WO2012111763A1 - Friction material and friction material production method - Google Patents

Friction material and friction material production method Download PDF

Info

Publication number
WO2012111763A1
WO2012111763A1 PCT/JP2012/053689 JP2012053689W WO2012111763A1 WO 2012111763 A1 WO2012111763 A1 WO 2012111763A1 JP 2012053689 W JP2012053689 W JP 2012053689W WO 2012111763 A1 WO2012111763 A1 WO 2012111763A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
silicon
friction
containing polymer
binder
Prior art date
Application number
PCT/JP2012/053689
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 高橋
生 栗原
洋介 川上
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011044339A external-priority patent/JP5659392B2/en
Priority claimed from JP2011284262A external-priority patent/JP5850739B2/en
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2012111763A1 publication Critical patent/WO2012111763A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size

Definitions

  • the present invention relates to a friction material for brakes used in automobiles, railways, aircraft, industrial machines, and the like, and in particular, a friction material excellent in heat resistance capable of withstanding high temperature and high load, which can be reduced in size and weight, and It relates to the manufacturing method.
  • Friction materials mainly used in automobiles are molded with thermosetting resins such as phenol resin as binders (binders), but because the binders are organic materials, the friction coefficient at high speed There is a problem that the friction material sticks due to a decrease in temperature and thermal deformation or deterioration of the organic material due to braking heat. In recent years, the performance required of friction materials has been reduced in size and weight for the purpose of energy saving, and the load on the friction materials has become increasingly severe.
  • Patent Documents 1 to 3 propose friction materials made of copper-based sintered alloys, C / C composites, CMC (ceramic matrix composites), friction materials obtained by firing and carbonizing organic materials, and the like. . However, these friction materials still have problems such as difficulty in the production method, high energy in production, and higher cost than conventional products.
  • Patent Document 1 and Patent Document 2 propose a friction material that is a binder obtained by sintering and carbonizing an organic material containing pitch.
  • the raw materials such as an organic material, an inorganic filler, a solid lubricant, and a metal material are mixed, and this mixture is vacuumed and reduced gas.
  • the temperature is raised to about 550 to 1000 ° C. while applying a necessary load in any atmosphere of an inert gas.
  • the organic material is carbonized to function as a binder, and a friction material is manufactured.
  • pitch when blended as a binder of the fired friction material, it contains a trace amount of benzopyrene, which is a harmful component, and there is a possibility that its use is restricted due to recent environmental regulations.
  • benzopyrene which is a harmful component
  • an alternative raw material When the use is prohibited in the future, an alternative raw material will be required as a binder for the fired friction material.
  • a general disc brake friction material is molded using a thermosetting resin typified by phenol resin as a binder, but gas is generated by a thermosetting reaction of the organic binder in the thermoforming process. If the generated gas is confined in the thermoformed friction material and the gas pressure is too high, it is released at a time when the press pressure is released, causing cracks and blisters.
  • Patent Document 4 describes a technique for providing a friction material that contains an organometallic compound together with a thermosetting resin, has a low volatile content during high temperature operation, and has excellent fade resistance and wear resistance. However, even a friction material using such an inorganic binder causes the same phenomenon.
  • Patent Document 5 changes the punch material of the thermoforming die to one with increased thermal conductivity, and provides a temperature gradient to reduce the generated gas. There are ways to encourage emissions.
  • Patent Document 6 also describes a solution that suppresses rapid gas expansion by repeating pressurization and depressurization during molding and controlling the release of pressure during depressurization.
  • Patent Document 7 when a friction material raw preform is thermoformed using a friction material thermoforming mold including a presser mold, a middle mold, and a press mold, a temperature difference is provided between the presser mold and the press mold.
  • the part where the preform is finally cured is brought to either the pressing mold or the pressing mold, and the pressing mold or pressing mold corresponding to this final curing part is entered into the final curing part, and the mold Describes a degassing method in the thermoforming process of the friction material, in which a protrusion having a degassing path leading to the outside is provided so that degassing can be performed from the final hardened portion.
  • a protrusion having a degassing path leading to the outside is provided so that degassing can be performed from the final hardened portion.
  • one of the objects of the present invention is to provide a high heat-resistant friction material that is suitable for high temperature and high load and that can be manufactured simply by adding a baking process to the same process as the organic friction material.
  • Another problem of the present invention is that when an organic resin containing pitch is used as a binder, harmful component benzopyrene may be discharged in the manufacturing process. It is intended to be applied as a material.
  • the conventional molding method gradually expands after completion of thermoforming, causing cracks and blisters, and even when various measures are taken, it cannot be solved. Accordingly, another object of the present invention is to develop a molding method for obtaining a friction material having excellent quality capable of eliminating molding defects such as cracks and blisters of a product after completion of thermoforming.
  • the present inventor has studied various molding conditions and various binders of friction materials in order to produce a high heat-resistant friction material or a fired friction material in an existing production process.
  • the present invention is described in the following (1) to (12). Solved the problem.
  • a friction material composed of a fiber base material, a friction modifier, a binder, and an inorganic material a raw material containing a silicon-containing polymer and a nanoparticle material or a swellable clay mineral as the binder is heat-treated in an oxidizing atmosphere.
  • a friction material characterized in that a silicon-containing polymer is cross-linked with oxygen and cross-linked with oxygen, followed by firing to form a Si—C network.
  • the silicon-containing polymer is one or more compounds selected from the group consisting of polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane.
  • the friction material according to 2). (4) The friction material as described in any one of (1) to (3) above, wherein the silicon-containing polymer is blended in an amount of 5 to 10% by mass of the entire friction material composition.
  • the friction material according to any one of (1) to (4) above, wherein the nanoparticle material is contained in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
  • the friction material according to any one of (1) to (5), wherein the nanoparticle material is silica.
  • the friction material according to (6), wherein the silica is an organosilica sol.
  • the friction material according to any one of (1) to (4), wherein the swellable clay mineral is a swellable clay mineral that has been subjected to an organic treatment.
  • the friction material according to any one of (1) to (4) and (8), wherein the swellable clay mineral is montmorillonite.
  • a method for producing a friction material comprising a fiber base material, a friction modifier, a binder, and an inorganic material, including at least preforming, thermoforming, and heat treatment steps, a silicon-containing polymer and a nanoparticle material or
  • the raw material containing the swellable clay mineral is thermoformed and then infusibilized by heat treatment in an oxidizing atmosphere at a temperature of 160 to 350 ° C. for 1 to 10 hours to crosslink the silicon-containing polymer with oxygen.
  • a method for producing a friction material which is fired.
  • (11) The method for producing a friction material as described in (10) above, wherein the heating rate of the heat treatment in the infusibilization treatment is 14 to 140 ° C. per hour.
  • the base material strengthening mechanism is formed by cross-linking with oxygen by changing the binder from an organic material such as a straight phenol resin to a silicon-containing polymer
  • the heat resistance can be improved as compared with a conventional friction material.
  • the silicon-containing polymer is heated in an oxidizing atmosphere, it does not flow out during the heat treatment, so that it can be used as a binder for a friction material.
  • a more detailed study revealed that the silicon-containing polymer had a problem that if the precuring temperature was less than 300 ° C., the resin was too soft and oozed out before pressure was applied (for example, Japanese Patent Application Laid-Open No. 2002-255650).
  • the nanoparticle material (hereinafter simply referred to as “nanoparticles”) is used together with the silicon-containing polymer. It has also been found that outflow during heating of the silicon-containing polymer can be suppressed by containing a swellable clay mineral.
  • silicon-containing polymers are sensitive to temperature changes and may suddenly drop in viscosity during infusibilization, but by incorporating nanoparticles or swellable clay minerals, the melt viscosity is increased and the viscosity changes.
  • Nanoparticles or organically treated swellable clay minerals can be finely dispersed, so the amount of nanoparticles or swellable clay minerals can be added in a small amount, with little effect on friction performance, and effective formation of ceramic networks Can help and strengthen.
  • the pre-forming pressure of a normal organic friction material is 25 to 35 MPa. In the present invention, pre-forming at a pressure exceeding this is referred to as pre-forming at high pressure, specifically at 25 to 300 MPa. Preferably there is.
  • FIG. 1 is a diagram showing the results of DTA (differential thermal analysis) in air for only polycarbosilane (binder D) and an inorganic binder (binder B) in which polycarbosilane and nanosilica particles are mixed.
  • 2A shows a friction material containing only polycarbosilane as a binder (Reference Example 1)
  • FIG. 2B shows a friction material containing polycarbosilane and nanosilica particles (Example 3).
  • the silicon-containing polymer used in the present invention is used in, for example, a method of directly shaping and firing a ceramic product made of SiC, a method of impregnating a preform, and then converting to ceramic by thermal decomposition.
  • a silicon-containing polymer known as a ceramic precursor can be used.
  • a porous carbon fiber is infiltrated with a silicon-containing polymer, and a porous CC initial body is produced by thermal decomposition.
  • Liquid porous silicon (silicon-containing polymer) is infiltrated into the porous CC initial body, and heating is performed at that time.
  • Examples of manufacturing friction material by making ceramics into SiC see Patent Document 2), and examples of using a silicon-containing polymer as a binder together with a thermosetting resin, and crosslinking the thermosetting resin and the silicon-containing polymer (patent)
  • the polymer is used as a binder (binder), it is thermoformed, infusibilized by heat treatment in an oxidizing atmosphere, crosslinked with oxygen, and fired.
  • the feature of the present invention is to produce a friction material using a silicon-containing polymer as a binder only by adding a baking step to the same production method as in the case of an organic friction material using a phenol resin as a binder.
  • the silicon-containing polymer include thermally decomposable polymers composed of groups such as polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane.
  • the binder is a silicon-containing polymer, and other resins can be used in combination with the silicon-containing polymer. This will be described later.
  • polycarbosilane is preferable among the silicon-containing polymers as the binder (binding material) used in the present invention.
  • the type of polycarbosilane used in the present invention is not particularly limited. For example, it is an organosilicon polymer containing at least 30% by mass or more of a repeating unit represented by the following general formula I, general formula II or general formula III. .
  • the polycarbosilane may be a homopolymer, a copolymer, a block, a graft or a blend.
  • the number average molecular weight of the polycarbosilane in the present invention is usually 500 to 10,000.
  • nanoparticle materials can be used as the nanoparticles of the present invention, for example, silica particles such as diatomaceous earth, Celite®, Celatom®, and / or silicon dioxide.
  • nanoparticles of resin powders such as phenol resins, silicone resins, epoxy resins, and mixtures thereof, and carbon powders and / or particles of partially and / or completely carbonized nanoparticles.
  • a mixture of these nanoparticle materials may be used.
  • grain form of a nanoparticle is not specifically limited, The substantially spherical shape, a rectangular parallelepiped shape, plate shape, linear shape like a fiber, and the branched branched shape can be used.
  • the nanoparticles are finely dispersed in the silicon-containing polymer at the nano level, the melt viscosity is increased by the volume effect, and the silicon-containing polymer flows out of the friction material in the infusibilization process.
  • a dense network having a high ceramic content in the friction material can be formed even if the infusibilization treatment is performed at a high temperature for a short time.
  • nanoparticles are nanoparticles having a primary particle size ranging from about 10 to about 150 nm in diameter, preferably from about 10 to about 50 nm. Further, nanoparticles having an average nanoparticle diameter of about 15 nm to about 30 nm as the primary nanoparticle size are preferred.
  • nanosilica particles whose nanoparticle material is silica is preferable because it can assist and strengthen the formation of a ceramic network. This is presumably because the base material strength is improved by the reaction and sintering between the silicon component in the silicon-containing polymer and the nanosilica particles.
  • silica colloidal silica is preferable from the viewpoint of dispersibility in the matrix, and organic solvent dispersible colloidal silica (organosilica sol) is more preferable.
  • the silica is not particularly limited. Specifically, as a spherical organosilica sol dispersed in an organic solvent, methanol silica sol, MA-ST-M, IPA-ST manufactured by Nissan Chemical Industries, Ltd.
  • IPA-ST-L IPA-ST-ZL, EG-ST, EG-ST-ZL, DMAC-ST, DMAC-ST-ZL, NPC-ST-30, PGM-ST, MEK-ST, MEK-ST -ZL, MIBK-ST, MIBK-ST, PMA-ST, EAC-ST, NBAC-ST, XBA-ST, TOL-ST, etc., Nanotech slurry of CI Kasei Co., Ltd., etc.
  • chain organosilica sol include IPA-ST-UP and MEK-ST-UP manufactured by Nissan Chemical Industries, Ltd.
  • the use of a chain-like organosilica sol is preferable because a high-density friction material can be produced and a friction material with excellent performance can be obtained.
  • the chain-like organosilica sol means a specific number of spherical colloidal silica particles as primary particles, colloidal silica having a shape connected in series or partially branched. It is presumed that the chain particles in the silicon-containing polymer have orientation during molding, and a high-density friction material is produced. Further, by dispersing the chain particles in the silicon-containing polymer, the melt viscosity can be further increased, and the binder outflow can be further suppressed. Furthermore, since the chain particles can be finely dispersed, the addition amount is small, and the influence on the friction performance is small, which is preferable.
  • swellable clay mineral examples include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, halloysite, and synthetic fluorine mica. These may be natural products or synthetic products. Among these, montmorillonite, saponite, and synthetic fluorine mica are particularly preferable from the viewpoints of being easily organically treated and improving the reinforcing property as a filler.
  • These swellable clay minerals have a layered structure, and are preferably subjected to an organic treatment in that an interlayer compound is formed by the organic treatment, and the interlayer is enlarged and delamination is likely to occur.
  • organic compound used for the organic treatment include amines and quaternary ammonium salts.
  • amines examples include aliphatic amines having 1 to 18 carbon atoms and aromatic amines.
  • Specific examples of the aliphatic amine include diethylamine, amylamine, dodecylamine, hexadecylamine, stearylamine, didodecylmethylamine hydrochloride and odorous acid salt
  • specific examples of the aromatic amine include aniline and toluidine. , Xylidine, phenylenediamine and the like. Of these amines, aniline is particularly preferred.
  • quaternary ammonium salt examples include dodecyltrimethylammonium chloride, dimethylstearylbenzylammonium chloride, trimethylstearylammonium chloride, dimethyldioctadecylammonium chloride (Esben NX), and oleylbis (2-hydroxyethyl) methylammonium chloride. be able to. Among these, dimethyl dioctadecyl ammonium chloride is particularly suitable.
  • the organic treatment of the swellable clay mineral can be appropriately performed by a conventionally known method. For example, after the swollen clay mineral is put into water and stirred to form a uniform liquid separation of the clay mineral, the organic compound or a salt thereof is added. By adding the liquid dissolved in water to the clay mineral dispersion and stirring, the organic compound is inserted between the layers of the clay mineral and the supported clay mineral is precipitated, so the precipitate is separated, recovered and dried. Thus, an organically treated swellable clay mineral powder can be obtained.
  • the formation of a ceramic network can be assisted and strengthened, and the infusibilization process can be completed in a short time.
  • the swellable clay mineral is finely dispersed at the nano level in the silicon-containing polymer, the melt viscosity is increased due to the volume effect, and the silicon-containing polymer is prevented from flowing out of the friction material in the infusibilization process, and cracks, It is presumed that a dense network having a high ceramic content in the friction material can be formed even if the infusibilization treatment is performed at a high temperature for a short time.
  • a silicon-containing polymer is introduced into an organic solvent such as xylene, toluene, hexane, butanone, and the resin solution obtained by stirring is charged with a nanoparticle solution or a swellable clay mineral into the resin solution. Further, after stirring and dispersing the nanoparticles or the swellable clay mineral, the above solution is desolvated, and the bulk resin is recovered and pulverized to obtain a raw material powder for a friction material.
  • an organic solvent such as xylene, toluene, hexane, butanone
  • the amount of nanoparticles or swellable clay mineral added to the silicon-containing polymer is not particularly limited as long as the nanoparticles or swellable clay mineral functions effectively, but the addition of nanoparticles or swellable clay mineral is not limited. If the amount is too large, the flowability of the binder is lost, the wettability / adhesion with the adherend is reduced, and nanoparticles or swellable clay minerals are present at the binder / adhesive interface, Since the contact area of the adherend becomes small, the function as a binder is lost for reasons such as inhibiting adhesion, which is not preferable. Usually, it is preferable to contain nanoparticles in the range of 15 to 50 parts by mass or swellable clay mineral in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
  • the process for producing the friction material of the present invention usually comprises the steps of blending the friction material, stirring, preforming, thermoforming, heating, firing and polishing, and is the same as the conventional process for producing the friction material.
  • it is applied to manufacture brake friction materials such as brake pads of disc brake devices and brake linings of drum brake devices mounted on vehicles, etc., and various granular components (raw materials) ) Are mixed in a predetermined ratio to form a friction material base material, and the step of mixing and stirring is performed.
  • the friction material base material is put into a preforming mold and pressure-molded to obtain a preform with a predetermined shape.
  • thermoforming step a thermoforming step of obtaining a thermoformed body molded into a predetermined friction material shape by being put into a thermoforming mold together with a preformed body and subjected to a thermoforming process at a predetermined molding pressure and temperature;
  • post-heat treatment, polishing treatment or the like By performing post-heat treatment, polishing treatment or the like on the molded body as appropriate, a post-treatment step for completing a friction material having a desired shape is sequentially performed.
  • heat treatment and baking treatment in an oxidizing atmosphere are performed as the subsequent heat treatment.
  • the silicon-containing polymer is infusible and cross-linked with oxygen by heat treatment in an oxidizing atmosphere, and then a network-like silicon-carbon (Si-C network) structure is built in the binder by firing treatment.
  • thermoforming apparatus In a normal thermoforming process, a thermoforming apparatus is used, and a pressure forming process for forming a preformed body and a depressurization (degassing) process for releasing the forming pressure are alternately repeated as many times as necessary. At the same time, in this depressurization process, the gas generated in the thermoforming mold is discharged by opening the thermoforming mold.
  • thermoforming there are no particular restrictions on the conditions for preforming the friction material composition, heating and pressing, heat treatment in an oxidizing atmosphere, and firing conditions, but the temperature during thermoforming is 150 to 180 ° C., the pressure is 30 to 50 MPa, and the pressure is increased. It is desirable to mold under a pressure time of 300 to 500 seconds.
  • the heat treatment in an oxidizing atmosphere is desirably performed under conditions of 160 to 350 ° C. (preferably 160 to 300 ° C.), a pressure of 0.1 to 0.3 MPa, and a treatment time of 1 to 10 hours. Within these condition ranges, the outflow of the silicon-containing polymer is suppressed and the dimensional stability is also good.
  • the heat treatment in the oxidizing atmosphere can be further controlled by controlling the rate of temperature rise to a low speed or by using millimeter wave heating, thereby further suppressing the outflow of the silicon-containing polymer. It can be manufactured and is preferable.
  • the residual inorganic component contained in the binder increases, and a denser ceramic network can be formed.
  • the temperature reaches 300 ° C. at a rate of temperature increase of 14 to 140 ° C. per hour under a pressure of 0.1 to 0.3 MPa.
  • the heat treatment in an oxidizing atmosphere is desirably 160 ° C. to 300 ° C., but the rate of temperature increase up to 160 ° C. is not particularly limited and is arbitrary.
  • the millimeter wave in this case refers to an electromagnetic wave having a frequency of 20 GHz to 300 GHz (that is, a wavelength of 15 mm to 1 mm), and the millimeter wave heating refers to dielectric heating using the millimeter wave band electromagnetic wave.
  • Millimeter wave heating can be performed by using a millimeter wave heating apparatus using a gyrotron oscillation tube. For example, a treatment time of 1 to 5 hours under a pressure of 250 to 350 ° C. and 0.1 to 0.3 MPa is preferable.
  • the firing is preferably performed in a vacuum, a reducing gas, or an inert gas atmosphere under conditions of a temperature of 800 to 1000 ° C. and a pressure of 0.5 MPa, and a treatment time of 1 to 2 hours.
  • a temperature of 800 to 1000 ° C. and a pressure of 0.5 MPa a temperature of 800 to 1000 ° C. and a pressure of 0.5 MPa
  • a treatment time 1 to 2 hours.
  • the firing time is preferably 1 hour or longer in order to complete the reaction for forming a network of Si components and considering the stability of physical properties.
  • a firing time exceeding 2 hours is an excessively high energy production, which is not preferable from the viewpoint of cost. Since there is a concern about the expansion of the sample in the firing step, it is preferable to apply a load of about 0.5 MPa to improve the dimensional stability.
  • metal fibers such as copper fibers and steel fibers are suitable as the fiber base material in terms of impact strength and temperature.
  • inorganic materials can be mentioned. Examples thereof include ceramics that can withstand heat treatment temperatures such as zirconia, alumina, titania, magnesia, calcium fluoride, boron nitride, and SiC.
  • the friction material of the present invention can contain various friction modifiers that are usually used.
  • a friction modifier materials such as graphite, iron, aluminum, copper, brass, bronze and the like are used. When these materials are actually used, it is conceivable to use a combination of a plurality of types of materials in consideration of various shapes and sizes such as granules and fibers in addition to powders.
  • a silicon-containing polymer is used as a binder, but other organic resins may be used in combination as long as the performance of the friction material is not impaired.
  • the binder known thermosetting resins such as phenol resin (straight phenol resin), furan resin, xylene resin, urea resin, melamine resin, aniline resin, unsaturated polyester resin, polyimide resin, epoxy resin, etc. Although phenol can be selected from among them, a phenol resin is preferable in terms of availability and ease of handling. The mixing ratio of these resins is up to about 50% by mass of the binder.
  • compositions of the friction material can be selected as the composition of the friction material. That is, these may be mixed singly or in combination of two or more according to the friction characteristics required for the product, for example, the friction coefficient, wear resistance, vibration characteristics, squeal characteristics, and the like.
  • the total compounding material of the friction material is 100% by mass
  • the fiber base material is 10 to 50% by mass
  • the inorganic material is 15 to 50% by mass
  • the binder is 5 to 10% by mass
  • Examples 1 to 6 and Reference Examples 1 and 2 The trial production conditions and manufacturing flow of Examples 1 to 6 and Reference Examples 1 and 2 are as follows.
  • inorganic binder Preparation of inorganic binder (1) Preparation of inorganic binders A to C Xylene solution of silicon-containing polymer (Ube Industries, Ltd .: VZ-100, 50% solution) and nanosilica MEK solution (Ci Kasei): SIMEK, 15% solution) was mixed with the formulation shown in Table 1, and then heated and dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain powdered inorganic binders A to C.
  • thermoformed body was set on a heating jig and heated at a predetermined speed shown in Table 3 up to 300 ° C. in an oven while maintaining the pressure at 0.2 MPa to perform infusibilization. 6). Firing The infusibilized product was put into a firing furnace and fired at 800 ° C. in an argon gas atmosphere while maintaining a pressure of 0.5 MPa to obtain a friction material.
  • Table 3 shows various physical properties of the friction material.
  • samples having good physical properties could be obtained by performing heat treatment in an oxidizing atmosphere.
  • the Si component constituting the polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction, promote the strengthening of the matrix, and ensure good physical properties.
  • FIG. 1 shows the results of DTA (differential thermal analysis) in the air of only polycarbosilane (binder D) and an inorganic binder (binder B) in which polycarbosilane and nano silica particles are mixed.
  • an exothermic peak is observed at around 200 ° C to 400 ° C.
  • crosslinking is caused by polycarbosilane and silanol groups (—Si—OH) on the surface of the nanosilica particles. From the above, it is presumed that a stronger bond is produced in the case of adding nanosilica particles than in the case of polycarbosilane alone.
  • Example 3 Furthermore, the silicon element mapping measurement result by EPMA of Reference Example 1 and Example 3 is shown in FIG. It can be seen from Reference Example 1 that the binder forms a Si network. In Example 3, since nano silica particles are added, the strength is detected to be higher than that in Reference Example 1. Segregation due to the addition of nanosilica particles is not observed, and the silica is uniformly dispersed in the Si network. Since Example 3 has high hardness, it is presumed that the network formation is enhanced.
  • Example 7 and 8 The prototype conditions and manufacturing flow of Examples 7 and 8 are as follows.
  • Inorganic Binders E and F As a nanosilica solution, in inorganic binder E, MEK solution of nanosilica (chain particles) (manufactured by Nissan Chemical Industries, Ltd .: MEK-ST-UP, solid content 20 %) was used in the inorganic binder F, except that a xylene solution of nano silica (manufactured by Nissan Chemical Industries, Ltd .: XBA-ST, solid content 30%) was used and mixed in the composition shown in Table 5 respectively. In the same manner as in the preparation method, powdered inorganic binders E and F were obtained.
  • Table 6 The raw materials shown in Table 6 were mixed in the same manner as in Example 1 except that the raw materials were mixed with the total amount of BR> Z shown in Table 6. Friction treatment) and firing were performed to produce a friction material. Table 7 shows the results of evaluating the obtained friction materials in the same manner as in Examples 1 to 6.
  • Examples 7 and 8 were able to obtain samples having good physical properties as in Examples 1 to 6 by performing heat treatment in an oxidizing atmosphere.
  • these friction materials it is presumed that the Si component constituting the polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction, promote the strengthening of the matrix, and ensure good physical properties. Due to the flowability lowering effect at the time of melting, there is almost no oozing out during the infusibilization process, and a friction material with a stable quality can be obtained, and a higher density can be expected.
  • Example 7 the friction performance of the friction material (Example 7) containing polycarbosilane and chain-like nanosilica particles was evaluated. The results are shown in Table 8. From the results of Table 8, since Example 7 also exhibits the friction performance equivalent to that in Reference Example 1 above, it is considered that there is no influence on the friction performance due to the addition of the chain nanosilica particles.
  • Example 7 Since chain-like nanosilica particles are added, the strength is detected to be higher than that in Reference Example 1. Segregation due to the addition of the chain-like nanosilica particles is not observed, and it is presumed that the network formation is strengthened because it is uniformly dispersed in the Si network.
  • Example 9 to 14 and Reference Examples 3 and 4 The trial production conditions and production flow of Examples 9 to 14 and Reference Examples 3 and 4 are as follows.
  • inorganic binder Preparation of inorganic binder (1) Preparation of inorganic binders G to I A xylene solution of a silicon-containing polymer (manufactured by Ube Industries, Ltd .: VZ-100, 50% solution) and an organically treated montmorillonite powder (manufactured by Hojun: Sven NK) ) was mixed with the formulation shown in Table 9, and then heated and dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain powdered inorganic binders GI.
  • a silicon-containing polymer manufactured by Ube Industries, Ltd .: VZ-100, 50% solution
  • an organically treated montmorillonite powder manufactured by Hojun: Sven NK
  • thermoformed body was set on a heating jig and heated at a predetermined speed shown in Table 3 up to 300 ° C. in an oven while maintaining the pressure at 0.2 MPa to perform infusibilization. 6). Firing The infusibilized product was put into a firing furnace with a hot press, and fired at 1000 ° C. in an argon gas atmosphere while maintaining a pressure of 0.5 MPa to obtain a friction material.
  • Table 11 shows various physical properties of the friction material.
  • samples having good physical properties could be obtained by performing heat treatment in an oxidizing atmosphere. These friction materials did not lose weight due to crosslinking with oxygen in the atmosphere, and the Si component constituting polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction and strengthen the matrix. It is presumed that good physical properties were secured.
  • the friction material obtained by infusibilizing and firing the silicon-containing polymer containing the nanoparticle material or swellable clay mineral of the present invention as a binder uses a highly heat-resistant brake pad with excellent braking performance using existing manufacturing equipment Can be provided. Therefore, the friction material of the present invention is useful as a high heat resistance friction material used as a brake pad, brake lining, clutch facing, etc. for automobiles, railways, industrial machines and the like.

Abstract

Provided are a highly heat-resistant friction material that is suitable for high heat / high loads and can be produced by simply adding a baking process to processes that are similar to those for organic friction materials, and a production method therefor. The friction material, obtained from a fiber matrix, a friction-adjusting material, a binder and an inorganic material, is produced by thermoforming a raw material that comprises a silicon-containing polymer and a nanoparticle material or swelling clay minerals, then heat-treating at a temperature of 160 - 350°C for one to ten hours in an oxidizing atmosphere to cross-link the silicon-containing polymer with oxygen, and then baking. Selecting one or more compounds from the group consisting of polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane for the silicon-containing polymer is desirable.

Description

摩擦材及び摩擦材の製造方法Friction material and friction material manufacturing method
 本発明は、自動車、鉄道、航空機、産業機械等に使われているブレーキ用摩擦材に関するものであり、特に小型・軽量化可能な、高温・高負荷に耐え得る耐熱性に優れた摩擦材及びその製造方法に関する。 The present invention relates to a friction material for brakes used in automobiles, railways, aircraft, industrial machines, and the like, and in particular, a friction material excellent in heat resistance capable of withstanding high temperature and high load, which can be reduced in size and weight, and It relates to the manufacturing method.
 主に自動車などに使われている摩擦材は、フェノール樹脂を代表とする熱硬化性樹脂を結合材(バインダー)として成形されているが、結合材が有機材料であることから高速での摩擦係数の低下、制動熱による有機材料の熱変形や劣化による摩擦材の貼りつきが問題となっている。近年、摩擦材に求められる性能は省エネルギー化を目的に小型・軽量化が進み、摩擦材にかかる負荷は益々厳しくなっている。これらの問題解決のため、銅系焼結合金による摩擦材、C/Cコンポジット、CMC(セラミックスマトリックスコンポジット)、有機材料を焼成・炭化させた摩擦材などが特許文献1~3に提案されている。
 しかしながら、これらの摩擦材は、その製法の困難性、製造する上での高エネルギー、コストが従来品より割高になるなど、課題が残っている。
Friction materials mainly used in automobiles are molded with thermosetting resins such as phenol resin as binders (binders), but because the binders are organic materials, the friction coefficient at high speed There is a problem that the friction material sticks due to a decrease in temperature and thermal deformation or deterioration of the organic material due to braking heat. In recent years, the performance required of friction materials has been reduced in size and weight for the purpose of energy saving, and the load on the friction materials has become increasingly severe. In order to solve these problems, Patent Documents 1 to 3 propose friction materials made of copper-based sintered alloys, C / C composites, CMC (ceramic matrix composites), friction materials obtained by firing and carbonizing organic materials, and the like. .
However, these friction materials still have problems such as difficulty in the production method, high energy in production, and higher cost than conventional products.
 また、特許文献1及び特許文献2には、ピッチを含む有機材料を焼結・炭化して結合材とした摩擦材が提案されている。一般に、有機材料を焼成炭素化して結合材となるようにして摩擦材を製造する場合、有機材料、無機充填材、固体潤滑材、金属材料等の原材料を混合し、この混合物を真空、還元ガス、不活性ガスの何れかの雰囲気中で必要な荷重をかけながら550~1000℃程度に昇温して保持する。これにより、有機材料が焼成炭素化して結合材として機能し、摩擦材が製造される。しかし、焼成摩擦材のバインダーとしてピッチを配合すると有害成分であるベンゾピレンを微量に含有しており、昨今の環境規制から使用が制限される可能性がある。今後、使用禁止になった場合、焼成摩擦材のバインダーとして代替原材料が必要になってくる。 Further, Patent Document 1 and Patent Document 2 propose a friction material that is a binder obtained by sintering and carbonizing an organic material containing pitch. In general, when manufacturing a friction material by carbonizing an organic material into a binder, the raw materials such as an organic material, an inorganic filler, a solid lubricant, and a metal material are mixed, and this mixture is vacuumed and reduced gas. Then, the temperature is raised to about 550 to 1000 ° C. while applying a necessary load in any atmosphere of an inert gas. As a result, the organic material is carbonized to function as a binder, and a friction material is manufactured. However, when pitch is blended as a binder of the fired friction material, it contains a trace amount of benzopyrene, which is a harmful component, and there is a possibility that its use is restricted due to recent environmental regulations. When the use is prohibited in the future, an alternative raw material will be required as a binder for the fired friction material.
 一方、一般的なディスクブレーキ用摩擦材はフェノール樹脂を代表とする熱硬化性樹脂を結合材として成形されるが、熱成形過程において有機結合材の熱硬化反応によりガスが発生する。この発生したガスが熱成形された摩擦材内部に閉じ込められ、そのガス圧が大きすぎる場合には、プレス圧の除圧時に一気に解放され、ヒビやフクレを生じる原因となる。 On the other hand, a general disc brake friction material is molded using a thermosetting resin typified by phenol resin as a binder, but gas is generated by a thermosetting reaction of the organic binder in the thermoforming process. If the generated gas is confined in the thermoformed friction material and the gas pressure is too high, it is released at a time when the press pressure is released, causing cracks and blisters.
 特許文献4には、熱硬化性樹脂とともに有機金属化合物を含有させることで、高温作動時において揮発分が少なく、耐フェード性、耐摩耗性に優れた摩擦材を提供する技術が記載されているが、このような無機バインダーを用いた摩擦材であっても同様な現象を起こす。 Patent Document 4 describes a technique for providing a friction material that contains an organometallic compound together with a thermosetting resin, has a low volatile content during high temperature operation, and has excellent fade resistance and wear resistance. However, even a friction material using such an inorganic binder causes the same phenomenon.
 フェノール樹脂などをバインダーとした摩擦材のヒビ、フクレの解決策としては、特許文献5に熱成形型のパンチ材質を、熱伝導性を上げたものに変更し、温度勾配を設けて発生ガスの排出を促す方法がある。また、特許文献6には成形時に加圧と除圧を繰り返し、除圧時に圧力の解放を制御することによって、急激なガス膨張を抑止する解決策も記載されている。
 特許文献7では、押え型、中型及び加圧型からなる摩擦材の熱成形用金型を用いて摩擦材原料の予備成形体を熱成形する際、押え型と加圧型に温度差を設け、熱成形時に予備成形体が最後に硬化する部分を押え型か加圧型のいずれか一方に寄せるとともに、この最終硬化部に対応する押え型または加圧型に前記最終硬化部に突入し、かつ前記の型に外部に通じるガス抜き路を持つ突起を設けることによって前記最終硬化部からガス抜きできるようにした摩擦材の熱成形過程のガス抜き方法が記載されている。
 しかし、これらの方法を用いても未だ十分とはいえず、熱成形完了後に製品が徐々に膨張し、ヒビやフクレを起こすケースが確認され、これらの対策を施した場合でも解決にならなかった。
As a solution for cracks and blisters in friction materials using phenolic resin as a binder, Patent Document 5 changes the punch material of the thermoforming die to one with increased thermal conductivity, and provides a temperature gradient to reduce the generated gas. There are ways to encourage emissions. Patent Document 6 also describes a solution that suppresses rapid gas expansion by repeating pressurization and depressurization during molding and controlling the release of pressure during depressurization.
In Patent Document 7, when a friction material raw preform is thermoformed using a friction material thermoforming mold including a presser mold, a middle mold, and a press mold, a temperature difference is provided between the presser mold and the press mold. At the time of molding, the part where the preform is finally cured is brought to either the pressing mold or the pressing mold, and the pressing mold or pressing mold corresponding to this final curing part is entered into the final curing part, and the mold Describes a degassing method in the thermoforming process of the friction material, in which a protrusion having a degassing path leading to the outside is provided so that degassing can be performed from the final hardened portion.
However, even if these methods are used, it is still not sufficient, and it has been confirmed that the product gradually expands after completion of thermoforming, causing cracks and blisters, and even if these measures are taken, it has not been solved. .
日本国特開2006-306970号公報Japanese Unexamined Patent Publication No. 2006-306970 日本国特開平11-132270号公報Japanese Patent Laid-Open No. 11-132270 日本国特開平3-51531号公報Japanese Laid-Open Patent Publication No. 3-51531 日本国特開平7-292349号公報Japanese Unexamined Patent Publication No. 7-292349 日本国特開2003-232392号公報Japanese Unexamined Patent Publication No. 2003-232392 日本国特開2003-145565号公報Japanese Unexamined Patent Publication No. 2003-145565 日本国特開2003-127155号公報Japanese Unexamined Patent Publication No. 2003-127155
 上記したように、高温・高負荷に耐えるディスクブレーキパッドを製造する場合、結合材等を焼成・炭化させて摩擦材とすることがあるが、その製法の困難性、製造する上での高エネルギー消費、コストが従来品より割高になるなど実用性に問題がある。その中で有機系摩擦材(NAO材、Non-Asbestos-Organic)と同様な製造プロセスに焼成工程を付け加えるだけで製造することが出来る高耐熱性パッドを提供できれば、上記の高エネルギー生産の間題を解決することができる。
 従って、本発明の課題の一つは、高温・高負荷に適合し、有機系摩擦材と同様な工程に焼成工程を付け加えるだけで製造できる高耐熱性摩擦材を提供することである。
As described above, when manufacturing a disc brake pad that can withstand high temperatures and high loads, the binding material may be fired and carbonized to produce a friction material. However, the manufacturing process is difficult and the energy required for manufacturing is high. There are problems in practicality such as higher consumption and cost than conventional products. If we can provide a high heat-resistant pad that can be manufactured simply by adding a baking process to the same manufacturing process as that of organic friction materials (NAO material, Non-Asbestos-Organic), then the problem of high energy production described above Can be solved.
Accordingly, one of the objects of the present invention is to provide a high heat-resistant friction material that is suitable for high temperature and high load and that can be manufactured simply by adding a baking process to the same process as the organic friction material.
 本発明のもう一つの課題は、結合材にピッチを含む有機系樹脂を使用すると製造工程内で有害成分のベンゾピレンが排出される恐れがあるので、代替材料としてケイ素含有ポリマーを焼成摩擦材の結合材として応用することを目的とする。
 また、無機バインダーを用いた摩擦材において、従来の成形法では熱成形完了後に製品が徐々に膨張し、ヒビやフクレを起こすケースが確認され、各種対策を施した場合でも解決にならなかった。従って、本発明の別の目的は、熱成形完了後の製品のヒビやフクレなどといった成形不良を解消することのできる品質の優れた摩擦材を得る成形方法を開発することである。
Another problem of the present invention is that when an organic resin containing pitch is used as a binder, harmful component benzopyrene may be discharged in the manufacturing process. It is intended to be applied as a material.
In addition, in a friction material using an inorganic binder, it has been confirmed that the conventional molding method gradually expands after completion of thermoforming, causing cracks and blisters, and even when various measures are taken, it cannot be solved. Accordingly, another object of the present invention is to develop a molding method for obtaining a friction material having excellent quality capable of eliminating molding defects such as cracks and blisters of a product after completion of thermoforming.
 本発明者は、既存の製造工程で高耐熱性摩擦材あるいは焼成摩擦材を製造するため、成形条件及び摩擦材の各種バインダー等を各種検討した結果、下記(1)~(12)により本発明の課題を解決した。
(1)繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材において、該結合材としてケイ素含有ポリマーとナノ粒子材料又は膨潤性粘土鉱物とを含有する原材料を酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理してSi-Cネットワークが形成されたことを特徴とする摩擦材。
(2)前記熱処理が、160~350℃の温度で、1~10時間の間行ったものである上記(1)に記載の摩擦材。
The present inventor has studied various molding conditions and various binders of friction materials in order to produce a high heat-resistant friction material or a fired friction material in an existing production process. As a result, the present invention is described in the following (1) to (12). Solved the problem.
(1) In a friction material composed of a fiber base material, a friction modifier, a binder, and an inorganic material, a raw material containing a silicon-containing polymer and a nanoparticle material or a swellable clay mineral as the binder is heat-treated in an oxidizing atmosphere. A friction material characterized in that a silicon-containing polymer is cross-linked with oxygen and cross-linked with oxygen, followed by firing to form a Si—C network.
(2) The friction material according to (1), wherein the heat treatment is performed at a temperature of 160 to 350 ° C. for 1 to 10 hours.
(3)前記ケイ素含有ポリマーがポリカルボシラン、ポリオルガノボロシラザン、ポリボロシロキサン、ポリカルボシラザン、パーヒドロポリシラザンの群から選択された1つ又は2つ以上の化合物である上記(1)又は(2)に記載の摩擦材。
(4)前記ケイ素含有ポリマーが摩擦材組成全体の5~10質量%配合されていることを特徴とする上記(1)~(3)のいずれか1つに記載の摩擦材。
(5)前記ケイ素含有ポリマー100質量部に対して、前記ナノ粒子材料を15~50質量部含有することを特徴とする上記(1)~(4)のいずれか1つに記載の摩擦材。
(6)前記ナノ粒子材料がシリカである上記(1)~(5)のいずれか1つに記載の摩擦材。
(7)前記シリカがオルガノシリカゾルである上記(6)に記載の摩擦材。
(3) The above (1) or (), wherein the silicon-containing polymer is one or more compounds selected from the group consisting of polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane. The friction material according to 2).
(4) The friction material as described in any one of (1) to (3) above, wherein the silicon-containing polymer is blended in an amount of 5 to 10% by mass of the entire friction material composition.
(5) The friction material according to any one of (1) to (4) above, wherein the nanoparticle material is contained in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
(6) The friction material according to any one of (1) to (5), wherein the nanoparticle material is silica.
(7) The friction material according to (6), wherein the silica is an organosilica sol.
(8)前記膨潤性粘土鉱物が有機化処理された膨潤性粘土鉱物である上記(1)~(4)のいずれか1つに記載の摩擦材。
(9)前記膨潤性粘土鉱物がモンモリロナイトである上記(1)~(4)及び(8)のいずれか1つに記載の摩擦材。
(8) The friction material according to any one of (1) to (4), wherein the swellable clay mineral is a swellable clay mineral that has been subjected to an organic treatment.
(9) The friction material according to any one of (1) to (4) and (8), wherein the swellable clay mineral is montmorillonite.
(10)少なくとも予備成形、熱成形及び熱処理の工程を含む、繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材の製造方法において、該結合材としてケイ素含有ポリマーとナノ粒子材料又は膨潤性粘土鉱物とを含有する原材料を熱成形の後、160~350℃の温度で、1~10時間の間、酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理したことを特徴とする摩擦材の製造方法。
(11)前記不融化処理における熱処理の昇温速度を、1時間あたり14~140℃で行うことを特徴とする上記(10)に記載の摩擦材の製造方法。
(12)前記不融化処理における熱処理を、ミリ波加熱を用いて行うことを特徴とする上記(10)又は(11)に記載の摩擦材の製造方法。
(10) In a method for producing a friction material comprising a fiber base material, a friction modifier, a binder, and an inorganic material, including at least preforming, thermoforming, and heat treatment steps, a silicon-containing polymer and a nanoparticle material or The raw material containing the swellable clay mineral is thermoformed and then infusibilized by heat treatment in an oxidizing atmosphere at a temperature of 160 to 350 ° C. for 1 to 10 hours to crosslink the silicon-containing polymer with oxygen. Then, a method for producing a friction material, which is fired.
(11) The method for producing a friction material as described in (10) above, wherein the heating rate of the heat treatment in the infusibilization treatment is 14 to 140 ° C. per hour.
(12) The method for producing a friction material according to (10) or (11), wherein the heat treatment in the infusibilization treatment is performed using millimeter wave heating.
(13)前記熱処理の後、さらに800~1000℃の温度で1~2時間焼成することを特徴とする上記(10)~(12)のいずれか1つに記載の摩擦材の製造方法。
(14)前記予備成形が圧力25~300MPaの予備成形を施したことを特徴とする上記(10)~(13)のいずれか1つに記載の摩擦材の製造方法。
(13) The method for producing a friction material as described in any one of (10) to (12) above, wherein after the heat treatment, firing is further performed at a temperature of 800 to 1000 ° C. for 1 to 2 hours.
(14) The method for producing a friction material as described in any one of (10) to (13) above, wherein the preforming is preformed at a pressure of 25 to 300 MPa.
 結合材をストレートフェノール樹脂のような有機材料からケイ素含有ポリマーにしたことにより、酸素との架橋による母材強化機構を形成することから、従来の摩擦材よりも耐熱性を上げることが出来る。また、ケイ素含有ポリマーを酸化雰囲気で加熱すれば、加熱処理中に流れ出さないので、摩擦材用のバインダーとして使用可能であることが分かった。更に詳細に検討したところ、ケイ素含有ポリマーは予備硬化温度が300℃未満であると樹脂が柔らかすぎて圧力をかける前に染み出してしまうという課題があったため(例えば、日本国特開2002-255650号公報段落番号〔0012〕参照)、本発明では、更に不融化時にケイ素含有ポリマーの染み出しをより有効に抑制するために、ケイ素含有ポリマーと共にナノ粒子材料(以下単に「ナノ粒子」と称することもある)又は膨潤性粘土鉱物を含有させることにより、ケイ素含有ポリマーの加熱中の流出を抑えることができることを見出した。また、ケイ素含有ポリマーは温度変化に敏感であり、不融化処理中に唐突に粘度低下が生じることがあるが、ナノ粒子又は膨潤性粘土鉱物を含有させることで、溶融粘度を大きくし、粘度変化を制御することができるため、不融化工程を短時間で終了させることができ、低コスト、短時間で摩擦材を製造することができる。また、ナノ粒子又は有機化処理された膨潤性粘土鉱物は微細に分散できるので、ナノ粒子又は膨潤性粘土鉱物の添加量が少量で済み、摩擦性能への影響も少なく、セラミックスネットワークの形成を有効に補助し、強化させることができる。 Since the base material strengthening mechanism is formed by cross-linking with oxygen by changing the binder from an organic material such as a straight phenol resin to a silicon-containing polymer, the heat resistance can be improved as compared with a conventional friction material. Further, it was found that if the silicon-containing polymer is heated in an oxidizing atmosphere, it does not flow out during the heat treatment, so that it can be used as a binder for a friction material. A more detailed study revealed that the silicon-containing polymer had a problem that if the precuring temperature was less than 300 ° C., the resin was too soft and oozed out before pressure was applied (for example, Japanese Patent Application Laid-Open No. 2002-255650). In the present invention, in order to more effectively suppress the exudation of the silicon-containing polymer during infusibilization, the nanoparticle material (hereinafter simply referred to as “nanoparticles”) is used together with the silicon-containing polymer. It has also been found that outflow during heating of the silicon-containing polymer can be suppressed by containing a swellable clay mineral. In addition, silicon-containing polymers are sensitive to temperature changes and may suddenly drop in viscosity during infusibilization, but by incorporating nanoparticles or swellable clay minerals, the melt viscosity is increased and the viscosity changes. Therefore, the infusibilization process can be completed in a short time, and the friction material can be manufactured at a low cost and in a short time. Nanoparticles or organically treated swellable clay minerals can be finely dispersed, so the amount of nanoparticles or swellable clay minerals can be added in a small amount, with little effect on friction performance, and effective formation of ceramic networks Can help and strengthen.
 更に、その製造では従来の既存設備のみで対応できることから製造コストも同等となり、設備投資の必要もない。
 また、ピッチを焼成摩擦材のバインダーとして使用すると、有害物質であるベンゾピレンが製造工程内で微量排出される恐れがあるが、ケイ素含有ポリマーに替えると環境汚染のない耐熱性に優れた焼成摩擦材として使用することが可能となる。
Furthermore, since the production can be handled only with the existing equipment, the production costs are equivalent and there is no need for capital investment.
In addition, when pitch is used as a binder for fired friction materials, benzopyrene, which is a harmful substance, may be discharged in a small amount in the production process. However, if it is replaced with a silicon-containing polymer, the fired friction material is excellent in heat resistance without environmental pollution. Can be used.
 更に、摩擦材の結合材にケイ素含有ポリマーを使用した場合には完全にヒビ・フクレの発生を抑えることはできないが、ケイ素含有ポリマーを使用して高圧力で予備成形を行うと熱成形時の厚み変化が少ない。よって、ガスの排出口を塞ぐことなく、ヒビ・フクレの発生防止になり、品質の優れた摩擦材を製造できる。また、ニアネットシェイプ(near net shape)での成形が可能であり、通常の予備成形品に比べてボロツキがないため、ハンドリングが良好となる。なお、通常の有機系摩擦材の予備成形圧力は25~35MPaであり、本発明では、これを超える圧力で予備成形することを高圧力での予備成形と称し、具体的には25~300MPaであることが好ましい。 Furthermore, when a silicon-containing polymer is used as a binder for the friction material, the generation of cracks and bulges cannot be completely suppressed. However, if a silicon-containing polymer is used for pre-molding at high pressure, Little change in thickness. Therefore, it is possible to prevent generation of cracks and blisters without blocking the gas discharge port, and to manufacture a friction material with excellent quality. In addition, the near net shape can be formed, and since there is no fluctuation compared with a normal preform, handling is good. The pre-forming pressure of a normal organic friction material is 25 to 35 MPa. In the present invention, pre-forming at a pressure exceeding this is referred to as pre-forming at high pressure, specifically at 25 to 300 MPa. Preferably there is.
図1は、ポリカルボシランのみ(バインダーD)と、ポリカルボシラン及びナノシリカ粒子を混合した無機バインダー(バインダーB)の空気中におけるDTA(示差熱分析)の結果を示す図である。FIG. 1 is a diagram showing the results of DTA (differential thermal analysis) in air for only polycarbosilane (binder D) and an inorganic binder (binder B) in which polycarbosilane and nanosilica particles are mixed. 図2は、(a)は結合材としてポリカルボシランのみを含有する摩擦材(参考例1)、(b)はポリカルボシランとナノシリカ粒子を含有する摩擦材(実施例3)の、(c)はポリカルボシランと鎖状ナノシリカ粒子を含有する摩擦材(実施例7)の、それぞれケイ素元素のマッピングを示す電子顕微鏡写真である。2A shows a friction material containing only polycarbosilane as a binder (Reference Example 1), and FIG. 2B shows a friction material containing polycarbosilane and nanosilica particles (Example 3). ) Are electron micrographs each showing a mapping of silicon elements of a friction material (Example 7) containing polycarbosilane and chain-like nanosilica particles.
 以下、本発明の実施形態について詳しく説明する。
 本発明に用いられるケイ素含有ポリマーは、例えば、SiCからなるセラミックス製品を製造する際、直接賦形化して焼成する方法、プリフォームに含浸した後、熱分解によりセラミックス化する方法等に用いられる、セラミックス前駆体として知られているケイ素含有ポリマーを用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
The silicon-containing polymer used in the present invention is used in, for example, a method of directly shaping and firing a ceramic product made of SiC, a method of impregnating a preform, and then converting to ceramic by thermal decomposition. A silicon-containing polymer known as a ceramic precursor can be used.
 多孔質炭素繊維にケイ素含有ポリマーを浸透させ、熱分解により多孔質C-C初期体を製造し、この多孔質C-C初期体に液状ケイ素(ケイ素含有ポリマー)を浸透せしめ、その際加熱によりSiCにセラミックス化して摩擦材を製造する例(特許文献2参照)や、ケイ素含有ポリマーを結合材として熱硬化性樹脂とともに用い、熱硬化性樹脂とケイ素含有ポリマーとを架橋させて用いる例(特許文献4参照)は知られているが、前記ポリマーを結合材(バインダー)として使用して熱成形し、酸化雰囲気で熱処理することにより不融化して、酸素と架橋させた後、焼成処理してSi-Cネットワークを形成させた摩擦材は報告されていない。
 本発明の特徴は、フェノール樹脂を結合材とする有機系摩擦材の場合と同様な製法に焼成工程を付け加えるだけで、ケイ素含有ポリマーをバインダーとした摩擦材を製造することである。
A porous carbon fiber is infiltrated with a silicon-containing polymer, and a porous CC initial body is produced by thermal decomposition. Liquid porous silicon (silicon-containing polymer) is infiltrated into the porous CC initial body, and heating is performed at that time. Examples of manufacturing friction material by making ceramics into SiC (see Patent Document 2), and examples of using a silicon-containing polymer as a binder together with a thermosetting resin, and crosslinking the thermosetting resin and the silicon-containing polymer (patent) Although the polymer is used as a binder (binder), it is thermoformed, infusibilized by heat treatment in an oxidizing atmosphere, crosslinked with oxygen, and fired. There has been no report of a friction material in which a Si—C network is formed.
The feature of the present invention is to produce a friction material using a silicon-containing polymer as a binder only by adding a baking step to the same production method as in the case of an organic friction material using a phenol resin as a binder.
 具体的なケイ素含有ポリマーとしては、ポリカルボシラン、ポリオルガノボロシラザン、ポリボロシロキサン、ポリカルボシラザン、パーヒドロポリシラザン等の群から成る熱分解可能なポリマーを挙げることができる。
 本発明においては、結合材をすべてケイ素含有ポリマーとする必要はなく、ケイ素含有ポリマーとともに他の樹脂を併用することができる。これについては後記する。
Specific examples of the silicon-containing polymer include thermally decomposable polymers composed of groups such as polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane.
In the present invention, it is not necessary that the binder is a silicon-containing polymer, and other resins can be used in combination with the silicon-containing polymer. This will be described later.
 価格及び入手のしやすさを考えると、本発明で使用するバインダー(結合材)としては、上記ケイ素含有ポリマーの中でポリカルボシランが好ましい。本発明で使用されるポリカルボシランの種類は特に限定されないが、例えば、下記一般式I、一般式II又は一般式IIIで表される繰返し単位を少なくとも30質量%以上含む有機ケイ素重合体である。 Considering price and availability, polycarbosilane is preferable among the silicon-containing polymers as the binder (binding material) used in the present invention. The type of polycarbosilane used in the present invention is not particularly limited. For example, it is an organosilicon polymer containing at least 30% by mass or more of a repeating unit represented by the following general formula I, general formula II or general formula III. .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、アルキル基又は水酸基を示し、Rはアルキル基、フェニル基又はハロゲン原子を示し、nは整数を表す。)
 ポリカルボシランは単独重合体であってもよく、共重合体、ブロック体あるいはグラフト体又はブレンド体であってもよい。本発明における前記ポリカルボシランの数平均分子量は、通常、500~10,000である。
(Wherein R 1 represents a hydrogen atom, an alkyl group or a hydroxyl group, R 2 represents an alkyl group, a phenyl group or a halogen atom, and n represents an integer.)
The polycarbosilane may be a homopolymer, a copolymer, a block, a graft or a blend. The number average molecular weight of the polycarbosilane in the present invention is usually 500 to 10,000.
 本発明のナノ粒子としては、様々なタイプのナノ粒子材料を用いることができ、例えば、ケイソウ土、セライト(登録商標)、セラトム(Celatom)(登録商標)、及び/または二酸化ケイ素等のシリカ粒子、フェノール樹脂、シリコーン樹脂、エポキシ樹脂及びこれらの混合物等の樹脂粉末のナノ粒子、更に、部分的及び/または完全に炭化したナノ粒子サイズの炭素粉末及び/または粒子等が挙げられる。更に、これらのナノ粒子材料の混合物であってもよい。また、ナノ粒子の粒子形態は特に限定されず、略球状、直方体状、板状、繊維のような直線形状、枝分かれした分岐形状を用いることができる。ナノ粒子をケイ素含有ポリマーと共に用いることにより、ナノ粒子がケイ素含有ポリマー中にナノレベルに微細分散し、体積効果で溶融粘度が高くなり、不融化処理工程でケイ素含有ポリマーが摩擦材から流出することを防ぐため、高温、短時間で不融化処理を行っても、摩擦材中のセラミックス含有率が高い緻密なネットワークを形成することができる。 Various types of nanoparticle materials can be used as the nanoparticles of the present invention, for example, silica particles such as diatomaceous earth, Celite®, Celatom®, and / or silicon dioxide. And nanoparticles of resin powders such as phenol resins, silicone resins, epoxy resins, and mixtures thereof, and carbon powders and / or particles of partially and / or completely carbonized nanoparticles. Furthermore, a mixture of these nanoparticle materials may be used. Moreover, the particle | grain form of a nanoparticle is not specifically limited, The substantially spherical shape, a rectangular parallelepiped shape, plate shape, linear shape like a fiber, and the branched branched shape can be used. By using nanoparticles with silicon-containing polymers, the nanoparticles are finely dispersed in the silicon-containing polymer at the nano level, the melt viscosity is increased by the volume effect, and the silicon-containing polymer flows out of the friction material in the infusibilization process. In order to prevent this, a dense network having a high ceramic content in the friction material can be formed even if the infusibilization treatment is performed at a high temperature for a short time.
 これらのナノ粒子は、一次粒度として直径約10~約150nm、好ましくは約10~約50nmの範囲にわたるナノ粒子である。また、一次ナノ粒子サイズとして平均ナノ粒子直径が約15nm~約30nmであるナノ粒子が好ましい。 These nanoparticles are nanoparticles having a primary particle size ranging from about 10 to about 150 nm in diameter, preferably from about 10 to about 50 nm. Further, nanoparticles having an average nanoparticle diameter of about 15 nm to about 30 nm as the primary nanoparticle size are preferred.
 中でも、ナノ粒子材料がシリカであるナノシリカ粒子を用いることにより、セラミックスネットワークの形成を補助し、強化させることができ、好ましい。これは、ケイ素含有ポリマー内のケイ素成分とナノシリカ粒子との反応、焼結により、母材強度が向上するためと推定される。シリカとしては、マトリックス中の分散性の点からコロイダルシリカが好ましく、有機溶媒分散性のコロイダルシリカ(オルガノシリカゾル)がより好ましい。
 シリカとしては、特に限定されるものではないが、具体的には、有機溶剤に分散させた球状のオルガノシリカゾルとして、日産化学工業(株)製のメタノールシリカゾル、MA-ST-M、IPA-ST、IPA-ST-L、IPA-ST-ZL、EG-ST、EG-ST-ZL、DMAC-ST、DMAC-ST-ZL、NPC-ST-30、PGM-ST、MEK-ST、MEK-ST-ZL、MIBK-ST、MIBK-ST、PMA-ST、EAC-ST、NBAC-ST、XBA-ST、TOL-ST等、シーアイ化成(株)のナノテックスラリー等がある。鎖状のオルガノシリカゾルとして、日産化学工業(株)製のIPA-ST-UP、MEK-ST-UP等がある。
Among these, the use of nanosilica particles whose nanoparticle material is silica is preferable because it can assist and strengthen the formation of a ceramic network. This is presumably because the base material strength is improved by the reaction and sintering between the silicon component in the silicon-containing polymer and the nanosilica particles. As silica, colloidal silica is preferable from the viewpoint of dispersibility in the matrix, and organic solvent dispersible colloidal silica (organosilica sol) is more preferable.
The silica is not particularly limited. Specifically, as a spherical organosilica sol dispersed in an organic solvent, methanol silica sol, MA-ST-M, IPA-ST manufactured by Nissan Chemical Industries, Ltd. IPA-ST-L, IPA-ST-ZL, EG-ST, EG-ST-ZL, DMAC-ST, DMAC-ST-ZL, NPC-ST-30, PGM-ST, MEK-ST, MEK-ST -ZL, MIBK-ST, MIBK-ST, PMA-ST, EAC-ST, NBAC-ST, XBA-ST, TOL-ST, etc., Nanotech slurry of CI Kasei Co., Ltd., etc. Examples of the chain organosilica sol include IPA-ST-UP and MEK-ST-UP manufactured by Nissan Chemical Industries, Ltd.
 中でも、鎖状のオルガノシリカゾルを用いることにより、高密度の摩擦材を製造することができ、優れた性能の摩擦材を得ることができ、好ましい。ここで、鎖状のオルガノシリカゾルとは、一次粒子である球状コロイダルシリカ粒子がある特定の個数、直列にあるいは一部分岐してつながった形状のコロイダルシリカを意味する。ケイ素含有ポリマー中において鎖状粒子が成形時に配向性を持ち、高密度の摩擦材が製造されるものと推定される。また、ケイ素含有ポリマー中に鎖状粒子を分散させることで溶融粘度をより大きくすることができ、バインダー流出を更に抑制することができる。更に、鎖状粒子が微細に分散できるので、添加量が少なくて済み、摩擦性能への影響が少なく、好ましい。 Among these, the use of a chain-like organosilica sol is preferable because a high-density friction material can be produced and a friction material with excellent performance can be obtained. Here, the chain-like organosilica sol means a specific number of spherical colloidal silica particles as primary particles, colloidal silica having a shape connected in series or partially branched. It is presumed that the chain particles in the silicon-containing polymer have orientation during molding, and a high-density friction material is produced. Further, by dispersing the chain particles in the silicon-containing polymer, the melt viscosity can be further increased, and the binder outflow can be further suppressed. Furthermore, since the chain particles can be finely dispersed, the addition amount is small, and the influence on the friction performance is small, which is preferable.
 本発明で用いることのできる膨潤性粘土鉱物としては、例えばモンモリロナイト、サポナイト、バイデライト、ノントロナイト、ヘクトライト、スティブンサイト等のスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、合成フッ素雲母などが挙げられ、これらは天然品であっても、合成品であってもよい。これらの中で、特にモンモリロナイト、サポナイト、合成フッ素雲母が、有機化処理されやすく、かつフィラーとしての補強性向上効果などの観点から好適である。 Examples of the swellable clay mineral that can be used in the present invention include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, halloysite, and synthetic fluorine mica. These may be natural products or synthetic products. Among these, montmorillonite, saponite, and synthetic fluorine mica are particularly preferable from the viewpoints of being easily organically treated and improving the reinforcing property as a filler.
 これらの膨潤性粘土鉱物は層状構造を有し、有機化処理によって、層間化合物を形成すると共に、層間が拡大し、層剥離が生じやすくなる点で有機化処理することが好ましい。有機化処理に用いられる有機化合物としては、アミン類や4級アンモニウム塩などが挙げられる。これらの有機化合物は、用いる粘土鉱物や分散溶媒の種類(主に極性)、更に用いるケイ素含有ポリマーの種類などを考慮して、最適のものを適宜選択して用いることが好ましい。 These swellable clay minerals have a layered structure, and are preferably subjected to an organic treatment in that an interlayer compound is formed by the organic treatment, and the interlayer is enlarged and delamination is likely to occur. Examples of the organic compound used for the organic treatment include amines and quaternary ammonium salts. For these organic compounds, it is preferable to select and use optimal ones in consideration of the types of clay minerals and dispersion solvents used (mainly polar) and the types of silicon-containing polymers used.
 アミン類としては、例えば炭素数1~18の脂肪族アミンや芳香族アミンなどを用いることができる。脂肪族アミンの具体例としてはジエチルアミン、アミルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、ジドデシルメチルアミンの塩酸塩や臭酸塩などが挙げられ、芳香族アミンの具体例としては、アニリン、トルイジン、キシリジン、フェニレンジアミンなどが挙げられる。これらのアミン類の中では、特にアニリンが好適である。一方、4級アンモニウム塩としては、例えばドデシルトリメチルアンモニウムクロリド、ジメチルステアリルベンジルアンモニウムクロリド、トリメチルステアリルアンモニウムクロリド、ジメチルジオクタデシルアンモニウムクロリド(エスベンNX)、オレイルビス(2-ヒドロキシエチル)メチルアンモニウムクロリドなどを好ましく挙げることができる。これらの中でも、ジメチルジオクタデシルアンモニウムクロリドが特に好適である。 Examples of amines that can be used include aliphatic amines having 1 to 18 carbon atoms and aromatic amines. Specific examples of the aliphatic amine include diethylamine, amylamine, dodecylamine, hexadecylamine, stearylamine, didodecylmethylamine hydrochloride and odorous acid salt, and specific examples of the aromatic amine include aniline and toluidine. , Xylidine, phenylenediamine and the like. Of these amines, aniline is particularly preferred. On the other hand, preferred examples of the quaternary ammonium salt include dodecyltrimethylammonium chloride, dimethylstearylbenzylammonium chloride, trimethylstearylammonium chloride, dimethyldioctadecylammonium chloride (Esben NX), and oleylbis (2-hydroxyethyl) methylammonium chloride. be able to. Among these, dimethyl dioctadecyl ammonium chloride is particularly suitable.
 膨潤性粘土鉱物の有機化処理は、従来公知の方法によって適宜行うことができ、例えば、膨潤粘土鉱物を水中に投入し攪拌して粘土鉱物の均一分液とした後、有機化合物又はその塩を水中に溶解した液を上記粘土鉱物分散液中に加えて攪拌することにより、粘土鉱物の層間に有機化合物が挿入、担持された粘土鉱物が沈殿するので、該沈殿物を分離、回収、乾燥して、有機化処理された膨潤性粘土鉱物の粉末を得ることができる。 The organic treatment of the swellable clay mineral can be appropriately performed by a conventionally known method. For example, after the swollen clay mineral is put into water and stirred to form a uniform liquid separation of the clay mineral, the organic compound or a salt thereof is added. By adding the liquid dissolved in water to the clay mineral dispersion and stirring, the organic compound is inserted between the layers of the clay mineral and the supported clay mineral is precipitated, so the precipitate is separated, recovered and dried. Thus, an organically treated swellable clay mineral powder can be obtained.
 本発明においては、これらの膨潤性粘土鉱物をケイ素含有ポリマーと共に用いることにより、セラミックスネットワークの形成を補助し、強化させることができ、更に不融化処理工程を短時間で終了させることができる。これは、膨潤性粘土鉱物がケイ素含有ポリマー中にナノレベルに微細分散し、体積効果で溶融粘度が高くなり、不融化処理工程でケイ素含有ポリマーが摩擦材から流出することを防ぐとともにヒビ・フクレを抑制できるため、高温、短時間で不融化処理を行っても、摩擦材中のセラミックス含有率が高い緻密なネットワークを形成できるためと推定される。 In the present invention, by using these swellable clay minerals together with a silicon-containing polymer, the formation of a ceramic network can be assisted and strengthened, and the infusibilization process can be completed in a short time. This is because the swellable clay mineral is finely dispersed at the nano level in the silicon-containing polymer, the melt viscosity is increased due to the volume effect, and the silicon-containing polymer is prevented from flowing out of the friction material in the infusibilization process, and cracks, It is presumed that a dense network having a high ceramic content in the friction material can be formed even if the infusibilization treatment is performed at a high temperature for a short time.
 本発明では、例えば、ケイ素含有ポリマーをキシレン、トルエン、ヘキサン、ブタノン等の有機溶媒中に投入し、攪拌して得た樹脂溶液に、ナノ粒子溶液又は膨潤性粘土鉱物を樹脂溶液中に投入し、更に攪拌してナノ粒子又は膨潤性粘土鉱物を分散させた後、上記溶液を脱溶媒し、塊状樹脂を回収して粉砕することにより、摩擦材用の原材料粉末とすることができる。 In the present invention, for example, a silicon-containing polymer is introduced into an organic solvent such as xylene, toluene, hexane, butanone, and the resin solution obtained by stirring is charged with a nanoparticle solution or a swellable clay mineral into the resin solution. Further, after stirring and dispersing the nanoparticles or the swellable clay mineral, the above solution is desolvated, and the bulk resin is recovered and pulverized to obtain a raw material powder for a friction material.
 また、ケイ素含有ポリマーに対するナノ粒子又は膨潤性粘土鉱物の添加量は、ナノ粒子又は膨潤性粘土鉱物が有効に機能する範囲であれば特に限定的ではないが、ナノ粒子又は膨潤性粘土鉱物の添加量が多すぎると、バインダーの流れ性がなくなり、被着材との濡れ性/密着性が低下し、また、ナノ粒子又は膨潤性粘土鉱物がバインダー/被着材の界面に介在し、バインダーと被着材の接触面積が小さくなることで、接着を阻害するなどの理由により、バインダーとしての機能を失ってしまい、好ましくない。通常、ケイ素含有ポリマー100質量部に対して、ナノ粒子を15~50質量部の範囲又は膨潤性粘土鉱物を1~10質量部の範囲で含有させることが好ましい。 The amount of nanoparticles or swellable clay mineral added to the silicon-containing polymer is not particularly limited as long as the nanoparticles or swellable clay mineral functions effectively, but the addition of nanoparticles or swellable clay mineral is not limited. If the amount is too large, the flowability of the binder is lost, the wettability / adhesion with the adherend is reduced, and nanoparticles or swellable clay minerals are present at the binder / adhesive interface, Since the contact area of the adherend becomes small, the function as a binder is lost for reasons such as inhibiting adhesion, which is not preferable. Usually, it is preferable to contain nanoparticles in the range of 15 to 50 parts by mass or swellable clay mineral in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
 本発明の摩擦材の製造工程は、通常、摩擦材原料の配合、攪拌、予備成形、熱成形、加熱、焼成及び研摩の各工程からなり、従来の摩擦材の製造工程と同一である。
 その実施の形態においては、車両等に搭載されるディスクブレーキ装置のブレーキパッドやドラムブレーキ装置のブレーキライニングなどのブレーキ用の摩擦材を製造するのに適用され、粉粒状の各種の構成成分(原料)を所定の比率で混合させた摩擦材母材を形成する配合・攪拌工程と、その摩擦材母材を予備成形用金型に投入して加圧成形して所定形状の予備成形体を得る予備成形工程と、予備成形体とともに熱成形用金型に投入して所定の成形圧力、温度による熱成形処理を施して所定の摩擦材形状に成形した熱成形体を得る熱成形工程と、熱成形体に対して後熱処理や研摩処理等を適宜実施することで所望形状の摩擦材として完成させる後処理工程とを順に行うようにして実施される。
The process for producing the friction material of the present invention usually comprises the steps of blending the friction material, stirring, preforming, thermoforming, heating, firing and polishing, and is the same as the conventional process for producing the friction material.
In the embodiment, it is applied to manufacture brake friction materials such as brake pads of disc brake devices and brake linings of drum brake devices mounted on vehicles, etc., and various granular components (raw materials) ) Are mixed in a predetermined ratio to form a friction material base material, and the step of mixing and stirring is performed. The friction material base material is put into a preforming mold and pressure-molded to obtain a preform with a predetermined shape. A preforming step, a thermoforming step of obtaining a thermoformed body molded into a predetermined friction material shape by being put into a thermoforming mold together with a preformed body and subjected to a thermoforming process at a predetermined molding pressure and temperature; By performing post-heat treatment, polishing treatment or the like on the molded body as appropriate, a post-treatment step for completing a friction material having a desired shape is sequentially performed.
 本発明では、この後熱処理として、酸化雰囲気での加熱処理及び焼成処理が施される。酸化雰囲気での加熱処理によりケイ素含有ポリマーが不融化して酸素と架橋され、その後焼成処理により、バインダー内でネットワーク状のケイ素-炭素(Si-Cネットワーク)構造が構築される。 In the present invention, heat treatment and baking treatment in an oxidizing atmosphere are performed as the subsequent heat treatment. The silicon-containing polymer is infusible and cross-linked with oxygen by heat treatment in an oxidizing atmosphere, and then a network-like silicon-carbon (Si-C network) structure is built in the binder by firing treatment.
 なお、通常の熱成形工程では、熱成形装置を使用し、予備成形体を成形する加圧成形処理と、この成形圧力を開放する除圧(ガス抜き)処理を交互に適宜回数繰り返して実施すると共に、この除圧処理では、熱成形用金型内に発生するガスを熱成形用金型を開くことによって排出する。 In a normal thermoforming process, a thermoforming apparatus is used, and a pressure forming process for forming a preformed body and a depressurization (degassing) process for releasing the forming pressure are alternately repeated as many times as necessary. At the same time, in this depressurization process, the gas generated in the thermoforming mold is discharged by opening the thermoforming mold.
 また、摩擦材組成物の予備成形、加熱加圧成形、酸化雰囲気での熱処理、焼成の条件について特に制限はないが、熱成形時の温度は150~180℃、加圧は30~50MPa、加圧時間を300~500secの条件で成形することが望ましい。
 酸化雰囲気での熱処理は160~350℃(好ましくは160~300℃)、0.1~0.3MPaの加圧下、処理時間1~10時間の条件が望ましい。これらの条件範囲内であれば、ケイ素含有ポリマーの流出が抑えられ、寸法安定性も良好である。
There are no particular restrictions on the conditions for preforming the friction material composition, heating and pressing, heat treatment in an oxidizing atmosphere, and firing conditions, but the temperature during thermoforming is 150 to 180 ° C., the pressure is 30 to 50 MPa, and the pressure is increased. It is desirable to mold under a pressure time of 300 to 500 seconds.
The heat treatment in an oxidizing atmosphere is desirably performed under conditions of 160 to 350 ° C. (preferably 160 to 300 ° C.), a pressure of 0.1 to 0.3 MPa, and a treatment time of 1 to 10 hours. Within these condition ranges, the outflow of the silicon-containing polymer is suppressed and the dimensional stability is also good.
 更に、上記酸化雰囲気での熱処理は、昇温速度を低速に制御することにより、あるいはミリ波加熱を用いて行うことにより、ケイ素含有ポリマーの流出を更に抑えることができ、品質の安定した製品を製造することができ、好ましい。また、結合材中に含まれる無機成分の残留が多くなり、より緻密なセラミックスネットワークの形成が可能になる。 Furthermore, the heat treatment in the oxidizing atmosphere can be further controlled by controlling the rate of temperature rise to a low speed or by using millimeter wave heating, thereby further suppressing the outflow of the silicon-containing polymer. It can be manufactured and is preferable. In addition, the residual inorganic component contained in the binder increases, and a denser ceramic network can be formed.
 昇温速度を低速に制御して酸化雰囲気での熱処理を行う方法としては、例えば、0.1~0.3MPaの加圧下、1時間あたり14~140℃の昇温速度で、300℃になるまで1~10時間加熱することにより、ケイ素含有ポリマーの流出を良好に抑えることができる。また、上記のとおり、酸化雰囲気での熱処理は160℃~300℃であることが望ましいが、160℃までの昇温速度は特に限定されず、任意である。 As a method of performing heat treatment in an oxidizing atmosphere by controlling the rate of temperature increase to a low rate, for example, the temperature reaches 300 ° C. at a rate of temperature increase of 14 to 140 ° C. per hour under a pressure of 0.1 to 0.3 MPa. By heating for 1 to 10 hours until the silicon-containing polymer flows out, it can be satisfactorily suppressed. Further, as described above, the heat treatment in an oxidizing atmosphere is desirably 160 ° C. to 300 ° C., but the rate of temperature increase up to 160 ° C. is not particularly limited and is arbitrary.
 また、ミリ波加熱を用いて酸化雰囲気での熱処理を行うことも好ましい。この場合のミリ波とは、周波数が20GHz~300GHz(すなわち、波長15mm~1mm)の電磁波をいい、ミリ波加熱とは、該ミリ波帯電磁波を用いた誘電加熱をいう。ジャイロトロン発振管を用いたミリ波加熱装置を用いることで、ミリ波加熱を行うことができる。
 例えば、250~350℃、0.1~0.3MPaの加圧下にて1~5時間の処理時間が好ましい。ミリ波加熱を行うことで、上記のとおりケイ素含有ポリマーの流出が抑えられ、緻密なセラミックスネットワークが形成されるとともに、加熱処理時間を短縮させることができる。
It is also preferable to perform heat treatment in an oxidizing atmosphere using millimeter wave heating. The millimeter wave in this case refers to an electromagnetic wave having a frequency of 20 GHz to 300 GHz (that is, a wavelength of 15 mm to 1 mm), and the millimeter wave heating refers to dielectric heating using the millimeter wave band electromagnetic wave. Millimeter wave heating can be performed by using a millimeter wave heating apparatus using a gyrotron oscillation tube.
For example, a treatment time of 1 to 5 hours under a pressure of 250 to 350 ° C. and 0.1 to 0.3 MPa is preferable. By performing millimeter wave heating, the outflow of the silicon-containing polymer is suppressed as described above, a dense ceramic network is formed, and the heat treatment time can be shortened.
 焼成は、800~1000℃の温度、0.5MPa加圧下、処理時間1~2時間の条件で真空中、還元ガス、不活性ガスのいずれかの雰囲気中で行うのが望ましい。
 焼成温度が800℃以上において、十分なSi-Cの強化ネットワークが達成されるとともに、1000℃以下において、他に配合されている原材料の消失、溶け出しもなく、安定した摩擦性能が得られるため、好ましい。また、摩擦構造体として十分な機械的強度も得られる。
 焼成時間(キープ時間)はSi成分のネットワークを形成するための反応を完了させるため、かつ物性安定性を考慮し、1時間以上のキープ時間が好ましい。2時間を超える焼成時間は過剰な高エネルギー製造となり、コスト面から好ましくない。焼成工程においては試料の膨張が懸念されるため、0.5MPa程度の荷重をかけ、寸法安定性を向上させることが好ましい。
The firing is preferably performed in a vacuum, a reducing gas, or an inert gas atmosphere under conditions of a temperature of 800 to 1000 ° C. and a pressure of 0.5 MPa, and a treatment time of 1 to 2 hours.
When the firing temperature is 800 ° C. or higher, a sufficient Si—C reinforced network is achieved, and when it is 1000 ° C. or lower, other blended raw materials are not lost or dissolved, and stable friction performance is obtained. ,preferable. Also, sufficient mechanical strength as a friction structure can be obtained.
The firing time (keep time) is preferably 1 hour or longer in order to complete the reaction for forming a network of Si components and considering the stability of physical properties. A firing time exceeding 2 hours is an excessively high energy production, which is not preferable from the viewpoint of cost. Since there is a concern about the expansion of the sample in the firing step, it is preferable to apply a load of about 0.5 MPa to improve the dimensional stability.
 所望の摩擦材特性を確保するため各種配合材料が使用されるが、繊維基材としては、衝撃強度や温度などの関係で、銅繊維、スチール繊維等の金属繊維が適している。
 耐熱性を考えると無機材料が挙げられる。例えばジルコニア、アルミナ、チタニア、マグネシア、フッ化カルシウム、ボロンナイトライド、SiC等の熱処理温度に耐えられるセラミックスを挙げることができる。
Various blended materials are used to ensure desired friction material characteristics, but metal fibers such as copper fibers and steel fibers are suitable as the fiber base material in terms of impact strength and temperature.
In consideration of heat resistance, inorganic materials can be mentioned. Examples thereof include ceramics that can withstand heat treatment temperatures such as zirconia, alumina, titania, magnesia, calcium fluoride, boron nitride, and SiC.
 また、本発明の摩擦材には、通常用いられる種々の摩擦調整材を含有させることができる。かかる摩擦調整材としては、黒鉛、鉄、アルミニウム、銅、真鍮、青銅等の材料が用いられる。これらの材料は実際に使用する場合は、粉体の他に、粒状,繊維状等様々な形状やサイズを考慮して複数種類の材料を組み合わせて使用することが考えられる。 Also, the friction material of the present invention can contain various friction modifiers that are usually used. As such a friction modifier, materials such as graphite, iron, aluminum, copper, brass, bronze and the like are used. When these materials are actually used, it is conceivable to use a combination of a plurality of types of materials in consideration of various shapes and sizes such as granules and fibers in addition to powders.
 本発明では結合材としてケイ素含有ポリマーを使用するが、摩擦材の性能を損ねない限り、他の有機樹脂を併用してもよい。その結合材としては、フェノール樹脂(ストレートフェノール樹脂)、フラン樹脂、キシレン樹脂、尿素樹脂、メラミン樹脂、アニリン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、エポキシ樹脂などこれまで知られている熱硬化性樹脂の中から選択することができるが、入手の容易さ、取り扱いやすさの点でフェノール樹脂が好ましい。これらの樹脂の混合割合は結合材の50質量%位までである。 In the present invention, a silicon-containing polymer is used as a binder, but other organic resins may be used in combination as long as the performance of the friction material is not impaired. As the binder, known thermosetting resins such as phenol resin (straight phenol resin), furan resin, xylene resin, urea resin, melamine resin, aniline resin, unsaturated polyester resin, polyimide resin, epoxy resin, etc. Although phenol can be selected from among them, a phenol resin is preferable in terms of availability and ease of handling. The mixing ratio of these resins is up to about 50% by mass of the binder.
 摩擦材の組成としては、種々の配合組成を選択することができる。すなわち、これらは、製品に要求される摩擦特性、例えば、摩擦係数、耐摩耗性、振動特性、鳴き特性等に応じて、単独でまたは2種以上を組み合わせて混合すればよい。
 一般的な配合組成としては、摩擦材の配合材全体を100質量%としたとき、繊維基材10~50質量%、無機材料15~50質量%、結合材5~10質量%及び金属粉1~10質量%である。
Various blending compositions can be selected as the composition of the friction material. That is, these may be mixed singly or in combination of two or more according to the friction characteristics required for the product, for example, the friction coefficient, wear resistance, vibration characteristics, squeal characteristics, and the like.
As a general compounding composition, when the total compounding material of the friction material is 100% by mass, the fiber base material is 10 to 50% by mass, the inorganic material is 15 to 50% by mass, the binder is 5 to 10% by mass, and the metal powder 1 ~ 10% by mass.
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to only these examples.
<実施例1~6並びに参考例1及び2>
 実施例1~6並びに参考例1及び2の試作条件・製造フローは下記の通りである。
<Examples 1 to 6 and Reference Examples 1 and 2>
The trial production conditions and manufacturing flow of Examples 1 to 6 and Reference Examples 1 and 2 are as follows.
1.無機バインダーの調製
(1)無機バインダーA~Cの調製
 ケイ素含有ポリマーのキシレン溶液(宇部興産(株)製:VZ-100、50%溶液)とナノシリカMEK溶液(シーアイ化成(株)製:SIMEK、15%溶液)を表1に示す配合で混合した後、真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーA~Cを得た。
1. Preparation of inorganic binder (1) Preparation of inorganic binders A to C Xylene solution of silicon-containing polymer (Ube Industries, Ltd .: VZ-100, 50% solution) and nanosilica MEK solution (Ci Kasei): SIMEK, 15% solution) was mixed with the formulation shown in Table 1, and then heated and dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain powdered inorganic binders A to C.
(2)無機バインダーDの調製
 上記ケイ素含有ポリマーのキシレン溶液(VZ-100、50%溶液)を真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーDを得た。
(2) Preparation of Inorganic Binder D The xylene solution (VZ-100, 50% solution) of the above silicon-containing polymer was dried by heating in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain a powdery inorganic binder D.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.原料の混合
 表2に示した原材料を、表2に示す配合量で、アイリッヒ混合攪拌機に投入してチョッパ回転数1500rpm、パン回転数42rpmとし、常温で2分間混合攪拌を行った。
2. Mixing of raw materials The raw materials shown in Table 2 were charged into an Eirich mixing stirrer in the blending amounts shown in Table 2 to obtain a chopper rotation speed of 1500 rpm and a bread rotation speed of 42 rpm, and the mixture was stirred at room temperature for 2 minutes.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
3.予備成形
 上記混合物を予備成形プレスの金型に投入し、室温・25MPaで5秒間加圧成形して予備成形体を作製した。(サンプルサイズ:100×50mm)
4.熱成形
 予備成形体を小型熱プレス機で、成形温度160℃、面圧50MPa、成形時間:7分間で加熱加圧成形し、熱成形体を作製した。
5.熱処理(不融化処理)
 熱成形体を加熱用治具にセットし、0.2MPaで加圧保持しながら、オーブン中で300℃まで第3表に示す所定の速度で昇温し、不融化処理を行った。
6.焼成
 不融化処理品を焼成炉に投入し、0.5MPaで加圧保持しながらアルゴンガス雰囲気下800℃で焼成して摩擦材とした。
3. Preliminary molding The above mixture was put into a mold of a preforming press and subjected to pressure molding at room temperature and 25 MPa for 5 seconds to prepare a preform. (Sample size: 100x50mm)
4). Thermoforming The preform was heat-pressed with a small heat press machine at a molding temperature of 160 ° C., a surface pressure of 50 MPa, and a molding time of 7 minutes to produce a thermoformed body.
5. Heat treatment (infusibilization)
The thermoformed body was set on a heating jig and heated at a predetermined speed shown in Table 3 up to 300 ° C. in an oven while maintaining the pressure at 0.2 MPa to perform infusibilization.
6). Firing The infusibilized product was put into a firing furnace and fired at 800 ° C. in an argon gas atmosphere while maintaining a pressure of 0.5 MPa to obtain a friction material.
[物性評価結果]
 摩擦材の各種評価は下記測定法に従った。
(1)無機バインダーの流れ性試験
無機バインダーA~Dを0.3g秤量し、常温圧縮成形により直径7mm、高さ7mmの円筒形成形体を作製する。ガラス板を20°の角度に傾斜させた状態に保持し、オーブン中でガラス板温度275℃に加熱調整した後、上記の円筒形成形体をガラス板上に載せてオーブン中で15分間保持した後、ガラス板を取り出し、十分に冷却した後、無機バインダーの流れた距離を測定する。
[Results of physical property evaluation]
Various evaluations of the friction material were performed according to the following measurement methods.
(1) Flowability test of inorganic binder 0.3 g of inorganic binders A to D are weighed, and a cylindrical formed body having a diameter of 7 mm and a height of 7 mm is produced by compression molding at room temperature. After holding the glass plate inclined at an angle of 20 ° and adjusting the heating to a glass plate temperature of 275 ° C. in an oven, the cylindrical formed body is placed on the glass plate and held in the oven for 15 minutes. After the glass plate is taken out and sufficiently cooled, the distance through which the inorganic binder flows is measured.
(2)無機バインダーの染み出し評価
不融化処理後の成形体外周部を目視で観察し、染み出しの程度を下記評点により評価する。
 5点:染み出しなし、4点:僅かに染み出しあり、3点:染み出しあり、2点:染み出し大、1点:染み出し極大
(2) Evaluation of seepage of inorganic binder The outer periphery of the molded body after the infusibilization treatment is visually observed, and the degree of seepage is evaluated according to the following rating.
5 points: no bleeding, 4 points: slight bleeding, 3 points: bleeding, 2 points: large bleeding, 1 point: maximum bleeding
(3)摩擦材の物性・摩擦性能評価
a.焼成後の摩擦材厚み(15mm狙い)とロックウェル硬さを測定する。
b.焼成後の摩擦材の形状の状態を「○;良好」、「△;可」、「×;不良」の3段階で評価した。
(3) Evaluation of physical properties and friction performance of friction material a. Measure the thickness of the friction material after firing (targeted at 15 mm) and the Rockwell hardness.
b. The state of the shape of the friction material after firing was evaluated in three stages: “◯; good”, “Δ; acceptable”, “x; poor”.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に上記摩擦材の各種物性を示す。実施例1~6及び参考例1、2は酸化雰囲気での熱処理を行うことにより、良好な物性を持つサンプルを得ることが出来た。これらの摩擦材は、ポリカルボシランを構成しているSi成分が酸化雰囲気で加熱したことによって酸化反応が促進し、マトリックスの強化を促し、良好な物性を確保できたものと推定される。 Table 3 shows various physical properties of the friction material. In Examples 1 to 6 and Reference Examples 1 and 2, samples having good physical properties could be obtained by performing heat treatment in an oxidizing atmosphere. In these friction materials, it is presumed that the Si component constituting the polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction, promote the strengthening of the matrix, and ensure good physical properties.
 また、ポリカルボシランのみ(バインダーD)と、ポリカルボシラン及びナノシリカ粒子を混合した無機バインダー(バインダーB)の空気中におけるDTA(示差熱分析)の結果を図1に示す。ポリカルボシラン及びナノシリカ粒子を混合した無機バインダーは、200℃~400℃付近で発熱ピークが見られる。ポリカルボシランの不融化反応が約200℃から始まることから、バインダーBではポリカルボシランとナノシリカ粒子表面のシラノール基(-Si-OH)で架橋が生じているものと推定される。以上より、ポリカルボシラン単体よりもナノシリカ粒子を添加したもののほうが強固な結合が生じているものと推定される。 Further, FIG. 1 shows the results of DTA (differential thermal analysis) in the air of only polycarbosilane (binder D) and an inorganic binder (binder B) in which polycarbosilane and nano silica particles are mixed. In the inorganic binder in which polycarbosilane and nanosilica particles are mixed, an exothermic peak is observed at around 200 ° C to 400 ° C. Since the infusibilization reaction of polycarbosilane starts at about 200 ° C., it is presumed that in the binder B, crosslinking is caused by polycarbosilane and silanol groups (—Si—OH) on the surface of the nanosilica particles. From the above, it is presumed that a stronger bond is produced in the case of adding nanosilica particles than in the case of polycarbosilane alone.
 また、ポリカルボシランのみを含有する摩擦材(参考例1)と、ポリカルボシランとナノシリカ粒子を含有する摩擦材(実施例3)の摩擦性能を評価した。結果を表4に示す。なお、摩擦材の各種評価は下記測定法に従った。 Also, the friction performance of the friction material containing only polycarbosilane (Reference Example 1) and the friction material containing polycarbosilane and nanosilica particles (Example 3) was evaluated. The results are shown in Table 4. Various evaluations of the friction material were performed according to the following measurement methods.
1)性能試験(JASO C406-82準拠)
 作製したサンプルをテストピース(13×35mm)に加工し、小型ダイナモ式慣性型摩擦試験機を用いて性能試験を行った。表4に、第2効力及び1stフェードの結果を示した。
(1stフェード試験方法)
 初速度:100km/h→3km/h
 減速度:0.45G
 制動回数:9回
 制動サイクル:35秒
 なお、フェード率(%)=[(minμ(最低μ))/1回目μ]×100である。
1) Performance test (according to JASO C406-82)
The produced sample was processed into a test piece (13 × 35 mm), and a performance test was performed using a small dynamo inertial friction tester. Table 4 shows the results of the second efficacy and the first fade.
(1st fade test method)
Initial speed: 100 km / h → 3 km / h
Deceleration: 0.45G
Number of brakings: 9 times Braking cycle: 35 seconds Note that the fade rate (%) = [(min μ (minimum μ)) / first μ] × 100.
2)ロータ/パッド摩耗量の測定
 更に、性能試験終了後に、ロータ/パッドの摩耗量(μm/mm)を測定し、ロータ攻撃性(相手材攻撃性)を評価した。
2) Measurement of rotor / pad wear amount Further, after the performance test was completed, the rotor / pad wear amount (μm / mm) was measured to evaluate the rotor aggression (partner material aggression).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4の結果から、参考例1及び実施例3とも、同等の摩擦性能を示すことから、ナノシリカ粒子を添加したことによる摩擦性能への影響はないと考えられる。 From the results in Table 4, since both Reference Example 1 and Example 3 show equivalent friction performance, it is considered that there is no influence on the friction performance by adding nano silica particles.
 更に、参考例1と実施例3のEPMAによるケイ素元素マッピング測定結果を図2に示す。参考例1を見るとバインダーがSiのネットワークを形成しているのがわかる。実施例3は、ナノシリカ粒子を添加しているので、参考例1よりも更に強度が高く検出されている。ナノシリカ粒子を添加したことによる偏析は見られず、均一にSiネットワークに分散しており、実施例3は硬度も高いことから、ネットワーク形成が強化されているものと推定される。 Furthermore, the silicon element mapping measurement result by EPMA of Reference Example 1 and Example 3 is shown in FIG. It can be seen from Reference Example 1 that the binder forms a Si network. In Example 3, since nano silica particles are added, the strength is detected to be higher than that in Reference Example 1. Segregation due to the addition of nanosilica particles is not observed, and the silica is uniformly dispersed in the Si network. Since Example 3 has high hardness, it is presumed that the network formation is enhanced.
<実施例7及び8>
 実施例7及び8の試作条件・製造フローは下記の通りである。
<Examples 7 and 8>
The prototype conditions and manufacturing flow of Examples 7 and 8 are as follows.
1.無機バインダーの調製
(1)無機バインダーE及びFの調製
 ナノシリカ溶液として、無機バインダーEでは、ナノシリカ(鎖状粒子)のMEK溶液(日産化学工業(株)製:MEK-ST-UP、固形分20%)を、無機バインダーFでは、ナノシリカのキシレン溶液(日産化学工業(株)製:XBA-ST、固形分30%)を用い、それぞれ表5に示す配合で混合した以外は、上記無機バインダーAの調製方法と同様にして、粉末状の無機バインダーE及びFを得た。
1. Preparation of Inorganic Binder (1) Preparation of Inorganic Binders E and F As a nanosilica solution, in inorganic binder E, MEK solution of nanosilica (chain particles) (manufactured by Nissan Chemical Industries, Ltd .: MEK-ST-UP, solid content 20 %) Was used in the inorganic binder F, except that a xylene solution of nano silica (manufactured by Nissan Chemical Industries, Ltd .: XBA-ST, solid content 30%) was used and mixed in the composition shown in Table 5 respectively. In the same manner as in the preparation method, powdered inorganic binders E and F were obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示した原材料を、表6に示す・BR>Z合量で、原料の混合を行った以外は、実施例1と同様にして、原料の混合、予備成形、熱成形、熱処理(不融化処理)及び焼成を行って、摩擦材を製造した。得られた摩擦材について、実施例1~6と同様にして評価した結果を表7に示す。 The raw materials shown in Table 6 were mixed in the same manner as in Example 1 except that the raw materials were mixed with the total amount of BR> Z shown in Table 6. Friction treatment) and firing were performed to produce a friction material. Table 7 shows the results of evaluating the obtained friction materials in the same manner as in Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例7及び8は酸化雰囲気での熱処理を行うことにより、実施例1~6と同様に、良好な物性を持つサンプルを得ることが出来た。これらの摩擦材は、ポリカルボシランを構成しているSi成分が酸化雰囲気で加熱したことによって酸化反応が促進し、マトリックスの強化を促し、良好な物性を確保できたものと推定される。溶融時の流れ性低下効果により、不融化処理時の染み出しがほとんどなく、品質が安定した摩擦材が得られ、高密度化が期待できる。 Examples 7 and 8 were able to obtain samples having good physical properties as in Examples 1 to 6 by performing heat treatment in an oxidizing atmosphere. In these friction materials, it is presumed that the Si component constituting the polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction, promote the strengthening of the matrix, and ensure good physical properties. Due to the flowability lowering effect at the time of melting, there is almost no oozing out during the infusibilization process, and a friction material with a stable quality can be obtained, and a higher density can be expected.
 また、ポリカルボシランと鎖状のナノシリカ粒子を含有する摩擦材(実施例7)の摩擦性能を評価した。結果を表8に示す。表8の結果から、実施例7も、上記の参考例1の場合と同等の摩擦性能を示すことから、鎖状のナノシリカ粒子を添加したことによる摩擦性能への影響はないと考えられる。 Also, the friction performance of the friction material (Example 7) containing polycarbosilane and chain-like nanosilica particles was evaluated. The results are shown in Table 8. From the results of Table 8, since Example 7 also exhibits the friction performance equivalent to that in Reference Example 1 above, it is considered that there is no influence on the friction performance due to the addition of the chain nanosilica particles.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 更に、実施例7のEPMAによるケイ素元素マッピング測定結果を図2(c)に示す。実施例7は、鎖状のナノシリカ粒子を添加しているので、参考例1よりも更に強度が高く検出されている。鎖状のナノシリカ粒子を添加したことによる偏析は見られず、均一にSiネットワークに分散しており、ネットワーク形成が強化されているものと推定される。 Furthermore, the silicon element mapping measurement result by EPMA of Example 7 is shown in FIG. In Example 7, since chain-like nanosilica particles are added, the strength is detected to be higher than that in Reference Example 1. Segregation due to the addition of the chain-like nanosilica particles is not observed, and it is presumed that the network formation is strengthened because it is uniformly dispersed in the Si network.
 以上のことから、実施例1~8及び参考例1,2の結果から、不融化処理時の昇温速度を低速にすることにより、バインダーの流れ出しが抑制され、染み出しにくくなるものの、本願発明に従い、ナノ粒子を含有させることにより、ケイ素含有ポリマーの溶融時の流れ性が低下して、不融化処理時の昇温速度を遅くしなくてもバインダーの染み出しはほとんどなく、参考例1と同等の摩擦材が得られることが分かる。また、実施例5、6に比して、実施例1~4は、ナノシリカ粒子の含有量がより適量であり、バインダーの流れ性が良好であり、より優れた品質の摩擦材が得られることが分かる。 From the above, from the results of Examples 1 to 8 and Reference Examples 1 and 2, the flow rate of the binder is suppressed by making the temperature increase rate at the time of the infusible treatment low, and it is difficult to see out the present invention. Thus, by including nanoparticles, the flowability at the time of melting of the silicon-containing polymer is reduced, and even if the heating rate during the infusibilization treatment is not slowed, there is almost no oozing out of the binder. It can be seen that an equivalent friction material can be obtained. Compared with Examples 5 and 6, Examples 1 to 4 have a more appropriate amount of nanosilica particles, good flowability of the binder, and a friction material with better quality can be obtained. I understand.
<実施例9~14並びに参考例3及び4>
 実施例9~14並びに参考例3及び4の試作条件・製造フローは下記の通りである。
<Examples 9 to 14 and Reference Examples 3 and 4>
The trial production conditions and production flow of Examples 9 to 14 and Reference Examples 3 and 4 are as follows.
1.無機バインダーの調製
(1)無機バインダーG~Iの調製
 ケイ素含有ポリマーのキシレン溶液(宇部興産(株)製:VZ-100、50%溶液)と有機化処理されたモンモリロナイト粉末(ホージュン製:エスベンNK)を表9に示す配合で混合した後、真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーG~Iを得た。
1. Preparation of inorganic binder (1) Preparation of inorganic binders G to I A xylene solution of a silicon-containing polymer (manufactured by Ube Industries, Ltd .: VZ-100, 50% solution) and an organically treated montmorillonite powder (manufactured by Hojun: Sven NK) ) Was mixed with the formulation shown in Table 9, and then heated and dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain powdered inorganic binders GI.
(2)無機バインダーJの調製
 上記ケイ素含有ポリマーのキシレン溶液(VZ-100、50%溶液)を真空オーブンで150℃、24時間加熱乾燥を行った。乾燥後、バインダーを粉砕し、粉末状の無機バインダーJを得た。
(2) Preparation of inorganic binder J The silicon-containing polymer xylene solution (VZ-100, 50% solution) was heat-dried in a vacuum oven at 150 ° C. for 24 hours. After drying, the binder was pulverized to obtain a powdery inorganic binder J.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
2.原料の混合
 表10に示した原材料を、表10に示す配合量で、アイリッヒ混合攪拌機に投入してチョッパ回転数1500rpm、パン回転数42rpmとし、常温で2分間混合攪拌を行った。
2. Mixing of raw materials The raw materials shown in Table 10 were charged into an Eirich mixing stirrer in the blending amounts shown in Table 10, and the chopper rotation speed was 1500 rpm and the bread rotation speed was 42 rpm, and the mixture was stirred at room temperature for 2 minutes.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
3.予備成形
 上記混合物を予備成形プレスの金型に投入し、常温・25MPaで5秒間加圧成形して予備成形体を作製した。(サンプルサイズ:100×50mm)
4.熱成形
 予備成形体を小型熱プレス機で、成形温度160℃、面圧50MPa、成形時間:7分間で加熱加圧成形し、熱成形体を作製した。
5.熱処理(不融化処理)
 熱成形体を加熱用治具にセットし、0.2MPaで加圧保持しながら、オーブン中で300℃まで第3表に示す所定の速度で昇温し、不融化処理を行った。
6.焼成
 不融化処理品をホットプレス付き焼成炉に投入し、0.5MPaで加圧保持しながらアルゴンガス雰囲気下1000℃で焼成して摩擦材とした。
3. Preliminary molding The above mixture was put into a mold of a preforming press and subjected to pressure molding at room temperature and 25 MPa for 5 seconds to prepare a preform. (Sample size: 100x50mm)
4). Thermoforming The preform was heat-pressed with a small heat press machine at a molding temperature of 160 ° C., a surface pressure of 50 MPa, and a molding time of 7 minutes to produce a thermoformed body.
5. Heat treatment (infusibilization)
The thermoformed body was set on a heating jig and heated at a predetermined speed shown in Table 3 up to 300 ° C. in an oven while maintaining the pressure at 0.2 MPa to perform infusibilization.
6). Firing The infusibilized product was put into a firing furnace with a hot press, and fired at 1000 ° C. in an argon gas atmosphere while maintaining a pressure of 0.5 MPa to obtain a friction material.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11に上記摩擦材の各種物性を示す。実施例9~14及び参考例3,4は酸化雰囲気での熱処理を行うことにより、良好な物性を持つサンプルを得ることが出来た。これらの摩擦材は、大気中の酸素と架橋することによる重量減少は見られず、ポリカルボシランを構成しているSi成分が酸化雰囲気で加熱したことによって酸化反応が促進し、マトリックスの強化を促し、良好な物性を確保できたものと推定される。 Table 11 shows various physical properties of the friction material. In Examples 9 to 14 and Reference Examples 3 and 4, samples having good physical properties could be obtained by performing heat treatment in an oxidizing atmosphere. These friction materials did not lose weight due to crosslinking with oxygen in the atmosphere, and the Si component constituting polycarbosilane was heated in an oxidizing atmosphere to promote the oxidation reaction and strengthen the matrix. It is presumed that good physical properties were secured.
 また、ポリカルボシランのみを含有する摩擦材(参考例3)と、ポリカルボシランとモンモリロナイトを含有する摩擦材(実施例14)の摩擦性能を、前記と同様に評価した。
 これらの結果を表12に示す。参考例3、実施例14とも、同等の摩擦性能を示すことから、モンモリロナイトを添加したことによる摩擦性能への影響はないと考えられる。
Moreover, the friction performance of the friction material (Reference Example 3) containing only polycarbosilane and the friction material (Example 14) containing polycarbosilane and montmorillonite was evaluated in the same manner as described above.
These results are shown in Table 12. Since both Reference Example 3 and Example 14 show equivalent friction performance, it is considered that there is no influence on the friction performance due to the addition of montmorillonite.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例9~14及び参考例3,4の結果から、不融化処理時の昇温速度を低速にすることにより、バインダーの流れ出しが抑制され、染み出しにくくなるものの、本発明に従い、膨潤性粘土鉱物を含有させることにより、ケイ素含有ポリマーの溶融時の流れ性が低下して、不融化処理時の昇温速度を遅くしなくてもバインダーの染み出しはほとんどなく、昇温速度を遅くした参考例3と同等の摩擦材が得られることが分かる。 From the results of Examples 9 to 14 and Reference Examples 3 and 4, by lowering the temperature increase rate during the infusibilization treatment, the flow of the binder is suppressed and it is difficult to ooze out. By including minerals, the flowability at the time of melting of the silicon-containing polymer is reduced, and even if the heating rate during the infusibilization treatment is not slowed, there is almost no oozing out of the binder. It turns out that the friction material equivalent to Example 3 is obtained.
 本出願は、2011年2月18日出願の日本特許出願(特願2011-33399)、2011年3月1日出願の日本特許出願(特願2011-44339)及び2011年12月26日出願の日本特許出願(2011-284262)に基づくものであり、その内容はここに参照として取り込まれる。 This application includes Japanese patent applications filed on February 18, 2011 (Japanese Patent Application No. 2011-33399), Japanese patent applications filed on March 1, 2011 (Japanese Patent Application No. 2011-44339), and applications filed on December 26, 2011. This is based on Japanese Patent Application (2011-284262), the contents of which are incorporated herein by reference.
 本発明のナノ粒子材料又は膨潤性粘土鉱物を含有するケイ素含有ポリマーを結合材として不融化、焼成して得た摩擦材は、ブレーキ性能に優れた高耐熱性ブレーキパッドを既存の製造設備を利用して提供することが出来る。従って、本発明の摩擦材は、自動車、鉄道、産業用機械などのブレーキパッド、ブレーキライニング、クラッチフェーシング等として使用される高耐熱性摩擦材として有用である。 The friction material obtained by infusibilizing and firing the silicon-containing polymer containing the nanoparticle material or swellable clay mineral of the present invention as a binder uses a highly heat-resistant brake pad with excellent braking performance using existing manufacturing equipment Can be provided. Therefore, the friction material of the present invention is useful as a high heat resistance friction material used as a brake pad, brake lining, clutch facing, etc. for automobiles, railways, industrial machines and the like.

Claims (14)

  1.  繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材において、該結合材としてケイ素含有ポリマーとナノ粒子材料又は膨潤性粘土鉱物とを含有する原材料を酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理してSi-Cネットワークが形成されたことを特徴とする摩擦材。 Friction material composed of fiber base material, friction modifier, binder and inorganic material, infusible by heat-treating raw material containing silicon-containing polymer and nano-particle material or swellable clay mineral as the binder in an oxidizing atmosphere A friction material, wherein a silicon-containing polymer is cross-linked with oxygen and then fired to form a Si—C network.
  2.  前記熱処理が、160~350℃の温度で、1~10時間の間行ったものである請求項1に記載の摩擦材。 The friction material according to claim 1, wherein the heat treatment is performed at a temperature of 160 to 350 ° C for 1 to 10 hours.
  3.  前記ケイ素含有ポリマーがポリカルボシラン、ポリオルガノボロシラザン、ポリボロシロキサン、ポリカルボシラザン、パーヒドロポリシラザンの群から選択された1つ又は2つ以上の化合物である請求項1又は請求項2に記載の摩擦材。 The said silicon-containing polymer is one or two or more compounds selected from the group of polycarbosilane, polyorganoborosilazane, polyborosiloxane, polycarbosilazane, and perhydropolysilazane. Friction material.
  4.  前記ケイ素含有ポリマーが摩擦材組成全体の5~10質量%配合されていることを特徴とする請求項1~3のいずれか1つに記載の摩擦材。 The friction material according to any one of claims 1 to 3, wherein the silicon-containing polymer is blended in an amount of 5 to 10% by mass of the entire friction material composition.
  5.  前記ケイ素含有ポリマー100質量部に対して、前記ナノ粒子材料を15~50質量部含有することを特徴とする請求項1~4のいずれか1つに記載の摩擦材。 The friction material according to any one of claims 1 to 4, wherein the nanoparticle material is contained in an amount of 15 to 50 parts by mass with respect to 100 parts by mass of the silicon-containing polymer.
  6.  前記ナノ粒子材料がシリカである請求項1~5のいずれか1つに記載の摩擦材。 The friction material according to any one of claims 1 to 5, wherein the nanoparticle material is silica.
  7.  前記シリカがオルガノシリカゾルである請求項6に記載の摩擦材。 The friction material according to claim 6, wherein the silica is an organosilica sol.
  8.  前記膨潤性粘土鉱物が有機化処理された膨潤性粘土鉱物である請求項1~4のいずれか1つに記載の摩擦材。 The friction material according to any one of claims 1 to 4, wherein the swellable clay mineral is an organically treated swellable clay mineral.
  9.  前記膨潤性粘土鉱物がモンモリロナイトである請求項1~4及び8のいずれか1つに記載の摩擦材。 The friction material according to any one of claims 1 to 4 and 8, wherein the swellable clay mineral is montmorillonite.
  10.  少なくとも予備成形、熱成形及び熱処理の工程を含む、繊維基材、摩擦調整材、結合材及び無機材料よりなる摩擦材の製造方法において、該結合材としてケイ素含有ポリマーとナノ粒子材料又は膨潤性粘土鉱物とを含有する原材料を熱成形の後、160~350℃の温度で、1~10時間の間、酸化雰囲気で熱処理することにより不融化して、ケイ素含有ポリマーを酸素と架橋させた後、焼成処理したことを特徴とする摩擦材の製造方法。 In a method for producing a friction material comprising a fiber base material, a friction modifier, a binder, and an inorganic material, including at least preforming, thermoforming and heat treatment steps, a silicon-containing polymer and a nanoparticle material or a swellable clay as the binder After thermoforming the raw material containing the mineral, it is infusible by heat treatment in an oxidizing atmosphere at a temperature of 160 to 350 ° C. for 1 to 10 hours to crosslink the silicon-containing polymer with oxygen, A method for producing a friction material, characterized by being fired.
  11.  前記不融化処理における熱処理の昇温速度を、1時間あたり14~140℃で行うことを特徴とする請求項10に記載の摩擦材の製造方法。 The method for producing a friction material according to claim 10, wherein the heating rate of the heat treatment in the infusibilization treatment is performed at 14 to 140 ° C per hour.
  12.  前記不融化処理における熱処理を、ミリ波加熱を用いて行うことを特徴とする請求項10又は請求項11に記載の摩擦材の製造方法。 The method for manufacturing a friction material according to claim 10 or 11, wherein the heat treatment in the infusibilization process is performed using millimeter wave heating.
  13.  前記熱処理の後、さらに800~1000℃の温度で1~2時間焼成することを特徴とする請求項10~12のいずれか1つに記載の摩擦材の製造方法。 The method for producing a friction material according to any one of claims 10 to 12, wherein after the heat treatment, firing is further performed at a temperature of 800 to 1000 ° C for 1 to 2 hours.
  14.  前記予備成形が圧力25~300MPaの予備成形を施したことを特徴とする請求項10~13のいずれか1つに記載の摩擦材の製造方法。 The method for manufacturing a friction material according to any one of claims 10 to 13, wherein the preforming is preformed at a pressure of 25 to 300 MPa.
PCT/JP2012/053689 2011-02-18 2012-02-16 Friction material and friction material production method WO2012111763A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-033399 2011-02-18
JP2011033399 2011-02-18
JP2011-044339 2011-03-01
JP2011044339A JP5659392B2 (en) 2011-03-01 2011-03-01 Friction material and friction material manufacturing method
JP2011-284262 2011-12-26
JP2011284262A JP5850739B2 (en) 2011-02-18 2011-12-26 Friction material manufacturing method

Publications (1)

Publication Number Publication Date
WO2012111763A1 true WO2012111763A1 (en) 2012-08-23

Family

ID=46672675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053689 WO2012111763A1 (en) 2011-02-18 2012-02-16 Friction material and friction material production method

Country Status (1)

Country Link
WO (1) WO2012111763A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190115A (en) * 1993-12-28 1995-07-28 Osaka Gas Co Ltd Binder composition for friction material
JPH07292349A (en) * 1994-03-03 1995-11-07 Osaka Gas Co Ltd Frictional material and binder composition for the same
WO2010016079A1 (en) * 2008-08-08 2010-02-11 Freni Brembo S.P.A. Method for making a ceramic matrix material for friction components of brakes and ceramic matrix material made by such method
WO2011078269A1 (en) * 2009-12-22 2011-06-30 曙ブレーキ工業株式会社 Friction material and method for producing friction material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190115A (en) * 1993-12-28 1995-07-28 Osaka Gas Co Ltd Binder composition for friction material
JPH07292349A (en) * 1994-03-03 1995-11-07 Osaka Gas Co Ltd Frictional material and binder composition for the same
WO2010016079A1 (en) * 2008-08-08 2010-02-11 Freni Brembo S.P.A. Method for making a ceramic matrix material for friction components of brakes and ceramic matrix material made by such method
WO2011078269A1 (en) * 2009-12-22 2011-06-30 曙ブレーキ工業株式会社 Friction material and method for producing friction material

Similar Documents

Publication Publication Date Title
JP5852308B2 (en) Friction material manufacturing method
JP5797073B2 (en) Friction material manufacturing method
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
JP6923320B2 (en) Sintered metal friction material
JP6066739B2 (en) Friction material and manufacturing method thereof
KR101876054B1 (en) Carbon composite brake friction material and its manufacturing method
WO2011093020A1 (en) Composition for refractory brick, refractory brick, and method for producing refractory brick
CN110997857B (en) Friction material
US9005732B2 (en) Friction-tolerant disks made of fiber-reinforced ceramic
JP5659392B2 (en) Friction material and friction material manufacturing method
WO2012111763A1 (en) Friction material and friction material production method
JP5850739B2 (en) Friction material manufacturing method
JP6674750B2 (en) Control wheel, method of manufacturing the same, and tread brake device for railway vehicle
CN108018022B (en) Friction material
JP4029026B2 (en) Non-asbestos friction material
JP2010254541A (en) Production method for carbon fiber-reinforced silicon-impregnated silicon carbide ceramic and ceramic produced by the production method
JP6254424B2 (en) Friction material
JP5011557B2 (en) Composite friction modifier for friction material
JP2008201930A (en) Friction material
JP4959263B2 (en) Friction material manufacturing method
JP4634479B2 (en) Friction material and manufacturing method thereof
JP7144473B2 (en) Binder-free friction lining, method for manufacturing binder-free friction lining, and use of binder-free friction lining
CN110715004B (en) Preparation method of heat-attenuation-resistant friction material
KR101541885B1 (en) Environmentally favorable composition materials for brake pads and method of making brake pad using the sam
JP2016060842A (en) Friction material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746595

Country of ref document: EP

Kind code of ref document: A1