WO2012114409A1 - Vacuum device and lubricating oil used therein - Google Patents

Vacuum device and lubricating oil used therein Download PDF

Info

Publication number
WO2012114409A1
WO2012114409A1 PCT/JP2011/006839 JP2011006839W WO2012114409A1 WO 2012114409 A1 WO2012114409 A1 WO 2012114409A1 JP 2011006839 W JP2011006839 W JP 2011006839W WO 2012114409 A1 WO2012114409 A1 WO 2012114409A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation
vacuum
lubricating oil
ionic liquid
anion
Prior art date
Application number
PCT/JP2011/006839
Other languages
French (fr)
Japanese (ja)
Inventor
昌幸 小林
直俊 赤松
橘内 浩之
佐藤 修
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2012114409A1 publication Critical patent/WO2012114409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use

Definitions

  • the present invention relates to a vacuum apparatus and a lubricating oil used therefor.
  • Patent Document 1 describes a composition of a lubricating oil using an ionic liquid (hereinafter referred to as ionic liquid) as a base oil.
  • ionic liquid an ionic liquid
  • lubricants for example, when used in a drive mechanism that operates at high speed, such as semiconductor inspection and SEM (Scanning Electron Microscope) for measurement, the lubricant is slid frequently at high speeds, so a sample of decomposition products The possibility of contamination increases.
  • semiconductor inspection and SEM Sccanning Electron Microscope
  • an object of the present invention is to provide a vacuum apparatus in which the occurrence of contamination from the sliding portion is small in the vacuum apparatus.
  • an ionic liquid having a cation that is hydrophobic and does not have weak interatomic bonds is used as the lubricating oil used in the vacuum apparatus.
  • hydrophobic it does not absorb moisture, and by not having weak interatomic bonds, it is possible to suppress the generation of decomposition products due to the breakage of interatomic bonds.
  • the occurrence of contamination from the lubricating oil in the sliding portion in the vacuum apparatus can be reduced.
  • FIG. 1 is a diagram for explaining an outline of a semiconductor measurement SEM showing an example of the present invention.
  • the control device 1 includes an optical system control device 2, a stage control device 3, and a sample transport based on an acceleration voltage input by an operator from a user interface (not shown), a sample (semiconductor device) above, a measurement position information, a wafer cassette, and the like. Control of the control device 4 and the sample exchange control device 5 is performed.
  • the sample transfer control device 4 that has received a command from the control device 1 controls the transfer robot 8 so that an arbitrary wafer 7 is moved from the wafer cassette 6 to a predetermined position in the load lock chamber (sample exchange chamber). .
  • the sample exchange control device 5 performs control such that the gate valves 10 and 11 open and close in conjunction with the wafer 7 entering and exiting the load lock chamber 9.
  • the sample exchange control device 5 controls a vacuum pump (not shown) that evacuates the load lock chamber 9, and when the gate valve 11 is opened, a vacuum equivalent to the sample chamber 12 is applied to the sample exchange chamber 9. Form with.
  • the wafer 7 entering the sample exchange chamber 9 is sent to the sample chamber 12 via the gate valve 11 and fixed on the stage 13.
  • the load lock chamber 9 and the sample chamber 12 are formed to surround the sample in the vacuum region.
  • the optical system control device 2 controls the high voltage control device 14, the condenser lens control unit 15, the amplifier 16, the deflection signal control unit 17, and the objective lens control 18 in accordance with a command from the control device 1.
  • the electron beam 21 extracted from the electron source 20 by the extraction electrode 19 is focused by the condenser lens 22 and the objective lens 23 and irradiated onto the wafer 7 arranged on the sample stage 13.
  • the electron beam 21 is scanned on the wafer 7 in a unified or two-dimensional manner by the deflector 24 that receives a signal from the deflection signal control unit 17.
  • the secondary charged particles 25 emitted from the wafer due to the irradiation of the electron beam 21 onto the wafer 7 are converted into secondary electrons 35 by the secondary electron conversion electrode 27, and the secondary electrons 35 are converted into secondary electrons 35. It is captured by the charged particle detector 36 and used as a luminance signal of the display device 26 via the amplifier 16.
  • FIG. 2 is a diagram for explaining the details of the sample stage 13.
  • the sample stage 13 is disposed on the Y base 28.
  • the sample stage 13 is moved in the Y direction on the Y rail 29 by a drive mechanism (not shown).
  • the Y base 28 moves in the X direction on the X rail 32 formed on the X base 33 by the rotation of the ball screw 31 rotated by a driving mechanism (not shown).
  • the sample stage in the present embodiment is designed so that an arbitrary position on the sample is positioned under the trajectory of the electron beam in order to perform measurement, inspection, or overall inspection of a plurality of points on the sample.
  • a moving mechanism is provided that can move the sample stage 13 in a direction (XY direction) perpendicular to the electron beam optical axis (electron beam trajectory when the electron beam is not deflected).
  • the stage for moving the sample stage in the X and Y directions will be described as an example.
  • the present invention is not limited to this.
  • the stage slide unit that tilts or rotates the sample stage is described below. It is also possible to apply the lubricating oil described in (1).
  • Lubricating oil is applied to the sliding portion of the sample stage mechanism of the present embodiment (the contact portion between the two members when the two members move relatively slidingly) in order to improve the lubricity between them.
  • the lubricating oil there is an ionic liquid composed of a cation and an anion.
  • An ionic liquid has extremely low volatility and is suitable as a lubricating oil for a vacuum apparatus.
  • the lubricating oil used in the vacuum device is required to have the following properties in addition to having an appropriate viscosity and low volatility.
  • Lubricating oil must be hydrophobic. This is because if it is hydrophilic, it absorbs moisture that has entered the vacuum device and corrodes the metal constituting the sliding portion. Accordingly, it is desirable that both the anion and cation of the ionic liquid constituting the lubricating oil are hydrophobic.
  • Lubricating oil must have a small release of decomposition products. This is because the decomposition product contaminates the inside of the vacuum apparatus and reacts with the metal of the sliding portion to cause corrosion wear. Therefore, it is desirable that the anion and cation of the ionic liquid constituting the lubricating oil be composed of molecules having no weak portion between atoms.
  • Lubricating oils containing such ionic liquids have very little contamination in the vacuum device due to volatilization, and have excellent properties to improve the lubricity of sliding parts, but they are decomposed by sliding and the decomposition products are Some may contaminate the vacuum equipment. Others react with the sliding member to promote corrosive wear.
  • A is An ionic liquid composed of anions represented by a chemical formula consisting of a combination of one or more atoms, each of which may contain a plurality of the same atoms) is used.
  • anions include ((CF 3 ) SO 2 ) 2 N 2 (bis (trifluoromethanesulfonyl) imide, hereinafter referred to as TFSI).
  • the cation of the ionic liquid of the present embodiment is not particularly limited as long as it is hydrophobic, and a general ionic liquid cation can be used. Specific examples include imidazolium cation, pyrrolidinium cation, piperidinium cation, pyridinium cation, quaternary aninium cation, and quaternary phosphonium cation.
  • FAP represents trifluorotris (pentafluoroethyl) phosphate (structural formula is [(C 2 F 5 ) 3 PF 3 ] ⁇ ), TFSI is bis (trifluoromethanesulfonyl) imide (structural formula is [N ( CF 3 SO 2 ) 2 ] ⁇ ) and BF 4 ⁇ represents tetrafluoroborate.
  • the FAP anion has three carbon-carbon bonds (hereinafter referred to as C—C bonds), TFSI has no C—C bonds (has carbon atoms), and does not have BF 4 ⁇ (has no carbon atoms). ).
  • 3 and 4 are mass spectra of a vacuum atmosphere during sliding of an ionic liquid of FAP anion according to a comparative example.
  • the cations are quaternary phosphonium cations in FIG. 3 (IL1) and pyrrolidinium cations in FIG. 4 (IL2), respectively.
  • IL1 quaternary phosphonium cations
  • IL2 pyrrolidinium cations
  • CF 3 is released into the vacuum as a decomposition product. This is based on detection of CF3 that is easily released in a vacuum because the C—C bond of the FAP anion is cut by sliding and the molecular weight is relatively light. C 2 F 5 is also released, indicating that the PC bond is cleaved.
  • FIGS. 5 and 6 are mass spectra of a vacuum atmosphere during sliding of the TFSI anion ionic liquid according to the example.
  • the cation is a quaternary phosphonium cation
  • FIG. 6 an imidazolium cation.
  • the ionic liquid containing any cation components derived from anions and cations are not observed. That is, it can be said that there is very little contamination in the vacuum apparatus by a decomposition product.
  • FIG. 7 is a mass spectrum of a vacuum atmosphere during sliding of the BF 4 anion ionic liquid according to the comparative example.
  • the cation is an imidazolium cation. Similar to the TFSI anion, components derived from anions and cations are not observed. No corrosion wear was observed when the sliding test was performed in a vacuum. However, when the ionic liquid of BF4 anion was slid in the atmosphere, as shown in Table 1, it was greatly worn by corrosion as compared with other ionic liquids. Therefore, even if there is no problem in the short term as in the sliding test, when it is used for a long period of time, it absorbs moisture that is slightly present in the vacuum device or moisture that enters when it leaks to atmospheric pressure. However, it is thought to cause corrosion wear.
  • an anion having a relatively small molecular weight and a small molecular size increases the charge density of the anion and is easily soluble in water, which is a polar solvent.
  • moisture in the atmosphere intervenes and the ionic liquid and the sliding member react with each other to promote corrosion wear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Lubricants (AREA)

Abstract

When an ionic liquid is slid in a vacuum device under severe conditions, the ionic liquid may decompose and cause the inside of the vacuum device to be contaminated by the decomposition product. In order to prevent the contamination, the lubricating oil used in a driving mechanism disposed in a vacuum chamber surrounding a sample includes a hydrophobic anion and a hydrophobic cation. As the hydrophobic anion, an anion which has moderate viscosity and does not have a weak bond, such as a C-C bond, to avoid the release of impurities (e.g., [N(CF3SO2)2]-) is used.

Description

真空装置及びそれに用いる潤滑油Vacuum device and lubricating oil used therefor
 本発明は真空装置及びそれに用いる潤滑油に関する。 The present invention relates to a vacuum apparatus and a lubricating oil used therefor.
 本発明の背景技術として、WO2005/035702号公報がある。この公報には、「真空下などの極めて厳しい条件の下でも長期間使用することができる潤滑油を提供すること。基油として、カチオンとアニオンから構成され、イオン濃度が1mol/dm以上であるイオン性液体を含む潤滑油である。」とされている(要約参照)。 There is WO2005 / 035702 as background art of the present invention. This publication “provides a lubricating oil that can be used for a long time even under extremely severe conditions such as under vacuum. The base oil is composed of a cation and an anion with an ion concentration of 1 mol / dm 3 or more. It is a lubricating oil containing a certain ionic liquid ”(see summary).
WO2005/035702号公報WO2005 / 035702 Publication
 特許文献1には、イオン性液体(以下イオン液体)を基油として用いた潤滑油の組成が記載されている。しかし、発明者らの検討によれば、特許文献1の潤滑油は、真空装置内で厳しい条件で摺動させた場合、基油が分解し、微量な分解生成物が、真空装置内を汚染する場合がある。 Patent Document 1 describes a composition of a lubricating oil using an ionic liquid (hereinafter referred to as ionic liquid) as a base oil. However, according to the study by the inventors, when the lubricating oil of Patent Document 1 is slid under severe conditions in a vacuum apparatus, the base oil decomposes and a small amount of decomposition products contaminate the vacuum apparatus. There is a case.
 このような潤滑油では、例えば半導体検査、計測用SEM(Scanning Electron Microscope)など、高速に動作する駆動機構に用いた場合、高速かつ頻繁に潤滑油が摺動されるため、分解生成物による試料汚染の可能性が高くなる。 In such lubricants, for example, when used in a drive mechanism that operates at high speed, such as semiconductor inspection and SEM (Scanning Electron Microscope) for measurement, the lubricant is slid frequently at high speeds, so a sample of decomposition products The possibility of contamination increases.
 そこで、本発明は真空装置内において摺動部からの汚染発生が少ない真空装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a vacuum apparatus in which the occurrence of contamination from the sliding portion is small in the vacuum apparatus.
 そこで本発明では、上記課題を解決するために、真空装置内で用いる潤滑油として、疎水性であり、弱い原子間結合を有さないカチオンを有するイオン性液体を用いる。疎水性であることにより水分を吸収せず、また、弱い原子間結合を有さないことにより原子間結合が切れて分解生成物が生じることを抑制することができる。 Therefore, in the present invention, in order to solve the above-described problems, an ionic liquid having a cation that is hydrophobic and does not have weak interatomic bonds is used as the lubricating oil used in the vacuum apparatus. By being hydrophobic, it does not absorb moisture, and by not having weak interatomic bonds, it is possible to suppress the generation of decomposition products due to the breakage of interatomic bonds.
 本発明によれば、真空装置において摺動部の潤滑油からの汚染発生が少なくすることができる。 According to the present invention, the occurrence of contamination from the lubricating oil in the sliding portion in the vacuum apparatus can be reduced.
本発明の一実施例にかかる真空装置の断面図である。It is sectional drawing of the vacuum apparatus concerning one Example of this invention. 本発明の一実施例にかかる真空装置の試料ステージの上面図である。It is a top view of the sample stage of the vacuum apparatus concerning one Example of this invention. 比較例にかかるイオン液体を用いた真空雰囲気の質量スペクトルの一例である。It is an example of the mass spectrum of the vacuum atmosphere using the ionic liquid concerning a comparative example. 比較例にかかるイオン液体を用いた真空雰囲気の質量スペクトルの一例である。It is an example of the mass spectrum of the vacuum atmosphere using the ionic liquid concerning a comparative example. 実施例にかかるイオン液体を用いた真空雰囲気の質量スペクトルの一例である。It is an example of the mass spectrum of the vacuum atmosphere using the ionic liquid concerning an Example. 実施例にかかるイオン液体を用いた真空雰囲気の質量スペクトルの一例である。It is an example of the mass spectrum of the vacuum atmosphere using the ionic liquid concerning an Example. 比較例にかかるイオン液体を用いた真空雰囲気の質量スペクトルの一例である。It is an example of the mass spectrum of the vacuum atmosphere using the ionic liquid concerning a comparative example.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、半導体計測用SEMの例を説明する。なお、本発明は下記実施例に限定されるものではなく、様々な変形例が含まれる。例えば、下記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。 In this embodiment, an example of a semiconductor measurement SEM will be described. In addition, this invention is not limited to the following Example, Various modifications are included. For example, the following embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
 図1は、本発明の一例を示す半導体計測用SEMの概略を説明するための図である。制御装置1は、図示しないユーザーインターフェースからオペレータによって入力された加速電圧、試料(半導体デバイス)上方、測定位置情報、ウエハカセット上方などをもとに光学系制御装置2、ステージ制御装置3、試料搬送制御装置4、および試料交換制御装置5の制御を行っている。 FIG. 1 is a diagram for explaining an outline of a semiconductor measurement SEM showing an example of the present invention. The control device 1 includes an optical system control device 2, a stage control device 3, and a sample transport based on an acceleration voltage input by an operator from a user interface (not shown), a sample (semiconductor device) above, a measurement position information, a wafer cassette, and the like. Control of the control device 4 and the sample exchange control device 5 is performed.
 制御装置1から命令を受けた試料搬送制御装置4は、搬送用ロボット8を、ウエハカセット6から任意のウエハ7が、ロードロック室(試料交換室)の所定の位置に移動するように制御する。試料交換制御装置5は、ロードロック室9へのウエハ7の出入りに連動して、ゲートバルブ10、11が開閉するような制御を行う。更に、試料交換制御装置5は、ロードロック室9内を真空排気する真空ポンプ(図示せず)を制御し、ゲートバルブ11が開くときには、試料室12と同等の真空を、試料交換室9内にて形成する。試料交換室9に入ったウエハ7は、ゲートバルブ11を介して、試料室12に送られ、ステージ13上に固定される。ロードロック室9と試料室12は、試料を真空領域内に包囲するために形成されている。 The sample transfer control device 4 that has received a command from the control device 1 controls the transfer robot 8 so that an arbitrary wafer 7 is moved from the wafer cassette 6 to a predetermined position in the load lock chamber (sample exchange chamber). . The sample exchange control device 5 performs control such that the gate valves 10 and 11 open and close in conjunction with the wafer 7 entering and exiting the load lock chamber 9. Furthermore, the sample exchange control device 5 controls a vacuum pump (not shown) that evacuates the load lock chamber 9, and when the gate valve 11 is opened, a vacuum equivalent to the sample chamber 12 is applied to the sample exchange chamber 9. Form with. The wafer 7 entering the sample exchange chamber 9 is sent to the sample chamber 12 via the gate valve 11 and fixed on the stage 13. The load lock chamber 9 and the sample chamber 12 are formed to surround the sample in the vacuum region.
 光学系制御装置2は、制御装置1からの命令に従い、高電圧制御装置14、コンデンサレンズ制御部15、増幅器16、偏向信号制御部17、及び対物レンズ制御18を制御する。 The optical system control device 2 controls the high voltage control device 14, the condenser lens control unit 15, the amplifier 16, the deflection signal control unit 17, and the objective lens control 18 in accordance with a command from the control device 1.
 引き出し電極19により、電子源20から引き出された電子ビーム21は、コンデンサレンズ22、対物レンズ23によって集束され、試料ステージ13上に配置されたウエハ7に照射される。電子ビーム21は、偏向信号制御部17から信号を受けた偏向器24によりウエハ7上を、一元的、或いは二次元的に走査される。 The electron beam 21 extracted from the electron source 20 by the extraction electrode 19 is focused by the condenser lens 22 and the objective lens 23 and irradiated onto the wafer 7 arranged on the sample stage 13. The electron beam 21 is scanned on the wafer 7 in a unified or two-dimensional manner by the deflector 24 that receives a signal from the deflection signal control unit 17.
 ウエハ7への電子ビーム21の照射に起因して、ウエハから放出される二次荷電粒子25は、二次電子変換電極27によって、二次電子35に変換され、その二次電子35は二次荷電粒子検出器36により捕捉され、増幅器16を介して表示装置26の輝度信号として使用される。 The secondary charged particles 25 emitted from the wafer due to the irradiation of the electron beam 21 onto the wafer 7 are converted into secondary electrons 35 by the secondary electron conversion electrode 27, and the secondary electrons 35 are converted into secondary electrons 35. It is captured by the charged particle detector 36 and used as a luminance signal of the display device 26 via the amplifier 16.
 図2は、試料ステージ13の詳細を説明するための図である。試料ステージ13は、Yベース28上に配置されている。試料ステージ13は、図示しない駆動機構によって、Yレール29上をY方向に移動する。Yベース28は、図示しない駆動機構によって回転されるボールねじ31の回転によって、Xベース33上に形成されたXレール32上をX方向に移動する。本実施例における試料ステージは、試料上の複数点の測定、検査、或いは全体検査を行うために、試料上の任意の位置が、電子ビームの軌道下に位置づけられるように設計されている。 FIG. 2 is a diagram for explaining the details of the sample stage 13. The sample stage 13 is disposed on the Y base 28. The sample stage 13 is moved in the Y direction on the Y rail 29 by a drive mechanism (not shown). The Y base 28 moves in the X direction on the X rail 32 formed on the X base 33 by the rotation of the ball screw 31 rotated by a driving mechanism (not shown). The sample stage in the present embodiment is designed so that an arbitrary position on the sample is positioned under the trajectory of the electron beam in order to perform measurement, inspection, or overall inspection of a plurality of points on the sample.
 より具体的には、電子ビーム光軸(電子ビームを偏向しないときの電子ビーム軌道)に垂直な方向(X-Y方向)へ、試料ステージ13を移動できるような移動機構が設けられている。なお、本実施例では試料ステージをX-Y方向に移動するステージを例にとって説明するが、これに限られることはなく、例えば試料ステージを傾斜或いは回転させるようなステージの摺動部に、以下に説明する潤滑油を適用することも可能である。 More specifically, a moving mechanism is provided that can move the sample stage 13 in a direction (XY direction) perpendicular to the electron beam optical axis (electron beam trajectory when the electron beam is not deflected). In this embodiment, the stage for moving the sample stage in the X and Y directions will be described as an example. However, the present invention is not limited to this. For example, the stage slide unit that tilts or rotates the sample stage is described below. It is also possible to apply the lubricating oil described in (1).
 本実施例の試料ステージ機構の摺動部(2つの部材が相対的に滑って移動する際に当該2つの部材間における接触部分)には、その間の潤滑性を高めるために、潤滑油が塗布されている。その潤滑油として、カチオン、アニオンから構成されるイオン液体がある。イオン液体は、揮発性が極めて低く、真空装置用の潤滑油として好適である。 Lubricating oil is applied to the sliding portion of the sample stage mechanism of the present embodiment (the contact portion between the two members when the two members move relatively slidingly) in order to improve the lubricity between them. Has been. As the lubricating oil, there is an ionic liquid composed of a cation and an anion. An ionic liquid has extremely low volatility and is suitable as a lubricating oil for a vacuum apparatus.
 このイオン液体について発明者らが検討を行った結果、イオン液体を摺動した場合、真空装置内に放出される分解生成物は、カチオンを構成する炭素原子同士の結合が切断されることに由来することがわかった。従って、炭素原子同士の一重結合を含まないカチオンを採用することで、分解生成物による真空装置内の汚染が防止できるとの結論に至った。 As a result of investigations by the inventors on this ionic liquid, when the ionic liquid is slid, the decomposition product released into the vacuum apparatus is derived from the fact that the bonds between the carbon atoms constituting the cation are broken. I found out that Therefore, it was concluded that by using a cation that does not contain a single bond between carbon atoms, contamination of the vacuum apparatus by decomposition products can be prevented.
 また、発明者らが更に検討を重ねた結果、炭素原子を含まない比較的分子量の低いカチオンを採用した場合、イオン液体は親水性を示し、このようなイオン液体を大気中で摺動させた場合、金属の腐食が発生し、腐食摩耗を促進することが明らかになった。以上の検討の結果、炭素原子の結合を持たず、かつ適度な分子量を持つカチオンが真空装置の潤滑油に好適であるとの結論に至った。 Further, as a result of further studies by the inventors, when a cation having a relatively low molecular weight that does not contain a carbon atom is adopted, the ionic liquid exhibits hydrophilicity, and such ionic liquid was slid in the atmosphere. In some cases, it has been found that metal corrosion occurs and promotes corrosive wear. As a result of the above studies, it has been concluded that a cation having no carbon atom bond and having an appropriate molecular weight is suitable for a lubricating oil for a vacuum apparatus.
 すなわち、真空装置内で用いられる潤滑油には、適度な粘性を有し、揮発性が小さいこと以外に、以下の性質が要求される。 That is, the lubricating oil used in the vacuum device is required to have the following properties in addition to having an appropriate viscosity and low volatility.
 潤滑油は、疎水性でなければならない。親水性である場合には、真空装置内に浸入した水分を吸収し、摺動部を構成する金属を腐食させてしまうからである。従って、潤滑油を構成するイオン性液体のアニオン、カチオンの両方が疎水性であることが望ましい。 Lubricating oil must be hydrophobic. This is because if it is hydrophilic, it absorbs moisture that has entered the vacuum device and corrodes the metal constituting the sliding portion. Accordingly, it is desirable that both the anion and cation of the ionic liquid constituting the lubricating oil are hydrophobic.
 潤滑油は、分解生成物の放出量が小さくなくてはならない。分解生成物が真空装置内を汚染するとともに、摺動部の金属と反応し、腐食磨耗が起こるからである。そのため、潤滑油を構成するイオン性液体のアニオン、カチオンは、原子間の結合が弱い部分の無い分子で構成されることが望ましい。 Lubricating oil must have a small release of decomposition products. This is because the decomposition product contaminates the inside of the vacuum apparatus and reacts with the metal of the sliding portion to cause corrosion wear. Therefore, it is desirable that the anion and cation of the ionic liquid constituting the lubricating oil be composed of molecules having no weak portion between atoms.
 このようなイオン液体を含む潤滑油は、揮発による真空装置内の汚染が極めて少なく、また摺動部の潤滑性を高めるのに優れた特性を持つ反面、摺動によって分解し、分解生成物が真空装置内を汚染するものがある。また、摺動部材と反応し、腐食摩耗を促進するものもある。 Lubricating oils containing such ionic liquids have very little contamination in the vacuum device due to volatilization, and have excellent properties to improve the lubricity of sliding parts, but they are decomposed by sliding and the decomposition products are Some may contaminate the vacuum equipment. Others react with the sliding member to promote corrosive wear.
 本実施例では、分解生成物による真空装置内の汚染を防止するため、一般式((CF3-xHx)A)2B-(xは0から3の整数を示し、A、Bはそれぞれ、1種以上の原子の組み合わせからなる化学式を示し、同じ原子が複数個含む場合でもよい)で示されるアニオンから構成されるイオン液体を用いる。このようなアニオンとしては、例えば((CF3)SO2)2N2(ビス(トリフルオロメタンスルフォニル)イミド、以下TFSI)がある。 In this embodiment, in order to prevent contamination of the vacuum apparatus by the decomposition products of the general formula ((CF 3-x H x ) A) 2 B - (x is an integer from 0 3, A, B is An ionic liquid composed of anions represented by a chemical formula consisting of a combination of one or more atoms, each of which may contain a plurality of the same atoms) is used. Examples of such anions include ((CF 3 ) SO 2 ) 2 N 2 (bis (trifluoromethanesulfonyl) imide, hereinafter referred to as TFSI).
 また本実施例のイオン液体のカチオンとしては、疎水性であれば特に限定されるものではなく、一般的なイオン液体のカチオンを用いることができる。具体的には、イミダゾリウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、ピリジニウムカチオン、第四級アニモニウムカチオン、第四級フォスフォニウムカチオンなどがある。 In addition, the cation of the ionic liquid of the present embodiment is not particularly limited as long as it is hydrophobic, and a general ionic liquid cation can be used. Specific examples include imidazolium cation, pyrrolidinium cation, piperidinium cation, pyridinium cation, quaternary aninium cation, and quaternary phosphonium cation.
 以下、本実施例の効果を、実験によって検証した結果について説明する。検証実験には、真空容器内で回転型ボールオンディスク試験を行い、四重極質量分析装置を用いて真空容器内の雰囲気を分析した。表1は回転型ボールオンディスク試験の摺動条件である。種々のイオン液体に対し、真空中で摺動試験を行い、四重極質量分析装置で得られた質量スペクトルから分解成分の放出量を測定した。また、大気中でも同様の試験を行い、腐食摩耗試験を行った。 Hereinafter, the results of verifying the effect of the present embodiment through experiments will be described. In the verification experiment, a rotary ball-on-disk test was performed in a vacuum vessel, and the atmosphere in the vacuum vessel was analyzed using a quadrupole mass spectrometer. Table 1 shows the sliding conditions of the rotary ball-on-disk test. Sliding tests were performed on various ionic liquids in vacuum, and the release amount of the decomposition component was measured from the mass spectrum obtained by the quadrupole mass spectrometer. Moreover, the same test was conducted in the atmosphere, and a corrosion wear test was conducted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明にかかる実施例(IL3,4)と比較例(IL1, 2 5)のイオン液体の摺動試験を行った。表2は、摺動試験を行った種々のイオン液体をまとめたものである。FAPはトリフルオロトリス(ペンタフルオロエチル)フォスフェート(構造式は、[(C2F5)3PF3]-)を示し、TFSIはビス(トリフルオロメタンスルフォニル)イミド(構造式は、[N(CF3SO2)2]-)を示し、BF -はテトラフルオロボレートを示す。FAPアニオンは炭素同士の結合(以下C-C結合)を3つ有し、TFSIはC-C結合を有さず(炭素原子は持つ)、BF も有さない(炭素原子を持たない)。 The sliding tests of the ionic liquids of Examples (IL3, 4) and Comparative Examples (IL1, 25) according to the present invention were performed. Table 2 summarizes various ionic liquids subjected to the sliding test. FAP represents trifluorotris (pentafluoroethyl) phosphate (structural formula is [(C 2 F 5 ) 3 PF 3 ] ), TFSI is bis (trifluoromethanesulfonyl) imide (structural formula is [N ( CF 3 SO 2 ) 2 ] ) and BF 4 represents tetrafluoroborate. The FAP anion has three carbon-carbon bonds (hereinafter referred to as C—C bonds), TFSI has no C—C bonds (has carbon atoms), and does not have BF 4 (has no carbon atoms). ).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3、4は、比較例にかかるFAPアニオンのイオン液体を摺動中の真空雰囲気の質量スペクトルである。カチオンは、それぞれ図3(IL1)では第四級フォスフォニウムカチオン、図4(IL2)ではピロリジニウムカチオンである。いずれのカチオンを含むイオン液体もCFが分解生成物として真空中に放出されることが明らかである。これは、摺動によってFAPアニオンのC-C結合が切断され、比較的分子量が軽く、真空中に放出されやすいCF3を検出したものである。また、C2F5も放出されており、P-C結合が切断されていることがわかる。 3 and 4 are mass spectra of a vacuum atmosphere during sliding of an ionic liquid of FAP anion according to a comparative example. The cations are quaternary phosphonium cations in FIG. 3 (IL1) and pyrrolidinium cations in FIG. 4 (IL2), respectively. In any ionic liquid containing cations, it is clear that CF 3 is released into the vacuum as a decomposition product. This is based on detection of CF3 that is easily released in a vacuum because the C—C bond of the FAP anion is cut by sliding and the molecular weight is relatively light. C 2 F 5 is also released, indicating that the PC bond is cleaved.
 図5,6は、実施例にかかるTFSIアニオンのイオン液体を摺動中の真空雰囲気の質量スペクトルである。カチオンは、図5(IL3)では、第四級フォスフォニウムカチオン、図6(IL4)イミダゾリウムカチオンである。いずれのカチオンを含むイオン液体も、アニオン、カチオンに由来する成分は観測されない。すなわち、分解生成物による真空装置内の汚染が極めて少ないといえる。 FIGS. 5 and 6 are mass spectra of a vacuum atmosphere during sliding of the TFSI anion ionic liquid according to the example. In FIG. 5 (IL3), the cation is a quaternary phosphonium cation and FIG. 6 (IL4) an imidazolium cation. In the ionic liquid containing any cation, components derived from anions and cations are not observed. That is, it can be said that there is very little contamination in the vacuum apparatus by a decomposition product.
 図7(IL5)は、比較例にかかるBFアニオンのイオン液体を摺動中の真空雰囲気の質量スペクトルである。カチオンはイミダゾリウムカチオンである。TFSIアニオンと同様に、アニオン、カチオンに由来する成分は観測されない。真空中で摺動試験を行った場合、腐食摩耗は観測されなかった。しかしながら、BF4アニオンのイオン液体は、大気中で摺動させた場合、表1に示すように、腐食によって他のイオン液体と比べて大きく摩耗した。それゆえ、摺動試験のような短期では問題が生じなくても、長期間使用を行った場合には、真空装置内にわずかに存在する水分や、大気圧にリークした時に浸入する水分を吸収し、腐食磨耗の原因になると考えられる。 FIG. 7 (IL5) is a mass spectrum of a vacuum atmosphere during sliding of the BF 4 anion ionic liquid according to the comparative example. The cation is an imidazolium cation. Similar to the TFSI anion, components derived from anions and cations are not observed. No corrosion wear was observed when the sliding test was performed in a vacuum. However, when the ionic liquid of BF4 anion was slid in the atmosphere, as shown in Table 1, it was greatly worn by corrosion as compared with other ionic liquids. Therefore, even if there is no problem in the short term as in the sliding test, when it is used for a long period of time, it absorbs moisture that is slightly present in the vacuum device or moisture that enters when it leaks to atmospheric pressure. However, it is thought to cause corrosion wear.
 以上BF4アニオンのイオン液体の摺動試験結果から、発明者らは以下の結論に至った。すなわち、BF4アニオンのような分子量が比較的小さく、分子サイズの小さいアニオンでは、アニオンの電荷密度が高まり、極性溶媒である水に溶けやすくなる。その結果、大気中の水分が介在してイオン液体と摺動部材が腐食反応し、腐食摩耗を促進したものである。 From the results of the sliding test of the BF4 anion ionic liquid, the inventors have reached the following conclusions. That is, an anion having a relatively small molecular weight and a small molecular size, such as the BF4 anion, increases the charge density of the anion and is easily soluble in water, which is a polar solvent. As a result, moisture in the atmosphere intervenes and the ionic liquid and the sliding member react with each other to promote corrosion wear.
 以上の実験的検証の結果から、C-C結合を含まず、適度な分子量(分子サイズ)を持つアニオンで構成されるイオン液体が好適であるとの結論に至った。 From the results of the above experimental verification, it was concluded that an ionic liquid composed of anions having no appropriate molecular weight (molecular size) and not containing a C—C bond is suitable.
1…制御装置、2…光学系制御装置、3…ステージ制御装置、4…試料搬送制御装置、5…試料交換室制御装置、6…ウエハカセット、7…ウエハ、8…搬送用ロボット、9…ロードロック室、10…ゲートバルブ、11…ゲートバルブ、12…試料室、13…ステージ13、14…高電圧制御装置、15…コンデンサレンズ制御部、16…増幅器、17…偏向信号制御部、18…対物レンズ制御部、19…引き出し電極19、20…電子源、21…電子ビーム、22…コンデンサレンズ、23…対物レンズ、24…偏向器、25…二次荷電粒子、26…表示装置、27…二次電子変換電極、35…二次電子、36…二次荷電粒子検出器。 DESCRIPTION OF SYMBOLS 1 ... Control apparatus, 2 ... Optical system control apparatus, 3 ... Stage control apparatus, 4 ... Sample conveyance control apparatus, 5 ... Sample exchange chamber control apparatus, 6 ... Wafer cassette, 7 ... Wafer, 8 ... Transfer robot, 9 ... Load lock chamber, 10 ... gate valve, 11 ... gate valve, 12 ... sample chamber, 13 ... stage 13, 14 ... high voltage control device, 15 ... condenser lens control unit, 16 ... amplifier, 17 ... deflection signal control unit, 18 ... objective lens control unit, 19 ... extraction electrode 19, 20 ... electron source, 21 ... electron beam, 22 ... condenser lens, 23 ... objective lens, 24 ... deflector, 25 ... secondary charged particles, 26 ... display device, 27 ... secondary electron conversion electrode, 35 ... secondary electron, 36 ... secondary charged particle detector.

Claims (8)

  1.  試料を包囲する真空室と、
     前記真空室内部で用いられる潤滑油とを備えた真空装置において、
     前記潤滑油は、疎水性のアニオンと、疎水性のカチオンとを有するイオン性液体であり、
     前記アニオンが、[N(CF3SO2)2]-であることを特徴とする真空装置。
    A vacuum chamber surrounding the sample;
    In a vacuum apparatus comprising a lubricating oil used in the vacuum chamber,
    The lubricating oil is an ionic liquid having a hydrophobic anion and a hydrophobic cation,
    The vacuum apparatus, wherein the anion is [N (CF 3 SO 2 ) 2 ] .
  2.  請求項1において、
     前記潤滑油は、前記真空室の内部に設けられた摺動部で用いられることを特徴とする真空装置。
    In claim 1,
    The vacuum apparatus, wherein the lubricating oil is used in a sliding portion provided inside the vacuum chamber.
  3.  請求項2において、
     前記摺動部は、前記真空装置内に備えられた駆動機構の摺動部であることを特徴とする真空装置。
    In claim 2,
    The vacuum device characterized in that the sliding portion is a sliding portion of a drive mechanism provided in the vacuum device.
  4.  請求項3において、
     前記真空室の内部に試料を設置する試料ステージを有し、前記試料ステージを水平方向に駆動させる駆動機構を有し、前記駆動機構の摺動部に前記潤滑油を用いることを特徴とする真空装置。
    In claim 3,
    A vacuum characterized by having a sample stage for setting a sample inside the vacuum chamber, a drive mechanism for driving the sample stage in a horizontal direction, and using the lubricating oil for a sliding portion of the drive mechanism. apparatus.
  5.  請求項1乃至4のいずれかにおいて、
     前記カチオンは、イミダゾリウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、ピリジニウムカチオン、第四級アニモニウムカチオン、第四級フォスフォニウムカチオンのいずれかを含むことを特徴とする真空装置。
    In any one of Claims 1 thru | or 4,
    The vacuum apparatus according to claim 1, wherein the cation includes any one of an imidazolium cation, a pyrrolidinium cation, a piperidinium cation, a pyridinium cation, a quaternary aninium cation, and a quaternary phosphonium cation.
  6.  真空装置の真空室内で用いられる潤滑油において、
     疎水性のアニオンと、疎水性のカチオンとを有するイオン性液体であり、
     前記アニオンが、[N(CF3SO2)2]-であることを特徴とする潤滑油。
    In lubricating oil used in the vacuum chamber of a vacuum device,
    An ionic liquid having a hydrophobic anion and a hydrophobic cation,
    A lubricating oil, wherein the anion is [N (CF 3 SO 2 ) 2 ] - .
  7.  請求項6において、
     前記真空室内の摺動部で用いられることを特徴とする潤滑油。
    In claim 6,
    Lubricating oil used in a sliding portion in the vacuum chamber.
  8.  請求項6または請求項7において、
     前記カチオンは、イミダゾリウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、ピリジニウムカチオン、第四級アニモニウムカチオン、第四級フォスフォニウムカチオンのいずれかを含むことを特徴とする潤滑油。
    In claim 6 or claim 7,
    The lubricating oil according to claim 1, wherein the cation includes any one of an imidazolium cation, a pyrrolidinium cation, a piperidinium cation, a pyridinium cation, a quaternary aninium cation, and a quaternary phosphonium cation.
PCT/JP2011/006839 2011-02-21 2011-12-07 Vacuum device and lubricating oil used therein WO2012114409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-034101 2011-02-21
JP2011034101A JP2012172030A (en) 2011-02-21 2011-02-21 Vacuum device and lubricating oil used therein

Publications (1)

Publication Number Publication Date
WO2012114409A1 true WO2012114409A1 (en) 2012-08-30

Family

ID=46720231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006839 WO2012114409A1 (en) 2011-02-21 2011-12-07 Vacuum device and lubricating oil used therein

Country Status (2)

Country Link
JP (1) JP2012172030A (en)
WO (1) WO2012114409A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029884B2 (en) 2012-08-02 2016-11-24 東洋ゴム工業株式会社 Pneumatic tire and rim assembly
CN108165344A (en) * 2017-12-22 2018-06-15 南京理工大学 A kind of self-lubricating material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139127A (en) * 2005-11-21 2007-06-07 Nsk Ltd Rolling bearing
JP2008530441A (en) * 2005-02-16 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Processing machine and / or work machine having ionic liquid as hydraulic fluid
JP2009029981A (en) * 2007-07-30 2009-02-12 Kyodo Yushi Co Ltd Lubricant composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530441A (en) * 2005-02-16 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Processing machine and / or work machine having ionic liquid as hydraulic fluid
JP2007139127A (en) * 2005-11-21 2007-06-07 Nsk Ltd Rolling bearing
JP2009029981A (en) * 2007-07-30 2009-02-12 Kyodo Yushi Co Ltd Lubricant composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIGEYUKI MORI ET AL.: "Dynamic Behavior of Lubricants at Sliding Contacts in Vacuum", J. VAC. SOC. JPN, vol. 50, no. 2, 2007, pages 101 - 104 *
SHIN'YA SASAKI ET AL.: "Study on lubrication properties of ionic liquids for sliding materials under high-vacuum", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS DAI 8 KAI THE MACHINE DESIGN AND TRIBOLOGY DIVISION MEETING IN JSME, 2008, pages 15 - 16 *

Also Published As

Publication number Publication date
JP2012172030A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP6220423B2 (en) Inspection device
KR100885940B1 (en) Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
US9455120B2 (en) Particle beam device and method for processing and/or analyzing a sample
CN104094374B (en) Ion milling device
WO2012114409A1 (en) Vacuum device and lubricating oil used therein
JP4875886B2 (en) Charged particle beam equipment
US7755044B2 (en) Apparatus for working and observing samples and method of working and observing cross sections
JP5033374B2 (en) Charged particle beam equipment
WO2014069325A1 (en) Electron beam microscope apparatus
JPH07190905A (en) Preparation of test data with particle optical device
US10643831B2 (en) Vacuum processing apparatus and mass spectrometer
JP5099703B2 (en) Charged particle beam equipment
JP2014032890A (en) Analytical method and ion beam device
JP5532425B2 (en) Sample holder for charged particle equipment
Aizikov et al. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging
JP5338022B2 (en) Irradiation direction variable ion irradiation apparatus and secondary ion mass spectrometer
KR101648269B1 (en) Apparatus and Method for Evaluation Platform of Charged Particle Beam System
JP4148864B2 (en) Sample analyzer
JP5422610B2 (en) Charged particle beam equipment
JP5274952B2 (en) Vacuum sealing method and vacuum apparatus
DE2512828A1 (en) TURBOMOLECULAR PUMP
JP2006153751A (en) Ion beam analyzer
KR20200115350A (en) Actuator-assisted positioning systems and methods
CN118234985A (en) Valve for reducing particle generation and increasing cycle life
Chakravadhanula et al. Electrochemistry in liquid environments: challenges in the presence of accelerated electrons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859089

Country of ref document: EP

Kind code of ref document: A1