the reflectors connected based on the phase change amount and the velocity calculated by the phase change amount, the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
 また、前述に記載の信号識別装置であって、前記連結処理部が、前記グループ化した点の範囲の距離方向の幅が所定以上の長さのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする。 Further, in the signal identification device described above, when the connection processing unit has a width in a distance direction of the range of the grouped points that is equal to or longer than a predetermined length, the grouped points are combined into one signal. It is characterized by being judged as a target.
 このような構成により、位相変化量及び位相変化量により算出した速度に基づいて連結した反射物の中で、明らかに物標でない海面反射ノイズなどの微細な領域はキャンセルし、物標のみを識別することができる。 With such a configuration, among the reflectors connected based on the phase change amount and the velocity calculated by the phase change amount, the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
 また、前述に記載の信号識別装置であって、前記連結処理部が、前記グループ化した点のうち代表点の、前記エコー信号のレベルが所定以上の大きさのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする。 Further, in the signal identification device described above, when the level of the echo signal of the representative point among the grouped points is a predetermined level or more, the grouping unit It is characterized by judging a point as one target.
 このような構成により、位相変化量及び位相変化量により算出した速度に基づいて連結した反射物の中で、明らかに物標でない海面反射ノイズなどの微細な領域はキャンセルし、物標のみを識別することができる。 With such a configuration, among the reflectors connected based on the phase change amount and the velocity calculated by the phase change amount, the minute area such as sea surface reflection noise that is clearly not the target is canceled, and only the target is identified. can do.
 また、前述に記載の信号識別装置であって、前記連結処理部が物標と判断した複数の点のうち代表点の、少なくとも位置、大きさ、又は速度に関する情報を作成する物標情報作成部を備えることを特徴とする。 Further, in the signal identification device described above, a target information creation unit that creates information on at least a position, a size, or a speed of a representative point among a plurality of points determined by the connection processing unit as a target. It is characterized by providing.
 また、前述に記載の信号識別装置であって、前記送受信部は、同一平面内で回転するアンテナを介して、電磁波の送受信を繰り返すことを特徴とする。 Further, in the signal identification device described above, the transmission / reception unit repeats transmission / reception of electromagnetic waves via an antenna rotating in the same plane.
 このような構成により、現在一般的に広く普及している回転式のアンテナを備えたレーダ装置においても本発明の信号識別装置を適用することが可能である。 With such a configuration, it is possible to apply the signal identification device of the present invention to a radar device equipped with a rotary antenna that is currently widely used.
 また、本発明の信号識別方法は、電磁波の送受信を繰り返し、自装置からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、該エコー信号間の位相変化量を算出し、前記位相変化量に基づいて、近接する複数の点を同一の反射物としてグループ化して連結することを特徴とする。 Further, the signal identification method of the present invention repeats the transmission and reception of electromagnetic waves, calculates the amount of phase change between the echo signals based on the echo signals of a plurality of points having substantially the same distance from the device and different directions, A plurality of adjacent points are grouped and connected as the same reflector based on the amount of phase change.
 このような方法により、複数の反射物のエコーが重なっていて位相変化量が異なっている場合、位相変化量に基づいて、別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 By such a method, when echoes of a plurality of reflectors overlap and the amount of phase change is different, they can be connected as separate reflectors based on the amount of phase change. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Furthermore, it is also possible to recognize even a weak signal reflector whose level of the echo signal could not be detected in the prior art.
 また、本発明の信号識別方法は、電磁波の送受信を繰り返し、受信したエコー信号のうち、自装置からの距離が略等しく方位が異なる複数の点の前記エコー信号間の位相変化量に基づいて、自装置と前記自装置周辺に在る反射物との相対速度を算出し、前記相対速度に基づいて、近接する複数の点を同一反射物としてグループ化して連結することを特徴とする。 Further, the signal identification method of the present invention repeats transmission / reception of electromagnetic waves, and based on the amount of phase change between the echo signals at a plurality of points having substantially the same distance from the own apparatus and different azimuths among the received echo signals, A relative speed between the own apparatus and a reflecting object around the own apparatus is calculated, and a plurality of adjacent points are grouped and connected as the same reflecting object based on the relative speed.
 このような方法により、複数の反射物のエコーが重なっていて位相変化量が異なっている場合、位相変化量に基づいて、別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 By such a method, when echoes of a plurality of reflectors overlap and the amount of phase change is different, they can be connected as separate reflectors based on the amount of phase change. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Furthermore, it is also possible to recognize even a weak signal reflector whose level of the echo signal could not be detected in the prior art.
 また、本発明の信号識別装置を備えたレーダ装置は、アンテナを介して電磁波の送受信を繰り返すように構成された送受信部と、前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、前記エコー信号間の位相変化量を算出する位相変化量算出部と、前記位相変化量算出部が算出した位相変化量に基づいて、近接する複数の点を同一反射物としてグループ化する連結処理部と、自装置周辺の物標の位置を示すレーダ映像を表示する表示器と、を備えることを特徴とする。 In addition, a radar apparatus equipped with the signal identification device of the present invention includes a transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna, and echoes of a plurality of points having substantially the same distance from the transmission / reception unit and different directions. Based on the signal, a phase change amount calculation unit that calculates a phase change amount between the echo signals, and a plurality of adjacent points as a same reflector based on the phase change amount calculated by the phase change amount calculation unit And a display for displaying a radar image indicating the position of the target around the device.
 このような構成により、複数の反射物のエコーが重なっていて位相変化量が異なっている場合、位相変化量に基づいて、別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 With such a configuration, when echoes of a plurality of reflectors overlap and the amount of phase change is different, they can be connected as separate reflectors based on the amount of phase change. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Furthermore, it is also possible to recognize even a weak signal reflector whose level of the echo signal could not be detected in the prior art.
 また、本発明の信号識別装置を備えたレーダ装置は、アンテナを介して電磁波の送受信を繰り返すように構成された送受信部と、前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号間の位相変化量に基づいて、自装置と自装置周辺に在る反射物との相対速度を算出する相対速度算出部と、前記相対速度算出部が算出した相対速度に基づいて、近接する複数の点を同一反射物としてグループ化する連結処理部と、自装置周辺の物標の位置を示すレーダ映像を表示する表示器と、を備えることを特徴とする。 In addition, a radar apparatus equipped with the signal identification device of the present invention includes a transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna, and echoes of a plurality of points having substantially the same distance from the transmission / reception unit and different directions. Based on the amount of phase change between the signals, the relative speed calculation unit that calculates the relative speed between the own device and the reflector around the device, and the proximity based on the relative speed calculated by the relative speed calculation unit A connection processing unit that groups a plurality of points as the same reflection object, and a display that displays a radar image indicating the position of a target around the device itself are provided.
 このような構成により、複数の反射物のエコーが重なっていて相対速度が異なっている場合、相対速度に基づいて、別々の反射物として連結することができる。その結果、すれ違い時、海面反射の多い時や引き波が生じている時などで、乗移りやロストを発生しない。さらに、従来、検出することができなかったエコー信号のレベルが閾値以下の弱い信号の反射物でも認識することが可能である。 With such a configuration, when echoes of a plurality of reflectors overlap and the relative velocities are different, they can be connected as separate reflectors based on the relative velocities. As a result, no transfer or lost occurs when passing each other, when there is a lot of sea surface reflection, or when there is a pulling wave. Further, it is possible to recognize even a weak reflected signal whose level of an echo signal has not been detected in the past and whose threshold value is lower than a threshold value.
本発明の実施の形態1における信号識別装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the signal identification device in Embodiment 1 of this invention. 信号識別装置におけるターゲット候補検出部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the target candidate detection part in a signal identification device. 位相変化情報又は速度情報に基づいた連結処理の一例を示す図。The figure which shows an example of the connection process based on phase change information or speed information. 直交検波を説明する図Diagram explaining quadrature detection 本発明の実施の形態2における信号識別装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the signal identification device in Embodiment 2 of this invention. ターゲット候補検出部における速度算出部の構成の一例を示すブロック図。The block diagram which shows an example of a structure of the speed calculation part in a target candidate detection part. 速度の折り返しを説明する図。The figure explaining the return of speed.
<実施形態1>
 以下、図面を参照して本発明の実施形態について説明する。図1は、本実施に係るARPA(自動衝突防止援助)機能を有した船舶用レーダ装置の主要構成を示すブロック図である。なお、本実施形態ではARPA機能を有した船舶用のレーダ装置として説明するが、本発明に係るレーダ装置の用途がARPA機能に限られるものではない。
<Embodiment 1>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a main configuration of a marine radar apparatus having an ARPA (automatic collision prevention assistance) function according to the present embodiment. Although the present embodiment will be described as a marine radar apparatus having an ARPA function, the application of the radar apparatus according to the present invention is not limited to the ARPA function.
 本実施形態の信号識別装置10は、図1に示すように、レーダアンテナ1、送受信部2、A/D変換部3、ターゲット候補検出部4、ターゲット選別部5、および運動推定部6を備える。 As shown in FIG. 1, the signal identification device 10 of the present embodiment includes a radar antenna 1, a transmission / reception unit 2, an A / D conversion unit 3, a target candidate detection unit 4, a target selection unit 5, and a motion estimation unit 6. .
 送受信部2は、レーダアンテナ1を介して、鋭い指向性を持った電磁波信号を送信可能であるとともに、自装置周辺に在る物標からのエコー信号を受信するように構成されている。また、レーダアンテナ1は、所定の回転周期で同一平面内を回転しており、送受信部2は前記信号の送受信を繰り返し行うように構成されている。 The transmission / reception unit 2 is configured to be able to transmit an electromagnetic wave signal having a sharp directivity via the radar antenna 1 and to receive an echo signal from a target around the device itself. The radar antenna 1 rotates in the same plane with a predetermined rotation period, and the transmission / reception unit 2 is configured to repeatedly transmit and receive the signal.
 なお、送受信部2は回転式アンテナを備えるものに限られない。例えば、アンテナを固定した状態でビームを振ることが可能なシステム(フェイズドアレイレーダ)などで構成されてもよい。 In addition, the transmission / reception unit 2 is not limited to the one having a rotary antenna. For example, it may be configured by a system (phased array radar) that can shake a beam with the antenna fixed.
 ここで、信号識別装置10が電磁波信号を送信してからエコー信号が返ってくるまでにかかる時間は、レーダアンテナ1から物標までの距離に比例する。従って、電磁波信号を送信してからエコー信号を受信するまでの時間と、当該電磁波信号の送受信を行ったときのアンテナの方位角とにより、物標の位置をレーダアンテナ1を中心とした極座表で取得することができる。 Here, the time taken for the echo signal to return after the signal identification device 10 transmits the electromagnetic wave signal is proportional to the distance from the radar antenna 1 to the target. Therefore, the position of the target with the radar antenna 1 as the center is determined by the time from the transmission of the electromagnetic wave signal to the reception of the echo signal and the azimuth angle of the antenna when the electromagnetic wave signal is transmitted and received. Can be obtained in a table.
 ここで、送受信部2は、物標からのエコー信号以外にも海面反射などからの不要なエコー信号や、干渉信号などを受信する。そこで、送受信部2が受信した物標からのエコー信号、海面反射などからの不要なエコー信号、および干渉信号などは、「受信信号」と総称する。なお、受信信号にはホワイトノイズも含まれる。 Here, the transmission / reception unit 2 receives unnecessary echo signals from sea surface reflections, interference signals, and the like in addition to the echo signals from the target. Therefore, the echo signal from the target received by the transmission / reception unit 2, the unnecessary echo signal from the sea surface reflection, the interference signal, and the like are collectively referred to as “reception signal”. The received signal includes white noise.
 送受信部2は、受信信号の振幅及び位相の情報を取得するために、直交検波(IQ位相検波)を行う。直交検波を行うことにより、I信号とQ信号からなる複素信号を得ることができる。この直交検波についての詳細は後段で説明する。 The transmission / reception unit 2 performs quadrature detection (IQ phase detection) in order to acquire information on the amplitude and phase of the received signal. By performing quadrature detection, a complex signal composed of an I signal and a Q signal can be obtained. Details of this quadrature detection will be described later.
 A/D変換部3は、送受信部2から出力されたアナログ信号のI信号及びQ信号を複数ビットのデジタルデータ(IQ受信データ)に変換して、ターゲット候補検出部4に出力する。なお、上記のように送受信部2でアナログ信号のI信号及びQ信号を生成した後にA/D変換部3でデジタル変換する方式のほか、送受信部2で受信信号をサンプリングすることでデジタル信号のI信号およびQ信号を直接生成してもよい。この場合は、A/D変換部3を省略することができる。 The A / D conversion unit 3 converts the analog I signal and Q signal output from the transmission / reception unit 2 into multi-bit digital data (IQ reception data) and outputs the digital data to the target candidate detection unit 4. In addition to the method in which the A / D converter 3 digitally converts the analog signal I and Q signals generated by the transmitter / receiver 2 as described above, the received signal is sampled by the transmitter / receiver 2 so that the digital signal The I signal and the Q signal may be directly generated. In this case, the A / D conversion unit 3 can be omitted.
 ターゲット候補検出部4は、受信信号から物標からのエコー信号を検出し、その物標の位置、大きさ、または速度などの情報を生成する。 The target candidate detection unit 4 detects an echo signal from the target from the received signal, and generates information such as the position, size, or speed of the target.
 ターゲット候補検出部4の詳細な構成について、図2を参照して説明する。ターゲット候補検出部4は、位相検出部41、連結処理部42、およびターゲット候補情報作成部43を備える。また、位相検出部41は、スイープメモリ411、および位相変化量算出部412を備える。 The detailed configuration of the target candidate detection unit 4 will be described with reference to FIG. The target candidate detection unit 4 includes a phase detection unit 41, a connection processing unit 42, and a target candidate information creation unit 43. The phase detection unit 41 includes a sweep memory 411 and a phase change amount calculation unit 412.
 位相検出部は、受信信号のサンプリング点毎に、レーダアンテナ1からの距離が略等しく方位の異なる点からの位相変化量を算出し、位相変化量情報を連結処理部42に出力する。 The phase detection unit calculates the amount of phase change from a point where the distance from the radar antenna 1 is approximately the same and has a different azimuth at each sampling point of the received signal, and outputs the phase change amount information to the connection processing unit 42.
 スイープメモリ411は、いわゆるバッファであり、必要なスイープ数のIQ信号受信データをリアルタイムで記憶する。ここで、「スイープ」とは、信号を送信してから次の信号を送信するまでの一連の動作をいう。 The sweep memory 411 is a so-called buffer, and stores IQ signal reception data of a necessary number of sweeps in real time. Here, “sweep” refers to a series of operations from transmission of a signal to transmission of the next signal.
 位相変化量算出部412は、送受信部2が受信した信号のうち、レーダアンテナ1からの距離が略等しく方位が異なる複数の点のエコー信号間の位相変化量を算出する。具体的な算出方法については後段で説明する。 The phase change amount calculation unit 412 calculates a phase change amount between echo signals at a plurality of points that are substantially the same distance from the radar antenna 1 and have different azimuths among the signals received by the transmission / reception unit 2. A specific calculation method will be described later.
 連結処理部42は、位相変化量算出部412が算出した位相変化量に基づいて、図3に示すように、等位相変化量領域を連結(グループ化)し、連結した範囲を物標と識別する。 Based on the phase change amount calculated by the phase change calculation unit 412, the connection processing unit 42 connects (groups) the equiphase change amount regions and identifies the connected range as a target as shown in FIG. 3. To do.
 図3は、レーダアンテナ1を備えた自船910を中心に、スイープ毎に受信される受信信号のサンプリング点を示している。物標900、物標901、および反射物902が図3のように配置されているとき、従来では物標900のエコー信号の信号レベルが閾値よりも小さい場合や、物標901と反射物902のように領域が重なっている場合に物標を検出することができない問題点があった。 FIG. 3 shows sampling points of received signals received for each sweep, centering on the own ship 910 equipped with the radar antenna 1. When the target 900, the target 901, and the reflector 902 are arranged as shown in FIG. 3, conventionally, the signal level of the echo signal of the target 900 is lower than the threshold value, or the target 901 and the reflector 902 There is a problem that the target cannot be detected when the areas are overlapped.
 本実施例では、各サンプリング点のうち、位相変化量算出部が算出した位相変化量が略等しい、近接する点をグループ化することで、前述の問題点のような場合の反射物においても識別することが可能である。 In the present embodiment, among the sampling points, the phase change amount calculated by the phase change amount calculation unit is approximately equal, and adjacent points are grouped to identify the reflecting object in the case of the above-described problem. Is possible.
 具体的には、物標900が小さな船舶のように信号レベルが小さい場合でも、本発明の信号識別装置を用いることで、等位相変化領域でグループ化し、正確に検出することができる。また、船舶が海面反射領域内にある、物標901と反射物902のような場合においても、本発明の信号識別装置では、等位相変化量領域でグループ化することで船舶を識別することができる。 Specifically, even when the signal level is small, such as a ship with a small target 900, it can be grouped in the equiphase change region and accurately detected by using the signal identification device of the present invention. Further, even in the case where the ship is in the sea surface reflection area, such as the target 901 and the reflection object 902, the signal identification device of the present invention can identify the ship by grouping in the equiphase change amount area. it can.
 また、物標900が海面反射なのか物標なのかを識別したい場合、識別した反射物の領域を、予め定めた種々の条件により、海面反射と物標とに区別することも可能である。例えば、等位相変化量領域の中でも、領域の大きさが閾値以上となる場合に、その等位相領域を一つの物標として連結することで、クラッタやホワイトノイズを含んだエコー信号の中から物標のみを区別して識別することが可能である。具体的に、等位相変化量領域と決定する手段の一例として、位相変化量を所望の位相変化量範囲でレベル分けし、同じレベルの位相変化量の領域を等位相変化量領域とする。また、等位相変化量領域のサイズの閾値はグループに属するエコー信号群、グループの距離幅、グループの方位幅で定める。なお、閾値の値は、アンテナ回転数、送信繰返し周波数、送信パルス、ビーム幅、所望する物標条件(大物標のみを抽出したいかなど)により変化する。 In addition, when it is desired to identify whether the target 900 is a sea surface reflection or a target, it is possible to distinguish the area of the identified reflection object from the sea surface reflection and the target according to various predetermined conditions. For example, within the equiphase change amount area, when the size of the area is equal to or greater than the threshold, the equiphase area is connected as a single target so that the object can be detected from echo signals including clutter and white noise. It is possible to distinguish and identify only the mark. Specifically, as an example of a means for determining an equal phase change amount region, the phase change amount is divided into levels within a desired phase change amount range, and a phase change amount region of the same level is set as an equal phase change amount region. Further, the threshold value of the size of the equiphase change amount region is determined by the echo signal group belonging to the group, the group distance width, and the group azimuth width. Note that the threshold value varies depending on the antenna rotation speed, transmission repetition frequency, transmission pulse, beam width, and desired target conditions (such as whether to extract only large targets).
 なお、位相変化量に基づいたエコー信号の連結処理とは、等位相変化量領域でなくてもよい。例えば、比較的大きな物標である場合、同一物標であってもその領域内で位相変化量は方位方向に略連続的に変化する。このように隣接したエコー信号の位相変化量が略連続的に変化している場合、方位方向に広がりをもつ物標を、ひとつの物標として連結処理することも可能である。 The echo signal concatenation process based on the phase change amount may not be the equiphase change region. For example, in the case of a relatively large target, the phase change amount changes substantially continuously in the azimuth direction within the region even if the target is the same. In this way, when the phase change amount of the adjacent echo signals changes substantially continuously, it is also possible to connect the target having a spread in the azimuth direction as one target.
 ターゲット候補情報作成部43は、連結処理部42によって識別された物標の位置、大きさ、現在位相変化量に関する情報を作成する。作成されたターゲット候補情報は、レーダ装置における後段の処理で使用される。 The target candidate information creation unit 43 creates information on the position, size, and current phase change amount of the target identified by the connection processing unit 42. The created target candidate information is used in subsequent processing in the radar apparatus.
 ターゲット候補情報作成部43は、連結処理部42によって識別された物標の位置、大きさ、現在位相変化量に関する情報を作成する。作成されたターゲット候補情報は、後段のターゲット選別部5や運動推定部6で使用される。 The target candidate information creation unit 43 creates information on the position, size, and current phase change amount of the target identified by the connection processing unit 42. The created target candidate information is used by the target selection unit 5 and the motion estimation unit 6 in the subsequent stage.
 ここで、送受信部2が行う直交検波について図4を参照して説明する。 Here, the quadrature detection performed by the transmission / reception unit 2 will be described with reference to FIG.
 レーダアンテナ1から送信する電磁波信号の搬送波は、周波数fのコサイン波であるとする。この場合、電磁波信号を送信してからの時間をt、送受信部2に入力される受信信号の振幅をX(t)とすると、受信信号S(t) は、(数1)で表現することができる。ここで、φ(t)は、電磁波信号の搬送波に対する、受信エコーの搬送波の位相である(以下、単に位相という)。
Figure JPOXMLDOC01-appb-M000001
図4に示すように、この受信信号S(t)は、送受信部2に受信された後に2系統に分岐させられる。そして一方の受信信号S(t)に、電磁波信号の搬送波と同一周波数で同一位相の参照信号2cos(2πft)を積算して合成することにより、(数2)で表される信号を得る。
Figure JPOXMLDOC01-appb-M000002
また、受信信号S(t)分岐させた他方に、電磁波信号の搬送波と同一周波数で位相を90°ずらした参照信号-2sin(2πft)を積算して合成することより、以下の(数5)で表される信号を得る。
Figure JPOXMLDOC01-appb-M000003
(数2)および(数3)の右辺第一項(2倍周波数成分)はローパスフィルタ(LPF)によって除去される。これにより、送受信部2からは、(数4)に示すI信号、および(数5)に示すQ信号が出力される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Carrier of the electromagnetic wave signal transmitted from the radar antenna 1 is assumed to be a cosine wave of frequency f 0. In this case, if the time since the transmission of the electromagnetic wave signal is t and the amplitude of the reception signal input to the transmission / reception unit 2 is X (t), the reception signal S (t) is expressed by (Equation 1). Can do. Here, φ (t) is the phase of the carrier wave of the received echo with respect to the carrier wave of the electromagnetic wave signal (hereinafter simply referred to as phase).
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 4, the received signal S (t) is branched into two systems after being received by the transmission / reception unit 2. Then, a signal expressed by (Equation 2) is obtained by integrating and synthesizing one received signal S (t) with a reference signal 2 cos (2πf 0 t) having the same frequency and the same phase as the carrier wave of the electromagnetic wave signal. .
Figure JPOXMLDOC01-appb-M000002
Further, the reference signal −2 sin (2πf 0 t), whose phase is shifted by 90 ° at the same frequency as the carrier wave of the electromagnetic wave signal, is integrated and synthesized on the other side of the branch of the reception signal S (t). 5) is obtained.
Figure JPOXMLDOC01-appb-M000003
The first term (double frequency component) on the right side of (Expression 2) and (Expression 3) is removed by a low-pass filter (LPF). As a result, the I signal shown in (Expression 4) and the Q signal shown in (Expression 5) are output from the transmission / reception unit 2.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 次に、位相変化量算出部412が算出する位相変化量の算出方法について説明する。 Next, a method of calculating the phase change amount calculated by the phase change amount calculation unit 412 will be described.
 本実施形態では、A/D変換部3によってデジタル化された受信信号及びスイープメモリに記憶している受信信号に自己相関法を適用して位相変化量を算出する。仮に位相変化量がΔθのエコーがある時を想定する。この物標の距離に対応する距離番号をnとして、この物標からのエコーが受信される最初の方位の方位番号をkとする(図3参照)。このとき、レーダアンテナ1からの距離が略等しい点から受信した近接するM個の受信データを、それぞれS[k,n]、S[k+1,n]、S[k+2,n]、・・・、S[k+M-1,n]と表わすことができる。そして、受信データz[m]を(数6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
また、1スイープあたりの位相変化量Δθについて次式が成り立つ。
Figure JPOXMLDOC01-appb-M000007
ここでarg[・]は複素数の偏角を示す。ΔmとLは次式を満たす任意の自然数である。
Figure JPOXMLDOC01-appb-M000008
例えば、Δm=L=1と選べば次式を得る。
Figure JPOXMLDOC01-appb-M000009
(数9)を用いて、受信データz[m]から位相変化量Δθを推定する方法を自己相関法とよぶ。
In the present embodiment, the phase change amount is calculated by applying the autocorrelation method to the reception signal digitized by the A / D conversion unit 3 and the reception signal stored in the sweep memory. Assume that there is an echo whose phase change amount is Δθ. The distance number corresponding to the distance of this target is n 0 , and the azimuth number of the first direction in which an echo from this target is received is k 0 (see FIG. 3). At this time, M pieces of adjacent received data received from points having substantially the same distance from the radar antenna 1 are respectively represented as S [k 0 , n 0 ], S [k 0 +1, n 0 ], S [k 0 +2]. , N 0 ],..., S [k 0 + M−1, n 0 ]. The received data z [m] can be expressed by (Equation 6).
Figure JPOXMLDOC01-appb-M000006
Further, the following equation holds for the phase change amount Δθ per sweep.
Figure JPOXMLDOC01-appb-M000007
Here, arg [•] indicates a complex argument. Δm and L are arbitrary natural numbers satisfying the following expression.
Figure JPOXMLDOC01-appb-M000008
For example, if Δm = L = 1 is selected, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000009
A method of estimating the phase change amount Δθ from the received data z [m] using (Equation 9) is called an autocorrelation method.
<実施形態2>
 以下、図面を参照して本発明の実施形態について説明する。図5は、本実施に係るARPA(自動衝突防止援助)機能を有した船舶用レーダ装置の主要構成を示すブロック図である。なお、本実施形態ではARPA機能を有した船舶用のレーダ装置として説明するが、本発明に係るレーダ装置の用途がARPA機能に限られるものではない。
<Embodiment 2>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 5 is a block diagram showing a main configuration of a marine radar apparatus having an ARPA (automatic collision prevention assistance) function according to the present embodiment. Although the present embodiment will be described as a marine radar apparatus having an ARPA function, the application of the radar apparatus according to the present invention is not limited to the ARPA function.
 本実施形態の信号識別装置10の全体構成は、<実施形態1>で記載したレーダ装置の全体構成と、ターゲット候補検出部に自船速度と自船方位が入力される点を除いて同等であるので省略する。なお、<実施形態2>において、「速度」とは距離方向成分の速度ベクトルを示す。 The overall configuration of the signal identification device 10 of the present embodiment is the same as the overall configuration of the radar device described in <Embodiment 1> except that the own ship speed and own ship direction are input to the target candidate detection unit. I will omit it. In <Embodiment 2>, “velocity” indicates a velocity vector of a distance direction component.
 ターゲット候補検出部4の詳細な構成について、図6を参照して説明する。ターゲット候補検出部4は、速度算出部44、連結処理部42、およびターゲット候補情報作成部43を備える。また、速度算出部44は、スイープメモリ411、相対速度算出部441、および絶対速度算出部442を備える。 The detailed configuration of the target candidate detection unit 4 will be described with reference to FIG. The target candidate detection unit 4 includes a speed calculation unit 44, a connection processing unit 42, and a target candidate information creation unit 43. The speed calculation unit 44 includes a sweep memory 411, a relative speed calculation unit 441, and an absolute speed calculation unit 442.
 速度算出部44は、受信信号のサンプリング点毎に、レーダアンテナ1からの距離が略等しく方位の異なる点からの位相変化量に基づいて、反射物の絶対速度を算出し、反射物の絶対速度情報を連結処理部42に出力する。 The velocity calculation unit 44 calculates the absolute velocity of the reflector based on the amount of phase change from a point at which the distance from the radar antenna 1 is approximately the same and has a different azimuth at each sampling point of the received signal, and the absolute velocity of the reflector is calculated. Information is output to the connection processing unit 42.
 スイープメモリ411は、いわゆるバッファであり、必要なスイープ数のIQ信号受信データをリアルタイムで記憶する。ここで、「スイープ」とは、信号を送信してから次の信号を送信するまでの一連の動作をいう。 The sweep memory 411 is a so-called buffer, and stores IQ signal reception data of a necessary number of sweeps in real time. Here, “sweep” refers to a series of operations from transmission of a signal to transmission of the next signal.
 相対速度算出部441は、送受信部2が受信した信号のうち、レーダアンテナ1からの距離が略等しく方位が異なる複数の点のエコー信号間の位相変化量に基づいて、自船と反射物との相対速度を算出する。具体的な算出方法については後段で説明する。 The relative velocity calculation unit 441 is based on the amount of phase change between the echo signals of a plurality of points having substantially the same distance from the radar antenna 1 and different directions from the signals received by the transmission / reception unit 2. The relative speed of is calculated. A specific calculation method will be described later.
 絶対速度算出部442は、相対速度算出部441が算出した相対速度と、GPS受信機などから取得した自船の船速と、方位センサなどから取得した船首方位と、に基づいてレーダアンテナ1からの距離が略等しい点からの信号の絶対速度を算出する。 The absolute speed calculation unit 442 uses the radar antenna 1 based on the relative speed calculated by the relative speed calculation unit 441, the ship speed of the ship acquired from a GPS receiver, and the heading obtained from an orientation sensor. The absolute velocity of the signal from the point where the distances are substantially equal is calculated.
 連結処理部42は、速度算出部44が算出した反射物の絶対速度に基づいて、図3に示すように、等位速度領域を連結(グループ化)し、連結した範囲を物標と識別する。 As shown in FIG. 3, the connection processing unit 42 connects (groups) the equal velocity regions based on the absolute velocity of the reflection object calculated by the velocity calculation unit 44, and identifies the connected range as a target. .
 図3は、レーダアンテナ1を中心にスイープ毎に受信される受信信号のサンプリング点を示している。自船910、物標900、物標901、および反射物902が図3のように配置されているとき、従来では物標900のエコー信号の信号レベルが閾値よりも小さい場合や、物標901と反射物902のように領域が重なっている場合に物標を検出することができない問題点があった。 FIG. 3 shows sampling points of received signals received for each sweep with the radar antenna 1 as the center. When the own ship 910, the target 900, the target 901, and the reflective object 902 are arranged as shown in FIG. 3, conventionally, the signal level of the echo signal of the target 900 is smaller than the threshold value, or the target 901 There is a problem that the target cannot be detected when the areas are overlapped like the reflective object 902.
 本実施例では、各サンプリング点のうち、速度算出部44が算出した絶対速度が略等しい、近接する点をグループ化することで、前述の問題点のような場合の反射物においても識別することが可能である。 In the present embodiment, among the sampling points, the adjacent points whose absolute velocities calculated by the velocity calculation unit 44 are substantially equal are grouped to identify even the reflecting object in the case of the aforementioned problem. Is possible.
 具体的には、物標900が小さな船舶のように信号レベルが小さい場合でも、本発明の信号識別装置を用いることで、等速度領域でグループ化し、正確に検出することができる。また、船舶が海面反射領域内にある、物標901と反射物902のような場合においても、本発明の信号識別装置では、等速度領域でグループ化することで船舶を識別することができる。 Specifically, even when the signal level is small as in the case of a ship with a small target 900, the signal identification device of the present invention can be used to group and accurately detect in the uniform velocity region. Further, even in the case where the ship is in the sea surface reflection area, such as the target 901 and the reflection object 902, the signal identification device of the present invention can identify the ship by grouping in the uniform speed area.
 また、物標900が海面反射なのか物標なのかを識別したい場合、識別した反射物の領域を、予め定めた種々の条件により、海面反射と物標とに区別することも可能である。例えば、等速度領域の中でも、領域の大きさが閾値以上となる場合に、その等速度領域を一つの物標として連結することで、クラッタやホワイトノイズを含んだエコー信号の中から物標のみを区別して識別することが可能である。具体的に、等速度領域と決定する手段の一例として、速度を所望の速度範囲でレベル分けし、同じレベルの速度の領域を等速度領域とする。また、等速度領域のサイズの閾値はグループに属するエコー信号群、グループの距離幅、グループの方位幅で定める。なお、閾値の値は、アンテナ回転数、送信繰返し周波数、送信パルス、ビーム幅、所望する物標条件(大物標のみを抽出したいかなど)により変化する。 In addition, when it is desired to identify whether the target 900 is a sea surface reflection or a target, it is possible to distinguish the area of the identified reflection object from the sea surface reflection and the target according to various predetermined conditions. For example, even if the size of the area is equal to or greater than the threshold value in the constant velocity area, the target is selected from the echo signals including clutter and white noise by connecting the constant velocity area as a single target. Can be distinguished and identified. Specifically, as an example of means for determining the uniform velocity region, the velocity is classified into levels within a desired velocity range, and a region having the same level of velocity is defined as the uniform velocity region. The threshold value of the uniform velocity region size is determined by the echo signal group belonging to the group, the group distance width, and the group azimuth width. Note that the threshold value varies depending on the antenna rotation speed, transmission repetition frequency, transmission pulse, beam width, and desired target conditions (such as whether to extract only large targets).
 なお、速度に基づいたエコー信号の連結処理とは、等速度領域でなくてもよい。例えば、比較的大きな物標である場合、同一物標であってもその領域内で自船に対する距離方向成分の速度は方位方向に略連続的に変化する。このように隣接したエコー信号の速度が略連続的に変化している場合、方位方向に広がりをもつ物標を、ひとつの物標として連結処理することも可能である。 Note that the concatenation process of the echo signals based on the speed may not be in the constant speed region. For example, in the case of a relatively large target, even if the target is the same, the speed of the distance direction component with respect to the ship changes substantially continuously in the azimuth direction within that region. In this way, when the speeds of adjacent echo signals change substantially continuously, it is also possible to connect the targets having a spread in the azimuth direction as one target.
 また、連結処理をする際には、速度がある範囲内のエコーを連結処理してよい。この時、速度が折り返し速度付近の物標の場合は、その折り返しを考慮した際近い速度となるエコーも連結対象とする。連結する速度範囲をV±Vσとした場合,例えば図7に示すような場合、V+Vσ>Vmax(Vmax:折り返し速度)となるVtを選択しているときは,連結する速度範囲はV-Vσ≦V<Vmaxまたは-Vmax≦V≦-2Vmax+V+Vσとなる. Further, when performing the connection process, echoes within a certain speed range may be connected. At this time, in the case of a target whose speed is near the turn-back speed, an echo having a speed close to the turn-back is taken into consideration. If the speed range for coupling to the V t ± V sigma, for example, when, as shown in FIG. 7, V t + V σ> V max: When selecting (V max return velocity) and a Vt couples The speed range is V t −V σ ≦ V <V max or −V max ≦ V ≦ −2 V max + V t + V σ .
 ターゲット候補情報作成部43は、連結処理部42によって識別された物標の位置、大きさ、現在速度に関する情報を作成する。作成されたターゲット候補情報は、レーダ装置における後段の処理で使用される。 The target candidate information creation unit 43 creates information regarding the position, size, and current speed of the target identified by the connection processing unit 42. The created target candidate information is used in subsequent processing in the radar apparatus.
 ターゲット候補情報作成部43は、連結処理部42によって識別された物標の位置、大きさ、現在速度に関する情報を作成する。作成されたターゲット候補情報は、後段のターゲット選別部5や運動推定部6で使用される。 The target candidate information creation unit 43 creates information regarding the position, size, and current speed of the target identified by the connection processing unit 42. The created target candidate information is used by the target selection unit 5 and the motion estimation unit 6 in the subsequent stage.
 次に、相対速度算出部442が算出する相対速度の算出方法について説明する。 Next, a method for calculating the relative speed calculated by the relative speed calculation unit 442 will be described.
 本実施形態では、A/D変換部3によってデジタル化された受信信号及びスイープメモリに記憶している受信信号に自己相関法を適用して相対速度を算出する。仮に自船に向かって、相対速度vで接近してくる物標があるときを想定する。この物標の距離に対応する距離番号をnとして、この物標からのエコーが受信される最初の方位の方位番号をkとする(図3参照)。このとき、レーダアンテナ1からの距離が略等しい点から受信した近接するM個の受信データを、それぞれS[k,n]、S[k+1,n]、S[k+2,n]、・・・、S[k+M-1,n]と表わすことができる。そして、受信データz[m]を(数6)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
ここで、レーダアンテナ1から物標までの往復伝播距離は、物標が相対速度vで接近するとき、送信周期Tの間に2vTだけ小さくなる。したがって、送信信号の中心周波数をf、光速をcとすると、受信データz[m+1]の位相は、受信データz[m]の位相に対して、次式で表わされる1スイープあたりの位相変化量Δθだけ大きくなる。
Figure JPOXMLDOC01-appb-M000011
この式を相対速度vについて解くと次式を得る。
Figure JPOXMLDOC01-appb-M000012
一方、1スイープあたりの位相変化量Δθについて次式が成り立つ。
Figure JPOXMLDOC01-appb-M000013
ここでarg[・]は複素数の偏角を示す。ΔmとLは次式を満たす任意の自然数である。
Figure JPOXMLDOC01-appb-M000014
例えば、Δm=L=1と選べば次式を得る。
Figure JPOXMLDOC01-appb-M000015
また、(数7)を(数11)に代入して次式を得ることができる。
Figure JPOXMLDOC01-appb-M000016
(数12)を用いて、受信データz[m]から相対速度vを推定する方法を自己相関法とよぶ。
In the present embodiment, the relative velocity is calculated by applying the autocorrelation method to the reception signal digitized by the A / D conversion unit 3 and the reception signal stored in the sweep memory. Suppose that there is a target approaching the ship at a relative speed v. The distance number corresponding to the distance of this target is n 0 , and the azimuth number of the first direction in which an echo from this target is received is k 0 (see FIG. 3). At this time, M pieces of adjacent received data received from points having substantially the same distance from the radar antenna 1 are respectively represented as S [k 0 , n 0 ], S [k 0 +1, n 0 ], S [k 0 +2]. , N 0 ],..., S [k 0 + M−1, n 0 ]. The received data z [m] can be expressed by (Equation 6).
Figure JPOXMLDOC01-appb-M000010
Here, the round-trip propagation distance from the radar antenna 1 to the target is reduced by 2 vT during the transmission period T when the target approaches at a relative speed v. Therefore, assuming that the center frequency of the transmission signal is f 0 and the speed of light is c, the phase of the reception data z [m + 1] is a phase change per sweep represented by the following equation with respect to the phase of the reception data z [m]. Increases by the amount Δθ.
Figure JPOXMLDOC01-appb-M000011
When this equation is solved for the relative velocity v, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000012
On the other hand, the following equation holds for the phase change amount Δθ per sweep.
Figure JPOXMLDOC01-appb-M000013
Here, arg [•] indicates a complex argument. Δm and L are arbitrary natural numbers satisfying the following expression.
Figure JPOXMLDOC01-appb-M000014
For example, if Δm = L = 1 is selected, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000015
Further, the following equation can be obtained by substituting (Equation 7) into (Equation 11).
Figure JPOXMLDOC01-appb-M000016
A method of estimating the relative velocity v from the received data z [m] using (Equation 12) is called an autocorrelation method.
1 レーダアンテナ
2 送受信部
3 A/D変換部
4 ターゲット候補検出部
5 ターゲット選別部
6 運動推定部
10 信号識別装置
41 位相検出部
42 連結処理部
43 ターゲット候補情報作成部
44 速度算出部
411 スイープメモリ
412 位相変化量算出部
441 相対速度算出部
442 絶対速度算出部
900、901 物標
902 海面反射などの反射物
910 自船(自装置)
DESCRIPTION OF SYMBOLS 1 Radar antenna 2 Transmission / reception part 3 A / D conversion part 4 Target candidate detection part 5 Target selection part 6 Motion estimation part 10 Signal identification apparatus 41 Phase detection part 42 Connection processing part 43 Target candidate information creation part 44 Speed calculation part 411 Sweep memory 412 Phase change amount calculation unit 441 Relative velocity calculation unit 442 Absolute velocity calculation unit 900, 901 Target 902 Reflection object 910 such as sea surface reflection Own ship (own apparatus)

Claims (19)

  1.  電磁波の送受信を繰り返す送受信部と、
     前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、該エコー信号間の位相変化量を算出する位相変化量算出部と、
     前記位相変化量に基づいて、近接する複数の点を同一の反射物としてグループ化する連結処理部と、
    を備えた信号識別装置。
    A transmission / reception unit that repeats transmission / reception of electromagnetic waves;
    A phase change amount calculation unit for calculating a phase change amount between the echo signals based on echo signals of a plurality of points having substantially the same distance from the transmission / reception unit and different azimuths;
    Based on the phase change amount, a connection processing unit that groups a plurality of adjacent points as the same reflector,
    A signal identification device.
  2.  請求項1に記載の信号識別装置であって、
     前記連結処理部は、前記位相変化量が略等しい前記近接する複数の点を反射物としてグループ化すること
    を特徴とする信号識別装置。
    The signal identification device according to claim 1,
    The signal processing apparatus according to claim 1, wherein the connection processing unit groups the plurality of adjacent points having substantially the same phase change amount as a reflector.
  3.  請求項1に記載の信号識別装置であって、
     前記連結処理部は、位相変化量が方位に対して連続的に変化している前記近接する複数の点を同一の反射物としてグループ化すること
    を特徴とする信号識別装置。
    The signal identification device according to claim 1,
    The connection processing unit groups the plurality of adjacent points whose phase change amount is continuously changing with respect to an azimuth as the same reflector.
  4.  電磁波の送受信を繰り返す送受信部と、
     前記送受信部からの距離が略等しく方位の異なる複数の点のエコー信号間の位相変化量に基づいて、自装置と該自装置周辺に在る反射物の相対速度を算出する相対速度算出部と、
     前記相対速度に基づいて、近接する複数の点を同一の反射物としてグループ化する連結処理部と、
    を備えた信号識別装置。
    A transmission / reception unit that repeats transmission / reception of electromagnetic waves;
    A relative velocity calculation unit that calculates a relative velocity between the own device and a reflector around the own device based on the amount of phase change between echo signals at a plurality of points having substantially the same distance from the transmitting / receiving unit and different azimuths; ,
    A connection processing unit that groups a plurality of adjacent points as the same reflector based on the relative velocity;
    A signal identification device.
  5.  請求項4に記載の信号識別装置であって、
     前記連結処理部は、前記相対速度が略等しい前記近接する複数の点を同一反射物としてグループ化することを特徴とする信号識別装置。
    The signal identification device according to claim 4,
    The signal processing apparatus according to claim 1, wherein the connection processing unit groups the plurality of adjacent points having the same relative speed as the same reflector.
  6.  請求項4に記載の信号識別装置であって、
     前記連結処理部は、前記相対速度が方位に対して略連続的に変化している前記近接する複数の点を同一反射物としてグループ化することを特徴とする信号識別装置。
    The signal identification device according to claim 4,
    The signal processing apparatus according to claim 1, wherein the connection processing unit groups the plurality of adjacent points where the relative speed changes substantially continuously with respect to an azimuth as the same reflector.
  7.  請求項4乃至請求項6のいずれかに記載の信号識別装置であって、
     前記相対速度算出部が算出した前記相対速度と、前記自装置の絶対速度に基づいて、該自装置周辺に在る反射物の絶対速度を算出する絶対速度算出部を備え、
     前記連結処理部は、前記絶対速度に基づいて、近接する複数の点を同一の反射物としてグループ化することを特徴とする信号識別装置。
    The signal identification device according to any one of claims 4 to 6,
    Based on the relative speed calculated by the relative speed calculation section and the absolute speed of the own apparatus, an absolute speed calculation section that calculates an absolute speed of a reflector around the own apparatus,
    The connection processing unit groups a plurality of adjacent points as the same reflector based on the absolute velocity.
  8.  請求項4乃至請求項7のいずれかに記載の信号識別装置であって、
     前記相対速度算出部は、前記位相変化量に基づいて、自装置と該自装置周辺に在る反射物の相対速度の距離方向成分を算出し、
     前記連結処理部は、前記相対速度の距離方向成分に基づいて、近接する複数の点を同一の反射物としてグループ化することを特徴とする信号識別装置。
    A signal identification device according to any one of claims 4 to 7,
    The relative velocity calculation unit calculates a distance direction component of a relative velocity between the own device and a reflector around the own device based on the phase change amount;
    The connection processing unit groups a plurality of adjacent points as the same reflector based on a distance direction component of the relative speed.
  9.  請求項1乃至請求項8のいずれかに記載の信号識別装置であって、
     前記連結処理部は、前記エコー信号の信号レベルが所定の閾値以上の前記周囲に近接する複数の点を同一反射物としてグループ化することを特徴とする信号識別装置。
    The signal identification device according to any one of claims 1 to 8,
    The signal processing apparatus according to claim 1, wherein the connection processing unit groups a plurality of points close to the periphery in which a signal level of the echo signal is equal to or higher than a predetermined threshold value as a same reflector.
  10.  請求項1乃至請求項9のいずれかに記載の信号識別装置であって、
     前記連結処理部が、グループ化した点の範囲が所定以上の大きさのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする信号識別装置。
    A signal identification device according to any one of claims 1 to 9,
    The signal identification device, wherein the connection processing unit determines the plurality of grouped points as one target when the range of the grouped points is larger than a predetermined size.
  11.  請求項1乃至請求項9のいずれかに記載の信号識別装置であって、
     前記連結処理部が、前記グループ化した点の範囲の方位方向の幅が所定以上の長さのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする信号識別装置。
    A signal identification device according to any one of claims 1 to 9,
    The connection processing unit determines the plurality of grouped points as one target when the width in the azimuth direction of the range of the grouped points is a predetermined length or more. .
  12.  請求項1乃至請求項9のいずれかに記載の信号識別装置であって、
     前記連結処理部が、前記グループ化した点の範囲の距離方向の幅が所定以上の長さのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする信号識別装置。
    A signal identification device according to any one of claims 1 to 9,
    The connection processing unit determines the plurality of grouped points as one target when the width in the distance direction of the range of the grouped points is a predetermined length or more. .
  13.  請求項1乃至請求項12のいずれかに記載の信号識別装置であって、
     前記連結処理部が、前記グループ化した点のうち代表点の、前記エコー信号のレベルが所定以上の大きさのとき、前記グループ化した複数の点を一つの物標と判断することを特徴とする信号識別装置。
    A signal identification device according to any one of claims 1 to 12,
    When the level of the echo signal of a representative point among the grouped points is a predetermined level or more, the connection processing unit determines the plurality of grouped points as one target. Signal identification device.
  14.  請求項1乃至請求項13のいずれかに記載の信号識別装置であって、
     前記連結処理部が物標と判断した複数の点のうち代表点の、少なくとも位置、大きさ、又は速度に関する情報を作成する物標情報作成部を備えた信号識別装置。
    The signal identification device according to any one of claims 1 to 13,
    A signal identification device including a target information creating unit that creates information on at least the position, size, or speed of a representative point among a plurality of points determined as a target by the connection processing unit.
  15.  請求項1乃至14のいずれかに記載の信号識別装置であって、
     前記送受信部は、同一平面内で回転するアンテナを介して、電磁波の送受信を繰り返すこと
    を特徴とする信号識別装置。
    The signal identification device according to any one of claims 1 to 14,
    The signal transmission / reception unit, wherein the transmission / reception unit repeats transmission / reception of electromagnetic waves via an antenna rotating in the same plane.
  16.  電磁波の送受信を繰り返し、
     自装置からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、該エコー信号間の位相変化量を算出し、
     前記位相変化量に基づいて、近接する複数の点を同一の反射物としてグループ化して連結することを特徴とする信号識別方法。
    Repeated transmission and reception of electromagnetic waves,
    Based on the echo signals of a plurality of points having substantially the same distance from the own device and different directions, the amount of phase change between the echo signals is calculated,
    A signal identification method comprising grouping and connecting a plurality of adjacent points as the same reflector based on the phase change amount.
  17.  電磁波の送受信を繰り返し、
     受信したエコー信号のうち、自装置からの距離が略等しく方位が異なる複数の点の前記エコー信号間の位相変化量に基づいて、自装置と前記自装置周辺に在る反射物との相対速度を算出し、
     前記相対速度に基づいて、近接する複数の点を同一反射物としてグループ化して連結する
    ことを特徴とする信号識別方法。
    Repeated transmission and reception of electromagnetic waves,
    Among the received echo signals, based on the amount of phase change between the echo signals at a plurality of points having substantially the same distance from the own device and different azimuths, the relative speed between the own device and the reflector around the own device To calculate
    A signal identification method, wherein a plurality of adjacent points are grouped and connected as the same reflector based on the relative velocity.
  18.  アンテナを介して電磁波の送受信を繰り返すように構成された送受信部と、
     前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号に基づいて、前記エコー信号間の位相変化量を算出する位相変化量算出部と、
     前記位相変化量算出部が算出した位相変化量に基づいて、近接する複数の点を同一反射物としてグループ化する連結処理部と、
     自装置周辺の物標の位置を示すレーダ映像を表示する表示器と
    を備えたレーダ装置。
    A transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna;
    A phase change amount calculation unit for calculating a phase change amount between the echo signals based on echo signals of a plurality of points having substantially the same distance from the transmission / reception unit and different azimuths;
    Based on the phase change amount calculated by the phase change amount calculation unit, a connection processing unit that groups a plurality of adjacent points as the same reflector,
    A radar apparatus comprising: a display for displaying a radar image indicating a position of a target around the own apparatus.
  19.  アンテナを介して電磁波の送受信を繰り返すように構成された送受信部と、
     前記送受信部からの距離が略等しく方位が異なる複数の点のエコー信号間の位相変化量に基づいて、自装置と自装置周辺に在る反射物との相対速度を算出する相対速度算出部と、
     前記相対速度算出部が算出した相対速度に基づいて、近接する複数の点を同一反射物としてグループ化する連結処理部と、
     自装置周辺の物標の位置を示すレーダ映像を表示する表示器と
    を備えたレーダ装置。
    A transmission / reception unit configured to repeat transmission / reception of electromagnetic waves via an antenna;
    A relative speed calculation unit for calculating a relative speed between the own apparatus and a reflector around the own apparatus based on a phase change amount between echo signals of a plurality of points having substantially the same distance from the transmission / reception unit and different azimuths; ,
    Based on the relative speed calculated by the relative speed calculation unit, a connection processing unit that groups a plurality of adjacent points as the same reflector,
    A radar apparatus comprising: a display for displaying a radar image indicating a position of a target around the own apparatus.
PCT/JP2012/051569 2011-02-25 2012-01-25 Signal identifying apparatus, signal identifying method, and radar apparatus WO2012114816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011040695 2011-02-25
JP2011-040695 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012114816A1 true WO2012114816A1 (en) 2012-08-30

Family

ID=46720604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051569 WO2012114816A1 (en) 2011-02-25 2012-01-25 Signal identifying apparatus, signal identifying method, and radar apparatus

Country Status (1)

Country Link
WO (1) WO2012114816A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187806A1 (en) * 2012-01-25 2013-07-25 Furuno Electric Co., Ltd. Device and method for selecting signal, and radar apparatus
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background
JP2014055883A (en) * 2012-09-13 2014-03-27 Furuno Electric Co Ltd Radar system, detection method and detection program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313626A (en) * 1995-05-23 1996-11-29 Honda Motor Co Ltd Object detection method for vehicle
JP2000162316A (en) * 1998-12-01 2000-06-16 Mitsubishi Electric Corp Radar signal processing apparatus
JP2000180543A (en) * 1998-12-18 2000-06-30 Mcc:Kk Target detection method and device
JP2000206241A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Radar apparatus
JP2010266292A (en) * 2009-05-13 2010-11-25 Furuno Electric Co Ltd Radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313626A (en) * 1995-05-23 1996-11-29 Honda Motor Co Ltd Object detection method for vehicle
JP2000162316A (en) * 1998-12-01 2000-06-16 Mitsubishi Electric Corp Radar signal processing apparatus
JP2000180543A (en) * 1998-12-18 2000-06-30 Mcc:Kk Target detection method and device
JP2000206241A (en) * 1999-01-13 2000-07-28 Honda Motor Co Ltd Radar apparatus
JP2010266292A (en) * 2009-05-13 2010-11-25 Furuno Electric Co Ltd Radar device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130187806A1 (en) * 2012-01-25 2013-07-25 Furuno Electric Co., Ltd. Device and method for selecting signal, and radar apparatus
US9075142B2 (en) * 2012-01-25 2015-07-07 Furuno Electric Co., Ltd. Device and method for selecting signal, and radar apparatus
JP2014055883A (en) * 2012-09-13 2014-03-27 Furuno Electric Co Ltd Radar system, detection method and detection program
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background

Similar Documents

Publication Publication Date Title
US20240094368A1 (en) Systems and methods for virtual aperture radar tracking
JP5658871B2 (en) Signal processing apparatus, radar apparatus, signal processing program, and signal processing method
JP6192151B2 (en) Signal sorting apparatus, signal sorting method, and radar apparatus.
JP6271032B2 (en) Antenna specification estimating device and radar device
US20050179579A1 (en) Radar receiver motion compensation system and method
CN109154653B (en) Signal processing device and radar device
CN106997043B (en) Radar device and target object tracking method
JP2012108075A (en) Radar device and target detection method
US11249185B2 (en) Signal processing device and radar apparatus
JP6095899B2 (en) Target motion estimation device, target motion estimation method, and radar device
JP2013142661A (en) Radar device, radar positioning system, radar positioning method, and radar positioning program
EP2479585A1 (en) Target object movement estimating device
JP6008640B2 (en) Detecting image generating device, radar device, detecting image generating method, and detecting image generating program,
JP6732900B2 (en) Signal processing device and radar device
US9651660B2 (en) Device and method for processing echo signals, computer readable media storing echo signal processing program and wave radar apparatus
WO2012114816A1 (en) Signal identifying apparatus, signal identifying method, and radar apparatus
JP2016206153A (en) Signal processor and radar device
JP6043083B2 (en) Target motion estimation device, target motion estimation method, and radar device
JP2013167580A (en) Target speed measuring device, signal processing apparatus, radar device, target speed measuring method, and program
JP3393183B2 (en) Doppler speed detection device and detection method
JP5730565B2 (en) Radar signal processing device and radar image processing device
JP2015232509A (en) Signal processor, rader system, signal processing method, and signal processing program
JP6339074B2 (en) Sea state detection device, radar device, sea state detection method, and program
JP2016200524A (en) Radar device
JP2017110993A (en) Signal processing device, radar device, underwater detection device, signal processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP