WO2012114425A1 - Display system of electric vehicle and electric vehicle equipped with same - Google Patents

Display system of electric vehicle and electric vehicle equipped with same Download PDF

Info

Publication number
WO2012114425A1
WO2012114425A1 PCT/JP2011/053672 JP2011053672W WO2012114425A1 WO 2012114425 A1 WO2012114425 A1 WO 2012114425A1 JP 2011053672 W JP2011053672 W JP 2011053672W WO 2012114425 A1 WO2012114425 A1 WO 2012114425A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
distance
display system
display
power
Prior art date
Application number
PCT/JP2011/053672
Other languages
French (fr)
Japanese (ja)
Inventor
山本 雅哉
至 瀬田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/053672 priority Critical patent/WO2012114425A1/en
Publication of WO2012114425A1 publication Critical patent/WO2012114425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/174Economic driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to an electric vehicle display system and an electric vehicle including the electric vehicle display system, and more particularly to an electric vehicle display system equipped with a power storage device that stores electric power for traveling and an electric vehicle including the electric vehicle display system.
  • Patent Document 1 discloses a technique for performing a display for a driver to more effectively realize economic driving in a vehicle capable of selecting a fuel efficiency priority mode that prioritizes fuel efficiency. . Specifically, in the hybrid vehicle, when the ECO switch is turned on, it is determined whether or not the traveling state is the economic traveling state by using the ECO mode traveling state determination map. Then, the determination result is displayed on the meter display unit so that it is possible to identify whether or not the traveling state is the economic traveling state in the form of turning on or off the ECO mark.
  • the distance that can be traveled varies greatly depending on the current storage amount, depending on the travel speed and the required travel power. For example, it may be possible to reach the same destination by traveling on a general road at a low speed, but when driving on a highway and traveling at a high speed, energy may be exhausted.
  • An object of the present invention is to provide a display system that can provide a driver with information about an appropriate driving state in order to reach a destination, and a vehicle including the display system.
  • the present invention provides a display system for an electric vehicle, the electric vehicle including a power storage device and an electric motor that receives electric power from the power storage device and generates a driving force for driving.
  • a display device for displaying information and a boundary value for separating the inside and outside of the recommended travel area set for securing the travel distance of the vehicle according to the parameter related to the distance traveled by the electric vehicle is displayed on the display device.
  • a control device for adjusting the boundary value for separating the inside and outside of the recommended travel area set for securing the travel distance of the vehicle according to the parameter related to the distance traveled by the electric vehicle.
  • the parameter includes the distance to the destination of the electric vehicle.
  • the control device sets the boundary value according to the distance to the destination.
  • the parameter includes a state of charge of the power storage device.
  • the control device sets the boundary value according to the state of charge of the power storage device.
  • the parameters include the state of charge of the power storage device and the distance to the destination of the electric vehicle.
  • the control device sets a boundary value according to the state of charge of the power storage device and the distance to the destination of the electric vehicle.
  • the recommended travel area is determined with respect to the vehicle speed, and the boundary value indicates an upper limit speed at which the power storage device in a charged state can travel a distance.
  • the display device displays the current vehicle speed and the boundary value in a manner that can be viewed at the same time.
  • the recommended travel area is determined with respect to power, and the boundary value indicates an upper limit power that can be output when traveling a distance by a power storage device in a charged state.
  • the display device displays the current output power and the boundary value in a manner that can be viewed simultaneously.
  • control device updates the boundary value based on the change in the state of charge of the power storage device due to traveling and the change in the distance to the destination of the electric vehicle due to traveling, and causes the display device to display the boundary value.
  • the present invention is an electric vehicle including any one of the display systems described above.
  • the driver it is possible to provide the driver with information on an appropriate driving state in order to reach the destination, and the driver performs driving with reference to this, so that charging is not performed on the way.
  • the possibility of reaching the destination increases.
  • FIG. 1 is an overall block diagram of an electric vehicle according to an embodiment of the present invention. It is a functional block diagram of ECU50 shown in FIG. It is a flowchart for demonstrating control about the learning of the power consumption rate (electricity cost) which ECU50 of FIG. 1 performs. It is the figure which showed an example of the change of the vehicle speed and the power consumption rate at the time of driving
  • FIG. 6 is a diagram showing an example of a travelable distance-vehicle speed map.
  • FIG. 1 is an overall block diagram of an electric vehicle according to an embodiment of the present invention.
  • electrically powered vehicle 100 includes a power storage device 10, an inverter 20, a motor generator 30, and drive wheels 35.
  • the electric vehicle 100 further includes a voltage sensor 42, a current sensor 44, a temperature sensor 46, a wheel speed sensor 37, an electronic control device (hereinafter referred to as “ECU: Electric Control Unit”) 50, and a display device 60. including.
  • ECU Electric Control Unit
  • the power storage device 10 is a DC power source that stores electric power for running the vehicle.
  • the power storage device 10 includes, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the power storage device 10 is charged by a power source outside the vehicle using a charger (not shown).
  • the electric power generated by the motor generator 30 is charged to the power storage device 10 via the inverter 20 also when the electric vehicle 100 is braked or when the acceleration on the down slope is reduced.
  • the power storage device 10 outputs the stored power to the inverter 20.
  • Inverter 20 converts DC power supplied from power storage device 10 into three-phase AC based on signal PWI from ECU 50 and outputs the same to motor generator 30 to drive motor generator 30.
  • the inverter 20 converts the three-phase AC power generated by the motor generator 30 into DC based on the signal PWI and outputs the DC power to the power storage device 10.
  • Inverter 20 is configured by a three-phase PWM inverter including switching elements for three phases, for example.
  • the motor generator 30 is a motor generator capable of a power running operation and a regenerative operation.
  • the motor generator 30 is configured by, for example, a three-phase AC synchronous motor generator in which a permanent magnet is embedded in a rotor.
  • the motor generator 30 is driven by the inverter 20 and generates driving torque for driving to drive the driving wheels 35.
  • the motor generator 30 receives the kinetic energy of the electric vehicle 100 from the drive wheels 35 and generates electric power.
  • Voltage sensor 42 detects voltage VB of power storage device 10 and outputs the detected value to ECU 50.
  • Current sensor 44 detects current IB input to and output from power storage device 10 and outputs the detected value to ECU 50.
  • Temperature sensor 46 detects temperature TB of power storage device 10 and outputs the detected value to ECU 50.
  • the wheel speed sensor 37 outputs a pulse generated with the rotation angle of the drive wheel 35.
  • the ECU 50 can count the number of pulses to calculate the travel distance L and the vehicle speed. Note that the moving distance and the vehicle speed may be obtained by detecting the rotational speed of the motor generator 30 instead of the wheel speed sensor 37.
  • ECU 50 receives detected values of voltage VB, current IB, and temperature TB from voltage sensor 42, current sensor 44, and temperature sensor 46, respectively. Then, ECU 50 generates a PWM signal for driving inverter 20 and outputs the generated PWM signal to inverter 20 as signal PWI.
  • the ECU 50 calculates the SOC (State Of Charge: also referred to as a state of charge, a remaining capacity, and a storage amount) of the power storage device 10 based on the detected values of the voltage VB and the current IB.
  • SOC State Of Charge: also referred to as a state of charge, a remaining capacity, and a storage amount
  • a calculation method of the SOC there are various known methods such as a calculation method using the relationship between the open circuit voltage (OCV) of the power storage device 10 and the SOC and a calculation method using the integrated value of the current IB. Can be used.
  • the display device 60 displays information on a distance that can be traveled using the current power storage amount of the power storage device 10 when the vehicle is started or during travel based on the signal DISP from the ECU 50.
  • This information includes an appropriate vehicle speed range or vehicle speed upper limit value, an appropriate power range or power upper limit value, and the like.
  • FIG. 2 is a functional block diagram of the ECU 50 shown in FIG. In FIG. 2, only the functions of the portions related to the display control of the display device 60 are shown.
  • ECU 50 includes an SOC calculation unit 110, a power consumption detection unit 120, a vehicle speed detection unit 130, a display control unit 140, a storage unit 150, and a planned travel distance detection unit 160.
  • the SOC calculation unit 110 calculates the SOC of the power storage device 10 based on the detected values of the voltage VB and the current IB of the power storage device 10, and outputs the calculated value SC to the display control unit 140.
  • various known methods such as a method of calculating using the relationship between the OCV and the SOC of the power storage device 10 and a method of calculating using the integrated value of the current IB can be used.
  • the power consumption detection unit 120 receives the detection value of the voltage VB and the detection value of the current IB, calculates the power consumption by multiplying them, and stores the power consumption in the storage unit 150.
  • the vehicle speed detection unit 130 detects the vehicle speed based on the signal L from the wheel speed sensor 37 and stores it in the storage unit 150 together with the power consumption obtained by the power consumption detection unit 120.
  • the scheduled travel distance detection unit 160 acquires the distance D to the destination from a car navigation device (not shown), for example, and stores it in the storage unit 150.
  • the display control unit 140 receives information indicating the relationship between the vehicle speed and the power consumption from the storage unit 150 according to a signal IGON indicating that the vehicle has started, or a trigger signal generated at regular time intervals, Information indicating the distance D is read. Based on this information and the SOC given from the SOC calculation unit 110, the display control unit 140 displays information on the optimum travel distance and travel power for reaching the destination without additional charging. A control signal DISP for display on the device 60 is output.
  • FIG. 3 is a flowchart for explaining the control of learning of the power consumption rate (electric cost) executed by the ECU 50 of FIG.
  • the power consumption rate is also referred to as a power consumption, and is an index indicating how much power can be traveled over a certain distance, and (Wh / km) is a unit.
  • FIG. 4 is a diagram showing an example of changes in vehicle speed and power consumption rate during traveling.
  • the ECU 50 calculates a power consumption rate (Wh / km) per traveling section or traveling time.
  • the average value P1 of the electric power consumption is calculated with respect to the average value K1 of the vehicle speed from time 0 to t1.
  • average values P2 to P8 of power consumption are obtained corresponding to the average values K2 to K8 of the vehicle speed in each traveling section.
  • working area may be for every fixed driving time, and may be for every fixed driving distance.
  • FIG. 5 is a diagram showing an example of the power consumption rate-vehicle speed map.
  • the power consumption rate (Wh / km) is plotted on the vertical axis
  • the vehicle speed (km / h) is plotted on the horizontal axis.
  • a trip means a unit of movement of a vehicle. For example, in the case of commuting, one trip in which the vehicle is started and moved in the morning, arrives at the commuting destination and gets off the vehicle is called one trip.
  • the trip end means that the vehicle is moved after being started and the vehicle is turned off.
  • steps S1 to S3 are executed again. By repeating the processing of steps S1 to S3 in this way, power consumption rates P2 to P8 corresponding to the vehicle speeds K2 to K8 are plotted on the coordinate plane of FIG. If it is determined in step S4 that the trip has ended, the process proceeds to step S5.
  • step S5 the power consumption rate-vehicle speed map is corrected.
  • a point newly added to the plot is processed by a known approximation method such as a least square method to draw one graph. This is stored in the storage unit 150. Thereafter, assuming that the trip has ended, the process ends in step S6. It is also possible to store the power consumption rate and vehicle speed data and obtain the graph when the vehicle is started.
  • FIG. 6 is a flowchart for explaining a map update process indicating the relationship between the travelable distance and the vehicle speed. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • ECU 50 acquires the amount of power stored in power storage device 10 in step S ⁇ b> 11.
  • the SOC calculation unit 110 shown in FIG. 2 reads what is stored in the storage unit 150 at the end of the previous run. Further, this SOC (%) is converted into usable electric energy (Wh).
  • step S12 the ECU 50 calculates the travelable distance for each vehicle speed using the calculated usable electric energy and the power consumption rate for each vehicle speed obtained in FIG. -Update the vehicle speed map.
  • step S13 control is returned to the main routine in step S13.
  • FIG. 7 is a diagram showing an example of a travelable distance-vehicle speed map.
  • the vertical axis indicates the distance (km) that can be traveled without energy supply such as additional charging, and the horizontal axis indicates the vehicle speed (km / h).
  • a map MAP1 when the SOC is A1 and a map MAP2 when the SOC is A2 are shown.
  • the map is updated from the map MAP1 to the map MAP2 when the SOC of the power storage device 10 decreases to A2.
  • FIG. 8 is a flowchart for explaining processing for generating information on the upper limit vehicle speed to be displayed on the display device. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • ECU 50 calculates the remaining distance to the destination in step S21.
  • the remaining distance for example, the distance D acquired by the planned travel distance detection unit in FIG. 2 and stored in the storage unit 150 from the car navigation device can be used.
  • step S21 the ECU 50 calculates an upper limit vehicle speed Kmax for reaching the destination without additional charging from the travelable distance-vehicle speed map described in FIG.
  • FIG. 9 is a diagram for explaining the determination of the upper limit vehicle speed Kmax from the map. Referring to FIG. 9, if a straight line parallel to the horizontal axis is drawn on the map so as to correspond to the distance to the destination, upper limit vehicle speed Kmax can be obtained from the coordinates of the intersection.
  • FIG. 10 is a diagram for explaining a change in the upper limit vehicle speed Kmax when the SOC changes.
  • the map is initially map MAP1 and the upper limit vehicle speed is Kmax.
  • the map is updated from the map MAP1 to the map MAP2.
  • the horizontal line corresponding to the distance has also moved downward.
  • the upper limit vehicle speed Kmax2 obtained from the coordinates of the intersection is substantially equal to the upper limit vehicle speed Kmax before the map update.
  • the map is updated from the map MAP1 to the map MAP3.
  • the upper limit vehicle speed Kmax3 is obtained from the intersection.
  • the upper limit vehicle speed Kmax3 is lower than the upper limit vehicle speed Kmax before update.
  • step S22 after the upper limit vehicle speed Kmax is obtained in step S22 as described in FIG. 10, the upper limit vehicle speed Kmax is displayed on the vehicle speed meter in step S23, and in step S24, the control is performed by the main routine. Returned.
  • FIG. 11 is a diagram showing a first display example in which the upper limit vehicle speed is displayed on the vehicle speed meter.
  • the color of the band-shaped background region along the locus along which the tip of the pointer indicating the vehicle speed K moves is configured to be changeable.
  • the background area is displayed so that the color of the portion indicating the vehicle speed 0 to Kmax is different from the color of the portion indicating the vehicle speed higher than the vehicle speed Kmax.
  • Any display may be used as long as the upper limit vehicle speed Kmax can be identified as the boundary value.
  • the color of the portion showing the vehicle speed higher than the vehicle speed Kmax is displayed lighter than the color of the portion showing the vehicle speed 0 to Kmax.
  • the color may be changed by changing the color of the portion showing the vehicle speed 0 to Kmax to green and changing the color of the portion showing the vehicle speed higher than the vehicle speed Kmax to red.
  • FIG. 12 is a diagram showing a second display example in which the upper limit vehicle speed is displayed on the vehicle speed meter.
  • the example shown in FIG. 12 displays the vehicle speed K in a digital display.
  • 36 km / h is displayed as the current vehicle speed K with a large number
  • 70 km / h is displayed as the upper limit vehicle speed Kmax with a small number beside it.
  • the display device displays the current vehicle speed and the boundary value indicating the upper limit vehicle speed in a manner that can be viewed simultaneously. As a result, the driver can easily travel so as not to exceed the upper limit vehicle speed by adjusting the degree of depression of the accelerator pedal.
  • the example in which the upper limit vehicle speed Kmax is displayed on the display device in a manner that can be viewed simultaneously with the current vehicle speed K has been described.
  • the current output power and the upper limit output power may be displayed on the display device.
  • FIG. 13 is a flowchart for explaining a process of generating information about the upper limit power to be displayed on the display device. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • step S31 ECU 50 arrives at the destination based on the remaining distance to the destination and upper limit vehicle speed Kmax obtained in the process of FIG.
  • the travel time is calculated.
  • the travel time can be obtained by dividing the distance D by the upper limit vehicle speed Kmax.
  • step S32 the ECU 50 calculates the upper limit power Pmax from the current SOC and the travel time obtained in step S31.
  • the upper limit power Pmax (W) can be calculated by dividing the available electric energy (Wh) corresponding to the SOC by the travel time (h).
  • step S33 the ECU 50 displays the upper limit power Pmax calculated in step S32 on the power meter.
  • step S34 control is returned to the main routine.
  • FIG. 14 is a diagram showing a display example in which the upper limit power is displayed on the power meter.
  • the color of the band-shaped background region along the locus along which the tip of the pointer indicating the output power P moves is configured to be changeable.
  • the background area is displayed so that the color of the portion showing the output power 0 to Pmax is different from the color of the portion showing the output power higher than the upper limit power Pmax.
  • Any display may be used as long as the upper limit power Pmax can be identified as the boundary value, but it is preferable that the color of the portion showing the output power higher than Pmax is displayed lighter than the color of the portion showing the output power 0 to Pmax.
  • the color of the background portion where the output power is 0 to Pmax may be changed to green, and the color of the background portion indicating that the output power is higher than Pmax may be changed to red.
  • FIG. 14 shows an example in which the analog pointer moves on the background with the dial. However, the digital display of the vehicle speed and the upper limit vehicle speed as shown in FIG. 12 is changed to the digital display of the power and the upper limit power. It may be.
  • the display device displays the current output power and the boundary value indicating the upper limit power in a manner that can be viewed simultaneously. As a result, the driver can easily travel so as not to exceed the upper limit power by adjusting the degree of depression of the accelerator pedal.
  • a display that allows the driver to suppress an increase in vehicle speed or traveling power is displayed, so that a vehicle whose efficiency decreases as the vehicle speed or traveling power increases is driven. It can be expected that the rider can run efficiently, and the possibility of reaching the destination without additional charging is increased.
  • the calculation of the upper limit vehicle speed and the upper limit power may be determined by setting an appropriate margin in the course of the calculation method described in the present embodiment, or may be calculated by another method.
  • the boundary value displayed according to the SOC and the distance to the destination is changed has been described, but it is not always necessary to consider the distance to the destination, and the SOC is a predetermined low value.
  • the boundary value of the recommended travel area may be lowered to ensure the travelable distance.
  • 10 power storage device 20 inverter, 30 motor generator, 35 drive wheel, 37 wheel speed sensor, 42 voltage sensor, 44 current sensor, 46 temperature sensor, 60 display device, 100 electric vehicle, 110 SOC calculation unit, 120 power consumption detection unit , 130 vehicle speed detection unit, 140 display control unit, 150 storage unit, 160 planned travel distance detection unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electric vehicle comprises a battery device (10) and an electric motor (30) receiving electric power from the battery device and generating travel driving force. A display system comprises a display device (60) for displaying vehicle information to an occupant and a control device (50) for, according to a parameter associated with the distance that the electric vehicle travels, making a display device display the boundary value dividing the inside and outside of a recommended driving area that is set in order to ensure the traveling distance of the vehicle. It is preferable for the parameter to include the state of charge of the battery device and the distance to the destination of the electric vehicle. The display system can provide information about a driving condition suitable for reaching the destination to the driver. The driver drives with reference to this information, thereby increasing the possibility of enabling the destination to be reached without charging on the way.

Description

電動車両の表示システムおよびそれを備える電動車両Electric vehicle display system and electric vehicle equipped with the same
 この発明は、電動車両の表示システムおよびそれを備える電動車両に関し、特に、走行用の電力を蓄える蓄電装置を搭載した電動車両の表示システムおよびそれを備える電動車両に関する。 The present invention relates to an electric vehicle display system and an electric vehicle including the electric vehicle display system, and more particularly to an electric vehicle display system equipped with a power storage device that stores electric power for traveling and an electric vehicle including the electric vehicle display system.
 特開2008-174019号公報(特許文献1)は、燃費を優先する燃費優先モードを選択可能な車両において、より効果的に運転者に経済走行を実現するように仕向ける表示を行なう技術を開示する。具体的には、ハイブリッド自動車において、ECOスイッチがオンされているときに、ECOモード時走行状態判定用マップを用いて走行状態が経済走行状態であるか否かを判定する。そして、その判定結果は、ECOマークの点灯または消灯といった形で、走行状態が経済走行状態であるか否かを識別させることができるようにメータ表示ユニットに表示される。 Japanese Patent Laying-Open No. 2008-174019 (Patent Document 1) discloses a technique for performing a display for a driver to more effectively realize economic driving in a vehicle capable of selecting a fuel efficiency priority mode that prioritizes fuel efficiency. . Specifically, in the hybrid vehicle, when the ECO switch is turned on, it is determined whether or not the traveling state is the economic traveling state by using the ECO mode traveling state determination map. Then, the determination result is displayed on the meter display unit so that it is possible to identify whether or not the traveling state is the economic traveling state in the form of turning on or off the ECO mark.
特開2008-174019号公報JP 2008-174019 A 特開2007-304791号公報JP 2007-304791 A
 外部から車載の蓄電装置に充電を行なうように構成された車両、たとえば電気自動車やプラグインハイブリッド自動車などでは、充電した電力のみによって走行しなければならない、あるいは走行したいというニーズが大きい。しかし、蓄電量が不足していれば、目的地までたどり着けない場合もありうる。 In a vehicle configured to charge an in-vehicle power storage device from the outside, for example, an electric vehicle or a plug-in hybrid vehicle, there is a great need to travel only with charged power or to travel. However, if the amount of power storage is insufficient, it may not be possible to reach the destination.
 一方で、このような車両では、走行速度や必要とされる走行パワーによって現在の蓄電量によって走行可能な距離が大きく変動する。たとえば同じ目的地に行くのに一般道路を低速で走行していれば到達できるのに、高速道路に乗り高速で走行するとエネルギ切れとなるという場合も考えられる。 On the other hand, in such a vehicle, the distance that can be traveled varies greatly depending on the current storage amount, depending on the travel speed and the required travel power. For example, it may be possible to reach the same destination by traveling on a general road at a low speed, but when driving on a highway and traveling at a high speed, energy may be exhausted.
 特開2008-174019号公報に記載されたような、ECOマークの点灯/消灯によって運転者に現在の走行状態が経済運転状態であるか否かを報知する技術も考えられる。しかし、これでは現在の走行状態が経済運転状態ではない場合に、どのような走行をすれば走行状態が経済運転状態となるのかが分かりづらい。また、経済運転状態で走行したとしても目的地にたどり着けるか否かが分からない。 As described in Japanese Patent Application Laid-Open No. 2008-174019, a technique for informing the driver whether or not the current driving state is an economic driving state by turning on / off the ECO mark is also conceivable. However, in this case, it is difficult to understand what kind of travel is performed when the current travel state is not the economic operation state. Moreover, even if the vehicle is driven in an economic driving state, it is not known whether or not the destination can be reached.
 この発明の目的は、目的地に到達するために適切な運転状態についての情報を運転者に提供することができる表示システムおよびそれを備える車両を提供することである。 An object of the present invention is to provide a display system that can provide a driver with information about an appropriate driving state in order to reach a destination, and a vehicle including the display system.
 この発明は、要約すると、電動車両の表示システムであって、電動車両は、蓄電装置と、蓄電装置から電力を受けて走行駆動力を発生する電動機とを含み、表示システムは、乗員に車両の情報を表示するための表示装置と、電動車両が走行する距離に関連するパラメータに応じて、車両の走行距離を確保するために設定される推奨走行領域の内外を分ける境界値を表示装置に表示させる制御装置とを含む。 In summary, the present invention provides a display system for an electric vehicle, the electric vehicle including a power storage device and an electric motor that receives electric power from the power storage device and generates a driving force for driving. A display device for displaying information and a boundary value for separating the inside and outside of the recommended travel area set for securing the travel distance of the vehicle according to the parameter related to the distance traveled by the electric vehicle is displayed on the display device. And a control device.
 好ましくは、パラメータは、電動車両の目的地までの距離を含む。制御装置は、目的地までの距離に応じて境界値を設定する。 Preferably, the parameter includes the distance to the destination of the electric vehicle. The control device sets the boundary value according to the distance to the destination.
 好ましくは、パラメータは、蓄電装置の充電状態を含む。制御装置は、蓄電装置の充電状態に応じて境界値を設定する。 Preferably, the parameter includes a state of charge of the power storage device. The control device sets the boundary value according to the state of charge of the power storage device.
 好ましくは、パラメータは、蓄電装置の充電状態と、電動車両の目的地までの距離とを含む。制御装置は、蓄電装置の充電状態と電動車両の目的地までの距離とに応じて境界値を設定する。 Preferably, the parameters include the state of charge of the power storage device and the distance to the destination of the electric vehicle. The control device sets a boundary value according to the state of charge of the power storage device and the distance to the destination of the electric vehicle.
 より好ましくは、推奨走行領域は、車速について定められ、境界値は、充電状態である蓄電装置によって距離を走行することが可能な上限速度を示す。 More preferably, the recommended travel area is determined with respect to the vehicle speed, and the boundary value indicates an upper limit speed at which the power storage device in a charged state can travel a distance.
 さらに好ましくは、表示装置は、現在の車速と境界値とを同時に視認可能な態様で表示する。 More preferably, the display device displays the current vehicle speed and the boundary value in a manner that can be viewed at the same time.
 さらに好ましくは、推奨走行領域は、パワーについて定められ、境界値は、充電状態である蓄電装置によって距離を走行する場合に、出力可能な上限パワーを示す。 More preferably, the recommended travel area is determined with respect to power, and the boundary value indicates an upper limit power that can be output when traveling a distance by a power storage device in a charged state.
 さらに好ましくは、表示装置は、現在の出力パワーと境界値とを同時に視認可能な態様で表示する。 More preferably, the display device displays the current output power and the boundary value in a manner that can be viewed simultaneously.
 より好ましくは、制御装置は、走行による蓄電装置の充電状態の変化と、走行による電動車両の目的地までの距離の変化とに基づいて、境界値を更新して表示装置に表示させる。 More preferably, the control device updates the boundary value based on the change in the state of charge of the power storage device due to traveling and the change in the distance to the destination of the electric vehicle due to traveling, and causes the display device to display the boundary value.
 この発明は他の局面では、上記いずれかのの表示システムを備える電動車両である。 In another aspect, the present invention is an electric vehicle including any one of the display systems described above.
 本発明によれば、目的地に到達するために適切な運転状態についての情報を運転者に提供することができ、運転者がこれを参考にして運転を行なうことによって、途中で充電を行なわなくても目的地に到達できる可能性が高まる。 According to the present invention, it is possible to provide the driver with information on an appropriate driving state in order to reach the destination, and the driver performs driving with reference to this, so that charging is not performed on the way. However, the possibility of reaching the destination increases.
本発明の実施の形態に係る電動車両の全体ブロック図である。1 is an overall block diagram of an electric vehicle according to an embodiment of the present invention. 図1に示したECU50の機能ブロック図である。It is a functional block diagram of ECU50 shown in FIG. 図1のECU50が実行する電力消費率(電費)の学習についての制御を説明するためのフローチャートである。It is a flowchart for demonstrating control about the learning of the power consumption rate (electricity cost) which ECU50 of FIG. 1 performs. 走行時における、車速および電力消費率の変化の一例を示した図である。It is the figure which showed an example of the change of the vehicle speed and the power consumption rate at the time of driving | running | working. 電力消費率-車速マップの一例を示した図である。It is the figure which showed an example of the power consumption rate-vehicle speed map. 走行可能距離と車速の関係を示すマップの更新処理について説明するためのフローチャートである。It is a flowchart for demonstrating the update process of the map which shows the relationship between a driving | running | working possible distance and a vehicle speed. 走行可能距離-車速マップの一例を示した図である。FIG. 6 is a diagram showing an example of a travelable distance-vehicle speed map. 表示装置に表示させる上限車速についての情報を生成する処理について説明するためのフローチャートである。It is a flowchart for demonstrating the process which produces | generates the information about the upper limit vehicle speed displayed on a display apparatus. マップから上限車速Kmaxを決定することを説明するための図である。It is a figure for demonstrating determining the upper limit vehicle speed Kmax from a map. SOCが変化したときの上限車速Kmaxの変化について説明するための図である。It is a figure for demonstrating the change of the upper limit vehicle speed Kmax when SOC changes. 車速メータ上に上限車速を表示した第1の表示例を示す図である。It is a figure which shows the 1st example of a display which displayed the upper limit vehicle speed on the vehicle speed meter. 車速メータ上に上限車速を表示した第2の表示例を示す図である。It is a figure which shows the 2nd display example which displayed the upper limit vehicle speed on the vehicle speed meter. 表示装置に表示させる上限パワーについての情報を生成する処理について説明するためのフローチャートである。It is a flowchart for demonstrating the process which produces | generates the information about the upper limit power displayed on a display apparatus. パワーメータ上に上限パワーを表示した表示例を示す図である。It is a figure which shows the example of a display which displayed the upper limit power on the power meter.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一の符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 図1は、本発明の実施の形態に係る電動車両の全体ブロック図である。
 図1を参照して、電動車両100は、蓄電装置10と、インバータ20と、モータジェネレータ30と、駆動輪35とを含む。電動車両100は、さらに、電圧センサ42と、電流センサ44と、温度センサ46と、車輪速センサ37と、電子制御装置(以下「ECU:Electric Control Unit」と称する)50と、表示装置60とを含む。
FIG. 1 is an overall block diagram of an electric vehicle according to an embodiment of the present invention.
Referring to FIG. 1, electrically powered vehicle 100 includes a power storage device 10, an inverter 20, a motor generator 30, and drive wheels 35. The electric vehicle 100 further includes a voltage sensor 42, a current sensor 44, a temperature sensor 46, a wheel speed sensor 37, an electronic control device (hereinafter referred to as “ECU: Electric Control Unit”) 50, and a display device 60. including.
 蓄電装置10は、車両を走行させるための電力を蓄える直流電源である。蓄電装置10は、たとえば、ニッケル水素、リチウムイオンなどの二次電池を含んで構成される。蓄電装置10は、図示されない充電器を用いて車両外部の電源によって充電される。また、電動車両100の制動時や下り斜面での加速度低減時にも、モータジェネレータ30によって発電される電力がインバータ20を経由して蓄電装置10に充電される。 The power storage device 10 is a DC power source that stores electric power for running the vehicle. The power storage device 10 includes, for example, a secondary battery such as nickel metal hydride or lithium ion. The power storage device 10 is charged by a power source outside the vehicle using a charger (not shown). In addition, the electric power generated by the motor generator 30 is charged to the power storage device 10 via the inverter 20 also when the electric vehicle 100 is braked or when the acceleration on the down slope is reduced.
 また蓄電装置10は、蓄えられた電力をインバータ20に出力する。インバータ20は、ECU50からの信号PWIに基づいて、蓄電装置10から供給される直流電力を三相交流に変換してモータジェネレータ30へ出力し、モータジェネレータ30を駆動する。 The power storage device 10 outputs the stored power to the inverter 20. Inverter 20 converts DC power supplied from power storage device 10 into three-phase AC based on signal PWI from ECU 50 and outputs the same to motor generator 30 to drive motor generator 30.
 電動車両100の制動時等には、インバータ20は、モータジェネレータ30により発電される三相交流電力を信号PWIに基づいて直流に変換し、蓄電装置10へ出力する。インバータ20は、たとえば、三相分のスイッチング素子を含む三相PWMインバータによって構成される。 When the electric vehicle 100 is braked, the inverter 20 converts the three-phase AC power generated by the motor generator 30 into DC based on the signal PWI and outputs the DC power to the power storage device 10. Inverter 20 is configured by a three-phase PWM inverter including switching elements for three phases, for example.
 モータジェネレータ30は、力行動作および回生動作可能な電動発電機である。モータジェネレータ30は、たとえば、ロータに永久磁石が埋設された三相交流同期電動発電機によって構成される。モータジェネレータ30は、インバータ20によって駆動され、走行用の駆動トルクを発生して駆動輪35を駆動する。また、電動車両100の制動時等には、モータジェネレータ30は、電動車両100の有する運動エネルギを駆動輪35から受けて発電を行なう。 The motor generator 30 is a motor generator capable of a power running operation and a regenerative operation. The motor generator 30 is configured by, for example, a three-phase AC synchronous motor generator in which a permanent magnet is embedded in a rotor. The motor generator 30 is driven by the inverter 20 and generates driving torque for driving to drive the driving wheels 35. In addition, when the electric vehicle 100 is braked, the motor generator 30 receives the kinetic energy of the electric vehicle 100 from the drive wheels 35 and generates electric power.
 電圧センサ42は、蓄電装置10の電圧VBを検出し、その検出値をECU50へ出力する。電流センサ44は、蓄電装置10に入出力される電流IBを検出し、その検出値をECU50へ出力する。温度センサ46は、蓄電装置10の温度TBを検出し、その検出値をECU50へ出力する。車輪速センサ37は、駆動輪35の回転角に伴い発生するパルスを出力する。このパルスの数をECU50が数えて走行距離Lおよび車速を計算することができる。なお、車輪速センサ37に代えてモータジェネレータ30の回転数を検出することによって移動距離や車速を求めるようにしても良い。 Voltage sensor 42 detects voltage VB of power storage device 10 and outputs the detected value to ECU 50. Current sensor 44 detects current IB input to and output from power storage device 10 and outputs the detected value to ECU 50. Temperature sensor 46 detects temperature TB of power storage device 10 and outputs the detected value to ECU 50. The wheel speed sensor 37 outputs a pulse generated with the rotation angle of the drive wheel 35. The ECU 50 can count the number of pulses to calculate the travel distance L and the vehicle speed. Note that the moving distance and the vehicle speed may be obtained by detecting the rotational speed of the motor generator 30 instead of the wheel speed sensor 37.
 ECU50は、電圧センサ42、電流センサ44および温度センサ46からそれぞれ電圧VB、電流IBおよび温度TBの検出値を受ける。そして、ECU50は、インバータ20を駆動するためのPWM信号を生成し、その生成されたPWM信号を信号PWIとしてインバータ20へ出力する。 ECU 50 receives detected values of voltage VB, current IB, and temperature TB from voltage sensor 42, current sensor 44, and temperature sensor 46, respectively. Then, ECU 50 generates a PWM signal for driving inverter 20 and outputs the generated PWM signal to inverter 20 as signal PWI.
 また、ECU50は、電圧VBおよび電流IBの各検出値に基づいて、蓄電装置10のSOC(State Of Charge:充電状態、残存容量、蓄電量とも言う)を算出する。SOCの算出方法としては、蓄電装置10の開回路電圧(OCV:Open Circuit Voltage)とSOCとの関係を用いて算出する方法や、電流IBの積算値を用いて算出する方法等、種々の公知の手法を用いることができる。 Further, the ECU 50 calculates the SOC (State Of Charge: also referred to as a state of charge, a remaining capacity, and a storage amount) of the power storage device 10 based on the detected values of the voltage VB and the current IB. As a calculation method of the SOC, there are various known methods such as a calculation method using the relationship between the open circuit voltage (OCV) of the power storage device 10 and the SOC and a calculation method using the integrated value of the current IB. Can be used.
 表示装置60は、ECU50からの信号DISPに基づいて、車両起動時や走行中に、現在の蓄電装置10の蓄電量を使用して走行することが可能な距離に関する情報を表示する。この情報には、適切な車速範囲または車速上限値、適切なパワーの範囲またはパワー上限値などが含まれる。 The display device 60 displays information on a distance that can be traveled using the current power storage amount of the power storage device 10 when the vehicle is started or during travel based on the signal DISP from the ECU 50. This information includes an appropriate vehicle speed range or vehicle speed upper limit value, an appropriate power range or power upper limit value, and the like.
 図2は、図1に示したECU50の機能ブロック図である。なお、図2では、表示装置60の表示制御に関連する部分の機能のみが示される。 FIG. 2 is a functional block diagram of the ECU 50 shown in FIG. In FIG. 2, only the functions of the portions related to the display control of the display device 60 are shown.
 図2を参照して、ECU50は、SOC算出部110と、消費電力検出部120と、車速検出部130と、表示制御部140と、記憶部150と、走行予定距離検出部160とを含む。 Referring to FIG. 2, ECU 50 includes an SOC calculation unit 110, a power consumption detection unit 120, a vehicle speed detection unit 130, a display control unit 140, a storage unit 150, and a planned travel distance detection unit 160.
 SOC算出部110は、蓄電装置10の電圧VBおよび電流IBの各検出値に基づいて、蓄電装置10のSOCを算出し、その算出値SCを表示制御部140に出力する。なお、SOCの算出には、蓄電装置10のOCVとSOCとの関係を用いて算出する方法や、電流IBの積算値を用いて算出する方法等、種々の公知の手法を用いることができる。 The SOC calculation unit 110 calculates the SOC of the power storage device 10 based on the detected values of the voltage VB and the current IB of the power storage device 10, and outputs the calculated value SC to the display control unit 140. For calculating the SOC, various known methods such as a method of calculating using the relationship between the OCV and the SOC of the power storage device 10 and a method of calculating using the integrated value of the current IB can be used.
 消費電力検出部120は、電圧VBの検出値および電流IBの検出値を受けて、これらを乗算することにより消費電力を算出し記憶部150に記憶させる。車速検出部130は、車輪速センサ37からの信号Lに基づいて車速を検出し、消費電力検出部120で求められた消費電力とともに記憶部150に記憶させる。 The power consumption detection unit 120 receives the detection value of the voltage VB and the detection value of the current IB, calculates the power consumption by multiplying them, and stores the power consumption in the storage unit 150. The vehicle speed detection unit 130 detects the vehicle speed based on the signal L from the wheel speed sensor 37 and stores it in the storage unit 150 together with the power consumption obtained by the power consumption detection unit 120.
 走行予定距離検出部160は、例えば図示しないカーナビゲーション装置から、目的地までの距離Dを取得し、記憶部150に記憶させる。 The scheduled travel distance detection unit 160 acquires the distance D to the destination from a car navigation device (not shown), for example, and stores it in the storage unit 150.
 表示制御部140は、車両が起動したことを示す信号IGONや、一定時間ごとに発生されるトリガー信号に応じて、記憶部150から車速と消費電力との関係を示す情報や、目的地までの距離Dを示す情報を読出す。そして、表示制御部140は、この情報とSOC算出部110から与えられるSOCとに基づいて、追加の充電をせずに目的地に到達するために最適な走行距離や走行パワーについての情報を表示装置60に表示させるための制御信号DISPを出力する。 The display control unit 140 receives information indicating the relationship between the vehicle speed and the power consumption from the storage unit 150 according to a signal IGON indicating that the vehicle has started, or a trigger signal generated at regular time intervals, Information indicating the distance D is read. Based on this information and the SOC given from the SOC calculation unit 110, the display control unit 140 displays information on the optimum travel distance and travel power for reaching the destination without additional charging. A control signal DISP for display on the device 60 is output.
 図3は、図1のECU50が実行する電力消費率(電費)の学習についての制御を説明するためのフローチャートである。なお電力消費率は電費とも呼ばれ、一定の距離をどれだけの電力で走れるかを示す指標であり、(Wh/km)が単位である。 FIG. 3 is a flowchart for explaining the control of learning of the power consumption rate (electric cost) executed by the ECU 50 of FIG. The power consumption rate is also referred to as a power consumption, and is an index indicating how much power can be traveled over a certain distance, and (Wh / km) is a unit.
 図4は、走行時における、車速および電力消費率の変化の一例を示した図である。
 図3、図4を参照して、まず処理が開始されるとステップS1において、ECU50は、車輪速センサ37の出力に基づき走行距離Lおよび車速Kを取得しまたは計算し、電圧センサ42および電流センサ44の検出値に基づいて消費電力P(=IB×VB)の取得または演算を行なう。
FIG. 4 is a diagram showing an example of changes in vehicle speed and power consumption rate during traveling.
Referring to FIGS. 3 and 4, when the process is started, in step S <b> 1, ECU 50 obtains or calculates travel distance L and vehicle speed K based on the output of wheel speed sensor 37, voltage sensor 42 and current. Based on the detection value of the sensor 44, the power consumption P (= IB × VB) is obtained or calculated.
 続いてECU50は、走行区間または走行時間当たりの電力消費率(Wh/km)の算出を行なう。 Subsequently, the ECU 50 calculates a power consumption rate (Wh / km) per traveling section or traveling time.
 図4において、時刻0~t1の間車速の平均値K1に対し電費の平均値P1が算出される。同様に各走行区間において車速の平均値K2~K8に対応して電費の平均値P2~P8が求められる。なお、各走行区間の区切りは、一定の走行時間ごとであっても良いし、一定の走行距離ごとであっても良い。 In FIG. 4, the average value P1 of the electric power consumption is calculated with respect to the average value K1 of the vehicle speed from time 0 to t1. Similarly, average values P2 to P8 of power consumption are obtained corresponding to the average values K2 to K8 of the vehicle speed in each traveling section. In addition, the division | segmentation of each driving | running | working area may be for every fixed driving time, and may be for every fixed driving distance.
 図5は、電力消費率-車速マップの一例を示した図である。
 図5において、縦軸に電力消費率(Wh/km)、横軸に車速(km/h)がプロットされる。たとえば時刻t1までの走行が終了すると、車速K1と電力消費率P1のデータが図5の座標平面上にプロットされる。そして図3のステップS4においてトリップエンドであるか否かが判断される。トリップとは車両の移動の単位を意味し、たとえば通勤時ならば、朝に車両を起動し移動し通勤先に到着し車両から降りたという1移動を1トリップという。またトリップエンドとは、車両を起動した後に移動し車両をオフ状態にしたことをいう。
FIG. 5 is a diagram showing an example of the power consumption rate-vehicle speed map.
In FIG. 5, the power consumption rate (Wh / km) is plotted on the vertical axis, and the vehicle speed (km / h) is plotted on the horizontal axis. For example, when the traveling up to time t1 is completed, data of the vehicle speed K1 and the power consumption rate P1 are plotted on the coordinate plane of FIG. Then, in step S4 of FIG. 3, it is determined whether or not the trip end has occurred. A trip means a unit of movement of a vehicle. For example, in the case of commuting, one trip in which the vehicle is started and moved in the morning, arrives at the commuting destination and gets off the vehicle is called one trip. The trip end means that the vehicle is moved after being started and the vehicle is turned off.
 まだトリップエンドでなければ、再びステップS1~S3の処理が実行される。そしてこのようにステップS1~S3の処理が繰返されることにより、図5の座標平面上に車速K2~K8に対応する電力消費率P2~P8がプロットされていく。そしてステップS4においてトリップエンドであると判断された場合には、ステップS5に処理が進む。 If it is not yet a trip end, steps S1 to S3 are executed again. By repeating the processing of steps S1 to S3 in this way, power consumption rates P2 to P8 corresponding to the vehicle speeds K2 to K8 are plotted on the coordinate plane of FIG. If it is determined in step S4 that the trip has ended, the process proceeds to step S5.
 ステップS5においては、電力消費率-車速マップの修正が行なわれる。図5において、新たにプロットに追加された点を最小二乗法など公知の近似法によって処理して1本のグラフを引く。そしてこれが記憶部150に記憶される。その後トリップが終了したとして処理はステップS6において終了する。なお、電力消費率と車速のデータを記憶しておいて、車両起動時にグラフを求めるのでも良い。 In step S5, the power consumption rate-vehicle speed map is corrected. In FIG. 5, a point newly added to the plot is processed by a known approximation method such as a least square method to draw one graph. This is stored in the storage unit 150. Thereafter, assuming that the trip has ended, the process ends in step S6. It is also possible to store the power consumption rate and vehicle speed data and obtain the graph when the vehicle is started.
 図6は、走行可能距離と車速の関係を示すマップの更新処理について説明するためのフローチャートである。このフローチャートの処理は所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。 FIG. 6 is a flowchart for explaining a map update process indicating the relationship between the travelable distance and the vehicle speed. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
 図6を参照して、まず処理が開始されると、ステップS11においてECU50は、蓄電装置10の蓄電量を取得する。これは、図2のSOC算出部110が、前回走行時の終了時に記憶部150に記憶させておいたものを読出すなどされる。そして、さらにこのSOC(%)を使用可能電力量(Wh)に変換する。 Referring to FIG. 6, when the process is first started, ECU 50 acquires the amount of power stored in power storage device 10 in step S <b> 11. For example, the SOC calculation unit 110 shown in FIG. 2 reads what is stored in the storage unit 150 at the end of the previous run. Further, this SOC (%) is converted into usable electric energy (Wh).
 続いてステップS12において、ECU50は、算出された使用可能な電力量と、図5で得られた車速ごとの電力消費率とを使用して、車速ごとの走行可能距離を算出し、走行可能距離-車速マップを更新する。マップの更新が終了するとステップS13において制御はメインルーチンに戻される。 Subsequently, in step S12, the ECU 50 calculates the travelable distance for each vehicle speed using the calculated usable electric energy and the power consumption rate for each vehicle speed obtained in FIG. -Update the vehicle speed map. When the map update is completed, control is returned to the main routine in step S13.
 図7は、走行可能距離-車速マップの一例を示した図である。
 図7を参照して、縦軸に追加充電などのエネルギ補給なしで走行可能な距離(km)、横軸に車速(km/h)が示される。SOCがA1である場合のマップMAP1と、SOCがA2である場合のマップMAP2とが示されている。なおA2<A1である。
FIG. 7 is a diagram showing an example of a travelable distance-vehicle speed map.
Referring to FIG. 7, the vertical axis indicates the distance (km) that can be traveled without energy supply such as additional charging, and the horizontal axis indicates the vehicle speed (km / h). A map MAP1 when the SOC is A1 and a map MAP2 when the SOC is A2 are shown. A2 <A1.
 マップMAP1,MAP2は、どちらも車速が高くなるほど走行可能距離が減少している。すなわち、高車速で走行すると、電力消費率が悪化するため、走行可能距離は大幅に低減してしまう。 In both maps MAP1 and MAP2, the possible travel distance decreases as the vehicle speed increases. That is, when the vehicle travels at a high vehicle speed, the power consumption rate deteriorates, and the travelable distance is greatly reduced.
 そして、蓄電装置10のSOCがA1である状態からしばらく走行して、蓄電装置10のSOCがA2に低下すると、マップMAP1からマップMAP2にマップが更新される。 Then, after traveling for a while from the state where the SOC of the power storage device 10 is A1, the map is updated from the map MAP1 to the map MAP2 when the SOC of the power storage device 10 decreases to A2.
 図8は、表示装置に表示させる上限車速についての情報を生成する処理について説明するためのフローチャートである。このフローチャートの処理は所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。 FIG. 8 is a flowchart for explaining processing for generating information on the upper limit vehicle speed to be displayed on the display device. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
 図8を参照して、まず処理が開始されると、ステップS21においてECU50は、目的地までの残距離を算出する。この残距離としては、例えばカーナビゲーション装置から、図2の走行予定距離検出部が取得し記憶部150に記憶させた距離Dを用いることができる。 Referring to FIG. 8, when the process is started, ECU 50 calculates the remaining distance to the destination in step S21. As the remaining distance, for example, the distance D acquired by the planned travel distance detection unit in FIG. 2 and stored in the storage unit 150 from the car navigation device can be used.
 続いて、ステップS21において、ECU50は、図7で説明した走行可能距離-車速マップから、追加充電せずに目的地に到達するための上限車速Kmaxを算出する。 Subsequently, in step S21, the ECU 50 calculates an upper limit vehicle speed Kmax for reaching the destination without additional charging from the travelable distance-vehicle speed map described in FIG.
 図9は、マップから上限車速Kmaxを決定することを説明するための図である。
 図9を参照して、目的地までの距離に対応するように、横軸に平行な直線をマップ上に引けば、その交点の座標から上限車速Kmaxを求めることができる。
FIG. 9 is a diagram for explaining the determination of the upper limit vehicle speed Kmax from the map.
Referring to FIG. 9, if a straight line parallel to the horizontal axis is drawn on the map so as to correspond to the distance to the destination, upper limit vehicle speed Kmax can be obtained from the coordinates of the intersection.
 図10は、SOCが変化したときの上限車速Kmaxの変化について説明するための図である。 FIG. 10 is a diagram for explaining a change in the upper limit vehicle speed Kmax when the SOC changes.
 図10を参照して、当初はマップがマップMAP1であり、上限車速がKmaxであったとする。 Referring to FIG. 10, it is assumed that the map is initially map MAP1 and the upper limit vehicle speed is Kmax.
 上限車速Kmaxを守って走行した結果、時間の経過とともにSOCが低下した場合には、マップはマップMAP1からマップMAP2に更新される。このとき目的地までの距離も走行して短くなっているので、距離に対応する横線も下方に移動している。その結果、交点の座標から得られた上限車速Kmax2は、マップ更新前の上限車速Kmaxとほぼ等しくなる。 As a result of traveling while maintaining the upper limit vehicle speed Kmax, if the SOC decreases with time, the map is updated from the map MAP1 to the map MAP2. At this time, since the distance to the destination has also decreased due to running, the horizontal line corresponding to the distance has also moved downward. As a result, the upper limit vehicle speed Kmax2 obtained from the coordinates of the intersection is substantially equal to the upper limit vehicle speed Kmax before the map update.
 しかし、上限車速Kmaxよりも高い車速で走行してしまった場合は、距離の短縮に対してSOCの低下の割合が大きくなってしまう。この場合には、マップはマップMAP1からマップMAP3に更新される。そして上限車速Kmax3が交点から得られる。この上限車速Kmax3は、更新前の上限車速Kmaxよりも低くなる。 However, when the vehicle travels at a vehicle speed higher than the upper limit vehicle speed Kmax, the rate of decrease in SOC increases with a decrease in distance. In this case, the map is updated from the map MAP1 to the map MAP3. The upper limit vehicle speed Kmax3 is obtained from the intersection. The upper limit vehicle speed Kmax3 is lower than the upper limit vehicle speed Kmax before update.
 再び図8を参照して、ステップS22において図10で説明したように上限車速Kmaxが求められた後には、ステップS23において車速メータ上に上限車速Kmaxが表示され、ステップS24において制御はメインルーチンに戻される。 Referring to FIG. 8 again, after the upper limit vehicle speed Kmax is obtained in step S22 as described in FIG. 10, the upper limit vehicle speed Kmax is displayed on the vehicle speed meter in step S23, and in step S24, the control is performed by the main routine. Returned.
 図11は、車速メータ上に上限車速を表示した第1の表示例を示す図である。
 図11に示される例では、車速Kを示す指針の先端が移動する軌跡に沿った帯状の背景領域の色が変更可能に構成されている。そしてその背景領域は、車速0~Kmaxを示す部分の色と、車速Kmaxより高い車速を示す部分の色が異なるように表示される。境界値として上限車速Kmaxが識別できればどのような表示でもかまわないが、好ましくは、車速0~Kmaxを示す部分の色よりも、車速Kmaxより高い車速を示す部分の色を薄く表示すると良い。また、車速0~Kmaxを示す部分の色をグリーンとし、車速Kmaxより高い車速を示す部分の色をレッドにするなどして色を変えても良い。
FIG. 11 is a diagram showing a first display example in which the upper limit vehicle speed is displayed on the vehicle speed meter.
In the example shown in FIG. 11, the color of the band-shaped background region along the locus along which the tip of the pointer indicating the vehicle speed K moves is configured to be changeable. The background area is displayed so that the color of the portion indicating the vehicle speed 0 to Kmax is different from the color of the portion indicating the vehicle speed higher than the vehicle speed Kmax. Any display may be used as long as the upper limit vehicle speed Kmax can be identified as the boundary value. However, it is preferable that the color of the portion showing the vehicle speed higher than the vehicle speed Kmax is displayed lighter than the color of the portion showing the vehicle speed 0 to Kmax. Alternatively, the color may be changed by changing the color of the portion showing the vehicle speed 0 to Kmax to green and changing the color of the portion showing the vehicle speed higher than the vehicle speed Kmax to red.
 図12は、車速メータ上に上限車速を表示した第2の表示例を示す図である。
 図12に示される例は、デジタル表示で車速Kを表示するものである。この例では、大きな数字で現在の車速Kとして36km/hが表示され、その脇に小さな数字で上限車速Kmaxとして70km/hが表示されている。
FIG. 12 is a diagram showing a second display example in which the upper limit vehicle speed is displayed on the vehicle speed meter.
The example shown in FIG. 12 displays the vehicle speed K in a digital display. In this example, 36 km / h is displayed as the current vehicle speed K with a large number, and 70 km / h is displayed as the upper limit vehicle speed Kmax with a small number beside it.
 表示装置は、現在の車速と上限車速を示す境界値とを同時に視認可能な態様で表示することが好ましい。これにより、運転者はアクセルペダルの踏み具合を調節して上限車速を超えないように走行することが容易となる。 It is preferable that the display device displays the current vehicle speed and the boundary value indicating the upper limit vehicle speed in a manner that can be viewed simultaneously. As a result, the driver can easily travel so as not to exceed the upper limit vehicle speed by adjusting the degree of depression of the accelerator pedal.
 以上、上限車速Kmaxを現在の車速Kと同時に視認可能な態様で表示装置に表示させる例を説明した。なお、上限車速に代えて、または上限車速に加えて、現在の出力パワーと上限の出力パワーとを表示装置に表示させても良い。 In the foregoing, the example in which the upper limit vehicle speed Kmax is displayed on the display device in a manner that can be viewed simultaneously with the current vehicle speed K has been described. Instead of the upper limit vehicle speed or in addition to the upper limit vehicle speed, the current output power and the upper limit output power may be displayed on the display device.
 図13は、表示装置に表示させる上限パワーについての情報を生成する処理について説明するためのフローチャートである。このフローチャートの処理は所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。 FIG. 13 is a flowchart for explaining a process of generating information about the upper limit power to be displayed on the display device. The process of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
 図13を参照して、まず処理が開始されると、ステップS31においてECU50は、目的地までの残距離と、図8の処理で求めた上限車速Kmaxとに基づいて、目的地に到着するための走行時間を算出する。単純な例では、距離Dを上限車速Kmaxで除算すれば走行時間を求めることができる。 Referring to FIG. 13, when the process is started, in step S31, ECU 50 arrives at the destination based on the remaining distance to the destination and upper limit vehicle speed Kmax obtained in the process of FIG. The travel time is calculated. In a simple example, the travel time can be obtained by dividing the distance D by the upper limit vehicle speed Kmax.
 そして、ステップS32においてECU50は、現在のSOCとステップS31で求めた走行時間から上限パワーPmaxを算出する。単純な例では、SOCに対応する使用可能電力量(Wh)を走行時間(h)で除算すれば上限パワーPmax(W)が算出できる。 In step S32, the ECU 50 calculates the upper limit power Pmax from the current SOC and the travel time obtained in step S31. In a simple example, the upper limit power Pmax (W) can be calculated by dividing the available electric energy (Wh) corresponding to the SOC by the travel time (h).
 ステップS33においてECU50は、ステップS32で算出した上限パワーPmaxをパワーメータ上に表示させる。そしてステップS34において制御はメインルーチンに戻される。 In step S33, the ECU 50 displays the upper limit power Pmax calculated in step S32 on the power meter. In step S34, control is returned to the main routine.
 図14は、パワーメータ上に上限パワーを表示した表示例を示す図である。
 図14に示される例では、出力パワーPを示す指針の先端が移動する軌跡に沿った帯状の背景領域の色が変更可能に構成されている。そしてその背景領域は、出力パワー0~Pmaxを示す部分の色と、上限パワーPmaxより高い出力パワーを示す部分の色が異なるように表示される。境界値として上限パワーPmaxが識別できればどのような表示でもかまわないが、好ましくは、出力パワー0~Pmaxを示す部分の色よりも、Pmaxより高い出力パワーを示す部分の色を薄く表示すると良い。また、出力パワーが0~Pmaxを示す背景部分の色をグリーンとし、出力パワーがPmaxより高いことを示す背景部分の色をレッドにするなど色を変えても良い。
FIG. 14 is a diagram showing a display example in which the upper limit power is displayed on the power meter.
In the example shown in FIG. 14, the color of the band-shaped background region along the locus along which the tip of the pointer indicating the output power P moves is configured to be changeable. The background area is displayed so that the color of the portion showing the output power 0 to Pmax is different from the color of the portion showing the output power higher than the upper limit power Pmax. Any display may be used as long as the upper limit power Pmax can be identified as the boundary value, but it is preferable that the color of the portion showing the output power higher than Pmax is displayed lighter than the color of the portion showing the output power 0 to Pmax. Alternatively, the color of the background portion where the output power is 0 to Pmax may be changed to green, and the color of the background portion indicating that the output power is higher than Pmax may be changed to red.
 図14では、アナログ指針が文字盤の記された背景の上を移動する例を示したが、図12に示したような車速のおよび上限車速のデジタル表示をパワーおよび上限パワーのデジタル表示に変えたものであっても良い。 FIG. 14 shows an example in which the analog pointer moves on the background with the dial. However, the digital display of the vehicle speed and the upper limit vehicle speed as shown in FIG. 12 is changed to the digital display of the power and the upper limit power. It may be.
 表示装置は、現在の出力パワーと上限パワーを示す境界値とを同時に視認可能な態様で表示することが好ましい。これにより、運転者はアクセルペダルの踏み具合を調節して上限パワーを超えないように走行することが容易となる。 It is preferable that the display device displays the current output power and the boundary value indicating the upper limit power in a manner that can be viewed simultaneously. As a result, the driver can easily travel so as not to exceed the upper limit power by adjusting the degree of depression of the accelerator pedal.
 以上説明したように、本実施の形態によれば、車速や走行パワーの増加を運転者が抑制することが可能な表示を行なうことで、車速や走行パワーが大きくなると効率が悪化する車両を運転者が効率よく走らせることが期待でき、追加充電をせずに目的地に到達できる可能性が高まる。 As described above, according to the present embodiment, a display that allows the driver to suppress an increase in vehicle speed or traveling power is displayed, so that a vehicle whose efficiency decreases as the vehicle speed or traveling power increases is driven. It can be expected that the rider can run efficiently, and the possibility of reaching the destination without additional charging is increased.
 なお、上限車速や上限パワーの算出については、本実施の形態で説明した算出方法の途中の過程において適切なマージンを設定して決定しても良く、また他の方法で算出してもよい。 The calculation of the upper limit vehicle speed and the upper limit power may be determined by setting an appropriate margin in the course of the calculation method described in the present embodiment, or may be calculated by another method.
 また、本実施の形態ではSOCと目的地までの距離とに応じて表示される境界値を変更する例を説明したが、必ずしも目的地までの距離を考慮する必要はなく、SOCが所定の低レベル状態になった時には推奨走行領域の境界値を低下させて、走行可能距離を確保するようにしてもよい。 Further, in the present embodiment, the example in which the boundary value displayed according to the SOC and the distance to the destination is changed has been described, but it is not always necessary to consider the distance to the destination, and the SOC is a predetermined low value. When the level state is reached, the boundary value of the recommended travel area may be lowered to ensure the travelable distance.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 蓄電装置、20 インバータ、30 モータジェネレータ、35 駆動輪、37 車輪速センサ、42 電圧センサ、44 電流センサ、46 温度センサ、60 表示装置、100 電動車両、110 SOC算出部、120 消費電力検出部、130 車速検出部、140 表示制御部、150 記憶部、160 走行予定距離検出部。 10 power storage device, 20 inverter, 30 motor generator, 35 drive wheel, 37 wheel speed sensor, 42 voltage sensor, 44 current sensor, 46 temperature sensor, 60 display device, 100 electric vehicle, 110 SOC calculation unit, 120 power consumption detection unit , 130 vehicle speed detection unit, 140 display control unit, 150 storage unit, 160 planned travel distance detection unit.

Claims (10)

  1.  電動車両の表示システムであって、
     前記電動車両は、
     蓄電装置(10)と、
     前記蓄電装置から電力を受けて走行駆動力を発生する電動機(30)とを含み、
     前記表示システムは、
     乗員に車両の情報を表示するための表示装置(60)と、
     前記電動車両が走行する距離に関連するパラメータに応じて、車両の走行距離を確保するために設定される推奨走行領域の内外を分ける境界値を前記表示装置に表示させる制御装置(50)とを備える、電動車両の表示システム。
    An electric vehicle display system,
    The electric vehicle is
    A power storage device (10);
    An electric motor (30) that receives electric power from the power storage device and generates a driving force,
    The display system includes:
    A display device (60) for displaying vehicle information to the occupant;
    A control device (50) for causing the display device to display a boundary value that divides the inside and outside of the recommended travel area set in order to ensure the travel distance of the vehicle according to a parameter related to the distance traveled by the electric vehicle. A display system for an electric vehicle.
  2.  前記パラメータは、
     前記電動車両の目的地までの距離を含み、
     前記制御装置は、目的地までの距離に応じて前記境界値を設定する、請求項1に記載の電動車両の表示システム。
    The parameter is
    Including the distance to the destination of the electric vehicle,
    The display system for an electric vehicle according to claim 1, wherein the control device sets the boundary value according to a distance to a destination.
  3.  前記パラメータは、
     前記蓄電装置の充電状態を含み、
     前記制御装置は、前記蓄電装置の充電状態に応じて前記境界値を設定する、請求項1に記載の電動車両の表示システム。
    The parameter is
    Including the state of charge of the power storage device,
    The display system for an electric vehicle according to claim 1, wherein the control device sets the boundary value according to a state of charge of the power storage device.
  4.  前記パラメータは、
     前記蓄電装置の充電状態と、
     前記電動車両の目的地までの距離とを含み、
     前記制御装置は、前記蓄電装置の充電状態と前記電動車両の目的地までの距離とに応じて前記境界値を設定する、請求項1に記載の電動車両の表示システム。
    The parameter is
    The state of charge of the power storage device;
    A distance to the destination of the electric vehicle,
    The electric vehicle display system according to claim 1, wherein the control device sets the boundary value according to a state of charge of the power storage device and a distance to a destination of the electric vehicle.
  5.  前記推奨走行領域は、車速について定められ、
     前記境界値は、前記充電状態である前記蓄電装置によって前記距離を走行することが可能な上限速度を示す、請求項2~4のいずれか1項に記載の電動車両の表示システム。
    The recommended travel area is defined for vehicle speed,
    The display system for an electric vehicle according to any one of claims 2 to 4, wherein the boundary value indicates an upper limit speed at which the power storage device in the charged state can travel the distance.
  6.  前記表示装置は、現在の車速と前記境界値とを同時に視認可能な態様で表示する、請求項5に記載の電動車両の表示システム。 6. The display system for an electric vehicle according to claim 5, wherein the display device displays a current vehicle speed and the boundary value in a manner that can be visually recognized simultaneously.
  7.  前記推奨走行領域は、パワーについて定められ、
     前記境界値は、前記充電状態である前記蓄電装置によって前記距離を走行する場合に、出力可能な上限パワーを示す、請求項2~4のいずれか1項に記載の電動車両の表示システム。
    The recommended travel area is defined for power,
    The display system for an electric vehicle according to any one of claims 2 to 4, wherein the boundary value indicates an upper limit power that can be output when the power storage device in the charged state travels the distance.
  8.  前記表示装置は、現在の出力パワーと前記境界値とを同時に視認可能な態様で表示する、請求項7に記載の電動車両の表示システム。 The display system for an electric vehicle according to claim 7, wherein the display device displays the current output power and the boundary value in a manner that can be visually recognized simultaneously.
  9.  前記制御装置は、走行による前記蓄電装置の充電状態の変化と、走行による前記電動車両の目的地までの距離の変化とに基づいて、前記境界値を更新して前記表示装置に表示させる、請求項2~4のいずれか1項に記載の電動車両の表示システム。 The control device updates the boundary value based on a change in a state of charge of the power storage device due to traveling and a change in a distance to the destination of the electric vehicle due to traveling, and causes the display device to display the boundary value. Item 5. The display system for an electric vehicle according to any one of Items 2 to 4.
  10.  請求項1に記載の表示システムを備える電動車両。 An electric vehicle comprising the display system according to claim 1.
PCT/JP2011/053672 2011-02-21 2011-02-21 Display system of electric vehicle and electric vehicle equipped with same WO2012114425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053672 WO2012114425A1 (en) 2011-02-21 2011-02-21 Display system of electric vehicle and electric vehicle equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053672 WO2012114425A1 (en) 2011-02-21 2011-02-21 Display system of electric vehicle and electric vehicle equipped with same

Publications (1)

Publication Number Publication Date
WO2012114425A1 true WO2012114425A1 (en) 2012-08-30

Family

ID=46720246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053672 WO2012114425A1 (en) 2011-02-21 2011-02-21 Display system of electric vehicle and electric vehicle equipped with same

Country Status (1)

Country Link
WO (1) WO2012114425A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773077A (en) * 2014-01-14 2015-07-15 大众汽车有限公司 Display device for a motor vehicle with electric propulsion
JP2018046735A (en) * 2017-02-02 2018-03-22 渡邉 雅弘 Method of travel control to expand drivable distance in electric automobile
JP2018085843A (en) * 2016-11-24 2018-05-31 株式会社豊田自動織機 Driving distance extension system
KR20200017862A (en) * 2018-08-09 2020-02-19 현대자동차주식회사 Optimization method for driving of electric vehicle
WO2023062990A1 (en) * 2021-10-12 2023-04-20 株式会社デンソー Battery management device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233404A (en) * 1993-01-29 1994-08-19 Pfu Ltd Battery-powered traveling vehicle
JPH11187505A (en) * 1997-12-19 1999-07-09 Yamaha Motor Co Ltd Traveling controller for electric-motor vehicle
JP2008206301A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Display device of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233404A (en) * 1993-01-29 1994-08-19 Pfu Ltd Battery-powered traveling vehicle
JPH11187505A (en) * 1997-12-19 1999-07-09 Yamaha Motor Co Ltd Traveling controller for electric-motor vehicle
JP2008206301A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Display device of vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773077A (en) * 2014-01-14 2015-07-15 大众汽车有限公司 Display device for a motor vehicle with electric propulsion
EP2896530A3 (en) * 2014-01-14 2016-03-09 Volkswagen Aktiengesellschaft Display device for a motor vehicle with electric propulsion
JP2018085843A (en) * 2016-11-24 2018-05-31 株式会社豊田自動織機 Driving distance extension system
JP2018046735A (en) * 2017-02-02 2018-03-22 渡邉 雅弘 Method of travel control to expand drivable distance in electric automobile
KR20200017862A (en) * 2018-08-09 2020-02-19 현대자동차주식회사 Optimization method for driving of electric vehicle
KR102575153B1 (en) * 2018-08-09 2023-09-06 현대자동차주식회사 Optimization method for driving of electric vehicle
WO2023062990A1 (en) * 2021-10-12 2023-04-20 株式会社デンソー Battery management device

Similar Documents

Publication Publication Date Title
US9758050B2 (en) Display system for electrically powered vehicle and electrically powered vehicle having the same
JP4906164B2 (en) Map display device, map display method, and computer program
US8942919B2 (en) BEV routing system and method
JP5765194B2 (en) Vehicle and vehicle control method
JP5656736B2 (en) Vehicle and vehicle control method
US20120032637A1 (en) Battery charging control device and battery charging control method for electric vehicle
CN104936828B (en) On-board driving is apart from output device
JP2010169419A (en) Route guidance device, route guidance method and computer program
WO2012114425A1 (en) Display system of electric vehicle and electric vehicle equipped with same
US11660981B2 (en) Fuel cell vehicle and method of control of the same
WO2012066662A1 (en) Display system for electric vehicle and electric vehicle provided therewith
US9043068B2 (en) Display device of electric vehicle
JP5998965B2 (en) Control device for hybrid vehicle
JP6020285B2 (en) Driving support system, driving support method, and computer program
JP2015051685A (en) Energy display device
JP5712941B2 (en) Vehicle and vehicle control method
JP7099350B2 (en) Alarm device for electric vehicles
KR101619492B1 (en) Apparatus and Method for Driving Control Using Route
JP2012222876A (en) Travelable distance calculation apparatus for electric vehicle and the electric vehicle provided with the same
JP2013075562A (en) Electric driving vehicle
JP2015122901A (en) Vehicular display apparatus
JP2021040370A (en) Display device
GB2505665A (en) Residual range display
JP2012249460A (en) Notification system
JP2018039409A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP